/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned char u_char; typedef unsigned short u_short; typedef unsigned int u_int; typedef unsigned long u_long; typedef unsigned long ulong; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28379 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28380 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28379 reg_state : 8 ; bool dismantle ; enum ldv_28380 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct fddi_statistics { struct net_device_stats gen ; __u8 smt_station_id[8U] ; __u32 smt_op_version_id ; __u32 smt_hi_version_id ; __u32 smt_lo_version_id ; __u8 smt_user_data[32U] ; __u32 smt_mib_version_id ; __u32 smt_mac_cts ; __u32 smt_non_master_cts ; __u32 smt_master_cts ; __u32 smt_available_paths ; __u32 smt_config_capabilities ; __u32 smt_config_policy ; __u32 smt_connection_policy ; __u32 smt_t_notify ; __u32 smt_stat_rpt_policy ; __u32 smt_trace_max_expiration ; __u32 smt_bypass_present ; __u32 smt_ecm_state ; __u32 smt_cf_state ; __u32 smt_remote_disconnect_flag ; __u32 smt_station_status ; __u32 smt_peer_wrap_flag ; __u32 smt_time_stamp ; __u32 smt_transition_time_stamp ; __u32 mac_frame_status_functions ; __u32 mac_t_max_capability ; __u32 mac_tvx_capability ; __u32 mac_available_paths ; __u32 mac_current_path ; __u8 mac_upstream_nbr[6U] ; __u8 mac_downstream_nbr[6U] ; __u8 mac_old_upstream_nbr[6U] ; __u8 mac_old_downstream_nbr[6U] ; __u32 mac_dup_address_test ; __u32 mac_requested_paths ; __u32 mac_downstream_port_type ; __u8 mac_smt_address[6U] ; __u32 mac_t_req ; __u32 mac_t_neg ; __u32 mac_t_max ; __u32 mac_tvx_value ; __u32 mac_frame_cts ; __u32 mac_copied_cts ; __u32 mac_transmit_cts ; __u32 mac_error_cts ; __u32 mac_lost_cts ; __u32 mac_frame_error_threshold ; __u32 mac_frame_error_ratio ; __u32 mac_rmt_state ; __u32 mac_da_flag ; __u32 mac_una_da_flag ; __u32 mac_frame_error_flag ; __u32 mac_ma_unitdata_available ; __u32 mac_hardware_present ; __u32 mac_ma_unitdata_enable ; __u32 path_tvx_lower_bound ; __u32 path_t_max_lower_bound ; __u32 path_max_t_req ; __u32 path_configuration[8U] ; __u32 port_my_type[2U] ; __u32 port_neighbor_type[2U] ; __u32 port_connection_policies[2U] ; __u32 port_mac_indicated[2U] ; __u32 port_current_path[2U] ; __u8 port_requested_paths[6U] ; __u32 port_mac_placement[2U] ; __u32 port_available_paths[2U] ; __u32 port_pmd_class[2U] ; __u32 port_connection_capabilities[2U] ; __u32 port_bs_flag[2U] ; __u32 port_lct_fail_cts[2U] ; __u32 port_ler_estimate[2U] ; __u32 port_lem_reject_cts[2U] ; __u32 port_lem_cts[2U] ; __u32 port_ler_cutoff[2U] ; __u32 port_ler_alarm[2U] ; __u32 port_connect_state[2U] ; __u32 port_pcm_state[2U] ; __u32 port_pc_withhold[2U] ; __u32 port_ler_flag[2U] ; __u32 port_hardware_present[2U] ; }; struct fddi_addr { u_char a[6U] ; }; struct s_txd_os { struct sk_buff *skb ; dma_addr_t dma_addr ; }; struct s_rxd_os { struct sk_buff *skb ; dma_addr_t dma_addr ; }; struct smt_sid { u_char sid_oem[2U] ; struct fddi_addr sid_node ; }; struct s_smc; struct smt_timer { struct smt_timer *tm_next ; struct s_smc *tm_smc ; u_long tm_delta ; u_long tm_token ; u_short tm_active ; u_short tm_pad ; }; struct mac_parameter { u_long t_neg ; u_long t_pri ; }; struct mac_counter { u_long mac_nobuf_counter ; u_long mac_r_restart_counter ; }; struct lem_counter { u_short lem_float_ber ; u_long lem_errors ; u_short lem_on ; }; struct s_plc { u_short p_state ; u_short p_bits ; u_short p_start ; u_short p_pad ; u_long soft_err ; u_long parity_err ; u_long ebuf_err ; u_long ebuf_cont ; u_long phyinv ; u_long vsym_ctr ; u_long mini_ctr ; u_long tpc_exp ; u_long np_err ; u_long b_pcs ; u_long b_tpc ; u_long b_tne ; u_long b_qls ; u_long b_ils ; u_long b_hls ; }; struct s_mbuf { struct s_mbuf *m_next ; short m_off ; u_int m_len ; int sm_use_count ; char m_data[4504U] ; }; typedef struct s_mbuf Mbuf; typedef u_long Counter; typedef u_char TimeStamp[8U]; typedef struct fddi_addr LongAddr; typedef u_long Timer_2; typedef u_long Timer; typedef u_short ResId; typedef u_short SMTEnum; typedef u_char SMTFlag; struct __anonstruct_SetCountType_248 { Counter count ; TimeStamp timestamp ; }; typedef struct __anonstruct_SetCountType_248 SetCountType; struct fddi_mib_m { u_short fddiMACFrameStatusFunctions ; Timer_2 fddiMACT_MaxCapabilitiy ; Timer_2 fddiMACTVXCapabilitiy ; u_char fddiMACMultiple_N ; u_char fddiMACMultiple_P ; u_char fddiMACDuplicateAddressCond ; u_char fddiMACAvailablePaths ; u_short fddiMACCurrentPath ; LongAddr fddiMACUpstreamNbr ; LongAddr fddiMACDownstreamNbr ; LongAddr fddiMACOldUpstreamNbr ; LongAddr fddiMACOldDownstreamNbr ; SMTEnum fddiMACDupAddressTest ; u_short fddiMACRequestedPaths ; SMTEnum fddiMACDownstreamPORTType ; ResId fddiMACIndex ; LongAddr fddiMACSMTAddress ; Timer_2 fddiMACT_Min ; Timer_2 fddiMACT_ReqMIB ; Timer_2 fddiMACT_Req ; Timer_2 fddiMACT_Neg ; Timer_2 fddiMACT_MaxMIB ; Timer_2 fddiMACT_Max ; Timer_2 fddiMACTvxValueMIB ; Timer_2 fddiMACTvxValue ; Timer_2 fddiMACT_Pri0 ; Timer_2 fddiMACT_Pri1 ; Timer_2 fddiMACT_Pri2 ; Timer_2 fddiMACT_Pri3 ; Timer_2 fddiMACT_Pri4 ; Timer_2 fddiMACT_Pri5 ; Timer_2 fddiMACT_Pri6 ; Counter fddiMACFrame_Ct ; Counter fddiMACCopied_Ct ; Counter fddiMACTransmit_Ct ; Counter fddiMACToken_Ct ; Counter fddiMACError_Ct ; Counter fddiMACLost_Ct ; Counter fddiMACTvxExpired_Ct ; Counter fddiMACNotCopied_Ct ; Counter fddiMACRingOp_Ct ; Counter fddiMACSMTCopied_Ct ; Counter fddiMACSMTTransmit_Ct ; Counter fddiMACOld_Frame_Ct ; Counter fddiMACOld_Copied_Ct ; Counter fddiMACOld_Error_Ct ; Counter fddiMACOld_Lost_Ct ; Counter fddiMACOld_NotCopied_Ct ; u_short fddiMACFrameErrorThreshold ; u_short fddiMACFrameErrorRatio ; u_short fddiMACNotCopiedThreshold ; u_short fddiMACNotCopiedRatio ; SMTEnum fddiMACRMTState ; SMTFlag fddiMACDA_Flag ; SMTFlag fddiMACUNDA_Flag ; SMTFlag fddiMACFrameErrorFlag ; SMTFlag fddiMACNotCopiedFlag ; SMTFlag fddiMACMA_UnitdataAvailable ; SMTFlag fddiMACHardwarePresent ; SMTFlag fddiMACMA_UnitdataEnable ; }; struct fddi_mib_a { ResId fddiPATHIndex ; u_long fddiPATHSbaPayload ; u_long fddiPATHSbaOverhead ; Timer fddiPATHT_Rmode ; u_long fddiPATHSbaAvailable ; Timer_2 fddiPATHTVXLowerBound ; Timer_2 fddiPATHT_MaxLowerBound ; Timer_2 fddiPATHMaxT_Req ; }; struct __anonstruct_fddiPORTMacIndicated_249 { u_char T_val ; u_char R_val ; }; struct fddi_mib_p { SMTEnum fddiPORTMy_Type ; SMTEnum fddiPORTNeighborType ; u_char fddiPORTConnectionPolicies ; struct __anonstruct_fddiPORTMacIndicated_249 fddiPORTMacIndicated ; SMTEnum fddiPORTCurrentPath ; u_char fddiPORTRequestedPaths[4U] ; u_short fddiPORTMACPlacement ; u_char fddiPORTAvailablePaths ; u_char fddiPORTConnectionCapabilities ; SMTEnum fddiPORTPMDClass ; ResId fddiPORTIndex ; SMTEnum fddiPORTMaint_LS ; SMTEnum fddiPORTPC_LS ; u_char fddiPORTBS_Flag ; Counter fddiPORTLCTFail_Ct ; Counter fddiPORTEBError_Ct ; Counter fddiPORTOldEBError_Ct ; Counter fddiPORTLem_Reject_Ct ; Counter fddiPORTLem_Ct ; u_char fddiPORTLer_Estimate ; u_char fddiPORTLer_Cutoff ; u_char fddiPORTLer_Alarm ; SMTEnum fddiPORTConnectState ; SMTEnum fddiPORTPCMState ; SMTEnum fddiPORTPCMStateX ; SMTEnum fddiPORTPC_Withhold ; SMTFlag fddiPORTHardwarePresent ; u_char fddiPORTLerFlag ; u_char fddiPORTMultiple_U ; u_char fddiPORTMultiple_P ; u_char fddiPORTEB_Condition ; }; struct __anonstruct_priv_250 { Counter fddiPRIVECF_Req_Rx ; Counter fddiPRIVECF_Reply_Rx ; Counter fddiPRIVECF_Req_Tx ; Counter fddiPRIVECF_Reply_Tx ; Counter fddiPRIVPMF_Get_Rx ; Counter fddiPRIVPMF_Set_Rx ; Counter fddiPRIVRDF_Rx ; Counter fddiPRIVRDF_Tx ; }; struct fddi_mib { u_char fddiPRPMFPasswd[8U] ; struct smt_sid fddiPRPMFStation ; u_long fddiESSPayload ; u_long fddiESSOverhead ; u_long fddiESSMaxTNeg ; u_long fddiESSMinSegmentSize ; u_long fddiESSCategory ; short fddiESSSynchTxMode ; struct smt_sid fddiSMTStationId ; u_short fddiSMTOpVersionId ; u_short fddiSMTHiVersionId ; u_short fddiSMTLoVersionId ; u_char fddiSMTManufacturerData[32U] ; u_char fddiSMTUserData[32U] ; u_short fddiSMTMIBVersionId ; u_char fddiSMTMac_Ct ; u_char fddiSMTNonMaster_Ct ; u_char fddiSMTMaster_Ct ; u_char fddiSMTAvailablePaths ; u_short fddiSMTConfigCapabilities ; u_short fddiSMTConfigPolicy ; u_short fddiSMTConnectionPolicy ; u_short fddiSMTTT_Notify ; u_char fddiSMTStatRptPolicy ; u_long fddiSMTTrace_MaxExpiration ; u_short fddiSMTPORTIndexes[2U] ; u_short fddiSMTMACIndexes ; u_char fddiSMTBypassPresent ; SMTEnum fddiSMTECMState ; SMTEnum fddiSMTCF_State ; SMTEnum fddiSMTStationStatus ; u_char fddiSMTRemoteDisconnectFlag ; u_char fddiSMTPeerWrapFlag ; TimeStamp fddiSMTTimeStamp ; TimeStamp fddiSMTTransitionTimeStamp ; SetCountType fddiSMTSetCount ; struct smt_sid fddiSMTLastSetStationId ; struct fddi_mib_m m[1U] ; struct fddi_mib_a a[2U] ; struct fddi_mib_p p[2U] ; struct __anonstruct_priv_250 priv ; }; struct err_st { u_long err_valid ; u_long err_abort ; u_long err_e_indicator ; u_long err_crc ; u_long err_llc_frame ; u_long err_mac_frame ; u_long err_smt_frame ; u_long err_imp_frame ; u_long err_no_buf ; u_long err_too_long ; u_long err_bec_stat ; u_long err_clm_stat ; u_long err_sifg_det ; u_long err_phinv ; u_long err_tkiss ; u_long err_tkerr ; }; struct s_smt_fp_txd { __le32 txd_tbctrl ; __le32 txd_txdscr ; __le32 txd_tbadr ; __le32 txd_ntdadr ; char *txd_virt ; struct s_smt_fp_txd volatile *txd_next ; struct s_txd_os txd_os ; }; struct s_smt_fp_rxd { __le32 rxd_rbctrl ; __le32 rxd_rfsw ; __le32 rxd_rbadr ; __le32 rxd_nrdadr ; char *rxd_virt ; struct s_smt_fp_rxd volatile *rxd_next ; struct s_rxd_os rxd_os ; }; union s_fp_descr { struct s_smt_fp_txd t ; struct s_smt_fp_rxd r ; }; struct s_smt_tx_queue { struct s_smt_fp_txd volatile *tx_curr_put ; struct s_smt_fp_txd volatile *tx_prev_put ; struct s_smt_fp_txd volatile *tx_curr_get ; u_short tx_free ; u_short tx_used ; void *tx_bmu_ctl ; void *tx_bmu_dsc ; }; struct s_smt_rx_queue { struct s_smt_fp_rxd volatile *rx_curr_put ; struct s_smt_fp_rxd volatile *rx_prev_put ; struct s_smt_fp_rxd volatile *rx_curr_get ; u_short rx_free ; u_short rx_used ; void *rx_bmu_ctl ; void *rx_bmu_dsc ; }; struct s_smt_fifo_conf { u_short rbc_ram_start ; u_short rbc_ram_end ; u_short rx1_fifo_start ; u_short rx1_fifo_size ; u_short rx2_fifo_start ; u_short rx2_fifo_size ; u_short tx_s_start ; u_short tx_s_size ; u_short tx_a0_start ; u_short tx_a0_size ; u_short fifo_config_mode ; }; struct fddi_mac_sf { u_char mac_fc ; struct fddi_addr mac_dest ; struct fddi_addr mac_source ; u_char mac_info[32U] ; }; struct s_fpmc { struct fddi_addr a ; u_char n ; u_char perm ; }; struct __anonstruct_mc_251 { struct s_fpmc table[32U] ; }; struct s_smt_fp { u_short mdr2init ; u_short mdr3init ; u_short frselreg_init ; u_short rx_mode ; u_short nsa_mode ; u_short rx_prom ; u_short exgpa ; struct err_st err_stats ; struct fddi_mac_sf mac_sfb ; struct s_smt_tx_queue *tx[2U] ; struct s_smt_rx_queue *rx[2U] ; struct s_smt_tx_queue tx_q[2U] ; struct s_smt_rx_queue rx_q[2U] ; struct s_smt_fifo_conf fifo ; u_short s2u ; u_short s2l ; void *fm_st1u ; void *fm_st1l ; void *fm_st2u ; void *fm_st2l ; void *fm_st3u ; void *fm_st3l ; struct __anonstruct_mc_251 mc ; struct fddi_addr group_addr ; u_long func_addr ; int smt_slots_used ; int os_slots_used ; }; struct s_smt_hw { void *iop ; short dma ; short irq ; short eprom ; short slot ; short max_slots ; short wdog_used ; u_short pci_handle ; u_long is_imask ; u_long phys_mem_addr ; u_short mc_dummy ; u_short hw_state ; int hw_is_64bit ; u_long pci_fix_value ; u_long t_start ; u_long t_stop ; u_short timer_activ ; u_char pic_a1 ; u_char pic_21 ; struct fddi_addr fddi_home_addr ; struct fddi_addr fddi_canon_addr ; struct fddi_addr fddi_phys_addr ; struct mac_parameter mac_pa ; struct mac_counter mac_ct ; u_short mac_ring_is_up ; struct s_smt_fp fp ; }; struct s_mbuf_pool { Mbuf *mb_start ; Mbuf *mb_free ; }; struct hwm_r { u_int len ; char *mb_pos ; }; struct hw_modul { struct s_mbuf_pool mbuf_pool ; struct hwm_r r ; union s_fp_descr volatile *descr_p ; u_short pass_SMT ; u_short pass_NSA ; u_short pass_DB ; u_short pass_llc_promisc ; Mbuf *llc_rx_pipe ; Mbuf *llc_rx_tail ; int queued_rx_frames ; Mbuf *txd_tx_pipe ; Mbuf *txd_tx_tail ; int queued_txd_mb ; int rx_break ; int leave_isr ; int isr_flag ; struct s_smt_tx_queue *tx_p ; u_long tx_descr ; int tx_len ; Mbuf *tx_mb ; char *tx_data ; int detec_count ; u_long rx_len_error ; }; struct s_skfp_ioctl { unsigned short cmd ; unsigned short len ; unsigned char *data ; }; struct s_smt_os { struct net_device *dev ; struct net_device *next_module ; unsigned int bus_type ; struct pci_dev pdev ; unsigned long base_addr ; unsigned char factory_mac_addr[8U] ; ulong SharedMemSize ; ulong SharedMemHeap ; void *SharedMemAddr ; dma_addr_t SharedMemDMA ; ulong QueueSkb ; struct sk_buff_head SendSkbQueue ; ulong MaxFrameSize ; unsigned char ResetRequested ; struct fddi_statistics MacStat ; unsigned char *LocalRxBuffer ; dma_addr_t LocalRxBufferDMA ; u_long smc_version ; struct hw_modul hwm ; spinlock_t DriverLock ; }; typedef struct s_smt_os skfddi_priv; struct s_ess { u_char sync_bw_available ; u_char local_sba_active ; char raf_act_timer_poll ; char timer_count ; Mbuf *sba_reply_pend ; long sync_bw ; u_long alloc_trans_id ; }; struct event_queue { u_short class ; u_short event ; }; struct s_queue { struct event_queue ev_queue[64U] ; struct event_queue *ev_put ; struct event_queue *ev_get ; }; struct s_ecm { u_char path_test ; u_char sb_flag ; u_char DisconnectFlag ; u_char ecm_line_state ; u_long trace_prop ; char ec_pad[2U] ; struct smt_timer ecm_timer ; }; struct s_rmt { u_char dup_addr_test ; u_char da_flag ; u_char loop_avail ; u_char sm_ma_avail ; u_char no_flag ; u_char bn_flag ; u_char jm_flag ; u_char rm_join ; u_char rm_loop ; long fast_rm_join ; struct smt_timer rmt_timer0 ; struct smt_timer rmt_timer1 ; struct smt_timer rmt_timer2 ; u_char timer0_exp ; u_char timer1_exp ; u_char timer2_exp ; u_char rm_pad1[1U] ; }; struct s_cfm { u_char cf_state ; u_char cf_pad[3U] ; }; struct s_pcm { u_char pcm_pad[3U] ; }; struct s_phy { struct fddi_mib_p *mib ; u_char np ; u_char cf_join ; u_char cf_loop ; u_char wc_flag ; u_char pc_mode ; u_char pc_lem_fail ; u_char lc_test ; u_char scrub ; char phy_name ; u_char pmd_type[2U] ; u_char pmd_scramble ; u_char curr_ls ; u_char ls_flag ; u_char rc_flag ; u_char tc_flag ; u_char td_flag ; u_char bitn ; u_char tr_flag ; u_char twisted ; u_char t_val[10U] ; u_char r_val[10U] ; u_long t_next[10U] ; struct smt_timer pcm_timer0 ; struct smt_timer pcm_timer1 ; struct smt_timer pcm_timer2 ; u_char timer0_exp ; u_char timer1_exp ; u_char timer2_exp ; u_char pcm_pad1[1U] ; int cem_pst ; struct lem_counter lem ; struct s_plc plc ; }; struct s_timer { struct smt_timer *st_queue ; struct smt_timer st_fast ; }; struct s_srf { u_long SRThreshold ; u_char RT_Flag ; u_char sr_state ; u_char any_report ; u_long TSR ; u_short ring_status ; }; struct s_srf_evc { u_char evc_code ; u_char evc_index ; u_char evc_rep_required ; u_short evc_para ; u_char *evc_cond_state ; u_char *evc_multiple ; }; struct smt_values { u_long smt_tvu ; u_long smt_tvd ; u_long smt_tid ; u_long pend[5U] ; u_long uniq_time ; u_short uniq_ticks ; u_short please_reconnect ; u_long smt_last_lem ; u_long smt_last_notify ; struct smt_timer smt_timer ; u_long last_tok_time[1U] ; }; struct smt_config { u_char attach_s ; u_char sas ; u_char build_ring_map ; u_char numphys ; u_char sc_pad[1U] ; u_long pcm_tb_min ; u_long pcm_tb_max ; u_long pcm_c_min ; u_long pcm_t_out ; u_long pcm_tl_min ; u_long pcm_lc_short ; u_long pcm_lc_medium ; u_long pcm_lc_long ; u_long pcm_lc_extended ; u_long pcm_t_next_9 ; u_long pcm_ns_max ; u_long ecm_i_max ; u_long ecm_in_max ; u_long ecm_td_min ; u_long ecm_test_done ; u_long ecm_check_poll ; u_long rmt_t_non_op ; u_long rmt_t_stuck ; u_long rmt_t_direct ; u_long rmt_t_jam ; u_long rmt_t_announce ; u_long rmt_t_poll ; u_long rmt_dup_mac_behavior ; u_long mac_d_max ; u_long lct_short ; u_long lct_medium ; u_long lct_long ; u_long lct_extended ; }; struct s_smc { struct s_smt_os os ; struct s_smt_hw hw ; struct smt_config s ; struct smt_values sm ; struct s_ecm e ; struct s_rmt r ; struct s_cfm cf ; struct s_pcm p ; struct s_phy y[2U] ; struct s_queue q ; struct s_timer t ; struct s_srf srf ; struct s_srf_evc evcs[14U] ; struct fddi_mib mib ; struct s_ess ess ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; enum hrtimer_restart; enum hrtimer_restart; struct fddi_mac { struct fddi_addr mac_dest ; struct fddi_addr mac_source ; u_char mac_info[4478U] ; }; enum hrtimer_restart; struct smt_header { struct fddi_addr smt_dest ; struct fddi_addr smt_source ; u_char smt_class ; u_char smt_type ; u_short smt_version ; u_int smt_tid ; struct smt_sid smt_sid ; u_short smt_pad ; u_short smt_len ; }; struct smt_para { u_short p_type ; u_short p_len ; }; struct smt_p_una { struct smt_para para ; u_short una_pad ; struct fddi_addr una_node ; }; struct smt_p_sde { struct smt_para para ; u_char sde_type ; u_char sde_mac_count ; u_char sde_non_master ; u_char sde_master ; }; struct smt_p_state { struct smt_para para ; u_short st_pad ; u_char st_topology ; u_char st_dupl_addr ; }; struct smt_p_timestamp { struct smt_para para ; u_char ts_time[8U] ; }; struct smt_p_policy { struct smt_para para ; u_short pl_config ; u_short pl_connect ; }; struct smt_p_latency { struct smt_para para ; u_short lt_phyout_idx1 ; u_short lt_latency1 ; u_short lt_phyout_idx2 ; u_short lt_latency2 ; }; struct smt_p_neighbor { struct smt_para para ; u_short nb_mib_index ; u_short nb_mac_index ; struct fddi_addr nb_una ; struct fddi_addr nb_dna ; }; struct smt_phy_rec { u_short phy_mib_index ; u_char phy_type ; u_char phy_connect_state ; u_char phy_remote_type ; u_char phy_remote_mac ; u_short phy_resource_idx ; }; struct smt_mac_rec { struct fddi_addr mac_addr ; u_short mac_resource_idx ; }; struct smt_p_path { struct smt_para para ; struct smt_phy_rec pd_phy[2U] ; struct smt_mac_rec pd_mac ; }; struct smt_p_mac_status { struct smt_para para ; u_short st_mib_index ; u_short st_mac_index ; u_int st_t_req ; u_int st_t_neg ; u_int st_t_max ; u_int st_tvx_value ; u_int st_t_min ; u_int st_sba ; u_int st_frame_ct ; u_int st_error_ct ; u_int st_lost_ct ; }; struct smt_p_lem { struct smt_para para ; u_short lem_mib_index ; u_short lem_phy_index ; u_char lem_pad2 ; u_char lem_cutoff ; u_char lem_alarm ; u_char lem_estimate ; u_int lem_reject_ct ; u_int lem_ct ; }; struct smt_p_mac_counter { struct smt_para para ; u_short mc_mib_index ; u_short mc_index ; u_int mc_receive_ct ; u_int mc_transmit_ct ; }; struct smt_p_mac_fnc { struct smt_para para ; u_short nc_mib_index ; u_short nc_index ; u_int nc_counter ; }; struct smp_p_manufacturer { struct smt_para para ; u_char mf_data[32U] ; }; struct smp_p_user { struct smt_para para ; u_char us_data[32U] ; }; struct smt_p_echo { struct smt_para para ; u_char ec_data[4454U] ; }; struct smt_p_reason { struct smt_para para ; u_int rdf_reason ; }; struct smt_p_refused { struct smt_para para ; u_int ref_fc ; struct smt_header ref_header ; }; struct smt_p_version { struct smt_para para ; u_short v_pad ; u_char v_n ; u_char v_index ; u_short v_version[1U] ; u_short v_pad2 ; }; struct smt_p_fsc { struct smt_para para ; u_short fsc_pad0 ; u_short fsc_mac_index ; u_short fsc_pad1 ; u_short fsc_value ; }; struct smt_p_setcount { struct smt_para para ; u_int count ; u_char timestamp[8U] ; }; struct smt_nif { struct smt_header smt ; struct smt_p_una una ; struct smt_p_sde sde ; struct smt_p_state state ; struct smt_p_fsc fsc ; }; struct smt_sif_config { struct smt_header smt ; struct smt_p_timestamp ts ; struct smt_p_sde sde ; struct smt_p_version version ; struct smt_p_state state ; struct smt_p_policy policy ; struct smt_p_latency latency ; struct smt_p_neighbor neighbor ; struct smt_p_setcount setcount ; struct smt_p_path path ; }; struct smt_sif_operation { struct smt_header smt ; struct smt_p_timestamp ts ; struct smt_p_mac_status status ; struct smt_p_mac_counter mc ; struct smt_p_mac_fnc fnc ; struct smp_p_manufacturer man ; struct smp_p_user user ; struct smt_p_setcount setcount ; struct smt_p_lem lem[1U] ; }; struct smt_ecf { struct smt_header smt ; struct smt_p_echo ec_echo ; }; struct smt_rdf { struct smt_header smt ; struct smt_p_reason reason ; struct smt_p_version version ; struct smt_p_refused refused ; }; struct smt_pdef { int ptype ; int plen ; char const *pswap ; }; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; struct plt { int timer ; int para ; }; enum hrtimer_restart; struct smt_p_1048 { u_int p1048_flag ; u_int p1048_cf_state ; }; struct smt_p_208c { u_int p208c_flag ; u_short p208c_pad ; u_short p208c_dupcondition ; struct fddi_addr p208c_fddilong ; struct fddi_addr p208c_fddiunalong ; }; struct smt_p_208d { u_int p208d_flag ; u_int p208d_frame_ct ; u_int p208d_error_ct ; u_int p208d_lost_ct ; u_int p208d_ratio ; }; struct smt_p_208e { u_int p208e_flag ; u_int p208e_not_copied ; u_int p208e_copied ; u_int p208e_not_copied_ratio ; }; struct smt_p_208f { u_int p208f_multiple ; u_int p208f_nacondition ; struct fddi_addr p208f_old_una ; struct fddi_addr p208f_new_una ; struct fddi_addr p208f_old_dna ; struct fddi_addr p208f_new_dna ; u_short p208f_curren_path ; struct fddi_addr p208f_smt_address ; }; struct smt_p_2090 { u_int p2090_multiple ; u_short p2090_availablepaths ; u_short p2090_currentpath ; u_int p2090_requestedpaths ; }; struct smt_p_4050 { u_int p4050_flag ; u_char p4050_pad ; u_char p4050_cutoff ; u_char p4050_alarm ; u_char p4050_estimate ; u_int p4050_reject_ct ; u_int p4050_ct ; }; struct smt_p_4051 { u_int p4051_multiple ; u_short p4051_porttype ; u_short p4051_connectstate ; u_short p4051_pc_neighbor ; u_short p4051_pc_withhold ; }; struct smt_p_4052 { u_int p4052_flag ; u_int p4052_eberrorcount ; }; struct smt_p_4053 { u_int p4053_multiple ; u_short p4053_availablepaths ; u_short p4053_currentpath ; u_int p4053_requestedpaths ; u_short p4053_mytype ; u_short p4053_neighbortype ; }; struct s_pcon { int pc_len ; int pc_err ; int pc_badset ; void *pc_p ; }; struct s_p_tab; struct s_p_tab { u_short p_num ; u_char p_access ; u_short p_offset ; char p_swap[3U] ; }; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; struct evc_init { u_char code ; u_char index ; u_char n ; u_short para ; }; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; struct smt_p_0015 { struct smt_para para ; u_int res_type ; }; struct smt_p_0016 { struct smt_para para ; u_int sba_cmd ; }; struct smt_p_0017 { struct smt_para para ; int sba_pl_req ; }; struct smt_p_0018 { struct smt_para para ; int sba_ov_req ; }; struct smt_p_0019 { struct smt_para para ; u_short sba_pad ; struct fddi_addr alloc_addr ; }; struct smt_p_001a { struct smt_para para ; u_int category ; }; struct smt_p_001b { struct smt_para para ; u_int max_t_neg ; }; struct smt_p_001c { struct smt_para para ; u_int min_seg_siz ; }; struct smt_p_320b { struct smt_para para ; u_int mib_index ; u_short path_pad ; u_short path_index ; }; struct smt_p_320f { struct smt_para para ; u_int mib_index ; u_int mib_payload ; }; struct smt_p_3210 { struct smt_para para ; u_int mib_index ; u_int mib_overhead ; }; struct smt_sba_alc_req { struct smt_header smt ; struct smt_p_0015 s_type ; struct smt_p_0016 cmd ; struct smt_p_320b path ; struct smt_p_0017 pl_req ; struct smt_p_0018 ov_req ; struct smt_p_320f payload ; struct smt_p_3210 overhead ; struct smt_p_0019 a_addr ; struct smt_p_001a cat ; struct smt_p_001b tneg ; struct smt_p_001c segm ; }; struct smt_sba_chg { struct smt_header smt ; struct smt_p_0015 s_type ; struct smt_p_0016 cmd ; struct smt_p_320b path ; struct smt_p_320f payload ; struct smt_p_3210 overhead ; struct smt_p_001a cat ; }; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern int printk(char const * , ...) ; extern int __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void might_fault(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_91(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_93(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_95(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_DriverLock_of_s_smt_os(void) ; void ldv_spin_unlock_DriverLock_of_s_smt_os(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_89(spinlock_t *lock ) ; __inline static void ldv_spin_lock_89(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_90(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_90(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_92(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_92(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_92(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_92(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; extern unsigned int ioread32(void * ) ; extern void iowrite32(u32 , void * ) ; static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) ; extern bool capable(int ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } extern void consume_skb(struct sk_buff * ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) ; __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { { spinlock_check(& list->lock); __raw_spin_lock_init(& list->lock.__annonCompField19.rlock, "&(&list->lock)->rlock", & __key); __skb_queue_head_init(list); } return; } } extern void skb_queue_head(struct sk_buff_head * , struct sk_buff * ) ; extern void skb_queue_tail(struct sk_buff_head * , struct sk_buff * ) ; extern struct sk_buff *skb_dequeue(struct sk_buff_head * ) ; extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } extern void skb_trim(struct sk_buff * , unsigned int ) ; extern void skb_queue_purge(struct sk_buff_head * ) ; __inline static void skb_copy_to_linear_data(struct sk_buff *skb , void const *from , unsigned int const len ) { { { memcpy((void *)skb->data, from, (size_t )len); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_84(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_86(struct net_device *ldv_func_arg1 ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } extern int netif_rx(struct sk_buff * ) ; extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_83(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_85(struct net_device *ldv_func_arg1 ) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_100(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_101(struct pci_driver *ldv_func_arg1 ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_82(& pdev->dev, data); } return; } } static char const * const boot_msg = (char const */* const */)"SysKonnect FDDI PCI Adapter driver v2.07 for\n SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)"; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_87(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_88(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern __be16 fddi_type_trans(struct sk_buff * , struct net_device * ) ; extern int fddi_change_mtu(struct net_device * , int ) ; extern struct net_device *alloc_fddidev(int ) ; void cfm_state_change(struct s_smc *smc , int c_state ) ; void smt_stat_counter(struct s_smc *smc , int stat ) ; void smt_timer_poll(struct s_smc *smc ) ; u_long smt_get_time(void) ; void smt_reset_defaults(struct s_smc *smc , int level ) ; void drv_reset_indication(struct s_smc *smc ) ; void ecm_state_change(struct s_smc *smc , int e_state ) ; void rmt_state_change(struct s_smc *smc , int r_state ) ; u_short smt_online(struct s_smc *smc , int on ) ; int mac_add_multicast(struct s_smc *smc , struct fddi_addr *addr , int can ) ; void mac_update_multicast(struct s_smc *smc ) ; void mac_clear_multicast(struct s_smc *smc ) ; void ring_status_indication(struct s_smc *smc , u_long status ) ; void llc_restart_tx(struct s_smc *smc ) ; void mac_drv_clear_tx_queue(struct s_smc *smc ) ; void card_stop(struct s_smc *smc ) ; int init_smt(struct s_smc *smc , u_char *mac_addr ) ; void read_address(struct s_smc *smc , u_char *mac_addr ) ; static int skfp_driver_init(struct net_device *dev ) ; static int skfp_open(struct net_device *dev ) ; static int skfp_close(struct net_device *dev ) ; static irqreturn_t skfp_interrupt(int irq , void *dev_id ) ; static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev ) ; static void skfp_ctl_set_multicast_list(struct net_device *dev ) ; static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev ) ; static int skfp_ctl_set_mac_address(struct net_device *dev , void *addr ) ; static int skfp_ioctl(struct net_device *dev , struct ifreq *rq , int cmd ) ; static netdev_tx_t skfp_send_pkt(struct sk_buff *skb , struct net_device *dev ) ; static void send_queued_packets(struct s_smc *smc ) ; static void CheckSourceAddress(unsigned char *frame , unsigned char *hw_addr ) ; static void ResetAdapter(struct s_smc *smc ) ; void *mac_drv_get_space(struct s_smc *smc , unsigned int size ) ; void *mac_drv_get_desc_mem(struct s_smc *smc , unsigned int size ) ; unsigned long mac_drv_virt2phys(struct s_smc *smc , void *virt ) ; unsigned long dma_master(struct s_smc *smc , void *virt , int len , int flag ) ; void dma_complete(struct s_smc *smc , union s_fp_descr volatile *descr , int flag ) ; void mac_drv_tx_complete(struct s_smc *smc , struct s_smt_fp_txd volatile *txd ) ; void mac_drv_rx_complete(struct s_smc *smc , struct s_smt_fp_rxd volatile *rxd , int frag_count , int len ) ; void mac_drv_requeue_rxd(struct s_smc *smc , struct s_smt_fp_rxd volatile *rxd , int frag_count ) ; void mac_drv_fill_rxd(struct s_smc *smc ) ; void mac_drv_clear_rxd(struct s_smc *smc , struct s_smt_fp_rxd volatile *rxd , int frag_count ) ; int mac_drv_rx_init(struct s_smc *smc , int len , int fc , char *look_ahead , int la_len ) ; u_int mac_drv_check_space(void) ; int mac_drv_init(struct s_smc *smc ) ; void hwm_tx_frag(struct s_smc *smc , char *virt , u_long phys , int len , int frame_status ) ; int hwm_tx_init(struct s_smc *smc , u_char fc , int frag_count , int frame_len , int frame_status ) ; void fddi_isr(struct s_smc *smc ) ; void hwm_rx_frag(struct s_smc *smc , char *virt , u_long phys , int len , int frame_status ) ; void mac_drv_rx_mode(struct s_smc *smc , int mode ) ; void mac_drv_clear_rx_queue(struct s_smc *smc ) ; static struct pci_device_id const skfddi_pci_tbl[2U] = { {4424U, 16384U, 4294967295U, 4294967295U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static int num_boards ; static struct net_device_ops const skfp_netdev_ops = {0, 0, & skfp_open, & skfp_close, & skfp_send_pkt, 0, 0, & skfp_ctl_set_multicast_list, & skfp_ctl_set_mac_address, 0, & skfp_ioctl, 0, & fddi_change_mtu, 0, 0, 0, & skfp_ctl_get_stats, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int skfp_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *dev ; struct s_smc *smc ; void *mem ; int err ; struct _ddebug descriptor ; long tmp ; void *tmp___0 ; { { descriptor.modname = "skfp"; descriptor.function = "skfp_init_one"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "entering skfp_init_one\n"; descriptor.lineno = 212U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "entering skfp_init_one\n"); } } else { } if (num_boards == 0) { { printk("%s\n", boot_msg); } } else { } { err = pci_enable_device(pdev); } if (err != 0) { return (err); } else { } { err = pci_request_regions(pdev, "skfddi"); } if (err != 0) { goto err_out1; } else { } { pci_set_master(pdev); } if ((pdev->resource[0].flags & 512UL) == 0UL) { { printk("\vskfp: region is not an MMIO resource\n"); err = -5; } goto err_out2; } else { } { mem = ioremap(pdev->resource[0].start, 16384UL); } if ((unsigned long )mem == (unsigned long )((void *)0)) { { printk("\vskfp: Unable to map register, FDDI adapter will be disabled.\n"); err = -5; } goto err_out2; } else { } { dev = alloc_fddidev(8048); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { { printk("\vskfp: Unable to allocate fddi device, FDDI adapter will be disabled.\n"); err = -12; } goto err_out3; } else { } { dev->irq = (int )pdev->irq; dev->netdev_ops = & skfp_netdev_ops; dev->dev.parent = & pdev->dev; tmp___0 = netdev_priv((struct net_device const *)dev); smc = (struct s_smc *)tmp___0; smc->os.dev = dev; smc->os.bus_type = 0U; smc->os.pdev = *pdev; smc->os.QueueSkb = 20UL; smc->os.MaxFrameSize = 4550UL; smc->os.dev = dev; smc->hw.slot = -1; smc->hw.iop = mem; smc->os.ResetRequested = 0U; skb_queue_head_init(& smc->os.SendSkbQueue); dev->base_addr = (unsigned long )mem; err = skfp_driver_init(dev); } if (err != 0) { goto err_out4; } else { } { err = ldv_register_netdev_83(dev); } if (err != 0) { goto err_out5; } else { } { num_boards = num_boards + 1; pci_set_drvdata(pdev, (void *)dev); } if (((int )pdev->subsystem_device & 65280) == 21760 || ((int )pdev->subsystem_device & 65280) == 22528) { { printk("%s: SysKonnect FDDI PCI adapter found (SK-%04X)\n", (char *)(& dev->name), (int )pdev->subsystem_device); } } else { { printk("%s: FDDI PCI adapter found\n", (char *)(& dev->name)); } } return (0); err_out5: ; if ((unsigned long )smc->os.SharedMemAddr != (unsigned long )((void *)0)) { { pci_free_consistent(pdev, smc->os.SharedMemSize, smc->os.SharedMemAddr, smc->os.SharedMemDMA); } } else { } { pci_free_consistent(pdev, 4550UL, (void *)smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA); } err_out4: { ldv_free_netdev_84(dev); } err_out3: { iounmap((void volatile *)mem); } err_out2: { pci_release_regions(pdev); } err_out1: { pci_disable_device(pdev); } return (err); } } static void skfp_remove_one(struct pci_dev *pdev ) { struct net_device *p ; void *tmp ; struct s_smc *lp ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); p = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)p); lp = (struct s_smc *)tmp___0; ldv_unregister_netdev_85(p); } if ((unsigned long )lp->os.SharedMemAddr != (unsigned long )((void *)0)) { { pci_free_consistent(& lp->os.pdev, lp->os.SharedMemSize, lp->os.SharedMemAddr, lp->os.SharedMemDMA); lp->os.SharedMemAddr = (void *)0; } } else { } if ((unsigned long )lp->os.LocalRxBuffer != (unsigned long )((unsigned char *)0U)) { { pci_free_consistent(& lp->os.pdev, 4550UL, (void *)lp->os.LocalRxBuffer, lp->os.LocalRxBufferDMA); lp->os.LocalRxBuffer = (unsigned char *)0U; } } else { } { iounmap((void volatile *)lp->hw.iop); pci_release_regions(pdev); ldv_free_netdev_86(p); pci_disable_device(pdev); } return; } } static int skfp_driver_init(struct net_device *dev ) { struct s_smc *smc ; void *tmp ; skfddi_priv *bp ; int err ; struct _ddebug descriptor ; long tmp___0 ; struct lock_class_key __key ; void *tmp___1 ; u_int tmp___2 ; struct _ddebug descriptor___0 ; long tmp___3 ; struct _ddebug descriptor___1 ; long tmp___4 ; struct _ddebug descriptor___2 ; long tmp___5 ; int tmp___6 ; struct _ddebug descriptor___3 ; long tmp___7 ; { { tmp = netdev_priv((struct net_device const *)dev); smc = (struct s_smc *)tmp; bp = & smc->os; err = -5; descriptor.modname = "skfp"; descriptor.function = "skfp_driver_init"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "entering skfp_driver_init\n"; descriptor.lineno = 387U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor, "entering skfp_driver_init\n"); } } else { } { bp->base_addr = dev->base_addr; smc->hw.irq = (short )dev->irq; spinlock_check(& bp->DriverLock); __raw_spin_lock_init(& bp->DriverLock.__annonCompField19.rlock, "&(&bp->DriverLock)->rlock", & __key); tmp___1 = pci_alloc_consistent(& bp->pdev, 4550UL, & bp->LocalRxBufferDMA); bp->LocalRxBuffer = (unsigned char *)tmp___1; } if ((unsigned long )bp->LocalRxBuffer == (unsigned long )((unsigned char *)0U)) { { printk("could not allocate mem for "); printk("LocalRxBuffer: %d byte\n", 4550); } goto fail; } else { } { tmp___2 = mac_drv_check_space(); bp->SharedMemSize = (ulong )tmp___2; descriptor___0.modname = "skfp"; descriptor___0.function = "skfp_driver_init"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "Memory for HWM: %ld\n"; descriptor___0.lineno = 407U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_pr_debug(& descriptor___0, "Memory for HWM: %ld\n", bp->SharedMemSize); } } else { } if (bp->SharedMemSize != 0UL) { { bp->SharedMemSize = bp->SharedMemSize + 16UL; bp->SharedMemAddr = pci_alloc_consistent(& bp->pdev, bp->SharedMemSize, & bp->SharedMemDMA); } if ((unsigned long )bp->SharedMemAddr == (unsigned long )((void *)0)) { { printk("could not allocate mem for "); printk("hardware module: %ld byte\n", bp->SharedMemSize); } goto fail; } else { } bp->SharedMemHeap = 0UL; } else { bp->SharedMemAddr = (void *)0; bp->SharedMemHeap = 0UL; } { memset(bp->SharedMemAddr, 0, bp->SharedMemSize); card_stop(smc); descriptor___1.modname = "skfp"; descriptor___1.function = "skfp_driver_init"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = "mac_drv_init()..\n"; descriptor___1.lineno = 431U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_pr_debug(& descriptor___1, "mac_drv_init()..\n"); } } else { } { tmp___6 = mac_drv_init(smc); } if (tmp___6 != 0) { { descriptor___2.modname = "skfp"; descriptor___2.function = "skfp_driver_init"; descriptor___2.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___2.format = "mac_drv_init() failed\n"; descriptor___2.lineno = 433U; descriptor___2.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_pr_debug(& descriptor___2, "mac_drv_init() failed\n"); } } else { } goto fail; } else { } { read_address(smc, (u_char *)0U); descriptor___3.modname = "skfp"; descriptor___3.function = "skfp_driver_init"; descriptor___3.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___3.format = "HW-Addr: %pMF\n"; descriptor___3.lineno = 437U; descriptor___3.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_pr_debug(& descriptor___3, "HW-Addr: %pMF\n", (u_char *)(& smc->hw.fddi_canon_addr.a)); } } else { } { memcpy((void *)dev->dev_addr, (void const *)(& smc->hw.fddi_canon_addr.a), 6UL); smt_reset_defaults(smc, 0); } return (0); fail: ; if ((unsigned long )bp->SharedMemAddr != (unsigned long )((void *)0)) { { pci_free_consistent(& bp->pdev, bp->SharedMemSize, bp->SharedMemAddr, bp->SharedMemDMA); bp->SharedMemAddr = (void *)0; } } else { } if ((unsigned long )bp->LocalRxBuffer != (unsigned long )((unsigned char *)0U)) { { pci_free_consistent(& bp->pdev, 4550UL, (void *)bp->LocalRxBuffer, bp->LocalRxBufferDMA); bp->LocalRxBuffer = (unsigned char *)0U; } } else { } return (err); } } static int skfp_open(struct net_device *dev ) { struct s_smc *smc ; void *tmp ; int err ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); smc = (struct s_smc *)tmp; descriptor.modname = "skfp"; descriptor.function = "skfp_open"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "entering skfp_open\n"; descriptor.lineno = 487U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor, "entering skfp_open\n"); } } else { } { err = ldv_request_irq_87((unsigned int )dev->irq, & skfp_interrupt, 128UL, (char const *)(& dev->name), (void *)dev); } if (err != 0) { return (err); } else { } { read_address(smc, (u_char *)0U); memcpy((void *)dev->dev_addr, (void const *)(& smc->hw.fddi_canon_addr.a), 6UL); init_smt(smc, (u_char *)0U); smt_online(smc, 1); iowrite32((u32 )smc->hw.is_imask, smc->hw.iop + 12UL); mac_clear_multicast(smc); mac_drv_rx_mode(smc, 4); netif_start_queue(dev); } return (0); } } static int skfp_close(struct net_device *dev ) { struct s_smc *smc ; void *tmp ; skfddi_priv *bp ; { { tmp = netdev_priv((struct net_device const *)dev); smc = (struct s_smc *)tmp; bp = & smc->os; iowrite32(0U, smc->hw.iop + 12UL); smt_reset_defaults(smc, 1); card_stop(smc); mac_drv_clear_tx_queue(smc); mac_drv_clear_rx_queue(smc); netif_stop_queue(dev); ldv_free_irq_88((unsigned int )dev->irq, (void *)dev); skb_queue_purge(& bp->SendSkbQueue); bp->QueueSkb = 20UL; } return (0); } } static irqreturn_t skfp_interrupt(int irq , void *dev_id ) { struct net_device *dev ; struct s_smc *smc ; skfddi_priv *bp ; void *tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { { dev = (struct net_device *)dev_id; tmp = netdev_priv((struct net_device const *)dev); smc = (struct s_smc *)tmp; bp = & smc->os; tmp___0 = ioread32(smc->hw.iop + 12UL); } if (tmp___0 == 0U) { return (0); } else { } { tmp___1 = ioread32(smc->hw.iop + 8UL); } if (((u_long )tmp___1 & smc->hw.is_imask) == 0UL) { return (0); } else { } { iowrite32(0U, smc->hw.iop + 12UL); ldv_spin_lock_89(& bp->DriverLock); fddi_isr(smc); } if ((unsigned int )smc->os.ResetRequested != 0U) { { ResetAdapter(smc); smc->os.ResetRequested = 0U; } } else { } { ldv_spin_unlock_90(& bp->DriverLock); iowrite32((u32 )smc->hw.is_imask, smc->hw.iop + 12UL); } return (1); } } static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev ) { struct s_smc *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct s_smc *)tmp; bp->os.MacStat.port_bs_flag[0] = 4660U; bp->os.MacStat.port_bs_flag[1] = 22136U; } return ((struct net_device_stats *)(& bp->os.MacStat)); } } static void skfp_ctl_set_multicast_list(struct net_device *dev ) { struct s_smc *smc ; void *tmp ; skfddi_priv *bp ; unsigned long Flags ; { { tmp = netdev_priv((struct net_device const *)dev); smc = (struct s_smc *)tmp; bp = & smc->os; ldv___ldv_spin_lock_91(& bp->DriverLock); skfp_ctl_set_multicast_list_wo_lock(dev); ldv_spin_unlock_irqrestore_92(& bp->DriverLock, Flags); } return; } } static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev ) { struct s_smc *smc ; void *tmp ; struct netdev_hw_addr *ha ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; struct list_head const *__mptr ; struct _ddebug descriptor___2 ; long tmp___3 ; struct list_head const *__mptr___0 ; struct _ddebug descriptor___3 ; long tmp___4 ; struct _ddebug descriptor___4 ; long tmp___5 ; { { tmp = netdev_priv((struct net_device const *)dev); smc = (struct s_smc *)tmp; } if ((dev->flags & 256U) != 0U) { { mac_drv_rx_mode(smc, 3); descriptor.modname = "skfp"; descriptor.function = "skfp_ctl_set_multicast_list_wo_lock"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "PROMISCUOUS MODE ENABLED\n"; descriptor.lineno = 858U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor, "PROMISCUOUS MODE ENABLED\n"); } } else { } } else { { mac_drv_rx_mode(smc, 4); descriptor___0.modname = "skfp"; descriptor___0.function = "skfp_ctl_set_multicast_list_wo_lock"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "PROMISCUOUS MODE DISABLED\n"; descriptor___0.lineno = 863U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___0, "PROMISCUOUS MODE DISABLED\n"); } } else { } { mac_clear_multicast(smc); mac_drv_rx_mode(smc, 2); } if ((dev->flags & 512U) != 0U) { { mac_drv_rx_mode(smc, 1); descriptor___1.modname = "skfp"; descriptor___1.function = "skfp_ctl_set_multicast_list_wo_lock"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = "ENABLE ALL MC ADDRESSES\n"; descriptor___1.lineno = 871U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___1, "ENABLE ALL MC ADDRESSES\n"); } } else { } } else if (dev->mc.count != 0) { if (dev->mc.count <= 32) { __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_44667; ldv_44666: { mac_add_multicast(smc, (struct fddi_addr *)(& ha->addr), 1); descriptor___2.modname = "skfp"; descriptor___2.function = "skfp_ctl_set_multicast_list_wo_lock"; descriptor___2.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___2.format = "ENABLE MC ADDRESS: %pMF\n"; descriptor___2.lineno = 883U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_pr_debug(& descriptor___2, "ENABLE MC ADDRESS: %pMF\n", (unsigned char *)(& ha->addr)); } } else { } __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_44667: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_44666; } else { } } else { { mac_drv_rx_mode(smc, 1); descriptor___3.modname = "skfp"; descriptor___3.function = "skfp_ctl_set_multicast_list_wo_lock"; descriptor___3.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___3.format = "ENABLE ALL MC ADDRESSES\n"; descriptor___3.lineno = 889U; descriptor___3.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_pr_debug(& descriptor___3, "ENABLE ALL MC ADDRESSES\n"); } } else { } } } else { { descriptor___4.modname = "skfp"; descriptor___4.function = "skfp_ctl_set_multicast_list_wo_lock"; descriptor___4.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___4.format = "DISABLE ALL MC ADDRESSES\n"; descriptor___4.lineno = 893U; descriptor___4.