/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s16 int16_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct mutex; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct arch_spinlock; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_15 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_15 __annonCompField7 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_17 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_16 { s64 lock ; struct __anonstruct____missing_field_name_17 __annonCompField8 ; }; typedef union __anonunion_arch_rwlock_t_16 arch_rwlock_t; struct net_device; struct file_operations; struct completion; struct pid; struct timespec; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_22 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_22 __annonCompField10 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_27 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_28 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_26 { struct __anonstruct____missing_field_name_27 __annonCompField14 ; struct __anonstruct____missing_field_name_28 __annonCompField15 ; }; union __anonunion____missing_field_name_29 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_26 __annonCompField16 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_29 __annonCompField17 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; typedef int pao_T__; typedef int pao_T_____0; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_33 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_32 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_33 __annonCompField19 ; }; struct spinlock { union __anonunion____missing_field_name_32 __annonCompField20 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_34 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_34 rwlock_t; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct vm_area_struct; struct inode; struct notifier_block; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_38 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_39 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_37 { struct __anonstruct____missing_field_name_38 __annonCompField22 ; struct __anonstruct____missing_field_name_39 __annonCompField23 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_37 __annonCompField24 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct __anonstruct_mm_context_t_40 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_40 mm_context_t; struct address_space; union __anonunion____missing_field_name_41 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_43 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_47 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_46 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_47 __annonCompField27 ; int units ; }; struct __anonstruct____missing_field_name_45 { union __anonunion____missing_field_name_46 __annonCompField28 ; atomic_t _count ; }; union __anonunion____missing_field_name_44 { unsigned long counters ; struct __anonstruct____missing_field_name_45 __annonCompField29 ; unsigned int active ; }; struct __anonstruct____missing_field_name_42 { union __anonunion____missing_field_name_43 __annonCompField26 ; union __anonunion____missing_field_name_44 __annonCompField30 ; }; struct __anonstruct____missing_field_name_49 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_48 { struct list_head lru ; struct __anonstruct____missing_field_name_49 __annonCompField32 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_50 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_41 __annonCompField25 ; struct __anonstruct____missing_field_name_42 __annonCompField31 ; union __anonunion____missing_field_name_48 __annonCompField33 ; union __anonunion____missing_field_name_50 __annonCompField34 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_52 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_51 { struct __anonstruct_linear_52 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_51 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; enum ldv_11153 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_11153 socket_state; struct poll_table_struct; struct pipe_inode_info; struct net; struct fasync_struct; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct sock; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct ctl_table; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct mem_cgroup; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_145 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_146 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_145 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_146 __annonCompField46 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_147 { uid_t val ; }; typedef struct __anonstruct_kuid_t_147 kuid_t; struct __anonstruct_kgid_t_148 { gid_t val ; }; typedef struct __anonstruct_kgid_t_148 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_150 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_151 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_149 { struct __anonstruct____missing_field_name_150 __annonCompField47 ; struct __anonstruct____missing_field_name_151 __annonCompField48 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_149 __annonCompField49 ; }; struct sk_buff; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_156 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_155 { __wsum csum ; struct __anonstruct____missing_field_name_156 __annonCompField51 ; }; union __anonunion____missing_field_name_157 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_158 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_155 __annonCompField52 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_157 __annonCompField53 ; __u32 secmark ; union __anonunion____missing_field_name_158 __annonCompField54 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_195 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_195 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sync_serial_settings_196 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_196 sync_serial_settings; struct __anonstruct_te1_settings_197 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_197 te1_settings; struct __anonstruct_raw_hdlc_proto_198 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_198 raw_hdlc_proto; struct __anonstruct_fr_proto_199 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_199 fr_proto; struct __anonstruct_fr_proto_pvc_200 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_200 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_201 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_201 fr_proto_pvc_info; struct __anonstruct_cisco_proto_202 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_202 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_203 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_203 ifs_ifsu ; }; union __anonunion_ifr_ifrn_204 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_205 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_204 ifr_ifrn ; union __anonunion_ifr_ifru_205 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_208 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_207 { struct __anonstruct____missing_field_name_208 __annonCompField56 ; }; struct lockref { union __anonunion____missing_field_name_207 __annonCompField57 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_210 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_209 { struct __anonstruct____missing_field_name_210 __annonCompField58 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_209 __annonCompField59 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_211 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_211 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_213 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_213 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_214 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_214 __annonCompField60 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_216 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_215 { size_t written ; size_t count ; union __anonunion_arg_216 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_215 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_217 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_218 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_219 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_217 __annonCompField61 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_218 __annonCompField62 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_219 __annonCompField63 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_220 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_220 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_222 { struct list_head link ; int state ; }; union __anonunion_fl_u_221 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_222 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_221 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_223 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_223 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_225 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_226 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_227 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_228 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_229 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_230 { long _band ; int _fd ; }; struct __anonstruct__sigsys_231 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_224 { int _pad[28U] ; struct __anonstruct__kill_225 _kill ; struct __anonstruct__timer_226 _timer ; struct __anonstruct__rt_227 _rt ; struct __anonstruct__sigchld_228 _sigchld ; struct __anonstruct__sigfault_229 _sigfault ; struct __anonstruct__sigpoll_230 _sigpoll ; struct __anonstruct__sigsys_231 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_224 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_235 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_234 { struct __anonstruct____missing_field_name_235 __annonCompField64 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_234 __annonCompField65 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_236 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_237 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_239 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_238 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_239 __annonCompField68 ; }; union __anonunion_type_data_240 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_242 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_241 { union __anonunion_payload_242 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_236 __annonCompField66 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_237 __annonCompField67 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_238 __annonCompField69 ; union __anonunion_type_data_240 type_data ; union __anonunion____missing_field_name_241 __annonCompField70 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28324 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28325 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_271 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_272 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_273 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_271 adj_list ; struct __anonstruct_all_adj_list_272 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28324 reg_state : 8 ; bool dismantle ; enum ldv_28325 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_273 __annonCompField75 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NUM_NL80211_IFTYPES = 11, NL80211_IFTYPE_MAX = 10 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1 } ; enum nl80211_channel_type { NL80211_CHAN_NO_HT = 0, NL80211_CHAN_HT20 = 1, NL80211_CHAN_HT40MINUS = 2, NL80211_CHAN_HT40PLUS = 3 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 *ssid ; u8 *bssid ; struct cfg80211_chan_def chandef ; u8 *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; u8 *bssid ; u8 *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct cfg80211_pkt_pattern { u8 *mask ; u8 *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_275 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct ieee80211_channel *channel ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; struct __anonstruct_wext_275 wext ; }; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool acm ; bool uapsd ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_tx_rate { s8 idx ; u16 count : 5 ; u16 flags : 11 ; }; struct __anonstruct____missing_field_name_279 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; u8 use_rts : 1 ; u8 use_cts_prot : 1 ; u8 short_preamble : 1 ; u8 skip_table : 1 ; }; union __anonunion____missing_field_name_278 { struct __anonstruct____missing_field_name_279 __annonCompField76 ; unsigned long jiffies ; }; struct ieee80211_vif; struct ieee80211_key_conf; struct __anonstruct_control_277 { union __anonunion____missing_field_name_278 __annonCompField77 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_280 { struct ieee80211_tx_rate rates[4U] ; int ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; }; struct __anonstruct____missing_field_name_281 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion____missing_field_name_276 { struct __anonstruct_control_277 control ; struct __anonstruct_status_280 status ; struct __anonstruct____missing_field_name_281 __annonCompField78 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion____missing_field_name_276 __annonCompField79 ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u32 vendor_radiotap_bitmap ; u16 vendor_radiotap_len ; u16 freq ; u8 rate_idx ; u8 vht_nss ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 chains ; s8 chain_signal[4U] ; u8 ampdu_delimiter_crc ; u8 vendor_radiotap_align ; u8 vendor_radiotap_oui[3U] ; u8 vendor_radiotap_subns ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40 = 1, IEEE80211_STA_RX_BW_80 = 2, IEEE80211_STA_RX_BW_160 = 3 } ; struct __anonstruct_rate_282 { s8 idx ; u8 count ; u8 count_cts ; u8 count_rts ; u16 flags ; }; struct ieee80211_sta_rates { struct callback_head callback_head ; struct __anonstruct_rate_282 rate[4U] ; }; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 rx_nss ; enum ieee80211_sta_rx_bandwidth bandwidth ; enum ieee80211_smps_mode smps_mode ; struct ieee80211_sta_rates *rates ; u8 drv_priv[0U] ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; int napi_weight ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct usb_device; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned int sysfs_files_created : 1 ; unsigned int ep_devs_created : 1 ; unsigned int unregistering : 1 ; unsigned int needs_remote_wakeup : 1 ; unsigned int needs_altsetting0 : 1 ; unsigned int needs_binding : 1 ; unsigned int reset_running : 1 ; unsigned int resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned int is_b_host : 1 ; unsigned int b_hnp_enable : 1 ; unsigned int no_stop_on_short : 1 ; unsigned int no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned int can_submit : 1 ; unsigned int persist_enabled : 1 ; unsigned int have_langid : 1 ; unsigned int authorized : 1 ; unsigned int authenticated : 1 ; unsigned int wusb : 1 ; unsigned int lpm_capable : 1 ; unsigned int usb2_hw_lpm_capable : 1 ; unsigned int usb2_hw_lpm_besl_capable : 1 ; unsigned int usb2_hw_lpm_enabled : 1 ; unsigned int usb2_hw_lpm_allowed : 1 ; unsigned int usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned int do_remote_wakeup : 1 ; unsigned int reset_resume : 1 ; unsigned int port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct urb; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned int poisoned : 1 ; }; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; enum intf_type { INTF_PCI = 0, INTF_USB = 1 } ; enum radio_path { RF90_PATH_A = 0, RF90_PATH_B = 1, RF90_PATH_C = 2, RF90_PATH_D = 3 } ; enum rf_pwrstate { ERFON = 0, ERFSLEEP = 1, ERFOFF = 2 } ; struct bb_reg_def { u32 rfintfs ; u32 rfintfi ; u32 rfintfo ; u32 rfintfe ; u32 rf3wire_offset ; u32 rflssi_select ; u32 rftxgain_stage ; u32 rfhssi_para1 ; u32 rfhssi_para2 ; u32 rfsw_ctrl ; u32 rfagc_control1 ; u32 rfagc_control2 ; u32 rfrxiq_imbal ; u32 rfrx_afe ; u32 rftxiq_imbal ; u32 rftx_afe ; u32 rf_rb ; u32 rf_rbpi ; }; enum io_type { IO_CMD_PAUSE_DM_BY_SCAN = 0, IO_CMD_RESUME_DM_BY_SCAN = 1 } ; enum rt_enc_alg { NO_ENCRYPTION = 0, WEP40_ENCRYPTION = 1, TKIP_ENCRYPTION = 2, RSERVED_ENCRYPTION = 3, AESCCMP_ENCRYPTION = 4, WEP104_ENCRYPTION = 5, AESCMAC_ENCRYPTION = 6 } ; enum rt_psmode { EACTIVE = 0, EMAXPS = 1, EFASTPS = 2, EAUTOPS = 3 } ; enum led_ctl_mode { LED_CTL_POWER_ON = 1, LED_CTL_LINK = 2, LED_CTL_NO_LINK = 3, LED_CTL_TX = 4, LED_CTL_RX = 5, LED_CTL_SITE_SURVEY = 6, LED_CTL_POWER_OFF = 7, LED_CTL_START_TO_LINK = 8, LED_CTL_START_WPS = 9, LED_CTL_STOP_WPS = 10 } ; enum macphy_mode { SINGLEMAC_SINGLEPHY = 0, DUALMAC_DUALPHY = 1, DUALMAC_SINGLEPHY = 2 } ; enum band_type { BAND_ON_2_4G = 0, BAND_ON_5G = 1, BAND_ON_BOTH = 2, BANDMAX = 3 } ; enum rtl_link_state { MAC80211_NOLINK = 0, MAC80211_LINKING = 1, MAC80211_LINKED = 2, MAC80211_LINKED_SCANNING = 3 } ; enum rt_polarity_ctl { RT_POLARITY_LOW_ACT = 0, RT_POLARITY_HIGH_ACT = 1 } ; struct rtl_qos_parameters { __le16 cw_min ; __le16 cw_max ; u8 aifs ; u8 flag ; __le16 tx_op ; }; struct rt_smooth_data { u32 elements[100U] ; u32 index ; u32 total_num ; u32 total_val ; }; struct false_alarm_statistics { u32 cnt_parity_fail ; u32 cnt_rate_illegal ; u32 cnt_crc8_fail ; u32 cnt_mcs_fail ; u32 cnt_fast_fsync_fail ; u32 cnt_sb_search_fail ; u32 cnt_ofdm_fail ; u32 cnt_cck_fail ; u32 cnt_all ; u32 cnt_ofdm_cca ; u32 cnt_cck_cca ; u32 cnt_cca_all ; u32 cnt_bw_usc ; u32 cnt_bw_lsc ; }; struct init_gain { u8 xaagccore1 ; u8 xbagccore1 ; u8 xcagccore1 ; u8 xdagccore1 ; u8 cca ; }; struct wireless_stats { unsigned long txbytesunicast ; unsigned long txbytesmulticast ; unsigned long txbytesbroadcast ; unsigned long rxbytesunicast ; long rx_snr_db[4U] ; long recv_signal_power ; long signal_quality ; long last_sigstrength_inpercent ; u32 rssi_calculate_cnt ; long signal_strength ; u8 rx_rssi_percentage[4U] ; u8 rx_evm_percentage[2U] ; struct rt_smooth_data ui_rssi ; struct rt_smooth_data ui_link_quality ; }; struct rate_adaptive { u8 rate_adaptive_disabled ; u8 ratr_state ; u16 reserve ; u32 high_rssi_thresh_for_ra ; u32 high2low_rssi_thresh_for_ra ; u8 low2high_rssi_thresh_for_ra40m ; u32 low_rssi_thresh_for_ra40M ; u8 low2high_rssi_thresh_for_ra20m ; u32 low_rssi_thresh_for_ra20M ; u32 upper_rssi_threshold_ratr ; u32 middleupper_rssi_threshold_ratr ; u32 middle_rssi_threshold_ratr ; u32 middlelow_rssi_threshold_ratr ; u32 low_rssi_threshold_ratr ; u32 ultralow_rssi_threshold_ratr ; u32 low_rssi_threshold_ratr_40m ; u32 low_rssi_threshold_ratr_20m ; u8 ping_rssi_enable ; u32 ping_rssi_ratr ; u32 ping_rssi_thresh_for_ra ; u32 last_ratr ; u8 pre_ratr_state ; }; struct regd_pair_mapping { u16 reg_dmnenum ; u16 reg_5ghz_ctl ; u16 reg_2ghz_ctl ; }; struct rtl_regulatory { char alpha2[2U] ; u16 country_code ; u16 max_power_level ; u32 tp_scale ; u16 current_rd ; u16 current_rd_ext ; int16_t power_limit ; struct regd_pair_mapping *regpair ; }; struct rtl_rfkill { bool rfkill_state ; }; enum p2p_ps_state { P2P_PS_DISABLE = 0, P2P_PS_ENABLE = 1, P2P_PS_SCAN = 2, P2P_PS_SCAN_DONE = 3, P2P_PS_ALLSTASLEEP = 4 } ; enum p2p_ps_mode { P2P_PS_NONE = 0, P2P_PS_CTWINDOW = 1, P2P_PS_NOA = 2, P2P_PS_MIX = 3 } ; struct rtl_p2p_ps_info { enum p2p_ps_mode p2p_ps_mode ; enum p2p_ps_state p2p_ps_state ; u8 noa_index ; u8 ctwindow ; u8 opp_ps ; u8 noa_num ; u8 noa_count_type[2U] ; u32 noa_duration[2U] ; u32 noa_interval[2U] ; u32 noa_start_time[2U] ; }; struct p2p_ps_offload_t { u8 offload_en : 1 ; u8 role : 1 ; u8 ctwindow_en : 1 ; u8 noa0_en : 1 ; u8 noa1_en : 1 ; u8 allstasleep : 1 ; u8 discovery : 1 ; u8 reserved : 1 ; }; struct iqk_matrix_regs { bool iqk_done ; long value[1U][8U] ; }; struct phy_parameters { u16 length ; u32 *pdata ; }; struct rtl_phy { struct bb_reg_def phyreg_def[4U] ; struct init_gain initgain_backup ; enum io_type current_io_type ; u8 rf_mode ; u8 rf_type ; u8 current_chan_bw ; u8 set_bwmode_inprogress ; u8 sw_chnl_inprogress ; u8 sw_chnl_stage ; u8 sw_chnl_step ; u8 current_channel ; u8 h2c_box_num ; u8 set_io_inprogress ; u8 lck_inprogress ; s32 reg_e94 ; s32 reg_e9c ; s32 reg_ea4 ; s32 reg_eac ; s32 reg_eb4 ; s32 reg_ebc ; s32 reg_ec4 ; s32 reg_ecc ; u8 rfpienable ; u8 reserve_0 ; u16 reserve_1 ; u32 reg_c04 ; u32 reg_c08 ; u32 reg_874 ; u32 adda_backup[16U] ; u32 iqk_mac_backup[4U] ; u32 iqk_bb_backup[10U] ; bool iqk_initialized ; bool need_iqk ; struct iqk_matrix_regs iqk_matrix[46U] ; bool rfpi_enable ; u8 pwrgroup_cnt ; u8 cck_high_power ; u32 mcs_offset[13U][16U] ; u8 default_initialgain[4U] ; u8 cur_cck_txpwridx ; u8 cur_ofdm24g_txpwridx ; u8 cur_bw20_txpwridx ; u8 cur_bw40_txpwridx ; u32 rfreg_chnlval[2U] ; bool apk_done ; u32 reg_rf3c[2U] ; u8 framesync ; u32 framesync_c34 ; u8 num_total_rfpath ; struct phy_parameters hwparam_tables[10U] ; u16 rf_pathmap ; enum rt_polarity_ctl polarity_ctl ; }; struct rtl_ht_agg { u16 txq_id ; u16 wait_for_ba ; u16 start_idx ; u64 bitmap ; u32 rate_n_flags ; u8 agg_state ; u8 rx_agg_state ; }; struct rtl_tid_data { u16 seq_number ; struct rtl_ht_agg agg ; }; struct rtl_priv; struct rtl_io { struct device *dev ; struct mutex bb_mutex ; unsigned long pci_mem_end ; unsigned long pci_mem_start ; unsigned long pci_base_addr ; void (*write8_async)(struct rtl_priv * , u32 , u8 ) ; void (*write16_async)(struct rtl_priv * , u32 , u16 ) ; void (*write32_async)(struct rtl_priv * , u32 , u32 ) ; void (*writeN_sync)(struct rtl_priv * , u32 , void * , u16 ) ; u8 (*read8_sync)(struct rtl_priv * , u32 ) ; u16 (*read16_sync)(struct rtl_priv * , u32 ) ; u32 (*read32_sync)(struct rtl_priv * , u32 ) ; }; struct rtl_mac { u8 mac_addr[6U] ; u8 mac80211_registered ; u8 beacon_enabled ; u32 tx_ss_num ; u32 rx_ss_num ; struct ieee80211_supported_band bands[3U] ; struct ieee80211_hw *hw ; struct ieee80211_vif *vif ; enum nl80211_iftype opmode ; struct rtl_tid_data tids[9U] ; enum rtl_link_state link_state ; int n_channels ; int n_bitrates ; bool offchan_delay ; u8 p2p ; bool p2p_in_use ; u32 rx_conf ; u16 rx_mgt_filter ; u16 rx_ctrl_filter ; u16 rx_data_filter ; bool act_scanning ; u8 cnt_after_linked ; bool skip_scan ; struct sk_buff_head skb_waitq[9U] ; bool rdg_en ; u8 bssid[6U] ; u32 vendor ; u8 mcs[16U] ; u32 basic_rates ; u8 ht_enable ; u8 sgi_40 ; u8 sgi_20 ; u8 bw_40 ; u8 mode ; u8 slot_time ; u8 short_preamble ; u8 use_cts_protect ; u8 cur_40_prime_sc ; u8 cur_40_prime_sc_bk ; u64 tsf ; u8 retry_short ; u8 retry_long ; u16 assoc_id ; bool hiddenssid ; int beacon_interval ; u8 min_space_cfg ; u8 max_mss_density ; u8 current_ampdu_factor ; u8 current_ampdu_density ; struct ieee80211_tx_queue_params edca_param[5U] ; struct rtl_qos_parameters ac[4U] ; u64 last_txok_cnt ; u64 last_rxok_cnt ; u32 last_bt_edca_ul ; u32 last_bt_edca_dl ; }; struct btdm_8723 { bool all_off ; bool agc_table_en ; bool adc_back_off_on ; bool b2_ant_hid_en ; bool low_penalty_rate_adaptive ; bool rf_rx_lpf_shrink ; bool reject_aggre_pkt ; bool tra_tdma_on ; u8 tra_tdma_nav ; u8 tra_tdma_ant ; bool tdma_on ; u8 tdma_ant ; u8 tdma_nav ; u8 tdma_dac_swing ; u8 fw_dac_swing_lvl ; bool ps_tdma_on ; u8 ps_tdma_byte[5U] ; bool pta_on ; u32 val_0x6c0 ; u32 val_0x6c8 ; u32 val_0x6cc ; bool sw_dac_swing_on ; u32 sw_dac_swing_lvl ; u32 wlan_act_hi ; u32 wlan_act_lo ; u32 bt_retry_index ; bool dec_bt_pwr ; bool ignore_wlan_act ; }; struct bt_coexist_8723 { u32 high_priority_tx ; u32 high_priority_rx ; u32 low_priority_tx ; u32 low_priority_rx ; u8 c2h_bt_info ; bool c2h_bt_info_req_sent ; bool c2h_bt_inquiry_page ; u32 bt_inq_page_start_time ; u8 bt_retry_cnt ; u8 c2h_bt_info_original ; u8 bt_inquiry_page_cnt ; struct btdm_8723 btdm ; }; struct rtl_hal { struct ieee80211_hw *hw ; bool driver_is_goingto_unload ; bool up_first_time ; bool first_init ; bool being_init_adapter ; bool bbrf_ready ; bool mac_func_enable ; struct bt_coexist_8723 hal_coex_8723 ; enum intf_type interface ; u16 hw_type ; u8 ic_class ; u8 oem_id ; u32 version ; u8 state ; u8 board_type ; u32 fwsize ; u8 *pfirmware ; u16 fw_version ; u16 fw_subversion ; bool h2c_setinprogress ; u8 last_hmeboxnum ; bool fw_ready ; u8 fw_rsvdpage_startoffset ; u8 h2c_txcmd_seq ; u16 fwcmd_iomap ; u32 fwcmd_ioparam ; bool set_fwcmd_inprogress ; u8 current_fwcmd_io ; struct p2p_ps_offload_t p2p_ps_offload ; bool fw_clk_change_in_progress ; bool allow_sw_to_change_hwclc ; u8 fw_ps_state ; bool driver_going2unload ; u8 minspace_cfg ; enum macphy_mode macphymode ; enum band_type current_bandtype ; enum band_type current_bandtypebackup ; enum band_type bandset ; u32 interfaceindex ; u8 macphyctl_reg ; bool earlymode_enable ; u8 max_earlymode_num ; bool during_mac0init_radiob ; bool during_mac1init_radioa ; bool reloadtxpowerindex ; bool load_imrandiqk_setting_for2g ; bool disable_amsdu_8k ; bool master_of_dmsp ; bool slave_of_dmsp ; }; struct rtl_security { bool use_sw_sec ; bool being_setkey ; bool use_defaultkey ; enum rt_enc_alg pairwise_enc_algorithm ; enum rt_enc_alg group_enc_algorithm ; u32 hwsec_cam_bitmap ; u8 hwsec_cam_sta_addr[32U][6U] ; u8 key_buf[5U][61U] ; u8 key_len[5U] ; u8 *pairwise_key ; }; struct fast_ant_training { u8 bssid[6U] ; u8 antsel_rx_keep_0 ; u8 antsel_rx_keep_1 ; u8 antsel_rx_keep_2 ; u32 ant_sum[7U] ; u32 ant_cnt[7U] ; u32 ant_ave[7U] ; u8 fat_state ; u32 train_idx ; u8 antsel_a[33U] ; u8 antsel_b[33U] ; u8 antsel_c[33U] ; u32 main_ant_sum[33U] ; u32 aux_ant_sum[33U] ; u32 main_ant_cnt[33U] ; u32 aux_ant_cnt[33U] ; u8 rx_idle_ant ; bool becomelinked ; }; struct rtl_dm { long entry_min_undec_sm_pwdb ; long undec_sm_cck ; long undec_sm_pwdb ; long entry_max_undec_sm_pwdb ; s32 ofdm_pkt_cnt ; bool dm_initialgain_enable ; bool dynamic_txpower_enable ; bool current_turbo_edca ; bool is_any_nonbepkts ; bool is_cur_rdlstate ; bool txpower_trackinginit ; bool disable_framebursting ; bool cck_inch14 ; bool txpower_tracking ; bool useramask ; bool rfpath_rxenable[4U] ; bool inform_fw_driverctrldm ; bool current_mrc_switch ; u8 txpowercount ; u8 powerindex_backup[6U] ; u8 thermalvalue_rxgain ; u8 thermalvalue_iqk ; u8 thermalvalue_lck ; u8 thermalvalue ; u8 last_dtp_lvl ; u8 thermalvalue_avg[8U] ; u8 thermalvalue_avg_index ; bool done_txpower ; u8 dynamic_txhighpower_lvl ; u8 dm_flag ; u8 dm_flag_tmp ; u8 dm_type ; u8 dm_rssi_sel ; u8 txpower_track_control ; bool interrupt_migration ; bool disable_tx_int ; char ofdm_index[2U] ; char cck_index ; char delta_power_index ; char delta_power_index_last ; char power_index_offset ; u8 swing_idx_ofdm[2U] ; u8 swing_idx_ofdm_cur ; u8 swing_idx_ofdm_base ; bool swing_flag_ofdm ; u8 swing_idx_cck ; u8 swing_idx_cck_cur ; u8 swing_idx_cck_base ; bool swing_flag_cck ; bool supp_phymode_switch ; struct fast_ant_training fat_table ; }; struct rtl_efuse { bool autoLoad_ok ; bool bootfromefuse ; u16 max_physical_size ; u8 efuse_map[2U][256U] ; u16 efuse_usedbytes ; u8 efuse_usedpercentage ; u8 autoload_failflag ; u8 autoload_status ; short epromtype ; u16 eeprom_vid ; u16 eeprom_did ; u16 eeprom_svid ; u16 eeprom_smid ; u8 eeprom_oemid ; u16 eeprom_channelplan ; u8 eeprom_version ; u8 board_type ; u8 external_pa ; u8 dev_addr[6U] ; u8 wowlan_enable ; u8 antenna_div_cfg ; u8 antenna_div_type ; bool txpwr_fromeprom ; u8 eeprom_crystalcap ; u8 eeprom_tssi[2U] ; u8 eeprom_tssi_5g[3U][2U] ; u8 eeprom_pwrlimit_ht20[12U] ; u8 eeprom_pwrlimit_ht40[12U] ; u8 eeprom_chnlarea_txpwr_cck[2U][3U] ; u8 eeprom_chnlarea_txpwr_ht40_1s[2U][12U] ; u8 eprom_chnl_txpwr_ht40_2sdf[2U][12U] ; u8 txpwrlevel_cck[2U][14U] ; u8 txpwrlevel_ht40_1s[2U][59U] ; u8 txpwrlevel_ht40_2s[2U][59U] ; u8 internal_pa_5g[2U] ; u8 eeprom_c9 ; u8 eeprom_cc ; u8 eeprom_pwrgroup[2U][3U] ; u8 pwrgroup_ht20[2U][59U] ; u8 pwrgroup_ht40[2U][59U] ; char txpwr_ht20diff[2U][59U] ; u8 txpwr_legacyhtdiff[2U][59U] ; u8 txpwr_safetyflag ; u16 eeprom_txpowerdiff ; u8 legacy_httxpowerdiff ; u8 antenna_txpwdiff[3U] ; u8 eeprom_regulatory ; u8 eeprom_thermalmeter ; u8 thermalmeter[2U] ; u16 tssi_13dbm ; u8 crystalcap ; u8 delta_iqk ; u8 delta_lck ; u8 legacy_ht_txpowerdiff ; bool apk_thermalmeterignore ; bool b1x1_recvcombine ; bool b1ss_support ; u8 channel_plan ; }; struct rtl_ps_ctl { bool pwrdomain_protect ; bool in_powersavemode ; bool rfchange_inprogress ; bool swrf_processing ; bool hwradiooff ; bool support_aspm ; bool support_backdoor ; enum rt_psmode dot11_psmode ; bool swctrl_lps ; bool leisure_ps ; bool fwctrl_lps ; u8 fwctrl_psmode ; u8 reg_fwctrl_lps ; bool fw_current_inpsmode ; u8 reg_max_lps_awakeintvl ; bool report_linked ; bool low_power_enable ; bool inactiveps ; u32 rfoff_reason ; u32 cur_ps_level ; u32 reg_rfps_level ; u8 const_amdpci_aspm ; bool pwrdown_mode ; enum rf_pwrstate inactive_pwrstate ; enum rf_pwrstate rfpwr_state ; bool sw_ps_enabled ; bool state ; bool state_inap ; bool multi_buffered ; u16 nullfunc_seq ; unsigned int dtim_counter ; unsigned int sleep_ms ; unsigned long last_sleep_jiffies ; unsigned long last_awake_jiffies ; unsigned long last_delaylps_stamp_jiffies ; unsigned long last_dtim ; unsigned long last_beacon ; unsigned long last_action ; unsigned long last_slept ; struct rtl_p2p_ps_info p2p_ps_info ; u8 pwr_mode ; u8 smart_ps ; }; struct rtl_stats { u8 psaddr[6U] ; u32 mac_time[2U] ; s8 rssi ; u8 signal ; u8 noise ; u8 rate ; u8 received_channel ; u8 control ; u8 mask ; u8 freq ; u16 len ; u64 tsf ; u32 beacon_time ; u8 nic_type ; u16 length ; u8 signalquality ; s32 recvsignalpower ; s8 rxpower ; u8 signalstrength ; u16 hwerror : 1 ; u16 crc : 1 ; u16 icv : 1 ; u16 shortpreamble : 1 ; u16 antenna : 1 ; u16 decrypted : 1 ; u16 wakeup : 1 ; u32 timestamp_low ; u32 timestamp_high ; u8 rx_drvinfo_size ; u8 rx_bufshift ; bool isampdu ; bool isfirst_ampdu ; bool rx_is40Mhzpacket ; u32 rx_pwdb_all ; u8 rx_mimo_signalstrength[4U] ; s8 rx_mimo_sig_qual[2U] ; bool packet_matchbssid ; bool is_cck ; bool is_ht ; bool packet_toself ; bool packet_beacon ; char cck_adc_pwdb[4U] ; u8 packet_report_type ; u32 macid ; u8 wake_match ; u32 bt_rx_rssi_percentage ; u32 macid_valid_entry[2U] ; }; struct rt_link_detect { u32 bcn_rx_inperiod ; u32 roam_times ; u32 num_tx_in4period[4U] ; u32 num_rx_in4period[4U] ; u32 num_tx_inperiod ; u32 num_rx_inperiod ; bool busytraffic ; bool tx_busy_traffic ; bool rx_busy_traffic ; bool higher_busytraffic ; bool higher_busyrxtraffic ; u32 tidtx_in4period[9U][4U] ; u32 tidtx_inperiod[9U] ; bool higher_busytxtraffic[9U] ; }; struct rtl_tcb_desc { u8 packet_bw : 1 ; u8 multicast : 1 ; u8 broadcast : 1 ; u8 rts_stbc : 1 ; u8 rts_enable : 1 ; u8 cts_enable : 1 ; u8 rts_use_shortpreamble : 1 ; u8 rts_use_shortgi : 1 ; u8 rts_sc : 1 ; u8 rts_bw : 1 ; u8 rts_rate ; u8 use_shortgi : 1 ; u8 use_shortpreamble : 1 ; u8 use_driver_rate : 1 ; u8 disable_ratefallback : 1 ; u8 ratr_index ; u8 mac_id ; u8 hw_rate ; u8 last_inipkt : 1 ; u8 cmd_or_init : 1 ; u8 queue_index ; u8 empkt_num ; u32 empkt_len[10U] ; bool btx_enable_sw_calc_duration ; }; struct rtl_hal_ops { int (*init_sw_vars)(struct ieee80211_hw * ) ; void (*deinit_sw_vars)(struct ieee80211_hw * ) ; void (*read_chip_version)(struct ieee80211_hw * ) ; void (*read_eeprom_info)(struct ieee80211_hw * ) ; void (*interrupt_recognized)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*hw_init)(struct ieee80211_hw * ) ; void (*hw_disable)(struct ieee80211_hw * ) ; void (*hw_suspend)(struct ieee80211_hw * ) ; void (*hw_resume)(struct ieee80211_hw * ) ; void (*enable_interrupt)(struct ieee80211_hw * ) ; void (*disable_interrupt)(struct ieee80211_hw * ) ; int (*set_network_type)(struct ieee80211_hw * , enum nl80211_iftype ) ; void (*set_chk_bssid)(struct ieee80211_hw * , bool ) ; void (*set_bw_mode)(struct ieee80211_hw * , enum nl80211_channel_type ) ; u8 (*switch_channel)(struct ieee80211_hw * ) ; void (*set_qos)(struct ieee80211_hw * , int ) ; void (*set_bcn_reg)(struct ieee80211_hw * ) ; void (*set_bcn_intv)(struct ieee80211_hw * ) ; void (*update_interrupt_mask)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_hw_reg)(struct ieee80211_hw * , u8 , u8 * ) ; void (*set_hw_reg)(struct ieee80211_hw * , u8 , u8 * ) ; void (*update_rate_tbl)(struct ieee80211_hw * , struct ieee80211_sta * , u8 ) ; void (*update_rate_mask)(struct ieee80211_hw * , u8 ) ; void (*fill_tx_desc)(struct ieee80211_hw * , struct ieee80211_hdr * , u8 * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , u8 , struct rtl_tcb_desc * ) ; void (*fill_fake_txdesc)(struct ieee80211_hw * , u8 * , u32 , bool ) ; void (*fill_tx_cmddesc)(struct ieee80211_hw * , u8 * , bool , bool , struct sk_buff * ) ; bool (*cmd_send_packet)(struct ieee80211_hw * , struct sk_buff * ) ; bool (*query_rx_desc)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , u8 * , struct sk_buff * ) ; void (*set_channel_access)(struct ieee80211_hw * ) ; bool (*radio_onoff_checking)(struct ieee80211_hw * , u8 * ) ; void (*dm_watchdog)(struct ieee80211_hw * ) ; void (*scan_operation_backup)(struct ieee80211_hw * , u8 ) ; bool (*set_rf_power_state)(struct ieee80211_hw * , enum rf_pwrstate ) ; void (*led_control)(struct ieee80211_hw * , enum led_ctl_mode ) ; void (*set_desc)(u8 * , bool , u8 , u8 * ) ; u32 (*get_desc)(u8 * , bool , u8 ) ; void (*tx_polling)(struct ieee80211_hw * , u8 ) ; void (*enable_hw_sec)(struct ieee80211_hw * ) ; void (*set_key)(struct ieee80211_hw * , u32 , u8 * , bool , u8 , bool , bool ) ; void (*init_sw_leds)(struct ieee80211_hw * ) ; void (*deinit_sw_leds)(struct ieee80211_hw * ) ; u32 (*get_bbreg)(struct ieee80211_hw * , u32 , u32 ) ; void (*set_bbreg)(struct ieee80211_hw * , u32 , u32 , u32 ) ; u32 (*get_rfreg)(struct ieee80211_hw * , enum radio_path , u32 , u32 ) ; void (*set_rfreg)(struct ieee80211_hw * , enum radio_path , u32 , u32 , u32 ) ; void (*allow_all_destaddr)(struct ieee80211_hw * , bool , bool ) ; void (*linked_set_reg)(struct ieee80211_hw * ) ; void (*chk_switch_dmdp)(struct ieee80211_hw * ) ; void (*dualmac_easy_concurrent)(struct ieee80211_hw * ) ; void (*dualmac_switch_to_dmdp)(struct ieee80211_hw * ) ; bool (*phy_rf6052_config)(struct ieee80211_hw * ) ; void (*phy_rf6052_set_cck_txpower)(struct ieee80211_hw * , u8 * ) ; void (*phy_rf6052_set_ofdm_txpower)(struct ieee80211_hw * , u8 * , u8 ) ; bool (*config_bb_with_headerfile)(struct ieee80211_hw * , u8 ) ; bool (*config_bb_with_pgheaderfile)(struct ieee80211_hw * , u8 ) ; void (*phy_lc_calibrate)(struct ieee80211_hw * , bool ) ; void (*phy_set_bw_mode_callback)(struct ieee80211_hw * ) ; void (*dm_dynamic_txpower)(struct ieee80211_hw * ) ; void (*c2h_command_handle)(struct ieee80211_hw * ) ; void (*bt_wifi_media_status_notify)(struct ieee80211_hw * , bool ) ; void (*bt_coex_off_before_lps)(struct ieee80211_hw * ) ; void (*fill_h2c_cmd)(struct ieee80211_hw * , u8 , u32 , u8 * ) ; }; struct rtl_intf_ops { void (*read_efuse_byte)(struct ieee80211_hw * , u16 , u8 * ) ; int (*adapter_start)(struct ieee80211_hw * ) ; void (*adapter_stop)(struct ieee80211_hw * ) ; bool (*check_buddy_priv)(struct ieee80211_hw * , struct rtl_priv ** ) ; int (*adapter_tx)(struct ieee80211_hw * , struct ieee80211_sta * , struct sk_buff * , struct rtl_tcb_desc * ) ; void (*flush)(struct ieee80211_hw * , bool ) ; int (*reset_trx_ring)(struct ieee80211_hw * ) ; bool (*waitq_insert)(struct ieee80211_hw * , struct ieee80211_sta * , struct sk_buff * ) ; void (*disable_aspm)(struct ieee80211_hw * ) ; void (*enable_aspm)(struct ieee80211_hw * ) ; }; struct rtl_mod_params { bool sw_crypto ; int debug ; bool inactiveps ; bool swctrl_lps ; bool fwctrl_lps ; }; struct rtl_hal_usbint_cfg { u32 in_ep_num ; u32 rx_urb_num ; u32 rx_max_size ; void (*usb_rx_hdl)(struct ieee80211_hw * , struct sk_buff * ) ; void (*usb_rx_segregate_hdl)(struct ieee80211_hw * , struct sk_buff * , struct sk_buff_head * ) ; void (*usb_tx_cleanup)(struct ieee80211_hw * , struct sk_buff * ) ; int (*usb_tx_post_hdl)(struct ieee80211_hw * , struct urb * , struct sk_buff * ) ; struct sk_buff *(*usb_tx_aggregate_hdl)(struct ieee80211_hw * , struct sk_buff_head * ) ; int (*usb_endpoint_mapping)(struct ieee80211_hw * ) ; u16 (*usb_mq_to_hwq)(__le16 , u16 ) ; }; struct rtl_hal_cfg { u8 bar_id ; bool write_readback ; char *name ; char *fw_name ; char *alt_fw_name ; struct rtl_hal_ops *ops ; struct rtl_mod_params *mod_params ; struct rtl_hal_usbint_cfg *usb_interface_cfg ; u32 maps[80U] ; }; struct rtl_locks { struct mutex conf_mutex ; struct mutex ps_mutex ; spinlock_t ips_lock ; spinlock_t irq_th_lock ; spinlock_t irq_pci_lock ; spinlock_t tx_lock ; spinlock_t h2c_lock ; spinlock_t rf_ps_lock ; spinlock_t rf_lock ; spinlock_t lps_lock ; spinlock_t waitq_lock ; spinlock_t entry_list_lock ; spinlock_t usb_lock ; spinlock_t fw_ps_lock ; spinlock_t cck_and_rw_pagea_lock ; spinlock_t check_sendpkt_lock ; }; struct rtl_works { struct ieee80211_hw *hw ; struct timer_list watchdog_timer ; struct timer_list dualmac_easyconcurrent_retrytimer ; struct