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_pr_debug(& descriptor___4, "DISABLE ALL MC ADDRESSES\n"); } } else { } } { mac_update_multicast(smc); } } return; } } static int skfp_ctl_set_mac_address(struct net_device *dev , void *addr ) { struct s_smc *smc ; void *tmp ; struct sockaddr *p_sockaddr ; skfddi_priv *bp ; unsigned long Flags ; { { tmp = netdev_priv((struct net_device const *)dev); smc = (struct s_smc *)tmp; p_sockaddr = (struct sockaddr *)addr; bp = & smc->os; memcpy((void *)dev->dev_addr, (void const *)(& p_sockaddr->sa_data), 6UL); ldv___ldv_spin_lock_93(& bp->DriverLock); ResetAdapter(smc); ldv_spin_unlock_irqrestore_92(& bp->DriverLock, Flags); } return (0); } } static int skfp_ioctl(struct net_device *dev , struct ifreq *rq , int cmd ) { struct s_smc *smc ; void *tmp ; skfddi_priv *lp ; struct s_skfp_ioctl ioc ; int status ; unsigned long tmp___0 ; struct net_device_stats *tmp___1 ; unsigned long tmp___2 ; bool tmp___3 ; int tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); smc = (struct s_smc *)tmp; lp = & smc->os; status = 0; tmp___0 = copy_from_user((void *)(& ioc), (void const *)rq->ifr_ifru.ifru_data, 16UL); } if (tmp___0 != 0UL) { return (-14); } else { } { if ((int )ioc.cmd == 5) { goto case_5; } else { } if ((int )ioc.cmd == 6) { goto case_6; } else { } goto switch_default; case_5: /* CIL Label */ { ioc.len = 672U; tmp___1 = skfp_ctl_get_stats(dev); tmp___2 = copy_to_user((void *)ioc.data, (void const *)tmp___1, (unsigned long )ioc.len); status = tmp___2 != 0UL ? -14 : 0; } goto ldv_44689; case_6: /* CIL Label */ { tmp___3 = capable(12); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { status = -1; } else { { memset((void *)(& lp->MacStat), 0, 672UL); } } goto ldv_44689; switch_default: /* CIL Label */ { printk("ioctl for %s: unknown cmd: %04x\n", (char *)(& dev->name), (int )ioc.cmd); status = -95; } switch_break: /* CIL Label */ ; } ldv_44689: ; return (status); } } static netdev_tx_t skfp_send_pkt(struct sk_buff *skb , struct net_device *dev ) { struct s_smc *smc ; void *tmp ; skfddi_priv *bp ; struct _ddebug descriptor ; long tmp___0 ; void *tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); smc = (struct s_smc *)tmp; bp = & smc->os; descriptor.modname = "skfp"; descriptor.function = "skfp_send_pkt"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "skfp_send_pkt\n"; descriptor.lineno = 1047U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor, "skfp_send_pkt\n"); } } else { } if (skb->len - 13U > 4478U) { { bp->MacStat.gen.tx_errors = bp->MacStat.gen.tx_errors + 1UL; netif_start_queue(dev); consume_skb(skb); } return (0); } else { } if (bp->QueueSkb == 0UL) { { netif_stop_queue(dev); } return (16); } else { } { bp->QueueSkb = bp->QueueSkb - 1UL; skb_queue_tail(& bp->SendSkbQueue, skb); tmp___1 = netdev_priv((struct net_device const *)dev); send_queued_packets((struct s_smc *)tmp___1); } if (bp->QueueSkb == 0UL) { { netif_stop_queue(dev); } } else { } return (0); } } static void send_queued_packets(struct s_smc *smc ) { skfddi_priv *bp ; struct sk_buff *skb ; unsigned char fc ; int queue ; struct s_smt_fp_txd *txd ; dma_addr_t dma_address ; unsigned long Flags ; int frame_status ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; { { bp = & smc->os; descriptor.modname = "skfp"; descriptor.function = "send_queued_packets"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "send queued packets\n"; descriptor.lineno = 1116U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "send queued packets\n"); } } else { } ldv_44717: { skb = skb_dequeue(& bp->SendSkbQueue); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { descriptor___0.modname = "skfp"; descriptor___0.function = "send_queued_packets"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "queue empty\n"; descriptor___0.lineno = 1122U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "queue empty\n"); } } else { } return; } else { } { ldv___ldv_spin_lock_95(& bp->DriverLock); fc = *(skb->data); queue = (int )((signed char )fc) >= 0; } if (((int )fc & -136) == 80) { if ((unsigned int )smc->ess.sync_bw_available == 0U) { fc = (unsigned int )fc & 127U; } else if ((int )smc->mib.fddiESSSynchTxMode != 0) { fc = (unsigned int )fc | 128U; } else { } } else { } { frame_status = hwm_tx_init(smc, (int )fc, 1, (int )skb->len, queue); } if ((frame_status & 36) == 0) { if ((frame_status & 64) != 0) { { descriptor___1.modname = "skfp"; descriptor___1.function = "send_queued_packets"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = "Tx attempt while ring down.\n"; descriptor___1.lineno = 1153U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___1, "Tx attempt while ring down.\n"); } } else { } } else if ((frame_status & 128) != 0) { { descriptor___2.modname = "skfp"; descriptor___2.function = "send_queued_packets"; descriptor___2.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___2.format = "%s: out of TXDs.\n"; descriptor___2.lineno = 1155U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___2, "%s: out of TXDs.\n", (char *)(& (bp->dev)->name)); } } else { } } else { { descriptor___3.modname = "skfp"; descriptor___3.function = "send_queued_packets"; descriptor___3.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___3.format = "%s: out of transmit resources"; descriptor___3.lineno = 1158U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_pr_debug(& descriptor___3, "%s: out of transmit resources", (char *)(& (bp->dev)->name)); } } else { } } { skb_queue_head(& bp->SendSkbQueue, skb); ldv_spin_unlock_irqrestore_92(& bp->DriverLock, Flags); } return; } else { } { bp->QueueSkb = bp->QueueSkb + 1UL; CheckSourceAddress(skb->data, (unsigned char *)(& smc->hw.fddi_canon_addr.a)); txd = (struct s_smt_fp_txd *)smc->hw.fp.tx_q[queue].tx_curr_put; dma_address = pci_map_single(& bp->pdev, (void *)skb->data, (size_t )skb->len, 1); } if ((frame_status & 32) != 0) { txd->txd_os.skb = skb; txd->txd_os.dma_addr = dma_address; } else { } { hwm_tx_frag(smc, (char *)skb->data, (u_long )dma_address, (int )skb->len, frame_status | 26); } if ((frame_status & 32) == 0) { { pci_unmap_single(& bp->pdev, dma_address, (size_t )skb->len, 1); dev_kfree_skb_irq(skb); } } else { } { ldv_spin_unlock_irqrestore_92(& bp->DriverLock, Flags); } goto ldv_44717; return; } } static void CheckSourceAddress(unsigned char *frame , unsigned char *hw_addr ) { unsigned char SRBit ; { if (((unsigned long )*(frame + 7UL) & 0xfffffffffffffffeUL) != 0UL) { return; } else { } if ((unsigned int )*(frame + 11UL) != 0U) { return; } else { } { SRBit = (unsigned int )*(frame + 7UL) & 1U; memcpy((void *)frame + 7U, (void const *)hw_addr, 6UL); *(frame + 8UL) = (int )*(frame + 8UL) | (int )SRBit; } return; } } static void ResetAdapter(struct s_smc *smc ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "skfp"; descriptor.function = "ResetAdapter"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "[fddi: ResetAdapter]\n"; descriptor.lineno = 1234U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "[fddi: ResetAdapter]\n"); } } else { } { card_stop(smc); mac_drv_clear_tx_queue(smc); mac_drv_clear_rx_queue(smc); smt_reset_defaults(smc, 1); init_smt(smc, (smc->os.dev)->dev_addr); smt_online(smc, 1); iowrite32((u32 )smc->hw.is_imask, smc->hw.iop + 12UL); skfp_ctl_set_multicast_list_wo_lock(smc->os.dev); } return; } } void llc_restart_tx(struct s_smc *smc ) { skfddi_priv *bp ; struct _ddebug descriptor ; long tmp ; { { bp = & smc->os; descriptor.modname = "skfp"; descriptor.function = "llc_restart_tx"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "[llc_restart_tx]\n"; descriptor.lineno = 1280U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "[llc_restart_tx]\n"); } } else { } { ldv_spin_unlock_90(& bp->DriverLock); send_queued_packets(smc); ldv_spin_lock_89(& bp->DriverLock); netif_start_queue(bp->dev); } return; } } void *mac_drv_get_space(struct s_smc *smc , unsigned int size ) { void *virt ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { { descriptor.modname = "skfp"; descriptor.function = "mac_drv_get_space"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "mac_drv_get_space (%d bytes), "; descriptor.lineno = 1310U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "mac_drv_get_space (%d bytes), ", size); } } else { } virt = smc->os.SharedMemAddr + smc->os.SharedMemHeap; if (smc->os.SharedMemHeap + (ulong )size > smc->os.SharedMemSize) { { printk("Unexpected SMT memory size requested: %d\n", size); } return ((void *)0); } else { } { smc->os.SharedMemHeap = smc->os.SharedMemHeap + (ulong )size; descriptor___0.modname = "skfp"; descriptor___0.function = "mac_drv_get_space"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "mac_drv_get_space end\n"; descriptor___0.lineno = 1319U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "mac_drv_get_space end\n"); } } else { } { descriptor___1.modname = "skfp"; descriptor___1.function = "mac_drv_get_space"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = "virt addr: %lx\n"; descriptor___1.lineno = 1320U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___1, "virt addr: %lx\n", (unsigned long )virt); } } else { } { descriptor___2.modname = "skfp"; descriptor___2.function = "mac_drv_get_space"; descriptor___2.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___2.format = "bus addr: %lx\n"; descriptor___2.lineno = 1323U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___2, "bus addr: %lx\n", (unsigned long )(smc->os.SharedMemDMA + (unsigned long long )((long )virt - (long )smc->os.SharedMemAddr))); } } else { } return (virt); } } void *mac_drv_get_desc_mem(struct s_smc *smc , unsigned int size ) { char *virt ; struct _ddebug descriptor ; long tmp ; void *tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; void *tmp___3 ; { { descriptor.modname = "skfp"; descriptor.function = "mac_drv_get_desc_mem"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "mac_drv_get_desc_mem\n"; descriptor.lineno = 1351U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "mac_drv_get_desc_mem\n"); } } else { } { tmp___0 = mac_drv_get_space(smc, size); virt = (char *)tmp___0; size = 16U - ((unsigned int )((long )virt) & 15U); size = size & 15U; descriptor___0.modname = "skfp"; descriptor___0.function = "mac_drv_get_desc_mem"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "Allocate %u bytes alignment gap "; descriptor___0.lineno = 1360U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___0, "Allocate %u bytes alignment gap ", size); } } else { } { descriptor___1.modname = "skfp"; descriptor___1.function = "mac_drv_get_desc_mem"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = "for descriptor memory.\n"; descriptor___1.lineno = 1361U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___1, "for descriptor memory.\n"); } } else { } { tmp___3 = mac_drv_get_space(smc, size); } if ((unsigned long )tmp___3 == (unsigned long )((void *)0)) { { printk("fddi: Unable to align descriptor memory.\n"); } return ((void *)0); } else { } return ((void *)virt + (unsigned long )size); } } unsigned long mac_drv_virt2phys(struct s_smc *smc , void *virt ) { { return ((unsigned long )(smc->os.SharedMemDMA + (unsigned long long )((long )virt - (long )smc->os.SharedMemAddr))); } } unsigned long dma_master(struct s_smc *smc , void *virt , int len , int flag ) { { return ((unsigned long )(smc->os.SharedMemDMA + (unsigned long long )((long )virt - (long )smc->os.SharedMemAddr))); } } void dma_complete(struct s_smc *smc , union s_fp_descr volatile *descr , int flag ) { skfddi_priv *bp ; struct s_smt_fp_rxd volatile *r ; int MaxFrameSize ; { if ((flag & 2) != 0) { bp = & smc->os; r = & descr->r; if ((unsigned long )r->rxd_os.skb != (unsigned long )((struct sk_buff */* volatile */)0) && (unsigned long long )r->rxd_os.dma_addr != 0ULL) { { MaxFrameSize = (int )bp->MaxFrameSize; pci_unmap_single(& bp->pdev, r->rxd_os.dma_addr, (size_t )MaxFrameSize, 2); r->rxd_os.dma_addr = 0ULL; } } else { } } else { } return; } } void mac_drv_tx_complete(struct s_smc *smc , struct s_smt_fp_txd volatile *txd ) { struct sk_buff *skb ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { { descriptor.modname = "skfp"; descriptor.function = "mac_drv_tx_complete"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "entering mac_drv_tx_complete\n"; descriptor.lineno = 1495U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "entering mac_drv_tx_complete\n"); } } else { } skb = txd->txd_os.skb; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { descriptor___0.modname = "skfp"; descriptor___0.function = "mac_drv_tx_complete"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "TXD with no skb assigned.\n"; descriptor___0.lineno = 1499U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "TXD with no skb assigned.\n"); } } else { } return; } else { } { txd->txd_os.skb = (struct sk_buff */* volatile */)0; pci_unmap_single(& smc->os.pdev, txd->txd_os.dma_addr, (size_t )skb->len, 1); txd->txd_os.dma_addr = 0ULL; smc->os.MacStat.gen.tx_packets = smc->os.MacStat.gen.tx_packets + 1UL; smc->os.MacStat.gen.tx_bytes = smc->os.MacStat.gen.tx_bytes + (unsigned long )skb->len; dev_kfree_skb_irq(skb); descriptor___1.modname = "skfp"; descriptor___1.function = "mac_drv_tx_complete"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = "leaving mac_drv_tx_complete\n"; descriptor___1.lineno = 1515U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___1, "leaving mac_drv_tx_complete\n"); } } else { } return; } } void mac_drv_rx_complete(struct s_smc *smc , struct s_smt_fp_rxd volatile *rxd , int frag_count , int len ) { skfddi_priv *bp ; struct sk_buff *skb ; unsigned char *virt ; unsigned char *cp ; unsigned short ri ; u_int RifLength ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; int n ; struct _ddebug descriptor___1 ; long tmp___1 ; __u16 tmp___2 ; struct _ddebug descriptor___2 ; long tmp___3 ; { { bp = & smc->os; descriptor.modname = "skfp"; descriptor.function = "mac_drv_rx_complete"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "entering mac_drv_rx_complete (len=%d)\n"; descriptor.lineno = 1582U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "entering mac_drv_rx_complete (len=%d)\n", len); } } else { } if (frag_count != 1) { { printk("fddi: Multi-fragment receive!\n"); } goto RequeueRxd; } else { } skb = rxd->rxd_os.skb; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { descriptor___0.modname = "skfp"; descriptor___0.function = "mac_drv_rx_complete"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "No skb in rxd\n"; descriptor___0.lineno = 1591U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "No skb in rxd\n"); } } else { } smc->os.MacStat.gen.rx_errors = smc->os.MacStat.gen.rx_errors + 1UL; goto RequeueRxd; } else { } virt = skb->data; if (((int )*(virt + 7UL) & 1) == 0) { RifLength = 0U; } else { { descriptor___1.modname = "skfp"; descriptor___1.function = "mac_drv_rx_complete"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = "RIF found\n"; descriptor___1.lineno = 1621U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___1, "RIF found\n"); } } else { } { cp = virt + 13UL; tmp___2 = __fswab16((int )*((__be16 *)cp)); ri = tmp___2; RifLength = (u_int )ri & 31U; } if (len < (int )(RifLength + 13U)) { { printk("fddi: Invalid RIF.\n"); } goto RequeueRxd; } else { } *(virt + 7UL) = (unsigned int )*(virt + 7UL) & 254U; virt = cp + (unsigned long )RifLength; n = 13; goto ldv_44799; ldv_44798: virt = virt - 1; cp = cp - 1; *virt = *cp; n = n - 1; ldv_44799: ; if (n != 0) { goto ldv_44798; } else { } { skb_pull(skb, RifLength); len = (int )((u_int )len - RifLength); RifLength = 0U; } } smc->os.MacStat.gen.rx_packets = smc->os.MacStat.gen.rx_packets + 1UL; smc->os.MacStat.gen.rx_bytes = smc->os.MacStat.gen.rx_bytes + (unsigned long )len; if ((int )*(virt + 1UL) & 1) { smc->os.MacStat.gen.multicast = smc->os.MacStat.gen.multicast + 1UL; } else { } { rxd->rxd_os.skb = (struct sk_buff */* volatile */)0; skb_trim(skb, (unsigned int )len); skb->protocol = fddi_type_trans(skb, bp->dev); netif_rx(skb); } if ((unsigned int )smc->hw.fp.rx_q[0].rx_used <= 5U) { { mac_drv_fill_rxd(smc); } } else { } return; RequeueRxd: { descriptor___2.modname = "skfp"; descriptor___2.function = "mac_drv_rx_complete"; descriptor___2.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___2.format = "Rx: re-queue RXD.\n"; descriptor___2.lineno = 1666U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_pr_debug(& descriptor___2, "Rx: re-queue RXD.\n"); } } else { } { mac_drv_requeue_rxd(smc, rxd, frag_count); smc->os.MacStat.gen.rx_errors = smc->os.MacStat.gen.rx_errors + 1UL; } return; } } void mac_drv_requeue_rxd(struct s_smc *smc , struct s_smt_fp_rxd volatile *rxd , int frag_count ) { struct s_smt_fp_rxd volatile *next_rxd ; struct s_smt_fp_rxd volatile *src_rxd ; struct sk_buff *skb ; int MaxFrameSize ; unsigned char *v_addr ; dma_addr_t b_addr ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { if (frag_count != 1) { { printk("fddi: Multi-fragment requeue!\n"); } } else { } MaxFrameSize = (int )smc->os.MaxFrameSize; src_rxd = rxd; goto ldv_44817; ldv_44816: next_rxd = src_rxd->rxd_next; rxd = smc->hw.fp.rx_q[0].rx_curr_put; skb = src_rxd->rxd_os.skb; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { descriptor.modname = "skfp"; descriptor.function = "mac_drv_requeue_rxd"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "Requeue with no skb in rxd!\n"; descriptor.lineno = 1715U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "Requeue with no skb in rxd!\n"); } } else { } { skb = alloc_skb((unsigned int )(MaxFrameSize + 3), 32U); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { rxd->rxd_os.skb = skb; skb_reserve(skb, 3); skb_put(skb, (unsigned int )MaxFrameSize); v_addr = skb->data; b_addr = pci_map_single(& smc->os.pdev, (void *)v_addr, (size_t )MaxFrameSize, 2); rxd->rxd_os.dma_addr = b_addr; } } else { { descriptor___0.modname = "skfp"; descriptor___0.function = "mac_drv_requeue_rxd"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "Queueing invalid buffer!\n"; descriptor___0.lineno = 1730U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "Queueing invalid buffer!\n"); } } else { } rxd->rxd_os.skb = (struct sk_buff */* volatile */)0; v_addr = smc->os.LocalRxBuffer; b_addr = smc->os.LocalRxBufferDMA; } } else { { rxd->rxd_os.skb = skb; v_addr = skb->data; b_addr = pci_map_single(& smc->os.pdev, (void *)v_addr, (size_t )MaxFrameSize, 2); rxd->rxd_os.dma_addr = b_addr; } } { hwm_rx_frag(smc, (char *)v_addr, (u_long )b_addr, MaxFrameSize, 24); src_rxd = next_rxd; frag_count = frag_count - 1; } ldv_44817: ; if (frag_count > 0) { goto ldv_44816; } else { } return; } } void mac_drv_fill_rxd(struct s_smc *smc ) { int MaxFrameSize ; unsigned char *v_addr ; unsigned long b_addr ; struct sk_buff *skb ; struct s_smt_fp_rxd volatile *rxd ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; dma_addr_t tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; struct _ddebug descriptor___2 ; long tmp___3 ; { { descriptor.modname = "skfp"; descriptor.function = "mac_drv_fill_rxd"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "entering mac_drv_fill_rxd\n"; descriptor.lineno = 1777U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "entering mac_drv_fill_rxd\n"); } } else { } MaxFrameSize = (int )smc->os.MaxFrameSize; goto ldv_44832; ldv_44831: { descriptor___0.modname = "skfp"; descriptor___0.function = "mac_drv_fill_rxd"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = ".\n"; descriptor___0.lineno = 1785U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, ".\n"); } } else { } { rxd = smc->hw.fp.rx_q[0].rx_curr_put; skb = alloc_skb((unsigned int )(MaxFrameSize + 3), 32U); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { skb_reserve(skb, 3); skb_put(skb, (unsigned int )MaxFrameSize); v_addr = skb->data; tmp___1 = pci_map_single(& smc->os.pdev, (void *)v_addr, (size_t )MaxFrameSize, 2); b_addr = (unsigned long )tmp___1; rxd->rxd_os.dma_addr = (dma_addr_t volatile )b_addr; } } else { { descriptor___1.modname = "skfp"; descriptor___1.function = "mac_drv_fill_rxd"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = "Queueing invalid buffer!\n"; descriptor___1.lineno = 1805U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___1, "Queueing invalid buffer!\n"); } } else { } v_addr = smc->os.LocalRxBuffer; b_addr = (unsigned long )smc->os.LocalRxBufferDMA; } { rxd->rxd_os.skb = skb; hwm_rx_frag(smc, (char *)v_addr, b_addr, MaxFrameSize, 24); } ldv_44832: ; if ((int )smc->hw.fp.rx_q[0].rx_free + -1 > 0) { goto ldv_44831; } else { } { descriptor___2.modname = "skfp"; descriptor___2.function = "mac_drv_fill_rxd"; descriptor___2.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___2.format = "leaving mac_drv_fill_rxd\n"; descriptor___2.lineno = 1816U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_pr_debug(& descriptor___2, "leaving mac_drv_fill_rxd\n"); } } else { } return; } } void mac_drv_clear_rxd(struct s_smc *smc , struct s_smt_fp_rxd volatile *rxd , int frag_count ) { struct sk_buff *skb ; struct _ddebug descriptor ; long tmp ; skfddi_priv *bp ; int MaxFrameSize ; { { descriptor.modname = "skfp"; descriptor.function = "mac_drv_clear_rxd"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "entering mac_drv_clear_rxd\n"; descriptor.lineno = 1842U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "entering mac_drv_clear_rxd\n"); } } else { } if (frag_count != 1) { { printk("fddi: Multi-fragment clear!\n"); } } else { } goto ldv_44846; ldv_44845: skb = rxd->rxd_os.skb; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { bp = & smc->os; MaxFrameSize = (int )bp->MaxFrameSize; pci_unmap_single(& bp->pdev, rxd->rxd_os.dma_addr, (size_t )MaxFrameSize, 2); consume_skb(skb); rxd->rxd_os.skb = (struct sk_buff */* volatile */)0; } } else { } rxd = rxd->rxd_next; frag_count = frag_count - 1; ldv_44846: ; if (frag_count > 0) { goto ldv_44845; } else { } return; } } int mac_drv_rx_init(struct s_smc *smc , int len , int fc , char *look_ahead , int la_len ) { struct sk_buff *skb ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { { descriptor.modname = "skfp"; descriptor.function = "mac_drv_rx_init"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "entering mac_drv_rx_init(len=%d)\n"; descriptor.lineno = 1898U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "entering mac_drv_rx_init(len=%d)\n", len); } } else { } if ((len != la_len || len <= 12) || (unsigned long )look_ahead == (unsigned long )((char *)0)) { { descriptor___0.modname = "skfp"; descriptor___0.function = "mac_drv_rx_init"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "fddi: Discard invalid local SMT frame\n"; descriptor___0.lineno = 1903U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "fddi: Discard invalid local SMT frame\n"); } } else { } { descriptor___1.modname = "skfp"; descriptor___1.function = "mac_drv_rx_init"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = " len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n"; descriptor___1.lineno = 1905U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___1, " len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n", len, la_len, (unsigned long )look_ahead); } } else { } return (0); } else { } { skb = alloc_skb((unsigned int )(len + 3), 32U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { descriptor___2.modname = "skfp"; descriptor___2.function = "mac_drv_rx_init"; descriptor___2.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___2.format = "fddi: Local SMT: skb memory exhausted.\n"; descriptor___2.lineno = 1910U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___2, "fddi: Local SMT: skb memory exhausted.\n"); } } else { } return (0); } else { } { skb_reserve(skb, 3); skb_put(skb, (unsigned int )len); skb_copy_to_linear_data(skb, (void const *)look_ahead, (unsigned int const )len); skb->protocol = fddi_type_trans(skb, smc->os.dev); netif_rx(skb); } return (0); } } void smt_timer_poll(struct s_smc *smc ) { { return; } } void ring_status_indication(struct s_smc *smc , u_long status ) { struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; struct _ddebug descriptor___4 ; long tmp___4 ; struct _ddebug descriptor___5 ; long tmp___5 ; struct _ddebug descriptor___6 ; long tmp___6 ; struct _ddebug descriptor___7 ; long tmp___7 ; struct _ddebug descriptor___8 ; long tmp___8 ; struct _ddebug descriptor___9 ; long tmp___9 ; struct _ddebug descriptor___10 ; long tmp___10 ; struct _ddebug descriptor___11 ; long tmp___11 ; struct _ddebug descriptor___12 ; long tmp___12 ; struct _ddebug descriptor___13 ; long tmp___13 ; struct _ddebug descriptor___14 ; long tmp___14 ; struct _ddebug descriptor___15 ; long tmp___15 ; struct _ddebug descriptor___16 ; long tmp___16 ; { { descriptor.modname = "skfp"; descriptor.function = "ring_status_indication"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "ring_status_indication( "; descriptor.lineno = 1960U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "ring_status_indication( "); } } else { } if ((status & 32768UL) != 0UL) { { descriptor___0.modname = "skfp"; descriptor___0.function = "ring_status_indication"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "RS_RES15 "; descriptor___0.lineno = 1962U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "RS_RES15 "); } } else { } } else { } if ((status & 16384UL) != 0UL) { { descriptor___1.modname = "skfp"; descriptor___1.function = "ring_status_indication"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = "RS_HARDERROR "; descriptor___1.lineno = 1964U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___1, "RS_HARDERROR "); } } else { } } else { } if ((status & 8192UL) != 0UL) { { descriptor___2.modname = "skfp"; descriptor___2.function = "ring_status_indication"; descriptor___2.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___2.format = "RS_SOFTERROR "; descriptor___2.lineno = 1966U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___2, "RS_SOFTERROR "); } } else { } } else { } if ((status & 4096UL) != 0UL) { { descriptor___3.modname = "skfp"; descriptor___3.function = "ring_status_indication"; descriptor___3.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___3.format = "RS_BEACON "; descriptor___3.lineno = 1968U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_pr_debug(& descriptor___3, "RS_BEACON "); } } else { } } else { } if ((status & 2048UL) != 0UL) { { descriptor___4.modname = "skfp"; descriptor___4.function = "ring_status_indication"; descriptor___4.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___4.format = "RS_PATHTEST "; descriptor___4.lineno = 1970U; descriptor___4.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_pr_debug(& descriptor___4, "RS_PATHTEST "); } } else { } } else { } if ((status & 1024UL) != 0UL) { { descriptor___5.modname = "skfp"; descriptor___5.function = "ring_status_indication"; descriptor___5.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___5.format = "RS_SELFTEST "; descriptor___5.lineno = 1972U; descriptor___5.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_pr_debug(& descriptor___5, "RS_SELFTEST "); } } else { } } else { } if ((status & 512UL) != 0UL) { { descriptor___6.modname = "skfp"; descriptor___6.function = "ring_status_indication"; descriptor___6.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___6.format = "RS_RES9 "; descriptor___6.lineno = 1974U; descriptor___6.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_pr_debug(& descriptor___6, "RS_RES9 "); } } else { } } else { } if ((status & 256UL) != 0UL) { { descriptor___7.modname = "skfp"; descriptor___7.function = "ring_status_indication"; descriptor___7.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___7.format = "RS_DISCONNECT "; descriptor___7.lineno = 1976U; descriptor___7.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_pr_debug(& descriptor___7, "RS_DISCONNECT "); } } else { } } else { } if ((status & 128UL) != 0UL) { { descriptor___8.modname = "skfp"; descriptor___8.function = "ring_status_indication"; descriptor___8.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___8.format = "RS_RES7 "; descriptor___8.lineno = 1978U; descriptor___8.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___8.flags & 1L, 0L); } if (tmp___8 != 0L) { { __dynamic_pr_debug(& descriptor___8, "RS_RES7 "); } } else { } } else { } if ((status & 64UL) != 0UL) { { descriptor___9.modname = "skfp"; descriptor___9.function = "ring_status_indication"; descriptor___9.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___9.format = "RS_DUPADDR "; descriptor___9.lineno = 1980U; descriptor___9.flags = 0U; tmp___9 = ldv__builtin_expect((long )descriptor___9.flags & 1L, 0L); } if (tmp___9 != 0L) { { __dynamic_pr_debug(& descriptor___9, "RS_DUPADDR "); } } else { } } else { } if ((status & 32UL) != 0UL) { { descriptor___10.modname = "skfp"; descriptor___10.function = "ring_status_indication"; descriptor___10.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___10.format = "RS_NORINGOP "; descriptor___10.lineno = 1982U; descriptor___10.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___10.flags & 1L, 0L); } if (tmp___10 != 0L) { { __dynamic_pr_debug(& descriptor___10, "RS_NORINGOP "); } } else { } } else { } if ((status & 16UL) != 0UL) { { descriptor___11.modname = "skfp"; descriptor___11.function = "ring_status_indication"; descriptor___11.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___11.format = "RS_VERSION "; descriptor___11.lineno = 1984U; descriptor___11.flags = 0U; tmp___11 = ldv__builtin_expect((long )descriptor___11.flags & 1L, 0L); } if (tmp___11 != 0L) { { __dynamic_pr_debug(& descriptor___11, "RS_VERSION "); } } else { } } else { } if ((status & 8UL) != 0UL) { { descriptor___12.modname = "skfp"; descriptor___12.function = "ring_status_indication"; descriptor___12.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___12.format = "RS_STUCKBYPASSS "; descriptor___12.lineno = 1986U; descriptor___12.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___12.flags & 1L, 0L); } if (tmp___12 != 0L) { { __dynamic_pr_debug(& descriptor___12, "RS_STUCKBYPASSS "); } } else { } } else { } if ((status & 4UL) != 0UL) { { descriptor___13.modname = "skfp"; descriptor___13.function = "ring_status_indication"; descriptor___13.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___13.format = "RS_EVENT "; descriptor___13.lineno = 1988U; descriptor___13.flags = 0U; tmp___13 = ldv__builtin_expect((long )descriptor___13.flags & 1L, 0L); } if (tmp___13 != 0L) { { __dynamic_pr_debug(& descriptor___13, "RS_EVENT "); } } else { } } else { } if ((status & 2UL) != 0UL) { { descriptor___14.modname = "skfp"; descriptor___14.function = "ring_status_indication"; descriptor___14.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___14.format = "RS_RINGOPCHANGE "; descriptor___14.lineno = 1990U; descriptor___14.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___14.flags & 1L, 0L); } if (tmp___14 != 0L) { { __dynamic_pr_debug(& descriptor___14, "RS_RINGOPCHANGE "); } } else { } } else { } if ((int )status & 1) { { descriptor___15.modname = "skfp"; descriptor___15.function = "ring_status_indication"; descriptor___15.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___15.format = "RS_RES0 "; descriptor___15.lineno = 1992U; descriptor___15.flags = 0U; tmp___15 = ldv__builtin_expect((long )descriptor___15.flags & 1L, 0L); } if (tmp___15 != 0L) { { __dynamic_pr_debug(& descriptor___15, "RS_RES0 "); } } else { } } else { } { descriptor___16.modname = "skfp"; descriptor___16.function = "ring_status_indication"; descriptor___16.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___16.format = "]\n"; descriptor___16.lineno = 1993U; descriptor___16.flags = 0U; tmp___16 = ldv__builtin_expect((long )descriptor___16.flags & 1L, 0L); } if (tmp___16 != 0L) { { __dynamic_pr_debug(& descriptor___16, "]\n"); } } else { } return; } } u_long smt_get_time(void) { { return ((u_long )jiffies); } } void smt_stat_counter(struct s_smc *smc , int stat ) { struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { { descriptor.modname = "skfp"; descriptor.function = "smt_stat_counter"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "smt_stat_counter\n"; descriptor.lineno = 2036U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "smt_stat_counter\n"); } } else { } { if (stat == 0) { goto case_0; } else { } if (stat == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ { descriptor___0.modname = "skfp"; descriptor___0.function = "smt_stat_counter"; descriptor___0.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___0.format = "Ring operational change.\n"; descriptor___0.lineno = 2039U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "Ring operational change.\n"); } } else { } goto ldv_44898; case_1: /* CIL Label */ { descriptor___1.modname = "skfp"; descriptor___1.function = "smt_stat_counter"; descriptor___1.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___1.format = "Receive fifo overflow.\n"; descriptor___1.lineno = 2042U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___1, "Receive fifo overflow.\n"); } } else { } smc->os.MacStat.gen.rx_errors = smc->os.MacStat.gen.rx_errors + 1UL; goto ldv_44898; switch_default: /* CIL Label */ { descriptor___2.modname = "skfp"; descriptor___2.function = "smt_stat_counter"; descriptor___2.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor___2.format = "Unknown status (%d).\n"; descriptor___2.lineno = 2046U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___2, "Unknown status (%d).\n", stat); } } else { } goto ldv_44898; switch_break: /* CIL Label */ ; } ldv_44898: ; return; } } void cfm_state_change(struct s_smc *smc , int c_state ) { { return; } } void ecm_state_change(struct s_smc *smc , int e_state ) { { return; } } void rmt_state_change(struct s_smc *smc , int r_state ) { { return; } } void drv_reset_indication(struct s_smc *smc ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "skfp"; descriptor.function = "drv_reset_indication"; descriptor.filename = "drivers/net/fddi/skfp/skfddi.c"; descriptor.format = "entering drv_reset_indication\n"; descriptor.lineno = 2235U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "entering drv_reset_indication\n"); } } else { } smc->os.ResetRequested = 1U; return; } } static struct pci_driver skfddi_pci_driver = {{0, 0}, "skfddi", (struct pci_device_id const *)(& skfddi_pci_tbl), & skfp_init_one, & skfp_remove_one, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int skfddi_pci_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_100(& skfddi_pci_driver, & __this_module, "skfp"); } return (tmp); } } static void skfddi_pci_driver_exit(void) { { { ldv_pci_unregister_driver_101(& skfddi_pci_driver); } return; } } void ldv_EMGentry_exit_skfddi_pci_driver_exit_10_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_skfddi_pci_driver_init_10_7(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_allocate_external_0(void) ; void ldv_dispatch_deregister_7_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_8_1(struct pci_driver *arg0 ) ; void ldv_dispatch_irq_deregister_3_1(int arg0 ) ; void ldv_dispatch_irq_register_6_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_5_4(struct net_device *arg0 ) ; void ldv_dispatch_register_9_2(struct pci_driver *arg0 ) ; void ldv_dummy_resourceless_instance_callback_1_12(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_15(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_entry_EMGentry_10(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_5_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_7_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_10_exit_skfddi_pci_driver_exit_default)(void) ; int (*ldv_10_init_skfddi_pci_driver_init_default)(void) ; int ldv_10_ret_default ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; struct net_device *ldv_1_container_net_device ; struct ifreq *ldv_1_container_struct_ifreq_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; int ldv_1_ldv_param_3_1_default ; int ldv_1_ldv_param_9_2_default ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_10 ; int ldv_statevar_2 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & skfp_interrupt; void (*ldv_10_exit_skfddi_pci_driver_exit_default)(void) = & skfddi_pci_driver_exit; int (*ldv_10_init_skfddi_pci_driver_init_default)(void) = & skfddi_pci_driver_init; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) = & fddi_change_mtu; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & skfp_ioctl; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) = & skfp_ctl_get_stats; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) = & skfp_ctl_set_mac_address; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) = & skfp_ctl_set_multicast_list; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & skfp_send_pkt; void ldv_EMGentry_exit_skfddi_pci_driver_exit_10_2(void (*arg0)(void) ) { { { skfddi_pci_driver_exit(); } return; } } int ldv_EMGentry_init_skfddi_pci_driver_init_10_7(int (*arg0)(void) ) { int tmp ; { { tmp = skfddi_pci_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_9_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_9_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_9_2(ldv_9_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void *ldv_malloc(size_t size ) ; void ldv_allocate_external_0(void) { { { ldv_0_data_data = ldv_malloc(0UL); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_1_container_net_device = ldv_malloc(sizeof(struct net_device)); ldv_1_container_struct_ifreq_ptr = ldv_malloc(sizeof(struct ifreq)); ldv_1_container_struct_sk_buff_ptr = ldv_malloc(sizeof(struct sk_buff)); ldv_2_resource_dev = ldv_malloc(sizeof(struct pci_dev)); } return; } } void ldv_dispatch_deregister_7_1(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_8_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_irq_deregister_3_1(int arg0 ) { { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_irq_register_6_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_register_5_4(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } return; } } void ldv_dispatch_register_9_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skfp_ctl_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { skfp_ctl_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skfp_ctl_set_multicast_list(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { skfp_send_pkt(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { fddi_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { skfp_ioctl(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_10(void *arg0 ) { int tmp ; { { if (ldv_statevar_10 == 4) { goto case_4; } else { } if (ldv_statevar_10 == 6) { goto case_6; } else { } if (ldv_statevar_10 == 7) { goto case_7; } else { } goto switch_default; case_4: /* CIL Label */ { ldv_assume(ldv_10_ret_default == 0); ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_skfddi_pci_driver_exit_10_2(ldv_10_exit_skfddi_pci_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_10 = 7; } goto ldv_45271; case_6: /* CIL Label */ { ldv_assume(ldv_10_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_10 = 7; } goto ldv_45271; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 20); ldv_10_ret_default = ldv_EMGentry_init_skfddi_pci_driver_init_10_7(ldv_10_init_skfddi_pci_driver_init_default); ldv_10_ret_default = ldv_post_init(ldv_10_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_10 = 4; } else { ldv_statevar_10 = 6; } goto ldv_45271; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45271: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_10 = 7; ldv_statevar_0 = 6; ldv_statevar_1 = 5; ldv_2_ret_default = 1; ldv_statevar_2 = 20; } ldv_45283: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_10((void *)0); } goto ldv_45278; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_45278; case_2: /* CIL Label */ { ldv_net_dummy_resourceless_instance_1((void *)0); } goto ldv_45278; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_45278; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_45278: ; goto ldv_45283; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_3_line_line ; { { ldv_3_line_line = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_dispatch_irq_deregister_3_1(ldv_3_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_4_netdev_net_device ; { { ldv_4_netdev_net_device = arg1; ldv_free((void *)ldv_4_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = skfp_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_45315; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_45315; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_45315; case_6: /* CIL Label */ ; goto ldv_45315; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45315: ; return; } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 7) { goto case_7; } else { } if (ldv_statevar_1 == 10) { goto case_10; } else { } if (ldv_statevar_1 == 12) { goto case_12; } else { } if (ldv_statevar_1 == 13) { goto case_13; } else { } if (ldv_statevar_1 == 14) { goto case_14; } else { } if (ldv_statevar_1 == 15) { goto case_15; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_45324; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 1; } else { ldv_statevar_1 = 7; } goto ldv_45324; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_3_1_default); ldv_statevar_1 = 2; } goto ldv_45324; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_1 = 1; } else { ldv_statevar_1 = 7; } goto ldv_45324; case_5: /* CIL Label */ ; goto ldv_45324; case_7: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_45324; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_9(ldv_1_callback_ndo_do_ioctl, ldv_1_container_net_device, ldv_1_container_struct_ifreq_ptr, ldv_1_ldv_param_9_2_default); ldv_statevar_1 = 2; } goto ldv_45324; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_ndo_get_stats, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_45324; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ifreq_ptr); ldv_statevar_1 = 2; } goto ldv_45324; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_45324; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_45324; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45324: ; return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = skfp_init_one(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { skfp_remove_one(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_45381; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 1); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_45381; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 2; goto ldv_45381; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_45381; case_5: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 4; goto ldv_45381; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_45381; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_45381; case_8: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_45381; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_45381; case_10: /* CIL Label */ ldv_statevar_2 = 9; goto ldv_45381; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_45381; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_45381; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_45381; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 5); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_45381; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_45381; case_20: /* CIL Label */ ; goto ldv_45381; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45381: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_8_pci_driver_pci_driver ; { { ldv_8_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_8_1(ldv_8_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_5_netdev_net_device ; int ldv_5_ret_default ; int tmp ; int tmp___0 ; { { ldv_5_ret_default = 1; ldv_5_ret_default = ldv_pre_register_netdev(); ldv_5_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_5_ret_default == 0); ldv_assume(ldv_statevar_0 == 6); ldv_5_ret_default = ldv_register_netdev_open_5_6((ldv_5_netdev_net_device->netdev_ops)->ndo_open, ldv_5_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_5_ret_default == 0); ldv_assume(ldv_statevar_1 == 5); ldv_dispatch_register_5_4(ldv_5_netdev_net_device); } } else { { ldv_assume(ldv_5_ret_default != 0); } } } else { { ldv_assume(ldv_5_ret_default != 0); } } return (ldv_5_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_5_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = skfp_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_6_callback_handler)(int , void * ) ; void *ldv_6_data_data ; int ldv_6_line_line ; enum irqreturn (*ldv_6_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_6_line_line = (int )arg1; ldv_6_callback_handler = arg2; ldv_6_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_6_data_data = arg5; ldv_assume(ldv_statevar_0 == 6); ldv_dispatch_irq_register_6_2(ldv_6_line_line, ldv_6_callback_handler, ldv_6_thread_thread, ldv_6_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (10); case_2: /* CIL Label */ ; return (12); case_3: /* CIL Label */ ; return (13); case_4: /* CIL Label */ ; return (14); case_5: /* CIL Label */ ; return (15); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_7_netdev_net_device ; { { ldv_7_netdev_net_device = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_unregister_netdev_stop_7_2((ldv_7_netdev_net_device->netdev_ops)->ndo_stop, ldv_7_netdev_net_device); ldv_assume(ldv_statevar_1 == 1); ldv_dispatch_deregister_7_1(ldv_7_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_7_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skfp_close(arg1); } return; } } __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); } return ((struct sk_buff *)tmp); } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static int ldv_register_netdev_83(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_84(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_85(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_86(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } __inline static int ldv_request_irq_87(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_88(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static void ldv_spin_lock_89(spinlock_t *lock ) { { { ldv_spin_lock_DriverLock_of_s_smt_os(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_90(spinlock_t *lock ) { { { ldv_spin_unlock_DriverLock_of_s_smt_os(); spin_unlock(lock); } return; } } static void ldv___ldv_spin_lock_91(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_DriverLock_of_s_smt_os(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_92(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_DriverLock_of_s_smt_os(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_93(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_DriverLock_of_s_smt_os(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_95(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_DriverLock_of_s_smt_os(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv___pci_register_driver_100(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_101(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } extern unsigned int ioread16(void * ) ; Mbuf *smt_get_mbuf(struct s_smc *smc ) ; void smt_received_pack(struct s_smc *smc , Mbuf *mb , int fs ) ; void smt_send_mbuf(struct s_smc *smc , Mbuf *mb , int fc ) ; void smt_free_mbuf(struct s_smc *smc , Mbuf *mb ) ; void ev_dispatcher(struct s_smc *smc ) ; void smt_force_irq(struct s_smc *smc ) ; void mac_set_rx_mode(struct s_smc *smc , int mode ) ; void process_receive(struct s_smc *smc ) ; void init_driver_fplus(struct s_smc *smc ) ; void rtm_irq(struct s_smc *smc ) ; void mac_drv_repair_descr(struct s_smc *smc ) ; void init_board(struct s_smc *smc , u_char *mac_addr ) ; int init_fplus(struct s_smc *smc ) ; void init_plc(struct s_smc *smc ) ; void mac1_irq(struct s_smc *smc , u_short stu , u_short stl ) ; void mac2_irq(struct s_smc *smc , u_short code_s2u , u_short code_s2l ) ; void mac3_irq(struct s_smc *smc , u_short code_s3u , u_short code_s3l ) ; void plc1_irq(struct s_smc *smc ) ; void plc2_irq(struct s_smc *smc ) ; void timer_irq(struct s_smc *smc ) ; static void queue_llc_rx(struct s_smc *smc , Mbuf *mb ) ; static void smt_to_llc(struct s_smc *smc , Mbuf *mb ) ; static void init_txd_ring(struct s_smc *smc ) ; static void init_rxd_ring(struct s_smc *smc ) ; static void queue_txd_mb(struct s_smc *smc , Mbuf *mb ) ; static u_long init_descr_ring(struct s_smc *smc , union s_fp_descr volatile *start , int count ) ; static u_long repair_txd_ring(struct s_smc *smc , struct s_smt_tx_queue *queue ) ; static u_long repair_rxd_ring(struct s_smc *smc , struct s_smt_rx_queue *queue ) ; static Mbuf *get_llc_rx(struct s_smc *smc ) ; static Mbuf *get_txd_mb(struct s_smc *smc ) ; static void mac_drv_clear_txd(struct s_smc *smc ) ; void init_fddi_driver(struct s_smc *smc , u_char *mac_addr ) ; u_int mac_drv_check_space(void) { { return (20032U); } } int mac_drv_init(struct s_smc *smc ) { union s_fp_descr volatile *tmp ; void *tmp___0 ; Mbuf *tmp___1 ; void *tmp___2 ; { { tmp___0 = mac_drv_get_desc_mem(smc, 1920U); tmp = (union s_fp_descr volatile *)tmp___0; smc->os.hwm.descr_p = tmp; } if ((unsigned long )tmp == (unsigned long )((union s_fp_descr volatile *)0)) { return (1); } else { } { tmp___2 = mac_drv_get_space(smc, 18112U); tmp___1 = (Mbuf *)tmp___2; smc->os.hwm.mbuf_pool.mb_start = tmp___1; } if ((unsigned long )tmp___1 == (unsigned long )((Mbuf *)0)) { return (1); } else { } return (0); } } void init_driver_fplus(struct s_smc *smc ) { { smc->hw.fp.mdr2init = 35203U; smc->hw.fp.mdr2init = (u_short )((unsigned int )smc->hw.fp.mdr2init | 12288U); smc->hw.fp.mdr3init = 129U; smc->hw.fp.frselreg_init = 49152U; return; } } static u_long init_descr_ring(struct s_smc *smc , union s_fp_descr volatile *start , int count ) { int i ; union s_fp_descr volatile *d1 ; union s_fp_descr volatile *d2 ; u_long phys ; { i = count + -1; d1 = start; goto ldv_43392; ldv_43391: { d2 = d1; d1 = d1 + 1; d2->r.rxd_rbctrl = 5570560U; d2->r.rxd_next = & d1->r; phys = mac_drv_virt2phys(smc, (void *)d1); d2->r.rxd_nrdadr = (unsigned int )phys; i = i - 1; } ldv_43392: ; if (i != 0) { goto ldv_43391; } else { } { d1->r.rxd_rbctrl = 5570560U; d1->r.rxd_next = & start->r; phys = mac_drv_virt2phys(smc, (void *)start); d1->r.rxd_nrdadr = (unsigned int )phys; i = count; d1 = start; } goto ldv_43395; ldv_43394: d1 = d1 + 1; i = i - 1; ldv_43395: ; if (i != 0) { goto ldv_43394; } else { } return (phys); } } static void init_txd_ring(struct s_smc *smc ) { struct s_smt_fp_txd volatile *ds ; struct s_smt_tx_queue *queue ; u_long phys ; struct s_smt_fp_txd volatile *tmp ; struct s_smt_fp_txd volatile *tmp___0 ; { { ds = (struct s_smt_fp_txd volatile *)smc->os.hwm.descr_p + 528U; queue = smc->hw.fp.tx[1]; init_descr_ring(smc, (union s_fp_descr volatile *)ds, 14); phys = (u_long )ds->txd_ntdadr; ds = ds + 1; tmp = ds; queue->tx_curr_get = tmp; queue->tx_curr_put = tmp; ds = ds - 1; queue->tx_free = 14U; queue->tx_used = 0U; iowrite32((u32 )phys, smc->hw.iop + 656UL); ds = ds + 672U; queue = smc->hw.fp.tx[0]; init_descr_ring(smc, (union s_fp_descr volatile *)ds, 14); phys = (u_long )ds->txd_ntdadr; ds = ds + 1; tmp___0 = ds; queue->tx_curr_get = tmp___0; queue->tx_curr_put = tmp___0; queue->tx_free = 14U; queue->tx_used = 0U; iowrite32((u32 )phys, smc->hw.iop + 720UL); } return; } } static void init_rxd_ring(struct s_smc *smc ) { struct s_smt_fp_rxd volatile *ds ; struct s_smt_rx_queue *queue ; u_long phys ; struct s_smt_fp_rxd volatile *tmp ; { { ds = (struct s_smt_fp_rxd volatile *)smc->os.hwm.descr_p; queue = smc->hw.fp.rx[0]; init_descr_ring(smc, (union s_fp_descr volatile *)ds, 11); phys = (u_long )ds->rxd_nrdadr; ds = ds + 1; tmp = ds; queue->rx_curr_get = tmp; queue->rx_curr_put = tmp; queue->rx_free = 11U; queue->rx_used = 0U; iowrite32((u32 )phys, smc->hw.iop + 528UL); } return; } } void init_fddi_driver(struct s_smc *smc , u_char *mac_addr ) { Mbuf *mb ; int i ; Mbuf *tmp ; Mbuf *tmp___0 ; u_short tmp___1 ; u_short tmp___2 ; int tmp___3 ; { { init_board(smc, mac_addr); init_fplus(smc); mb = smc->os.hwm.mbuf_pool.mb_start; smc->os.hwm.mbuf_pool.mb_free = (Mbuf *)0; i = 0; } goto ldv_43416; ldv_43415: { mb->sm_use_count = 1; smt_free_mbuf(smc, mb); mb = mb + 1; i = i + 1; } ldv_43416: ; if (i <= 3) { goto ldv_43415; } else { } tmp = (Mbuf *)0; smc->os.hwm.llc_rx_tail = tmp; smc->os.hwm.llc_rx_pipe = tmp; tmp___0 = (Mbuf *)0; smc->os.hwm.txd_tx_tail = tmp___0; smc->os.hwm.txd_tx_pipe = tmp___0; tmp___2 = 0U; smc->os.hwm.pass_DB = tmp___2; tmp___1 = tmp___2; smc->os.hwm.pass_NSA = tmp___1; smc->os.hwm.pass_SMT = tmp___1; smc->os.hwm.pass_llc_promisc = 1U; tmp___3 = 0; smc->os.hwm.queued_txd_mb = tmp___3; smc->os.hwm.queued_rx_frames = tmp___3; smc->os.hwm.detec_count = 0; smc->os.hwm.rx_break = 0; smc->os.hwm.rx_len_error = 0UL; smc->os.hwm.isr_flag = 0; i = (int )(16U - ((unsigned int )((long )smc->os.hwm.descr_p) & 15U)); if (i != 16) { smc->os.hwm.descr_p = smc->os.hwm.descr_p + (unsigned long )i; } else { } { init_txd_ring(smc); init_rxd_ring(smc); mac_drv_fill_rxd(smc); init_plc(smc); } return; } } Mbuf *smt_get_mbuf(struct s_smc *smc ) { register Mbuf *mb ; { mb = smc->os.hwm.mbuf_pool.mb_free; if ((unsigned long )mb != (unsigned long )((Mbuf *)0)) { smc->os.hwm.mbuf_pool.mb_free = mb->m_next; mb->m_off = 8; mb->sm_use_count = 1; } else { } return (mb); } } void smt_free_mbuf(struct s_smc *smc , Mbuf *mb ) { { if ((unsigned long )mb != (unsigned long )((Mbuf *)0)) { mb->sm_use_count = mb->sm_use_count - 1; if (mb->sm_use_count == 0) { mb->m_next = smc->os.hwm.mbuf_pool.mb_free; smc->os.hwm.mbuf_pool.mb_free = mb; } else { } } else { { printk("\016SMT PANIC: code: %d, msg: %s\n", 503, (char *)"HWM: smt_free_mbuf() called with NULL pointer"); } } return; } } void mac_drv_repair_descr(struct s_smc *smc ) { u_long phys ; { if ((unsigned int )smc->hw.hw_state != 0U) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 513, (char *)"HWM: mac_drv_repair_descr was called although the hardware wasn\'t stopped"); } return; } else { } { phys = repair_txd_ring(smc, smc->hw.fp.tx[1]); iowrite32((u32 )phys, smc->hw.iop + 656UL); } if ((unsigned int )smc->hw.fp.tx_q[1].tx_used != 0U) { { iowrite32(16U, smc->hw.iop + 120UL); } } else { } { phys = repair_txd_ring(smc, smc->hw.fp.tx[0]); iowrite32((u32 )phys, smc->hw.iop + 720UL); } if ((unsigned int )smc->hw.fp.tx_q[0].tx_used != 0U) { { iowrite32(16U, smc->hw.iop + 124UL); } } else { } { phys = repair_rxd_ring(smc, smc->hw.fp.rx[0]); iowrite32((u32 )phys, smc->hw.iop + 528UL); iowrite32(16U, smc->hw.iop + 112UL); } return; } } static u_long repair_txd_ring(struct s_smc *smc , struct s_smt_tx_queue *queue ) { int i ; int tx_used ; u_long phys ; u_long tbctrl ; struct s_smt_fp_txd volatile *t ; { t = queue->tx_curr_get; tx_used = (int )queue->tx_used; i = (tx_used + (int )queue->tx_free) + -1; goto ldv_43440; ldv_43439: t = t->txd_next; i = i - 1; ldv_43440: ; if (i != 0) { goto ldv_43439; } else { } phys = (u_long )t->txd_ntdadr; t = queue->tx_curr_get; goto ldv_43444; ldv_43443: tbctrl = (u_long )t->txd_tbctrl; if ((tbctrl & 2147483648UL) != 0UL) { if ((tbctrl & 1073741824UL) != 0UL) { goto ldv_43442; } else { t->txd_tbctrl = (unsigned int )t->txd_tbctrl & 2147483647U; } } else { } phys = (u_long )t->txd_ntdadr; t = t->txd_next; tx_used = tx_used - 1; ldv_43444: ; if (tx_used != 0) { goto ldv_43443; } else { } ldv_43442: ; return (phys); } } static u_long repair_rxd_ring(struct s_smc *smc , struct s_smt_rx_queue *queue ) { int i ; int rx_used ; u_long phys ; u_long rbctrl ; struct s_smt_fp_rxd volatile *r ; { r = queue->rx_curr_get; rx_used = (int )queue->rx_used; i = 10; goto ldv_43455; ldv_43454: r = r->rxd_next; i = i - 1; ldv_43455: ; if (i != 0) { goto ldv_43454; } else { } phys = (u_long )r->rxd_nrdadr; r = queue->rx_curr_get; goto ldv_43459; ldv_43458: rbctrl = (u_long )r->rxd_rbctrl; if ((rbctrl & 2147483648UL) != 0UL) { if ((rbctrl & 1073741824UL) != 0UL) { goto ldv_43457; } else { r->rxd_rbctrl = (unsigned int )r->rxd_rbctrl & 2147483647U; } } else { } phys = (u_long )r->rxd_nrdadr; r = r->rxd_next; rx_used = rx_used - 1; ldv_43459: ; if (rx_used != 0) { goto ldv_43458; } else { } ldv_43457: ; return (phys); } } void fddi_isr(struct s_smc *smc ) { u_long is ; u_short stu ; u_short stl ; Mbuf *mb ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; { smc->os.hwm.isr_flag = 1; goto ldv_43471; ldv_43470: ; if ((is & 8359953UL) != 0UL) { if ((is & 1048576UL) != 0UL) { { plc1_irq(smc); } } else { } if ((is & 524288UL) != 0UL) { { plc2_irq(smc); } } else { } if ((is & 65536UL) != 0UL) { { tmp = ioread16(smc->hw.iop + 1024UL); stu = (u_short )tmp; tmp___0 = ioread16(smc->hw.iop + 1028UL); stl = (u_short )tmp___0; mac1_irq(smc, (int )stu, (int )stl); } } else { } if ((is & 131072UL) != 0UL) { { tmp___1 = ioread16(smc->hw.iop + 1032UL); stu = (u_short )tmp___1; tmp___2 = ioread16(smc->hw.iop + 1036UL); stl = (u_short )tmp___2; mac2_irq(smc, (int )stu, (int )stl); } } else { } if ((is & 262144UL) != 0UL) { { tmp___3 = ioread16(smc->hw.iop + 1412UL); stu = (u_short )tmp___3; tmp___4 = ioread16(smc->hw.iop + 1416UL); stl = (u_short )tmp___4; mac3_irq(smc, (int )stu, (int )stl); } } else { } if ((is & 4194304UL) != 0UL) { { timer_irq(smc); smc->os.hwm.detec_count = smc->os.hwm.detec_count + 1; } if (smc->os.hwm.detec_count > 4) { { process_receive(smc); } } else { } } else { } if ((is & 2097152UL) != 0UL) { { rtm_irq(smc); } } else { } if ((is & 32768UL) != 0UL) { { iowrite32(8U, smc->hw.iop + 540UL); printk("\016SMT PANIC: code: %d, msg: %s\n", 504, (char *)"HWM: Parity error rx queue 1"); } } else { } if ((is & 4096UL) != 0UL) { { iowrite32(1U, smc->hw.iop + 540UL); printk("\016SMT PANIC: code: %d, msg: %s\n", 505, (char *)"HWM: Encoding error rx queue 1"); } } else { } if ((is & 16UL) != 0UL) { { iowrite32(1U, smc->hw.iop + 668UL); printk("\016SMT PANIC: code: %d, msg: %s\n", 506, (char *)"HWM: Encoding error async tx queue"); } } else { } if ((int )is & 1) { { iowrite32(1U, smc->hw.iop + 732UL); printk("\016SMT PANIC: code: %d, msg: %s\n", 507, (char *)"HWM: Encoding error sync tx queue"); } } else { } } else { } if ((is & 34UL) != 0UL) { { iowrite32(2U, smc->hw.iop + 732UL); iowrite32(2U, smc->hw.iop + 668UL); mac_drv_clear_txd(smc); llc_restart_tx(smc); } } else { } if ((is & 8192UL) != 0UL) { { iowrite32(2U, smc->hw.iop + 540UL); process_receive(smc); } } else { } goto ldv_43468; ldv_43467: { smt_to_llc(smc, mb); } ldv_43468: { mb = get_llc_rx(smc); } if ((unsigned long )mb != (unsigned long )((Mbuf *)0)) { goto ldv_43467; } else { } if ((unsigned long )smc->q.ev_get != (unsigned long )smc->q.ev_put) { { ev_dispatcher(smc); } } else { } ldv_43471: { tmp___5 = ioread32(smc->hw.iop + 8UL); is = (u_long )tmp___5 & 8368179UL; } if (is != 0UL) { goto ldv_43470; } else { } smc->os.hwm.isr_flag = 0; return; } } void mac_drv_rx_mode(struct s_smc *smc , int mode ) { u_short tmp ; { { if (mode == 21) { goto case_21; } else { } if (mode == 22) { goto case_22; } else { } if (mode == 23) { goto case_23; } else { } if (mode == 24) { goto case_24; } else { } if (mode == 25) { goto case_25; } else { } if (mode == 26) { goto case_26; } else { } if (mode == 27) { goto case_27; } else { } if (mode == 28) { goto case_28; } else { } if (mode == 29) { goto case_29; } else { } if (mode == 1) { goto case_1; } else { } if (mode == 2) { goto case_2; } else { } if (mode == 3) { goto case_3; } else { } if (mode == 4) { goto case_4; } else { } if (mode == 5) { goto case_5; } else { } if (mode == 6) { goto case_6; } else { } goto switch_default; case_21: /* CIL Label */ smc->os.hwm.pass_SMT = 1U; goto ldv_43478; case_22: /* CIL Label */ smc->os.hwm.pass_SMT = 0U; goto ldv_43478; case_23: /* CIL Label */ smc->os.hwm.pass_NSA = 1U; goto ldv_43478; case_24: /* CIL Label */ smc->os.hwm.pass_NSA = 0U; goto ldv_43478; case_25: /* CIL Label */ smc->os.hwm.pass_DB = 1U; goto ldv_43478; case_26: /* CIL Label */ smc->os.hwm.pass_DB = 0U; goto ldv_43478; case_27: /* CIL Label */ { tmp = 0U; smc->os.hwm.pass_NSA = tmp; smc->os.hwm.pass_SMT = tmp; smc->os.hwm.pass_DB = 0U; smc->os.hwm.pass_llc_promisc = 1U; mac_set_rx_mode(smc, 6); } goto ldv_43478; case_28: /* CIL Label */ smc->os.hwm.pass_llc_promisc = 0U; goto ldv_43478; case_29: /* CIL Label */ smc->os.hwm.pass_llc_promisc = 1U; goto ldv_43478; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; switch_default: /* CIL Label */ { mac_set_rx_mode(smc, mode); } goto ldv_43478; switch_break: /* CIL Label */ ; } ldv_43478: ; return; } } void process_receive(struct s_smc *smc ) { int i ; int n ; int frag_count ; int used_frags ; struct s_smt_rx_queue *queue ; struct s_smt_fp_rxd volatile *r ; struct s_smt_fp_rxd volatile *rxd ; u_long rbctrl ; u_long rfsw ; u_short rx_used ; u_char *virt ; char *data ; Mbuf *mb ; u_char fc ; int len ; char tmp ; { smc->os.hwm.detec_count = 0; queue = smc->hw.fp.rx[0]; ldv_43531: r = queue->rx_curr_get; rx_used = queue->rx_used; frag_count = 0; n = 0; ldv_43514: rbctrl = (u_long )r->rxd_rbctrl; if ((rbctrl & 2147483648UL) != 0UL) { goto rx_end; } else { } if ((unsigned int )rx_used == 0U) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 509, (char *)"HWM: Out of RxD condition detected"); smc->hw.hw_state = 0U; mac_drv_clear_rx_queue(smc); smc->hw.hw_state = 1U; mac_drv_fill_rxd(smc); smc->os.hwm.detec_count = 0; } goto rx_end; } else { } rfsw = (u_long )r->rxd_rfsw; if ((rbctrl & 1073741824UL) != (rbctrl & 33554432UL) << 5) { rfsw = 0UL; if (frag_count != 0) { goto ldv_43513; } else { } } else { } n = (int )((unsigned int )n + ((unsigned int )rbctrl & 65535U)); r = r->rxd_next; frag_count = frag_count + 1; rx_used = (u_short )((int )rx_used - 1); if ((rbctrl & 536870912UL) == 0UL) { goto ldv_43514; } else { } ldv_43513: used_frags = frag_count; goto ldv_43516; ldv_43515: r = r->rxd_next; frag_count = frag_count + 1; rx_used = (u_short )((int )rx_used - 1); ldv_43516: ; if ((unsigned int )rx_used != 0U && ((unsigned int )r->rxd_rbctrl & 33554432U) == 0U) { goto ldv_43515; } else { } rxd = queue->rx_curr_get; queue->rx_curr_get = r; queue->rx_free = (int )queue->rx_free + (int )((u_short )frag_count); queue->rx_used = rx_used; rxd->rxd_rbctrl = (unsigned int )rxd->rxd_rbctrl & 3221225471U; r = rxd; i = frag_count; goto ldv_43519; ldv_43518: { dma_complete(smc, (union s_fp_descr volatile *)r, 2); r = r->rxd_next; i = i - 1; } ldv_43519: ; if (i != 0) { goto ldv_43518; } else { } smc->hw.fp.err_stats.err_valid = smc->hw.fp.err_stats.err_valid + 1UL; smc->mib.m[0].fddiMACCopied_Ct = smc->mib.m[0].fddiMACCopied_Ct + 1UL; len = (int )(((unsigned int )rfsw & 65535U) - 4U); if ((rfsw & 1226833920UL) != 0UL) { if ((rfsw & 1073741824UL) != 0UL) { smc->hw.fp.err_stats.err_abort = smc->hw.fp.err_stats.err_abort + 1UL; } else { } if ((rfsw & 134217728UL) != 0UL) { smc->hw.fp.err_stats.err_e_indicator = smc->hw.fp.err_stats.err_e_indicator + 1UL; } else { } if ((rfsw & 16777216UL) != 0UL) { smc->hw.fp.err_stats.err_crc = smc->hw.fp.err_stats.err_crc + 1UL; } else { } if ((rfsw & 2097152UL) != 0UL) { smc->hw.fp.err_stats.err_imp_frame = smc->hw.fp.err_stats.err_imp_frame + 1UL; } else { } goto abort_frame; } else { } if (len > 4491) { smc->hw.fp.err_stats.err_too_long = smc->hw.fp.err_stats.err_too_long + 1UL; goto abort_frame; } else { } if (len <= 4) { goto abort_frame; } else { } if (len != n + -4) { smc->os.hwm.rx_len_error = smc->os.hwm.rx_len_error + 1UL; goto abort_frame; } else { } virt = (u_char *)rxd->rxd_virt; if ((((((int )*(virt + 12UL) == (int )smc->hw.fddi_canon_addr.a[5] && (int )*(virt + 11UL) == (int )smc->hw.fddi_canon_addr.a[4]) && (int )*(virt + 10UL) == (int )smc->hw.fddi_canon_addr.a[3]) && (int )*(virt + 9UL) == (int )smc->hw.fddi_canon_addr.a[2]) && (int )*(virt + 8UL) == (int )smc->hw.fddi_canon_addr.a[1]) && ((int )*(virt + 7UL) & -2) == (int )smc->hw.fddi_canon_addr.a[0]) { goto abort_frame; } else { } if ((rfsw & 1048576UL) != 0UL) { if ((unsigned int )smc->os.hwm.pass_llc_promisc == 0U) { if (((int )*(virt + 1UL) & 1) == 0) { if ((((((int )*(virt + 6UL) != (int )smc->hw.fddi_canon_addr.a[5] || (int )*(virt + 5UL) != (int )smc->hw.fddi_canon_addr.a[4]) || (int )*(virt + 4UL) != (int )smc->hw.fddi_canon_addr.a[3]) || (int )*(virt + 3UL) != (int )smc->hw.fddi_canon_addr.a[2]) || (int )*(virt + 2UL) != (int )smc->hw.fddi_canon_addr.a[1]) || (int )*(virt + 1UL) != (int )smc->hw.fddi_canon_addr.a[0]) { goto abort_frame; } else { } } else { } } else { } { mac_drv_rx_complete(smc, rxd, frag_count, len); } } else { { mb = smt_get_mbuf(smc); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { smc->hw.fp.err_stats.err_no_buf = smc->hw.fp.err_stats.err_no_buf + 1UL; goto abort_frame; } else { } data = (char *)(& mb->m_data) + ((unsigned long )mb->m_off + 0xffffffffffffffffUL); r = rxd; i = used_frags; goto ldv_43523; ldv_43522: { n = (int )r->rxd_rbctrl & 65535; memcpy((void *)data, (void const *)r->rxd_virt, (size_t )n); data = data + (unsigned long )n; r = r->rxd_next; i = i - 1; } ldv_43523: ; if (i != 0) { goto ldv_43522; } else { } data = (char *)(& mb->m_data) + ((unsigned long )mb->m_off + 0xffffffffffffffffUL); tmp = *data; *((char *)(& mb->m_data)) = tmp; fc = (u_char )tmp; mb->m_len = (u_int )(len + -1); data = data + 1; { if ((int )fc == 65) { goto case_65; } else { } if ((int )fc == 79) { goto case_79; } else { } if ((int )fc == 194) { goto case_194; } else { } goto switch_default; case_65: /* CIL Label */ smc->hw.fp.err_stats.err_smt_frame = smc->hw.fp.err_stats.err_smt_frame + 1UL; if ((unsigned int )smc->os.hwm.pass_SMT != 0U) { { mac_drv_rx_complete(smc, rxd, frag_count, len); } } else { { mac_drv_requeue_rxd(smc, rxd, frag_count); } } { smt_received_pack(smc, mb, (int )(rfsw >> 25)); } goto ldv_43526; case_79: /* CIL Label */ smc->hw.fp.err_stats.err_smt_frame = smc->hw.fp.err_stats.err_smt_frame + 1UL; if ((unsigned int )smc->os.hwm.pass_NSA != 0U || ((unsigned int )smc->os.hwm.pass_SMT != 0U && (rfsw & 67108864UL) == 0UL)) { { mac_drv_rx_complete(smc, rxd, frag_count, len); } } else { { mac_drv_requeue_rxd(smc, rxd, frag_count); } } { smt_received_pack(smc, mb, (int )(rfsw >> 25)); } goto ldv_43526; case_194: /* CIL Label */ ; if ((unsigned int )smc->os.hwm.pass_DB != 0U) { { mac_drv_rx_complete(smc, rxd, frag_count, len); } } else { { mac_drv_requeue_rxd(smc, rxd, frag_count); } } { smt_free_mbuf(smc, mb); } goto ldv_43526; switch_default: /* CIL Label */ { smt_free_mbuf(smc, mb); mac_drv_requeue_rxd(smc, rxd, frag_count); } if (((int )fc & 240) == 192) { smc->hw.fp.err_stats.err_mac_frame = smc->hw.fp.err_stats.err_mac_frame + 1UL; } else { smc->hw.fp.err_stats.err_imp_frame = smc->hw.fp.err_stats.err_imp_frame + 1UL; } goto ldv_43526; switch_break: /* CIL Label */ ; } ldv_43526: ; } goto ldv_43530; abort_frame: { mac_drv_requeue_rxd(smc, rxd, frag_count); } ldv_43530: ; goto ldv_43531; rx_end: ; return; } } static void smt_to_llc(struct s_smc *smc , Mbuf *mb ) { u_char fc ; { { smc->os.hwm.r.len = mb->m_len; smc->os.hwm.r.mb_pos = (char *)(& mb->m_data) + (unsigned long )mb->m_off; fc = (u_char )*(smc->os.hwm.r.mb_pos); mac_drv_rx_init(smc, (int )mb->m_len, (int )fc, smc->os.hwm.r.mb_pos, (int )mb->m_len); smt_free_mbuf(smc, mb); } return; } } void hwm_rx_frag(struct s_smc *smc , char *virt , u_long phys , int len , int frame_status ) { struct s_smt_fp_rxd volatile *r ; __le32 rbctrl ; { { r = smc->hw.fp.rx_q[0].rx_curr_put; r->rxd_virt = virt; r->rxd_rbadr = (unsigned int )phys; rbctrl = (((((unsigned int )frame_status & 24U) << 26) | (((unsigned int )frame_status & 16U) << 21U)) | (unsigned int )len) | 2287271936U; r->rxd_rbctrl = rbctrl; iowrite32(16U, smc->hw.iop + 112UL); smc->hw.fp.rx_q[0].rx_free = (u_short )((int )smc->hw.fp.rx_q[0].rx_free - 1); smc->hw.fp.rx_q[0].rx_used = (u_short )((int )smc->hw.fp.rx_q[0].rx_used + 1); smc->hw.fp.rx_q[0].rx_curr_put = r->rxd_next; } return; } } void mac_drv_clear_rx_queue(struct s_smc *smc ) { struct s_smt_fp_rxd volatile *r ; struct s_smt_fp_rxd volatile *next_rxd ; struct s_smt_rx_queue *queue ; int frag_count ; int i ; { if ((unsigned int )smc->hw.hw_state != 0U) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 512, (char *)"HWM: mac_drv_clear_rx_queue was called although the hardware wasn\'t stopped"); } return; } else { } queue = smc->hw.fp.rx[0]; r = queue->rx_curr_get; goto ldv_43561; ldv_43560: r->rxd_rbctrl = (unsigned int )r->rxd_rbctrl & 2147483647U; frag_count = 1; r = r->rxd_next; goto ldv_43555; ldv_43554: r->rxd_rbctrl = (unsigned int )r->rxd_rbctrl & 2147483647U; r = r->rxd_next; frag_count = frag_count + 1; ldv_43555: ; if ((unsigned long )r != (unsigned long )queue->rx_curr_put && ((unsigned int )r->rxd_rbctrl & 33554432U) == 0U) { goto ldv_43554; } else { } next_rxd = r; r = queue->rx_curr_get; i = frag_count; goto ldv_43558; ldv_43557: { dma_complete(smc, (union s_fp_descr volatile *)r, 2); r = r->rxd_next; i = i - 1; } ldv_43558: ; if (i != 0) { goto ldv_43557; } else { } { mac_drv_clear_rxd(smc, queue->rx_curr_get, frag_count); queue->rx_curr_get = next_rxd; queue->rx_used = (int )queue->rx_used - (int )((u_short )frag_count); queue->rx_free = (int )queue->rx_free + (int )((u_short )frag_count); } ldv_43561: ; if ((unsigned int )queue->rx_used != 0U) { goto ldv_43560; } else { } return; } } int hwm_tx_init(struct s_smc *smc , u_char fc , int frag_count , int frame_len , int frame_status ) { { smc->os.hwm.tx_p = smc->hw.fp.tx[frame_status & 1]; smc->os.hwm.tx_descr = (((unsigned long )(frame_len + -1) & 3UL) << 27) | 1073741824UL; smc->os.hwm.tx_len = frame_len; if (((int )fc & -136) == 80) { frame_status = frame_status | 32; } else { { if ((int )fc == 65) { goto case_65; } else { } if ((int )fc == 79) { goto case_79; } else { } if ((int )fc == 67) { goto case_67; } else { } if ((int )fc == 66) { goto case_66; } else { } goto switch_default; case_65: /* CIL Label */ ; case_79: /* CIL Label */ frame_status = frame_status | 32; goto ldv_43572; case_67: /* CIL Label */ frame_status = frame_status | 4; goto ldv_43572; case_66: /* CIL Label */ frame_status = frame_status | 36; goto ldv_43572; switch_default: /* CIL Label */ { printk("\016SMT PANIC: code: %d, msg: %s\n", 510, (char *)"HWM: A protocol layer has tried to send a frame with an invalid frame control"); } switch_break: /* CIL Label */ ; } ldv_43572: ; } if ((unsigned int )smc->hw.mac_ring_is_up == 0U) { frame_status = frame_status & -33; frame_status = frame_status | 64; } else { } if (frag_count > (int )(smc->os.hwm.tx_p)->tx_free) { { mac_drv_clear_txd(smc); } if (frag_count > (int )(smc->os.hwm.tx_p)->tx_free) { frame_status = frame_status & -33; frame_status = frame_status | 128; } else { } } else { } return (frame_status); } } void hwm_tx_frag(struct s_smc *smc , char *virt , u_long phys , int len , int frame_status ) { struct s_smt_fp_txd volatile *t ; struct s_smt_tx_queue *queue ; __le32 tbctrl ; Mbuf *tmp ; { queue = smc->os.hwm.tx_p; t = queue->tx_curr_put; if ((frame_status & 32) != 0) { { t->txd_virt = virt; t->txd_txdscr = (unsigned int )smc->os.hwm.tx_descr; t->txd_tbadr = (unsigned int )phys; tbctrl = ((((unsigned int )frame_status & 26U) << 26) | (unsigned int )len) | 2153054208U; t->txd_tbctrl = tbctrl; iowrite32(16U, queue->tx_bmu_ctl); queue->tx_free = (u_short )((int )queue->tx_free - 1); queue->tx_used = (u_short )((int )queue->tx_used + 1); queue->tx_curr_put = t->txd_next; } if ((frame_status & 8) != 0) { smc->mib.m[0].fddiMACTransmit_Ct = smc->mib.m[0].fddiMACTransmit_Ct + 1UL; } else { } } else { } if ((frame_status & 4) != 0) { if ((frame_status & 16) != 0) { { tmp = smt_get_mbuf(smc); smc->os.hwm.tx_mb = tmp; } if ((unsigned long )tmp == (unsigned long )((Mbuf *)0)) { smc->hw.fp.err_stats.err_no_buf = smc->hw.fp.err_stats.err_no_buf + 1UL; } else { smc->os.hwm.tx_data = (char *)(& (smc->os.hwm.tx_mb)->m_data) + ((unsigned long )(smc->os.hwm.tx_mb)->m_off + 0xffffffffffffffffUL); } } else { } if ((unsigned long )smc->os.hwm.tx_mb != (unsigned long )((Mbuf *)0)) { { memcpy((void *)smc->os.hwm.tx_data, (void const *)virt, (size_t )len); smc->os.hwm.tx_data = smc->os.hwm.tx_data + (unsigned long )len; } if ((frame_status & 8) != 0) { { smc->os.hwm.tx_data = (char *)(& (smc->os.hwm.tx_mb)->m_data) + ((unsigned long )(smc->os.hwm.tx_mb)->m_off + 0xffffffffffffffffUL); *((char *)(& (smc->os.hwm.tx_mb)->m_data)) = *(smc->os.hwm.tx_data); smc->os.hwm.tx_data = smc->os.hwm.tx_data + 1; (smc->os.hwm.tx_mb)->m_len = (u_int )(smc->os.hwm.tx_len + -1); smt_received_pack(smc, smc->os.hwm.tx_mb, 128); } } else { } } else { } } else { } return; } } static void queue_llc_rx(struct s_smc *smc , Mbuf *mb ) { { smc->os.hwm.queued_rx_frames = smc->os.hwm.queued_rx_frames + 1; mb->m_next = (struct s_mbuf *)0; if ((unsigned long )smc->os.hwm.llc_rx_pipe == (unsigned long )((Mbuf *)0)) { smc->os.hwm.llc_rx_pipe = mb; } else { (smc->os.hwm.llc_rx_tail)->m_next = mb; } smc->os.hwm.llc_rx_tail = mb; if (smc->os.hwm.isr_flag == 0) { { smt_force_irq(smc); } } else { } return; } } static Mbuf *get_llc_rx(struct s_smc *smc ) { Mbuf *mb ; { mb = smc->os.hwm.llc_rx_pipe; if ((unsigned long )mb != (unsigned long )((Mbuf *)0)) { smc->os.hwm.queued_rx_frames = smc->os.hwm.queued_rx_frames - 1; smc->os.hwm.llc_rx_pipe = mb->m_next; } else { } return (mb); } } static void queue_txd_mb(struct s_smc *smc , Mbuf *mb ) { { smc->os.hwm.queued_txd_mb = smc->os.hwm.queued_txd_mb + 1; mb->m_next = (struct s_mbuf *)0; if ((unsigned long )smc->os.hwm.txd_tx_pipe == (unsigned long )((Mbuf *)0)) { smc->os.hwm.txd_tx_pipe = mb; } else { (smc->os.hwm.txd_tx_tail)->m_next = mb; } smc->os.hwm.txd_tx_tail = mb; return; } } static Mbuf *get_txd_mb(struct s_smc *smc ) { Mbuf *mb ; { mb = smc->os.hwm.txd_tx_pipe; if ((unsigned long )mb != (unsigned long )((Mbuf *)0)) { smc->os.hwm.queued_txd_mb = smc->os.hwm.queued_txd_mb - 1; smc->os.hwm.txd_tx_pipe = mb->m_next; } else { } return (mb); } } void smt_send_mbuf(struct s_smc *smc , Mbuf *mb , int fc ) { char *data ; int len ; int n ; int i ; int frag_count ; int frame_status ; char *virt[3U] ; int frag_len[3U] ; struct s_smt_tx_queue *queue ; struct s_smt_fp_txd volatile *t ; u_long phys ; __le32 tbctrl ; { mb->m_off = (short )((int )mb->m_off - 1); mb->m_len = mb->m_len + 1U; data = (char *)(& mb->m_data) + (unsigned long )mb->m_off; *data = (char )fc; if (fc == 67) { *data = 65; } else { } frag_count = 0; len = (int )mb->m_len; goto ldv_43620; ldv_43619: n = (int )(4096U - ((unsigned int )((long )data) & 4095U)); if (n >= len) { n = len; } else { } virt[frag_count] = data; frag_len[frag_count] = n; frag_count = frag_count + 1; len = len - n; data = data + (unsigned long )n; ldv_43620: ; if (len != 0) { goto ldv_43619; } else { } queue = smc->hw.fp.tx[1]; if (fc == 194 || fc == 67) { frame_status = 4; } else { frame_status = 32; if (((unsigned int )smc->os.hwm.pass_NSA != 0U && fc == 79) || ((unsigned int )smc->os.hwm.pass_SMT != 0U && fc == 65)) { frame_status = frame_status | 4; } else { } } if ((unsigned int )smc->hw.mac_ring_is_up == 0U || frag_count > (int )queue->tx_free) { frame_status = frame_status & -33; if (frame_status != 0) { } else { { smt_free_mbuf(smc, mb); } return; } } else { } if (((unsigned int )frame_status & 36U) == 36U) { mb->sm_use_count = 2; } else { } if ((frame_status & 32) != 0) { t = queue->tx_curr_put; frame_status = frame_status | 16; i = 0; goto ldv_43623; ldv_43622: ; if (i == frag_count + -1) { frame_status = frame_status | 8; t->txd_txdscr = (((mb->m_len - 1U) & 3U) << 27) | 1073741824U; } else { } { t->txd_virt = virt[i]; phys = dma_master(smc, (void *)virt[i], frag_len[i], 129); t->txd_tbadr = (unsigned int )phys; tbctrl = ((((unsigned int )frame_status & 24U) << 26) | (unsigned int )frag_len[i]) | 2186608640U; t->txd_tbctrl = tbctrl; iowrite32(16U, queue->tx_bmu_ctl); frame_status = frame_status & -17; t = t->txd_next; queue->tx_curr_put = t; queue->tx_free = (u_short )((int )queue->tx_free - 1); queue->tx_used = (u_short )((int )queue->tx_used + 1); i = i + 1; } ldv_43623: ; if (i < frag_count) { goto ldv_43622; } else { } { smc->mib.m[0].fddiMACTransmit_Ct = smc->mib.m[0].fddiMACTransmit_Ct + 1UL; queue_txd_mb(smc, mb); } } else { } if ((frame_status & 4) != 0) { { queue_llc_rx(smc, mb); } } else { } { mac_drv_clear_txd(smc); } return; } } static void mac_drv_clear_txd(struct s_smc *smc ) { struct s_smt_tx_queue *queue ; struct s_smt_fp_txd volatile *t1 ; struct s_smt_fp_txd volatile *t2 ; Mbuf *mb ; u_long tbctrl ; int i ; int frag_count ; int n ; { t2 = (struct s_smt_fp_txd volatile *)0; i = 0; goto ldv_43644; ldv_43643: queue = smc->hw.fp.tx[i]; t1 = queue->tx_curr_get; ldv_43642: frag_count = 0; ldv_43637: tbctrl = (u_long )t1->txd_tbctrl; if ((tbctrl & 2147483648UL) != 0UL || (unsigned int )queue->tx_used == 0U) { goto free_next_queue; } else { } t1 = t1->txd_next; frag_count = frag_count + 1; if ((tbctrl & 536870912UL) == 0UL) { goto ldv_43637; } else { } t1 = queue->tx_curr_get; n = frag_count; goto ldv_43640; ldv_43639: { tbctrl = (u_long )t1->txd_tbctrl; dma_complete(smc, (union s_fp_descr volatile *)t1, (int )((unsigned int )((tbctrl & 33554432UL) >> 18) | 1U)); t2 = t1; t1 = t1->txd_next; n = n - 1; } ldv_43640: ; if (n != 0) { goto ldv_43639; } else { } if ((tbctrl & 33554432UL) != 0UL) { { mb = get_txd_mb(smc); smt_free_mbuf(smc, mb); } } else { { mac_drv_tx_complete(smc, t2); } } queue->tx_curr_get = t1; queue->tx_free = (int )queue->tx_free + (int )((u_short )frag_count); queue->tx_used = (int )queue->tx_used - (int )((u_short )frag_count); goto ldv_43642; free_next_queue: i = i + 1; ldv_43644: ; if (i <= 1) { goto ldv_43643; } else { } return; } } void mac_drv_clear_tx_queue(struct s_smc *smc ) { struct s_smt_fp_txd volatile *t ; struct s_smt_tx_queue *queue ; int tx_used ; int i ; { if ((unsigned int )smc->hw.hw_state != 0U) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 511, (char *)"HWM: mac_drv_clear_tx_queue was called although the hardware wasn\'t stopped"); } return; } else { } i = 0; goto ldv_43657; ldv_43656: queue = smc->hw.fp.tx[i]; t = queue->tx_curr_get; tx_used = (int )queue->tx_used; goto ldv_43654; ldv_43653: t->txd_tbctrl = (unsigned int )t->txd_tbctrl & 2147483647U; t = t->txd_next; tx_used = tx_used - 1; ldv_43654: ; if (tx_used != 0) { goto ldv_43653; } else { } i = i + 1; ldv_43657: ; if (i <= 1) { goto ldv_43656; } else { } { mac_drv_clear_txd(smc); i = 0; } goto ldv_43660; ldv_43659: queue = smc->hw.fp.tx[i]; t = queue->tx_curr_get; if (i == 0) { { iowrite32(t->txd_ntdadr, smc->hw.iop + 720UL); } } else { { iowrite32(t->txd_ntdadr, smc->hw.iop + 656UL); } } queue->tx_curr_put = (queue->tx_curr_get)->txd_next; queue->tx_curr_get = queue->tx_curr_put; i = i + 1; ldv_43660: ; if (i <= 1) { goto ldv_43659; } else { } return; } } extern void iowrite8(u8 , void * ) ; extern void iowrite16(u16 , void * ) ; void queue_event(struct s_smc *smc , int class , int event ) ; void plc_config_mux(struct s_smc *smc , int mux ) ; void mac_update_counter(struct s_smc *smc ) ; void sm_ma_control(struct s_smc *smc , int mode ) ; void sm_mac_check_beacon_claim(struct s_smc *smc ) ; void config_mux(struct s_smc *smc , int mux ) ; int sm_mac_get_tx_state(struct s_smc *smc ) ; void set_formac_tsync(struct s_smc *smc , long sync_bw ) ; void formac_reinit_tx(struct s_smc *smc ) ; void formac_tx_restart(struct s_smc *smc ) ; void rtm_set_timer(struct s_smc *smc ) ; void llc_recover_tx(struct s_smc *smc ) ; void mac_do_pci_fix(struct s_smc *smc ) ; u_long hwt_quick_read(struct s_smc *smc ) ; void hwt_wait_time(struct s_smc *smc , u_long start , long duration ) ; void smt_emulate_token_ct(struct s_smc *smc , int mac_index___0 ) ; struct fddi_addr const fddi_broadcast ; extern unsigned char const byte_rev_table[256U] ; __inline static unsigned char bitrev8(unsigned char byte ) { { return ((unsigned char )byte_rev_table[(int )byte]); } } __inline static bool ether_addr_equal(unsigned char const *addr1 , unsigned char const *addr2 ) { unsigned int fold ; { fold = ((unsigned int )*((unsigned int const *)addr1) ^ (unsigned int )*((unsigned int const *)addr2)) | (unsigned int )((int )((unsigned short )*((unsigned short const *)addr1 + 4U)) ^ (int )((unsigned short )*((unsigned short const *)addr2 + 4U))); return (fold == 0U); } } static void build_claim_beacon(struct s_smc *smc , u_long t_request ) ; static int init_mac(struct s_smc *smc , int all ) ; static void rtm_init(struct s_smc *smc ) ; static void smt_split_up_fifo(struct s_smc *smc ) ; static char write_mdr_warning[35U] = { 'E', '3', '5', '0', ' ', 'w', 'r', 'i', 't', 'e', '_', 'm', 'd', 'r', '(', ')', ' ', 'F', 'M', '_', 'S', 'N', 'P', 'P', 'N', 'D', ' ', 'i', 's', ' ', 's', 'e', 't', '\n', '\000'}; static char cam_warning[27U] = { 'E', '_', 'S', 'M', 'T', '_', '0', '0', '4', ':', ' ', 'C', 'A', 'M', ' ', 's', 't', 'i', 'l', 'l', ' ', 'b', 'u', 's', 'y', '\n', '\000'}; struct fddi_addr const fddi_broadcast = {{255U, 255U, 255U, 255U, 255U, 255U}}; static struct fddi_addr const null_addr = {{0U, 0U, 0U, 0U, 0U, 0U}}; static struct fddi_addr const dbeacon_multi = {{1U, 128U, 194U, 0U, 1U, 0U}}; static unsigned short const my_said = 65535U; static unsigned short const my_sagp = 65535U; static u_long mac_get_tneg(struct s_smc *smc ) { u_long tneg ; unsigned int tmp ; unsigned int tmp___0 ; { { tmp = ioread16(smc->hw.iop + 1120UL); tneg = (unsigned long )((long )tmp << 5); tmp___0 = ioread16(smc->hw.iop + 1124UL); } return ((tneg + ((u_long )(tmp___0 >> 10) & 31UL)) | 4292870144UL); } } void mac_update_counter(struct s_smc *smc ) { unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { { tmp = ioread16(smc->hw.iop + 1284UL); smc->mib.m[0].fddiMACFrame_Ct = (smc->mib.m[0].fddiMACFrame_Ct & 4294901760UL) + (unsigned long )((unsigned short )tmp); tmp___0 = ioread16(smc->hw.iop + 1288UL); smc->mib.m[0].fddiMACLost_Ct = (smc->mib.m[0].fddiMACLost_Ct & 4294901760UL) + (unsigned long )((unsigned short )tmp___0); tmp___1 = ioread16(smc->hw.iop + 1292UL); smc->mib.m[0].fddiMACError_Ct = (smc->mib.m[0].fddiMACError_Ct & 4294901760UL) + (unsigned long )((unsigned short )tmp___1); smc->mib.m[0].fddiMACT_Neg = mac_get_tneg(smc); smt_emulate_token_ct(smc, 0); } return; } } static void write_mdr(struct s_smc *smc , u_long val ) { unsigned int k ; unsigned int tmp ; { k = 10000U; goto ldv_43477; ldv_43476: k = k - 1U; ldv_43477: { tmp = ioread16(smc->hw.iop + 1092UL); } if ((tmp & 8U) != 0U && k != 0U) { goto ldv_43476; } else { } if (k == 0U) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 130, (char *)(& write_mdr_warning)); } } else { } { iowrite16((int )((u16 )(val >> 16)), smc->hw.iop + 1272UL); iowrite16((int )((u16 )val), smc->hw.iop + 1276UL); } return; } } static void init_ram(struct s_smc *smc ) { u_short i ; unsigned int k ; unsigned int tmp ; { smc->hw.fp.fifo.rbc_ram_start = 0U; smc->hw.fp.fifo.rbc_ram_end = (unsigned int )smc->hw.fp.fifo.rbc_ram_start + 32768U; k = 10000U; goto ldv_43485; ldv_43484: k = k - 1U; ldv_43485: { tmp = ioread16(smc->hw.iop + 1092UL); } if ((tmp & 8U) != 0U && k != 0U) { goto ldv_43484; } else { } if (k == 0U) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 130, (char *)(& write_mdr_warning)); } } else { } { iowrite16((int )smc->hw.fp.fifo.rbc_ram_start, smc->hw.iop + 1268UL); i = smc->hw.fp.fifo.rbc_ram_start; } goto ldv_43488; ldv_43487: { write_mdr(smc, 0UL); i = (u_short )((int )i + 1); } ldv_43488: ; if ((unsigned int )i < (unsigned int )smc->hw.fp.fifo.rbc_ram_end - 1U) { goto ldv_43487; } else { } { write_mdr(smc, 0UL); } return; } } static void set_recvptr(struct s_smc *smc ) { { { iowrite16((int )smc->hw.fp.fifo.rx1_fifo_start, smc->hw.iop + 1204UL); iowrite16((int )smc->hw.fp.fifo.rx1_fifo_start, smc->hw.iop + 1212UL); iowrite16((int )smc->hw.fp.fifo.rx1_fifo_start, smc->hw.iop + 1208UL); iowrite16((int )((unsigned int )smc->hw.fp.fifo.tx_s_start + 65535U), smc->hw.iop + 1164UL); } if ((unsigned int )smc->hw.fp.fifo.rx2_fifo_size != 0U) { { iowrite16((int )smc->hw.fp.fifo.rx2_fifo_start, smc->hw.iop + 1440UL); iowrite16((int )smc->hw.fp.fifo.rx2_fifo_start, smc->hw.iop + 1448UL); iowrite16((int )smc->hw.fp.fifo.rx2_fifo_start, smc->hw.iop + 1444UL); iowrite16((int )((unsigned int )smc->hw.fp.fifo.rbc_ram_end + 65535U), smc->hw.iop + 1452UL); } } else { { iowrite16((int )((unsigned int )smc->hw.fp.fifo.rbc_ram_end + 65535U), smc->hw.iop + 1440UL); iowrite16((int )((unsigned int )smc->hw.fp.fifo.rbc_ram_end + 65535U), smc->hw.iop + 1448UL); iowrite16((int )((unsigned int )smc->hw.fp.fifo.rbc_ram_end + 65535U), smc->hw.iop + 1444UL); iowrite16((int )((unsigned int )smc->hw.fp.fifo.rbc_ram_end + 65535U), smc->hw.iop + 1452UL); } } return; } } static void set_txptr(struct s_smc *smc ) { { { iowrite16(32, smc->hw.iop + 1028UL); iowrite16((int )smc->hw.fp.fifo.tx_a0_start, smc->hw.iop + 1252UL); iowrite16((int )smc->hw.fp.fifo.tx_a0_start, smc->hw.iop + 1236UL); iowrite16((int )smc->hw.fp.fifo.tx_a0_start, smc->hw.iop + 1220UL); iowrite16((int )((unsigned int )smc->hw.fp.fifo.rx2_fifo_start + 65535U), smc->hw.iop + 1172UL); } if ((unsigned int )smc->hw.fp.fifo.tx_s_size != 0U) { { iowrite16((int )smc->hw.fp.fifo.tx_s_start, smc->hw.iop + 1248UL); iowrite16((int )smc->hw.fp.fifo.tx_s_start, smc->hw.iop + 1232UL); iowrite16((int )smc->hw.fp.fifo.tx_s_start, smc->hw.iop + 1216UL); iowrite16((int )((unsigned int )smc->hw.fp.fifo.tx_a0_start + 65535U), smc->hw.iop + 1168UL); } } else { { iowrite16((int )((unsigned int )smc->hw.fp.fifo.tx_a0_start + 65535U), smc->hw.iop + 1248UL); iowrite16((int )((unsigned int )smc->hw.fp.fifo.tx_a0_start + 65535U), smc->hw.iop + 1232UL); iowrite16((int )((unsigned int )smc->hw.fp.fifo.tx_a0_start + 65535U), smc->hw.iop + 1216UL); iowrite16((int )((unsigned int )smc->hw.fp.fifo.tx_a0_start + 65535U), smc->hw.iop + 1168UL); } } return; } } static void init_rbc(struct s_smc *smc ) { u_short rbc_ram_addr ; { { rbc_ram_addr = (unsigned int )smc->hw.fp.fifo.rx2_fifo_start + 65535U; iowrite16((int )rbc_ram_addr, smc->hw.iop + 1256UL); iowrite16((int )rbc_ram_addr, smc->hw.iop + 1224UL); iowrite16((int )rbc_ram_addr, smc->hw.iop + 1240UL); iowrite16((int )rbc_ram_addr, smc->hw.iop + 1176UL); set_recvptr(smc); set_txptr(smc); } return; } } static void init_rx(struct s_smc *smc ) { struct s_smt_rx_queue *queue ; { queue = (struct s_smt_rx_queue *)(& smc->hw.fp.rx_q); smc->hw.fp.rx[0] = queue; queue->rx_bmu_ctl = smc->hw.iop + 112UL; queue->rx_bmu_dsc = smc->hw.iop + 528UL; queue = (struct s_smt_rx_queue *)(& smc->hw.fp.rx_q) + 1UL; smc->hw.fp.rx[1] = queue; queue->rx_bmu_ctl = smc->hw.iop + 116UL; queue->rx_bmu_dsc = smc->hw.iop + 592UL; return; } } void set_formac_tsync(struct s_smc *smc , long sync_bw ) { { { iowrite16((int )((u16 )(- sync_bw >> 5)), smc->hw.iop + 1148UL); } return; } } static void init_tx(struct s_smc *smc ) { struct s_smt_tx_queue *queue ; { { queue = (struct s_smt_tx_queue *)(& smc->hw.fp.tx_q); smc->hw.fp.tx[0] = queue; queue->tx_bmu_ctl = smc->hw.iop + 124UL; queue->tx_bmu_dsc = smc->hw.iop + 720UL; set_formac_tsync(smc, smc->ess.sync_bw); queue = (struct s_smt_tx_queue *)(& smc->hw.fp.tx_q) + 1UL; smc->hw.fp.tx[1] = queue; queue->tx_bmu_ctl = smc->hw.iop + 120UL; queue->tx_bmu_dsc = smc->hw.iop + 656UL; llc_recover_tx(smc); } return; } } static void mac_counter_init(struct s_smc *smc ) { int i ; u_long *ec ; u_long *tmp ; { { iowrite16(0, smc->hw.iop + 1284UL); iowrite16(0, smc->hw.iop + 1288UL); iowrite16(0, smc->hw.iop + 1292UL); ec = (u_long *)(& smc->hw.fp.err_stats); i = 16; } goto ldv_43518; ldv_43517: tmp = ec; ec = ec + 1; *tmp = 0UL; i = i - 1; ldv_43518: ; if (i != 0) { goto ldv_43517; } else { } smc->mib.m[0].fddiMACRingOp_Ct = 0UL; return; } } static void set_formac_addr(struct s_smc *smc ) { long t_requ ; { { t_requ = (long )smc->mib.m[0].fddiMACT_Req; iowrite16((int )my_said, smc->hw.iop + 1056UL); iowrite16(((int )((unsigned short )smc->hw.fddi_home_addr.a[4]) << 8U) + (int )((unsigned short )smc->hw.fddi_home_addr.a[5]), smc->hw.iop + 1068UL); iowrite16(((int )((unsigned short )smc->hw.fddi_home_addr.a[2]) << 8U) + (int )((unsigned short )smc->hw.fddi_home_addr.a[3]), smc->hw.iop + 1064UL); iowrite16(((int )((unsigned short )smc->hw.fddi_home_addr.a[0]) << 8U) + (int )((unsigned short )smc->hw.fddi_home_addr.a[1]), smc->hw.iop + 1060UL); iowrite16((int )my_sagp, smc->hw.iop + 1072UL); iowrite16(((int )((unsigned short )smc->hw.fp.group_addr.a[4]) << 8U) + (int )((unsigned short )smc->hw.fp.group_addr.a[5]), smc->hw.iop + 1084UL); iowrite16(((int )((unsigned short )smc->hw.fp.group_addr.a[2]) << 8U) + (int )((unsigned short )smc->hw.fp.group_addr.a[3]), smc->hw.iop + 1080UL); iowrite16(((int )((unsigned short )smc->hw.fp.group_addr.a[0]) << 8U) + (int )((unsigned short )smc->hw.fp.group_addr.a[1]), smc->hw.iop + 1076UL); iowrite16((int )((unsigned short )(t_requ >> 16)), smc->hw.iop + 1132UL); iowrite16((int )((unsigned short )t_requ), smc->hw.iop + 1128UL); } return; } } static void set_int(char *p , int l ) { { *p = (char )(l >> 24); *(p + 1UL) = (char )(l >> 16); *(p + 2UL) = (char )(l >> 8); *(p + 3UL) = (char )l; return; } } static void copy_tx_mac(struct s_smc *smc , u_long td , struct fddi_mac *mac , unsigned int off , int len ) { int i ; __le32 *p ; unsigned int k ; unsigned int tmp ; { k = 10000U; goto ldv_43539; ldv_43538: k = k - 1U; ldv_43539: { tmp = ioread16(smc->hw.iop + 1092UL); } if ((tmp & 8U) != 0U && k != 0U) { goto ldv_43538; } else { } if (k == 0U) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 130, (char *)(& write_mdr_warning)); } } else { } { iowrite16((int )((u16 )off), smc->hw.iop + 1268UL); p = (__le32 *)mac; i = (len + 3) / 4; } goto ldv_43542; ldv_43541: ; if (i == 1) { { iowrite16(48, smc->hw.iop + 1028UL); } } else { } { write_mdr(smc, (u_long )*p); p = p + 1; i = i - 1; } ldv_43542: ; if (i != 0) { goto ldv_43541; } else { } { iowrite16(48, smc->hw.iop + 1028UL); write_mdr(smc, td); } return; } } static void directed_beacon(struct s_smc *smc ) { __le32 a[2U] ; unsigned int k ; unsigned int tmp ; { { *((char *)(& a)) = 0; a[1] = 0U; memcpy((void *)(& a) + 1U, (void const *)(& smc->mib.m[0].fddiMACUpstreamNbr), 6UL); k = 10000U; } goto ldv_43550; ldv_43549: k = k - 1U; ldv_43550: { tmp = ioread16(smc->hw.iop + 1092UL); } if ((tmp & 8U) != 0U && k != 0U) { goto ldv_43549; } else { } if (k == 0U) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 130, (char *)(& write_mdr_warning)); } } else { } { iowrite16((int )((unsigned int )smc->hw.fp.fifo.rbc_ram_start + 28U), smc->hw.iop + 1268UL); write_mdr(smc, (u_long )a[0]); iowrite16(48, smc->hw.iop + 1028UL); write_mdr(smc, (u_long )a[1]); iowrite16((int )((unsigned int )smc->hw.fp.fifo.rbc_ram_start + 24U), smc->hw.iop + 1188UL); } return; } } static void build_claim_beacon(struct s_smc *smc , u_long t_request ) { u_int td ; int len ; struct fddi_mac_sf *mac ; struct fddi_addr tmp ; { { len = 17; td = ((((unsigned int )len - 1U) & 3U) << 27) | 1073741824U; mac = & smc->hw.fp.mac_sfb; mac->mac_fc = 195U; tmp = smc->hw.fddi_canon_addr; mac->mac_dest = tmp; mac->mac_source = tmp; set_int((char *)(& mac->mac_info), (int )t_request); copy_tx_mac(smc, (u_long )td, (struct fddi_mac *)mac, (unsigned int )((int )smc->hw.fp.fifo.rbc_ram_start + 8), len); iowrite16((int )((unsigned int )smc->hw.fp.fifo.rbc_ram_start + 8U), smc->hw.iop + 1184UL); len = 17; td = ((((unsigned int )len - 1U) & 3U) << 27) | 1073741824U; mac->mac_fc = 194U; mac->mac_source = smc->hw.fddi_canon_addr; mac->mac_dest = null_addr; set_int((char *)(& mac->mac_info), 0); copy_tx_mac(smc, (u_long )td, (struct fddi_mac *)mac, (unsigned int )((int )smc->hw.fp.fifo.rbc_ram_start + 16), len); iowrite16((int )((unsigned int )smc->hw.fp.fifo.rbc_ram_start + 16U), smc->hw.iop + 1188UL); len = 23; td = ((((unsigned int )len - 1U) & 3U) << 27) | 1073741824U; mac->mac_fc = 194U; mac->mac_source = smc->hw.fddi_canon_addr; mac->mac_dest = dbeacon_multi; set_int((char *)(& mac->mac_info), 16777216); set_int((char *)(& mac->mac_info) + 4UL, 0); set_int((char *)(& mac->mac_info) + 8UL, 0); copy_tx_mac(smc, (u_long )td, (struct fddi_mac *)mac, (unsigned int )((int )smc->hw.fp.fifo.rbc_ram_start + 24), len); iowrite16((int )((unsigned int )smc->hw.fp.fifo.rx1_fifo_start + 65535U), smc->hw.iop + 1160UL); iowrite16(0, smc->hw.iop + 1192UL); iowrite16(0, smc->hw.iop + 1196UL); } return; } } static void formac_rcv_restart(struct s_smc *smc ) { unsigned int tmp ; { { tmp = ioread16(smc->hw.iop + 1088UL); iowrite16((int )(((unsigned int )((u16 )tmp) & 63695U) | (unsigned int )smc->hw.fp.rx_mode), smc->hw.iop + 1088UL); iowrite16(32, smc->hw.iop + 1024UL); } return; } } void formac_tx_restart(struct s_smc *smc ) { { { iowrite16(17, smc->hw.iop + 1024UL); iowrite16(18, smc->hw.iop + 1024UL); } return; } } static void enable_formac(struct s_smc *smc ) { { { iowrite16(26623, smc->hw.iop + 1040UL); iowrite16(52476, smc->hw.iop + 1044UL); iowrite16(58975, smc->hw.iop + 1048UL); iowrite16(15241, smc->hw.iop + 1052UL); iowrite16(59391, smc->hw.iop + 1420UL); iowrite16(65523, smc->hw.iop + 1424UL); } return; } } static void disable_formac(struct s_smc *smc ) { { { iowrite16(65535, smc->hw.iop + 1040UL); iowrite16(65535, smc->hw.iop + 1044UL); iowrite16(65535, smc->hw.iop + 1048UL); iowrite16(65535, smc->hw.iop + 1052UL); iowrite16(65535, smc->hw.iop + 1420UL); iowrite16(65535, smc->hw.iop + 1424UL); } return; } } static void mac_ring_up(struct s_smc *smc , int up___0 ) { unsigned int tmp ; { if (up___0 != 0) { { formac_rcv_restart(smc); smc->hw.mac_ring_is_up = 1U; llc_restart_tx(smc); } } else { { tmp = ioread16(smc->hw.iop + 1088UL); iowrite16((int )(((unsigned int )((u16 )tmp) & 63743U) | 1024U), smc->hw.iop + 1088UL); iowrite16(16, smc->hw.iop + 1028UL); smc->hw.mac_ring_is_up = 0U; } } return; } } void mac2_irq(struct s_smc *smc , u_short code_s2u , u_short code_s2l ) { u_short change_s2l ; u_short change_s2u ; { if (((int )code_s2u & 85) != 0) { { queue_event(smc, 3, 18); } } else if (((int )code_s2l & 4096) != 0) { { queue_event(smc, 3, 18); } } else { } change_s2l = (u_short )((int )smc->hw.fp.s2l ^ (int )code_s2l); change_s2u = (u_short )((int )smc->hw.fp.s2u ^ (int )code_s2u); if ((int )((short )change_s2l) < 0 || ((unsigned int )smc->hw.mac_ring_is_up == 0U && (int )((short )code_s2l) < 0)) { if ((int )((short )code_s2l) < 0) { { mac_ring_up(smc, 1); queue_event(smc, 3, 1); smc->mib.m[0].fddiMACRingOp_Ct = smc->mib.m[0].fddiMACRingOp_Ct + 1UL; } } else { { mac_ring_up(smc, 0); queue_event(smc, 