timer_list fw_clockoff_timer ; struct timer_list fast_antenna_training_timer ; struct tasklet_struct irq_tasklet ; struct tasklet_struct irq_prepare_bcn_tasklet ; struct workqueue_struct *rtl_wq ; struct delayed_work watchdog_wq ; struct delayed_work ips_nic_off_wq ; struct delayed_work ps_work ; struct delayed_work ps_rfon_wq ; struct delayed_work fwevt_wq ; struct work_struct lps_change_work ; struct work_struct fill_h2c_cmd ; }; struct rtl_debug { u32 dbgp_type[19U] ; int global_debuglevel ; u64 global_debugcomponents ; struct proc_dir_entry *proc_dir ; char proc_name[20U] ; }; struct rtl_dualmac_easy_concurrent_ctl { enum band_type currentbandtype_backfordmdp ; bool close_bbandrf_for_dmsp ; bool change_to_dmdp ; bool change_to_dmsp ; bool switch_in_process ; }; struct rtl_dmsp_ctl { bool activescan_for_slaveofdmsp ; bool scan_for_anothermac_fordmsp ; bool scan_for_itself_fordmsp ; bool writedig_for_anothermacofdmsp ; u32 curdigvalue_for_anothermacofdmsp ; bool changecckpdstate_for_anothermacofdmsp ; u8 curcckpdstate_for_anothermacofdmsp ; bool changetxhighpowerlvl_for_anothermacofdmsp ; u8 curtxhighlvl_for_anothermacofdmsp ; long rssivalmin_for_anothermacofdmsp ; }; struct ps_t { u8 pre_ccastate ; u8 cur_ccasate ; u8 pre_rfstate ; u8 cur_rfstate ; long rssi_val_min ; }; struct dig_t { u32 rssi_lowthresh ; u32 rssi_highthresh ; u32 fa_lowthresh ; u32 fa_highthresh ; long last_min_undec_pwdb_for_dm ; long rssi_highpower_lowthresh ; long rssi_highpower_highthresh ; u32 recover_cnt ; u32 pre_igvalue ; u32 cur_igvalue ; long rssi_val ; u8 dig_enable_flag ; u8 dig_ext_port_stage ; u8 dig_algorithm ; u8 dig_twoport_algorithm ; u8 dig_dbgmode ; u8 dig_slgorithm_switch ; u8 cursta_cstate ; u8 presta_cstate ; u8 curmultista_cstate ; char back_val ; char back_range_max ; char back_range_min ; u8 rx_gain_max ; u8 rx_gain_min ; u8 min_undec_pwdb_for_dm ; u8 rssi_val_min ; u8 pre_cck_cca_thres ; u8 cur_cck_cca_thres ; u8 pre_cck_pd_state ; u8 cur_cck_pd_state ; u8 pre_cck_fa_state ; u8 cur_cck_fa_state ; u8 pre_ccastate ; u8 cur_ccasate ; u8 large_fa_hit ; u8 dig_dynamic_min ; u8 forbidden_igi ; u8 dig_state ; u8 dig_highpwrstate ; u8 cur_sta_cstate ; u8 pre_sta_cstate ; u8 cur_ap_cstate ; u8 pre_ap_cstate ; u8 cur_pd_thstate ; u8 pre_pd_thstate ; u8 cur_cs_ratiostate ; u8 pre_cs_ratiostate ; u8 backoff_enable_flag ; char backoffval_range_max ; char backoffval_range_min ; u8 dig_min_0 ; u8 dig_min_1 ; bool media_connect_0 ; bool media_connect_1 ; u32 antdiv_rssi_max ; u32 rssi_max ; }; struct rtl_global_var { struct list_head glb_priv_list ; spinlock_t glb_list_lock ; }; struct rtl_rate_priv; struct rtl_priv { struct ieee80211_hw *hw ; struct completion firmware_loading_complete ; struct list_head list ; struct rtl_priv *buddy_priv ; struct rtl_global_var *glb_var ; struct rtl_dualmac_easy_concurrent_ctl easy_concurrent_ctl ; struct rtl_dmsp_ctl dmsp_ctl ; struct rtl_locks locks ; struct rtl_works works ; struct rtl_mac mac80211 ; struct rtl_hal rtlhal ; struct rtl_regulatory regd ; struct rtl_rfkill rfkill ; struct rtl_io io ; struct rtl_phy phy ; struct rtl_dm dm ; struct rtl_security sec ; struct rtl_efuse efuse ; struct rtl_ps_ctl psc ; struct rate_adaptive ra ; struct wireless_stats stats ; struct rt_link_detect link_info ; struct false_alarm_statistics falsealm_cnt ; struct rtl_rate_priv *rate_priv ; struct list_head entry_list ; struct rtl_debug dbg ; int max_fw_size ; struct rtl_hal_cfg *cfg ; struct rtl_intf_ops *intf_ops ; unsigned long status ; struct dig_t dm_digtable ; struct ps_t dm_pstable ; u32 reg_874 ; u32 reg_c70 ; u32 reg_85c ; u32 reg_a74 ; bool reg_init ; bool bt_operation_on ; __le32 *usb_data ; int usb_data_index ; bool initialized ; bool enter_ps ; u8 rate_mask[5U] ; u8 priv[0U] ; }; enum fwcmd_iotype { FW_CMD_DIG_ENABLE = 0, FW_CMD_DIG_DISABLE = 1, FW_CMD_DIG_HALT = 2, FW_CMD_DIG_RESUME = 3, FW_CMD_HIGH_PWR_ENABLE = 4, FW_CMD_HIGH_PWR_DISABLE = 5, FW_CMD_RA_RESET = 6, FW_CMD_RA_ACTIVE = 7, FW_CMD_RA_REFRESH_N = 8, FW_CMD_RA_REFRESH_BG = 9, FW_CMD_RA_INIT = 10, FW_CMD_IQK_INIT = 11, FW_CMD_TXPWR_TRACK_ENABLE = 12, FW_CMD_TXPWR_TRACK_DISABLE = 13, FW_CMD_TXPWR_TRACK_THERMAL = 14, FW_CMD_PAUSE_DM_BY_SCAN = 15, FW_CMD_RESUME_DM_BY_SCAN = 16, FW_CMD_RA_REFRESH_N_COMB = 17, FW_CMD_RA_REFRESH_BG_COMB = 18, FW_CMD_ANTENNA_SW_ENABLE = 19, FW_CMD_ANTENNA_SW_DISABLE = 20, FW_CMD_TX_FEEDBACK_CCX_ENABLE = 21, FW_CMD_LPS_ENTER = 22, FW_CMD_LPS_LEAVE = 23, FW_CMD_DIG_MODE_SS = 24, FW_CMD_DIG_MODE_FA = 25, FW_CMD_ADD_A2_ENTRY = 26, FW_CMD_CTRL_DM_BY_DRIVER = 27, FW_CMD_CTRL_DM_BY_DRIVER_NEW = 28, FW_CMD_PAPE_CONTROL = 29, FW_CMD_IQK_ENABLE = 30 } ; struct fw_priv { u8 signature_0 ; u8 signature_1 ; u8 hci_sel ; u8 chip_version ; u8 customer_id_0 ; u8 customer_id_1 ; u8 rf_config ; u8 usb_ep_num ; u8 regulatory_class_0 ; u8 regulatory_class_1 ; u8 regulatory_class_2 ; u8 regulatory_class_3 ; u8 rfintfs ; u8 def_nettype ; u8 rsvd010 ; u8 rsvd011 ; u8 lbk_mode ; u8 mp_mode ; u8 rsvd020 ; u8 rsvd021 ; u8 rsvd022 ; u8 rsvd023 ; u8 rsvd024 ; u8 rsvd025 ; u8 qos_en ; u8 bw_40mhz_en ; u8 amsdu2ampdu_en ; u8 ampdu_en ; u8 rate_control_offload ; u8 aggregation_offload ; u8 rsvd030 ; u8 rsvd031 ; u8 beacon_offload ; u8 mlme_offload ; u8 hwpc_offload ; u8 tcp_checksum_offload ; u8 tcp_offload ; u8 ps_control_offload ; u8 wwlan_offload ; u8 rsvd040 ; u8 tcp_tx_frame_len_L ; u8 tcp_tx_frame_len_H ; u8 tcp_rx_frame_len_L ; u8 tcp_rx_frame_len_H ; u8 rsvd050 ; u8 rsvd051 ; u8 rsvd052 ; u8 rsvd053 ; }; struct fw_hdr { u16 signature ; u16 version ; u32 dmem_size ; u32 img_imem_size ; u32 img_sram_size ; u32 fw_priv_size ; u32 rsvd0 ; u32 rsvd1 ; u32 rsvd2 ; struct fw_priv fwpriv ; }; enum fw_status { FW_STATUS_INIT = 0, FW_STATUS_LOAD_IMEM = 1, FW_STATUS_LOAD_EMEM = 2, FW_STATUS_LOAD_DMEM = 3, FW_STATUS_READY = 4 } ; struct rt_firmware { struct fw_hdr *pfwheader ; enum fw_status fwstatus ; u16 firmwareversion ; u8 fw_imem[64000U] ; u8 fw_emem[64000U] ; u32 fw_imem_len ; u32 fw_emem_len ; u8 sz_fw_tmpbuffer[90000U] ; u32 sz_fw_tmpbufferlen ; u16 cmdpacket_fragthresold ; }; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; enum hrtimer_restart; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pci_bus; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_291 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_291 __annonCompField81 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; enum rtl_led_pin { LED_PIN_GPIO0 = 0, LED_PIN_LED0 = 1, LED_PIN_LED1 = 2, LED_PIN_LED2 = 3 } ; enum acm_method { eAcmWay0_SwAndHw = 0, eAcmWay1_HW = 1, eAcmWay2_SW = 2 } ; struct rtl_led { void *hw ; enum rtl_led_pin ledpin ; bool ledon ; }; struct rtl_led_ctl { bool led_opendrain ; struct rtl_led sw_led0 ; struct rtl_led sw_led1 ; }; struct bt_coexist_info { u8 eeprom_bt_coexist ; u8 eeprom_bt_type ; u8 eeprom_bt_ant_num ; u8 eeprom_bt_ant_isol ; u8 eeprom_bt_radio_shared ; u8 bt_coexistence ; u8 bt_ant_num ; u8 bt_coexist_type ; u8 bt_state ; u8 bt_cur_state ; u8 bt_ant_isolation ; u8 bt_pape_ctrl ; u8 bt_service ; u8 bt_radio_shared_type ; u8 bt_rfreg_origin_1e ; u8 bt_rfreg_origin_1f ; u8 bt_rssi_state ; u32 ratio_tx ; u32 ratio_pri ; u32 bt_edca_ul ; u32 bt_edca_dl ; bool init_set ; bool bt_busy_traffic ; bool bt_traffic_mode_set ; bool bt_non_traffic_mode_set ; bool fw_coexist_all_off ; bool sw_coexist_all_off ; bool hw_coexist_all_off ; u32 cstate ; u32 previous_state ; u32 cstate_h ; u32 previous_state_h ; u8 bt_pre_rssi_state ; u8 bt_pre_rssi_state1 ; u8 reg_bt_iso ; u8 reg_bt_sco ; bool balance_on ; u8 bt_active_zero_cnt ; bool cur_bt_disabled ; bool pre_bt_disabled ; u8 bt_profile_case ; u8 bt_profile_action ; bool bt_busy ; bool hold_for_bt_operation ; u8 lps_counter ; }; struct rtl_rx_desc { u32 dword[8U] ; }; struct rtl_tx_desc { u32 dword[16U] ; }; struct rtl8192_tx_ring { struct rtl_tx_desc *desc ; dma_addr_t dma ; unsigned int idx ; unsigned int entries ; struct sk_buff_head queue ; }; struct rtl8192_rx_ring { struct rtl_rx_desc *desc ; dma_addr_t dma ; unsigned int idx ; struct sk_buff *rx_buf[64U] ; }; struct rtl_pci { struct pci_dev *pdev ; bool irq_enabled ; bool driver_is_goingto_unload ; bool up_first_time ; bool first_init ; bool being_init_adapter ; bool init_ready ; struct rtl8192_tx_ring tx_ring[9U] ; int txringcount[9U] ; u32 transmit_config ; struct rtl8192_rx_ring rx_ring[2U] ; int rxringcount ; u16 rxbuffersize ; u32 receive_config ; u8 irq_alloc ; u32 irq_mask[2U] ; u32 sys_irq_mask ; u32 reg_bcn_ctrl_val ; u8 const_pci_aspm ; u8 const_amdpci_aspm ; u8 const_hwsw_rfoff_d3 ; u8 const_support_pciaspm ; u8 const_hostpci_aspm_setting ; u8 const_devicepci_aspm_setting ; bool support_aspm ; bool support_backdoor ; enum acm_method acm_method ; u16 shortretry_limit ; u16 longretry_limit ; }; struct mp_adapter { u8 linkctrl_reg ; u8 busnumber ; u8 devnumber ; u8 funcnumber ; u8 pcibridge_busnum ; u8 pcibridge_devnum ; u8 pcibridge_funcnum ; u8 pcibridge_vendor ; u16 pcibridge_vendorid ; u16 pcibridge_deviceid ; u8 num4bytes ; u8 pcibridge_pciehdr_offset ; u8 pcibridge_linkctrlreg ; bool amd_l1_patch ; }; struct rtl_pci_priv { struct rtl_pci dev ; struct mp_adapter ndis_adapter ; struct rtl_led_ctl ledctl ; struct bt_coexist_info bt_coexist ; }; struct h2c_set_pwrmode_parm { u8 mode ; u8 flag_low_traffic_en ; u8 flag_lpnav_en ; u8 flag_rf_low_snr_en ; u8 flag_dps_en ; u8 bcn_rx_en ; u8 bcn_pass_cnt ; u8 bcn_to ; u16 bcn_itv ; u8 app_itv ; u8 awake_bcn_itvl ; u8 smart_ps ; u8 bcn_pass_period ; }; struct h2c_joinbss_rpt_parm { u8 opmode ; u8 ps_qos_info ; u8 bssid[6U] ; u16 bcnitv ; u16 aid ; }; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; enum hrtimer_restart; struct __anonstruct_f_295 { u8 aifsn : 4 ; u8 acm : 1 ; u8 aci : 2 ; u8 reserved : 1 ; }; union aci_aifsn { u8 char_data ; struct __anonstruct_f_295 f ; }; enum wireless_mode { WIRELESS_MODE_UNKNOWN = 0, WIRELESS_MODE_A = 1, WIRELESS_MODE_B = 2, WIRELESS_MODE_G = 4, WIRELESS_MODE_AUTO = 8, WIRELESS_MODE_N_24G = 16, WIRELESS_MODE_N_5G = 32 } ; struct rssi_sta { long undec_sm_pwdb ; long undec_sm_cck ; }; struct rtl_sta_info { struct list_head list ; u8 ratr_index ; u8 wireless_mode ; u8 mimo_ps ; u8 mac_addr[6U] ; struct rtl_tid_data tids[9U] ; struct rssi_sta rssi_stat ; }; enum hrtimer_restart; enum hrtimer_restart; enum swchnlcmd_id { CMDID_END = 0, CMDID_SET_TXPOWEROWER_LEVEL = 1, CMDID_BBREGWRITE10 = 2, CMDID_WRITEPORT_ULONG = 3, CMDID_WRITEPORT_USHORT = 4, CMDID_WRITEPORT_UCHAR = 5, CMDID_RF_WRITEREG = 6 } ; struct swchnlcmd { enum swchnlcmd_id cmdid ; u32 para1 ; u32 para2 ; u32 msdelay ; }; enum hrtimer_restart; typedef short s16; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef void (*ctor_fn_t)(void); struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct static_key; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; enum hrtimer_restart; struct exception_table_entry { int insn ; int fixup ; }; struct pdev_archdata { }; enum nl80211_bss_scan_width { NL80211_BSS_CHAN_WIDTH_20 = 0, NL80211_BSS_CHAN_WIDTH_10 = 1, NL80211_BSS_CHAN_WIDTH_5 = 2 } ; struct survey_info { struct ieee80211_channel *channel ; u64 channel_time ; u64 channel_time_busy ; u64 channel_time_ext_busy ; u64 channel_time_rx ; u64 channel_time_tx ; u32 filled ; s8 noise ; }; struct cfg80211_ssid { u8 ssid[32U] ; u8 ssid_len ; }; struct cfg80211_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u8 const *ie ; size_t ie_len ; u32 flags ; u32 rates[3U] ; struct wireless_dev *wdev ; struct wiphy *wiphy ; unsigned long scan_start ; bool aborted ; bool notified ; bool no_cck ; struct ieee80211_channel *channels[0U] ; }; struct cfg80211_match_set { struct cfg80211_ssid ssid ; }; struct cfg80211_sched_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u32 interval ; u8 const *ie ; size_t ie_len ; u32 flags ; struct cfg80211_match_set *match_sets ; int n_match_sets ; s32 rssi_thold ; struct wiphy *wiphy ; struct net_device *dev ; unsigned long scan_start ; struct ieee80211_channel *channels[0U] ; }; struct __anonstruct_control_274 { u32 legacy ; u8 ht_mcs[10U] ; u16 vht_mcs[8U] ; }; struct cfg80211_bitrate_mask { struct __anonstruct_control_274 control[3U] ; }; struct cfg80211_gtk_rekey_data { u8 kek[16U] ; u8 kck[16U] ; u8 replay_ctr[8U] ; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount ; unsigned int dot11RTSFailureCount ; unsigned int dot11FCSErrorCount ; unsigned int dot11RTSSuccessCount ; }; enum ieee80211_rssi_event { RSSI_EVENT_HIGH = 0, RSSI_EVENT_LOW = 1 } ; struct ieee80211_sched_scan_ies { u8 *ie[3U] ; size_t len[3U] ; }; struct ieee80211_channel_switch { u64 timestamp ; bool block_tx ; struct cfg80211_chan_def chandef ; u8 count ; }; enum set_key_cmd { SET_KEY = 0, DISABLE_KEY = 1 } ; enum ieee80211_sta_state { IEEE80211_STA_NOTEXIST = 0, IEEE80211_STA_NONE = 1, IEEE80211_STA_AUTH = 2, IEEE80211_STA_ASSOC = 3, IEEE80211_STA_AUTHORIZED = 4 } ; enum sta_notify_cmd { STA_NOTIFY_SLEEP = 0, STA_NOTIFY_AWAKE = 1 } ; struct ieee80211_tx_control { struct ieee80211_sta *sta ; }; enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START = 0, IEEE80211_AMPDU_RX_STOP = 1, IEEE80211_AMPDU_TX_START = 2, IEEE80211_AMPDU_TX_STOP_CONT = 3, IEEE80211_AMPDU_TX_STOP_FLUSH = 4, IEEE80211_AMPDU_TX_STOP_FLUSH_CONT = 5, IEEE80211_AMPDU_TX_OPERATIONAL = 6 } ; enum ieee80211_frame_release_type { IEEE80211_FRAME_RELEASE_PSPOLL = 0, IEEE80211_FRAME_RELEASE_UAPSD = 1 } ; enum ieee80211_roc_type { IEEE80211_ROC_TYPE_NORMAL = 0, IEEE80211_ROC_TYPE_MGMT_TX = 1 } ; struct ieee80211_ops { void (*tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; int (*start)(struct ieee80211_hw * ) ; void (*stop)(struct ieee80211_hw * ) ; int (*suspend)(struct ieee80211_hw * , struct cfg80211_wowlan * ) ; int (*resume)(struct ieee80211_hw * ) ; void (*set_wakeup)(struct ieee80211_hw * , bool ) ; int (*add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*change_interface)(struct ieee80211_hw * , struct ieee80211_vif * , enum nl80211_iftype , bool ) ; void (*remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*config)(struct ieee80211_hw * , u32 ) ; void (*bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , u32 ) ; int (*start_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*stop_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u64 (*prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , u64 ) ; int (*set_tim)(struct ieee80211_hw * , struct ieee80211_sta * , bool ) ; int (*set_key)(struct ieee80211_hw * , enum set_key_cmd , struct ieee80211_vif * , struct ieee80211_sta * , struct ieee80211_key_conf * ) ; void (*update_tkip_key)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_key_conf * , struct ieee80211_sta * , u32 , u16 * ) ; void (*set_rekey_data)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_gtk_rekey_data * ) ; void (*set_default_unicast_key)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; int (*hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_scan_request * ) ; void (*cancel_hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*sched_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_sched_scan_request * , struct ieee80211_sched_scan_ies * ) ; void (*sched_scan_stop)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*sw_scan_start)(struct ieee80211_hw * ) ; void (*sw_scan_complete)(struct ieee80211_hw * ) ; int (*get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; void (*get_tkip_seq)(struct ieee80211_hw * , u8 , u32 * , u16 * ) ; int (*set_frag_threshold)(struct ieee80211_hw * , u32 ) ; int (*set_rts_threshold)(struct ieee80211_hw * , u32 ) ; int (*sta_add)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; int (*sta_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_add_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_remove_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_notify)(struct ieee80211_hw * , struct ieee80211_vif * , enum sta_notify_cmd , struct ieee80211_sta * ) ; int (*sta_state)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , enum ieee80211_sta_state , enum ieee80211_sta_state ) ; void (*sta_pre_rcu_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_rc_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u32 ) ; int (*conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , u16 , struct ieee80211_tx_queue_params const * ) ; u64 (*get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*set_tsf)(struct ieee80211_hw * , struct ieee80211_vif * , u64 ) ; void (*reset_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*tx_last_beacon)(struct ieee80211_hw * ) ; int (*ampdu_action)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_ampdu_mlme_action , struct ieee80211_sta * , u16 , u16 * , u8 ) ; int (*get_survey)(struct ieee80211_hw * , int , struct survey_info * ) ; void (*rfkill_poll)(struct ieee80211_hw * ) ; void (*set_coverage_class)(struct ieee80211_hw * , u8 ) ; int (*testmode_cmd)(struct ieee80211_hw * , struct ieee80211_vif * , void * , int ) ; int (*testmode_dump)(struct ieee80211_hw * , struct sk_buff * , struct netlink_callback * , void * , int ) ; void (*flush)(struct ieee80211_hw * , u32 , bool ) ; void (*channel_switch)(struct ieee80211_hw * , struct ieee80211_channel_switch * ) ; int (*napi_poll)(struct ieee80211_hw * , int ) ; int (*set_antenna)(struct ieee80211_hw * , u32 , u32 ) ; int (*get_antenna)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*remain_on_channel)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel * , int , enum ieee80211_roc_type ) ; int (*cancel_remain_on_channel)(struct ieee80211_hw * ) ; int (*set_ringparam)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_ringparam)(struct ieee80211_hw * , u32 * , u32 * , u32 * , u32 * ) ; bool (*tx_frames_pending)(struct ieee80211_hw * ) ; int (*set_bitrate_mask)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_bitrate_mask const * ) ; void (*rssi_callback)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_rssi_event ) ; void (*allow_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; void (*release_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; int (*get_et_sset_count)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; void (*get_et_stats)(struct ieee80211_hw * , struct ieee80211_vif * , struct ethtool_stats * , u64 * ) ; void (*get_et_strings)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , u8 * ) ; int (*get_rssi)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , s8 * ) ; void (*mgd_prepare_tx)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*add_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*remove_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*change_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * , u32 ) ; int (*assign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*unassign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*restart_complete)(struct ieee80211_hw * ) ; void (*ipv6_addr_change)(struct ieee80211_hw * , struct ieee80211_vif * , struct inet6_dev * ) ; void (*channel_switch_beacon)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_chan_def * ) ; int (*join_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*leave_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_302 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_302 __annonCompField82 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; enum hrtimer_restart; struct rx_fwinfo { u8 gain_trsw[4U] ; u8 pwdb_all ; u8 cfosho[4U] ; u8 cfotail[4U] ; s8 rxevm[2U] ; s8 rxsnr[4U] ; u8 pdsnr[2U] ; u8 csi_current[2U] ; u8 csi_target[2U] ; u8 sigevm ; u8 max_ex_pwr ; u8 ex_intf_flag : 1 ; u8 sgi_en : 1 ; u8 rxsc : 2 ; u8 reserve : 4 ; }; struct phy_sts_cck_8192s_t { u8 adc_pwdb_x[4U] ; u8 sq_rpt ; u8 cck_agc_rpt ; }; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; extern int printk(char const * , ...) ; extern void __bad_percpu_size(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6011; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6011; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6011; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6011; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6011: ; return (pfo_ret__ & 2147483647); } } __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6068; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6068; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6068; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6068; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6068: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6080; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6080; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6080; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6080; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6080: ; return; } } extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; __inline static void __rcu_read_lock(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void __rcu_read_unlock(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } extern bool rcu_is_watching(void) ; __inline static void rcu_lock_acquire(struct lockdep_map *map ) { { { lock_acquire(map, 0U, 0, 2, 1, (struct lockdep_map *)0, (unsigned long )((void *)0)); } return; } } __inline static void rcu_lock_release(struct lockdep_map *map ) { { { lock_release(map, 1, (unsigned long )((void *)0)); } return; } } extern struct lockdep_map rcu_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; __inline static void rcu_read_lock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { __rcu_read_lock(); rcu_lock_acquire(& rcu_lock_map); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 812, "rcu_read_lock() used illegally while idle"); } } else { } } else { } return; } } __inline static void rcu_read_unlock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 833, "rcu_read_unlock() used illegally while idle"); } } else { } } else { } { rcu_lock_release(& rcu_lock_map); __rcu_read_unlock(); } return; } } extern struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif * , u8 const * ) ; __inline static void rtl_write_dword(struct rtl_priv *rtlpriv , u32 addr , u32 val32 ) { { { (*(rtlpriv->io.write32_async))(rtlpriv, addr, val32); } if ((int )(rtlpriv->cfg)->write_readback) { { (*(rtlpriv->io.read32_sync))(rtlpriv, addr); } } else { } return; } } __inline static u32 rtl_get_bbreg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_bbreg))(hw, regaddr, bitmask); } return (tmp); } } __inline static void rtl_set_bbreg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; (*(((rtlpriv->cfg)->ops)->set_bbreg))(hw, regaddr, bitmask, data); } return; } } __inline static u32 rtl_get_rfreg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_rfreg))(hw, rfpath, regaddr, bitmask); } return (tmp); } } __inline static void rtl_set_rfreg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; (*(((rtlpriv->cfg)->ops)->set_rfreg))(hw, rfpath, regaddr, bitmask, data); } return; } } __inline static bool is_hal_stop(struct rtl_hal *rtlhal ) { { return ((unsigned int )rtlhal->state == 0U); } } __inline static struct ieee80211_sta *rtl_find_sta(struct ieee80211_hw *hw , u8 *mac_addr ) { struct rtl_mac *mac ; struct ieee80211_sta *tmp ; { { mac = & ((struct rtl_priv *)hw->priv)->mac80211; tmp = ieee80211_find_sta(mac->vif, (u8 const *)mac_addr); } return (tmp); } } void rtl92s_phy_set_txpower(struct ieee80211_hw *hw , u8 channel ) ; bool rtl92s_phy_set_fw_cmd(struct ieee80211_hw *hw , enum fwcmd_iotype fw_cmdio ) ; void rtl92s_phy_chk_fwcmd_iodone(struct ieee80211_hw *hw ) ; void rtl92s_dm_watchdog(struct ieee80211_hw *hw ) ; void rtl92s_dm_init(struct ieee80211_hw *hw ) ; void rtl92s_dm_init_edca_turbo(struct ieee80211_hw *hw ) ; static u32 const edca_setting_dl[10U] = { 42063U, 6202447U, 6202447U, 42544U, 42063U, 42544U, 42544U, 42027U}; static u32 const edca_setting_dl_gmode[10U] = { 17186U, 42063U, 6202447U, 42027U, 6177570U, 17186U, 42032U, 6202447U}; static u32 const edca_setting_ul[10U] = { 6177570U, 42063U, 6202447U, 6202146U, 6202402U, 6202146U, 4105295U, 6202447U}; static void _rtl92s_dm_check_edca_turbo(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u64 last_txok_cnt ; u64 last_rxok_cnt ; u64 cur_txok_cnt ; u64 cur_rxok_cnt ; u32 edca_be_ul ; u32 edca_be_dl ; u32 edca_gmode ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; cur_txok_cnt = 0ULL; cur_rxok_cnt = 0ULL; edca_be_ul = edca_setting_ul[mac->vendor]; edca_be_dl = edca_setting_dl[mac->vendor]; edca_gmode = edca_setting_dl_gmode[mac->vendor]; if ((unsigned int )mac->link_state != 2U) { rtlpriv->dm.current_turbo_edca = 0; goto dm_checkedcaturbo_exit; } else { } if (! rtlpriv->dm.is_any_nonbepkts && ! rtlpriv->dm.disable_framebursting) { cur_txok_cnt = (unsigned long long )rtlpriv->stats.txbytesunicast - last_txok_cnt; cur_rxok_cnt = (unsigned long long )rtlpriv->stats.rxbytesunicast - last_rxok_cnt; if ((unsigned int )rtlpriv->phy.rf_type == 1U) { if (cur_txok_cnt > cur_rxok_cnt * 4ULL) { if ((int )rtlpriv->dm.is_cur_rdlstate || ! rtlpriv->dm.current_turbo_edca) { { rtl_write_dword(rtlpriv, 472U, edca_be_ul); rtlpriv->dm.is_cur_rdlstate = 0; } } else { } } else if (! rtlpriv->dm.is_cur_rdlstate || ! rtlpriv->dm.current_turbo_edca) { if ((unsigned int )mac->mode == 4U || (unsigned int )mac->mode == 2U) { { rtl_write_dword(rtlpriv, 472U, edca_gmode); } } else { { rtl_write_dword(rtlpriv, 472U, edca_be_dl); } } rtlpriv->dm.is_cur_rdlstate = 1; } else { } rtlpriv->dm.current_turbo_edca = 1; } else { if (cur_rxok_cnt > cur_txok_cnt * 4ULL) { if (! rtlpriv->dm.is_cur_rdlstate || ! rtlpriv->dm.current_turbo_edca) { if ((unsigned int )mac->mode == 4U || (unsigned int )mac->mode == 2U) { { rtl_write_dword(rtlpriv, 472U, edca_gmode); } } else { { rtl_write_dword(rtlpriv, 472U, edca_be_dl); } } rtlpriv->dm.is_cur_rdlstate = 1; } else { } } else if ((int )rtlpriv->dm.is_cur_rdlstate || ! rtlpriv->dm.current_turbo_edca) { { rtl_write_dword(rtlpriv, 472U, edca_be_ul); rtlpriv->dm.is_cur_rdlstate = 0; } } else { } rtlpriv->dm.current_turbo_edca = 1; } } else if ((int )rtlpriv->dm.current_turbo_edca) { { tmp = 0U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 31, & tmp); rtlpriv->dm.current_turbo_edca = 0; } } else { } dm_checkedcaturbo_exit: rtlpriv->dm.is_any_nonbepkts = 0; last_txok_cnt = (u64 )rtlpriv->stats.txbytesunicast; last_rxok_cnt = (u64 )rtlpriv->stats.rxbytesunicast; return; } } static void _rtl92s_dm_txpowertracking_callback_thermalmeter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; u8 thermalvalue ; u32 fw_cmd ; u32 tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; thermalvalue = 0U; fw_cmd = 0U; rtlpriv->dm.txpower_trackinginit = 1; tmp = rtl_get_rfreg(hw, 0, 36U, 31U); thermalvalue = (unsigned char )tmp; tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Readback Thermal Meter = 0x%x pre thermal meter 0x%x eeprom_thermal meter 0x%x\n", "_rtl92s_dm_txpowertracking_callback_thermalmeter", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, (int )thermalvalue, (int )rtlpriv->dm.thermalvalue, (int )rtlefuse->eeprom_thermalmeter); } } else { } } else { } if ((unsigned int )thermalvalue != 0U) { rtlpriv->dm.thermalvalue = thermalvalue; if ((unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion > 52U) { { rtl92s_phy_set_fw_cmd(hw, 14); } } else { { fw_cmd = ((unsigned int )((int )rtlpriv->efuse.thermalmeter[0] << 8) | (unsigned int )((int )thermalvalue << 16)) | 4244635673U; tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Write to FW Thermal Val = 0x%x\n", "_rtl92s_dm_txpowertracking_callback_thermalmeter", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, fw_cmd); } } else { } } else { } { rtl_write_dword(rtlpriv, 704U, fw_cmd); rtl92s_phy_chk_fwcmd_iodone(hw); } } } else { } rtlpriv->dm.txpowercount = 0U; return; } } static void _rtl92s_dm_check_txpowertracking_thermalmeter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 tm_trigger ; u8 tx_power_checkcnt ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; tx_power_checkcnt = 5U; if ((unsigned int )rtlphy->rf_type == 2U) { return; } else { } if (! rtlpriv->dm.txpower_tracking) { return; } else { } if ((int )rtlpriv->dm.txpowercount <= (int )tx_power_checkcnt) { rtlpriv->dm.txpowercount = (u8 )((int )rtlpriv->dm.txpowercount + 1); return; } else { } if ((unsigned int )tm_trigger == 0U) { { rtl_set_rfreg(hw, 0, 36U, 1048575U, 96U); tm_trigger = 1U; } } else { { _rtl92s_dm_txpowertracking_callback_thermalmeter(hw); tm_trigger = 0U; } } return; } } static void _rtl92s_dm_refresh_rateadaptive_mask(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_mac *mac ; struct rate_adaptive *ra ; struct ieee80211_sta *sta ; u32 low_rssi_thresh ; u32 middle_rssi_thresh ; u32 high_rssi_thresh ; bool tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; mac = & ((struct rtl_priv *)hw->priv)->mac80211; ra = & rtlpriv->ra; sta = (struct ieee80211_sta *)0; low_rssi_thresh = 0U; middle_rssi_thresh = 0U; high_rssi_thresh = 0U; tmp = is_hal_stop(rtlhal); } if ((int )tmp) { return; } else { } if (! rtlpriv->dm.useramask) { return; } else { } if ((unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion > 60U && ! rtlpriv->dm.inform_fw_driverctrldm) { { rtl92s_phy_set_fw_cmd(hw, 27); rtlpriv->dm.inform_fw_driverctrldm = 1; } } else { } if ((unsigned int )mac->link_state == 2U && (unsigned int )mac->opmode == 2U) { { if ((int )ra->pre_ratr_state == 0) { goto case_0; } else { } if ((int )ra->pre_ratr_state == 2) { goto case_2; } else { } if ((int )ra->pre_ratr_state == 4) { goto case_4; } else { } if ((int )ra->pre_ratr_state == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ high_rssi_thresh = 40U; middle_rssi_thresh = 30U; low_rssi_thresh = 20U; goto ldv_50652; case_2: /* CIL Label */ high_rssi_thresh = 44U; middle_rssi_thresh = 30U; low_rssi_thresh = 20U; goto ldv_50652; case_4: /* CIL Label */ high_rssi_thresh = 44U; middle_rssi_thresh = 34U; low_rssi_thresh = 20U; goto ldv_50652; case_5: /* CIL Label */ high_rssi_thresh = 44U; middle_rssi_thresh = 34U; low_rssi_thresh = 24U; goto ldv_50652; switch_default: /* CIL Label */ high_rssi_thresh = 44U; middle_rssi_thresh = 34U; low_rssi_thresh = 24U; goto ldv_50652; switch_break: /* CIL Label */ ; } ldv_50652: ; if (rtlpriv->dm.undec_sm_pwdb > (long )high_rssi_thresh) { ra->ratr_state = 0U; } else if (rtlpriv->dm.undec_sm_pwdb > (long )middle_rssi_thresh) { ra->ratr_state = 4U; } else if (rtlpriv->dm.undec_sm_pwdb > (long )low_rssi_thresh) { ra->ratr_state = 4U; } else { ra->ratr_state = 5U; } if ((int )ra->pre_ratr_state != (int )ra->ratr_state) { { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RSSI = %ld RSSI_LEVEL = %d PreState = %d, CurState = %d\n", "_rtl92s_dm_refresh_rateadaptive_mask", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, rtlpriv->dm.undec_sm_pwdb, (int )ra->ratr_state, (int )ra->pre_ratr_state, (int )ra->ratr_state); } } else { } } else { } { rcu_read_lock(); sta = rtl_find_sta(hw, (u8 *)(& mac->bssid)); } if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { { (*(((rtlpriv->cfg)->ops)->update_rate_tbl))(hw, sta, (int )ra->ratr_state); } } else { } { rcu_read_unlock(); ra->pre_ratr_state = ra->ratr_state; } } else { } } else { } return; } } static void _rtl92s_dm_switch_baseband_mrc(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; bool current_mrc ; bool enable_mrc ; long tmpentry_maxpwdb ; u8 rssi_a ; u8 rssi_b ; bool tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; enable_mrc = 1; tmpentry_maxpwdb = 0L; rssi_a = 0U; rssi_b = 0U; tmp = is_hal_stop(rtlhal); } if ((int )tmp) { return; } else { } if ((unsigned int )rtlphy->rf_type == 0U || (unsigned int )rtlphy->rf_type == 2U) { return; } else { } { (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 90, (u8 *)(& current_mrc)); } if ((unsigned int )mac->link_state > 1U) { if (rtlpriv->dm.undec_sm_pwdb > tmpentry_maxpwdb) { rssi_a = rtlpriv->stats.rx_rssi_percentage[0]; rssi_b = rtlpriv->stats.rx_rssi_percentage[1]; } else { } } else { } if ((unsigned int )mac->mode != 2U) { if ((unsigned int )((int )rssi_a | (int )rssi_b) == 0U) { enable_mrc = 1; } else if ((unsigned int )rssi_b > 30U) { enable_mrc = 1; } else if ((unsigned int )rssi_b <= 4U) { enable_mrc = 0; } else if ((unsigned int )rssi_a > 15U && (int )rssi_a >= (int )rssi_b) { if ((int )rssi_a - (int )rssi_b > 15) { enable_mrc = 0; } else if ((int )rssi_a - (int )rssi_b <= 9) { enable_mrc = 1; } else { enable_mrc = current_mrc; } } else { enable_mrc = 1; } } else { } if ((int )enable_mrc != (int )current_mrc) { { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 90, (u8 *)(& enable_mrc)); } } else { } return; } } void rtl92s_dm_init_edca_turbo(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.current_turbo_edca = 0; rtlpriv->dm.is_any_nonbepkts = 0; rtlpriv->dm.is_cur_rdlstate = 0; return; } } static void _rtl92s_dm_init_rate_adaptive_mask(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rate_adaptive *ra ; { rtlpriv = (struct rtl_priv *)hw->priv; ra = & rtlpriv->ra; ra->ratr_state = 6U; ra->pre_ratr_state = 6U; if ((unsigned int )rtlpriv->dm.dm_type == 1U && (unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion > 59U) { rtlpriv->dm.useramask = 1; } else { rtlpriv->dm.useramask = 0; } rtlpriv->dm.useramask = 0; rtlpriv->dm.inform_fw_driverctrldm = 0; return; } } static void _rtl92s_dm_init_txpowertracking_thermalmeter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.txpower_tracking = 1; rtlpriv->dm.txpowercount = 0U; rtlpriv->dm.txpower_trackinginit = 0; return; } } static void _rtl92s_dm_false_alarm_counter_statistics(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct false_alarm_statistics *falsealm_cnt ; u32 ret_value ; { { rtlpriv = (struct rtl_priv *)hw->priv; falsealm_cnt = & rtlpriv->falsealm_cnt; ret_value = rtl_get_bbreg(hw, 3488U, 4294967295U); falsealm_cnt->cnt_parity_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3492U, 4294967295U); falsealm_cnt->cnt_rate_illegal = ret_value & 65535U; falsealm_cnt->cnt_crc8_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3496U, 4294967295U); falsealm_cnt->cnt_mcs_fail = ret_value & 65535U; falsealm_cnt->cnt_ofdm_fail = ((falsealm_cnt->cnt_parity_fail + falsealm_cnt->cnt_rate_illegal) + falsealm_cnt->cnt_crc8_fail) + falsealm_cnt->cnt_mcs_fail; ret_value = rtl_get_bbreg(hw, 3172U, 4294967295U); falsealm_cnt->cnt_cck_fail = ret_value & 65535U; falsealm_cnt->cnt_all = falsealm_cnt->cnt_ofdm_fail + falsealm_cnt->cnt_cck_fail; } return; } } static void rtl92s_backoff_enable_flag(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *digtable ; struct false_alarm_statistics *falsealm_cnt ; { rtlpriv = (struct rtl_priv *)hw->priv; digtable = & rtlpriv->dm_digtable; falsealm_cnt = & rtlpriv->falsealm_cnt; if (falsealm_cnt->cnt_all > digtable->fa_highthresh) { if ((int )digtable->back_val + -6 < (int )digtable->backoffval_range_min) { digtable->back_val = digtable->backoffval_range_min; } else { digtable->back_val = (char )((unsigned int )((unsigned char )digtable->back_val) + 250U); } } else if (falsealm_cnt->cnt_all < digtable->fa_lowthresh) { if ((int )digtable->back_val + 6 > (int )digtable->backoffval_range_max) { digtable->back_val = digtable->backoffval_range_max; } else { digtable->back_val = (char )((unsigned int )((unsigned char )digtable->back_val) + 6U); } } else { } return; } } static void _rtl92s_dm_initial_gain_sta_beforeconnect(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *digtable ; struct false_alarm_statistics *falsealm_cnt ; u8 initialized ; u8 force_write ; u8 initial_gain ; u32 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; digtable = & rtlpriv->dm_digtable; falsealm_cnt = & rtlpriv->falsealm_cnt; initial_gain = 0U; if ((int )digtable->pre_sta_cstate == (int )digtable->cur_sta_cstate || (unsigned int )digtable->cur_sta_cstate == 2U) { if ((unsigned int )digtable->cur_sta_cstate == 2U) { if ((unsigned int )rtlpriv->psc.rfpwr_state != 0U) { return; } else { } if ((unsigned int )digtable->backoff_enable_flag != 0U) { { rtl92s_backoff_enable_flag(hw); } } else { digtable->back_val = 12; } if ((digtable->rssi_val + 10L) - (long )digtable->back_val > (long )digtable->rx_gain_max) { digtable->cur_igvalue = (u32 )digtable->rx_gain_max; } else if ((digtable->rssi_val + 10L) - (long )digtable->back_val < (long )digtable->rx_gain_min) { digtable->cur_igvalue = (u32 )digtable->rx_gain_min; } else { digtable->cur_igvalue = ((u32 )digtable->rssi_val - (u32 )digtable->back_val) + 10U; } if (falsealm_cnt->cnt_all > 10000U) { digtable->cur_igvalue = 51U > digtable->cur_igvalue ? 51U : digtable->cur_igvalue; } else { } if (falsealm_cnt->cnt_all > 16000U) { digtable->cur_igvalue = (u32 )digtable->rx_gain_max; } else { } } else { return; } } else { { digtable->dig_ext_port_stage = 4U; rtl92s_phy_set_fw_cmd(hw, 0); digtable->back_val = 12; digtable->cur_igvalue = (u32 )rtlpriv->phy.default_initialgain[0]; digtable->pre_igvalue = 0U; } return; } { tmp = rtl_get_bbreg(hw, 3152U, 255U); } if (digtable->pre_igvalue != tmp) { force_write = 1U; } else { } if ((digtable->pre_igvalue != digtable->cur_igvalue || (unsigned int )initialized == 0U) || (unsigned int )force_write != 0U) { { rtl92s_phy_set_fw_cmd(hw, 1); initial_gain = (unsigned char )digtable->cur_igvalue; rtl_set_bbreg(hw, 3152U, 255U, (u32 )initial_gain); rtl_set_bbreg(hw, 3160U, 255U, (u32 )initial_gain); digtable->pre_igvalue = digtable->cur_igvalue; initialized = 1U; force_write = 0U; } } else { } return; } } static void _rtl92s_dm_ctrl_initgain_bytwoport(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *dig ; { rtlpriv = (struct rtl_priv *)hw->priv; dig = & rtlpriv->dm_digtable; if ((int )rtlpriv->mac80211.act_scanning) { return; } else { } if ((unsigned int )rtlpriv->mac80211.link_state > 1U || (unsigned int )rtlpriv->mac80211.opmode == 1U) { dig->cur_sta_cstate = 1U; } else { dig->cur_sta_cstate = 0U; } dig->rssi_val = rtlpriv->dm.undec_sm_pwdb; if ((unsigned int )dig->cur_sta_cstate != 0U) { if ((unsigned int )dig->dig_twoport_algorithm == 1U) { { dig->dig_twoport_algorithm = 0U; rtl92s_phy_set_fw_cmd(hw, 24); } } else { } } else { } { _rtl92s_dm_false_alarm_counter_statistics(hw); _rtl92s_dm_initial_gain_sta_beforeconnect(hw); dig->pre_sta_cstate = dig->cur_sta_cstate; } return; } } static void _rtl92s_dm_ctrl_initgain_byrssi(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct dig_t *digtable ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; digtable = & rtlpriv->dm_digtable; if ((unsigned int )rtlphy->rf_type == 2U) { return; } else { } if (! rtlpriv->dm.dm_initialgain_enable) { return; } else { } if ((unsigned int )digtable->dig_enable_flag == 0U) { return; } else { } { _rtl92s_dm_ctrl_initgain_bytwoport(hw); } return; } } static void _rtl92s_dm_dynamic_txpower(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; long undec_sm_pwdb ; long txpwr_threshold_lv1 ; long txpwr_threshold_lv2 ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; u32 tmp___15 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; if ((unsigned int )rtlphy->rf_type == 2U) { return; } else { } if (! rtlpriv->dm.dynamic_txpower_enable || ((unsigned long )rtlpriv->dm.dm_flag & 2UL) != 0UL) { rtlpriv->dm.dynamic_txhighpower_lvl = 0U; return; } else { } if ((unsigned int )mac->link_state <= 1U && rtlpriv->dm.entry_min_undec_sm_pwdb == 0L) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Not connected to any\n", "_rtl92s_dm_dynamic_txpower", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlpriv->dm.dynamic_txhighpower_lvl = 0U; rtlpriv->dm.last_dtp_lvl = 0U; return; } else { } if ((unsigned int )mac->link_state > 1U) { if ((unsigned int )mac->opmode == 1U) { { undec_sm_pwdb = rtlpriv->dm.entry_min_undec_sm_pwdb; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> AP Client PWDB = 0x%lx\n", "_rtl92s_dm_dynamic_txpower", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, undec_sm_pwdb); } } else { } } else { } } else { { undec_sm_pwdb = rtlpriv->dm.undec_sm_pwdb; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> STA Default Port PWDB = 0x%lx\n", "_rtl92s_dm_dynamic_txpower", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, undec_sm_pwdb); } } else { } } else { } } } else { { undec_sm_pwdb = rtlpriv->dm.entry_min_undec_sm_pwdb; tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> AP Ext Port PWDB = 0x%lx\n", "_rtl92s_dm_dynamic_txpower", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, undec_sm_pwdb); } } else { } } else { } } { txpwr_threshold_lv2 = 74L; txpwr_threshold_lv1 = 67L; tmp___15 = rtl_get_bbreg(hw, 3216U, 255U); } if (tmp___15 == 1U) { rtlpriv->dm.dynamic_txhighpower_lvl = 0U; } else if (undec_sm_pwdb >= txpwr_threshold_lv2) { rtlpriv->dm.dynamic_txhighpower_lvl = 2U; } else if (undec_sm_pwdb < txpwr_threshold_lv2 + -3L && undec_sm_pwdb >= txpwr_threshold_lv1) { rtlpriv->dm.dynamic_txhighpower_lvl = 1U; } else if (undec_sm_pwdb < txpwr_threshold_lv1 + -3L) { rtlpriv->dm.dynamic_txhighpower_lvl = 0U; } else { } if ((int )rtlpriv->dm.dynamic_txhighpower_lvl != (int )rtlpriv->dm.last_dtp_lvl) { { rtl92s_phy_set_txpower(hw, (int )rtlphy->current_channel); } } else { } rtlpriv->dm.last_dtp_lvl = rtlpriv->dm.dynamic_txhighpower_lvl; return; } } static void _rtl92s_dm_init_dig(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *digtable ; { rtlpriv = (struct rtl_priv *)hw->priv; digtable = & rtlpriv->dm_digtable; digtable->dig_enable_flag = 1U; digtable->backoff_enable_flag = 1U; if ((unsigned int )rtlpriv->dm.dm_type == 1U && (unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion > 59U) { digtable->dig_algorithm = 3U; } else { digtable->dig_algorithm = 2U; } digtable->dig_twoport_algorithm = 0U; digtable->dig_ext_port_stage = 4U; digtable->dig_dbgmode = 0U; digtable->dig_slgorithm_switch = 0U; digtable->dig_state = 2U; digtable->dig_highpwrstate = 2U; digtable->cur_sta_cstate = 0U; digtable->pre_sta_cstate = 0U; digtable->cur_ap_cstate = 3U; digtable->pre_ap_cstate = 3U; digtable->rssi_lowthresh = 35U; digtable->rssi_highthresh = 40U; digtable->fa_lowthresh = 40U; digtable->fa_highthresh = 1000U; digtable->rssi_highpower_lowthresh = 70L; digtable->rssi_highpower_highthresh = 75L; digtable->rssi_val = 50L; digtable->back_val = 12; digtable->rx_gain_max = 62U; digtable->rx_gain_min = 28U; digtable->backoffval_range_max = 12; digtable->backoffval_range_min = -4; return; } } static void _rtl92s_dm_init_dynamic_txpower(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion > 59U && (unsigned int )rtlpriv->dm.dm_type == 1U) { rtlpriv->dm.dynamic_txpower_enable = 1; } else { rtlpriv->dm.dynamic_txpower_enable = 0; } rtlpriv->dm.last_dtp_lvl = 0U; rtlpriv->dm.dynamic_txhighpower_lvl = 0U; return; } } void rtl92s_dm_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.dm_type = 1U; rtlpriv->dm.undec_sm_pwdb = -1L; _rtl92s_dm_init_dynamic_txpower(hw); rtl92s_dm_init_edca_turbo(hw); _rtl92s_dm_init_rate_adaptive_mask(hw); _rtl92s_dm_init_txpowertracking_thermalmeter(hw); _rtl92s_dm_init_dig(hw); rtl_write_dword(rtlpriv, 704U, 4278190097U); } return; } } void rtl92s_dm_watchdog(struct ieee80211_hw *hw ) { { { _rtl92s_dm_check_edca_turbo(hw); _rtl92s_dm_check_txpowertracking_thermalmeter(hw); _rtl92s_dm_ctrl_initgain_byrssi(hw); _rtl92s_dm_dynamic_txpower(hw); _rtl92s_dm_refresh_rateadaptive_mask(hw); _rtl92s_dm_switch_baseband_mrc(hw); } return; } } extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField20.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField20.rlock, flags); } return; } } __inline static __u32 skb_queue_len(struct sk_buff_head const *list_ ) { { return ((__u32 )list_->qlen); } } __inline static void __skb_insert(struct sk_buff *newsk , struct sk_buff *prev , struct sk_buff *next , struct sk_buff_head *list ) { struct sk_buff *tmp ; { newsk->next = next; newsk->prev = prev; tmp = newsk; prev->next = tmp; next->prev = tmp; list->qlen = list->qlen + 1U; return; } } __inline static void __skb_queue_before(struct sk_buff_head *list , struct sk_buff *next , struct sk_buff *newsk ) { { { __skb_insert(newsk, next->prev, next, list); } return; } } __inline static void __skb_queue_tail(struct sk_buff_head *list , struct sk_buff *newsk ) { { { __skb_queue_before(list, (struct sk_buff *)list, newsk); } return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, 32U); } return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { { tmp = netdev_alloc_skb((struct net_device *)0, length); } return (tmp); } } extern void __const_udelay(unsigned long ) ; __inline static u8 rtl_read_byte(struct rtl_priv *rtlpriv , u32 addr ) { u8 tmp ; { { tmp = (*(rtlpriv->io.read8_sync))(rtlpriv, addr); } return (tmp); } } __inline static u16 rtl_read_word(struct rtl_priv *rtlpriv , u32 addr ) { u16 tmp ; { { tmp = (*(rtlpriv->io.read16_sync))(rtlpriv, addr); } return (tmp); } } __inline static u32 rtl_read_dword(struct rtl_priv *rtlpriv , u32 addr ) { u32 tmp ; { { tmp = (*(rtlpriv->io.read32_sync))(rtlpriv, addr); } return (tmp); } } __inline static void rtl_write_byte(struct rtl_priv *rtlpriv , u32 addr , u8 val8 ) { { { (*(rtlpriv->io.write8_async))(rtlpriv, addr, (int )val8); } if ((int )(rtlpriv->cfg)->write_readback) { { (*(rtlpriv->io.read8_sync))(rtlpriv, addr); } } else { } return; } } __inline static void rtl_write_word(struct rtl_priv *rtlpriv , u32 addr , u16 val16 ) { { { (*(rtlpriv->io.write16_async))(rtlpriv, addr, (int )val16); } if ((int )(rtlpriv->cfg)->write_readback) { { (*(rtlpriv->io.read16_sync))(rtlpriv, addr); } } else { } return; } } int rtl92s_download_fw(struct ieee80211_hw *hw ) ; void rtl92s_set_fw_pwrmode_cmd(struct ieee80211_hw *hw , u8 Mode ) ; void rtl92s_set_fw_joinbss_report_cmd(struct ieee80211_hw *hw , u8 mstatus , u8 ps_qosinfo ) ; static void _rtl92s_fw_set_rqpn(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtl_write_dword(rtlpriv, 160U, 4294967295U); rtl_write_dword(rtlpriv, 164U, 4294967295U); rtl_write_byte(rtlpriv, 168U, 255); rtl_write_byte(rtlpriv, 171U, 128); } return; } } static bool _rtl92s_firmware_enable_cpu(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 ichecktime ; u16 tmpu2b ; u8 tmpu1b ; u8 cpustatus ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u32 tmp___3 ; { { rtlpriv = (struct rtl_priv *)hw->priv; ichecktime = 200U; cpustatus = 0U; _rtl92s_fw_set_rqpn(hw); tmpu1b = rtl_read_byte(rtlpriv, 8U); rtl_write_byte(rtlpriv, 8U, (int )((unsigned int )tmpu1b | 4U)); tmpu2b = rtl_read_word(rtlpriv, 2U); rtl_write_word(rtlpriv, 2U, (int )((unsigned int )tmpu2b | 1024U)); } ldv_50618: { cpustatus = rtl_read_byte(rtlpriv, 68U); } if (((unsigned long )cpustatus & 32UL) != 0UL) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> IMEM Ready after CPU has refilled\n", "_rtl92s_firmware_enable_cpu", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_50617; } else { } { __const_udelay(429500UL); tmp___3 = ichecktime; ichecktime = ichecktime - 1U; } if (tmp___3 != 0U) { goto ldv_50618; } else { } ldv_50617: ; if (((unsigned long )cpustatus & 32UL) == 0UL) { return (0); } else { } return (1); } } static enum fw_status _rtl92s_firmware_get_nextstatus(enum fw_status fw_currentstatus ) { enum fw_status next_fwstatus ; { next_fwstatus = 0; { if ((unsigned int )fw_currentstatus == 0U) { goto case_0; } else { } if ((unsigned int )fw_currentstatus == 1U) { goto case_1; } else { } if ((unsigned int )fw_currentstatus == 2U) { goto case_2; } else { } if ((unsigned int )fw_currentstatus == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ next_fwstatus = 1; goto ldv_50624; case_1: /* CIL Label */ next_fwstatus = 2; goto ldv_50624; case_2: /* CIL Label */ next_fwstatus = 3; goto ldv_50624; case_3: /* CIL Label */ next_fwstatus = 4; goto ldv_50624; switch_default: /* CIL Label */ ; goto ldv_50624; switch_break: /* CIL Label */ ; } ldv_50624: ; return (next_fwstatus); } } static u8 _rtl92s_firmware_header_map_rftype(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; { if ((int )rtlphy->rf_type == 0) { goto case_0; } else { } if ((int )rtlphy->rf_type == 1) { goto case_1; } else { } if ((int )rtlphy->rf_type == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (17U); case_1: /* CIL Label */ ; return (18U); case_2: /* CIL Label */ ; return (34U); switch_default: /* CIL Label */ { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Unknown RF type(%x)\n", "_rtl92s_firmware_header_map_rftype", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->rf_type); } } else { } } else { } goto ldv_50639; switch_break: /* CIL Label */ ; } ldv_50639: ; return (34U); } } static void _rtl92s_firmwareheader_priveupdate(struct ieee80211_hw *hw , struct fw_priv *pfw_priv ) { { { pfw_priv->rf_config = _rtl92s_firmware_header_map_rftype(hw); } return; } } static bool _rtl92s_cmd_send_packet(struct ieee80211_hw *hw , struct sk_buff *skb , u8 last ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl8192_tx_ring *ring ; struct rtl_tx_desc *pdesc ; unsigned long flags ; u8 idx ; raw_spinlock_t *tmp ; __u32 tmp___0 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; idx = 0U; ring = (struct rtl8192_tx_ring *)(& rtlpci->tx_ring) + 5UL; tmp = spinlock_check(& rtlpriv->locks.irq_th_lock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); idx = (u8 )((ring->idx + tmp___0) % ring->entries); pdesc = ring->desc + (unsigned long )idx; (*(((rtlpriv->cfg)->ops)->fill_tx_cmddesc))(hw, (u8 *)pdesc, 1, 1, skb); __skb_queue_tail(& ring->queue, skb); spin_unlock_irqrestore(& rtlpriv->locks.irq_th_lock, flags); } return (1); } } static bool _rtl92s_firmware_downloadcode(struct ieee80211_hw *hw , u8 *code_virtual_address , u32 buffer_len ) { struct rtl_priv *rtlpriv ; struct sk_buff *skb ; struct rtl_tcb_desc *tcb_desc ; unsigned char *seg_ptr ; u16 frag_threshold ; u16 frag_length ; u16 frag_offset ; u16 extra_descoffset ; u8 last_inipkt ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; frag_threshold = 65280U; frag_offset = 0U; extra_descoffset = 0U; last_inipkt = 0U; _rtl92s_fw_set_rqpn(hw); } if (buffer_len > 65279U) { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Size over FIRMWARE_CODE_SIZE!