3, 2); } } goto mac2_end; } else { } if (((int )code_s2l & 512) != 0) { smc->mib.m[0].fddiMACNotCopied_Ct = smc->mib.m[0].fddiMACNotCopied_Ct + 1UL; } else { } if (((int )code_s2u & 6144) != 0) { { smc->hw.mac_ct.mac_r_restart_counter = smc->hw.mac_ct.mac_r_restart_counter + 1UL; smt_stat_counter(smc, 1); } } else { } if ((int )code_s2u & 1) { { queue_event(smc, 3, 4); } } else { } if (((int )code_s2u & 2) != 0) { { queue_event(smc, 3, 3); } } else { } if (((int )code_s2u & 32) != 0 && ((int )code_s2l & 4) == 0) { { queue_event(smc, 3, 5); } } else { } if (((int )code_s2l & 4) != 0) { { queue_event(smc, 3, 7); } } else { } if (((unsigned int )code_s2l & 1026U) != 0U) { { queue_event(smc, 3, 6); } } else { } if (((int )code_s2l & 16384) != 0) { { smc->r.dup_addr_test = 2U; queue_event(smc, 3, 10); } } else { } if (((int )code_s2u & 4) != 0) { smc->hw.fp.err_stats.err_bec_stat = smc->hw.fp.err_stats.err_bec_stat + 1UL; } else { } if (((int )code_s2u & 64) != 0) { smc->hw.fp.err_stats.err_clm_stat = smc->hw.fp.err_stats.err_clm_stat + 1UL; } else { } if (((int )code_s2l & 2048) != 0) { smc->mib.m[0].fddiMACTvxExpired_Ct = smc->mib.m[0].fddiMACTvxExpired_Ct + 1UL; } else { } if (((int )code_s2u & 68) != 0) { if ((int )((short )change_s2l) >= 0 && (int )((short )smc->hw.fp.s2l) < 0) { { mac_ring_up(smc, 0); queue_event(smc, 3, 2); mac_ring_up(smc, 1); queue_event(smc, 3, 1); smc->mib.m[0].fddiMACRingOp_Ct = smc->mib.m[0].fddiMACRingOp_Ct + 1UL; } } else { } } else { } if (((int )code_s2l & 128) != 0) { smc->hw.fp.err_stats.err_phinv = smc->hw.fp.err_stats.err_phinv + 1UL; } else { } if (((int )code_s2l & 8) != 0) { smc->hw.fp.err_stats.err_sifg_det = smc->hw.fp.err_stats.err_sifg_det + 1UL; } else { } if (((int )code_s2l & 4096) != 0) { smc->hw.fp.err_stats.err_tkiss = smc->hw.fp.err_stats.err_tkiss + 1UL; } else { } if (((int )code_s2l & 8192) != 0) { smc->hw.fp.err_stats.err_tkerr = smc->hw.fp.err_stats.err_tkerr + 1UL; } else { } if (((int )code_s2l & 16) != 0) { smc->mib.m[0].fddiMACFrame_Ct = smc->mib.m[0].fddiMACFrame_Ct + 65536UL; } else { } if (((int )code_s2l & 32) != 0) { smc->mib.m[0].fddiMACError_Ct = smc->mib.m[0].fddiMACError_Ct + 65536UL; } else { } if (((int )code_s2l & 64) != 0) { smc->mib.m[0].fddiMACLost_Ct = smc->mib.m[0].fddiMACLost_Ct + 65536UL; } else { } if (((int )code_s2u & 128) != 0) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 114, (char *)"ST2U.FM_SERRSF error in special frame"); } } else { } mac2_end: { smc->hw.fp.s2l = code_s2l; smc->hw.fp.s2u = code_s2u; iowrite16(58975, smc->hw.iop + 1048UL); } return; } } void mac3_irq(struct s_smc *smc , u_short code_s3u , u_short code_s3l ) { { if (((int )code_s3u & 6144) != 0) { { smc->hw.mac_ct.mac_r_restart_counter = smc->hw.mac_ct.mac_r_restart_counter + 1UL; smt_stat_counter(smc, 1); } } else { } if (((int )code_s3u & 8) != 0) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 115, (char *)"ST3L: parity error in receive queue 2"); } } else { } if (((int )code_s3u & 4) != 0) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 116, (char *)"ST3L: parity error in receive queue 1"); } } else { } return; } } static void formac_offline(struct s_smc *smc ) { unsigned int tmp ; unsigned int tmp___0 ; { { iowrite16(16, smc->hw.iop + 1028UL); tmp = ioread16(smc->hw.iop + 1088UL); iowrite16((int )(((unsigned int )((u16 )tmp) & 63743U) | 1024U), smc->hw.iop + 1088UL); tmp___0 = ioread16(smc->hw.iop + 1088UL); iowrite16((int )((u16 )tmp___0) & 36863, smc->hw.iop + 1088UL); disable_formac(smc); smc->hw.mac_ring_is_up = 0U; smc->hw.hw_state = 0U; } return; } } static void formac_online(struct s_smc *smc ) { unsigned int tmp ; { { enable_formac(smc); tmp = ioread16(smc->hw.iop + 1088UL); iowrite16((int )((((unsigned int )((u16 )tmp) & 34895U) | (unsigned int )smc->hw.fp.rx_mode) | 12416U), smc->hw.iop + 1088UL); } return; } } int init_fplus(struct s_smc *smc ) { u_short tmp ; int tmp___0 ; { { smc->hw.fp.nsa_mode = 512U; smc->hw.fp.rx_mode = 0U; smc->hw.fp.group_addr = fddi_broadcast; smc->hw.fp.func_addr = 0UL; smc->hw.fp.frselreg_init = 0U; init_driver_fplus(smc); } if ((unsigned int )smc->s.sas == 0U) { smc->hw.fp.mdr3init = (u_short )((unsigned int )smc->hw.fp.mdr3init | 256U); } else { } { smc->hw.mac_ct.mac_nobuf_counter = 0UL; smc->hw.mac_ct.mac_r_restart_counter = 0UL; smc->hw.fp.fm_st1u = smc->hw.iop + 16UL; smc->hw.fp.fm_st1l = smc->hw.iop + 20UL; smc->hw.fp.fm_st2u = smc->hw.iop + 24UL; smc->hw.fp.fm_st2l = smc->hw.iop + 28UL; smc->hw.fp.fm_st3u = smc->hw.iop + 52UL; smc->hw.fp.fm_st3l = smc->hw.iop + 56UL; tmp = 0U; smc->hw.fp.s2u = tmp; smc->hw.fp.s2l = tmp; smc->hw.mac_ring_is_up = 0U; mac_counter_init(smc); smc->hw.mac_pa.t_neg = 0UL; smc->hw.mac_pa.t_pri = 0UL; mac_do_pci_fix(smc); tmp___0 = init_mac(smc, 1); } return (tmp___0); } } static int init_mac(struct s_smc *smc , int all ) { u_short t_max ; u_short x ; u_long time ; { { time = 0UL; iowrite16(0, smc->hw.iop + 1088UL); set_formac_addr(smc); iowrite16(4096, smc->hw.iop + 1088UL); iowrite16((int )smc->hw.fp.mdr2init, smc->hw.iop + 1152UL); } if (all != 0) { { init_ram(smc); } } else { { iowrite8(16, smc->hw.iop + 4UL); time = hwt_quick_read(smc); } } { smt_split_up_fifo(smc); init_tx(smc); init_rx(smc); init_rbc(smc); build_claim_beacon(smc, smc->mib.m[0].fddiMACT_Req); iowrite16(57344, smc->hw.iop + 1156UL); iowrite16((int )((unsigned int )smc->hw.fp.rx_mode | 128U), smc->hw.iop + 1088UL); iowrite16((int )smc->hw.fp.mdr2init, smc->hw.iop + 1152UL); iowrite16((int )smc->hw.fp.mdr3init, smc->hw.iop + 1408UL); iowrite16((int )smc->hw.fp.frselreg_init, smc->hw.iop + 1300UL); t_max = (unsigned short )(smc->mib.m[0].fddiMACT_Max / 32UL); x = (u_short )((unsigned int )t_max / 39U); x = (unsigned int )x * 39U; } if ((unsigned int )t_max == 65534U || (int )t_max - (int )x == 22) { t_max = (u_short )((int )t_max - 1); } else { } { iowrite16((int )t_max, smc->hw.iop + 1104UL); } if (smc->mib.m[0].fddiMACTvxValue <= 0xffffffffffff0217UL) { { iowrite16(2, smc->hw.iop + 1108UL); } } else { { iowrite16((int )((unsigned short )(smc->mib.m[0].fddiMACTvxValue / 255UL)) & 255, smc->hw.iop + 1108UL); } } { iowrite16(17, smc->hw.iop + 1024UL); iowrite16(18, smc->hw.iop + 1024UL); iowrite16(32, smc->hw.iop + 1024UL); iowrite16(65535, smc->hw.iop + 1456UL); rtm_init(smc); } if (all == 0) { { hwt_wait_time(smc, time, 125000L); iowrite32(1398016U, smc->hw.iop + 112UL); iowrite32(1398016U, smc->hw.iop + 120UL); iowrite32(1398016U, smc->hw.iop + 124UL); iowrite8(32, smc->hw.iop + 4UL); iowrite32(2796032U, smc->hw.iop + 112UL); iowrite32(2796032U, smc->hw.iop + 120UL); iowrite32(2796032U, smc->hw.iop + 124UL); } if (smc->hw.hw_is_64bit == 0) { { iowrite32(24U, smc->hw.iop + 544UL); iowrite32(24U, smc->hw.iop + 672UL); iowrite32(24U, smc->hw.iop + 736UL); } } else { } { smc->hw.hw_state = 0U; mac_drv_repair_descr(smc); } } else { } smc->hw.hw_state = 1U; return (0); } } void config_mux(struct s_smc *smc , int mux ) { unsigned int tmp ; { { plc_config_mux(smc, mux); tmp = ioread16(smc->hw.iop + 1088UL); iowrite16((int )((unsigned int )((u16 )tmp) | 128U), smc->hw.iop + 1088UL); } return; } } void sm_mac_check_beacon_claim(struct s_smc *smc ) { { { iowrite16(58880, smc->hw.iop + 1048UL); formac_rcv_restart(smc); process_receive(smc); } return; } } void sm_ma_control(struct s_smc *smc , int mode ) { { { if (mode == 5) { goto case_5; } else { } if (mode == 0) { goto case_0; } else { } if (mode == 1) { goto case_1; } else { } if (mode == 3) { goto case_3; } else { } if (mode == 4) { goto case_4; } else { } goto switch_break; case_5: /* CIL Label */ { formac_offline(smc); } goto ldv_43616; case_0: /* CIL Label */ { init_mac(smc, 0); } goto ldv_43616; case_1: /* CIL Label */ { formac_online(smc); } goto ldv_43616; case_3: /* CIL Label */ { directed_beacon(smc); } goto ldv_43616; case_4: /* CIL Label */ ; goto ldv_43616; switch_break: /* CIL Label */ ; } ldv_43616: ; return; } } int sm_mac_get_tx_state(struct s_smc *smc ) { unsigned int tmp ; { { tmp = ioread16(smc->hw.iop + 1092UL); } return ((int )(tmp >> 4) & 7); } } static struct s_fpmc *mac_get_mc_table(struct s_smc *smc , struct fddi_addr *user , struct fddi_addr *own , int del , int can ) { struct s_fpmc *tb ; struct s_fpmc *slot ; u_char *p ; int i ; bool tmp ; int tmp___0 ; { *own = *user; if (can != 0) { p = (u_char *)(& own->a); i = 0; goto ldv_43636; ldv_43635: { *p = bitrev8((int )*p); i = i + 1; p = p + 1; } ldv_43636: ; if (i <= 5) { goto ldv_43635; } else { } } else { } slot = (struct s_fpmc *)0; i = 0; tb = (struct s_fpmc *)(& smc->hw.fp.mc.table); goto ldv_43640; ldv_43639: ; if ((unsigned int )tb->n == 0U) { if (del == 0 && (unsigned long )slot == (unsigned long )((struct s_fpmc *)0)) { slot = tb; } else { } goto ldv_43638; } else { } { tmp = ether_addr_equal((unsigned char const *)(& tb->a), (unsigned char const *)own); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto ldv_43638; } else { } return (tb); ldv_43638: i = i + 1; tb = tb + 1; ldv_43640: ; if (i <= 31) { goto ldv_43639; } else { } return (slot); } } void mac_clear_multicast(struct s_smc *smc ) { struct s_fpmc *tb ; int i ; { smc->hw.fp.os_slots_used = 0; i = 0; tb = (struct s_fpmc *)(& smc->hw.fp.mc.table); goto ldv_43648; ldv_43647: ; if ((unsigned int )tb->perm == 0U) { tb->n = 0U; } else { } i = i + 1; tb = tb + 1; ldv_43648: ; if (i <= 31) { goto ldv_43647; } else { } return; } } int mac_add_multicast(struct s_smc *smc , struct fddi_addr *addr , int can ) { struct fddi_addr own ; struct s_fpmc *tb ; { if ((can & 128) != 0) { if (smc->hw.fp.smt_slots_used > 3) { return (1); } else { } } else if (smc->hw.fp.os_slots_used > 27) { return (1); } else { } { tb = mac_get_mc_table(smc, addr, & own, 0, can & -129); } if ((unsigned long )tb == (unsigned long )((struct s_fpmc *)0)) { return (1); } else { } tb->n = (u_char )((int )tb->n + 1); tb->a = own; tb->perm = (can & 128) != 0; if ((can & 128) != 0) { smc->hw.fp.smt_slots_used = smc->hw.fp.smt_slots_used + 1; } else { smc->hw.fp.os_slots_used = smc->hw.fp.os_slots_used + 1; } return (0); } } void mac_update_multicast(struct s_smc *smc ) { struct s_fpmc *tb ; u_char *fu ; int i ; unsigned int k ; unsigned int tmp ; { { iowrite16(0, smc->hw.iop + 1728UL); } if (smc->hw.fp.func_addr != 0UL) { { fu = (u_char *)(& smc->hw.fp.func_addr); iowrite16(65535, smc->hw.iop + 1776UL); iowrite16(~ (((int )((unsigned short )*fu) << 8U) + (int )((unsigned short )*(fu + 1UL))), smc->hw.iop + 1784UL); iowrite16(~ (((int )((unsigned short )*(fu + 2UL)) << 8U) + (int )((unsigned short )*(fu + 3UL))), smc->hw.iop + 1792UL); iowrite16(3, smc->hw.iop + 1800UL); iowrite16(49152, smc->hw.iop + 1752UL); iowrite16(0, smc->hw.iop + 1760UL); iowrite16(0, smc->hw.iop + 1768UL); iowrite16(1, smc->hw.iop + 1728UL); } } else { } { iowrite16(65535, smc->hw.iop + 1792UL); iowrite16(65535, smc->hw.iop + 1784UL); iowrite16(65535, smc->hw.iop + 1776UL); iowrite16(3, smc->hw.iop + 1800UL); i = 0; tb = (struct s_fpmc *)(& smc->hw.fp.mc.table); } goto ldv_43668; ldv_43667: ; if ((unsigned int )tb->n != 0U) { k = 10U; goto ldv_43665; ldv_43664: k = k - 1U; ldv_43665: { tmp = ioread16(smc->hw.iop + 1736UL); } if ((tmp & 32768U) == 0U && k != 0U) { goto ldv_43664; } else { } if (k == 0U) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 131, (char *)(& cam_warning)); } } else { } { iowrite16(((int )((unsigned short )tb->a.a[0]) << 8U) + (int )((unsigned short )tb->a.a[1]), smc->hw.iop + 1752UL); iowrite16(((int )((unsigned short )tb->a.a[2]) << 8U) + (int )((unsigned short )tb->a.a[3]), smc->hw.iop + 1760UL); iowrite16(((int )((unsigned short )tb->a.a[4]) << 8U) + (int )((unsigned short )tb->a.a[5]), smc->hw.iop + 1768UL); iowrite16(1, smc->hw.iop + 1728UL); } } else { } i = i + 1; tb = tb + 1; ldv_43668: ; if (i <= 31) { goto ldv_43667; } else { } return; } } void mac_set_rx_mode(struct s_smc *smc , int mode ) { unsigned int tmp ; { { if (mode == 1) { goto case_1; } else { } if (mode == 2) { goto case_2; } else { } if (mode == 3) { goto case_3; } else { } if (mode == 4) { goto case_4; } else { } if (mode == 5) { goto case_5; } else { } if (mode == 6) { goto case_6; } else { } goto switch_break; case_1: /* CIL Label */ smc->hw.fp.rx_prom = (u_short )((unsigned int )smc->hw.fp.rx_prom | 2U); goto ldv_43675; case_2: /* CIL Label */ smc->hw.fp.rx_prom = (unsigned int )smc->hw.fp.rx_prom & 65533U; goto ldv_43675; case_3: /* CIL Label */ smc->hw.fp.rx_prom = (u_short )((unsigned int )smc->hw.fp.rx_prom | 1U); goto ldv_43675; case_4: /* CIL Label */ smc->hw.fp.rx_prom = (unsigned int )smc->hw.fp.rx_prom & 65534U; goto ldv_43675; case_5: /* CIL Label */ smc->hw.fp.nsa_mode = 0U; smc->hw.fp.rx_mode = (u_short )(((int )((short )smc->hw.fp.rx_mode) & -1793) | (int )((short )smc->hw.fp.nsa_mode)); goto ldv_43675; case_6: /* CIL Label */ smc->hw.fp.nsa_mode = 512U; smc->hw.fp.rx_mode = (u_short )(((int )((short )smc->hw.fp.rx_mode) & -1793) | (int )((short )smc->hw.fp.nsa_mode)); goto ldv_43675; switch_break: /* CIL Label */ ; } ldv_43675: ; if ((int )smc->hw.fp.rx_prom & 1) { smc->hw.fp.rx_mode = 1536U; } else if (((int )smc->hw.fp.rx_prom & 2) != 0) { smc->hw.fp.rx_mode = (u_short )((unsigned int )smc->hw.fp.nsa_mode | 16U); } else { smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode; } { tmp = ioread16(smc->hw.iop + 1088UL); iowrite16((int )(((unsigned int )((u16 )tmp) & 63695U) | (unsigned int )smc->hw.fp.rx_mode), smc->hw.iop + 1088UL); mac_update_multicast(smc); } return; } } void rtm_irq(struct s_smc *smc ) { unsigned int tmp ; { { iowrite16(1, smc->hw.iop + 328UL); tmp = ioread16(smc->hw.iop + 328UL); } if ((tmp & 8U) != 0U) { { iowrite16(5, smc->hw.iop + 1024UL); } } else { } { iowrite16(4, smc->hw.iop + 328UL); } return; } } static void rtm_init(struct s_smc *smc ) { { { iowrite32(0U, smc->hw.iop + 320UL); iowrite16(4, smc->hw.iop + 328UL); } return; } } void rtm_set_timer(struct s_smc *smc ) { { { iowrite32((u32 )smc->mib.a[0].fddiPATHT_Rmode, smc->hw.iop + 320UL); } return; } } static void smt_split_up_fifo(struct s_smc *smc ) { { { if (0 == 0) { goto case_0; } else { } if (0 == 1) { goto case_1; } else { } if (0 == 2) { goto case_2; } else { } if (0 == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ smc->hw.fp.fifo.rx1_fifo_size = 16351U; smc->hw.fp.fifo.rx2_fifo_size = 0U; goto ldv_43694; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ smc->hw.fp.fifo.rx1_fifo_size = 14047U; smc->hw.fp.fifo.rx2_fifo_size = 2304U; goto ldv_43694; switch_default: /* CIL Label */ smc->hw.fp.fifo.rx1_fifo_size = 16351U; smc->hw.fp.fifo.rx2_fifo_size = 16384U; goto ldv_43694; switch_break: /* CIL Label */ ; } ldv_43694: ; if (smc->mib.a[0].fddiPATHSbaPayload != 0UL) { smc->hw.fp.fifo.fifo_config_mode = (u_short )((int )((short )smc->hw.fp.fifo.fifo_config_mode) | ((int )smc->mib.fddiESSSynchTxMode | 2)); } else { smc->hw.fp.fifo.fifo_config_mode = (unsigned int )smc->hw.fp.fifo.fifo_config_mode & 65532U; } if (((int )smc->hw.fp.fifo.fifo_config_mode & 2) != 0) { if ((int )smc->hw.fp.fifo.fifo_config_mode & 1) { smc->hw.fp.fifo.tx_s_size = 14080U; smc->hw.fp.fifo.tx_a0_size = 2304U; } else { smc->hw.fp.fifo.tx_s_size = 8192U; smc->hw.fp.fifo.tx_a0_size = 8192U; } } else { smc->hw.fp.fifo.tx_s_size = 0U; smc->hw.fp.fifo.tx_a0_size = 16384U; } smc->hw.fp.fifo.rx1_fifo_start = (unsigned int )smc->hw.fp.fifo.rbc_ram_start + 33U; smc->hw.fp.fifo.tx_s_start = (int )smc->hw.fp.fifo.rx1_fifo_start + (int )smc->hw.fp.fifo.rx1_fifo_size; smc->hw.fp.fifo.tx_a0_start = (int )smc->hw.fp.fifo.tx_s_start + (int )smc->hw.fp.fifo.tx_s_size; smc->hw.fp.fifo.rx2_fifo_start = (int )smc->hw.fp.fifo.tx_a0_start + (int )smc->hw.fp.fifo.tx_a0_size; return; } } void formac_reinit_tx(struct s_smc *smc ) { { if ((unsigned int )smc->hw.fp.fifo.tx_s_size == 0U && smc->mib.a[0].fddiPATHSbaPayload != 0UL) { { init_mac(smc, 0); } } else { } return; } } Mbuf *smt_build_frame(struct s_smc *smc , int class , int type , int length ) ; void *sm_to_para(struct s_smc *smc , struct smt_header *sm , int para ) ; void smt_timer_start(struct s_smc *smc , struct smt_timer *timer , u_long time , u_long token ) ; void pcm_status_state(struct s_smc *smc , int np , int *type , int *state , int *remote , int *mac ) ; void sm_lem_evaluate(struct s_smc *smc ) ; void smt_agent_init(struct s_smc *smc ) ; void smt_swap_para(struct smt_header *sm , int len , int direction ) ; u_long smt_get_tid(struct s_smc *smc ) ; void smt_agent_task(struct s_smc *smc ) ; int smt_check_para(struct s_smc *smc , struct smt_header *sm , u_short const *list ) ; void driver_get_bia(struct s_smc *smc , struct fddi_addr *bia_addr ) ; void smt_start_watchdog(struct s_smc *smc ) ; void smt_event(struct s_smc *smc , int event ) ; int pcm_rooted_station(struct s_smc *smc ) ; int smt_action(struct s_smc *smc , int class , int code , int index ) ; void smt_pmf_received_pack(struct s_smc *smc , Mbuf *mb , int local ) ; void smt_send_frame(struct s_smc *smc , Mbuf *mb , int fc , int local ) ; void smt_set_timestamp(struct s_smc *smc , u_char *p ) ; int ess_raf_received_pack(struct s_smc *smc , Mbuf *mb , struct smt_header *sm , int fs ) ; void ess_timer_poll(struct s_smc *smc ) ; void smt_srf_event(struct s_smc *smc , int code , int index , int cond ) ; int pcm_status_twisted(struct s_smc *smc ) ; static struct fddi_addr const SMT_Unknown = {{0U, 0U, 31U, 0U, 0U, 0U}}; static int smt_swap_short(u_short s ) ; static int mac_index(struct s_smc *smc , int mac ) ; static int phy_index(struct s_smc *smc , int phy ) ; static int mac_con_resource_index(struct s_smc *smc , int mac ) ; static int phy_con_resource_index(struct s_smc *smc , int phy ) ; static void smt_send_rdf(struct s_smc *smc , Mbuf *rej , int fc , int reason , int local ) ; static void smt_send_nif(struct s_smc *smc , struct fddi_addr const *dest , int fc , u_long tid , int type , int local ) ; static void smt_send_ecf(struct s_smc *smc , struct fddi_addr *dest , int fc , u_long tid , int type , int len ) ; static void smt_echo_test(struct s_smc *smc , int dna ) ; static void smt_send_sif_config(struct s_smc *smc , struct fddi_addr *dest , u_long tid , int local ) ; static void smt_send_sif_operation(struct s_smc *smc , struct fddi_addr *dest , u_long tid , int local ) ; static void smt_string_swap(char *data , char const *format , int len ) ; static void smt_add_frame_len(Mbuf *mb , int len ) ; static void smt_fill_una(struct s_smc *smc , struct smt_p_una *una ) ; static void smt_fill_sde(struct s_smc *smc , struct smt_p_sde *sde ) ; static void smt_fill_state(struct s_smc *smc , struct smt_p_state *state ) ; static void smt_fill_timestamp(struct s_smc *smc , struct smt_p_timestamp *ts ) ; static void smt_fill_policy(struct s_smc *smc , struct smt_p_policy *policy ) ; static void smt_fill_latency(struct s_smc *smc , struct smt_p_latency *latency ) ; static void smt_fill_neighbor(struct s_smc *smc , struct smt_p_neighbor *neighbor ) ; static int smt_fill_path(struct s_smc *smc , struct smt_p_path *path ) ; static void smt_fill_mac_status(struct s_smc *smc , struct smt_p_mac_status *st ) ; static void smt_fill_lem(struct s_smc *smc , struct smt_p_lem *lem , int phy ) ; static void smt_fill_version(struct s_smc *smc , struct smt_p_version *vers ) ; static void smt_fill_fsc(struct s_smc *smc , struct smt_p_fsc *fsc ) ; static void smt_fill_mac_counter(struct s_smc *smc , struct smt_p_mac_counter *mc ) ; static void smt_fill_mac_fnc(struct s_smc *smc , struct smt_p_mac_fnc *fnc ) ; static void smt_fill_manufacturer(struct s_smc *smc , struct smp_p_manufacturer *man ) ; static void smt_fill_user(struct s_smc *smc , struct smp_p_user *user ) ; static void smt_fill_setcount(struct s_smc *smc , struct smt_p_setcount *setcount ) ; static void smt_fill_echo(struct s_smc *smc , struct smt_p_echo *echo , u_long seed , int len ) ; static void smt_clear_una_dna(struct s_smc *smc ) ; static void smt_clear_old_una_dna(struct s_smc *smc ) ; static void update_dac(struct s_smc *smc , int report ) ; static int div_ratio(u_long upper , u_long lower ) ; static void hwm_conv_can(struct s_smc *smc , char *data , int len ) ; __inline static int is_my_addr(struct s_smc const *smc , struct fddi_addr const *addr ) { { return (((int )*((short *)(& addr->a)) == (int )*((short *)(& smc->mib.m[0].fddiMACSMTAddress.a)) && (int )*((short *)(& addr->a) + 2U) == (int )*((short *)(& smc->mib.m[0].fddiMACSMTAddress.a) + 2U)) && (int )*((short *)(& addr->a) + 4U) == (int )*((short *)(& smc->mib.m[0].fddiMACSMTAddress.a) + 4U)); } } __inline static int is_broadcast(struct fddi_addr const *addr ) { { return (((unsigned int )*((u_short *)(& addr->a)) == 65535U && (unsigned int )*((u_short *)(& addr->a) + 2U) == 65535U) && (unsigned int )*((u_short *)(& addr->a) + 4U) == 65535U); } } __inline static int is_individual(struct fddi_addr const *addr ) { { return ((int )((signed char )addr->a[0]) >= 0); } } __inline static int is_equal(struct fddi_addr const *addr1 , struct fddi_addr const *addr2 ) { { return (((int )*((u_short *)(& addr1->a)) == (int )*((u_short *)(& addr2->a)) && (int )*((u_short *)(& addr1->a) + 2U) == (int )*((u_short *)(& addr2->a) + 2U)) && (int )*((u_short *)(& addr1->a) + 4U) == (int )*((u_short *)(& addr2->a) + 4U)); } } static u_short const plist_nif[4U] = { 1U, 2U, 3U, 0U}; void smt_agent_init(struct s_smc *smc ) { int i ; { { smc->mib.m[0].fddiMACSMTAddress = smc->hw.fddi_home_addr; smc->mib.fddiSMTStationId.sid_oem[0] = 0U; smc->mib.fddiSMTStationId.sid_oem[1] = 0U; driver_get_bia(smc, & smc->mib.fddiSMTStationId.sid_node); i = 0; } goto ldv_43373; ldv_43372: { smc->mib.fddiSMTStationId.sid_node.a[i] = bitrev8((int )smc->mib.fddiSMTStationId.sid_node.a[i]); i = i + 1; } ldv_43373: ; if (i <= 5) { goto ldv_43372; } else { } { smc->mib.fddiSMTManufacturerData[0] = smc->mib.fddiSMTStationId.sid_node.a[0]; smc->mib.fddiSMTManufacturerData[1] = smc->mib.fddiSMTStationId.sid_node.a[1]; smc->mib.fddiSMTManufacturerData[2] = smc->mib.fddiSMTStationId.sid_node.a[2]; smc->sm.smt_tid = 0UL; smc->mib.m[0].fddiMACDupAddressTest = 0U; smc->mib.m[0].fddiMACUNDA_Flag = 0U; smt_clear_una_dna(smc); smt_clear_old_una_dna(smc); i = 0; } goto ldv_43376; ldv_43375: smc->sm.pend[i] = 0UL; i = i + 1; ldv_43376: ; if (i <= 4) { goto ldv_43375; } else { } smc->sm.please_reconnect = 0U; smc->sm.uniq_ticks = 0U; return; } } void smt_agent_task(struct s_smc *smc ) { { { smt_timer_start(smc, & smc->sm.smt_timer, 1000000UL, 262145UL); } return; } } void smt_emulate_token_ct(struct s_smc *smc , int mac_index___0 ) { u_long count ; u_long time ; { { time = smt_get_time(); count = ((time - smc->sm.last_tok_time[mac_index___0]) * 100UL) / 250UL; } if ((unsigned int )smc->hw.mac_ring_is_up != 0U) { smc->mib.m[mac_index___0].fddiMACToken_Ct = smc->mib.m[mac_index___0].fddiMACToken_Ct + count; } else { } smc->sm.last_tok_time[mac_index___0] = time; return; } } void smt_event(struct s_smc *smc , int event ) { u_long time ; int i ; struct fddi_mib_m *mib ; u_long upper ; u_long lower ; int cond ; int port ; struct s_phy *phy ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { if ((unsigned int )smc->sm.please_reconnect != 0U) { smc->sm.please_reconnect = (u_short )((int )smc->sm.please_reconnect - 1); if ((unsigned int )smc->sm.please_reconnect == 0U) { { queue_event(smc, 1, 1); } } else { } } else { } if (event == 2) { return; } else { } { smt_timer_poll(smc); smt_start_watchdog(smc); ess_timer_poll(smc); smt_srf_event(smc, 0, 0, 0); time = smt_get_time(); } if (time - smc->sm.smt_last_lem > 1999UL) { { sm_lem_evaluate(smc); smc->sm.smt_last_lem = time; mac_update_counter(smc); mib = (struct fddi_mib_m *)(& smc->mib.m); upper = (mib->fddiMACLost_Ct - mib->fddiMACOld_Lost_Ct) + (mib->fddiMACError_Ct - mib->fddiMACOld_Error_Ct); lower = (mib->fddiMACFrame_Ct - mib->fddiMACOld_Frame_Ct) + (mib->fddiMACLost_Ct - mib->fddiMACOld_Lost_Ct); tmp = div_ratio(upper, lower); mib->fddiMACFrameErrorRatio = (u_short )tmp; cond = ((unsigned int )mib->fddiMACFrameErrorThreshold == 0U && mib->fddiMACError_Ct != mib->fddiMACOld_Error_Ct) || (int )mib->fddiMACFrameErrorRatio > (int )mib->fddiMACFrameErrorThreshold; } if (cond != (int )mib->fddiMACFrameErrorFlag) { { smt_srf_event(smc, 7, 1, cond); } } else { } { upper = mib->fddiMACNotCopied_Ct - mib->fddiMACOld_NotCopied_Ct; lower = upper + (mib->fddiMACCopied_Ct - mib->fddiMACOld_Copied_Ct); tmp___0 = div_ratio(upper, lower); mib->fddiMACNotCopiedRatio = (u_short )tmp___0; cond = ((unsigned int )mib->fddiMACNotCopiedThreshold == 0U && mib->fddiMACNotCopied_Ct != mib->fddiMACOld_NotCopied_Ct) || (int )mib->fddiMACNotCopiedRatio > (int )mib->fddiMACNotCopiedThreshold; } if (cond != (int )mib->fddiMACNotCopiedFlag) { { smt_srf_event(smc, 9, 1, cond); } } else { } mib->fddiMACOld_Frame_Ct = mib->fddiMACFrame_Ct; mib->fddiMACOld_Copied_Ct = mib->fddiMACCopied_Ct; mib->fddiMACOld_Error_Ct = mib->fddiMACError_Ct; mib->fddiMACOld_Lost_Ct = mib->fddiMACLost_Ct; mib->fddiMACOld_NotCopied_Ct = mib->fddiMACNotCopied_Ct; port = 0; goto ldv_43401; ldv_43400: phy = (struct s_phy *)(& smc->y) + (unsigned long )port; if ((unsigned int )(phy->mib)->fddiPORTHardwarePresent == 0U) { goto ldv_43399; } else { } { cond = (phy->mib)->fddiPORTEBError_Ct - (phy->mib)->fddiPORTOldEBError_Ct > 5UL; smt_srf_event(smc, 10, (int )phy->np + 1, cond); (phy->mib)->fddiPORTOldEBError_Ct = (phy->mib)->fddiPORTEBError_Ct; } ldv_43399: port = port + 1; ldv_43401: ; if (port <= 1) { goto ldv_43400; } else { } } else { } if (time - smc->sm.smt_last_notify >= (unsigned long )((int )smc->mib.fddiSMTTT_Notify * 250)) { if (smc->sm.pend[0] == 0UL) { { smc->sm.pend[0] = smt_get_tid(smc); } } else { } { smt_send_nif(smc, & fddi_broadcast, 79, smc->sm.pend[0], 2, 0); smc->sm.smt_last_notify = time; } } else { } if (smc->sm.smt_tvu != 0UL && time - smc->sm.smt_tvu > 57000UL) { { smc->sm.smt_tvu = 0UL; tmp___1 = is_equal((struct fddi_addr const *)(& smc->mib.m[0].fddiMACUpstreamNbr), & SMT_Unknown); } if (tmp___1 == 0) { smc->mib.m[0].fddiMACOldUpstreamNbr = smc->mib.m[0].fddiMACUpstreamNbr; } else { } { smc->mib.m[0].fddiMACUpstreamNbr = SMT_Unknown; smc->mib.m[0].fddiMACUNDA_Flag = 0U; update_dac(smc, 0); smt_srf_event(smc, 2, 1, 0); } } else { } if (smc->sm.smt_tvd != 0UL && time - smc->sm.smt_tvd > 57000UL) { { smc->sm.smt_tvd = 0UL; tmp___2 = is_equal((struct fddi_addr const *)(& smc->mib.m[0].fddiMACDownstreamNbr), & SMT_Unknown); } if (tmp___2 == 0) { smc->mib.m[0].fddiMACOldDownstreamNbr = smc->mib.m[0].fddiMACDownstreamNbr; } else { } { smc->mib.m[0].fddiMACDownstreamNbr = SMT_Unknown; smt_srf_event(smc, 2, 1, 0); } } else { } i = 0; goto ldv_43404; ldv_43403: ; if (time - smc->sm.last_tok_time[i] > 500UL) { { smt_emulate_token_ct(smc, i); } } else { } i = i + 1; ldv_43404: ; if (i <= 0) { goto ldv_43403; } else { } { smt_timer_start(smc, & smc->sm.smt_timer, 1000000UL, 262145UL); } return; } } static int div_ratio(u_long upper , u_long lower ) { { if (upper << 16 < upper) { upper = 4294901760UL; } else { upper = upper << 16; } if (lower == 0UL) { return (0); } else { } return ((int )(upper / lower)); } } void smt_received_pack(struct s_smc *smc , Mbuf *mb , int fs ) { struct smt_header *sm ; int local ; int illegal ; int tmp ; int tmp___0 ; int tmp___1 ; struct smt_p_state *st ; int tmp___2 ; int tmp___3 ; void *tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; void *tmp___9 ; void *tmp___10 ; int tmp___11 ; { illegal = 0; { if ((int )mb->m_data[0] == 65) { goto case_65; } else { } if ((int )mb->m_data[0] == 66) { goto case_66; } else { } if ((int )mb->m_data[0] == 67) { goto case_67; } else { } if ((int )mb->m_data[0] == 79) { goto case_79; } else { } goto switch_default; case_65: /* CIL Label */ ; case_66: /* CIL Label */ ; case_67: /* CIL Label */ ; case_79: /* CIL Label */ ; goto ldv_43422; switch_default: /* CIL Label */ { smt_free_mbuf(smc, mb); } return; switch_break: /* CIL Label */ ; } ldv_43422: { smc->mib.m[0].fddiMACSMTCopied_Ct = smc->mib.m[0].fddiMACSMTCopied_Ct + 1UL; sm = (struct smt_header *)(& mb->m_data) + (unsigned long )mb->m_off; local = (fs & 128) != 0; hwm_conv_can(smc, (char *)sm, 12); tmp = is_individual((struct fddi_addr const *)(& sm->smt_dest)); } if (tmp != 0) { { tmp___0 = is_my_addr((struct s_smc const *)smc, (struct fddi_addr const *)(& sm->smt_dest)); } if (tmp___0 == 0) { { smt_free_mbuf(smc, mb); } return; } else { } } else { } { smt_swap_para(sm, (int )mb->m_len, 1); } if ((fs & 2) != 0 && (int )((signed char )mb->m_data[0]) == 79) { { smt_free_mbuf(smc, mb); } return; } else { } if (((unsigned int )sm->smt_class == 4U && (unsigned int )sm->smt_len > 4458U) || ((unsigned int )sm->smt_class != 4U && (unsigned int )sm->smt_len > 4332U)) { { smt_free_mbuf(smc, mb); } return; } else { } { if ((int )sm->smt_class == 1) { goto case_1; } else { } if ((int )sm->smt_class == 2) { goto case_2; } else { } if ((int )sm->smt_class == 3) { goto case_3; } else { } if ((int )sm->smt_class == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; if ((unsigned int )sm->smt_version != 1U) { illegal = 1; } else { } goto ldv_43428; switch_default___0: /* CIL Label */ ; if ((unsigned int )sm->smt_version != 2U) { illegal = 1; } else { } goto ldv_43428; switch_break___0: /* CIL Label */ ; } ldv_43428: ; if (illegal != 0) { { smt_send_rdf(smc, mb, (int )mb->m_data[0], 2, local); smt_free_mbuf(smc, mb); } return; } else { } if ((unsigned long )sm->smt_len > (unsigned long )mb->m_len - 32UL || (((int )sm->smt_len & 3) != 0 && (unsigned int )sm->smt_class != 4U)) { { smt_send_rdf(smc, mb, (int )mb->m_data[0], 10, local); smt_free_mbuf(smc, mb); } return; } else { } { if ((int )sm->smt_class == 1) { goto case_1___0; } else { } if ((int )sm->smt_class == 2) { goto case_2___1; } else { } if ((int )sm->smt_class == 3) { goto case_3___1; } else { } if ((int )sm->smt_class == 4) { goto case_4___0; } else { } if ((int )sm->smt_class == 5) { goto case_5; } else { } if ((int )sm->smt_class == 6) { goto case_6; } else { } if ((int )sm->smt_class == 255) { goto case_255; } else { } if ((int )sm->smt_class == 8) { goto case_8; } else { } if ((int )sm->smt_class == 9) { goto case_9; } else { } if ((int )sm->smt_class == 7) { goto case_7; } else { } goto switch_default___3; case_1___0: /* CIL Label */ { tmp___1 = smt_check_para(smc, sm, (u_short const *)(& plist_nif)); } if (tmp___1 != 0) { goto ldv_43431; } else { } { if ((int )sm->smt_type == 1) { goto case_1___1; } else { } if ((int )sm->smt_type == 2) { goto case_2___0; } else { } if ((int )sm->smt_type == 3) { goto case_3___0; } else { } goto switch_default___1; case_1___1: /* CIL Label */ ; case_2___0: /* CIL Label */ ; if ((fs & 1) == 0 && (int )((signed char )mb->m_data[0]) == 79) { { tmp___5 = is_broadcast((struct fddi_addr const *)(& sm->smt_dest)); } if (tmp___5 != 0) { { tmp___3 = is_equal((struct fddi_addr const *)(& smc->mib.m[0].fddiMACUpstreamNbr), (struct fddi_addr const *)(& sm->smt_source)); } if (tmp___3 == 0) { { tmp___2 = is_equal((struct fddi_addr const *)(& smc->mib.m[0].fddiMACUpstreamNbr), & SMT_Unknown); } if (tmp___2 == 0) { smc->mib.m[0].fddiMACOldUpstreamNbr = smc->mib.m[0].fddiMACUpstreamNbr; } else { } { smc->mib.m[0].fddiMACUpstreamNbr = sm->smt_source; smt_srf_event(smc, 2, 1, 0); smt_echo_test(smc, 0); } } else { } { smc->sm.smt_tvu = smt_get_time(); tmp___4 = sm_to_para(smc, sm, 3); st = (struct smt_p_state *)tmp___4; } if ((unsigned long )st != (unsigned long )((struct smt_p_state *)0)) { { smc->mib.m[0].fddiMACUNDA_Flag = (unsigned int )st->st_dupl_addr & 1U; update_dac(smc, 1); } } else { } } else { } } else { } if ((unsigned int )sm->smt_type == 2U) { { tmp___6 = is_individual((struct fddi_addr const *)(& sm->smt_source)); } if (tmp___6 != 0) { if ((fs & 2) == 0 || (int )((signed char )mb->m_data[0]) != 79) { { smt_send_nif(smc, (struct fddi_addr const *)(& sm->smt_source), 65, (u_long )sm->smt_tid, 3, local); } } else { } } else { } } else { } goto ldv_43435; case_3___0: /* CIL Label */ ; if ((fs & 2) != 0) { { smc->sm.pend[0] = 0UL; smc->mib.m[0].fddiMACDupAddressTest = 2U; smc->r.dup_addr_test = 2U; queue_event(smc, 3, 10); smc->mib.m[0].fddiMACDA_Flag = 1U; update_dac(smc, 1); } goto ldv_43435; } else { } if ((u_long )sm->smt_tid == smc->sm.pend[0]) { { smc->sm.pend[0] = 0UL; tmp___8 = is_equal((struct fddi_addr const *)(& smc->mib.m[0].fddiMACDownstreamNbr), (struct fddi_addr const *)(& sm->smt_source)); } if (tmp___8 == 0) { { tmp___7 = is_equal((struct fddi_addr const *)(& smc->mib.m[0].fddiMACDownstreamNbr), & SMT_Unknown); } if (tmp___7 == 0) { smc->mib.m[0].fddiMACOldDownstreamNbr = smc->mib.m[0].fddiMACDownstreamNbr; } else { } { smc->mib.m[0].fddiMACDownstreamNbr = sm->smt_source; smt_srf_event(smc, 2, 1, 0); smt_echo_test(smc, 1); } } else { } { smc->mib.m[0].fddiMACDA_Flag = 0U; update_dac(smc, 1); smc->sm.smt_tvd = smt_get_time(); smc->mib.m[0].fddiMACDupAddressTest = 1U; } if ((unsigned int )smc->r.dup_addr_test != 1U) { { smc->r.dup_addr_test = 1U; queue_event(smc, 3, 10); } } else { } } else { } goto ldv_43435; switch_default___1: /* CIL Label */ illegal = 2; goto ldv_43435; switch_break___2: /* CIL Label */ ; } ldv_43435: ; goto ldv_43431; case_2___1: /* CIL Label */ ; if ((unsigned int )sm->smt_type != 2U) { goto ldv_43431; } else { } { smt_send_sif_config(smc, & sm->smt_source, (u_long )sm->smt_tid, local); } goto ldv_43431; case_3___1: /* CIL Label */ ; if ((unsigned int )sm->smt_type != 2U) { goto ldv_43431; } else { } { smt_send_sif_operation(smc, & sm->smt_source, (u_long )sm->smt_tid, local); } goto ldv_43431; case_4___0: /* CIL Label */ ; { if ((int )sm->smt_type == 3) { goto case_3___2; } else { } if ((int )sm->smt_type == 2) { goto case_2___2; } else { } goto switch_default___2; case_3___2: /* CIL Label */ { smc->mib.priv.fddiPRIVECF_Reply_Rx = smc->mib.priv.fddiPRIVECF_Reply_Rx + 1UL; tmp___9 = sm_to_para(smc, sm, 17); } if ((unsigned long )tmp___9 == (unsigned long )((void *)0)) { goto ldv_43442; } else { } goto ldv_43442; case_2___2: /* CIL Label */ smc->mib.priv.fddiPRIVECF_Req_Rx = smc->mib.priv.fddiPRIVECF_Req_Rx + 1UL; if ((unsigned int )sm->smt_len != 0U) { { tmp___10 = sm_to_para(smc, sm, 17); } if ((unsigned long )tmp___10 == (unsigned long )((void *)0)) { { smt_send_rdf(smc, mb, (int )mb->m_data[0], 10, local); } goto ldv_43442; } else { } } else { } { sm->smt_dest = sm->smt_source; sm->smt_type = 3U; smc->mib.priv.fddiPRIVECF_Reply_Tx = smc->mib.priv.fddiPRIVECF_Reply_Tx + 1UL; smt_send_frame(smc, mb, 65, local); } return; switch_default___2: /* CIL Label */ illegal = 1; goto ldv_43442; switch_break___3: /* CIL Label */ ; } ldv_43442: ; goto ldv_43431; case_5: /* CIL Label */ { fs = ess_raf_received_pack(smc, mb, sm, fs); } goto ldv_43431; case_6: /* CIL Label */ smc->mib.priv.fddiPRIVRDF_Rx = smc->mib.priv.fddiPRIVRDF_Rx + 1UL; goto ldv_43431; case_255: /* CIL Label */ ; if ((unsigned int )sm->smt_type == 2U) { { smt_send_rdf(smc, mb, (int )mb->m_data[0], 1, local); } } else { } goto ldv_43431; case_8: /* CIL Label */ ; case_9: /* CIL Label */ ; if ((unsigned int )sm->smt_type != 2U) { goto ldv_43431; } else { } if ((unsigned int )sm->smt_class == 8U) { smc->mib.priv.fddiPRIVPMF_Get_Rx = smc->mib.priv.fddiPRIVPMF_Get_Rx + 1UL; } else { smc->mib.priv.fddiPRIVPMF_Set_Rx = smc->mib.priv.fddiPRIVPMF_Set_Rx + 1UL; } if ((unsigned int )sm->smt_class == 9U) { { tmp___11 = is_individual((struct fddi_addr const *)(& sm->smt_dest)); } if (tmp___11 == 0) { goto ldv_43431; } else { } } else { } { smt_pmf_received_pack(smc, mb, local); } goto ldv_43431; case_7: /* CIL Label */ ; goto ldv_43431; switch_default___3: /* CIL Label */ ; if ((unsigned int )sm->smt_type != 2U) { goto ldv_43431; } else { } { smt_send_rdf(smc, mb, (int )mb->m_data[0], 1, local); } goto ldv_43431; switch_break___1: /* CIL Label */ ; } ldv_43431: { smt_free_mbuf(smc, mb); } return; } } static void update_dac(struct s_smc *smc , int report ) { int cond ; { cond = (unsigned int )((int )smc->mib.m[0].fddiMACUNDA_Flag | (int )smc->mib.m[0].fddiMACDA_Flag) != 0U; if (report != 0 && cond != (int )smc->mib.m[0].fddiMACDuplicateAddressCond) { { smt_srf_event(smc, 8, 1, cond); } } else { smc->mib.m[0].fddiMACDuplicateAddressCond = (u_char )cond; } return; } } void smt_send_frame(struct s_smc *smc , Mbuf *mb , int fc , int local ) { struct smt_header *sm ; { if ((unsigned int )smc->r.sm_ma_avail == 0U && local == 0) { { smt_free_mbuf(smc, mb); } return; } else { } { sm = (struct smt_header *)(& mb->m_data) + (unsigned long )mb->m_off; sm->smt_source = smc->mib.m[0].fddiMACSMTAddress; sm->smt_sid = smc->mib.fddiSMTStationId; smt_swap_para(sm, (int )mb->m_len, 0); hwm_conv_can(smc, (char *)sm, 12); smc->mib.m[0].fddiMACSMTTransmit_Ct = smc->mib.m[0].fddiMACSMTTransmit_Ct + 1UL; smt_send_mbuf(smc, mb, local == 0 ? fc : 67); } return; } } static void smt_send_rdf(struct s_smc *smc , Mbuf *rej , int fc , int reason , int local ) { Mbuf *mb ; struct smt_header *sm ; struct smt_rdf *rdf ; int len ; int frame_len ; { sm = (struct smt_header *)(& rej->m_data) + (unsigned long )rej->m_off; if ((unsigned int )sm->smt_type != 2U) { return; } else { } { frame_len = (int )rej->m_len; mb = smt_build_frame(smc, 6, 3, 92); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return; } else { } rdf = (struct smt_rdf *)(& mb->m_data) + (unsigned long )mb->m_off; rdf->smt.smt_tid = sm->smt_tid; rdf->smt.smt_dest = sm->smt_source; rdf->reason.para.p_type = 18U; rdf->reason.para.p_len = 4U; rdf->reason.rdf_reason = (u_int )reason; rdf->version.para.p_type = 20U; rdf->version.para.p_len = 8U; rdf->version.v_pad = 0U; rdf->version.v_n = 1U; rdf->version.v_index = 1U; rdf->version.v_version[0] = 2U; rdf->version.v_pad2 = 0U; if ((unsigned int )frame_len <= 4304U) { len = frame_len; } else { len = 4304; } { len = len & -4; rdf->refused.para.p_type = 19U; rdf->refused.para.p_len = (unsigned int )((u_short )len) + 4U; rdf->refused.ref_fc = (u_int )fc; smt_swap_para(sm, frame_len, 0); memcpy((void *)(& rdf->refused.ref_header), (void const *)sm, (size_t )len); len = (int )((unsigned int )len - 32U); mb->m_len = mb->m_len + (u_int )len; rdf->smt.smt_len = (int )rdf->smt.smt_len + (int )((u_short )len); smc->mib.priv.fddiPRIVRDF_Tx = smc->mib.priv.fddiPRIVRDF_Tx + 1UL; smt_send_frame(smc, mb, 65, local); } return; } } static void smt_send_nif(struct s_smc *smc , struct fddi_addr const *dest , int fc , u_long tid , int type , int local ) { struct smt_nif *nif ; Mbuf *mb ; { { mb = smt_build_frame(smc, 1, type, 72); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return; } else { } { nif = (struct smt_nif *)(& mb->m_data) + (unsigned long )mb->m_off; smt_fill_una(smc, & nif->una); smt_fill_sde(smc, & nif->sde); smt_fill_state(smc, & nif->state); smt_fill_fsc(smc, & nif->fsc); nif->smt.smt_dest = *dest; nif->smt.smt_tid = (u_int )tid; smt_send_frame(smc, mb, fc, local); } return; } } static void smt_echo_test(struct s_smc *smc , int dna ) { u_long tid ; { { tid = smt_get_tid(smc); smc->sm.pend[dna != 0 ? 3 : 2] = tid; smt_send_ecf(smc, dna != 0 ? & smc->mib.m[0].fddiMACDownstreamNbr : & smc->mib.m[0].fddiMACUpstreamNbr, 65, tid, 2, 4448); } return; } } static void smt_send_ecf(struct s_smc *smc , struct fddi_addr *dest , int fc , u_long tid , int type , int len ) { struct smt_ecf *ecf ; Mbuf *mb ; { { mb = smt_build_frame(smc, 4, type, (int )((unsigned int )len + 36U)); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return; } else { } { ecf = (struct smt_ecf *)(& mb->m_data) + (unsigned long )mb->m_off; smt_fill_echo(smc, & ecf->ec_echo, tid, len); ecf->smt.smt_dest = *dest; ecf->smt.smt_tid = (u_int )tid; smc->mib.priv.fddiPRIVECF_Req_Tx = smc->mib.priv.fddiPRIVECF_Req_Tx + 1UL; smt_send_frame(smc, mb, fc, 0); } return; } } static void smt_send_sif_config(struct s_smc *smc , struct fddi_addr *dest , u_long tid , int local ) { struct smt_sif_config *sif ; Mbuf *mb ; int len ; { { mb = smt_build_frame(smc, 2, 3, 128); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return; } else { } { sif = (struct smt_sif_config *)(& mb->m_data) + (unsigned long )mb->m_off; smt_fill_timestamp(smc, & sif->ts); smt_fill_sde(smc, & sif->sde); smt_fill_version(smc, & sif->version); smt_fill_state(smc, & sif->state); smt_fill_policy(smc, & sif->policy); smt_fill_latency(smc, & sif->latency); smt_fill_neighbor(smc, & sif->neighbor); smt_fill_setcount(smc, & sif->setcount); len = smt_fill_path(smc, & sif->path); sif->smt.smt_dest = *dest; sif->smt.smt_tid = (u_int )tid; smt_add_frame_len(mb, len); smt_send_frame(smc, mb, 65, local); } return; } } static void smt_send_sif_operation(struct s_smc *smc , struct fddi_addr *dest , u_long tid , int local ) { struct smt_sif_operation *sif ; Mbuf *mb ; int ports ; int i ; { ports = 2; if ((unsigned int )smc->s.sas == 1U) { ports = 1; } else { } { mb = smt_build_frame(smc, 3, 3, (int )((unsigned int )((unsigned long )ports) * 20U + 204U)); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return; } else { } { sif = (struct smt_sif_operation *)(& mb->m_data) + (unsigned long )mb->m_off; smt_fill_timestamp(smc, & sif->ts); smt_fill_mac_status(smc, & sif->status); smt_fill_mac_counter(smc, & sif->mc); smt_fill_mac_fnc(smc, & sif->fnc); smt_fill_manufacturer(smc, & sif->man); smt_fill_user(smc, & sif->user); smt_fill_setcount(smc, & sif->setcount); } if (ports == 1) { { smt_fill_lem(smc, (struct smt_p_lem *)(& sif->lem), 0); } } else { i = 0; goto ldv_43521; ldv_43520: { smt_fill_lem(smc, (struct smt_p_lem *)(& sif->lem) + (unsigned long )i, i); i = i + 1; } ldv_43521: ; if (i < ports) { goto ldv_43520; } else { } } { sif->smt.smt_dest = *dest; sif->smt.smt_tid = (u_int )tid; smt_send_frame(smc, mb, 65, local); } return; } } Mbuf *smt_build_frame(struct s_smc *smc , int class , int type , int length ) { Mbuf *mb ; struct smt_header *smt ; u_long tmp ; { { mb = smt_get_mbuf(smc); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return (mb); } else { } mb->m_len = (u_int )length; smt = (struct smt_header *)(& mb->m_data) + (unsigned long )mb->m_off; smt->smt_dest = fddi_broadcast; smt->smt_class = (u_char )class; smt->smt_type = (u_char )type; { if (class == 1) { goto case_1; } else { } if (class == 2) { goto case_2; } else { } if (class == 3) { goto case_3; } else { } if (class == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ smt->smt_version = 1U; goto ldv_43535; switch_default: /* CIL Label */ smt->smt_version = 2U; goto ldv_43535; switch_break: /* CIL Label */ ; } ldv_43535: { tmp = smt_get_tid(smc); smt->smt_tid = (u_int )tmp; smt->smt_pad = 0U; smt->smt_len = (unsigned int )((u_short )length) - 32U; } return (mb); } } static void smt_add_frame_len(Mbuf *mb , int len ) { struct smt_header *smt ; { smt = (struct smt_header *)(& mb->m_data) + (unsigned long )mb->m_off; smt->smt_len = (int )smt->smt_len + (int )((u_short )len); mb->m_len = mb->m_len + (u_int )len; return; } } static void smt_fill_una(struct s_smc *smc , struct smt_p_una *una ) { { una->para.p_type = 1U; una->para.p_len = 8U; una->una_pad = 0U; una->una_node = smc->mib.m[0].fddiMACUpstreamNbr; return; } } static void smt_fill_sde(struct s_smc *smc , struct smt_p_sde *sde ) { { sde->para.p_type = 2U; sde->para.p_len = 4U; sde->sde_non_master = smc->mib.fddiSMTNonMaster_Ct; sde->sde_master = smc->mib.fddiSMTMaster_Ct; sde->sde_mac_count = 1U; sde->sde_type = 0U; return; } } static void smt_fill_state(struct s_smc *smc , struct smt_p_state *state ) { int top ; int twist ; int tmp ; { state->para.p_type = 3U; state->para.p_len = 4U; state->st_pad = 0U; top = 0; if ((unsigned int )smc->mib.fddiSMTPeerWrapFlag != 0U) { top = top | 1; } else { } { twist = pcm_status_twisted(smc); } if (twist & 1) { top = top | 4; } else { } if ((twist & 2) != 0) { top = top | 8; } else { } { top = top | 32; tmp = pcm_rooted_station(smc); } if (tmp != 0) { top = top | 16; } else { } if (smc->mib.a[0].fddiPATHSbaPayload != 0UL) { top = top | 64; } else { } state->st_topology = (u_char )top; state->st_dupl_addr = (u_char )(((unsigned int )smc->mib.m[0].fddiMACDA_Flag != 0U) | ((unsigned int )smc->mib.m[0].fddiMACUNDA_Flag != 0U ? 2 : 0)); return; } } static void smt_fill_timestamp(struct s_smc *smc , struct smt_p_timestamp *ts ) { { { ts->para.p_type = 4U; ts->para.p_len = 8U; smt_set_timestamp(smc, (u_char *)(& ts->ts_time)); } return; } } void smt_set_timestamp(struct s_smc *smc , u_char *p ) { u_long time ; u_long utime ; { { utime = smt_get_time(); time = utime * 100UL; time = time / 250UL; *p = 0U; *(p + 1UL) = (unsigned int )((unsigned char )(time >> 31)) & 1U; *(p + 2UL) = (unsigned char )(time >> 23); *(p + 3UL) = (unsigned char )(time >> 15); *(p + 4UL) = (unsigned char )(time >> 7); *(p + 5UL) = (int )((unsigned char )time) << 1U; *(p + 6UL) = (unsigned char )((int )smc->sm.uniq_ticks >> 8); *(p + 7UL) = (unsigned char )smc->sm.uniq_ticks; } if (utime != smc->sm.uniq_time) { smc->sm.uniq_ticks = 0U; } else { } smc->sm.uniq_ticks = (u_short )((int )smc->sm.uniq_ticks + 1); smc->sm.uniq_time = utime; return; } } static void smt_fill_policy(struct s_smc *smc , struct smt_p_policy *policy ) { int i ; u_char const *map ; u_short in ; u_short out ; u_char ansi_weirdness[16U] ; { ansi_weirdness[0] = 0U; ansi_weirdness[1] = 7U; ansi_weirdness[2] = 5U; ansi_weirdness[3] = 3U; ansi_weirdness[4] = 8U; ansi_weirdness[5] = 1U; ansi_weirdness[6] = 6U; ansi_weirdness[7] = 4U; ansi_weirdness[8] = 9U; ansi_weirdness[9] = 10U; ansi_weirdness[10] = 2U; ansi_weirdness[11] = 11U; ansi_weirdness[12] = 12U; ansi_weirdness[13] = 13U; ansi_weirdness[14] = 14U; ansi_weirdness[15] = 15U; policy->para.p_type = 5U; policy->para.p_len = 4U; out = 0U; in = smc->mib.fddiSMTConnectionPolicy; i = 0; map = (u_char const *)(& ansi_weirdness); goto ldv_43576; ldv_43575: ; if ((int )in & 1) { out = (u_short )((int )((short )out) | (int )((short )(1 << (int )*map))); } else { } in = (u_short )((int )in >> 1); map = map + 1; i = i + 1; ldv_43576: ; if (i <= 15) { goto ldv_43575; } else { } policy->pl_config = smc->mib.fddiSMTConfigPolicy; policy->pl_connect = out; return; } } static void smt_fill_latency(struct s_smc *smc , struct smt_p_latency *latency ) { int tmp ; int tmp___0 ; { { latency->para.p_type = 6U; latency->para.p_len = 8U; tmp = phy_index(smc, 0); latency->lt_phyout_idx1 = (u_short )tmp; latency->lt_latency1 = 10U; } if ((unsigned int )smc->s.sas == 0U) { { tmp___0 = phy_index(smc, 1); latency->lt_phyout_idx2 = (u_short )tmp___0; latency->lt_latency2 = 10U; } } else { latency->lt_phyout_idx2 = 0U; latency->lt_latency2 = 0U; } return; } } static void smt_fill_neighbor(struct s_smc *smc , struct smt_p_neighbor *neighbor ) { int tmp ; { { neighbor->para.p_type = 7U; neighbor->para.p_len = 16U; neighbor->nb_mib_index = 1U; tmp = mac_index(smc, 1); neighbor->nb_mac_index = (u_short )tmp; neighbor->nb_una = smc->mib.m[0].fddiMACUpstreamNbr; neighbor->nb_dna = smc->mib.m[0].fddiMACDownstreamNbr; } return; } } static int smt_fill_path(struct s_smc *smc , struct smt_p_path *path ) { int type ; int state ; int remote ; int mac ; int len ; int p ; int physp ; struct smt_phy_rec *phy ; struct smt_mac_rec *pd_mac ; int tmp ; int tmp___0 ; int tmp___1 ; { len = (unsigned int )smc->s.sas == 1U ? 20 : 28; path->para.p_type = 8U; path->para.p_len = (unsigned int )((u_short )len) - 4U; p = 0; phy = (struct smt_phy_rec *)(& path->pd_phy); goto ldv_43600; ldv_43599: physp = p; if ((unsigned int )smc->s.sas == 1U) { physp = 0; } else { } { pcm_status_state(smc, physp, & type, & state, & remote, & mac); tmp = smt_swap_short((int )((unsigned int )((u_short )p) + 1U)); phy->phy_mib_index = (u_short )tmp; phy->phy_type = (u_char )type; phy->phy_connect_state = (u_char )state; phy->phy_remote_type = (u_char )remote; phy->phy_remote_mac = (u_char )mac; tmp___0 = phy_con_resource_index(smc, p); phy->phy_resource_idx = (u_short )tmp___0; p = p + 1; phy = phy + 1; } ldv_43600: ; if (p < ((unsigned int )smc->s.sas == 1U ? 1 : 2)) { goto ldv_43599; } else { } { pd_mac = (struct smt_mac_rec *)phy; pd_mac->mac_addr = smc->mib.m[0].fddiMACSMTAddress; tmp___1 = mac_con_resource_index(smc, 1); pd_mac->mac_resource_idx = (u_short )tmp___1; } return (len); } } static void smt_fill_mac_status(struct s_smc *smc , struct smt_p_mac_status *st ) { int tmp ; { { st->para.p_type = 9U; st->para.p_len = 40U; st->st_mib_index = 1U; tmp = mac_index(smc, 1); st->st_mac_index = (u_short )tmp; mac_update_counter(smc); st->st_t_req = (u_int )smc->mib.m[0].fddiMACT_Req; st->st_t_neg = (u_int )smc->mib.m[0].fddiMACT_Neg; st->st_t_max = (u_int )smc->mib.m[0].fddiMACT_Max; st->st_tvx_value = (u_int )smc->mib.m[0].fddiMACTvxValue; st->st_t_min = (u_int )smc->mib.m[0].fddiMACT_Min; st->st_sba = (u_int )smc->mib.a[0].fddiPATHSbaPayload; st->st_frame_ct = (u_int )smc->mib.m[0].fddiMACFrame_Ct; st->st_error_ct = (u_int )smc->mib.m[0].fddiMACError_Ct; st->st_lost_ct = (u_int )smc->mib.m[0].fddiMACLost_Ct; } return; } } static void smt_fill_lem(struct s_smc *smc , struct smt_p_lem *lem , int phy ) { struct fddi_mib_p *mib ; int tmp ; { { mib = smc->y[phy].mib; lem->para.p_type = 10U; lem->para.p_len = 16U; lem->lem_mib_index = (unsigned int )((u_short )phy) + 1U; tmp = phy_index(smc, phy); lem->lem_phy_index = (u_short )tmp; lem->lem_pad2 = 0U; lem->lem_cutoff = mib->fddiPORTLer_Cutoff; lem->lem_alarm = mib->fddiPORTLer_Alarm; lem->lem_estimate = mib->fddiPORTLer_Estimate; lem->lem_reject_ct = (u_int )mib->fddiPORTLem_Reject_Ct; lem->lem_ct = (u_int )mib->fddiPORTLem_Ct; } return; } } static void smt_fill_version(struct s_smc *smc , struct smt_p_version *vers ) { { vers->para.p_type = 20U; vers->para.p_len = 8U; vers->v_pad = 0U; vers->v_n = 1U; vers->v_index = 1U; vers->v_version[0] = 2U; vers->v_pad2 = 0U; return; } } static void smt_fill_fsc(struct s_smc *smc , struct smt_p_fsc *fsc ) { int tmp ; int tmp___0 ; { { fsc->para.p_type = 8203U; fsc->para.p_len = 8U; fsc->fsc_pad0 = 0U; fsc->fsc_mac_index = 1U; fsc->fsc_pad1 = 0U; fsc->fsc_value = 0U; tmp = smt_swap_short(1); fsc->fsc_mac_index = (u_short )tmp; tmp___0 = smt_swap_short(0); fsc->fsc_value = (u_short )tmp___0; } return; } } static void smt_fill_mac_counter(struct s_smc *smc , struct smt_p_mac_counter *mc ) { int tmp ; { { mc->para.p_type = 11U; mc->para.p_len = 12U; mc->mc_mib_index = 1U; tmp = mac_index(smc, 1); mc->mc_index = (u_short )tmp; mc->mc_receive_ct = (u_int )smc->mib.m[0].fddiMACCopied_Ct; mc->mc_transmit_ct = (u_int )smc->mib.m[0].fddiMACTransmit_Ct; } return; } } static void smt_fill_mac_fnc(struct s_smc *smc , struct smt_p_mac_fnc *fnc ) { int tmp ; { { fnc->para.p_type = 12U; fnc->para.p_len = 8U; fnc->nc_mib_index = 1U; tmp = mac_index(smc, 1); fnc->nc_index = (u_short )tmp; fnc->nc_counter = (u_int )smc->mib.m[0].fddiMACNotCopied_Ct; } return; } } static void smt_fill_manufacturer(struct s_smc *smc , struct smp_p_manufacturer *man ) { { { man->para.p_type = 15U; man->para.p_len = 32U; memcpy((void *)(& man->mf_data), (void const *)(& smc->mib.fddiSMTManufacturerData), 32UL); } return; } } static void smt_fill_user(struct s_smc *smc , struct smp_p_user *user ) { { { user->para.p_type = 16U; user->para.p_len = 32U; memcpy((void *)(& user->us_data), (void const *)(& smc->mib.fddiSMTUserData), 32UL); } return; } } static void smt_fill_setcount(struct s_smc *smc , struct smt_p_setcount *setcount ) { { { setcount->para.p_type = 4149U; setcount->para.p_len = 12U; setcount->count = (u_int )smc->mib.fddiSMTSetCount.count; memcpy((void *)(& setcount->timestamp), (void const *)(& smc->mib.fddiSMTSetCount.timestamp), 8UL); } return; } } static void smt_fill_echo(struct s_smc *smc , struct smt_p_echo *echo , u_long seed , int len ) { u_char *p ; u_char *tmp ; { echo->para.p_type = 17U; echo->para.p_len = 4454U; echo->para.p_len = (u_short )len; p = (u_char *)(& echo->ec_data); goto ldv_43648; ldv_43647: tmp = p; p = p + 1; *tmp = (unsigned char )seed; seed = seed + 13UL; len = len - 1; ldv_43648: ; if (len != 0) { goto ldv_43647; } else { } return; } } static void smt_clear_una_dna(struct s_smc *smc ) { { smc->mib.m[0].fddiMACUpstreamNbr = SMT_Unknown; smc->mib.m[0].fddiMACDownstreamNbr = SMT_Unknown; return; } } static void smt_clear_old_una_dna(struct s_smc *smc ) { { smc->mib.m[0].fddiMACOldUpstreamNbr = SMT_Unknown; smc->mib.m[0].fddiMACOldDownstreamNbr = SMT_Unknown; return; } } u_long smt_get_tid(struct s_smc *smc ) { u_long tid ; { goto ldv_43661; ldv_43660: ; ldv_43661: smc->sm.smt_tid = smc->sm.smt_tid + 1UL; tid = smc->sm.smt_tid ^ 520780604UL; if (tid == 0UL) { goto ldv_43660; } else { } return (tid & 1073741823UL); } } static struct smt_pdef const smt_pdef[41U] = { {1, 12, "s6"}, {2, 8, "1111"}, {3, 8, "scc"}, {4, 12, "8"}, {5, 8, "ss"}, {6, 12, "ssss"}, {7, 20, "ss66"}, {8, 28, "[6s]"}, {9, 44, "sslllllllll"}, {10, 20, "ssccccll"}, {11, 16, "ssll"}, {12, 12, "ssl"}, {13, 36, "ssl"}, {14, 12, "ssl"}, {15, 36, ""}, {18, 8, "l"}, {19, 40, "l"}, {20, 12, "sccss"}, {21, 8, "l"}, {22, 8, "l"}, {23, 8, "l"}, {24, 8, "l"}, {25, 12, "s6"}, {26, 8, "l"}, {27, 8, "l"}, {28, 8, "l"}, {29, 8, "l"}, {4149, 0, "l8"}, {4168, 0, "ll"}, {8332, 0, "4lss66"}, {8333, 0, "4lllll"}, {8334, 0, "4llll"}, {8335, 0, "4ll6666s6"}, {8336, 0, "4lssl"}, {12811, 12, "42s"}, {12815, 12, "4l"}, {12816, 12, "4l"}, {16464, 0, "4l1111ll"}, {16465, 0, "4lssss"}, {16466, 0, "4ll"}, {16467, 0, "4lsslss"}}; int smt_check_para(struct s_smc *smc , struct smt_header *sm , u_short const *list ) { u_short const *p ; void *tmp ; { p = list; goto ldv_43675; ldv_43674: { tmp = sm_to_para(smc, sm, (int )*p); } if ((unsigned long )tmp == (unsigned long )((void *)0)) { return (-1); } else { } p = p + 1; ldv_43675: ; if ((unsigned int )((unsigned short )*p) != 0U) { goto ldv_43674; } else { } return (0); } } void *sm_to_para(struct s_smc *smc , struct smt_header *sm , int para ) { char *p ; int len ; int plen ; void *found ; { found = (void *)0; len = (int )sm->smt_len; p = (char *)sm + 1U; goto ldv_43687; ldv_43686: ; if ((int )((struct smt_para *)p)->p_type == para) { found = (void *)p; } else { } plen = (int )((unsigned int )((struct smt_para *)p)->p_len + 4U); p = p + (unsigned long )plen; len = len - plen; if (len < 0) { return ((void *)0); } else { } if ((plen & 3) != 0 && para != 17) { return ((void *)0); } else { } if ((unsigned long )found != (unsigned long )((void *)0)) { return (found); } else { } ldv_43687: ; if (len > 0) { goto ldv_43686; } else { } return ((void *)0); } } static int mac_index(struct s_smc *smc , int mac ) { { return ((unsigned int )smc->s.sas == 1U ? 2 : 3); } } static int phy_index(struct s_smc *smc , int phy ) { { return (phy + 1); } } static int mac_con_resource_index(struct s_smc *smc , int mac ) { { { if ((int )smc->mib.fddiSMTCF_State == 9) { goto case_9; } else { } if ((int )smc->mib.fddiSMTCF_State == 7) { goto case_7; } else { } if ((int )smc->mib.fddiSMTCF_State == 11) { goto case_11; } else { } if ((int )smc->mib.fddiSMTCF_State == 10) { goto case_10; } else { } if ((int )smc->mib.fddiSMTCF_State == 12) { goto case_12; } else { } goto switch_break; case_9: /* CIL Label */ ; case_7: /* CIL Label */ ; case_11: /* CIL Label */ ; return (1); case_10: /* CIL Label */ ; case_12: /* CIL Label */ ; return (2); switch_break: /* CIL Label */ ; } return ((unsigned int )smc->s.sas == 1U ? 2 : 3); } } static int phy_con_resource_index(struct s_smc *smc , int phy ) { { { if ((int )smc->mib.fddiSMTCF_State == 9) { goto case_9; } else { } if ((int )smc->mib.fddiSMTCF_State == 10) { goto case_10; } else { } if ((int )smc->mib.fddiSMTCF_State == 12) { goto case_12; } else { } if ((int )smc->mib.fddiSMTCF_State == 7) { goto case_7; } else { } if ((int )smc->mib.fddiSMTCF_State == 11) { goto case_11; } else { } goto switch_break; case_9: /* CIL Label */ ; return (phy == 0 ? 3 : 2); case_10: /* CIL Label */ ; return (phy == 0 ? 1 : 3); case_12: /* CIL Label */ ; return (phy == 0 ? 3 : 1); case_7: /* CIL Label */ ; return (phy == 0 ? 2 : 3); case_11: /* CIL Label */ ; return (2); switch_break: /* CIL Label */ ; } return (phy); } } static int smt_swap_short(u_short s ) { { return ((((int )s >> 8) & 255) | (((int )s << 8) & 65535)); } } void smt_swap_para(struct smt_header *sm , int len , int direction ) { struct smt_para *pa ; struct smt_pdef const *pd ; char *p ; int plen ; int type ; int i ; int tmp ; int tmp___0 ; { { smt_string_swap((char *)sm, "662sl8ss", len); len = (int )((unsigned int )len - 32U); p = (char *)sm + 1U; } goto ldv_43736; ldv_43735: { pa = (struct smt_para *)p; plen = (int )pa->p_len; type = (int )pa->p_type; tmp = smt_swap_short((int )pa->p_type); pa->p_type = (u_short )tmp; tmp___0 = smt_swap_short((int )pa->p_len); pa->p_len = (u_short )tmp___0; } if (direction != 0) { plen = (int )pa->p_len; type = (int )pa->p_type; } else { } if (plen < 0) { goto ldv_43729; } else { } plen = (int )((unsigned int )plen + 4U); i = 41; pd = (struct smt_pdef const *)(& smt_pdef); goto ldv_43734; ldv_43733: ; if ((int )pd->ptype == type) { goto ldv_43732; } else { } i = i - 1; pd = pd + 1; ldv_43734: ; if (i != 0) { goto ldv_43733; } else { } ldv_43732: ; if (i != 0 && (unsigned long )pd->pswap != (unsigned long )((char const */* const */)0)) { { smt_string_swap(p + 4UL, pd->pswap, len); } } else { } len = len - plen; p = p + (unsigned long )plen; ldv_43736: ; if (len > 0) { goto ldv_43735; } else { } ldv_43729: ; return; } } static void smt_string_swap(char *data , char const *format , int len ) { char const *open_paren ; int x ; { open_paren = (char const *)0; goto ldv_43760; ldv_43759: ; { if ((int )*format == 91) { goto case_91; } else { } if ((int )*format == 93) { goto case_93; } else { } if ((int )*format == 49) { goto case_49; } else { } if ((int )*format == 50) { goto case_50; } else { } if ((int )*format == 51) { goto case_51; } else { } if ((int )*format == 52) { goto case_52; } else { } if ((int )*format == 53) { goto case_53; } else { } if ((int )*format == 54) { goto case_54; } else { } if ((int )*format == 55) { goto case_55; } else { } if ((int )*format == 56) { goto case_56; } else { } if ((int )*format == 57) { goto case_57; } else { } if ((int )*format == 99) { goto case_99; } else { } if ((int )*format == 115) { goto case_115; } else { } if ((int )*format == 108) { goto case_108; } else { } goto switch_break; case_91: /* CIL Label */ open_paren = format; goto ldv_43745; case_93: /* CIL Label */ format = open_paren; goto ldv_43745; case_49: /* CIL Label */ ; case_50: /* CIL Label */ ; case_51: /* CIL Label */ ; case_52: /* CIL Label */ ; case_53: /* CIL Label */ ; case_54: /* CIL Label */ ; case_55: /* CIL Label */ ; case_56: /* CIL Label */ ; case_57: /* CIL Label */ data = data + ((unsigned long )*format + 0xffffffffffffffd0UL); len = len + (48 - (int )*format); goto ldv_43745; case_99: /* CIL Label */ data = data + 1; len = len - 1; goto ldv_43745; case_115: /* CIL Label */ x = (int )*data; *data = *(data + 1UL); *(data + 1UL) = (char )x; data = data + 2UL; len = len + -2; goto ldv_43745; case_108: /* CIL Label */ x = (int )*data; *data = *(data + 3UL); *(data + 3UL) = (char )x; x = (int )*(data + 1UL); *(data + 1UL) = *(data + 2UL); *(data + 2UL) = (char )x; data = data + 4UL; len = len + -4; goto ldv_43745; switch_break: /* CIL Label */ ; } ldv_43745: format = format + 1; ldv_43760: ; if (len > 0 && (int )((signed char )*format) != 0) { goto ldv_43759; } else { } return; } } int smt_action(struct s_smc *smc , int class , int code , int index ) { int event ; int port ; u_short tmp ; u_short tmp___0 ; u_short tmp___1 ; u_short tmp___2 ; { { if (class == 1) { goto case_1; } else { } if (class == 2) { goto case_2___0; } else { } goto switch_default___1; case_1: /* CIL Label */ ; { if (code == 0) { goto case_0; } else { } if (code == 1) { goto case_1___0; } else { } if (code == 2) { goto case_2; } else { } if (code == 3) { goto case_3; } else { } if (code == 4) { goto case_4; } else { } if (code == 5) { goto case_5; } else { } if (code == 6) { goto case_6; } else { } goto switch_default; case_0: /* CIL Label */ { smc->mib.fddiSMTRemoteDisconnectFlag = 0U; queue_event(smc, 1, 1); } goto ldv_43772; case_1___0: /* CIL Label */ { queue_event(smc, 1, 2); smc->mib.fddiSMTRemoteDisconnectFlag = 1U; tmp = (u_short )((unsigned int )smc->srf.ring_status | 256U); smc->srf.ring_status = tmp; ring_status_indication(smc, (u_long )tmp); } goto ldv_43772; case_2: /* CIL Label */ ; goto ldv_43772; case_3: /* CIL Label */ ; goto ldv_43772; case_4: /* CIL Label */ ; if ((unsigned int )smc->y[0].pc_mode == 1U) { { tmp___0 = (u_short )((unsigned int )smc->srf.ring_status | 4U); smc->srf.ring_status = tmp___0; ring_status_indication(smc, (u_long )tmp___0); queue_event(smc, 5, 11); } } else { } goto ldv_43772; case_5: /* CIL Label */ ; if ((unsigned int )smc->y[1].pc_mode == 1U) { { tmp___1 = (u_short )((unsigned int )smc->srf.ring_status | 4U); smc->srf.ring_status = tmp___1; ring_status_indication(smc, (u_long )tmp___1); queue_event(smc, 6, 11); } } else { } goto ldv_43772; case_6: /* CIL Label */ port = 0; goto ldv_43781; ldv_43780: ; if ((unsigned int )smc->mib.p[port].fddiPORTMy_Type != 3U) { goto ldv_43779; } else { } { tmp___2 = (u_short )((unsigned int )smc->srf.ring_status | 4U); smc->srf.ring_status = tmp___2; ring_status_indication(smc, (u_long )tmp___2); queue_event(smc, port + 5, 11); } ldv_43779: port = port + 1; ldv_43781: ; if (port <= 1) { goto ldv_43780; } else { } goto ldv_43772; switch_default: /* CIL Label */ ; return (1); switch_break___0: /* CIL Label */ ; } ldv_43772: ; goto ldv_43784; case_2___0: /* CIL Label */ ; { if (code == 1) { goto case_1___1; } else { } if (code == 2) { goto case_2___1; } else { } if (code == 0) { goto case_0___0; } else { } if (code == 3) { goto case_3___0; } else { } if (code == 4) { goto case_4___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ event = 10; goto ldv_43787; case_2___1: /* CIL Label */ event = 11; goto ldv_43787; case_0___0: /* CIL Label */ event = 7; goto ldv_43787; case_3___0: /* CIL Label */ event = 1; goto ldv_43787; case_4___0: /* CIL Label */ event = 2; goto ldv_43787; switch_default___0: /* CIL Label */ ; return (1); switch_break___1: /* CIL Label */ ; } ldv_43787: { queue_event(smc, index + 5, event); } goto ldv_43784; switch_default___1: /* CIL Label */ ; return (1); switch_break: /* CIL Label */ ; } ldv_43784: ; return (0); } } static void hwm_conv_can(struct s_smc *smc , char *data , int len ) { int i ; unsigned char tmp ; { i = len; goto ldv_43801; ldv_43800: { tmp = bitrev8((int )((unsigned char )*data)); *data = (char )tmp; i = i - 1; data = data + 1; } ldv_43801: ; if (i != 0) { goto ldv_43800; } else { } return; } } void cfm(struct s_smc *smc , int event ) ; void cfm_init(struct s_smc *smc ) ; int cfm_get_mac_input(struct s_smc *smc ) ; int cfm_get_mac_output(struct s_smc *smc ) ; int cem_build_path(struct s_smc *smc , char *to , int path_index ) ; void all_selection_criteria(struct s_smc *smc ) ; static unsigned char const cf_to_ptype[13U] = { 4U, 4U, 4U, 4U, 4U, 4U, 1U, 1U, 2U, 0U, 1U, 2U, 1U}; static void cfm_fsm(struct s_smc *smc , int cmd ) ; void cfm_init(struct s_smc *smc ) { { smc->mib.fddiSMTCF_State = 16U; smc->r.rm_join = 0U; smc->r.rm_loop = 0U; smc->y[0].scrub = 0U; smc->y[1].scrub = 0U; smc->y[0].cem_pst = 0; smc->y[1].cem_pst = 0; return; } } static void selection_criteria(struct s_smc *smc , struct s_phy *phy ) { { { if ((int )(phy->mib)->fddiPORTMy_Type == 0) { goto case_0; } else { } if ((int )(phy->mib)->fddiPORTMy_Type == 1) { goto case_1; } else { } if ((int )(phy->mib)->fddiPORTMy_Type == 2) { goto case_2; } else { } if ((int )(phy->mib)->fddiPORTMy_Type == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ ; if (((unsigned int )smc->y[0].pc_mode == 2U || (unsigned int )smc->y[1].pc_mode == 2U) && (unsigned int )smc->y[1].cf_join != 0U) { phy->wc_flag = 1U; } else { phy->wc_flag = 0U; } goto ldv_43231; case_1: /* CIL Label */ phy->wc_flag = 0U; goto ldv_43231; case_2: /* CIL Label */ phy->wc_flag = 0U; goto ldv_43231; case_3: /* CIL Label */ phy->wc_flag = 0U; goto ldv_43231; switch_break: /* CIL Label */ ; } ldv_43231: ; return; } } void all_selection_criteria(struct s_smc *smc ) { struct s_phy *phy ; int p ; { p = 0; phy = (struct s_phy *)(& smc->y); goto ldv_43241; ldv_43240: { selection_criteria(smc, phy); p = p + 1; phy = phy + 1; } ldv_43241: ; if (p <= 1) { goto ldv_43240; } else { } return; } } static void cem_priv_state(struct s_smc *smc , int event ) { int np ; int i ; { if ((unsigned int )smc->s.sas != 0U) { return; } else { } np = event + -3; if ((unsigned int )np > 1U) { return; } else { } if ((unsigned int )smc->y[np].cf_join != 0U) { smc->y[np].cem_pst = 1; } else if ((unsigned int )smc->y[np].wc_flag == 0U) { smc->y[np].cem_pst = 0; } else { } i = 0; goto ldv_43250; ldv_43249: ; if (smc->y[i].cem_pst == 2 && (unsigned int )smc->y[i].wc_flag == 0U) { { smc->y[i].cem_pst = 0; queue_event(smc, i + 5, 1); } } else { } if (smc->y[i].cem_pst == 1 && (unsigned int )smc->y[i].wc_flag != 0U) { { smc->y[i].cem_pst = 2; queue_event(smc, i + 5, 1); } } else { } if (smc->y[i].cem_pst == 0 && (unsigned int )smc->y[i].wc_flag != 0U) { smc->y[i].cem_pst = 2; } else { } i = i + 1; ldv_43250: ; if (i <= 1) { goto ldv_43249; } else { } return; } } void cfm(struct s_smc *smc , int event ) { int state ; int cond ; int oldstate ; { { all_selection_criteria(smc); cem_priv_state(smc, event); oldstate = (int )smc->mib.fddiSMTCF_State; } ldv_43259: { state = (int )smc->mib.fddiSMTCF_State; cfm_fsm(smc, event); event = 0; } if (state != (int )smc->mib.fddiSMTCF_State) { goto ldv_43259; } else { } cond = 0; if ((((unsigned int )smc->mib.fddiSMTCF_State == 9U && (unsigned int )smc->y[0].pc_mode == 1U) || ((unsigned int )smc->mib.fddiSMTCF_State == 10U && (unsigned int )smc->y[1].pc_mode == 1U)) || (((unsigned int )smc->mib.fddiSMTCF_State == 11U && (unsigned int )smc->y[0].pc_mode == 1U) && (unsigned int )(smc->y[0].mib)->fddiPORTNeighborType != 2U)) { cond = 1; } else { } if (cond != (int )smc->mib.fddiSMTPeerWrapFlag) { { smt_srf_event(smc, 5, 0, cond); } } else { } { smc->mib.m[0].fddiMACDownstreamPORTType = (SMTEnum )cf_to_ptype[(int )smc->mib.fddiSMTCF_State]; cfm_state_change(smc, (int )smc->mib.fddiSMTCF_State); } return; } } static void cfm_fsm(struct s_smc *smc , int cmd ) { { { if ((int )smc->mib.fddiSMTCF_State == 16) { goto case_16; } else { } if ((int )smc->mib.fddiSMTCF_State == 0) { goto case_0; } else { } if ((int )smc->mib.fddiSMTCF_State == 25) { goto case_25; } else { } if ((int )smc->mib.fddiSMTCF_State == 9) { goto case_9; } else { } if ((int )smc->mib.fddiSMTCF_State == 26) { goto case_26; } else { } if ((int )smc->mib.fddiSMTCF_State == 10) { goto case_10; } else { } if ((int )smc->mib.fddiSMTCF_State == 28) { goto case_28; } else { } if ((int )smc->mib.fddiSMTCF_State == 12) { goto case_12; } else { } if ((int )smc->mib.fddiSMTCF_State == 23) { goto case_23; } else { } if ((int )smc->mib.fddiSMTCF_State == 7) { goto case_7; } else { } if ((int )smc->mib.fddiSMTCF_State == 27) { goto case_27; } else { } if ((int )smc->mib.fddiSMTCF_State == 11) { goto case_11; } else { } goto switch_default; case_16: /* CIL Label */ { smc->mib.p[0].fddiPORTCurrentPath = 0U; smc->mib.p[1].fddiPORTCurrentPath = 0U; smc->mib.p[0].fddiPORTMACPlacement = 0U; smc->mib.p[1].fddiPORTMACPlacement = 0U; smc->mib.fddiSMTStationStatus = 1U; config_mux(smc, 4); smc->r.rm_loop = 0U; smc->r.rm_join = 0U; queue_event(smc, 3, 8); smc->mib.fddiSMTCF_State = (unsigned int )smc->mib.fddiSMTCF_State & 65519U; } goto ldv_43266; case_0: /* CIL Label */ ; if ((unsigned int )smc->s.sas != 0U && (*((unsigned int *)smc + 1394UL) != 0U || *((unsigned int *)smc + 1496UL) != 0U)) { smc->mib.fddiSMTCF_State = 27U; goto ldv_43266; } else { } if (((smc->y[0].cem_pst == 1 && (unsigned int )smc->y[0].cf_join != 0U) && (unsigned int )smc->y[0].wc_flag == 0U) || (unsigned int )smc->y[0].cf_loop != 0U) { smc->mib.fddiSMTCF_State = 25U; goto ldv_43266; } else { } if (((smc->y[1].cem_pst == 1 && (unsigned int )smc->y[1].cf_join != 0U) && (unsigned int )smc->y[1].wc_flag == 0U) || (unsigned int )smc->y[1].cf_loop != 0U) { smc->mib.fddiSMTCF_State = 26U; goto ldv_43266; } else { } goto ldv_43266; case_25: /* CIL Label */ { smc->mib.p[0].fddiPORTCurrentPath = 4U; smc->mib.p[1].fddiPORTCurrentPath = 0U; smc->mib.p[0].fddiPORTMACPlacement = 1U; smc->mib.p[1].fddiPORTMACPlacement = 0U; smc->mib.fddiSMTStationStatus = 0U; config_mux(smc, 2); } if ((unsigned int )smc->y[0].cf_loop != 0U) { { smc->r.rm_join = 0U; smc->r.rm_loop = 1U; queue_event(smc, 3, 9); } } else { } if ((unsigned int )smc->y[0].cf_join != 0U) { { smc->r.rm_loop = 0U; smc->r.rm_join = 1U; queue_event(smc, 3, 8); } } else { } smc->mib.fddiSMTCF_State = (unsigned int )smc->mib.fddiSMTCF_State & 65519U; goto ldv_43266; case_9: /* CIL Label */ ; if (((unsigned int )smc->y[0].wc_flag != 0U || (unsigned int )smc->y[0].cf_join == 0U) && (unsigned int )smc->y[0].cf_loop == 0U) { smc->mib.fddiSMTCF_State = 16U; goto ldv_43266; } else if ((((unsigned int )smc->y[1].cf_loop != 0U && (unsigned int )smc->y[0].cf_join != 0U) && smc->y[0].cem_pst == 1) || (((unsigned int )smc->y[1].cf_loop != 0U || ((unsigned int )smc->y[1].cf_join != 0U && smc->y[1].cem_pst == 1)) && ((unsigned int )smc->y[0].pc_mode == 2U || (unsigned int )smc->y[1].pc_mode == 2U))) { smc->y[0].scrub = 1U; smc->mib.fddiSMTCF_State = 26U; goto ldv_43266; } else if (((((((unsigned int )smc->s.attach_s == 0U && (unsigned int )smc->y[0].cf_join != 0U) && smc->y[0].cem_pst == 1) && (unsigned int )smc->y[0].pc_mode == 1U) && (unsigned int )smc->y[1].cf_join != 0U) && smc->y[1].cem_pst == 1) && (unsigned int )smc->y[1].pc_mode == 1U) { smc->y[0].scrub = 1U; smc->y[1].scrub = 1U; smc->mib.fddiSMTCF_State = 28U; goto ldv_43266; } else if (((((((unsigned int )smc->s.attach_s != 0U && (unsigned int )smc->y[0].cf_join != 0U) && smc->y[0].cem_pst == 1) && (unsigned int )smc->y[0].pc_mode == 1U) && (unsigned int )smc->y[1].cf_join != 0U) && smc->y[1].cem_pst == 1) && (unsigned int )smc->y[1].pc_mode == 1U) { smc->y[0].scrub = 1U; smc->y[1].scrub = 1U; smc->mib.fddiSMTCF_State = 23U; goto ldv_43266; } else { } goto ldv_43266; case_26: /* CIL Label */ { smc->mib.p[0].fddiPORTCurrentPath = 0U; smc->mib.p[1].fddiPORTCurrentPath = 4U; smc->mib.p[0].fddiPORTMACPlacement = 0U; smc->mib.p[1].fddiPORTMACPlacement = 1U; smc->mib.fddiSMTStationStatus = 0U; config_mux(smc, 3); } if ((unsigned int )smc->y[1].cf_loop != 0U) { { smc->r.rm_join = 0U; smc->r.rm_loop = 1U; queue_event(smc, 3, 9); } } else { } if ((unsigned int )smc->y[1].cf_join != 0U) { { smc->r.rm_loop = 0U; smc->r.rm_join = 1U; queue_event(smc, 3, 8); } } else { } smc->mib.fddiSMTCF_State = (unsigned int )smc->mib.fddiSMTCF_State & 65519U; goto ldv_43266; case_10: /* CIL Label */ ; if (*((unsigned int *)smc + 1496UL) == 0U) { smc->mib.fddiSMTCF_State = 16U; goto ldv_43266; } else if ((((unsigned int )smc->y[0].cf_loop != 0U && (unsigned int )smc->y[0].pc_mode == 1U) && (unsigned int )smc->y[1].cf_join != 0U) && (unsigned int )smc->y[1].pc_mode == 1U) { smc->y[1].scrub = 1U; smc->mib.fddiSMTCF_State = 25U; goto ldv_43266; } else if (((((unsigned int )smc->s.attach_s == 0U && (unsigned int )smc->y[0].cf_join != 0U) && (unsigned int )smc->y[0].pc_mode == 1U) && (unsigned int )smc->y[1].cf_join != 0U) && (unsigned int )smc->y[1].pc_mode == 1U) { smc->y[0].scrub = 1U; smc->y[1].scrub = 1U; smc->mib.fddiSMTCF_State = 28U; goto ldv_43266; } else if (((((unsigned int )smc->s.attach_s != 0U && (unsigned int )smc->y[0].cf_join != 0U) && (unsigned int )smc->y[0].pc_mode == 1U) && (unsigned int )smc->y[1].cf_join != 0U) && (unsigned int )smc->y[1].pc_mode == 1U) { smc->y[0].scrub = 1U; smc->y[1].scrub = 1U; smc->mib.fddiSMTCF_State = 23U; goto ldv_43266; } else { } goto ldv_43266; case_28: /* CIL Label */ { smc->mib.p[0].fddiPORTCurrentPath = 5U; smc->mib.p[1].fddiPORTCurrentPath = 5U; smc->mib.p[0].fddiPORTMACPlacement = 0U; smc->mib.p[1].fddiPORTMACPlacement = 1U; smc->mib.fddiSMTStationStatus = 2U; config_mux(smc, 0); smc->r.rm_loop = 0U; smc->r.rm_join = 1U; queue_event(smc, 3, 8); smc->mib.fddiSMTCF_State = (unsigned int )smc->mib.fddiSMTCF_State & 65519U; } goto ldv_43266; case_12: /* CIL Label */ ; if ((unsigned int )smc->y[1].wc_flag != 0U || (unsigned int )smc->y[1].cf_join == 0U) { smc->y[0].scrub = 1U; smc->mib.fddiSMTCF_State = 25U; goto ldv_43266; } else if ((unsigned int )smc->y[0].cf_join == 0U || (unsigned int )smc->y[0].wc_flag != 0U) { smc->y[1].scrub = 1U; smc->mib.fddiSMTCF_State = 26U; goto ldv_43266; } else if ((unsigned int )smc->s.attach_s != 0U) { smc->y[1].scrub = 1U; smc->mib.fddiSMTCF_State = 23U; goto ldv_43266; } else { } goto ldv_43266; case_23: /* CIL Label */ { smc->mib.p[0].fddiPORTCurrentPath = 5U; smc->mib.p[1].fddiPORTCurrentPath = 5U; smc->mib.p[0].fddiPORTMACPlacement = 1U; smc->mib.p[1].fddiPORTMACPlacement = 0U; smc->mib.fddiSMTStationStatus = 2U; config_mux(smc, 1); smc->r.rm_loop = 0U; smc->r.rm_join = 1U; queue_event(smc, 3, 8); smc->mib.fddiSMTCF_State = (unsigned int )smc->mib.fddiSMTCF_State & 65519U; } goto ldv_43266; case_7: /* CIL Label */ ; if ((unsigned int )smc->y[1].cf_join == 0U || (unsigned int )smc->y[1].wc_flag != 0U) { smc->y[0].scrub = 1U; smc->mib.fddiSMTCF_State = 25U; goto ldv_43266; } else if ((unsigned int )smc->y[0].cf_join == 0U || (unsigned int )smc->y[0].wc_flag != 0U) { smc->y[1].scrub = 1U; smc->mib.fddiSMTCF_State = 26U; goto ldv_43266; } else if ((unsigned int )smc->s.attach_s == 0U) { smc->y[0].scrub = 1U; smc->mib.fddiSMTCF_State = 28U; goto ldv_43266; } else { } goto ldv_43266; case_27: /* CIL Label */ { smc->mib.p[0].fddiPORTCurrentPath = 4U; smc->mib.p[0].fddiPORTMACPlacement = 1U; smc->mib.fddiSMTStationStatus = 0U; config_mux(smc, 5); } if ((unsigned int )smc->y[0].cf_loop != 0U || (unsigned int )smc->y[1].cf_loop != 0U) { { smc->r.rm_join = 0U; smc->r.rm_loop = 1U; queue_event(smc, 3, 9); } } else { } if ((unsigned int )smc->y[0].cf_join != 0U || (unsigned int )smc->y[1].cf_join != 0U) { { smc->r.rm_loop = 0U; smc->r.rm_join = 1U; queue_event(smc, 3, 8); } } else { } smc->mib.fddiSMTCF_State = (unsigned int )smc->mib.fddiSMTCF_State & 65519U; goto ldv_43266; case_11: /* CIL Label */ ; if (*((unsigned int *)smc + 1394UL) == 0U && *((unsigned int *)smc + 1496UL) == 0U) { smc->mib.fddiSMTCF_State = 16U; goto ldv_43266; } else { } goto ldv_43266; switch_default: /* CIL Label */ { printk("\016SMT PANIC: code: %d, msg: %s\n", 106, (char *)"CFM : invalid state"); } goto ldv_43266; switch_break: /* CIL Label */ ; } ldv_43266: ; return; } } int cfm_get_mac_input(struct s_smc *smc ) { { return ((unsigned int )smc->mib.fddiSMTCF_State == 10U || (unsigned int )smc->mib.fddiSMTCF_State == 7U); } } int cfm_get_mac_output(struct s_smc *smc ) { { return ((unsigned int )smc->mib.fddiSMTCF_State == 10U || (unsigned int )smc->mib.fddiSMTCF_State == 12U); } } static char path_iso[24U] = { 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0}; static char path_wrap_a[24U] = { 0, 0, 0, 4, 0, 1, 0, 3, 0, 0, 0, 2, 0, 1, 0, 3, 0, 0, 0, 4, 0, 2, 0, 0}; static char path_wrap_b[24U] = { 0, 0, 0, 4, 0, 2, 0, 3, 0, 0, 0, 2, 0, 1, 0, 3, 0, 0, 0, 4, 0, 1, 0, 0}; static char path_thru[24U] = { 0, 0, 0, 4, 0, 1, 0, 3, 0, 0, 0, 2, 0, 1, 0, 3, 0, 0, 0, 4, 0, 2, 0, 3}; static char path_wrap_s[16U] = { 0, 0, 0, 4, 0, 1, 0, 3, 0, 0, 0, 2, 0, 1, 0, 3}; static char path_iso_s[16U] = { 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0}; int cem_build_path(struct s_smc *smc , char *to , int path_index ) { char *path ; int len ; { { if ((int )smc->mib.fddiSMTCF_State == 0) { goto case_0; } else { } if ((int )smc->mib.fddiSMTCF_State == 9) { goto case_9; } else { } if ((int )smc->mib.fddiSMTCF_State == 10) { goto case_10; } else { } if ((int )smc->mib.fddiSMTCF_State == 12) { goto case_12; } else { } if ((int )smc->mib.fddiSMTCF_State == 11) { goto case_11; } else { } goto switch_default; switch_default: /* CIL Label */ ; case_0: /* CIL Label */ path = (unsigned int )smc->s.sas != 0U ? (char *)(& path_iso_s) : (char *)(& path_iso); len = (unsigned int )smc->s.sas != 0U ? 16 : 24; goto ldv_43300; case_9: /* CIL Label */ path = (char *)(& path_wrap_a); len = 24; goto ldv_43300; case_10: /* CIL Label */ path = (char *)(& path_wrap_b); len = 24; goto ldv_43300; case_12: /* CIL Label */ path = (char *)(& path_thru); len = 24; goto ldv_43300; case_11: /* CIL Label */ path = (char *)(& path_wrap_s); len = 16; goto ldv_43300; switch_break: /* CIL Label */ ; } ldv_43300: { memcpy((void *)to, (void const *)path, (size_t )len); } return (len); } } void ecm(struct s_smc *smc , int event ) ; void ecm_init(struct s_smc *smc ) ; void smt_timer_stop(struct s_smc *smc , struct smt_timer *timer ) ; void sm_pm_ls_latch(struct s_smc *smc , int phy , int on_off ) ; void sm_pm_bypass_req(struct s_smc *smc , int mode ) ; int sm_pm_bypass_present(struct s_smc *smc ) ; int sm_pm_get_ls(struct s_smc *smc , int phy ) ; int pcm_get_s_port(struct s_smc *smc ) ; static void ecm_fsm(struct s_smc *smc , int cmd ) ; static void start_ecm_timer(struct s_smc *smc , u_long value , int event ) ; static void stop_ecm_timer(struct s_smc *smc ) ; static void prop_actions(struct s_smc *smc ) ; void ecm_init(struct s_smc *smc ) { { smc->e.path_test = 2U; smc->e.trace_prop = 0UL; smc->e.sb_flag = 0U; smc->mib.fddiSMTECMState = 16U; smc->e.ecm_line_state = 0U; return; } } void ecm(struct s_smc *smc , int event ) { int state ; { ldv_43238: { state = (int )smc->mib.fddiSMTECMState; ecm_fsm(smc, event); event = 0; } if (state != (int )smc->mib.fddiSMTECMState) { goto ldv_43238; } else { } { ecm_state_change(smc, (int )smc->mib.fddiSMTECMState); } return; } } static void ecm_fsm(struct s_smc *smc , int cmd ) { int ls_a ; int ls_b ; int p ; int tmp ; u_short tmp___0 ; { { tmp = sm_pm_bypass_present(smc); smc->mib.fddiSMTBypassPresent = (u_char )tmp; } if (cmd == 1) { smc->mib.fddiSMTRemoteDisconnectFlag = 0U; } else { } if (cmd == 1) { smc->e.DisconnectFlag = 0U; } else if (cmd == 2) { smc->e.DisconnectFlag = 1U; } else { } { if ((int )smc->mib.fddiSMTECMState == 16) { goto case_16; } else { } if ((int )smc->mib.fddiSMTECMState == 0) { goto case_0; } else { } if ((int )smc->mib.fddiSMTECMState == 17) { goto case_17; } else { } if ((int )smc->mib.fddiSMTECMState == 1) { goto case_1; } else { } if ((int )smc->mib.fddiSMTECMState == 18) { goto case_18; } else { } if ((int )smc->mib.fddiSMTECMState == 2) { goto case_2; } else { } if ((int )smc->mib.fddiSMTECMState == 19) { goto case_19; } else { } if ((int )smc->mib.fddiSMTECMState == 3) { goto case_3; } else { } if ((int )smc->mib.fddiSMTECMState == 20) { goto case_20; } else { } if ((int )smc->mib.fddiSMTECMState == 4) { goto case_4; } else { } if ((int )smc->mib.fddiSMTECMState == 21) { goto case_21; } else { } if ((int )smc->mib.fddiSMTECMState == 5) { goto case_5; } else { } if ((int )smc->mib.fddiSMTECMState == 22) { goto case_22; } else { } if ((int )smc->mib.fddiSMTECMState == 6) { goto case_6; } else { } if ((int )smc->mib.fddiSMTECMState == 23) { goto case_23; } else { } if ((int )smc->mib.fddiSMTECMState == 7) { goto case_7; } else { } goto switch_default; case_16: /* CIL Label */ { smc->e.path_test = 2U; smc->e.ecm_line_state = 0U; stop_ecm_timer(smc); smc->mib.fddiSMTECMState = (unsigned int )smc->mib.fddiSMTECMState & 65519U; } goto ldv_43248; case_0: /* CIL Label */ ; if ((cmd == 1 && (unsigned int )smc->mib.fddiSMTBypassPresent == 0U) && (unsigned int )smc->e.path_test == 2U) { smc->mib.fddiSMTECMState = 17U; goto ldv_43248; } else if (((cmd == 1 && (unsigned int )smc->e.path_test == 2U) && (unsigned int )smc->mib.fddiSMTBypassPresent != 0U) && (unsigned int )smc->s.sas == 0U) { smc->mib.fddiSMTECMState = 21U; goto ldv_43248; } else { } goto ldv_43248; case_17: /* CIL Label */ { stop_ecm_timer(smc); smc->e.trace_prop = 0UL; sm_ma_control(smc, 4); p = 0; } goto ldv_43252; ldv_43251: ; if ((unsigned int )smc->mib.p[p].fddiPORTHardwarePresent != 0U) { { queue_event(smc, p + 5, 1); } } else { } p = p + 1; ldv_43252: ; if (p <= 1) { goto ldv_43251; } else { } smc->mib.fddiSMTECMState = (unsigned int )smc->mib.fddiSMTECMState & 65519U; goto ldv_43248; case_1: /* CIL Label */ ; if (cmd == 3) { { prop_actions(smc); smc->mib.fddiSMTECMState = 18U; } goto ldv_43248; } else if (cmd == 2) { smc->mib.fddiSMTECMState = 19U; goto ldv_43248; } else { } goto ldv_43248; case_18: /* CIL Label */ { start_ecm_timer(smc, smc->mib.fddiSMTTrace_MaxExpiration / 12UL, 6); smc->mib.fddiSMTECMState = (unsigned int )smc->mib.fddiSMTECMState & 65519U; } goto ldv_43248; case_2: /* CIL Label */ ; if (cmd == 3) { { prop_actions(smc); smc->mib.fddiSMTECMState = 18U; } goto ldv_43248; } else if (cmd == 2) { smc->e.path_test = 5U; smc->mib.fddiSMTECMState = 19U; goto ldv_43248; } else if ((unsigned int )smc->e.path_test == 4U) { smc->mib.fddiSMTECMState = 19U; goto ldv_43248; } else if (cmd == 6) { smc->e.path_test = 4U; smc->mib.fddiSMTECMState = 19U; goto ldv_43248; } else { } goto ldv_43248; case_19: /* CIL Label */ { start_ecm_timer(smc, smc->s.ecm_td_min, 5); p = 0; } goto ldv_43259; ldv_43258: { queue_event(smc, p + 5, 2); p = p + 1; } ldv_43259: ; if (p <= 1) { goto ldv_43258; } else { } smc->mib.fddiSMTECMState = (unsigned int )smc->mib.fddiSMTECMState & 65519U; goto ldv_43248; case_3: /* CIL Label */ ; if ((cmd == 5 && (unsigned int )smc->mib.fddiSMTBypassPresent == 0U) && (unsigned int )smc->e.path_test != 4U) { smc->mib.fddiSMTECMState = 16U; goto ldv_43248; } else if (cmd == 5 && (unsigned int )smc->e.path_test == 4U) { smc->mib.fddiSMTECMState = 20U; goto ldv_43248; } else if (cmd == 1 && (unsigned int )smc->e.path_test == 2U) { smc->mib.fddiSMTECMState = 17U; goto ldv_43248; } else if (cmd == 2 && (unsigned int )smc->e.path_test == 4U) { smc->e.path_test = 5U; } else if ((cmd == 5 && (unsigned int )smc->mib.fddiSMTBypassPresent != 0U) && (unsigned int )smc->e.path_test != 4U) { smc->mib.fddiSMTECMState = 23U; goto ldv_43248; } else { } goto ldv_43248; case_20: /* CIL Label */ { stop_ecm_timer(smc); smc->e.path_test = 1U; start_ecm_timer(smc, smc->s.ecm_test_done, 9); smc->mib.fddiSMTECMState = (unsigned int )smc->mib.fddiSMTECMState & 65519U; } goto ldv_43248; case_4: /* CIL Label */ ; if (cmd == 9) { smc->e.path_test = 2U; } else { } if ((unsigned int )smc->e.path_test == 3U) { { tmp___0 = (u_short )((unsigned int )smc->srf.ring_status | 2048U); smc->srf.ring_status = tmp___0; ring_status_indication(smc, (u_long )tmp___0); } } else { } if ((unsigned int )smc->e.path_test == 3U && (unsigned int )smc->mib.fddiSMTBypassPresent == 0U) { smc->mib.fddiSMTECMState = 16U; goto ldv_43248; } else if (cmd == 2 && (unsigned int )smc->mib.fddiSMTBypassPresent == 0U) { smc->mib.fddiSMTECMState = 16U; goto ldv_43248; } else if ((unsigned int )smc->e.path_test == 2U) { smc->mib.fddiSMTECMState = 17U; goto ldv_43248; } else if ((unsigned int )smc->e.path_test == 3U && (unsigned int )smc->mib.fddiSMTBypassPresent != 0U) { smc->mib.fddiSMTECMState = 23U; goto ldv_43248; } else if (cmd == 2 && (unsigned int )smc->mib.fddiSMTBypassPresent != 0U) { smc->mib.fddiSMTECMState = 23U; goto ldv_43248; } else { } goto ldv_43248; case_21: /* CIL Label */ { sm_pm_bypass_req(smc, 1); start_ecm_timer(smc, smc->s.ecm_in_max, 8); smc->mib.fddiSMTECMState = (unsigned int )smc->mib.fddiSMTECMState & 65519U; } goto ldv_43248; case_5: /* CIL Label */ ; if (cmd == 8) { smc->mib.fddiSMTECMState = 22U; goto ldv_43248; } else if (cmd == 2) { smc->mib.fddiSMTECMState = 23U; goto ldv_43248; } else { } goto ldv_43248; case_22: /* CIL Label */ { start_ecm_timer(smc, smc->s.ecm_check_poll, 0); smc->e.ecm_line_state = 1U; sm_pm_ls_latch(smc, 0, 1); sm_pm_ls_latch(smc, 1, 1); smc->mib.fddiSMTECMState = (unsigned int )smc->mib.fddiSMTECMState & 65519U; } goto ldv_43248; case_6: /* CIL Label */ { ls_a = sm_pm_get_ls(smc, 0); ls_b = sm_pm_get_ls(smc, 1); } if ((ls_a == 12 || ls_a == 15) && (ls_b == 12 || ls_b == 15)) { smc->e.sb_flag = 0U; smc->e.ecm_line_state = 0U; smc->mib.fddiSMTECMState = 17U; goto ldv_43248; } else if ((unsigned int )smc->e.sb_flag == 0U && ((ls_a == 13 && ls_b == 12) || (ls_a == 12 && ls_b == 13))) { smc->e.sb_flag = 1U; } else if (cmd == 2) { smc->e.ecm_line_state = 0U; smc->mib.fddiSMTECMState = 23U; goto ldv_43248; } else { { start_ecm_timer(smc, smc->s.ecm_check_poll, 0); } } goto ldv_43248; case_23: /* CIL Label */ { sm_pm_bypass_req(smc, 0); start_ecm_timer(smc, smc->s.ecm_i_max, 7); smc->mib.fddiSMTECMState = (unsigned int )smc->mib.fddiSMTECMState & 65519U; } goto ldv_43248; case_7: /* CIL Label */ ; if (cmd == 7) { smc->mib.fddiSMTECMState = 16U; goto ldv_43248; } else if (cmd == 1 && (unsigned int )smc->e.path_test == 2U) { smc->mib.fddiSMTECMState = 21U; goto ldv_43248; } else { } goto ldv_43248; switch_default: /* CIL Label */ { printk("\016SMT PANIC: code: %d, msg: %s\n", 107, (char *)"ECM : invalid state"); } goto ldv_43248; switch_break: /* CIL Label */ ; } ldv_43248: ; return; } } static void prop_actions(struct s_smc *smc ) { int port_in ; int port_out ; u_short tmp ; { { port_in = 0; port_out = 0; tmp = (u_short )((unsigned int )smc->srf.ring_status | 4U); smc->srf.ring_status = tmp; ring_status_indication(smc, (u_long )tmp); } { if ((int )smc->s.sas == 1) { goto case_1; } else { } if ((int )smc->s.sas == 0) { goto case_0; } else { } if ((int )smc->s.sas == 2) { goto case_2; } else { } goto switch_break; case_1: /* CIL Label */ { port_out = pcm_get_s_port(smc); port_in = port_out; } goto ldv_43277; case_0: /* CIL Label */ { port_in = cfm_get_mac_input(smc); port_out = cfm_get_mac_output(smc); } goto ldv_43277; case_2: /* CIL Label */ { printk("\016SMT PANIC: code: %d, msg: %s\n", 108, (char *)"prop_actions : NAC in DAS CFM"); } return; switch_break: /* CIL Label */ ; } ldv_43277: ; if ((smc->e.trace_prop & 4UL) != 0UL) { { queue_event(smc, port_in + 5, 8); } } else if (((int )smc->e.trace_prop & 1) != 0 && port_out != 0) { { queue_event(smc, 6, 8); } } else if ((smc->e.trace_prop & 2UL) != 0UL && port_out != 1) { { queue_event(smc, 5, 8); } } else { smc->e.path_test = 4U; } smc->e.trace_prop = 0UL; return; } } static void start_ecm_timer(struct s_smc *smc , u_long value , int event ) { { { smt_timer_start(smc, & smc->e.ecm_timer, value, (unsigned long )(event | 65536)); } return; } } static void stop_ecm_timer(struct s_smc *smc ) { { if ((unsigned int )smc->e.ecm_timer.tm_active != 0U) { { smt_timer_stop(smc, & smc->e.ecm_timer); } } else { } return; } } void pcm(struct s_smc *smc , int const np , int event ) ; void pcm_init(struct s_smc *smc ) ; void pcm_state_change(struct s_smc *smc , int plc , int p_state ) ; void plc_clear_irq(struct s_smc *smc , int p ) ; void plc_irq(struct s_smc *smc , int np , unsigned int cmd ) ; static u_char const plcs_control_c_u[17U] = { 'P', 'L', 'C', '_', 'C', 'N', 'T', 'R', 'L', '_', 'C', '_', 'U', '=', '\000'}; static u_char const plcs_control_c_s[17U] = { 'P', 'L', 'C', '_', 'C', 'N', 'T', 'R', 'L', '_', 'C', '_', 'S', '=', '\001', '\002', '\000'}; static struct plt const pltm[8U] = { {6, 65048}, {7, 65244}, {8, 65296}, {9, 55771}, {11, 63094}, {12, 65389}, {13, 61473}, {0, 0}}; static int const plc_imsk_na = 636; static int const plc_imsk_act = 636; static void pcm_fsm(struct s_smc *smc , struct s_phy *phy , int cmd ) ; static void pc_rcode_actions(struct s_smc *smc , int bit , struct s_phy *phy ) ; static void pc_tcode_actions(struct s_smc *smc , int const bit , struct s_phy *phy ) ; static void reset_lem_struct(struct s_phy *phy ) ; static void plc_init(struct s_smc *smc , int p ) ; static void sm_ph_lem_start(struct s_smc *smc , int np , int threshold ) ; static void sm_ph_lem_stop(struct s_smc *smc , int np ) ; static void sm_ph_linestate(struct s_smc *smc , int phy , int ls ) ; static void real_init_plc(struct s_smc *smc ) ; static void start_pcm_timer0(struct s_smc *smc , u_long value , int event , struct s_phy *phy ) { { { phy->timer0_exp = 0U; smt_timer_start(smc, & phy->pcm_timer0, value, ((unsigned long )((int )phy->np + 5) << 16) | (unsigned long )event); } return; } } static void stop_pcm_timer0(struct s_smc *smc , struct s_phy *phy ) { { if ((unsigned int )phy->pcm_timer0.tm_active != 0U) { { smt_timer_stop(smc, & phy->pcm_timer0); } } else { } return; } } void pcm_init(struct s_smc *smc ) { int i ; int np ; struct s_phy *phy ; struct fddi_mib_p *mib ; { np = 0; phy = (struct s_phy *)(& smc->y); goto ldv_43340; ldv_43339: mib = phy->mib; mib->fddiPORTPCMState = 32U; phy->np = (u_char )np; { if ((int )smc->s.sas == 1) { goto case_1; } else { } if ((int )smc->s.sas == 0) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ mib->fddiPORTMy_Type = np == 0 ? 2U : 4U; mib->fddiPORTHardwarePresent = np == 0; (smc->y[1].mib)->fddiPORTPCMState = 0U; goto ldv_43315; case_0: /* CIL Label */ mib->fddiPORTMy_Type = np == 1; goto ldv_43315; switch_break: /* CIL Label */ ; } ldv_43315: phy->pmd_scramble = 0U; { if ((int )phy->pmd_type[1] == 80) { goto case_80; } else { } if ((int )phy->pmd_type[1] == 76) { goto case_76; } else { } if ((int )phy->pmd_type[1] == 68) { goto case_68; } else { } if ((int )phy->pmd_type[1] == 83) { goto case_83; } else { } if ((int )phy->pmd_type[1] == 85) { goto case_85; } else { } if ((int )phy->pmd_type[1] == 49) { goto case_49; } else { } if ((int )phy->pmd_type[1] == 50) { goto case_50; } else { } if ((int )phy->pmd_type[1] == 51) { goto case_51; } else { } if ((int )phy->pmd_type[1] == 52) { goto case_52; } else { } if ((int )phy->pmd_type[1] == 72) { goto case_72; } else { } if ((int )phy->pmd_type[1] == 73) { goto case_73; } else { } if ((int )phy->pmd_type[1] == 71) { goto case_71; } else { } goto switch_default; case_80: /* CIL Label */ mib->fddiPORTPMDClass = 0U; goto ldv_43318; case_76: /* CIL Label */ mib->fddiPORTPMDClass = 4U; goto ldv_43318; case_68: /* CIL Label */ mib->fddiPORTPMDClass = 5U; goto ldv_43318; case_83: /* CIL Label */ mib->fddiPORTPMDClass = 5U; phy->pmd_scramble = 1U; goto ldv_43318; case_85: /* CIL Label */ mib->fddiPORTPMDClass = 5U; phy->pmd_scramble = 1U; goto ldv_43318; case_49: /* CIL Label */ mib->fddiPORTPMDClass = 1U; goto ldv_43318; case_50: /* CIL Label */ mib->fddiPORTPMDClass = 2U; goto ldv_43318; case_51: /* CIL Label */ mib->fddiPORTPMDClass = 2U; goto ldv_43318; case_52: /* CIL Label */ mib->fddiPORTPMDClass = 1U; goto ldv_43318; case_72: /* CIL Label */ mib->fddiPORTPMDClass = 6U; goto ldv_43318; case_73: /* CIL Label */ mib->fddiPORTPMDClass = 5U; goto ldv_43318; case_71: /* CIL Label */ mib->fddiPORTPMDClass = 5U; goto ldv_43318; switch_default: /* CIL Label */ mib->fddiPORTPMDClass = 6U; goto ldv_43318; switch_break___0: /* CIL Label */ ; } ldv_43318: ; { if ((int )mib->fddiPORTMy_Type == 0) { goto case_0___0; } else { } if ((int )mib->fddiPORTMy_Type == 1) { goto case_1___0; } else { } if ((int )mib->fddiPORTMy_Type == 2) { goto case_2; } else { } if ((int )mib->fddiPORTMy_Type == 3) { goto case_3; } else { } goto switch_break___1; case_0___0: /* CIL Label */ mib->fddiPORTAvailablePaths = (u_char )((unsigned int )mib->fddiPORTAvailablePaths | 2U); mib->fddiPORTRequestedPaths[1] = 1U; mib->fddiPORTRequestedPaths[2] = 25U; mib->fddiPORTRequestedPaths[3] = 153U; goto ldv_43332; case_1___0: /* CIL Label */ mib->fddiPORTAvailablePaths = (u_char )((unsigned int )mib->fddiPORTAvailablePaths | 2U); mib->fddiPORTRequestedPaths[1] = 1U; mib->fddiPORTRequestedPaths[2] = 33U; mib->fddiPORTRequestedPaths[3] = 225U; goto ldv_43332; case_2: /* CIL Label */ mib->fddiPORTAvailablePaths = (u_char )((unsigned int )mib->fddiPORTAvailablePaths | 2U); mib->fddiPORTRequestedPaths[1] = 1U; mib->fddiPORTRequestedPaths[2] = 41U; mib->fddiPORTRequestedPaths[3] = 41U; goto ldv_43332; case_3: /* CIL Label */ mib->fddiPORTRequestedPaths[1] = 1U; mib->fddiPORTRequestedPaths[2] = 7U; mib->fddiPORTRequestedPaths[3] = 0U; goto ldv_43332; switch_break___1: /* CIL Label */ ; } ldv_43332: phy->pc_lem_fail = 0U; mib->fddiPORTPCMStateX = mib->fddiPORTPCMState; mib->fddiPORTLCTFail_Ct = 0UL; mib->fddiPORTBS_Flag = 0U; mib->fddiPORTCurrentPath = 0U; mib->fddiPORTNeighborType = 4U; phy->ls_flag = 0U; phy->rc_flag = 0U; phy->tc_flag = 0U; phy->td_flag = 0U; if (np > 1) { phy->phy_name = (char )((unsigned int )((unsigned char )np) + 46U); } else { phy->phy_name = (char )((unsigned int )((unsigned char )np) + 65U); } { phy->wc_flag = 0U; memset((void *)(& phy->lem), 0, 24UL); reset_lem_struct(phy); memset((void *)(& phy->plc), 0, 128UL); phy->plc.p_state = 0U; i = 0; } goto ldv_43337; ldv_43336: phy->t_next[i] = 0UL; i = i + 1; ldv_43337: ; if (i <= 9) { goto ldv_43336; } else { } np = np + 1; phy = phy + 1; ldv_43340: ; if (np <= 1) { goto ldv_43339; } else { } { real_init_plc(smc); } return; } } void init_plc(struct s_smc *smc ) { { return; } } static void real_init_plc(struct s_smc *smc ) { int p ; { p = 0; goto ldv_43350; ldv_43349: { plc_init(smc, p); p = p + 1; } ldv_43350: ; if (p <= 1) { goto ldv_43349; } else { } return; } } static void plc_init(struct s_smc *smc , int p ) { int i ; int rev ; unsigned int tmp ; { { iowrite16(0, p == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16(3, p == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16(0, p == 0 ? smc->hw.iop + 1536UL : smc->hw.iop + 896UL); tmp = ioread16(p == 0 ? smc->hw.iop + 1600UL : smc->hw.iop + 960UL); rev = (int )tmp & 63488; } if (rev != 0) { if ((unsigned int )smc->y[p].pmd_scramble != 0U) { { iowrite16((int )((u16 )((int )((short )plcs_control_c_s[14]) | (int )((short )((int )plcs_control_c_s[15] << 8)))), p == 0 ? smc->hw.iop + 1576UL : smc->hw.iop + 936UL); } } else { { iowrite16((int )((u16 )((int )((short )plcs_control_c_u[14]) | (int )((short )((int )plcs_control_c_u[15] << 8)))), p == 0 ? smc->hw.iop + 1576UL : smc->hw.iop + 936UL); } } } else { } i = 0; goto ldv_43359; ldv_43358: { iowrite16((int )((u16 )pltm[i].para), p == 0 ? smc->hw.iop + (unsigned long )((int )(pltm[i].timer << 2) | 1536) : smc->hw.iop + (unsigned long )((int )(pltm[i].timer << 2) | 896)); i = i + 1; } ldv_43359: ; if ((int )pltm[i].timer != 0) { goto ldv_43358; } else { } { ioread16(p == 0 ? smc->hw.iop + 1628UL : smc->hw.iop + 988UL); plc_clear_irq(smc, p); iowrite16((int )((u16 )plc_imsk_na), p == 0 ? smc->hw.iop + 1544UL : smc->hw.iop + 904UL); } if ((unsigned int )smc->s.sas == 1U && p == 0) { { iowrite16(128, p == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); } } else { } return; } } static void plc_go_state(struct s_smc *smc , int p , int state ) { void *port ; int val ; unsigned int tmp ; { { port = p == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL; tmp = ioread16(port); val = (int )tmp & -8; iowrite16((int )((u16 )val), port); iowrite16((int )((u16 )((int )((short )val) | (int )((short )state))), port); } return; } } int sm_pm_get_ls(struct s_smc *smc , int phy ) { int state ; unsigned int tmp ; { { tmp = ioread16(phy == 0 ? smc->hw.iop + 1600UL : smc->hw.iop + 960UL); state = (int )tmp & 224; } { if (state == 128) { goto case_128; } else { } if (state == 160) { goto case_160; } else { } if (state == 192) { goto case_192; } else { } if (state == 96) { goto case_96; } else { } if (state == 224) { goto case_224; } else { } if (state == 32) { goto case_32; } else { } goto switch_default; case_128: /* CIL Label */ state = 12; goto ldv_43374; case_160: /* CIL Label */ state = 14; goto ldv_43374; case_192: /* CIL Label */ state = 15; goto ldv_43374; case_96: /* CIL Label */ ; case_224: /* CIL Label */ state = 13; goto ldv_43374; case_32: /* CIL Label */ state = 16; goto ldv_43374; switch_default: /* CIL Label */ state = 17; switch_break: /* CIL Label */ ; } ldv_43374: ; return (state); } } static int plc_send_bits(struct s_smc *smc , struct s_phy *phy , int len ) { int np ; int n ; int i ; unsigned int tmp ; { np = (int )phy->np; i = len + -1; n = 0; goto ldv_43390; ldv_43389: n = (n << 1) | (int )phy->t_val[(int )phy->bitn + i]; i = i - 1; ldv_43390: ; if (i >= 0) { goto ldv_43389; } else { } { tmp = ioread16(np == 0 ? smc->hw.iop + 1604UL : smc->hw.iop + 964UL); } if ((tmp & 64U) != 0U) { return (1); } else { } { iowrite16((int )((unsigned int )((u16 )len) + 65535U), np == 0 ? smc->hw.iop + 1552UL : smc->hw.iop + 912UL); iowrite16((int )((u16 )n), np == 0 ? smc->hw.iop + 1548UL : smc->hw.iop + 908UL); } return (0); } } void plc_config_mux(struct s_smc *smc , int mux ) { unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; { if ((unsigned int )smc->s.sas != 0U) { return; } else { } if (mux == 3) { { tmp = ioread16(smc->hw.iop + 1540UL); iowrite16((int )((unsigned int )((u16 )tmp) | 32768U), smc->hw.iop + 1540UL); tmp___0 = ioread16(smc->hw.iop + 1536UL); iowrite16((int )((unsigned int )((u16 )tmp___0) | 4U), smc->hw.iop + 1536UL); } } else { { tmp___1 = ioread16(smc->hw.iop + 1540UL); iowrite16((int )((u16 )tmp___1) & 32767, smc->hw.iop + 1540UL); tmp___2 = ioread16(smc->hw.iop + 1536UL); iowrite16((int )((u16 )tmp___2) & 65531, smc->hw.iop + 1536UL); } } { tmp___3 = ioread16(smc->hw.iop + 900UL); iowrite16((int )((u16 )tmp___3) & 32767, smc->hw.iop + 900UL); tmp___4 = ioread16(smc->hw.iop + 896UL); iowrite16((int )((u16 )tmp___4) & 65531, smc->hw.iop + 896UL); } return; } } void pcm(struct s_smc *smc , int const np , int event ) { int state ; int oldstate ; struct s_phy *phy ; struct fddi_mib_p *mib ; { if ((int )np != 0 && (unsigned int )smc->s.sas == 1U) { return; } else { } phy = (struct s_phy *)(& smc->y) + (unsigned long )np; mib = phy->mib; oldstate = (int )mib->fddiPORTPCMState; ldv_43405: { state = (int )mib->fddiPORTPCMState; pcm_fsm(smc, phy, event); event = 0; } if (state != (int )mib->fddiPORTPCMState) { goto ldv_43405; } else { } if (state == 5) { mib->fddiPORTPCMStateX = 3U; } else { mib->fddiPORTPCMStateX = (SMTEnum )state; } if ((int )mib->fddiPORTPCMState != oldstate && (oldstate == 8 || (unsigned int )mib->fddiPORTPCMState == 8U)) { { smt_srf_event(smc, 3, (int )phy->np + 1, 0); } } else { } { pcm_state_change(smc, np, state); } return; } } static void pcm_fsm(struct s_smc *smc , struct s_phy *phy , int cmd ) { int i ; int np ; struct s_plc *plc ; struct fddi_mib_p *mib ; u_short plc_rev ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; int tmp___8 ; int tmp___9 ; unsigned int tmp___10 ; int tmp___11 ; int tmp___12 ; unsigned int tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; unsigned int tmp___17 ; unsigned int tmp___18 ; unsigned int tmp___19 ; unsigned int tmp___20 ; { np = (int )phy->np; plc = & phy->plc; mib = phy->mib; { if (cmd == 2) { goto case_2; } else { } if (cmd == 1) { goto case_1; } else { } if (cmd == 11) { goto case_11; } else { } if (cmd == 24) { goto case_24; } else { } goto switch_break; case_2: /* CIL Label */ ; if ((unsigned int )mib->fddiPORTPCMState != 9U) { mib->fddiPORTPCMState = 32U; } else { } return; case_1: /* CIL Label */ ; if ((unsigned int )mib->fddiPORTPCMState != 9U) { mib->fddiPORTPCMState = 33U; } else { } return; case_11: /* CIL Label */ mib->fddiPORTPCMState = 41U; return; case_24: /* CIL Label */ { stop_pcm_timer0(smc, phy); tmp = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((u16 )tmp) & 65527, np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); } return; switch_break: /* CIL Label */ ; } { if ((int )mib->fddiPORTPCMState == 32) { goto case_32; } else { } if ((int )mib->fddiPORTPCMState == 0) { goto case_0; } else { } if ((int )mib->fddiPORTPCMState == 33) { goto case_33; } else { } if ((int )mib->fddiPORTPCMState == 1) { goto case_1___0; } else { } if ((int )mib->fddiPORTPCMState == 34) { goto case_34; } else { } if ((int )mib->fddiPORTPCMState == 2) { goto case_2___0; } else { } if ((int )mib->fddiPORTPCMState == 3) { goto case_3; } else { } if ((int )mib->fddiPORTPCMState == 4) { goto case_4; } else { } if ((int )mib->fddiPORTPCMState == 37) { goto case_37; } else { } if ((int )mib->fddiPORTPCMState == 5) { goto case_5; } else { } if ((int )mib->fddiPORTPCMState == 38) { goto case_38; } else { } if ((int )mib->fddiPORTPCMState == 6) { goto case_6___0; } else { } if ((int )mib->fddiPORTPCMState == 7) { goto case_7___0; } else { } if ((int )mib->fddiPORTPCMState == 40) { goto case_40; } else { } if ((int )mib->fddiPORTPCMState == 8) { goto case_8; } else { } if ((int )mib->fddiPORTPCMState == 41) { goto case_41; } else { } if ((int )mib->fddiPORTPCMState == 9) { goto case_9; } else { } goto switch_default; case_32: /* CIL Label */ { stop_pcm_timer0(smc, phy); iowrite16(0, np == 0 ? smc->hw.iop + 1536UL : smc->hw.iop + 896UL); tmp___0 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((u16 )tmp___0) & 65519, np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); tmp___1 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((u16 )tmp___1) & 65527, np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); sm_ph_lem_stop(smc, np); phy->cf_loop = 0U; phy->cf_join = 0U; queue_event(smc, 2, np + 3); plc_go_state(smc, np, 3); mib->fddiPORTConnectState = 0U; mib->fddiPORTPCMState = (unsigned int )mib->fddiPORTPCMState & 65503U; } goto ldv_43422; case_0: /* CIL Label */ ; if (cmd == 7) { mib->fddiPORTPCMState = 41U; goto ldv_43422; } else { } goto ldv_43422; case_33: /* CIL Label */ { stop_pcm_timer0(smc, phy); mib->fddiPORTPCMState = (unsigned int )mib->fddiPORTPCMState & 65503U; plc_go_state(smc, np, 0); tmp___2 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((u16 )tmp___2) & 65519, np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); tmp___3 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((u16 )tmp___3) & 65527, np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); sm_ph_lem_stop(smc, np); plc_go_state(smc, np, 3); } if ((unsigned int )mib->fddiPORTPC_Withhold == 0U) { mib->fddiPORTConnectState = 1U; } else { } { phy->cf_loop = 0U; phy->cf_join = 0U; queue_event(smc, 2, np + 3); phy->ls_flag = 0U; phy->pc_mode = 0U; phy->bitn = 0U; i = 0; } goto ldv_43426; ldv_43425: { pc_tcode_actions(smc, i, phy); i = i + 1; } ldv_43426: ; if (i <= 2) { goto ldv_43425; } else { } { iowrite16((int )((u16 )plc_imsk_na), np == 0 ? smc->hw.iop + 1544UL : smc->hw.iop + 904UL); ioread16(np == 0 ? smc->hw.iop + 1628UL : smc->hw.iop + 988UL); tmp___4 = ioread16(np == 0 ? smc->hw.iop + 1600UL : smc->hw.iop + 960UL); plc_rev = (unsigned int )((u_short )tmp___4) & 63488U; } if ((unsigned int )plc_rev != 30720U) { { tmp___5 = plc_send_bits(smc, phy, 3); } if (tmp___5 != 0) { return; } else { } } else { } { plc_go_state(smc, np, 1); tmp___6 = ioread16(np == 0 ? smc->hw.iop + 1600UL : smc->hw.iop + 960UL); } if ((tmp___6 & 63488U) != 0U) { { tmp___7 = ioread16(np == 0 ? smc->hw.iop + 1604UL : smc->hw.iop + 964UL); } if ((tmp___7 & 64U) == 0U) { { plc_send_bits(smc, phy, 3); } } else { } } else { } mib->fddiPORTPCMState = 37U; plc->p_state = 1U; plc->p_bits = 3U; plc->p_start = 0U; goto ldv_43422; case_1___0: /* CIL Label */ ; goto ldv_43422; case_34: /* CIL Label */ { plc_go_state(smc, np, 2); mib->fddiPORTPCMState = (unsigned int )mib->fddiPORTPCMState & 65503U; } goto ldv_43422; case_2___0: /* CIL Label */ ; goto ldv_43422; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; goto ldv_43422; case_37: /* CIL Label */ mib->fddiPORTPCMState = (unsigned int )mib->fddiPORTPCMState & 65503U; case_5: /* CIL Label */ ; if (cmd != 5 && cmd != 24) { goto ldv_43422; } else { } { if ((int )plc->p_state == 1) { goto case_1___1; } else { } if ((int )plc->p_state == 2) { goto case_2___1; } else { } if ((int )plc->p_state == 3) { goto case_3___0; } else { } if ((int )plc->p_state == 4) { goto case_4___0; } else { } if ((int )plc->p_state == 5) { goto case_5___0; } else { } if ((int )plc->p_state == 6) { goto case_6; } else { } goto switch_break___1; case_1___1: /* CIL Label */ i = 0; goto ldv_43437; ldv_43436: { pc_rcode_actions(smc, i, phy); i = i + 1; } ldv_43437: ; if (i <= 2) { goto ldv_43436; } else { } { pc_tcode_actions(smc, 3, phy); plc->p_state = 2U; plc->p_bits = 1U; plc->p_start = 3U; phy->bitn = 3U; tmp___8 = plc_send_bits(smc, phy, 1); } if (tmp___8 != 0) { return; } else { } goto ldv_43439; case_2___1: /* CIL Label */ { pc_rcode_actions(smc, 3, phy); i = 4; } goto ldv_43442; ldv_43441: { pc_tcode_actions(smc, i, phy); i = i + 1; } ldv_43442: ; if (i <= 6) { goto ldv_43441; } else { } { plc->p_state = 3U; plc->p_bits = 3U; plc->p_start = 4U; phy->bitn = 4U; tmp___9 = plc_send_bits(smc, phy, 3); } if (tmp___9 != 0) { return; } else { } goto ldv_43439; case_3___0: /* CIL Label */ i = 3; goto ldv_43446; ldv_43445: { pc_rcode_actions(smc, i, phy); i = i + 1; } ldv_43446: ; if (i <= 6) { goto ldv_43445; } else { } { plc->p_state = 4U; plc->p_bits = 0U; plc->p_start = 7U; phy->bitn = 7U; sm_ph_lem_start(smc, np, (int )smc->s.lct_short); tmp___10 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); i = (int )tmp___10 & -97; iowrite16((int )((u16 )i), np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((u16 )((int )((short )i) | 96)), np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); } goto ldv_43439; case_4___0: /* CIL Label */ { pc_tcode_actions(smc, 7, phy); plc->p_state = 5U; plc->p_bits = 1U; plc->p_start = 7U; phy->bitn = 7U; tmp___11 = plc_send_bits(smc, phy, 1); } if (tmp___11 != 0) { return; } else { } goto ldv_43439; case_5___0: /* CIL Label */ { pc_rcode_actions(smc, 7, phy); } if ((unsigned int )phy->t_val[7] != 0U || (unsigned int )phy->r_val[7] != 0U) { { plc_go_state(smc, np, 3); mib->fddiPORTPCMState = 33U; } goto ldv_43439; } else { } i = 8; goto ldv_43451; ldv_43450: { pc_tcode_actions(smc, i, phy); i = i + 1; } ldv_43451: ; if (i <= 9) { goto ldv_43450; } else { } { plc->p_state = 6U; plc->p_bits = 2U; plc->p_start = 8U; phy->bitn = 8U; tmp___12 = plc_send_bits(smc, phy, 2); } if (tmp___12 != 0) { return; } else { } goto ldv_43439; case_6: /* CIL Label */ i = 8; goto ldv_43455; ldv_43454: { pc_rcode_actions(smc, i, phy); i = i + 1; } ldv_43455: ; if (i <= 9) { goto ldv_43454; } else { } plc->p_state = 7U; mib->fddiPORTPCMState = 38U; goto ldv_43439; switch_break___1: /* CIL Label */ ; } ldv_43439: ; goto ldv_43422; case_38: /* CIL Label */ ; if (((unsigned int )smc->s.sas == 0U && np == 1) && ((unsigned int )smc->y[0].pc_mode == 2U || (unsigned int )smc->y[1].pc_mode == 2U)) { { tmp___13 = ioread16(np == 0 ? smc->hw.iop + 1536UL : smc->hw.iop + 896UL); iowrite16((int )((unsigned int )((u16 )tmp___13) | 4U), np == 0 ? smc->hw.iop + 1536UL : smc->hw.iop + 896UL); tmp___14 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((unsigned int )((u16 )tmp___14) | 32768U), np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); } } else { } { tmp___15 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((unsigned int )((u16 )tmp___15) | 16U), np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); tmp___16 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((unsigned int )((u16 )tmp___16) | 16U), np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); mib->fddiPORTPCMState = (unsigned int )mib->fddiPORTPCMState & 65503U; cmd = 0; } case_6___0: /* CIL Label */ ; { if ((int )plc->p_state == 7) { goto case_7; } else { } goto switch_break___2; case_7: /* CIL Label */ ; if ((unsigned int )phy->cf_join == 0U) { { phy->cf_join = 1U; queue_event(smc, 2, np + 3); } } else { } if (cmd == 4) { mib->fddiPORTPCMState = 40U; } else { } if (cmd == 8) { mib->fddiPORTPCMState = 34U; goto ldv_43460; } else { } goto ldv_43460; switch_break___2: /* CIL Label */ ; } ldv_43460: ; goto ldv_43422; case_7___0: /* CIL Label */ ; goto ldv_43422; case_40: /* CIL Label */ { sm_ph_lem_start(smc, (int )phy->np, 255); phy->tr_flag = 0U; mib->fddiPORTConnectState = 3U; iowrite16((int )((u16 )plc_imsk_act), np == 0 ? smc->hw.iop + 1544UL : smc->hw.iop + 904UL); mib->fddiPORTPCMState = (unsigned int )mib->fddiPORTPCMState & 65503U; } goto ldv_43422; case_8: /* CIL Label */ ; if (cmd == 8) { mib->fddiPORTPCMState = 34U; goto ldv_43422; } else { } goto ldv_43422; case_41: /* CIL Label */ { stop_pcm_timer0(smc, phy); tmp___17 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((u16 )tmp___17) & 65519, np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); tmp___18 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((u16 )tmp___18) & 65527, np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); tmp___19 = ioread16(np == 0 ? smc->hw.iop + 1544UL : smc->hw.iop + 904UL); iowrite16((int )((u16 )tmp___19) & 57343, np == 0 ? smc->hw.iop + 1544UL : smc->hw.iop + 904UL); sm_ph_lem_stop(smc, np); phy->cf_loop = 0U; phy->cf_join = 0U; queue_event(smc, 2, np + 3); plc_go_state(smc, np, 3); mib->fddiPORTConnectState = 0U; tmp___20 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((unsigned int )((u16 )tmp___20) | 4U), np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); sm_ph_linestate(smc, np, (int )mib->fddiPORTMaint_LS + 12); iowrite16(8, np == 0 ? smc->hw.iop + 1536UL : smc->hw.iop + 896UL); mib->fddiPORTPCMState = (unsigned int )mib->fddiPORTPCMState & 65503U; } goto ldv_43422; case_9: /* CIL Label */ ; if (cmd == 10) { mib->fddiPORTPCMState = 32U; goto ldv_43422; } else { } goto ldv_43422; switch_default: /* CIL Label */ { printk("\016SMT PANIC: code: %d, msg: %s\n", 118, (char *)"PCM : invalid state"); } goto ldv_43422; switch_break___0: /* CIL Label */ ; } ldv_43422: ; return; } } static void sm_ph_linestate(struct s_smc *smc , int phy , int ls ) { int cntrl ; unsigned int tmp ; { { tmp = ioread16(phy == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); cntrl = (int )((tmp & 4294965496U) | 7U); } { if (ls == 12) { goto case_12; } else { } if (ls == 14) { goto case_14; } else { } if (ls == 15) { goto case_15; } else { } if (ls == 13) { goto case_13; } else { } if (ls == 16) { goto case_16; } else { } goto switch_default; case_12: /* CIL Label */ cntrl = cntrl; goto ldv_43474; case_14: /* CIL Label */ cntrl = cntrl | 768; goto ldv_43474; case_15: /* CIL Label */ cntrl = cntrl | 512; goto ldv_43474; switch_default: /* CIL Label */ ; case_13: /* CIL Label */ cntrl = cntrl | 256; goto ldv_43474; case_16: /* CIL Label */ cntrl = cntrl | 1536; goto ldv_43474; switch_break: /* CIL Label */ ; } ldv_43474: { iowrite16((int )((u16 )cntrl), phy == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); } return; } } static void reset_lem_struct(struct s_phy *phy ) { struct lem_counter *lem ; { lem = & phy->lem; (phy->mib)->fddiPORTLer_Estimate = 15U; lem->lem_float_ber = 1500U; return; } } static void lem_evaluate(struct s_smc *smc , struct s_phy *phy ) { int ber ; u_long errors ; struct lem_counter *lem ; struct fddi_mib_p *mib ; int cond ; unsigned int tmp ; { lem = & phy->lem; mib = phy->mib; if ((unsigned int )lem->lem_on == 0U) { return; } else { } { tmp = ioread16((unsigned int )phy->np == 0U ? smc->hw.iop + 1640UL : smc->hw.iop + 1000UL); errors = (u_long )tmp; lem->lem_errors = lem->lem_errors + errors; mib->fddiPORTLem_Ct = mib->fddiPORTLem_Ct + errors; errors = lem->lem_errors; } if (errors == 0UL) { ber = 15; } else if (errors <= 9UL) { ber = 9; } else if (errors <= 99UL) { ber = 8; } else if (errors <= 999UL) { ber = 7; } else if (errors <= 9999UL) { ber = 6; } else if (errors <= 99999UL) { ber = 5; } else if (errors <= 999999UL) { ber = 4; } else if (errors <= 9999999UL) { ber = 3; } else if (errors <= 99999999UL) { ber = 2; } else if (errors <= 999999999UL) { ber = 1; } else { ber = 0; } ber = ber * 100; lem->lem_float_ber = (unsigned int )lem->lem_float_ber * 7U + (unsigned int )((u_short )ber) * 3U; lem->lem_float_ber = (u_short )((unsigned int )lem->lem_float_ber / 10U); mib->fddiPORTLer_Estimate = (u_char )((unsigned int )lem->lem_float_ber / 100U); if ((unsigned int )mib->fddiPORTLer_Estimate <= 3U) { mib->fddiPORTLer_Estimate = 4U; } else { } lem->lem_errors = 0UL; cond = (int )mib->fddiPORTLer_Estimate <= (int )mib->fddiPORTLer_Alarm; if (cond != (int )mib->fddiPORTLerFlag) { { smt_srf_event(smc, 11, (int )phy->np + 1, cond); } } else { } if ((int )mib->fddiPORTLer_Estimate <= (int )mib->fddiPORTLer_Cutoff) { { phy->pc_lem_fail = 1U; mib->fddiPORTLem_Reject_Ct = mib->fddiPORTLem_Reject_Ct + 1UL; lem->lem_float_ber = (unsigned int )lem->lem_float_ber + 200U; queue_event(smc, (int )phy->np + 5, 1); } } else { } return; } } void sm_lem_evaluate(struct s_smc *smc ) { int np ; { np = 0; goto ldv_43498; ldv_43497: { lem_evaluate(smc, (struct s_phy *)(& smc->y) + (unsigned long )np); np = np + 1; } ldv_43498: ; if (np <= 1) { goto ldv_43497; } else { } return; } } static void lem_check_lct(struct s_smc *smc , struct s_phy *phy ) { struct lem_counter *lem ; struct fddi_mib_p *mib ; int errors ; unsigned int tmp ; { { lem = & phy->lem; mib = phy->mib; phy->pc_lem_fail = 0U; tmp = ioread16((unsigned int )phy->np == 0U ? smc->hw.iop + 1640UL : smc->hw.iop + 1000UL); errors = (int )tmp; lem->lem_errors = lem->lem_errors + (u_long )errors; mib->fddiPORTLem_Ct = mib->fddiPORTLem_Ct + (Counter )errors; } if (lem->lem_errors != 0UL) { { if ((int )phy->lc_test == 1) { goto case_1; } else { } if ((int )phy->lc_test == 2) { goto case_2; } else { } if ((int )phy->lc_test == 3) { goto case_3; } else { } if ((int )phy->lc_test == 4) { goto case_4; } else { } goto switch_break; case_1: /* CIL Label */ ; if (lem->lem_errors >= smc->s.lct_short) { phy->pc_lem_fail = 1U; } else { } goto ldv_43508; case_2: /* CIL Label */ ; if (lem->lem_errors >= smc->s.lct_medium) { phy->pc_lem_fail = 1U; } else { } goto ldv_43508; case_3: /* CIL Label */ ; if (lem->lem_errors >= smc->s.lct_long) { phy->pc_lem_fail = 1U; } else { } goto ldv_43508; case_4: /* CIL Label */ ; if (lem->lem_errors >= smc->s.lct_extended) { phy->pc_lem_fail = 1U; } else { } goto ldv_43508; switch_break: /* CIL Label */ ; } ldv_43508: ; } else { } if ((unsigned int )phy->pc_lem_fail != 0U) { mib->fddiPORTLCTFail_Ct = mib->fddiPORTLCTFail_Ct + 1UL; mib->fddiPORTLem_Reject_Ct = mib->fddiPORTLem_Reject_Ct + 1UL; } else { mib->fddiPORTLCTFail_Ct = 0UL; } return; } } static void sm_ph_lem_start(struct s_smc *smc , int np , int threshold ) { struct lem_counter *lem ; unsigned int tmp ; { { lem = & smc->y[np].lem; lem->lem_on = 1U; lem->lem_errors = 0UL; iowrite16((int )((u16 )threshold), np == 0 ? smc->hw.iop + 1556UL : smc->hw.iop + 916UL); ioread16(np == 0 ? smc->hw.iop + 1640UL : smc->hw.iop + 1000UL); tmp = ioread16(np == 0 ? smc->hw.iop + 1544UL : smc->hw.iop + 904UL); iowrite16((int )((unsigned int )((u16 )tmp) | 8192U), np == 0 ? smc->hw.iop + 1544UL : smc->hw.iop + 904UL); } return; } } static void sm_ph_lem_stop(struct s_smc *smc , int np ) { struct lem_counter *lem ; unsigned int tmp ; { { lem = & smc->y[np].lem; lem->lem_on = 0U; tmp = ioread16(np == 0 ? smc->hw.iop + 1544UL : smc->hw.iop + 904UL); iowrite16((int )((u16 )tmp) & 57343, np == 0 ? smc->hw.iop + 1544UL : smc->hw.iop + 904UL); } return; } } void sm_pm_ls_latch(struct s_smc *smc , int phy , int on_off ) { { phy = phy; on_off = on_off; return; } } static void pc_rcode_actions(struct s_smc *smc , int bit , struct s_phy *phy ) { struct fddi_mib_p *mib ; u_short tmp ; u_short tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; { mib = phy->mib; bit = bit + 1; { if (bit == 0) { goto case_0; } else { } if (bit == 1) { goto case_1; } else { } if (bit == 2) { goto case_2; } else { } if (bit == 3) { goto case_3; } else { } if (bit == 4) { goto case_4; } else { } if (bit == 5) { goto case_5; } else { } if (bit == 6) { goto case_6; } else { } if (bit == 7) { goto case_7; } else { } if (bit == 8) { goto case_8; } else { } if (bit == 9) { goto case_9; } else { } if (bit == 10) { goto case_10; } else { } goto switch_break; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; goto ldv_43537; case_3: /* CIL Label */ ; if ((unsigned int )phy->r_val[1] == 0U && (unsigned int )phy->r_val[2] == 0U) { mib->fddiPORTNeighborType = 0U; } else if ((unsigned int )phy->r_val[1] == 0U && (unsigned int )phy->r_val[2] == 1U) { mib->fddiPORTNeighborType = 1U; } else if ((unsigned int )phy->r_val[1] == 1U && (unsigned int )phy->r_val[2] == 0U) { mib->fddiPORTNeighborType = 2U; } else if ((unsigned int )phy->r_val[1] == 1U && (unsigned int )phy->r_val[2] == 1U) { mib->fddiPORTNeighborType = 3U; } else { } goto ldv_43537; case_4: /* CIL Label */ ; if (*((unsigned int *)mib + 0UL) == 196611U) { { mib->fddiPORTPC_Withhold = 1U; tmp = (u_short )((unsigned int )smc->srf.ring_status | 4U); smc->srf.ring_status = tmp; ring_status_indication(smc, (u_long )tmp); } } else if ((unsigned int )phy->t_val[3] != 0U || (unsigned int )phy->r_val[3] != 0U) { mib->fddiPORTPC_Withhold = 0U; if ((unsigned int )mib->fddiPORTMy_Type == 3U || (unsigned int )mib->fddiPORTNeighborType == 3U) { phy->pc_mode = 2U; } else { phy->pc_mode = 1U; } { all_selection_criteria(smc); } if ((unsigned int )phy->wc_flag != 0U) { mib->fddiPORTPC_Withhold = 3U; } else { } } else { { mib->fddiPORTPC_Withhold = 2U; tmp___0 = (u_short )((unsigned int )smc->srf.ring_status | 4U); smc->srf.ring_status = tmp___0; ring_status_indication(smc, (u_long )tmp___0); } } phy->twisted = (u_char )((unsigned int )mib->fddiPORTMy_Type - 2U > 1U && (int )mib->fddiPORTNeighborType == (int )mib->fddiPORTMy_Type); goto ldv_43537; case_5: /* CIL Label */ ; goto ldv_43537; case_6: /* CIL Label */ ; if ((unsigned int )phy->t_val[4] != 0U || (unsigned int )phy->r_val[4] != 0U) { if (((unsigned int )phy->t_val[4] != 0U && (unsigned int )phy->t_val[5] != 0U) || ((unsigned int )phy->r_val[4] != 0U && (unsigned int )phy->r_val[5] != 0U)) { phy->lc_test = 4U; } else { phy->lc_test = 3U; } } else if ((unsigned int )phy->t_val[5] != 0U || (unsigned int )phy->r_val[5] != 0U) { phy->lc_test = 2U; } else { phy->lc_test = 1U; } { if ((int )phy->lc_test == 1) { goto case_1___0; } else { } if ((int )phy->lc_test == 2) { goto case_2___0; } else { } if ((int )phy->lc_test == 3) { goto case_3___0; } else { } if ((int )phy->lc_test == 4) { goto case_4___0; } else { } goto switch_break___0; case_1___0: /* CIL Label */ { iowrite16(63094, (unsigned int )phy->np == 0U ? smc->hw.iop + 1580UL : smc->hw.iop + 940UL); phy->t_next[7] = smc->s.pcm_lc_short; } goto ldv_43543; case_2___0: /* CIL Label */ { iowrite16(41122, (unsigned int )phy->np == 0U ? smc->hw.iop + 1580UL : smc->hw.iop + 940UL); phy->t_next[7] = smc->s.pcm_lc_medium; } goto ldv_43543; case_3___0: /* CIL Label */ { tmp___1 = ioread16((unsigned int )phy->np == 0U ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((unsigned int )((u16 )tmp___1) | 8U), (unsigned int )phy->np == 0U ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); phy->t_next[7] = smc->s.pcm_lc_long; } goto ldv_43543; case_4___0: /* CIL Label */ { tmp___2 = ioread16((unsigned int )phy->np == 0U ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); iowrite16((int )((unsigned int )((u16 )tmp___2) | 8U), (unsigned int )phy->np == 0U ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); phy->t_next[7] = smc->s.pcm_lc_extended; } goto ldv_43543; switch_break___0: /* CIL Label */ ; } ldv_43543: ; if (phy->t_next[7] > smc->s.pcm_lc_medium) { { start_pcm_timer0(smc, phy->t_next[7], 24, phy); } } else { } phy->t_next[9] = smc->s.pcm_t_next_9; goto ldv_43537; case_7: /* CIL Label */ ; if ((unsigned int )phy->t_val[6] != 0U) { phy->cf_loop = 1U; } else { } phy->td_flag = 1U; goto ldv_43537; case_8: /* CIL Label */ ; if ((unsigned int )phy->t_val[7] != 0U || (unsigned int )phy->r_val[7] != 0U) { { queue_event(smc, (int )phy->np + 5, 1); } } else { } goto ldv_43537; case_9: /* CIL Label */ ; if ((unsigned int )phy->t_val[8] != 0U || (unsigned int )phy->r_val[8] != 0U) { if ((unsigned int )phy->t_val[8] != 0U) { phy->cf_loop = 1U; } else { } phy->td_flag = 1U; } else { } goto ldv_43537; case_10: /* CIL Label */ ; if ((unsigned int )phy->r_val[9] != 0U) { mib->fddiPORTMacIndicated.R_val = 1U; } else { mib->fddiPORTMacIndicated.R_val = 0U; } goto ldv_43537; switch_break: /* CIL Label */ ; } ldv_43537: ; return; } } static void pc_tcode_actions(struct s_smc *smc , int const bit , struct s_phy *phy ) { int np ; struct fddi_mib_p *mib ; int type ; int ne ; int policy ; { np = (int )phy->np; mib = phy->mib; { if (bit == 0) { goto case_0; } else { } if (bit == 1) { goto case_1; } else { } if (bit == 2) { goto case_2; } else { } if (bit == 3) { goto case_3; } else { } if (bit == 4) { goto case_4; } else { } if (bit == 5) { goto case_5; } else { } if (bit == 6) { goto case_6; } else { } if (bit == 7) { goto case_7; } else { } if (bit == 8) { goto case_8; } else { } if (bit == 9) { goto case_9; } else { } goto switch_break; case_0: /* CIL Label */ phy->t_val[0] = 0U; goto ldv_43559; case_1: /* CIL Label */ ; if ((unsigned int )mib->fddiPORTMy_Type - 2U <= 1U) { phy->t_val[1] = 1U; } else { phy->t_val[1] = 0U; } goto ldv_43559; case_2: /* CIL Label */ ; if ((unsigned int )mib->fddiPORTMy_Type == 1U || (unsigned int )mib->fddiPORTMy_Type == 3U) { phy->t_val[2] = 1U; } else { phy->t_val[2] = 0U; } goto ldv_43559; case_3: /* CIL Label */ type = (int )mib->fddiPORTMy_Type; ne = (int )mib->fddiPORTNeighborType; policy = (int )smc->mib.fddiSMTConnectionPolicy; phy->t_val[3] = 1U; { if (type == 0) { goto case_0___0; } else { } if (type == 1) { goto case_1___0; } else { } if (type == 2) { goto case_2___0; } else { } if (type == 3) { goto case_3___0; } else { } goto switch_break___0; case_0___0: /* CIL Label */ ; if (((((policy & 1) != 0 && ne == 0) || ((policy & 2) != 0 && ne == 1)) || ((policy & 4) != 0 && ne == 2)) || ((policy & 8) != 0 && ne == 3)) { phy->t_val[3] = 0U; } else { } goto ldv_43567; case_1___0: /* CIL Label */ ; if (((((policy & 16) != 0 && ne == 0) || ((policy & 32) != 0 && ne == 1)) || ((policy & 64) != 0 && ne == 2)) || ((policy & 128) != 0 && ne == 3)) { phy->t_val[3] = 0U; } else { } goto ldv_43567; case_2___0: /* CIL Label */ ; if (((((policy & 256) != 0 && ne == 0) || ((policy & 512) != 0 && ne == 1)) || ((policy & 1024) != 0 && ne == 2)) || ((policy & 2048) != 0 && ne == 3)) { phy->t_val[3] = 0U; } else { } goto ldv_43567; case_3___0: /* CIL Label */ ; if ((((ne == 3 || ((policy & 4096) != 0 && ne == 0)) || ((policy & 8192) != 0 && ne == 1)) || ((policy & 16384) != 0 && ne == 2)) || ((policy & 32768) != 0 && ne == 3)) { phy->t_val[3] = 0U; } else { } goto ldv_43567; switch_break___0: /* CIL Label */ ; } ldv_43567: ; if ((((((type | ne) == 0 || (type == 0 && ne == 2)) || (type == 1 && ne == 1)) || (type == 1 && ne == 2)) || (type == 2 && ne == 0)) || (type == 2 && ne == 1)) { { smt_srf_event(smc, 4, (int )phy->np + 1, 0); } } else { } goto ldv_43559; case_4: /* CIL Label */ ; if ((unsigned int )mib->fddiPORTPC_Withhold == 0U) { if ((unsigned int )phy->pc_lem_fail != 0U) { phy->t_val[4] = 1U; phy->t_val[5] = 0U; } else { phy->t_val[4] = 0U; if (mib->fddiPORTLCTFail_Ct != 0UL) { phy->t_val[5] = 1U; } else { phy->t_val[5] = 0U; } if ((unsigned int )phy->wc_flag != 0U) { phy->t_val[5] = 1U; } else { } } mib->fddiPORTConnectState = 1U; } else { mib->fddiPORTConnectState = 2U; phy->t_val[4] = 1U; phy->t_val[5] = 1U; } goto ldv_43559; case_5: /* CIL Label */ ; goto ldv_43559; case_6: /* CIL Label */ phy->t_val[6] = 0U; goto ldv_43559; case_7: /* CIL Label */ { phy->cf_loop = 0U; lem_check_lct(smc, phy); } if ((unsigned int )phy->pc_lem_fail != 0U) { phy->t_val[7] = 1U; } else { phy->t_val[7] = 0U; } goto ldv_43559; case_8: /* CIL Label */ phy->t_val[8] = 0U; goto ldv_43559; case_9: /* CIL Label */ phy->cf_loop = 0U; if ((unsigned int )mib->fddiPORTPC_Withhold != 0U || ((unsigned int )smc->s.sas == 0U && (unsigned int )phy->wc_flag != 0U)) { { queue_event(smc, np + 5, 1); } goto ldv_43559; } else { } phy->t_val[9] = 0U; { if ((int )smc->s.sas == 0) { goto case_0___1; } else { } if ((int )smc->s.sas == 1) { goto case_1___1; } else { } goto switch_break___1; case_0___1: /* CIL Label */ ; if ((unsigned int )phy->pc_mode == 2U) { if (np == 1 || (np == 0 && (unsigned int )(smc->y[1].mib)->fddiPORTConnectState != 3U)) { phy->t_val[9] = 1U; } else { } } else if (np == 1) { phy->t_val[9] = 1U; } else { } goto ldv_43578; case_1___1: /* CIL Label */ ; if (np == 0) { phy->t_val[9] = 1U; } else { } goto ldv_43578; switch_break___1: /* CIL Label */ ; } ldv_43578: mib->fddiPORTMacIndicated.T_val = phy->t_val[9]; goto ldv_43559; switch_break: /* CIL Label */ ; } ldv_43559: ; return; } } int pcm_status_twisted(struct s_smc *smc ) { int twist ; { twist = 0; if ((unsigned int )smc->s.sas != 0U) { return (0); } else { } if ((unsigned int )smc->y[0].twisted != 0U && (unsigned int )(smc->y[0].mib)->fddiPORTPCMState == 8U) { twist = twist | 1; } else { } if ((unsigned int )smc->y[1].twisted != 0U && (unsigned int )(smc->y[1].mib)->fddiPORTPCMState == 8U) { twist = twist | 2; } else { } return (twist); } } void pcm_status_state(struct s_smc *smc , int np , int *type , int *state , int *remote , int *mac ) { struct s_phy *phy ; struct fddi_mib_p *mib ; { phy = (struct s_phy *)(& smc->y) + (unsigned long )np; mib = phy->mib; *mac = 0; *type = (int )mib->fddiPORTMy_Type; *state = (int )mib->fddiPORTConnectState; *remote = (int )mib->fddiPORTNeighborType; { if ((int )mib->fddiPORTPCMState == 8) { goto case_8; } else { } goto switch_break; case_8: /* CIL Label */ *mac = (int )mib->fddiPORTMacIndicated.R_val; goto ldv_43595; switch_break: /* CIL Label */ ; } ldv_43595: ; return; } } int pcm_rooted_station(struct s_smc *smc ) { int n ; { n = 0; goto ldv_43601; ldv_43600: ; if ((unsigned int )(smc->y[n].mib)->fddiPORTPCMState == 8U && (unsigned int )(smc->y[n].mib)->fddiPORTNeighborType == 3U) { return (0); } else { } n = n + 1; ldv_43601: ; if (n <= 1) { goto ldv_43600; } else { } return (1); } } void plc_irq(struct s_smc *smc , int np , unsigned int cmd ) { struct s_phy *phy ; struct s_plc *plc ; int n ; int corr_mask ; int i ; unsigned int tmp ; int j ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; int reason ; unsigned int tmp___3 ; unsigned int tmp___4 ; { phy = (struct s_phy *)(& smc->y) + (unsigned long )np; plc = & phy->plc; if (np >= (int )smc->s.numphys) { plc->soft_err = plc->soft_err + 1UL; return; } else { } if ((cmd & 512U) != 0U) { if (plc->ebuf_cont == 0UL && (unsigned int )(phy->mib)->fddiPORTPCMState == 8U) { (phy->mib)->fddiPORTEBError_Ct = (phy->mib)->fddiPORTEBError_Ct + 1UL; } else { } plc->ebuf_err = plc->ebuf_err + 1UL; if (plc->ebuf_cont <= 1000UL) { plc->ebuf_cont = plc->ebuf_cont + 1UL; } else { } if (plc->ebuf_cont == 1000UL) { { tmp = ioread16(np == 0 ? smc->hw.iop + 1600UL : smc->hw.iop + 960UL); } if ((tmp & 63488U) == 30720U) { { corr_mask = 124; iowrite16((int )((u16 )corr_mask), np == 0 ? smc->hw.iop + 1544UL : smc->hw.iop + 904UL); queue_event(smc, 1, 2); printk("\016SMT PANIC: code: %d, msg: %s\n", 136, (char *)"Elasticity Buffer hang-up"); drv_reset_indication(smc); } } else { } } else { } } else { plc->ebuf_cont = 0UL; } if ((cmd & 1024U) != 0U) { plc->phyinv = plc->phyinv + 1UL; } else { } if ((cmd & 2048U) != 0U) { plc->vsym_ctr = plc->vsym_ctr + 1UL; } else { } if ((cmd & 4096U) != 0U) { plc->mini_ctr = plc->mini_ctr + 1UL; } else { } if ((cmd & 8192U) != 0U) { { tmp___0 = ioread16(np == 0 ? smc->hw.iop + 1556UL : smc->hw.iop + 916UL); j = (int )tmp___0; tmp___1 = ioread16(np == 0 ? smc->hw.iop + 1640UL : smc->hw.iop + 1000UL); i = (int )tmp___1; } if (i < j) { i = i + 256; } else { } if ((unsigned int )phy->lem.lem_on != 0U) { phy->lem.lem_errors = phy->lem.lem_errors + (u_long )i; (phy->mib)->fddiPORTLem_Ct = (phy->mib)->fddiPORTLem_Ct + (Counter )i; } else { } } else { } if ((cmd & 128U) != 0U) { plc->tpc_exp = plc->tpc_exp + 1UL; } else { } if ((cmd & 2U) != 0U) { { tmp___2 = ioread16(np == 0 ? smc->hw.iop + 1540UL : smc->hw.iop + 900UL); } { if ((tmp___2 & 30720U) == 2048U) { goto case_2048; } else { } if ((tmp___2 & 30720U) == 4096U) { goto case_4096; } else { } if ((tmp___2 & 30720U) == 8192U) { goto case_8192; } else { } if ((tmp___2 & 30720U) == 16384U) { goto case_16384; } else { } goto switch_break; case_2048: /* CIL Label */ phy->curr_ls = 13U; goto ldv_43615; case_4096: /* CIL Label */ phy->curr_ls = 15U; goto ldv_43615; case_8192: /* CIL Label */ phy->curr_ls = 14U; goto ldv_43615; case_16384: /* CIL Label */ phy->curr_ls = 12U; goto ldv_43615; switch_break: /* CIL Label */ ; } ldv_43615: ; } else { } if ((cmd & 32U) != 0U) { { tmp___3 = ioread16(np == 0 ? smc->hw.iop + 1604UL : smc->hw.iop + 964UL); reason = (int )tmp___3 & 7; } { if (reason == 1) { goto case_1; } else { } if (reason == 2) { goto case_2; } else { } if (reason == 3) { goto case_3; } else { } if (reason == 4) { goto case_4; } else { } if (reason == 5) { goto case_5; } else { } if (reason == 6) { goto case_6; } else { } goto switch_break___0; case_1: /* CIL Label */ plc->b_pcs = plc->b_pcs + 1UL; goto ldv_43621; case_2: /* CIL Label */ plc->b_tpc = plc->b_tpc + 1UL; goto ldv_43621; case_3: /* CIL Label */ plc->b_tne = plc->b_tne + 1UL; goto ldv_43621; case_4: /* CIL Label */ plc->b_qls = plc->b_qls + 1UL; goto ldv_43621; case_5: /* CIL Label */ plc->b_ils = plc->b_ils + 1UL; goto ldv_43621; case_6: /* CIL Label */ plc->b_hls = plc->b_hls + 1UL; goto ldv_43621; switch_break___0: /* CIL Label */ ; } ldv_43621: ; if ((unsigned int )smc->e.DisconnectFlag == 0U) { { queue_event(smc, np + 5, 1); } } else { } return; } else { } if ((cmd & 4U) != 0U) { { queue_event(smc, np + 5, 5); tmp___4 = ioread16(np == 0 ? smc->hw.iop + 1624UL : smc->hw.iop + 984UL); n = (int )tmp___4; i = 0; } goto ldv_43628; ldv_43627: phy->r_val[(int )plc->p_start + i] = (unsigned int )((u_char )n) & 1U; n = n >> 1; i = i + 1; ldv_43628: ; if (i < (int )plc->p_bits) { goto ldv_43627; } else { } } else if ((cmd & 64U) != 0U) { { queue_event(smc, np + 5, 4); } } else { } if ((cmd & 8U) != 0U) { if ((unsigned int )phy->tr_flag == 0U) { { phy->tr_flag = 1U; smc->e.trace_prop = smc->e.trace_prop | (u_long )(1 << np); queue_event(smc, 1, 3); } } else { } } else { } if ((cmd & 16U) != 0U && (unsigned int )(phy->mib)->fddiPORTPCMState == 2U) { if ((unsigned int )smc->e.path_test == 2U) { { smc->e.path_test = 4U; queue_event(smc, 1, 4); } } else { } } else { } if ((cmd & 256U) != 0U) { if ((unsigned int )(phy->mib)->fddiPORTPCMState == 8U) { if ((unsigned int )phy->tr_flag == 0U) { { queue_event(smc, np + 5, 1); } return; } else { } } else { } } else { } return; } } extern int memcmp(void const * , void const * , size_t ) ; void smt_add_para(struct s_smc *smc , struct s_pcon *pcon , u_short para , int index , int local ) ; int smt_set_mac_opvalues(struct s_smc *smc ) ; void ess_para_change(struct s_smc *smc ) ; static int smt_authorize(struct s_smc *smc , struct smt_header *sm ) ; static int smt_check_set_count(struct s_smc *smc , struct smt_header *sm ) ; static struct s_p_tab const *smt_get_ptab(u_short para ) ; static int smt_mib_phys(struct s_smc *smc ) ; static int smt_set_para(struct s_smc *smc , struct smt_para *pa , int index , int local , int set ) ; static Mbuf *smt_build_pmf_response(struct s_smc *smc , struct smt_header *req , int set , int local ) ; static int port_to_mib(struct s_smc *smc , int p ) ; static struct s_p_tab const p_tab[142U] = { {4106U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {4107U, 1U, 58U, {'8', '\000'}}, {4109U, 1U, 66U, {'S', '\000'}}, {4110U, 1U, 68U, {'S', '\000'}}, {4111U, 1U, 70U, {'S', '\000'}}, {4112U, 1U, 72U, {'D', '\000'}}, {4113U, 2U, 104U, {'D', '\000'}}, {4114U, 1U, 136U, {'S', '\000'}}, {4116U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {4117U, 1U, 138U, {'B', '\000'}}, {4118U, 1U, 139U, {'B', '\000'}}, {4119U, 1U, 140U, {'B', '\000'}}, {4120U, 1U, 141U, {'B', '\000'}}, {4121U, 1U, 142U, {'S', '\000'}}, {4122U, 2U, 144U, {'w', 'S', '\000'}}, {4123U, 2U, 146U, {'w', 'S', '\000'}}, {4125U, 2U, 148U, {'w', 'S', '\000'}}, {4126U, 2U, 150U, {'b', 'B', '\000'}}, {4127U, 2U, 152U, {'l', 'L', '\000'}}, {4128U, 1U, 160U, {'I', 'I', '\000'}}, {4129U, 1U, 164U, {'I', '\000'}}, {4130U, 1U, 166U, {'F', '\000'}}, {4136U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {4137U, 1U, 168U, {'E', '\000'}}, {4138U, 1U, 170U, {'E', '\000'}}, {4140U, 1U, 174U, {'F', '\000'}}, {4141U, 1U, 172U, {'E', '\000'}}, {4142U, 1U, 175U, {'F', '\000'}}, {4146U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {4147U, 1U, 176U, {'P', '\000'}}, {4148U, 1U, 184U, {'P', '\000'}}, {4149U, 1U, 192U, {'4', 'P', '\000'}}, {4150U, 1U, 208U, {'8', '\000'}}, {4156U, 4U, 0U, {'w', 'S', '\000'}}, {4336U, 2U, 0U, {'8', '\000'}}, {4337U, 2U, 8U, {'8', '\000'}}, {4338U, 2U, 16U, {'l', 'L', '\000'}}, {4339U, 2U, 24U, {'l', 'L', '\000'}}, {4340U, 2U, 32U, {'l', 'L', '\000'}}, {4341U, 2U, 40U, {'l', 'L', '\000'}}, {4342U, 2U, 48U, {'l', 'L', '\000'}}, {4343U, 2U, 56U, {'w', 'S', '\000'}}, {8202U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {8203U, 1U, 0U, {'S', '\000'}}, {8205U, 1U, 8U, {'T', '\000'}}, {8206U, 1U, 16U, {'T', '\000'}}, {8212U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {8214U, 1U, 27U, {'B', '\000'}}, {8215U, 1U, 28U, {'S', '\000'}}, {8216U, 1U, 30U, {'A', '\000'}}, {8217U, 1U, 36U, {'A', '\000'}}, {8218U, 1U, 42U, {'A', '\000'}}, {8219U, 1U, 48U, {'A', '\000'}}, {8221U, 1U, 54U, {'E', '\000'}}, {8224U, 2U, 56U, {'w', 'S', '\000'}}, {8225U, 1U, 58U, {'E', '\000'}}, {8226U, 1U, 60U, {'S', '\000'}}, {8232U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {8233U, 1U, 62U, {'A', '\000'}}, {8242U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {8243U, 1U, 88U, {'T', '\000'}}, {8244U, 1U, 96U, {'T', '\000'}}, {8245U, 1U, 112U, {'T', '\000'}}, {8246U, 1U, 128U, {'T', '\000'}}, {8248U, 1U, 136U, {'T', '\000'}}, {8249U, 1U, 144U, {'T', '\000'}}, {8250U, 1U, 152U, {'T', '\000'}}, {8251U, 1U, 160U, {'T', '\000'}}, {8252U, 1U, 168U, {'T', '\000'}}, {8253U, 1U, 176U, {'T', '\000'}}, {8254U, 1U, 184U, {'T', '\000'}}, {8262U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {8263U, 1U, 192U, {'C', '\000'}}, {8264U, 1U, 200U, {'C', '\000'}}, {8265U, 1U, 208U, {'C', '\000'}}, {8266U, 1U, 216U, {'C', '\000'}}, {8273U, 1U, 224U, {'C', '\000'}}, {8274U, 1U, 232U, {'C', '\000'}}, {8275U, 1U, 240U, {'C', '\000'}}, {8276U, 1U, 248U, {'C', '\000'}}, {8278U, 1U, 256U, {'C', '\000'}}, {8282U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {8287U, 2U, 320U, {'w', 'S', '\000'}}, {8288U, 1U, 322U, {'S', '\000'}}, {8292U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {8295U, 2U, 324U, {'w', 'S', '\000'}}, {8297U, 1U, 326U, {'S', '\000'}}, {8302U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {8303U, 1U, 328U, {'S', '\000'}}, {8304U, 1U, 330U, {'F', '\000'}}, {8305U, 1U, 331U, {'F', '\000'}}, {8306U, 1U, 332U, {'F', '\000'}}, {8307U, 1U, 333U, {'F', '\000'}}, {8308U, 1U, 334U, {'F', '\000'}}, {8309U, 1U, 335U, {'F', '\000'}}, {8310U, 2U, 336U, {'b', 'F', '\000'}}, {8432U, 8U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {8433U, 2U, 72U, {'l', 'T', '\000'}}, {12810U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {12811U, 1U, 0U, {'r', '\000'}}, {12815U, 2U, 8U, {'l', '4', '\000'}}, {12816U, 2U, 16U, {'l', '4', '\000'}}, {12818U, 1U, 0U, {'\000'}}, {12819U, 2U, 24U, {'l', 'T', '\000'}}, {12820U, 2U, 32U, {'l', 'L', '\000'}}, {12821U, 2U, 40U, {'l', 'T', '\000'}}, {12822U, 2U, 48U, {'l', 'T', '\000'}}, {12823U, 2U, 56U, {'l', 'T', '\000'}}, {16394U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {16396U, 1U, 0U, {'E', '\000'}}, {16397U, 1U, 2U, {'E', '\000'}}, {16398U, 2U, 4U, {'b', 'B', '\000'}}, {16399U, 1U, 5U, {'2', '\000'}}, {16400U, 1U, 8U, {'E', '\000'}}, {16401U, 2U, 10U, {'l', '4', '\000'}}, {16402U, 1U, 14U, {'S', '\000'}}, {16403U, 1U, 16U, {'B', '\000'}}, {16406U, 1U, 18U, {'E', '\000'}}, {16407U, 1U, 17U, {'B', '\000'}}, {16413U, 1U, 20U, {'R', '\000'}}, {16414U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {16415U, 2U, 22U, {'w', 'E', '\000'}}, {16417U, 1U, 26U, {'F', '\000'}}, {16418U, 1U, 24U, {'E', '\000'}}, {16424U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {16425U, 1U, 40U, {'C', '\000'}}, {16426U, 1U, 32U, {'C', '\000'}}, {16434U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {16435U, 1U, 72U, {'F', '\000'}}, {16436U, 1U, 56U, {'C', '\000'}}, {16437U, 1U, 64U, {'C', '\000'}}, {16442U, 2U, 73U, {'b', 'B', '\000'}}, {16443U, 2U, 74U, {'b', 'B', '\000'}}, {16444U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {16445U, 1U, 76U, {'E', '\000'}}, {16446U, 1U, 80U, {'E', '\000'}}, {16447U, 1U, 82U, {'E', '\000'}}, {16448U, 1U, 85U, {'F', '\000'}}, {16449U, 1U, 84U, {'F', '\000'}}, {16454U, 4U, 0U, {'w', 'S', '\000'}}, {0U, 16U, (unsigned short)0, {(char)0, (char)0, (char)0}}, {0U, (unsigned char)0, (unsigned short)0, {(char)0, (char)0, (char)0}}}; void smt_pmf_received_pack(struct s_smc *smc , Mbuf *mb , int local ) { struct smt_header *sm ; Mbuf *reply ; { { sm = (struct smt_header *)(& mb->m_data) + (unsigned long )mb->m_off; smt_start_watchdog(smc); } if ((unsigned int )sm->smt_class - 8U <= 1U) { { reply = smt_build_pmf_response(smc, sm, (unsigned int )sm->smt_class == 9U, local); } if ((unsigned long )reply != (unsigned long )((Mbuf *)0)) { { sm = (struct smt_header *)(& reply->m_data) + (unsigned long )reply->m_off; smt_send_frame(smc, reply, 65, local); } } else { } } else { } return; } } static Mbuf *smt_build_pmf_response(struct s_smc *smc , struct smt_header *req , int set , int local ) { Mbuf *mb ; struct smt_header *smt ; struct smt_para *pa ; struct smt_p_reason *res ; struct s_p_tab const *pt ; int len ; int index ; int idx_end ; int error ; int range ; struct s_pcon pcon ; struct s_pcon set_pcon ; int tmp ; int tmp___0 ; int st ; { { mb = smt_get_mbuf(smc); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return (mb); } else { } smt = (struct smt_header *)(& mb->m_data) + (unsigned long )mb->m_off; smt->smt_dest = req->smt_source; smt->smt_class = req->smt_class; smt->smt_type = 3U; smt->smt_version = 2U; smt->smt_tid = req->smt_tid; smt->smt_pad = 0U; smt->smt_len = 0U; pcon.pc_len = 4332; pcon.pc_err = 0; pcon.pc_badset = 0; pcon.pc_p = (void *)smt + 1U; error = 0; if (set != 0) { if (local == 0) { { tmp___0 = smt_authorize(smc, req); } if (tmp___0 != 0) { error = 9; } else { goto _L; } } else { _L: /* CIL Label */ { tmp = smt_check_set_count(smc, req); } if (tmp != 0) { pcon.pc_badset = 4; } else { } } } else { } { res = (struct smt_p_reason *)pcon.pc_p; smt_add_para(smc, & pcon, 18, 0, 0); smt_add_para(smc, & pcon, 4147, 0, 0); set_pcon = pcon; smt_add_para(smc, & pcon, 4149, 0, 0); smt_add_para(smc, & pcon, 4150, 0, 0); pcon.pc_err = error; len = (int )req->smt_len; pa = (struct smt_para *)req + 1U; } goto ldv_43293; ldv_43292: ; if ((unsigned long )((unsigned short )len) < (unsigned long )pa->p_len + 4UL || ((int )pa->p_len & 3) != 0) { pcon.pc_err = 10; goto ldv_43280; } else { } range = (int )pa->p_type & 61440; if (range == 8192 || (range == 12288 || range == 16384)) { index = (int )*((u_char *)pa + 7U); idx_end = index; if (set == 0 && (unsigned int )pa->p_len != 4U) { pcon.pc_err = 10; goto ldv_43280; } else { } if ((index | set) == 0) { { if (range == 8192) { goto case_8192; } else { } if (range == 12288) { goto case_12288; } else { } if (range == 16384) { goto case_16384; } else { } goto switch_break; case_8192: /* CIL Label */ index = 1; idx_end = index; goto ldv_43282; case_12288: /* CIL Label */ index = 1; idx_end = index + 1; goto ldv_43282; case_16384: /* CIL Label */ index = 1; idx_end = index + 1; if ((unsigned int )smc->s.sas == 1U) { idx_end = 1; } else { } goto ldv_43282; switch_break: /* CIL Label */ ; } ldv_43282: ; } else { } } else { if (set == 0 && (unsigned int )pa->p_len != 0U) { pcon.pc_err = 10; goto ldv_43280; } else { } index = 0; idx_end = 0; } goto ldv_43291; ldv_43290: { pt = smt_get_ptab((int )pa->p_type); } if ((unsigned long )pt != (unsigned long )((struct s_p_tab const *)0) && ((unsigned int )((unsigned char )pt->p_access) == 16U && set == 0)) { pt = pt + 1; goto ldv_43286; ldv_43285: { smt_add_para(smc, & pcon, (int )pt->p_num, index, local); pt = pt + 1; } ldv_43286: ; if ((unsigned int )pt->p_access - 1U <= 1U) { goto ldv_43285; } else { } } else if ((unsigned int )pa->p_type != 33U && (set == 0 || (unsigned int )pa->p_type != 4149U)) { if (pcon.pc_badset != 0) { { smt_add_para(smc, & pcon, (int )pa->p_type, index, local); } } else if (set != 0) { { st = smt_set_para(smc, pa, index, local, 1); smt_add_para(smc, & pcon, (int )pa->p_type, index, local); pcon.pc_err = st; } } else { if ((unsigned long )pt != (unsigned long )((struct s_p_tab const *)0) && (unsigned int )((unsigned char )pt->p_access) == 4U) { pcon.pc_err = 5; } else { } { smt_add_para(smc, & pcon, (int )pa->p_type, index, local); } } } else { } if (pcon.pc_err != 0) { goto ldv_43289; } else { } index = index + 1; ldv_43291: ; if (index <= idx_end) { goto ldv_43290; } else { } ldv_43289: len = (int )(((unsigned int )len - (unsigned int )pa->p_len) - 4U); pa = pa + ((unsigned long )pa->p_len + 4UL); ldv_43293: ; if (pcon.pc_err == 0 && len > 0) { goto ldv_43292; } else { } ldv_43280: smt->smt_len = 4332U - (unsigned int )((u_short )pcon.pc_len); mb->m_len = (u_int )smt->smt_len + 32U; res->rdf_reason = pcon.pc_badset != 0 ? (u_int )pcon.pc_badset : (pcon.pc_err != 0 ? (u_int )pcon.pc_err : 3U); if (set != 0 && res->rdf_reason == 3U) { { smc->mib.fddiSMTSetCount.count = smc->mib.fddiSMTSetCount.count + 1UL; smt_set_timestamp(smc, (u_char *)(& smc->mib.fddiSMTSetCount.timestamp)); smc->mib.fddiSMTLastSetStationId = req->smt_sid; smt_add_para(smc, & set_pcon, 4149, 0, 0); smt_add_para(smc, & set_pcon, 4150, 0, 0); } } else { } return (mb); } } static int smt_authorize(struct s_smc *smc , struct smt_header *sm ) { struct smt_para *pa ; int i ; char *p ; int tmp ; void *tmp___0 ; int tmp___1 ; { p = (char *)(& smc->mib.fddiPRPMFStation); i = 0; goto ldv_43302; ldv_43301: i = i + 1; ldv_43302: ; if (i <= 7 && (int )((signed char )*(p + (unsigned long )i)) == 0) { goto ldv_43301; } else { } if (i != 8) { { tmp = memcmp((void const *)(& sm->smt_sid), (void const *)(& smc->mib.fddiPRPMFStation), 8UL); } if (tmp != 0) { return (1); } else { } } else { } p = (char *)(& smc->mib.fddiPRPMFPasswd); i = 0; goto ldv_43305; ldv_43304: i = i + 1; ldv_43305: ; if (i <= 7 && (int )((signed char )*(p + (unsigned long )i)) == 0) { goto ldv_43304; } else { } if (i != 8) { { tmp___0 = sm_to_para(smc, sm, 33); pa = (struct smt_para *)tmp___0; } if ((unsigned long )pa == (unsigned long )((struct smt_para *)0)) { return (1); } else { } if ((unsigned int )pa->p_len != 8U) { return (1); } else { } { tmp___1 = memcmp((void const *)pa + 1U, (void const *)(& smc->mib.fddiPRPMFPasswd), 8UL); } if (tmp___1 != 0) { return (1); } else { } } else { } return (0); } } static int smt_check_set_count(struct s_smc *smc , struct smt_header *sm ) { struct smt_para *pa ; struct smt_p_setcount *sc ; void *tmp ; int tmp___0 ; { { tmp = sm_to_para(smc, sm, 4149); pa = (struct smt_para *)tmp; } if ((unsigned long )pa != (unsigned long )((struct smt_para *)0)) { sc = (struct smt_p_setcount *)pa; if (smc->mib.fddiSMTSetCount.count != (Counter )sc->count) { return (1); } else { { tmp___0 = memcmp((void const *)(& smc->mib.fddiSMTSetCount.timestamp), (void const *)(& sc->timestamp), 8UL); } if (tmp___0 != 0) { return (1); } else { } } } else { } return (0); } } void smt_add_para(struct s_smc *smc , struct s_pcon *pcon , u_short para , int index , int local ) { struct smt_para *pa ; struct s_p_tab const *pt ; struct fddi_mib_m *mib_m ; struct fddi_mib_p *mib_p ; int len ; int plen ; char *from ; char *to ; char const *swap ; char c ; int range ; char *mib_addr ; int mac ; int path ; int port ; int sp_len ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; struct smt_p_1048 *sp ; struct smt_p_208c *sp___0 ; struct smt_p_208d *sp___1 ; struct smt_p_208e *sp___2 ; struct smt_p_208f *sp___3 ; struct smt_p_2090 *sp___4 ; struct smt_p_4050 *sp___5 ; struct smt_p_4051 *sp___6 ; struct smt_p_4052 *sp___7 ; struct smt_p_4053 *sp___8 ; char *tmp___3 ; char *tmp___4 ; char *tmp___5 ; char *tmp___6 ; char *tmp___7 ; char *tmp___8 ; char *tmp___9 ; char *tmp___10 ; char *tmp___11 ; char *tmp___12 ; char *tmp___13 ; char *tmp___14 ; char *tmp___15 ; char *tmp___16 ; char *tmp___17 ; char *tmp___18 ; char *tmp___19 ; char *tmp___20 ; char *tmp___21 ; char *tmp___22 ; char *tmp___23 ; char *tmp___24 ; char *tmp___25 ; char *tmp___26 ; char *tmp___27 ; char const *tmp___28 ; { mib_m = (struct fddi_mib_m *)0; mib_p = (struct fddi_mib_p *)0; if (pcon->pc_err != 0) { return; } else { } { pt = smt_get_ptab((int )para); } if ((unsigned long )pt != (unsigned long )((struct s_p_tab const *)0) && (unsigned int )((unsigned char )pt->p_access) == 4U) { return; } else { } to = (char *)pcon->pc_p; len = pcon->pc_len; plen = len; pa = (struct smt_para *)to; to = to + 4UL; len = (int )((unsigned int )len - 4U); range = (int )para & 61440; if (range == 8192 || (range == 12288 || range == 16384)) { if (len <= 3) { goto wrong_error; } else { } *to = 0; *(to + 1UL) = 0; *(to + 2UL) = 0; *(to + 3UL) = (char )index; len = len + -4; to = to + 4UL; } else { } mac = index + -1; path = index + -1; port = index + -1; { if (range == 4096) { goto case_4096; } else { } if (range == 8192) { goto case_8192; } else { } if (range == 12288) { goto case_12288; } else { } if (range == 16384) { goto case_16384; } else { } goto switch_default; case_4096: /* CIL Label */ ; switch_default: /* CIL Label */ mib_addr = (char *)(& smc->mib); goto ldv_43339; case_8192: /* CIL Label */ ; if (mac != 0) { pcon->pc_err = 6; return; } else { } mib_addr = (char *)(& smc->mib.m) + (unsigned long )mac; mib_m = (struct fddi_mib_m *)mib_addr; goto ldv_43339; case_12288: /* CIL Label */ ; if ((unsigned int )path > 1U) { pcon->pc_err = 6; return; } else { } mib_addr = (char *)(& smc->mib.a) + (unsigned long )path; goto ldv_43339; case_16384: /* CIL Label */ ; if (port < 0) { pcon->pc_err = 6; return; } else { { tmp = smt_mib_phys(smc); } if (port >= tmp) { pcon->pc_err = 6; return; } else { } } { tmp___0 = port_to_mib(smc, port); mib_addr = (char *)(& smc->mib.p) + (unsigned long )tmp___0; mib_p = (struct fddi_mib_p *)mib_addr; } goto ldv_43339; switch_break: /* CIL Label */ ; } ldv_43339: swap = (char const *)0; { if ((int )para == 4336) { goto case_4336; } else { } if ((int )para == 4337) { goto case_4337; } else { } if ((int )para == 4338) { goto case_4338; } else { } if ((int )para == 4339) { goto case_4339; } else { } if ((int )para == 4340) { goto case_4340; } else { } if ((int )para == 4341) { goto case_4341; } else { } if ((int )para == 4342) { goto case_4342; } else { } if ((int )para == 4343) { goto case_4343; } else { } if ((int )para == 8433) { goto case_8433; } else { } if ((int )para == 8244) { goto case_8244; } else { } if ((int )para == 8262) { goto case_8262; } else { } if ((int )para == 8263) { goto case_8263; } else { } if ((int )para == 8266) { goto case_8266; } else { } if ((int )para == 8273) { goto case_8273; } else { } if ((int )para == 8274) { goto case_8274; } else { } if ((int )para == 16418) { goto case_16418; } else { } if ((int )para == 18) { goto case_18; } else { } if ((int )para == 4147) { goto case_4147; } else { } if ((int )para == 4128) { goto case_4128; } else { } if ((int )para == 12818) { goto case_12818; } else { } if ((int )para == 4168) { goto case_4168; } else { } if ((int )para == 8332) { goto case_8332; } else { } if ((int )para == 8333) { goto case_8333; } else { } if ((int )para == 8334) { goto case_8334; } else { } if ((int )para == 8335) { goto case_8335; } else { } if ((int )para == 8336) { goto case_8336; } else { } if ((int )para == 16464) { goto case_16464; } else { } if ((int )para == 16465) { goto case_16465; } else { } if ((int )para == 16466) { goto case_16466; } else { } if ((int )para == 16467) { goto case_16467; } else { } goto switch_default___0; case_4336: /* CIL Label */ ; case_4337: /* CIL Label */ ; case_4338: /* CIL Label */ ; case_4339: /* CIL Label */ ; case_4340: /* CIL Label */ ; case_4341: /* CIL Label */ ; case_4342: /* CIL Label */ ; case_4343: /* CIL Label */ ; case_8433: /* CIL Label */ ; if (local == 0) { pcon->pc_err = 6; return; } else { } goto ldv_43352; case_8244: /* CIL Label */ ; case_8262: /* CIL Label */ ; case_8263: /* CIL Label */ ; case_8266: /* CIL Label */ ; case_8273: /* CIL Label */ ; case_8274: /* CIL Label */ { mac_update_counter(smc); } goto ldv_43352; case_16418: /* CIL Label */ { tmp___1 = port_to_mib(smc, port); tmp___2 = sm_pm_get_ls(smc, tmp___1); mib_p->fddiPORTPC_LS = (unsigned int )((SMTEnum )tmp___2) + 65524U; } goto ldv_43352; case_18: /* CIL Label */ *((unsigned int *)to) = 0U; sp_len = 4; goto sp_done; case_4147: /* CIL Label */ { smt_set_timestamp(smc, (u_char *)(& smc->mib.fddiSMTTimeStamp)); } goto ldv_43352; case_4128: /* CIL Label */ ; if ((unsigned int )smc->s.sas == 1U) { swap = "I"; } else { swap = "II"; } goto ldv_43352; case_12818: /* CIL Label */ { sp_len = cem_build_path(smc, to, path); } goto sp_done; case_4168: /* CIL Label */ sp = (struct smt_p_1048 *)to; sp->p1048_flag = (u_int )smc->mib.fddiSMTPeerWrapFlag; sp->p1048_cf_state = (u_int )smc->mib.fddiSMTCF_State; sp_len = 8; goto sp_done; case_8332: /* CIL Label */ sp___0 = (struct smt_p_208c *)to; sp___0->p208c_flag = (u_int )smc->mib.m[0].fddiMACDuplicateAddressCond; sp___0->p208c_dupcondition = (u_short )(((unsigned int )mib_m->fddiMACDA_Flag != 0U) | ((unsigned int )mib_m->fddiMACUNDA_Flag != 0U ? 2 : 0)); sp___0->p208c_fddilong = mib_m->fddiMACSMTAddress; sp___0->p208c_fddiunalong = mib_m->fddiMACUpstreamNbr; sp___0->p208c_pad = 0U; sp_len = 20; goto sp_done; case_8333: /* CIL Label */ sp___1 = (struct smt_p_208d *)to; sp___1->p208d_flag = (u_int )mib_m->fddiMACFrameErrorFlag; sp___1->p208d_frame_ct = (u_int )mib_m->fddiMACFrame_Ct; sp___1->p208d_error_ct = (u_int )mib_m->fddiMACError_Ct; sp___1->p208d_lost_ct = (u_int )mib_m->fddiMACLost_Ct; sp___1->p208d_ratio = (u_int )mib_m->fddiMACFrameErrorRatio; sp_len = 20; goto sp_done; case_8334: /* CIL Label */ sp___2 = (struct smt_p_208e *)to; sp___2->p208e_flag = (u_int )mib_m->fddiMACNotCopiedFlag; sp___2->p208e_not_copied = (u_int )mib_m->fddiMACNotCopied_Ct; sp___2->p208e_copied = (u_int )mib_m->fddiMACCopied_Ct; sp___2->p208e_not_copied_ratio = (u_int )mib_m->fddiMACNotCopiedRatio; sp_len = 16; goto sp_done; case_8335: /* CIL Label */ sp___3 = (struct smt_p_208f *)to; sp___3->p208f_multiple = (u_int )mib_m->fddiMACMultiple_N; sp___3->p208f_nacondition = (u_int )mib_m->fddiMACDuplicateAddressCond; sp___3->p208f_old_una = mib_m->fddiMACOldUpstreamNbr; sp___3->p208f_new_una = mib_m->fddiMACUpstreamNbr; sp___3->p208f_old_dna = mib_m->fddiMACOldDownstreamNbr; sp___3->p208f_new_dna = mib_m->fddiMACDownstreamNbr; sp___3->p208f_curren_path = mib_m->fddiMACCurrentPath; sp___3->p208f_smt_address = mib_m->fddiMACSMTAddress; sp_len = 40; goto sp_done; case_8336: /* CIL Label */ sp___4 = (struct smt_p_2090 *)to; sp___4->p2090_multiple = (u_int )mib_m->fddiMACMultiple_P; sp___4->p2090_availablepaths = (u_short )mib_m->fddiMACAvailablePaths; sp___4->p2090_currentpath = mib_m->fddiMACCurrentPath; sp___4->p2090_requestedpaths = (u_int )mib_m->fddiMACRequestedPaths; sp_len = 12; goto sp_done; case_16464: /* CIL Label */ sp___5 = (struct smt_p_4050 *)to; sp___5->p4050_flag = (u_int )mib_p->fddiPORTLerFlag; sp___5->p4050_pad = 0U; sp___5->p4050_cutoff = mib_p->fddiPORTLer_Cutoff; sp___5->p4050_alarm = mib_p->fddiPORTLer_Alarm; sp___5->p4050_estimate = mib_p->fddiPORTLer_Estimate; sp___5->p4050_reject_ct = (u_int )mib_p->fddiPORTLem_Reject_Ct; sp___5->p4050_ct = (u_int )mib_p->fddiPORTLem_Ct; sp_len = 16; goto sp_done; case_16465: /* CIL Label */ sp___6 = (struct smt_p_4051 *)to; sp___6->p4051_multiple = (u_int )mib_p->fddiPORTMultiple_U; sp___6->p4051_porttype = mib_p->fddiPORTMy_Type; sp___6->p4051_connectstate = mib_p->fddiPORTConnectState; sp___6->p4051_pc_neighbor = mib_p->fddiPORTNeighborType; sp___6->p4051_pc_withhold = mib_p->fddiPORTPC_Withhold; sp_len = 12; goto sp_done; case_16466: /* CIL Label */ sp___7 = (struct smt_p_4052 *)to; sp___7->p4052_flag = (u_int )mib_p->fddiPORTEB_Condition; sp___7->p4052_eberrorcount = (u_int )mib_p->fddiPORTEBError_Ct; sp_len = 8; goto sp_done; case_16467: /* CIL Label */ { sp___8 = (struct smt_p_4053 *)to; sp___8->p4053_multiple = (u_int )mib_p->fddiPORTMultiple_P; sp___8->p4053_availablepaths = (u_short )mib_p->fddiPORTAvailablePaths; sp___8->p4053_currentpath = mib_p->fddiPORTCurrentPath; memcpy((void *)(& sp___8->p4053_requestedpaths), (void const *)(& mib_p->fddiPORTRequestedPaths), 4UL); sp___8->p4053_mytype = mib_p->fddiPORTMy_Type; sp___8->p4053_neighbortype = mib_p->fddiPORTNeighborType; sp_len = 16; } goto sp_done; switch_default___0: /* CIL Label */ ; goto ldv_43352; switch_break___0: /* CIL Label */ ; } ldv_43352: ; if ((unsigned long )pt == (unsigned long )((struct s_p_tab const *)0)) { pcon->pc_err = ((int )para & 65280) != 0 ? 6 : 5; return; } else { } { if ((int )pt->p_access == 1) { goto case_1; } else { } if ((int )pt->p_access == 2) { goto case_2; } else { } goto switch_default___1; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; goto ldv_43388; switch_default___1: /* CIL Label */ pcon->pc_err = 5; return; switch_break___1: /* CIL Label */ ; } ldv_43388: from = mib_addr + (unsigned long )pt->p_offset; if ((unsigned long )swap == (unsigned long )((char const *)0)) { swap = (char const *)(& pt->p_swap); } else { } goto ldv_43413; ldv_43412: ; { if ((int )c == 98) { goto case_98; } else { } if ((int )c == 119) { goto case_119; } else { } if ((int )c == 108) { goto case_108; } else { } if ((int )c == 83) { goto case_83; } else { } if ((int )c == 69) { goto case_69; } else { } if ((int )c == 82) { goto case_82; } else { } if ((int )c == 114) { goto case_114; } else { } if ((int )c == 73) { goto case_73; } else { } if ((int )c == 70) { goto case_70; } else { } if ((int )c == 66) { goto case_66; } else { } if ((int )c == 67) { goto case_67; } else { } if ((int )c == 84) { goto case_84; } else { } if ((int )c == 76) { goto case_76; } else { } if ((int )c == 50) { goto case_50; } else { } if ((int )c == 52) { goto case_52; } else { } if ((int )c == 65) { goto case_65; } else { } if ((int )c == 56) { goto case_56; } else { } if ((int )c == 68) { goto case_68; } else { } if ((int )c == 80) { goto case_80; } else { } goto switch_default___2; case_98: /* CIL Label */ ; case_119: /* CIL Label */ ; case_108: /* CIL Label */ ; goto ldv_43393; case_83: /* CIL Label */ ; case_69: /* CIL Label */ ; case_82: /* CIL Label */ ; case_114: /* CIL Label */ ; if (len <= 3) { goto len_error; } else { } *to = 0; *(to + 1UL) = 0; if ((int )((signed char )c) == 114) { tmp___3 = from; from = from + 1; *(to + 2UL) = *tmp___3; tmp___4 = from; from = from + 1; *(to + 3UL) = *tmp___4; } else { tmp___5 = from; from = from + 1; *(to + 3UL) = *tmp___5; tmp___6 = from; from = from + 1; *(to + 2UL) = *tmp___6; } to = to + 4UL; len = len + -4; goto ldv_43393; case_73: /* CIL Label */ ; if (len <= 1) { goto len_error; } else { } tmp___7 = from; from = from + 1; *(to + 1UL) = *tmp___7; tmp___8 = from; from = from + 1; *to = *tmp___8; to = to + 2UL; len = len + -2; goto ldv_43393; case_70: /* CIL Label */ ; case_66: /* CIL Label */ ; if (len <= 3) { goto len_error; } else { } len = len + -4; *to = 0; *(to + 1UL) = 0; *(to + 2UL) = 0; tmp___9 = from; from = from + 1; *(to + 3UL) = *tmp___9; to = to + 4UL; goto ldv_43393; case_67: /* CIL Label */ ; case_84: /* CIL Label */ ; case_76: /* CIL Label */ ; if (len <= 3) { goto len_error; } else { } tmp___10 = from; from = from + 1; *(to + 3UL) = *tmp___10; tmp___11 = from; from = from + 1; *(to + 2UL) = *tmp___11; tmp___12 = from; from = from + 1; *(to + 1UL) = *tmp___12; tmp___13 = from; from = from + 1; *to = *tmp___13; len = len + -4; to = to + 4UL; goto ldv_43393; case_50: /* CIL Label */ ; if (len <= 3) { goto len_error; } else { } *to = 0; *(to + 1UL) = 0; tmp___14 = from; from = from + 1; *(to + 2UL) = *tmp___14; tmp___15 = from; from = from + 1; *(to + 3UL) = *tmp___15; len = len + -4; to = to + 4UL; goto ldv_43393; case_52: /* CIL Label */ ; if (len <= 3) { goto len_error; } else { } tmp___16 = from; from = from + 1; *to = *tmp___16; tmp___17 = from; from = from + 1; *(to + 1UL) = *tmp___17; tmp___18 = from; from = from + 1; *(to + 2UL) = *tmp___18; tmp___19 = from; from = from + 1; *(to + 3UL) = *tmp___19; len = len + -4; to = to + 4UL; goto ldv_43393; case_65: /* CIL Label */ ; if (len <= 7) { goto len_error; } else { } { *to = 0; *(to + 1UL) = 0; memcpy((void *)to + 2U, (void const *)from, 6UL); to = to + 8UL; from = from + 8UL; len = len + -8; } goto ldv_43393; case_56: /* CIL Label */ ; if (len <= 7) { goto len_error; } else { } { memcpy((void *)to, (void const *)from, 8UL); to = to + 8UL; from = from + 8UL; len = len + -8; } goto ldv_43393; case_68: /* CIL Label */ ; if (len <= 31) { goto len_error; } else { } { memcpy((void *)to, (void const *)from, 32UL); to = to + 32UL; from = from + 32UL; len = len + -32; } goto ldv_43393; case_80: /* CIL Label */ ; if (len <= 7) { goto len_error; } else { } tmp___20 = from; from = from + 1; *to = *tmp___20; tmp___21 = from; from = from + 1; *(to + 1UL) = *tmp___21; tmp___22 = from; from = from + 1; *(to + 2UL) = *tmp___22; tmp___23 = from; from = from + 1; *(to + 3UL) = *tmp___23; tmp___24 = from; from = from + 1; *(to + 4UL) = *tmp___24; tmp___25 = from; from = from + 1; *(to + 5UL) = *tmp___25; tmp___26 = from; from = from + 1; *(to + 6UL) = *tmp___26; tmp___27 = from; from = from + 1; *(to + 7UL) = *tmp___27; to = to + 8UL; len = len + -8; goto ldv_43393; switch_default___2: /* CIL Label */ { printk("\016SMT PANIC: code: %d, msg: %s\n", 119, (char *)"smt_add_para"); } goto ldv_43393; switch_break___2: /* CIL Label */ ; } ldv_43393: ; ldv_43413: tmp___28 = swap; swap = swap + 1; c = *tmp___28; if ((int )((signed char )c) != 0) { goto ldv_43412; } else { } done: ; if ((len & 3) != 0) { *to = 0; *(to + 1UL) = 0; to = to + (unsigned long )(4 - (len & 3)); len = len & -4; } else { } pa->p_type = para; pa->p_len = (unsigned int )((int )((u_short )plen) - (int )((u_short )len)) - 4U; pcon->pc_p = (void *)to; pcon->pc_len = len; return; sp_done: len = len - sp_len; to = to + (unsigned long )sp_len; goto done; len_error: pcon->pc_err = 11; return; wrong_error: pcon->pc_err = 10; return; } } static int smt_set_para(struct s_smc *smc , struct smt_para *pa , int index , int local , int set ) { struct s_p_tab const *pt ; int len ; char *from ; char *to ; char const *swap ; char c ; char *mib_addr ; struct fddi_mib *mib ; struct fddi_mib_m *mib_m ; struct fddi_mib_a *mib_a ; struct fddi_mib_p *mib_p ; int mac ; int path ; int port ; u_char byte_val ; u_short word_val ; u_long long_val ; int tmp ; int tmp___0 ; char *tmp___1 ; char *tmp___2 ; char *tmp___3 ; char *tmp___4 ; char *tmp___5 ; char *tmp___6 ; char *tmp___7 ; char *tmp___8 ; char *tmp___9 ; char *tmp___10 ; char *tmp___11 ; char *tmp___12 ; char const *tmp___13 ; u_short tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; { mib_m = (struct fddi_mib_m *)0; mib_a = (struct fddi_mib_a *)0; mib_p = (struct fddi_mib_p *)0; mac = index + -1; path = index + -1; port = index + -1; len = (int )pa->p_len; from = (char *)pa + 1U; mib = & smc->mib; { if (((int )pa->p_type & 61440) == 4096) { goto case_4096; } else { } if (((int )pa->p_type & 61440) == 8192) { goto case_8192; } else { } if (((int )pa->p_type & 61440) == 12288) { goto case_12288; } else { } if (((int )pa->p_type & 61440) == 16384) { goto case_16384; } else { } goto switch_default; case_4096: /* CIL Label */ ; switch_default: /* CIL Label */ mib_addr = (char *)mib; goto ldv_43442; case_8192: /* CIL Label */ ; if (mac != 0) { return (6); } else { } mib_m = (struct fddi_mib_m *)(& smc->mib.m) + (unsigned long )mac; mib_addr = (char *)mib_m; from = from + 4UL; len = len + -4; goto ldv_43442; case_12288: /* CIL Label */ ; if ((unsigned int )path > 1U) { return (6); } else { } mib_a = (struct fddi_mib_a *)(& smc->mib.a) + (unsigned long )path; mib_addr = (char *)mib_a; from = from + 4UL; len = len + -4; goto ldv_43442; case_16384: /* CIL Label */ ; if (port < 0) { return (6); } else { { tmp = smt_mib_phys(smc); } if (port >= tmp) { return (6); } else { } } { tmp___0 = port_to_mib(smc, port); mib_p = (struct fddi_mib_p *)(& smc->mib.p) + (unsigned long )tmp___0; mib_addr = (char *)mib_p; from = from + 4UL; len = len + -4; } goto ldv_43442; switch_break: /* CIL Label */ ; } ldv_43442: ; { if ((int )pa->p_type == 4336) { goto case_4336; } else { } if ((int )pa->p_type == 4337) { goto case_4337; } else { } if ((int )pa->p_type == 4338) { goto case_4338; } else { } if ((int )pa->p_type == 4339) { goto case_4339; } else { } if ((int )pa->p_type == 4340) { goto case_4340; } else { } if ((int )pa->p_type == 4341) { goto case_4341; } else { } if ((int )pa->p_type == 4342) { goto case_4342; } else { } if ((int )pa->p_type == 4343) { goto case_4343; } else { } if ((int )pa->p_type == 8433) { goto case_8433; } else { } goto switch_break___0; case_4336: /* CIL Label */ ; case_4337: /* CIL Label */ ; case_4338: /* CIL Label */ ; case_4339: /* CIL Label */ ; case_4340: /* CIL Label */ ; case_4341: /* CIL Label */ ; case_4342: /* CIL Label */ ; case_4343: /* CIL Label */ ; case_8433: /* CIL Label */ ; if (local == 0) { return (6); } else { } goto ldv_43455; switch_break___0: /* CIL Label */ ; } ldv_43455: { pt = smt_get_ptab((int )pa->p_type); } if ((unsigned long )pt == (unsigned long )((struct s_p_tab const *)0)) { return (((int )pa->p_type & 65280) != 0 ? 6 : 5); } else { } { if ((int )pt->p_access == 2) { goto case_2; } else { } if ((int )pt->p_access == 4) { goto case_4; } else { } goto switch_default___0; case_2: /* CIL Label */ ; case_4: /* CIL Label */ ; goto ldv_43458; switch_default___0: /* CIL Label */ ; return (5); switch_break___1: /* CIL Label */ ; } ldv_43458: to = mib_addr + (unsigned long )pt->p_offset; swap = (char const *)(& pt->p_swap); goto ldv_43482; ldv_43481: ; { if ((int )c == 98) { goto case_98; } else { } if ((int )c == 119) { goto case_119; } else { } if ((int )c == 108) { goto case_108; } else { } if ((int )c == 83) { goto case_83; } else { } if ((int )c == 69) { goto case_69; } else { } if ((int )c == 82) { goto case_82; } else { } if ((int )c == 114) { goto case_114; } else { } if ((int )c == 70) { goto case_70; } else { } if ((int )c == 66) { goto case_66; } else { } if ((int )c == 67) { goto case_67; } else { } if ((int )c == 84) { goto case_84; } else { } if ((int )c == 76) { goto case_76; } else { } if ((int )c == 65) { goto case_65; } else { } if ((int )c == 52) { goto case_52; } else { } if ((int )c == 56) { goto case_56; } else { } if ((int )c == 68) { goto case_68; } else { } if ((int )c == 80) { goto case_80; } else { } goto switch_default___1; case_98: /* CIL Label */ to = (char *)(& byte_val); goto ldv_43461; case_119: /* CIL Label */ to = (char *)(& word_val); goto ldv_43461; case_108: /* CIL Label */ to = (char *)(& long_val); goto ldv_43461; case_83: /* CIL Label */ ; case_69: /* CIL Label */ ; case_82: /* CIL Label */ ; case_114: /* CIL Label */ ; if (len <= 3) { goto len_error; } else { } if (((int )((signed char )*from) | (int )((signed char )*(from + 1UL))) != 0) { goto val_error; } else { } if ((int )((signed char )c) == 114) { *to = *(from + 2UL); *(to + 1UL) = *(from + 3UL); } else { *(to + 1UL) = *(from + 2UL); *to = *(from + 3UL); } from = from + 4UL; to = to + 2UL; len = len + -4; goto ldv_43461; case_70: /* CIL Label */ ; case_66: /* CIL Label */ ; if (len <= 3) { goto len_error; } else { } if ((((int )((signed char )*from) | (int )((signed char )*(from + 1UL))) | (int )((signed char )*(from + 2UL))) != 0) { goto val_error; } else { } *to = *(from + 3UL); len = len + -4; from = from + 4UL; to = to + 4UL; goto ldv_43461; case_67: /* CIL Label */ ; case_84: /* CIL Label */ ; case_76: /* CIL Label */ ; if (len <= 3) { goto len_error; } else { } tmp___1 = from; from = from + 1; *(to + 3UL) = *tmp___1; tmp___2 = from; from = from + 1; *(to + 2UL) = *tmp___2; tmp___3 = from; from = from + 1; *(to + 1UL) = *tmp___3; tmp___4 = from; from = from + 1; *to = *tmp___4; len = len + -4; to = to + 4UL; goto ldv_43461; case_65: /* CIL Label */ ; if (len <= 7) { goto len_error; } else { } if (set != 0) { { memcpy((void *)to, (void const *)from + 2U, 6UL); } } else { } to = to + 8UL; from = from + 8UL; len = len + -8; goto ldv_43461; case_52: /* CIL Label */ ; if (len <= 3) { goto len_error; } else { } if (set != 0) { { memcpy((void *)to, (void const *)from, 4UL); } } else { } to = to + 4UL; from = from + 4UL; len = len + -4; goto ldv_43461; case_56: /* CIL Label */ ; if (len <= 7) { goto len_error; } else { } if (set != 0) { { memcpy((void *)to, (void const *)from, 8UL); } } else { } to = to + 8UL; from = from + 8UL; len = len + -8; goto ldv_43461; case_68: /* CIL Label */ ; if (len <= 31) { goto len_error; } else { } if (set != 0) { { memcpy((void *)to, (void const *)from, 32UL); } } else { } to = to + 32UL; from = from + 32UL; len = len + -32; goto ldv_43461; case_80: /* CIL Label */ ; if (set != 0) { tmp___5 = from; from = from + 1; *to = *tmp___5; tmp___6 = from; from = from + 1; *(to + 1UL) = *tmp___6; tmp___7 = from; from = from + 1; *(to + 2UL) = *tmp___7; tmp___8 = from; from = from + 1; *(to + 3UL) = *tmp___8; tmp___9 = from; from = from + 1; *(to + 4UL) = *tmp___9; tmp___10 = from; from = from + 1; *(to + 5UL) = *tmp___10; tmp___11 = from; from = from + 1; *(to + 6UL) = *tmp___11; tmp___12 = from; from = from + 1; *(to + 7UL) = *tmp___12; } else { } to = to + 8UL; len = len + -8; goto ldv_43461; switch_default___1: /* CIL Label */ { printk("\016SMT PANIC: code: %d, msg: %s\n", 120, (char *)"smt_set_para"); } return (5); switch_break___2: /* CIL Label */ ; } ldv_43461: ; ldv_43482: ; if ((unsigned long )swap != (unsigned long )((char const *)0)) { tmp___13 = swap; swap = swap + 1; c = *tmp___13; if ((int )((signed char )c) != 0) { goto ldv_43481; } else { goto ldv_43483; } } else { } ldv_43483: ; { if ((int )pa->p_type == 4122) { goto case_4122; } else { } if ((int )pa->p_type == 4123) { goto case_4123; } else { } if ((int )pa->p_type == 4125) { goto case_4125; } else { } if ((int )pa->p_type == 4126) { goto case_4126; } else { } if ((int )pa->p_type == 4127) { goto case_4127; } else { } if ((int )pa->p_type == 4338) { goto case_4338___0; } else { } if ((int )pa->p_type == 4339) { goto case_4339___0; } else { } if ((int )pa->p_type == 4340) { goto case_4340___0; } else { } if ((int )pa->p_type == 4341) { goto case_4341___0; } else { } if ((int )pa->p_type == 4342) { goto case_4342___0; } else { } if ((int )pa->p_type == 4343) { goto case_4343___0; } else { } if ((int )pa->p_type == 8224) { goto case_8224; } else { } if ((int )pa->p_type == 8287) { goto case_8287; } else { } if ((int )pa->p_type == 8295) { goto case_8295; } else { } if ((int )pa->p_type == 8310) { goto case_8310; } else { } if ((int )pa->p_type == 8433) { goto case_8433___0; } else { } if ((int )pa->p_type == 12815) { goto case_12815; } else { } if ((int )pa->p_type == 12816) { goto case_12816; } else { } if ((int )pa->p_type == 12819) { goto case_12819; } else { } if ((int )pa->p_type == 12820) { goto case_12820; } else { } if ((int )pa->p_type == 12821) { goto case_12821; } else { } if ((int )pa->p_type == 12822) { goto case_12822; } else { } if ((int )pa->p_type == 12823) { goto case_12823; } else { } if ((int )pa->p_type == 16398) { goto case_16398; } else { } if ((int )pa->p_type == 16401) { goto case_16401; } else { } if ((int )pa->p_type == 16415) { goto case_16415; } else { } if ((int )pa->p_type == 16442) { goto case_16442; } else { } if ((int )pa->p_type == 16443) { goto case_16443; } else { } if ((int )pa->p_type == 4156) { goto case_4156; } else { } if ((int )pa->p_type == 16454) { goto case_16454; } else { } goto switch_default___2; case_4122: /* CIL Label */ ; if (((int )word_val & -2) != 0) { goto val_error; } else { } if (set != 0) { mib->fddiSMTConfigPolicy = word_val; } else { } goto ldv_43485; case_4123: /* CIL Label */ ; if ((int )((short )word_val) >= 0) { goto val_error; } else { } if (set != 0) { mib->fddiSMTConnectionPolicy = word_val; } else { } goto ldv_43485; case_4125: /* CIL Label */ ; if ((unsigned int )word_val - 2U > 28U) { goto val_error; } else { } if (set != 0) { mib->fddiSMTTT_Notify = word_val; } else { } goto ldv_43485; case_4126: /* CIL Label */ ; if (((int )byte_val & -2) != 0) { goto val_error; } else { } if (set != 0) { mib->fddiSMTStatRptPolicy = byte_val; } else { } goto ldv_43485; case_4127: /* CIL Label */ ; if (long_val <= 75022160UL) { goto val_error; } else { } if (set != 0) { mib->fddiSMTTrace_MaxExpiration = long_val; } else { } goto ldv_43485; case_4338___0: /* CIL Label */ ; if (long_val > 1562UL) { goto val_error; } else { } if (set != 0 && smc->mib.fddiESSPayload != long_val) { smc->ess.raf_act_timer_poll = 1; smc->mib.fddiESSPayload = long_val; } else { } goto ldv_43485; case_4339___0: /* CIL Label */ ; if (long_val - 50UL > 4950UL) { goto val_error; } else { } if ((set != 0 && smc->mib.fddiESSPayload != 0UL) && smc->mib.fddiESSOverhead != long_val) { smc->ess.raf_act_timer_poll = 1; smc->mib.fddiESSOverhead = long_val; } else { } goto ldv_43485; case_4340___0: /* CIL Label */ ; if (long_val - 0xffffffffffe0875cUL > 2000000UL) { goto val_error; } else { } if (set != 0) { mib->fddiESSMaxTNeg = long_val; } else { } goto ldv_43485; case_4341___0: /* CIL Label */ ; if (long_val - 1UL > 4477UL) { goto val_error; } else { } if (set != 0) { mib->fddiESSMinSegmentSize = long_val; } else { } goto ldv_43485; case_4342___0: /* CIL Label */ ; if ((long_val & 65535UL) != 1UL) { goto val_error; } else { } if (set != 0) { mib->fddiESSCategory = long_val; } else { } goto ldv_43485; case_4343___0: /* CIL Label */ ; if ((unsigned int )word_val > 1U) { goto val_error; } else { } if (set != 0) { mib->fddiESSSynchTxMode = (short )word_val; } else { } goto ldv_43485; case_8224: /* CIL Label */ ; if (((int )word_val & 36) == 0) { goto val_error; } else { } if (set != 0) { mib_m->fddiMACRequestedPaths = word_val; } else { } goto ldv_43485; case_8287: /* CIL Label */ ; if (set != 0) { mib_m->fddiMACFrameErrorThreshold = word_val; } else { } goto ldv_43485; case_8295: /* CIL Label */ ; if (set != 0) { mib_m->fddiMACNotCopiedThreshold = word_val; } else { } goto ldv_43485; case_8310: /* CIL Label */ ; if (((int )byte_val & -2) != 0) { goto val_error; } else { } if (set != 0) { { mib_m->fddiMACMA_UnitdataEnable = byte_val; queue_event(smc, 3, 11); } } else { } goto ldv_43485; case_8433___0: /* CIL Label */ ; if (set != 0) { mib_m->fddiMACT_Min = long_val; } else { } goto ldv_43485; case_12815: /* CIL Label */ ; if (long_val > 1562UL) { goto val_error; } else { } if (set != 0) { mib_a->fddiPATHSbaPayload = long_val; } else { } if (set != 0) { { ess_para_change(smc); } } else { } goto ldv_43485; case_12816: /* CIL Label */ ; if (long_val > 5000UL) { goto val_error; } else { } if (long_val != 0UL && mib_a->fddiPATHSbaPayload == 0UL) { goto val_error; } else { } if (set != 0) { mib_a->fddiPATHSbaOverhead = long_val; } else { } if (set != 0) { { ess_para_change(smc); } } else { } goto ldv_43485; case_12819: /* CIL Label */ ; if (set != 0) { { mib_a->fddiPATHT_Rmode = long_val; rtm_set_timer(smc); } } else { } goto ldv_43485; case_12820: /* CIL Label */ ; if (long_val > 12500000UL) { goto val_error; } else { } if (set != 0) { mib_a->fddiPATHSbaAvailable = long_val; } else { } goto ldv_43485; case_12821: /* CIL Label */ ; if (set != 0) { mib_a->fddiPATHTVXLowerBound = long_val; } else { } goto change_mac_para; case_12822: /* CIL Label */ ; if (set != 0) { mib_a->fddiPATHT_MaxLowerBound = long_val; } else { } goto change_mac_para; case_12823: /* CIL Label */ ; if (set != 0) { mib_a->fddiPATHMaxT_Req = long_val; } else { } change_mac_para: ; if (set != 0) { { tmp___15 = smt_set_mac_opvalues(smc); } if (tmp___15 != 0) { { tmp___14 = (u_short )((unsigned int )smc->srf.ring_status | 4U); smc->srf.ring_status = tmp___14; ring_status_indication(smc, (u_long )tmp___14); smc->sm.please_reconnect = 1U; queue_event(smc, 1, 2); } } else { } } else { } goto ldv_43485; case_16398: /* CIL Label */ ; if ((unsigned int )byte_val > 1U) { goto val_error; } else { } if (set != 0) { mib_p->fddiPORTConnectionPolicies = byte_val; } else { } goto ldv_43485; case_16401: /* CIL Label */ ; if (set != 0) { { memcpy((void *)(& mib_p->fddiPORTRequestedPaths), (void const *)(& long_val), 4UL); } } else { } goto ldv_43485; case_16415: /* CIL Label */ ; if ((unsigned int )word_val > 4U) { goto val_error; } else { } if (set != 0) { mib_p->fddiPORTMaint_LS = word_val; } else { } goto ldv_43485; case_16442: /* CIL Label */ ; if ((unsigned int )byte_val - 4U > 11U) { goto val_error; } else { } if (set != 0) { mib_p->fddiPORTLer_Cutoff = byte_val; } else { } goto ldv_43485; case_16443: /* CIL Label */ ; if ((unsigned int )byte_val - 4U > 11U) { goto val_error; } else { } if (set != 0) { mib_p->fddiPORTLer_Alarm = byte_val; } else { } goto ldv_43485; case_4156: /* CIL Label */ { tmp___16 = smt_action(smc, 1, (int )word_val, 0); } if (tmp___16 != 0) { goto val_error; } else { } goto ldv_43485; case_16454: /* CIL Label */ { tmp___17 = port_to_mib(smc, port); tmp___18 = smt_action(smc, 2, (int )word_val, tmp___17); } if (tmp___18 != 0) { goto val_error; } else { } goto ldv_43485; switch_default___2: /* CIL Label */ ; goto ldv_43485; switch_break___3: /* CIL Label */ ; } ldv_43485: ; return (0); val_error: ; return (8); len_error: ; return (10); } } static struct s_p_tab const *smt_get_ptab(u_short para ) { struct s_p_tab const *pt ; { pt = (struct s_p_tab const *)(& p_tab); goto ldv_43522; ldv_43521: pt = pt + 1; ldv_43522: ; if ((unsigned int )((unsigned short )pt->p_num) != 0U && (int )((unsigned short )pt->p_num) != (int )para) { goto ldv_43521; } else { } return ((unsigned int )((unsigned short )pt->p_num) != 0U ? pt : (struct s_p_tab const *)0); } } static int smt_mib_phys(struct s_smc *smc ) { { if ((unsigned int )smc->s.sas == 1U) { return (1); } else { } return (2); } } static int port_to_mib(struct s_smc *smc , int p ) { { if ((unsigned int )smc->s.sas == 1U) { return (0); } else { } return (p); } } void rmt(struct s_smc *smc , int event ) ; void ev_init(struct s_smc *smc ) ; void timer_event(struct s_smc *smc , u_long token ) ; void ev_init(struct s_smc *smc ) { struct event_queue *tmp ; { tmp = (struct event_queue *)(& smc->q.ev_queue); smc->q.ev_get = tmp; smc->q.ev_put = tmp; return; } } void queue_event(struct s_smc *smc , int class , int event ) { { (smc->q.ev_put)->class = (u_short )class; (smc->q.ev_put)->event = (u_short )event; smc->q.ev_put = smc->q.ev_put + 1; if ((unsigned long )smc->q.ev_put == (unsigned long )((struct event_queue *)(& smc->q.ev_queue) + 64UL)) { smc->q.ev_put = (struct event_queue *)(& smc->q.ev_queue); } else { } if ((unsigned long )smc->q.ev_put == (unsigned long )smc->q.ev_get) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 137, (char *)"SMT: queue overrun"); } } else { } return; } } void timer_event(struct s_smc *smc , u_long token ) { { { queue_event(smc, (int )(token >> 16) & 65535, (int )token & 65535); } return; } } void ev_dispatcher(struct s_smc *smc ) { struct event_queue *ev ; int class ; { ev = smc->q.ev_get; goto ldv_43245; ldv_43244: class = (int )ev->class; { if (class == 1) { goto case_1; } else { } if (class == 2) { goto case_2; } else { } if (class == 3) { goto case_3; } else { } if (class == 4) { goto case_4; } else { } if (class == 5) { goto case_5; } else { } if (class == 6) { goto case_6; } else { } goto switch_default; case_1: /* CIL Label */ { ecm(smc, (int )ev->event); } goto ldv_43237; case_2: /* CIL Label */ { cfm(smc, (int )ev->event); } goto ldv_43237; case_3: /* CIL Label */ { rmt(smc, (int )ev->event); } goto ldv_43237; case_4: /* CIL Label */ { smt_event(smc, (int )ev->event); } goto ldv_43237; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; switch_default: /* CIL Label */ ; if ((unsigned int )class - 5U <= 1U) { { pcm(smc, class + -5, (int )ev->event); } goto ldv_43237; } else { } { printk("\016SMT PANIC: code: %d, msg: %s\n", 121, (char *)"invalid event in dispatcher"); } return; switch_break: /* CIL Label */ ; } ldv_43237: ev = ev + 1; if ((unsigned long )ev == (unsigned long )((struct event_queue *)(& smc->q.ev_queue) + 64UL)) { ev = (struct event_queue *)(& smc->q.ev_queue); } else { } smc->q.ev_get = ev; ldv_43245: ; if ((unsigned long )ev != (unsigned long )smc->q.ev_put) { goto ldv_43244; } else { } return; } } u_short smt_online(struct s_smc *smc , int on ) { { { queue_event(smc, 1, on != 0 ? 1 : 2); ev_dispatcher(smc); } return (smc->mib.fddiSMTCF_State); } } void rmt_init(struct s_smc *smc ) ; void rmt_indication(struct s_smc *smc , int i ) ; static void rmt_fsm(struct s_smc *smc , int cmd ) ; static void start_rmt_timer0(struct s_smc *smc , u_long value , int event ) ; static void start_rmt_timer1(struct s_smc *smc , u_long value , int event ) ; static void start_rmt_timer2(struct s_smc *smc , u_long value , int event ) ; static void stop_rmt_timer0(struct s_smc *smc ) ; static void stop_rmt_timer1(struct s_smc *smc ) ; static void stop_rmt_timer2(struct s_smc *smc ) ; static void rmt_dup_actions(struct s_smc *smc ) ; static void rmt_reinsert_actions(struct s_smc *smc ) ; static void rmt_leave_actions(struct s_smc *smc ) ; static void rmt_new_dup_actions(struct s_smc *smc ) ; void rmt_init(struct s_smc *smc ) { { smc->mib.m[0].fddiMACRMTState = 16U; smc->r.dup_addr_test = 0U; smc->r.da_flag = 0U; smc->mib.m[0].fddiMACMA_UnitdataAvailable = 0U; smc->r.sm_ma_avail = 0U; smc->r.loop_avail = 0U; smc->r.bn_flag = 0U; smc->r.jm_flag = 0U; smc->r.no_flag = 1U; return; } } void rmt(struct s_smc *smc , int event ) { int state ; { ldv_43256: { state = (int )smc->mib.m[0].fddiMACRMTState; rmt_fsm(smc, event); event = 0; } if (state != (int )smc->mib.m[0].fddiMACRMTState) { goto ldv_43256; } else { } { rmt_state_change(smc, (int )smc->mib.m[0].fddiMACRMTState); } return; } } static void rmt_fsm(struct s_smc *smc , int cmd ) { u_short tmp ; u_short tmp___0 ; u_short tmp___1 ; u_short tmp___2 ; u_short tmp___3 ; u_short tmp___4 ; int tx ; int tx___0 ; u_short tmp___5 ; { if ((((unsigned int )smc->r.rm_join == 0U && (unsigned int )smc->r.rm_loop == 0U) && (unsigned int )smc->mib.m[0].fddiMACRMTState != 16U) && (unsigned int )smc->mib.m[0].fddiMACRMTState != 0U) { { tmp = (u_short )((unsigned int )smc->srf.ring_status | 32U); smc->srf.ring_status = tmp; ring_status_indication(smc, (u_long )tmp); rmt_indication(smc, 0); smc->mib.m[0].fddiMACRMTState = 16U; } return; } else { } { if ((int )smc->mib.m[0].fddiMACRMTState == 16) { goto case_16; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 0) { goto case_0; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 17) { goto case_17; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 1) { goto case_1; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 18) { goto case_18; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 2) { goto case_2; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 19) { goto case_19; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 3) { goto case_3; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 20) { goto case_20; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 4) { goto case_4; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 21) { goto case_21; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 5) { goto case_5; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 22) { goto case_22; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 6) { goto case_6; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 23) { goto case_23; } else { } if ((int )smc->mib.m[0].fddiMACRMTState == 7) { goto case_7; } else { } goto switch_default; case_16: /* CIL Label */ { stop_rmt_timer0(smc); stop_rmt_timer1(smc); stop_rmt_timer2(smc); sm_ma_control(smc, 5); smc->mib.m[0].fddiMACMA_UnitdataAvailable = 0U; smc->r.loop_avail = 0U; smc->r.sm_ma_avail = 0U; smc->r.no_flag = 1U; smc->mib.m[0].fddiMACRMTState = (unsigned int )smc->mib.m[0].fddiMACRMTState & 65519U; } goto ldv_43263; case_0: /* CIL Label */ ; if ((unsigned int )smc->r.rm_join != 0U || (unsigned int )smc->r.rm_loop != 0U) { { sm_ma_control(smc, 0); smc->mib.m[0].fddiMACRMTState = 17U; } goto ldv_43263; } else { } goto ldv_43263; case_17: /* CIL Label */ { start_rmt_timer0(smc, smc->s.rmt_t_non_op, 12); stop_rmt_timer1(smc); stop_rmt_timer2(smc); sm_ma_control(smc, 1); tmp___0 = (u_short )((unsigned int )smc->srf.ring_status | 32U); smc->srf.ring_status = tmp___0; ring_status_indication(smc, (u_long )tmp___0); smc->r.sm_ma_avail = 0U; rmt_indication(smc, 0); smc->mib.m[0].fddiMACRMTState = (unsigned int )smc->mib.m[0].fddiMACRMTState & 65519U; } goto ldv_43263; case_1: /* CIL Label */ ; if (cmd == 1) { { tmp___1 = (u_short )((unsigned int )smc->srf.ring_status | 2U); smc->srf.ring_status = tmp___1; ring_status_indication(smc, (u_long )tmp___1); smc->mib.m[0].fddiMACRMTState = 18U; } goto ldv_43263; } else if (cmd == 12) { smc->r.bn_flag = 0U; smc->r.no_flag = 1U; smc->mib.m[0].fddiMACRMTState = 19U; goto ldv_43263; } else { } goto ldv_43263; case_18: /* CIL Label */ { stop_rmt_timer0(smc); stop_rmt_timer1(smc); stop_rmt_timer2(smc); smc->r.no_flag = 0U; } if ((unsigned int )smc->r.rm_loop != 0U) { smc->r.loop_avail = 1U; } else { } if ((unsigned int )smc->r.rm_join != 0U) { smc->r.sm_ma_avail = 1U; if ((unsigned int )smc->mib.m[0].fddiMACMA_UnitdataEnable != 0U) { smc->mib.m[0].fddiMACMA_UnitdataAvailable = 1U; } else { smc->mib.m[0].fddiMACMA_UnitdataAvailable = 0U; } } else { } { tmp___2 = (unsigned int )smc->srf.ring_status & 65503U; smc->srf.ring_status = tmp___2; ring_status_indication(smc, (u_long )tmp___2); tmp___3 = (u_short )((unsigned int )smc->srf.ring_status | 2U); smc->srf.ring_status = tmp___3; ring_status_indication(smc, (u_long )tmp___3); rmt_indication(smc, 1); smt_stat_counter(smc, 0); smc->mib.m[0].fddiMACRMTState = (unsigned int )smc->mib.m[0].fddiMACRMTState & 65519U; } goto ldv_43263; case_2: /* CIL Label */ ; if (cmd == 2) { { smc->mib.m[0].fddiMACMA_UnitdataAvailable = 0U; smc->r.loop_avail = 0U; tmp___4 = (u_short )((unsigned int )smc->srf.ring_status | 2U); smc->srf.ring_status = tmp___4; ring_status_indication(smc, (u_long )tmp___4); smc->mib.m[0].fddiMACRMTState = 17U; } goto ldv_43263; } else if (cmd == 11) { if ((unsigned int )smc->mib.m[0].fddiMACMA_UnitdataEnable != 0U) { smc->mib.m[0].fddiMACMA_UnitdataAvailable = 1U; } else { smc->mib.m[0].fddiMACMA_UnitdataAvailable = 0U; } } else if ((unsigned int )smc->r.dup_addr_test == 2U) { smc->mib.m[0].fddiMACMA_UnitdataAvailable = 0U; smc->r.loop_avail = 0U; smc->r.da_flag = 1U; smc->mib.m[0].fddiMACRMTState = 21U; goto ldv_43263; } else { } goto ldv_43263; case_19: /* CIL Label */ { start_rmt_timer0(smc, smc->s.mac_d_max * 2UL, 16); start_rmt_timer1(smc, smc->s.rmt_t_stuck, 13); start_rmt_timer2(smc, smc->s.rmt_t_poll, 17); sm_mac_check_beacon_claim(smc); smc->mib.m[0].fddiMACRMTState = (unsigned int )smc->mib.m[0].fddiMACRMTState & 65519U; } goto ldv_43263; case_3: /* CIL Label */ ; if (cmd == 17) { { start_rmt_timer2(smc, smc->s.rmt_t_poll, 17); sm_mac_check_beacon_claim(smc); } goto ldv_43263; } else { } if (cmd == 16) { smc->r.timer0_exp = 1U; } else { } if (cmd == 18) { { start_rmt_timer0(smc, smc->s.mac_d_max * 2UL, 16); } } else { } if (cmd == 1) { smc->mib.m[0].fddiMACRMTState = 18U; goto ldv_43263; } else if ((unsigned int )cmd - 3U <= 1U && (unsigned int )smc->r.bn_flag != 0U) { smc->r.bn_flag = 0U; } else if (cmd == 6 && (unsigned int )smc->r.bn_flag == 0U) { { tx = sm_mac_get_tx_state(smc); } if (tx == 4 || tx == 5) { { smc->r.bn_flag = 1U; start_rmt_timer1(smc, smc->s.rmt_t_stuck, 13); } } else { } } else if (cmd == 5 && (unsigned int )smc->r.timer0_exp != 0U) { { rmt_new_dup_actions(smc); smc->mib.m[0].fddiMACRMTState = 20U; } goto ldv_43263; } else if (cmd == 3 && (unsigned int )smc->r.timer0_exp != 0U) { { rmt_new_dup_actions(smc); smc->mib.m[0].fddiMACRMTState = 20U; } goto ldv_43263; } else if (cmd == 7) { { rmt_new_dup_actions(smc); smc->mib.m[0].fddiMACRMTState = 20U; } goto ldv_43263; } else if ((cmd == 13 && (unsigned int )smc->r.rm_join != 0U) && (unsigned int )smc->r.bn_flag != 0U) { smc->mib.m[0].fddiMACRMTState = 22U; goto ldv_43263; } else { } goto ldv_43263; case_20: /* CIL Label */ { start_rmt_timer0(smc, smc->s.rmt_t_announce, 14); start_rmt_timer1(smc, smc->s.rmt_t_stuck, 13); start_rmt_timer2(smc, smc->s.rmt_t_poll, 17); sm_mac_check_beacon_claim(smc); smc->mib.m[0].fddiMACRMTState = (unsigned int )smc->mib.m[0].fddiMACRMTState & 65519U; } goto ldv_43263; case_4: /* CIL Label */ ; if (cmd == 17) { { start_rmt_timer2(smc, smc->s.rmt_t_poll, 17); sm_mac_check_beacon_claim(smc); } goto ldv_43263; } else { } if ((unsigned int )smc->r.da_flag == 0U) { smc->mib.m[0].fddiMACRMTState = 17U; goto ldv_43263; } else if ((unsigned int )cmd - 3U <= 1U && (unsigned int )smc->r.bn_flag != 0U) { smc->r.bn_flag = 0U; } else if (cmd == 6 && (unsigned int )smc->r.bn_flag == 0U) { { tx___0 = sm_mac_get_tx_state(smc); } if (tx___0 == 4 || tx___0 == 5) { { smc->r.bn_flag = 1U; start_rmt_timer1(smc, smc->s.rmt_t_stuck, 13); } } else { } } else if (cmd == 14 && (unsigned int )smc->r.bn_flag == 0U) { { rmt_dup_actions(smc); } } else if (cmd == 1) { smc->r.no_flag = 0U; smc->mib.m[0].fddiMACRMTState = 21U; goto ldv_43263; } else if ((cmd == 13 && (unsigned int )smc->r.rm_join != 0U) && (unsigned int )smc->r.bn_flag != 0U) { smc->mib.m[0].fddiMACRMTState = 22U; goto ldv_43263; } else { } goto ldv_43263; case_21: /* CIL Label */ { stop_rmt_timer0(smc); stop_rmt_timer1(smc); stop_rmt_timer2(smc); smc->mib.m[0].fddiMACRMTState = (unsigned int )smc->mib.m[0].fddiMACRMTState & 65519U; } goto ldv_43263; case_5: /* CIL Label */ ; if ((unsigned int )smc->r.dup_addr_test == 1U) { smc->r.da_flag = 0U; smc->mib.m[0].fddiMACRMTState = 18U; goto ldv_43263; } else if (cmd == 2) { smc->r.jm_flag = 0U; smc->r.bn_flag = 0U; smc->mib.m[0].fddiMACRMTState = 20U; goto ldv_43263; } else { } goto ldv_43263; case_22: /* CIL Label */ { start_rmt_timer0(smc, smc->s.rmt_t_direct, 15); stop_rmt_timer1(smc); start_rmt_timer2(smc, smc->s.rmt_t_poll, 17); sm_ma_control(smc, 3); tmp___5 = (u_short )((unsigned int )smc->srf.ring_status | 4096U); smc->srf.ring_status = tmp___5; ring_status_indication(smc, (u_long )tmp___5); smc->mib.m[0].fddiMACRMTState = (unsigned int )smc->mib.m[0].fddiMACRMTState & 65519U; } goto ldv_43263; case_6: /* CIL Label */ ; if (cmd == 17) { { start_rmt_timer2(smc, smc->s.rmt_t_poll, 17); sm_mac_check_beacon_claim(smc); } goto ldv_43263; } else { } if ((unsigned int )cmd - 3U <= 1U && (unsigned int )smc->r.da_flag == 0U) { smc->r.bn_flag = 0U; smc->mib.m[0].fddiMACRMTState = 19U; goto ldv_43263; } else if ((unsigned int )cmd - 3U <= 1U && (unsigned int )smc->r.da_flag != 0U) { smc->r.bn_flag = 0U; smc->mib.m[0].fddiMACRMTState = 20U; goto ldv_43263; } else if (cmd == 15) { smc->mib.m[0].fddiMACRMTState = 23U; goto ldv_43263; } else { } goto ldv_43263; case_23: /* CIL Label */ { stop_rmt_timer0(smc); stop_rmt_timer1(smc); stop_rmt_timer2(smc); smc->e.trace_prop = smc->e.trace_prop | 4UL; queue_event(smc, 1, 3); smc->mib.m[0].fddiMACRMTState = (unsigned int )smc->mib.m[0].fddiMACRMTState & 65519U; } goto ldv_43263; case_7: /* CIL Label */ ; goto ldv_43263; switch_default: /* CIL Label */ { printk("\016SMT PANIC: code: %d, msg: %s\n", 122, (char *)"RMT : invalid state"); } goto ldv_43263; switch_break: /* CIL Label */ ; } ldv_43263: ; return; } } static void rmt_dup_actions(struct s_smc *smc ) { { if ((unsigned int )smc->r.jm_flag != 0U) { } else if (smc->s.rmt_dup_mac_behavior != 0UL) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 138, (char *)"RMT: duplicate MAC address detected. Ring NOT left!"); rmt_reinsert_actions(smc); } } else { { printk("\016SMT PANIC: code: %d, msg: %s\n", 135, (char *)"RMT: duplicate MAC address detected. Ring left!"); rmt_leave_actions(smc); } } return; } } static void rmt_reinsert_actions(struct s_smc *smc ) { { { queue_event(smc, 1, 2); queue_event(smc, 1, 1); } return; } } static void rmt_new_dup_actions(struct s_smc *smc ) { { smc->r.da_flag = 1U; smc->r.bn_flag = 0U; smc->r.jm_flag = 0U; if (smc->s.rmt_dup_mac_behavior != 0UL) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 138, (char *)"RMT: duplicate MAC address detected. Ring NOT left!"); rmt_reinsert_actions(smc); } } else { { printk("\016SMT PANIC: code: %d, msg: %s\n", 135, (char *)"RMT: duplicate MAC address detected. Ring left!"); rmt_leave_actions(smc); } } return; } } static void rmt_leave_actions(struct s_smc *smc ) { { { queue_event(smc, 1, 2); } return; } } static void start_rmt_timer0(struct s_smc *smc , u_long value , int event ) { { { smc->r.timer0_exp = 0U; smt_timer_start(smc, & smc->r.rmt_timer0, value, (unsigned long )(event | 196608)); } return; } } static void start_rmt_timer1(struct s_smc *smc , u_long value , int event ) { { { smc->r.timer1_exp = 0U; smt_timer_start(smc, & smc->r.rmt_timer1, value, (unsigned long )(event | 196608)); } return; } } static void start_rmt_timer2(struct s_smc *smc , u_long value , int event ) { { { smc->r.timer2_exp = 0U; smt_timer_start(smc, & smc->r.rmt_timer2, value, (unsigned long )(event | 196608)); } return; } } static void stop_rmt_timer0(struct s_smc *smc ) { { if ((unsigned int )smc->r.rmt_timer0.tm_active != 0U) { { smt_timer_stop(smc, & smc->r.rmt_timer0); } } else { } return; } } static void stop_rmt_timer1(struct s_smc *smc ) { { if ((unsigned int )smc->r.rmt_timer1.tm_active != 0U) { { smt_timer_stop(smc, & smc->r.rmt_timer1); } } else { } return; } } static void stop_rmt_timer2(struct s_smc *smc ) { { if ((unsigned int )smc->r.rmt_timer2.tm_active != 0U) { { smt_timer_stop(smc, & smc->r.rmt_timer2); } } else { } return; } } extern char *strcpy(char * , char const * ) ; void smt_fixup_mib(struct s_smc *smc ) ; static void smt_init_mib(struct s_smc *smc , int level ) ; static int set_min_max(int maxflag , u_long mib , u_long limit , u_long *oper ) ; void smt_reset_defaults(struct s_smc *smc , int level ) { struct smt_config *smt ; int i ; u_long smt_boot_time ; { { smt_init_mib(smc, level); smc->os.smc_version = 1UL; smt_boot_time = smt_get_time(); i = 0; } goto ldv_43238; ldv_43237: smc->sm.last_tok_time[i] = smt_boot_time; i = i + 1; ldv_43238: ; if (i <= 0) { goto ldv_43237; } else { } smt = & smc->s; smt->attach_s = 0U; smt->build_ring_map = 1U; smt->sas = 0U; smt->numphys = 2U; smt->pcm_tb_min = 5000UL; smt->pcm_tb_max = 50000UL; smt->pcm_c_min = 1600UL; smt->pcm_t_out = 105000UL; smt->pcm_tl_min = 30UL; smt->pcm_lc_short = 55000UL; smt->pcm_lc_medium = 520000UL; smt->pcm_lc_long = 5050000UL; smt->pcm_lc_extended = 50050000UL; smt->pcm_t_next_9 = 210000UL; smt->pcm_ns_max = 1310UL; smt->ecm_i_max = 25000UL; smt->ecm_in_max = 40000UL; smt->ecm_td_min = 5000UL; smt->ecm_test_done = 1000000UL; smt->ecm_check_poll = 1000000UL; smt->rmt_t_non_op = 1000000UL; smt->rmt_t_stuck = 8000000UL; smt->rmt_t_direct = 370000UL; smt->rmt_t_jam = 370000UL; smt->rmt_t_announce = 2500000UL; smt->rmt_t_poll = 50000UL; smt->rmt_dup_mac_behavior = 0UL; smt->mac_d_max = 1617UL; smt->lct_short = 1UL; smt->lct_medium = 3UL; smt->lct_long = 5UL; smt->lct_extended = 50UL; if (level == 0) { smc->ess.sync_bw_available = 0U; smc->mib.fddiESSPayload = 0UL; smc->mib.fddiESSOverhead = 0UL; smc->mib.fddiESSMaxTNeg = 0xfffffffffffb3b4cUL; smc->mib.fddiESSMinSegmentSize = 1UL; smc->mib.fddiESSCategory = 1UL; smc->mib.fddiESSSynchTxMode = 0; smc->ess.raf_act_timer_poll = 0; smc->ess.timer_count = 7; } else { } smc->ess.local_sba_active = 0U; smc->ess.sba_reply_pend = (Mbuf *)0; if (level == 0) { smc->hw.pci_fix_value = 0UL; } else { } return; } } static char const man_data[32U] = { 'x', 'x', 'x', 'S', 'K', '-', 'N', 'E', 'T', ' ', 'F', 'D', 'D', 'I', ' ', 'S', 'M', 'T', ' ', '7', '.', '3', ' ', '-', ' ', 'V', '2', '.', '8', '.', '8', '\000'}; static void smt_init_mib(struct s_smc *smc , int level ) { struct fddi_mib *mib ; struct fddi_mib_p *pm ; int port ; int path ; { mib = & smc->mib; if (level == 0) { { memset((void *)smc + 4968U, 0, 3080UL); } } else { mib->fddiSMTRemoteDisconnectFlag = 0U; mib->fddiSMTPeerWrapFlag = 0U; } { mib->fddiSMTOpVersionId = 2U; mib->fddiSMTHiVersionId = 2U; mib->fddiSMTLoVersionId = 2U; memcpy((void *)(& mib->fddiSMTManufacturerData), (void const *)(& man_data), 32UL); } if (level == 0) { { strcpy((char *)(& mib->fddiSMTUserData), "SK-NET FDDI V2.0 Userdata"); } } else { } mib->fddiSMTMIBVersionId = 1U; mib->fddiSMTMac_Ct = 1U; mib->fddiSMTConnectionPolicy = 32801U; mib->fddiSMTAvailablePaths = 3U; mib->fddiSMTConfigCapabilities = 0U; mib->fddiSMTTT_Notify = 10U; mib->fddiSMTStatRptPolicy = 1U; mib->fddiSMTTrace_MaxExpiration = 87500000UL; mib->fddiSMTMACIndexes = 1U; mib->fddiSMTStationStatus = 1U; mib->m[0].fddiMACIndex = 1U; mib->m[0].fddiMACFrameStatusFunctions = 0U; mib->m[0].fddiMACRequestedPaths = 7U; mib->m[0].fddiMACAvailablePaths = 1U; mib->m[0].fddiMACCurrentPath = 3U; mib->m[0].fddiMACT_MaxCapabilitiy = 0xffffffffffe0875cUL; mib->m[0].fddiMACTVXCapabilitiy = 0xffffffffffff0218UL; if (level == 0) { mib->m[0].fddiMACTvxValue = 0xffffffffffff7c2aUL; mib->m[0].fddiMACTvxValueMIB = 0xffffffffffff7c2aUL; mib->m[0].fddiMACT_Req = 0xffffffffffe0875cUL; mib->m[0].fddiMACT_ReqMIB = 0xffffffffffe0875cUL; mib->m[0].fddiMACT_Max = 0xffffffffffe0875cUL; mib->m[0].fddiMACT_MaxMIB = 0xffffffffffe0875cUL; mib->m[0].fddiMACT_Min = 0xffffffffffff3cb0UL; } else { } mib->m[0].fddiMACHardwarePresent = 1U; mib->m[0].fddiMACMA_UnitdataEnable = 1U; mib->m[0].fddiMACFrameErrorThreshold = 1U; mib->m[0].fddiMACNotCopiedThreshold = 1U; path = 0; goto ldv_43250; ldv_43249: mib->a[path].fddiPATHIndex = (unsigned int )((ResId )path) + 1U; if (level == 0) { mib->a[path].fddiPATHTVXLowerBound = 0xffffffffffff7c2aUL; mib->a[path].fddiPATHT_MaxLowerBound = 0xffffffffffe0875cUL; mib->a[path].fddiPATHMaxT_Req = 0xffffffffffe0875cUL; } else { } path = path + 1; ldv_43250: ; if (path <= 1) { goto ldv_43249; } else { } pm = (struct fddi_mib_p *)(& mib->p); port = 0; goto ldv_43253; ldv_43252: smc->y[port].mib = (struct fddi_mib_p *)0; mib->fddiSMTPORTIndexes[port] = (unsigned int )((u_short )port) + 1U; pm->fddiPORTIndex = (unsigned int )((ResId )port) + 1U; pm->fddiPORTHardwarePresent = 1U; if (level == 0) { pm->fddiPORTLer_Alarm = 8U; pm->fddiPORTLer_Cutoff = 7U; } else { } pm->fddiPORTRequestedPaths[1] = 0U; pm->fddiPORTRequestedPaths[2] = 0U; pm->fddiPORTRequestedPaths[3] = 0U; pm->fddiPORTAvailablePaths = 1U; pm->fddiPORTPMDClass = 0U; pm = pm + 1; port = port + 1; ldv_43253: ; if (port <= 1) { goto ldv_43252; } else { } { smt_set_mac_opvalues(smc); } return; } } int smt_set_mac_opvalues(struct s_smc *smc ) { int st ; int st2 ; int tmp ; { { st = set_min_max(1, smc->mib.m[0].fddiMACTvxValueMIB, smc->mib.a[0].fddiPATHTVXLowerBound, & smc->mib.m[0].fddiMACTvxValue); tmp = set_min_max(0, smc->mib.m[0].fddiMACT_MaxMIB, smc->mib.a[0].fddiPATHT_MaxLowerBound, & smc->mib.m[0].fddiMACT_Max); st = st | tmp; st2 = set_min_max(0, smc->mib.m[0].fddiMACT_ReqMIB, smc->mib.a[0].fddiPATHMaxT_Req, & smc->mib.m[0].fddiMACT_Req); st = st | st2; } return (st); } } void smt_fixup_mib(struct s_smc *smc ) { { { if ((int )smc->s.sas == 1) { goto case_1; } else { } if ((int )smc->s.sas == 0) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ smc->mib.fddiSMTNonMaster_Ct = 1U; goto ldv_43264; case_0: /* CIL Label */ smc->mib.fddiSMTNonMaster_Ct = 2U; goto ldv_43264; switch_break: /* CIL Label */ ; } ldv_43264: smc->mib.fddiSMTMaster_Ct = 0U; return; } } static int set_min_max(int maxflag , u_long mib , u_long limit , u_long *oper ) { u_long old ; { old = *oper; if ((limit > mib) != maxflag) { *oper = limit; } else { *oper = mib; } return (old != *oper); } } void smt_timer_init(struct s_smc *smc ) ; void smt_init_evc(struct s_smc *smc ) ; u_char const oem_id[13U] ; static void set_oem_spec_val(struct s_smc *smc ) { struct fddi_mib *mib ; { mib = & smc->mib; if ((unsigned int )oem_id[0] == 73U) { mib->fddiSMTConnectionPolicy = 32768U; } else { } return; } } int init_smt(struct s_smc *smc , u_char *mac_addr ) { int p ; { p = 0; goto ldv_43233; ldv_43232: smc->y[p].mib = (struct fddi_mib_p *)(& smc->mib.p) + (unsigned long )p; p = p + 1; ldv_43233: ; if (p <= 1) { goto ldv_43232; } else { } { set_oem_spec_val(smc); smt_set_mac_opvalues(smc); init_fddi_driver(smc, mac_addr); smt_fixup_mib(smc); ev_init(smc); smt_init_evc(smc); smt_timer_init(smc); smt_agent_init(smc); pcm_init(smc); ecm_init(smc); cfm_init(smc); rmt_init(smc); p = 0; } goto ldv_43236; ldv_43235: { pcm(smc, p, 0); p = p + 1; } ldv_43236: ; if (p <= 1) { goto ldv_43235; } else { } { ecm(smc, 0); cfm(smc, 0); rmt(smc, 0); smt_agent_task(smc); } return (0); } } void hwt_init(struct s_smc *smc ) ; u_long hwt_read(struct s_smc *smc ) ; void hwt_stop(struct s_smc *smc ) ; void hwt_start(struct s_smc *smc , u_long time ) ; void smt_timer_done(struct s_smc *smc ) ; static void timer_done(struct s_smc *smc , int restart ) ; void smt_timer_init(struct s_smc *smc ) { { { smc->t.st_queue = (struct smt_timer *)0; smc->t.st_fast.tm_active = 0U; smc->t.st_fast.tm_next = (struct smt_timer *)0; hwt_init(smc); } return; } } void smt_timer_stop(struct s_smc *smc , struct smt_timer *timer ) { struct smt_timer **prev ; struct smt_timer *tm ; { timer->tm_active = 0U; if ((unsigned long )smc->t.st_queue == (unsigned long )timer && (unsigned long )timer->tm_next == (unsigned long )((struct smt_timer *)0)) { { hwt_stop(smc); } } else { } prev = & smc->t.st_queue; goto ldv_43232; ldv_43231: ; if ((unsigned long )tm == (unsigned long )timer) { *prev = tm->tm_next; if ((unsigned long )tm->tm_next != (unsigned long )((struct smt_timer *)0)) { (tm->tm_next)->tm_delta = (tm->tm_next)->tm_delta + tm->tm_delta; } else { } return; } else { } prev = & tm->tm_next; ldv_43232: tm = *prev; if ((unsigned long )tm != (unsigned long )((struct smt_timer *)0)) { goto ldv_43231; } else { } return; } } void smt_timer_start(struct s_smc *smc , struct smt_timer *timer , u_long time , u_long token ) { struct smt_timer **prev ; struct smt_timer *tm ; u_long delta ; { delta = 0UL; time = time / 16UL; if (time == 0UL) { time = 1UL; } else { } { smt_timer_stop(smc, timer); timer->tm_smc = smc; timer->tm_token = token; timer->tm_active = 1U; } if ((unsigned long )smc->t.st_queue == (unsigned long )((struct smt_timer *)0)) { { smc->t.st_queue = timer; timer->tm_next = (struct smt_timer *)0; timer->tm_delta = time; hwt_start(smc, time); } return; } else { } { timer_done(smc, 0); delta = 0UL; prev = & smc->t.st_queue; } goto ldv_43245; ldv_43244: ; if (delta + tm->tm_delta > time) { goto ldv_43243; } else { } delta = delta + tm->tm_delta; prev = & tm->tm_next; ldv_43245: tm = *prev; if ((unsigned long )tm != (unsigned long )((struct smt_timer *)0)) { goto ldv_43244; } else { } ldv_43243: *prev = timer; timer->tm_next = tm; timer->tm_delta = time - delta; if ((unsigned long )tm != (unsigned long )((struct smt_timer *)0)) { tm->tm_delta = tm->tm_delta - timer->tm_delta; } else { } { hwt_start(smc, (smc->t.st_queue)->tm_delta); } return; } } void smt_force_irq(struct s_smc *smc ) { { { smt_timer_start(smc, & smc->t.st_fast, 32UL, 262146UL); } return; } } void smt_timer_done(struct s_smc *smc ) { { { timer_done(smc, 1); } return; } } static void timer_done(struct s_smc *smc , int restart ) { u_long delta ; struct smt_timer *tm ; struct smt_timer *next ; struct smt_timer **last ; int done ; { { done = 0; delta = hwt_read(smc); last = & smc->t.st_queue; tm = smc->t.st_queue; } goto ldv_43262; ldv_43261: ; if (delta >= tm->tm_delta) { tm->tm_active = 0U; delta = delta - tm->tm_delta; last = & tm->tm_next; tm = tm->tm_next; } else { tm->tm_delta = tm->tm_delta - delta; delta = 0UL; done = 1; } ldv_43262: ; if ((unsigned long )tm != (unsigned long )((struct smt_timer *)0) && done == 0) { goto ldv_43261; } else { } *last = (struct smt_timer *)0; next = smc->t.st_queue; smc->t.st_queue = tm; tm = next; goto ldv_43265; ldv_43264: { next = tm->tm_next; timer_event(smc, tm->tm_token); tm = next; } ldv_43265: ; if ((unsigned long )tm != (unsigned long )((struct smt_timer *)0)) { goto ldv_43264; } else { } if (restart != 0 && (unsigned long )smc->t.st_queue != (unsigned long )((struct smt_timer *)0)) { { hwt_start(smc, (smc->t.st_queue)->tm_delta); } } else { } return; } } static void clear_all_rep(struct s_smc *smc ) ; static void clear_reported(struct s_smc *smc ) ; static void smt_send_srf(struct s_smc *smc ) ; static struct s_srf_evc *smt_get_evc(struct s_smc *smc , int code , int index ) ; static struct evc_init const evc_inits[10U] = { {5U, 0U, 1U, 4168U}, {8U, 1U, 1U, 8332U}, {7U, 1U, 1U, 8333U}, {9U, 1U, 1U, 8334U}, {2U, 1U, 1U, 8335U}, {1U, 1U, 1U, 8336U}, {11U, 1U, 2U, 16464U}, {10U, 1U, 2U, 16466U}, {4U, 1U, 2U, 16465U}, {3U, 1U, 2U, 16467U}}; void smt_init_evc(struct s_smc *smc ) { struct s_srf_evc *evc ; struct evc_init const *init ; unsigned int i ; int index ; int offset ; u_char fail_safe ; { { fail_safe = 0U; memset((void *)(& smc->evcs), 0, 336UL); evc = (struct s_srf_evc *)(& smc->evcs); init = (struct evc_init const *)(& evc_inits); i = 0U; } goto ldv_43250; ldv_43249: index = 0; goto ldv_43247; ldv_43246: evc->evc_code = init->code; evc->evc_para = init->para; evc->evc_index = (int )((u_char )init->index) + (int )((u_char )index); evc->evc_multiple = & fail_safe; evc->evc_cond_state = & fail_safe; evc = evc + 1; index = index + 1; ldv_43247: ; if (index < (int )init->n) { goto ldv_43246; } else { } init = init + 1; i = i + 1U; ldv_43250: ; if (i <= 9U) { goto ldv_43249; } else { } if ((unsigned int )(((long )evc - (long )(& smc->evcs)) / 24L) > 14U) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 127, (char *)"sizeof evcs"); } } else { } smc->evcs[0].evc_cond_state = & smc->mib.fddiSMTPeerWrapFlag; smc->evcs[1].evc_cond_state = & smc->mib.m[0].fddiMACDuplicateAddressCond; smc->evcs[2].evc_cond_state = & smc->mib.m[0].fddiMACFrameErrorFlag; smc->evcs[3].evc_cond_state = & smc->mib.m[0].fddiMACNotCopiedFlag; smc->evcs[4].evc_multiple = & smc->mib.m[0].fddiMACMultiple_N; smc->evcs[5].evc_multiple = & smc->mib.m[0].fddiMACMultiple_P; offset = 6; i = 0U; goto ldv_43255; ldv_43254: smc->evcs[offset].evc_cond_state = & smc->mib.p[i].fddiPORTLerFlag; smc->evcs[offset + 2].evc_cond_state = & smc->mib.p[i].fddiPORTEB_Condition; smc->evcs[offset + 4].evc_multiple = & smc->mib.p[i].fddiPORTMultiple_U; smc->evcs[offset + 6].evc_multiple = & smc->mib.p[i].fddiPORTMultiple_P; offset = offset + 1; i = i + 1U; ldv_43255: ; if (i <= 1U) { goto ldv_43254; } else { } { smc->srf.TSR = smt_get_time(); smc->srf.sr_state = 0U; } return; } } static struct s_srf_evc *smt_get_evc(struct s_smc *smc , int code , int index ) { unsigned int i ; struct s_srf_evc *evc ; { i = 0U; evc = (struct s_srf_evc *)(& smc->evcs); goto ldv_43267; ldv_43266: ; if ((int )evc->evc_code == code && (int )evc->evc_index == index) { return (evc); } else { } i = i + 1U; evc = evc + 1; ldv_43267: ; if (i <= 13U) { goto ldv_43266; } else { } return ((struct s_srf_evc *)0); } } void smt_srf_event(struct s_smc *smc , int code , int index , int cond ) { struct s_srf_evc *evc ; int cond_asserted ; int cond_deasserted ; int event_occurred ; int tsr ; int T_Limit ; u_short tmp ; u_long tmp___0 ; { cond_asserted = 0; cond_deasserted = 0; event_occurred = 0; T_Limit = 500; if (code == 8 && cond != 0) { { tmp = (u_short )((unsigned int )smc->srf.ring_status | 64U); smc->srf.ring_status = tmp; ring_status_indication(smc, (u_long )tmp); } } else { } if (code != 0) { { evc = smt_get_evc(smc, code, index); } if ((unsigned long )evc == (unsigned long )((struct s_srf_evc *)0)) { return; } else { } if (code > 4) { if ((int )*(evc->evc_cond_state) == cond) { return; } else { } } else { } { smt_set_timestamp(smc, (u_char *)(& smc->mib.fddiSMTTransitionTimeStamp)); } if (code > 4) { if (cond != 0) { *(evc->evc_cond_state) = 1U; evc->evc_rep_required = 1U; smc->srf.any_report = 1U; cond_asserted = 1; } else { *(evc->evc_cond_state) = 0U; cond_deasserted = 1; } } else { if ((unsigned int )evc->evc_rep_required != 0U) { *(evc->evc_multiple) = 1U; } else { evc->evc_rep_required = 1U; *(evc->evc_multiple) = 0U; } smc->srf.any_report = 1U; event_occurred = 1; } } else { } { tmp___0 = smt_get_time(); tsr = (int )((unsigned int )tmp___0 - (unsigned int )smc->srf.TSR); } { if ((int )smc->srf.sr_state == 0) { goto case_0; } else { } if ((int )smc->srf.sr_state == 1) { goto case_1; } else { } if ((int )smc->srf.sr_state == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ ; if (cond_asserted != 0 && tsr < T_Limit) { smc->srf.SRThreshold = 500UL; smc->srf.sr_state = 1U; goto ldv_43282; } else { } if (cond_deasserted != 0 && tsr < T_Limit) { smc->srf.sr_state = 1U; goto ldv_43282; } else { } if (event_occurred != 0 && tsr < T_Limit) { smc->srf.sr_state = 1U; goto ldv_43282; } else { } if (cond_asserted != 0 && tsr >= T_Limit) { { smc->srf.SRThreshold = 500UL; smc->srf.TSR = smt_get_time(); smt_send_srf(smc); } goto ldv_43282; } else { } if (cond_deasserted != 0 && tsr >= T_Limit) { { smc->srf.TSR = smt_get_time(); smt_send_srf(smc); } goto ldv_43282; } else { } if (event_occurred != 0 && tsr >= T_Limit) { { smc->srf.TSR = smt_get_time(); smt_send_srf(smc); } goto ldv_43282; } else { } if ((unsigned int )smc->srf.any_report != 0U && (unsigned long )tsr >= smc->srf.SRThreshold) { smc->srf.SRThreshold = smc->srf.SRThreshold * 2UL; if (smc->srf.SRThreshold > 8000UL) { smc->srf.SRThreshold = 8000UL; } else { } { smc->srf.TSR = smt_get_time(); smt_send_srf(smc); } goto ldv_43282; } else { } if ((unsigned int )smc->mib.fddiSMTStatRptPolicy == 0U) { smc->srf.sr_state = 2U; goto ldv_43282; } else { } goto ldv_43282; case_1: /* CIL Label */ ; if (tsr >= T_Limit) { { smc->srf.sr_state = 0U; smc->srf.TSR = smt_get_time(); smt_send_srf(smc); } goto ldv_43282; } else { } if (cond_asserted != 0) { smc->srf.SRThreshold = 500UL; } else { } if ((unsigned int )smc->mib.fddiSMTStatRptPolicy == 0U) { smc->srf.sr_state = 2U; goto ldv_43282; } else { } goto ldv_43282; case_2: /* CIL Label */ ; if ((unsigned int )smc->mib.fddiSMTStatRptPolicy != 0U) { { smc->srf.sr_state = 0U; smc->srf.TSR = smt_get_time(); smc->srf.SRThreshold = 500UL; clear_all_rep(smc); } goto ldv_43282; } else { } goto ldv_43282; switch_break: /* CIL Label */ ; } ldv_43282: ; return; } } static void clear_all_rep(struct s_smc *smc ) { struct s_srf_evc *evc ; unsigned int i ; { i = 0U; evc = (struct s_srf_evc *)(& smc->evcs); goto ldv_43293; ldv_43292: evc->evc_rep_required = 0U; if ((unsigned int )evc->evc_code > 4U) { *(evc->evc_cond_state) = 0U; } else { } i = i + 1U; evc = evc + 1; ldv_43293: ; if (i <= 13U) { goto ldv_43292; } else { } smc->srf.any_report = 0U; return; } } static void clear_reported(struct s_smc *smc ) { struct s_srf_evc *evc ; unsigned int i ; { smc->srf.any_report = 0U; i = 0U; evc = (struct s_srf_evc *)(& smc->evcs); goto ldv_43303; ldv_43302: ; if ((unsigned int )evc->evc_code > 4U) { if ((unsigned int )*(evc->evc_cond_state) == 0U) { evc->evc_rep_required = 0U; } else { smc->srf.any_report = 1U; } } else { evc->evc_rep_required = 0U; *(evc->evc_multiple) = 0U; } i = i + 1U; evc = evc + 1; ldv_43303: ; if (i <= 13U) { goto ldv_43302; } else { } return; } } static void smt_send_srf(struct s_smc *smc ) { struct smt_header *smt ; struct s_srf_evc *evc ; struct s_pcon pcon ; Mbuf *mb ; unsigned int i ; struct fddi_addr SMT_SRF_DA ; u_short tmp ; { SMT_SRF_DA.a[0] = 128U; SMT_SRF_DA.a[1] = 1U; SMT_SRF_DA.a[2] = 67U; SMT_SRF_DA.a[3] = 0U; SMT_SRF_DA.a[4] = 128U; SMT_SRF_DA.a[5] = 8U; if ((unsigned int )smc->r.sm_ma_avail == 0U) { return; } else { } { mb = smt_build_frame(smc, 7, 1, 0); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return; } else { } { tmp = (u_short )((unsigned int )smc->srf.ring_status | 8192U); smc->srf.ring_status = tmp; ring_status_indication(smc, (u_long )tmp); smt = (struct smt_header *)(& mb->m_data) + (unsigned long )mb->m_off; smt->smt_dest = SMT_SRF_DA; pcon.pc_len = 4332; pcon.pc_err = 0; pcon.pc_badset = 0; pcon.pc_p = (void *)smt + 1U; smt_add_para(smc, & pcon, 4147, 0, 0); smt_add_para(smc, & pcon, 4148, 0, 0); i = 0U; evc = (struct s_srf_evc *)(& smc->evcs); } goto ldv_43317; ldv_43316: ; if ((unsigned int )evc->evc_rep_required != 0U) { { smt_add_para(smc, & pcon, (int )evc->evc_para, (int )evc->evc_index, 0); } } else { } i = i + 1U; evc = evc + 1; ldv_43317: ; if (i <= 13U) { goto ldv_43316; } else { } { smt->smt_len = 4332U - (unsigned int )((u_short )pcon.pc_len); mb->m_len = (u_int )smt->smt_len + 32U; smt_send_frame(smc, mb, 65, 0); clear_reported(smc); } return; } } void hwt_restart(struct s_smc *smc ) ; void hwt_start(struct s_smc *smc , u_long time ) { u_short cnt ; { if (time > 65000UL) { time = 65000UL; } else { } smc->hw.t_start = time; smc->hw.t_stop = 0UL; cnt = (unsigned short )time; if ((unsigned int )cnt == 0U) { cnt = (u_short )((int )cnt + 1); } else { } { iowrite32((u32 )cnt * 200U, smc->hw.iop + 288UL); iowrite16(4, smc->hw.iop + 296UL); smc->hw.timer_activ = 1U; } return; } } void hwt_stop(struct s_smc *smc ) { { { iowrite16(2, smc->hw.iop + 296UL); iowrite16(1, smc->hw.iop + 296UL); smc->hw.timer_activ = 0U; } return; } } void hwt_init(struct s_smc *smc ) { { { smc->hw.t_start = 0UL; smc->hw.t_stop = 0UL; smc->hw.timer_activ = 0U; hwt_restart(smc); } return; } } void hwt_restart(struct s_smc *smc ) { { { hwt_stop(smc); } return; } } u_long hwt_read(struct s_smc *smc ) { u_short tr ; u_long is ; unsigned int tmp ; unsigned int tmp___0 ; { if ((unsigned int )smc->hw.timer_activ != 0U) { { hwt_stop(smc); tmp = ioread32(smc->hw.iop + 292UL); tr = (unsigned short )(tmp / 200U); tmp___0 = ioread32(smc->hw.iop + 8UL); is = (u_long )tmp___0; } if ((u_long )tr > smc->hw.t_start || (is & 4194304UL) != 0UL) { { hwt_restart(smc); smc->hw.t_stop = smc->hw.t_start; } } else { smc->hw.t_stop = smc->hw.t_start - (u_long )tr; } } else { } return (smc->hw.t_stop); } } u_long hwt_quick_read(struct s_smc *smc ) { u_long interval ; u_long time ; unsigned int tmp ; unsigned int tmp___0 ; { { tmp = ioread32(smc->hw.iop + 288UL); interval = (u_long )tmp; iowrite16(2, smc->hw.iop + 296UL); tmp___0 = ioread32(smc->hw.iop + 292UL); time = (u_long )tmp___0; iowrite32((u32 )time, smc->hw.iop + 288UL); iowrite16(4, smc->hw.iop + 296UL); iowrite32((u32 )interval, smc->hw.iop + 288UL); } return (time); } } void hwt_wait_time(struct s_smc *smc , u_long start , long duration ) { long diff ; long interval ; int wrapped ; u_long tmp ; u_long tmp___0 ; unsigned int tmp___1 ; u_long tmp___2 ; u_long tmp___3 ; u_long tmp___4 ; { if ((unsigned int )smc->hw.timer_activ == 0U) { return; } else { { tmp = hwt_quick_read(smc); tmp___0 = hwt_quick_read(smc); } if (tmp == tmp___0) { return; } else { } } { tmp___1 = ioread32(smc->hw.iop + 288UL); interval = (long )tmp___1; } if (interval > duration) { ldv_43251: { tmp___2 = hwt_quick_read(smc); diff = (long )(start - tmp___2); } if (diff < 0L) { diff = diff + interval; } else { } if (diff <= duration) { goto ldv_43251; } else { } } else { diff = interval; wrapped = 0; ldv_43253: ; if (wrapped == 0) { { tmp___3 = hwt_quick_read(smc); } if (tmp___3 >= start) { diff = diff + interval; wrapped = 1; } else { } } else { { tmp___4 = hwt_quick_read(smc); } if (tmp___4 < start) { wrapped = 0; } else { } } if (diff <= duration) { goto ldv_43253; } else { } } return; } } extern unsigned int ioread8(void * ) ; u_char const oem_id[13U] = { 'x', 'P', 'O', 'S', '_', 'I', 'D', ':', 'x', 'x', 'x', 'x', '\000'}; static void smt_stop_watchdog(struct s_smc *smc ) ; static void card_start(struct s_smc *smc ) { int i ; u_char rev_id ; u_short word ; u_long tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; { { smt_stop_watchdog(smc); iowrite16(0, smc->hw.iop + 1088UL); iowrite8(16, smc->hw.iop + 4UL); tmp = hwt_quick_read(smc); hwt_wait_time(smc, tmp, 125000L); iowrite8(1, smc->hw.iop + 4UL); tmp___0 = ioread8(smc->hw.iop + 4UL); i = (int )tmp___0; iowrite8(2, smc->hw.iop + 4UL); iowrite8(2, smc->hw.iop + 7UL); tmp___1 = ioread16(smc->hw.iop + 390UL); word = (u_short )tmp___1; iowrite16((int )((unsigned int )word | 59648U), smc->hw.iop + 390UL); iowrite8(1, smc->hw.iop + 7UL); iowrite8(40, smc->hw.iop + 4UL); tmp___2 = ioread8(smc->hw.iop + 392UL); rev_id = (u_char )tmp___2; } if (((int )rev_id & 240) == 32 || ((int )rev_id & 240) == 48) { smc->hw.hw_is_64bit = 1; } else { smc->hw.hw_is_64bit = 0; } if (smc->hw.hw_is_64bit == 0) { { iowrite32(24U, smc->hw.iop + 544UL); iowrite32(24U, smc->hw.iop + 672UL); iowrite32(24U, smc->hw.iop + 736UL); } } else { } { iowrite8(2, smc->hw.iop + 4UL); iowrite8(25, smc->hw.iop + 6UL); iowrite32(1875000000U, smc->hw.iop + 304UL); smc->hw.is_imask = 8368179UL; smc->hw.hw_state = 0U; iowrite32(0U, smc->hw.iop + 272UL); } return; } } void card_stop(struct s_smc *smc ) { u_long tmp ; { { smt_stop_watchdog(smc); smc->hw.mac_ring_is_up = 0U; iowrite16(0, smc->hw.iop + 1088UL); iowrite8(16, smc->hw.iop + 4UL); tmp = hwt_quick_read(smc); hwt_wait_time(smc, tmp, 125000L); iowrite8(1, smc->hw.iop + 4UL); iowrite8(2, smc->hw.iop + 4UL); iowrite8(21, smc->hw.iop + 6UL); smc->hw.hw_state = 0U; } return; } } void mac1_irq(struct s_smc *smc , u_short stu , u_short stl ) { int restart_tx ; unsigned int tmp ; unsigned int tmp___0 ; { restart_tx = 0; again: ; if (((int )stl & 1792) != 0) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 134, (char *)"ST1L.FM_SPCEPDx parity error"); } } else { } if (((int )stl & 28672) != 0) { { printk("\016SMT PANIC: code: %d, msg: %s\n", 133, (char *)"ST1L.FM_STBURx tx buffer underrun"); } } else { } if (((int )stu & 38912) != 0 || ((int )stl & 3) != 0) { { formac_tx_restart(smc); restart_tx = 1; tmp = ioread16(smc->hw.iop + 1024UL); stu = (u_short )tmp; tmp___0 = ioread16(smc->hw.iop + 1028UL); stl = (u_short )tmp___0; stu = (unsigned int )stu & 65500U; } if ((unsigned int )((int )stu | (int )stl) != 0U) { goto again; } else { } } else { } if (((int )stu & 3) != 0) { restart_tx = 1; } else { } if (restart_tx != 0) { { llc_restart_tx(smc); } } else { } return; } } void plc1_irq(struct s_smc *smc ) { u_short st ; unsigned int tmp ; { { tmp = ioread16(smc->hw.iop + 988UL); st = (u_short )tmp; plc_irq(smc, 1, (unsigned int )st); } return; } } void plc2_irq(struct s_smc *smc ) { u_short st ; unsigned int tmp ; { { tmp = ioread16(smc->hw.iop + 1628UL); st = (u_short )tmp; plc_irq(smc, 0, (unsigned int )st); } return; } } void timer_irq(struct s_smc *smc ) { { { hwt_restart(smc); smc->hw.t_stop = smc->hw.t_start; smt_timer_done(smc); } return; } } int pcm_get_s_port(struct s_smc *smc ) { { return (0); } } void read_address(struct s_smc *smc , u_char *mac_addr ) { char ConnectorType ; char PmdType ; int i ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; u_char tmp___2 ; u_char tmp___3 ; { i = 0; goto ldv_43308; ldv_43307: { tmp = ioread8(smc->hw.iop + (unsigned long )(i + 256)); smc->hw.fddi_phys_addr.a[i] = bitrev8((int )((unsigned char )tmp)); i = i + 1; } ldv_43308: ; if (i <= 5) { goto ldv_43307; } else { } { tmp___0 = ioread8(smc->hw.iop + 264UL); ConnectorType = (char )tmp___0; tmp___1 = ioread8(smc->hw.iop + 265UL); PmdType = (char )tmp___1; tmp___2 = (u_char )ConnectorType; smc->y[1].pmd_type[0] = tmp___2; smc->y[0].pmd_type[0] = tmp___2; tmp___3 = (u_char )PmdType; smc->y[1].pmd_type[1] = tmp___3; smc->y[0].pmd_type[1] = tmp___3; } if ((unsigned long )mac_addr != (unsigned long )((u_char *)0U)) { i = 0; goto ldv_43311; ldv_43310: { smc->hw.fddi_canon_addr.a[i] = *(mac_addr + (unsigned long )i); smc->hw.fddi_home_addr.a[i] = bitrev8((int )*(mac_addr + (unsigned long )i)); i = i + 1; } ldv_43311: ; if (i <= 5) { goto ldv_43310; } else { } return; } else { } smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr; i = 0; goto ldv_43314; ldv_43313: { smc->hw.fddi_canon_addr.a[i] = bitrev8((int )smc->hw.fddi_phys_addr.a[i]); i = i + 1; } ldv_43314: ; if (i <= 5) { goto ldv_43313; } else { } return; } } void init_board(struct s_smc *smc , u_char *mac_addr ) { unsigned int tmp ; unsigned int tmp___0 ; { { card_start(smc); read_address(smc, mac_addr); tmp = ioread8(smc->hw.iop + 5UL); } if ((tmp & 8U) == 0U) { smc->s.sas = 1U; } else { smc->s.sas = 0U; } { tmp___0 = ioread8(smc->hw.iop + 5UL); } if ((tmp___0 & 4U) == 0U) { smc->mib.fddiSMTBypassPresent = 0U; } else { smc->mib.fddiSMTBypassPresent = 1U; } return; } } void sm_pm_bypass_req(struct s_smc *smc , int mode ) { { if ((unsigned int )smc->s.sas != 0U) { return; } else { } { if (mode == 1) { goto case_1; } else { } if (mode == 0) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ { iowrite8(2, smc->hw.iop + 5UL); } goto ldv_43325; case_0: /* CIL Label */ { iowrite8(1, smc->hw.iop + 5UL); } goto ldv_43325; switch_break: /* CIL Label */ ; } ldv_43325: ; return; } } int sm_pm_bypass_present(struct s_smc *smc ) { unsigned int tmp ; { { tmp = ioread8(smc->hw.iop + 5UL); } return ((tmp & 4U) != 0U); } } void plc_clear_irq(struct s_smc *smc , int p ) { { return; } } static void led_indication(struct s_smc *smc , int led_event ) { u_short led_state ; struct s_phy *phy ; struct fddi_mib_p *mib_a ; struct fddi_mib_p *mib_b ; { phy = (struct s_phy *)(& smc->y); mib_a = phy->mib; phy = (struct s_phy *)(& smc->y) + 1UL; mib_b = phy->mib; led_state = 0U; if (led_event == 17) { led_state = (u_short )((unsigned int )led_state | 8U); } else if (led_event == 16) { led_state = (u_short )((unsigned int )led_state | 4U); } else { if ((unsigned int )mib_a->fddiPORTPCMState == 8U) { led_state = (u_short )((unsigned int )led_state | 32U); } else { led_state = (u_short )((unsigned int )led_state | 16U); } if ((unsigned int )mib_b->fddiPORTPCMState == 8U) { led_state = (u_short )((unsigned int )led_state | 2U); } else { led_state = (u_short )((unsigned int )led_state | 1U); } } { iowrite8((int )((u8 )led_state), smc->hw.iop + 6UL); } return; } } void pcm_state_change(struct s_smc *smc , int plc , int p_state ) { { { led_indication(smc, 0); } return; } } void rmt_indication(struct s_smc *smc , int i ) { { { led_indication(smc, i != 0 ? 16 : 17); } return; } } void llc_recover_tx(struct s_smc *smc ) { { return; } } void driver_get_bia(struct s_smc *smc , struct fddi_addr *bia_addr ) { int i ; { i = 0; goto ldv_43360; ldv_43359: { bia_addr->a[i] = bitrev8((int )smc->hw.fddi_phys_addr.a[i]); i = i + 1; } ldv_43360: ; if (i <= 5) { goto ldv_43359; } else { } return; } } void smt_start_watchdog(struct s_smc *smc ) { { if ((int )smc->hw.wdog_used != 0) { { iowrite16(4, smc->hw.iop + 312UL); } } else { } return; } } static void smt_stop_watchdog(struct s_smc *smc ) { { if ((int )smc->hw.wdog_used != 0) { { iowrite16(2, smc->hw.iop + 312UL); } } else { } return; } } void mac_do_pci_fix(struct s_smc *smc ) { { return; } } static u_short const plist_raf_alc_res[8U] = { 18U, 12811U, 12815U, 12816U, 25U, 26U, 29U, 0U}; static u_short const plist_raf_chg_req[5U] = { 12811U, 12815U, 12816U, 26U, 0U}; static struct fddi_addr const smt_sba_da = {{128U, 1U, 67U, 0U, 128U, 12U}}; static struct fddi_addr const null_addr___0 = {{0U, 0U, 0U, 0U, 0U, 0U}}; static void ess_send_response(struct s_smc *smc , struct smt_header *sm , int sba_cmd ) ; static void ess_config_fifo(struct s_smc *smc ) ; static void ess_send_alc_req(struct s_smc *smc ) ; static void ess_send_frame(struct s_smc *smc , Mbuf *mb ) ; static int process_bw_alloc(struct s_smc *smc , long payload , long overhead ) ; int ess_raf_received_pack(struct s_smc *smc , Mbuf *mb , struct smt_header *sm , int fs ) { void *p ; struct smt_p_0016 *cmd ; Mbuf *db ; u_long msg_res_type ; u_long payload ; u_long overhead ; int local ; int i ; void *tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; int tmp___3 ; void *tmp___4 ; int tmp___5 ; { { local = (fs & 128) != 0; p = sm_to_para(smc, sm, 21); } if ((unsigned long )p == (unsigned long )((void *)0)) { return (fs); } else { } { msg_res_type = (u_long )((struct smt_p_0015 *)p)->res_type; tmp = sm_to_para(smc, sm, 22); cmd = (struct smt_p_0016 *)tmp; } if ((unsigned long )cmd == (unsigned long )((struct smt_p_0016 *)0)) { return (fs); } else { } { if (cmd->sba_cmd == 1U) { goto case_1; } else { } if (cmd->sba_cmd == 3U) { goto case_3; } else { } if (cmd->sba_cmd == 2U) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned int )sm->smt_type == 2U) { if (local == 0 || smc->mib.fddiESSPayload != 0UL) { return (fs); } else { } { p = sm_to_para(smc, sm, 25); i = 0; } goto ldv_43263; ldv_43262: ; if ((unsigned int )((struct smt_p_0019 *)p)->alloc_addr.a[i] != 0U) { return (fs); } else { } i = i + 1; ldv_43263: ; if (i <= 4) { goto ldv_43262; } else { } { smc->ess.alloc_trans_id = (u_long )sm->smt_tid; p = sm_to_para(smc, sm, 12815); ((struct smt_p_320f *)p)->mib_payload = (u_int )smc->mib.a[0].fddiPATHSbaPayload; p = sm_to_para(smc, sm, 12816); ((struct smt_p_3210 *)p)->mib_overhead = (u_int )smc->mib.a[0].fddiPATHSbaOverhead; sm->smt_dest = smt_sba_da; } if ((unsigned int )smc->ess.local_sba_active != 0U) { return (fs | 64); } else { } { db = smt_get_mbuf(smc); } if ((unsigned long )db == (unsigned long )((Mbuf *)0)) { return (fs); } else { } { db->m_len = mb->m_len; db->m_off = mb->m_off; memcpy((void *)(& db->m_data) + (unsigned long )db->m_off, (void const *)sm, (size_t )((int )db->m_len)); smt_send_frame(smc, db, 65, 0); } return (fs); } else { } { tmp___0 = smt_check_para(smc, sm, (u_short const *)(& plist_raf_alc_res)); } if (tmp___0 != 0) { return (fs); } else { } { tmp___1 = sm_to_para(smc, sm, 12811); } if ((unsigned int )((struct smt_p_320b *)tmp___1)->path_index != 1U || msg_res_type != 1UL) { return (fs); } else { { tmp___2 = sm_to_para(smc, sm, 18); } if (((struct smt_p_reason *)tmp___2)->rdf_reason != 3U) { return (fs); } else if ((u_long )sm->smt_tid != smc->ess.alloc_trans_id) { return (fs); } else { } } { p = sm_to_para(smc, sm, 12815); } if ((unsigned long )p == (unsigned long )((void *)0)) { { printk("\vESS: sm_to_para failed"); } return (fs); } else { } { payload = (u_long )((struct smt_p_320f *)p)->mib_payload; p = sm_to_para(smc, sm, 12816); } if ((unsigned long )p == (unsigned long )((void *)0)) { { printk("\vESS: sm_to_para failed"); } return (fs); } else { } { overhead = (u_long )((struct smt_p_3210 *)p)->mib_overhead; process_bw_alloc(smc, (long )payload, (long )overhead); } return (fs); case_3: /* CIL Label */ ; if ((unsigned int )sm->smt_type != 2U) { return (fs); } else { } { tmp___3 = smt_check_para(smc, sm, (u_short const *)(& plist_raf_chg_req)); } if (tmp___3 != 0) { return (fs); } else { } { tmp___4 = sm_to_para(smc, sm, 12811); } if ((unsigned int )((struct smt_p_320b *)tmp___4)->path_index != 1U || msg_res_type != 1UL) { return (fs); } else { } { p = sm_to_para(smc, sm, 12815); payload = (u_long )((struct smt_p_320f *)p)->mib_payload; p = sm_to_para(smc, sm, 12816); overhead = (u_long )((struct smt_p_3210 *)p)->mib_overhead; tmp___5 = process_bw_alloc(smc, (long )payload, (long )overhead); } if (tmp___5 == 0) { return (fs); } else { } { ess_send_response(smc, sm, 3); } return (fs); case_2: /* CIL Label */ ; if ((unsigned int )sm->smt_type != 2U) { return (fs); } else { } if (msg_res_type != 1UL) { return (fs); } else { } { ess_send_response(smc, sm, 2); } return (fs); switch_default: /* CIL Label */ ; goto ldv_43268; switch_break: /* CIL Label */ ; } ldv_43268: ; return (fs); } } static int process_bw_alloc(struct s_smc *smc , long payload , long overhead ) { { if (payload > 1562L || overhead > 5000L) { return (0); } else { } if (smc->mib.fddiESSPayload != 0UL && ((unsigned long )payload != smc->mib.fddiESSPayload || (unsigned long )overhead != smc->mib.fddiESSOverhead)) { smc->ess.raf_act_timer_poll = 1; smc->ess.timer_count = 0; } else { } if (payload != 0L) { smc->ess.sync_bw_available = 1U; smc->ess.sync_bw = overhead - ((long )smc->mib.m[0].fddiMACT_Neg * payload) / 1562L; } else { smc->ess.sync_bw_available = 0U; smc->ess.sync_bw = 0L; overhead = 0L; } { smc->mib.a[0].fddiPATHSbaPayload = (u_long )payload; smc->mib.a[0].fddiPATHSbaOverhead = (u_long )overhead; ess_config_fifo(smc); set_formac_tsync(smc, smc->ess.sync_bw); } return (1); } } static void ess_send_response(struct s_smc *smc , struct smt_header *sm , int sba_cmd ) { struct smt_sba_chg *chg ; Mbuf *mb ; void *p ; { if (sba_cmd == 3) { { mb = smt_build_frame(smc, 5, 3, 92); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return; } else { } } else { { mb = smt_build_frame(smc, 5, 3, 84); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return; } else { } } chg = (struct smt_sba_chg *)(& mb->m_data) + (unsigned long )mb->m_off; chg->smt.smt_tid = sm->smt_tid; chg->smt.smt_dest = sm->smt_source; chg->s_type.para.p_type = 21U; chg->s_type.para.p_len = 4U; chg->s_type.res_type = 1U; chg->cmd.para.p_type = 22U; chg->cmd.para.p_len = 4U; chg->cmd.sba_cmd = (u_int )sba_cmd; chg->path.para.p_type = 12811U; chg->path.para.p_len = 8U; chg->path.mib_index = 16777216U; chg->path.path_pad = 0U; chg->path.path_index = 1U; chg->payload.para.p_type = 12815U; chg->payload.para.p_len = 8U; chg->payload.mib_index = 16777216U; chg->payload.mib_payload = (u_int )smc->mib.a[0].fddiPATHSbaPayload; chg->overhead.para.p_type = 12816U; chg->overhead.para.p_len = 8U; chg->overhead.mib_index = 16777216U; chg->overhead.mib_overhead = (u_int )smc->mib.a[0].fddiPATHSbaOverhead; if (sba_cmd == 3) { { chg->cat.para.p_type = 26U; chg->cat.para.p_len = 4U; p = sm_to_para(smc, sm, 26); chg->cat.category = ((struct smt_p_001a *)p)->category; } } else { } { ess_send_frame(smc, mb); } return; } } void ess_timer_poll(struct s_smc *smc ) { { if ((int )((signed char )smc->ess.raf_act_timer_poll) == 0) { return; } else { } smc->ess.timer_count = (char )((int )smc->ess.timer_count + 1); if ((int )((signed char )smc->ess.timer_count) == 10) { { smc->ess.timer_count = 0; ess_send_alc_req(smc); } } else { } return; } } static void ess_send_alc_req(struct s_smc *smc ) { struct smt_sba_alc_req *req ; Mbuf *mb ; u_long tmp ; { if (smc->mib.fddiESSPayload == 0UL) { smc->mib.fddiESSOverhead = 0UL; } else if (smc->mib.fddiESSOverhead == 0UL) { smc->mib.fddiESSOverhead = 50UL; } else { } if (smc->mib.fddiESSOverhead == smc->mib.a[0].fddiPATHSbaOverhead && smc->mib.fddiESSPayload == smc->mib.a[0].fddiPATHSbaPayload) { smc->ess.raf_act_timer_poll = 0; smc->ess.timer_count = 7; return; } else { } { mb = smt_build_frame(smc, 5, 2, 136); } if ((unsigned long )mb == (unsigned long )((Mbuf *)0)) { return; } else { } { req = (struct smt_sba_alc_req *)(& mb->m_data) + (unsigned long )mb->m_off; tmp = smt_get_tid(smc); smc->ess.alloc_trans_id = tmp; req->smt.smt_tid = (u_int )tmp; req->smt.smt_dest = smt_sba_da; req->s_type.para.p_type = 21U; req->s_type.para.p_len = 4U; req->s_type.res_type = 1U; req->cmd.para.p_type = 22U; req->cmd.para.p_len = 4U; req->cmd.sba_cmd = 1U; req->path.para.p_type = 12811U; req->path.para.p_len = 8U; req->path.mib_index = 16777216U; req->path.path_pad = 0U; req->path.path_index = 1U; req->pl_req.para.p_type = 23U; req->pl_req.para.p_len = 4U; req->pl_req.sba_pl_req = (int )((unsigned int )smc->mib.fddiESSPayload - (unsigned int )smc->mib.a[0].fddiPATHSbaPayload); req->ov_req.para.p_type = 24U; req->ov_req.para.p_len = 4U; req->ov_req.sba_ov_req = (int )((unsigned int )smc->mib.fddiESSOverhead - (unsigned int )smc->mib.a[0].fddiPATHSbaOverhead); req->payload.para.p_type = 12815U; req->payload.para.p_len = 8U; req->payload.mib_index = 16777216U; req->payload.mib_payload = (u_int )smc->mib.a[0].fddiPATHSbaPayload; req->overhead.para.p_type = 12816U; req->overhead.para.p_len = 8U; req->overhead.mib_index = 16777216U; req->overhead.mib_overhead = (u_int )smc->mib.a[0].fddiPATHSbaOverhead; req->a_addr.para.p_type = 25U; req->a_addr.para.p_len = 8U; req->a_addr.sba_pad = 0U; req->a_addr.alloc_addr = null_addr___0; req->cat.para.p_type = 26U; req->cat.para.p_len = 4U; req->cat.category = (u_int )smc->mib.fddiESSCategory; req->tneg.para.p_type = 27U; req->tneg.para.p_len = 4U; req->tneg.max_t_neg = (u_int )smc->mib.fddiESSMaxTNeg; req->segm.para.p_type = 28U; req->segm.para.p_len = 4U; req->segm.min_seg_siz = (u_int )smc->mib.fddiESSMinSegmentSize; ess_send_frame(smc, mb); } return; } } static void ess_send_frame(struct s_smc *smc , Mbuf *mb ) { { if ((unsigned int )smc->ess.local_sba_active != 0U) { if ((unsigned long )smc->ess.sba_reply_pend == (unsigned long )((Mbuf *)0)) { smc->ess.sba_reply_pend = mb; } else { { smt_free_mbuf(smc, mb); } } } else { { smt_send_frame(smc, mb, 65, 0); } } return; } } void ess_para_change(struct s_smc *smc ) { { { process_bw_alloc(smc, (long )smc->mib.a[0].fddiPATHSbaPayload, (long )smc->mib.a[0].fddiPATHSbaOverhead); } return; } } static void ess_config_fifo(struct s_smc *smc ) { { if (smc->mib.a[0].fddiPATHSbaPayload != 0UL) { if (((int )smc->hw.fp.fifo.fifo_config_mode & 2) != 0 && ((int )smc->hw.fp.fifo.fifo_config_mode & 1) == (int )smc->mib.fddiESSSynchTxMode) { return; } else { } } else if (((int )smc->hw.fp.fifo.fifo_config_mode & 2) == 0) { return; } else { } { formac_reinit_tx(smc); } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin_DriverLock_of_s_smt_os = 1; void ldv_spin_lock_DriverLock_of_s_smt_os(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_DriverLock_of_s_smt_os == 1); ldv_assume(ldv_spin_DriverLock_of_s_smt_os == 1); ldv_spin_DriverLock_of_s_smt_os = 2; } return; } } void ldv_spin_unlock_DriverLock_of_s_smt_os(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_DriverLock_of_s_smt_os == 2); ldv_assume(ldv_spin_DriverLock_of_s_smt_os == 2); ldv_spin_DriverLock_of_s_smt_os = 1; } return; } } int ldv_spin_trylock_DriverLock_of_s_smt_os(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_DriverLock_of_s_smt_os == 1); ldv_assume(ldv_spin_DriverLock_of_s_smt_os == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_DriverLock_of_s_smt_os = 2; return (1); } } } void ldv_spin_unlock_wait_DriverLock_of_s_smt_os(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_DriverLock_of_s_smt_os == 1); ldv_assume(ldv_spin_DriverLock_of_s_smt_os == 1); } return; } } int ldv_spin_is_locked_DriverLock_of_s_smt_os(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_DriverLock_of_s_smt_os == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_DriverLock_of_s_smt_os(void) { int tmp ; { { tmp = ldv_spin_is_locked_DriverLock_of_s_smt_os(); } return (tmp == 0); } } int ldv_spin_is_contended_DriverLock_of_s_smt_os(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_DriverLock_of_s_smt_os(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_DriverLock_of_s_smt_os == 1); ldv_assume(ldv_spin_DriverLock_of_s_smt_os == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_DriverLock_of_s_smt_os = 2; return (1); } else { } return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_DriverLock_of_s_smt_os == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin_DriverLock_of_s_smt_os == 2) { return (1); } else { } if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__complex_emg__linux-alloc-spinlock__drivers-net-fddi-skfp-skfp_true-unreach-call.cil.env.c" #include "model/common.env.c"