\n", "_rtl92s_firmware_downloadcode", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0); } else { } extra_descoffset = 0U; ldv_50673: ; if (buffer_len - (u32 )frag_offset > (u32 )frag_threshold) { frag_length = (int )frag_threshold + (int )extra_descoffset; } else { frag_length = ((int )((unsigned short )buffer_len) - (int )frag_offset) + (int )extra_descoffset; last_inipkt = 1U; } { skb = dev_alloc_skb((unsigned int )frag_length); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (0); } else { } { skb_reserve(skb, (int )extra_descoffset); seg_ptr = skb_put(skb, (unsigned int )((int )frag_length - (int )extra_descoffset)); memcpy((void *)seg_ptr, (void const *)code_virtual_address + (unsigned long )frag_offset, (size_t )((unsigned int )((int )frag_length - (int )extra_descoffset))); tcb_desc = (struct rtl_tcb_desc *)(& skb->cb); tcb_desc->queue_index = 5U; tcb_desc->cmd_or_init = 0U; tcb_desc->last_inipkt = last_inipkt; _rtl92s_cmd_send_packet(hw, skb, (int )last_inipkt); frag_offset = (int )frag_offset + ((int )frag_length - (int )extra_descoffset); } if ((u32 )frag_offset < buffer_len) { goto ldv_50673; } else { } { rtl_write_byte(rtlpriv, 1280U, 32); } return (1); } } static bool _rtl92s_firmware_checkready(struct ieee80211_hw *hw , u8 loadfw_status ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rt_firmware *firmware ; u32 tmpu4b ; u8 cpustatus ; short pollingcnt ; bool rtstatus ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; short tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; short tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; int tmp___13 ; int tmp___14 ; long tmp___15 ; long tmp___16 ; short tmp___17 ; int tmp___18 ; int tmp___19 ; long tmp___20 ; long tmp___21 ; int tmp___22 ; int tmp___23 ; long tmp___24 ; long tmp___25 ; short tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; int tmp___31 ; int tmp___32 ; long tmp___33 ; long tmp___34 ; int tmp___35 ; int tmp___36 ; long tmp___37 ; long tmp___38 ; int tmp___39 ; int tmp___40 ; long tmp___41 ; long tmp___42 ; int tmp___43 ; int tmp___44 ; long tmp___45 ; long tmp___46 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; firmware = (struct rt_firmware *)rtlhal->pfirmware; cpustatus = 0U; pollingcnt = 1000; rtstatus = 1; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> LoadStaus(%d)\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )loadfw_status); } } else { } } else { } firmware->fwstatus = (enum fw_status )loadfw_status; { if ((int )loadfw_status == 1) { goto case_1; } else { } if ((int )loadfw_status == 2) { goto case_2; } else { } if ((int )loadfw_status == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; ldv_50689: { cpustatus = rtl_read_byte(rtlpriv, 68U); } if ((int )cpustatus & 1) { goto ldv_50688; } else { } { __const_udelay(21475UL); tmp___3 = pollingcnt; pollingcnt = (short )((int )pollingcnt - 1); } if ((int )tmp___3 != 0) { goto ldv_50689; } else { } ldv_50688: ; if (((unsigned long )cpustatus & 2UL) == 0UL || (int )pollingcnt <= 0) { { tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_STATUS_LOAD_IMEM FAIL CPU, Status=%x\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (int )cpustatus); } } else { } } else { } goto status_check_fail; } else { } goto ldv_50691; case_2: /* CIL Label */ ; ldv_50694: { cpustatus = rtl_read_byte(rtlpriv, 68U); } if (((unsigned long )cpustatus & 4UL) != 0UL) { goto ldv_50693; } else { } { __const_udelay(21475UL); tmp___8 = pollingcnt; pollingcnt = (short )((int )pollingcnt - 1); } if ((int )tmp___8 != 0) { goto ldv_50694; } else { } ldv_50693: ; if (((unsigned long )cpustatus & 8UL) == 0UL || (int )pollingcnt <= 0) { { tmp___11 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___11 != 0L) { { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___12 != 0L) { { tmp___9 = preempt_count(); tmp___10 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_STATUS_LOAD_EMEM FAIL CPU, Status=%x\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL, (int )cpustatus); } } else { } } else { } goto status_check_fail; } else { } { rtstatus = _rtl92s_firmware_enable_cpu(hw); } if (! rtstatus) { { tmp___15 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___15 != 0L) { { tmp___16 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___16 != 0L) { { tmp___13 = preempt_count(); tmp___14 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Enable CPU fail!\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___14 & 2096896UL, ((unsigned long )tmp___13 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto status_check_fail; } else { } goto ldv_50691; case_3: /* CIL Label */ ; ldv_50697: { cpustatus = rtl_read_byte(rtlpriv, 68U); } if (((unsigned long )cpustatus & 16UL) != 0UL) { goto ldv_50696; } else { } { __const_udelay(21475UL); tmp___17 = pollingcnt; pollingcnt = (short )((int )pollingcnt - 1); } if ((int )tmp___17 != 0) { goto ldv_50697; } else { } ldv_50696: ; if (((unsigned long )cpustatus & 16UL) == 0UL || (int )pollingcnt <= 0) { { tmp___20 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___20 != 0L) { { tmp___21 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___21 != 0L) { { tmp___18 = preempt_count(); tmp___19 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Polling DMEM code done fail ! cpustatus(%#x)\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___19 & 2096896UL, ((unsigned long )tmp___18 & 0xffffffffffdfffffUL) != 0UL, (int )cpustatus); } } else { } } else { } goto status_check_fail; } else { } { tmp___24 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___24 != 0L) { { tmp___25 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___25 != 0L) { { tmp___22 = preempt_count(); tmp___23 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> DMEM code download success, cpustatus(%#x)\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___23 & 2096896UL, ((unsigned long )tmp___22 & 0xffffffffffdfffffUL) != 0UL, (int )cpustatus); } } else { } } else { } pollingcnt = 2000; ldv_50699: { cpustatus = rtl_read_byte(rtlpriv, 68U); } if ((int )((signed char )cpustatus) < 0) { goto ldv_50698; } else { } { __const_udelay(171800UL); tmp___26 = pollingcnt; pollingcnt = (short )((int )pollingcnt - 1); } if ((int )tmp___26 != 0) { goto ldv_50699; } else { } ldv_50698: { tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___30 != 0L) { { tmp___27 = preempt_count(); tmp___28 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Polling Load Firmware ready, cpustatus(%x)\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL, (int )cpustatus); } } else { } } else { } if ((unsigned int )cpustatus != 255U || (int )pollingcnt <= 0) { { tmp___33 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___33 != 0L) { { tmp___34 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___34 != 0L) { { tmp___31 = preempt_count(); tmp___32 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Polling Load Firmware ready fail ! cpustatus(%x)\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___32 & 2096896UL, ((unsigned long )tmp___31 & 0xffffffffffdfffffUL) != 0UL, (int )cpustatus); } } else { } } else { } goto status_check_fail; } else { } { tmpu4b = rtl_read_dword(rtlpriv, 68U); rtl_write_dword(rtlpriv, 68U, tmpu4b & 4294443007U); tmpu4b = rtl_read_dword(rtlpriv, 72U); rtl_write_dword(rtlpriv, 72U, tmpu4b | 2147680256U); tmp___37 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___37 != 0L) { { tmp___38 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___38 != 0L) { { tmp___35 = preempt_count(); tmp___36 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Current RCR settings(%#x)\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___36 & 2096896UL, ((unsigned long )tmp___35 & 0xffffffffffdfffffUL) != 0UL, tmpu4b); } } else { } } else { } { rtl_write_byte(rtlpriv, 67U, 0); } goto ldv_50691; switch_default: /* CIL Label */ { tmp___41 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___41 != 0L) { { tmp___42 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___42 != 0L) { { tmp___39 = preempt_count(); tmp___40 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Unknown status check!\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___40 & 2096896UL, ((unsigned long )tmp___39 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtstatus = 0; goto ldv_50691; switch_break: /* CIL Label */ ; } ldv_50691: ; status_check_fail: { tmp___45 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___45 != 0L) { { tmp___46 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___46 != 0L) { { tmp___43 = preempt_count(); tmp___44 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> loadfw_status(%d), rtstatus(%x)\n", "_rtl92s_firmware_checkready", (unsigned long )tmp___44 & 2096896UL, ((unsigned long )tmp___43 & 0xffffffffffdfffffUL) != 0UL, (int )loadfw_status, (int )rtstatus); } } else { } } else { } return (rtstatus); } } int rtl92s_download_fw(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rt_firmware *firmware ; struct fw_hdr *pfwheader ; struct fw_priv *pfw_priv ; u8 *puc_mappedfile ; u32 ul_filelength ; u8 fwhdr_size ; u8 fwstatus ; bool rtstatus ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; enum fw_status tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; enum fw_status tmp___24 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; firmware = (struct rt_firmware *)0; pfw_priv = (struct fw_priv *)0; puc_mappedfile = (u8 *)0U; ul_filelength = 0U; fwhdr_size = 80U; fwstatus = 0U; rtstatus = 1; if (rtlpriv->max_fw_size == 0 || (unsigned long )rtlhal->pfirmware == (unsigned long )((u8 *)0U)) { return (1); } else { } { firmware = (struct rt_firmware *)rtlhal->pfirmware; firmware->fwstatus = 0; puc_mappedfile = (u8 *)(& firmware->sz_fw_tmpbuffer); firmware->pfwheader = (struct fw_hdr *)puc_mappedfile; pfwheader = firmware->pfwheader; firmware->firmwareversion = (unsigned int )pfwheader->version & 255U; (firmware->pfwheader)->fwpriv.hci_sel = 1U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> signature:%x, version:%x, size:%x, imemsize:%x, sram size:%x\n", "rtl92s_download_fw", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )pfwheader->signature, (int )pfwheader->version, pfwheader->dmem_size, pfwheader->img_imem_size, pfwheader->img_sram_size); } } else { } } else { } if (pfwheader->img_imem_size - 1U > 63999U) { { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> memory for data image is less than IMEM required\n", "rtl92s_download_fw", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto fail; } else { { puc_mappedfile = puc_mappedfile + (unsigned long )fwhdr_size; memcpy((void *)(& firmware->fw_imem), (void const *)puc_mappedfile, (size_t )pfwheader->img_imem_size); firmware->fw_imem_len = pfwheader->img_imem_size; } } if (pfwheader->img_sram_size > 64000U) { { tmp___9 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> memory for data image is less than EMEM required\n", "rtl92s_download_fw", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto fail; } else { { puc_mappedfile = puc_mappedfile + (unsigned long )firmware->fw_imem_len; memcpy((void *)(& firmware->fw_emem), (void const *)puc_mappedfile, (size_t )pfwheader->img_sram_size); firmware->fw_emem_len = pfwheader->img_sram_size; } } { tmp___11 = _rtl92s_firmware_get_nextstatus(firmware->fwstatus); fwstatus = (u8 )tmp___11; } goto ldv_50722; ldv_50721: ; { if ((int )fwstatus == 1) { goto case_1; } else { } if ((int )fwstatus == 2) { goto case_2; } else { } if ((int )fwstatus == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ puc_mappedfile = (u8 *)(& firmware->fw_imem); ul_filelength = firmware->fw_imem_len; goto ldv_50717; case_2: /* CIL Label */ puc_mappedfile = (u8 *)(& firmware->fw_emem); ul_filelength = firmware->fw_emem_len; goto ldv_50717; case_3: /* CIL Label */ { pfwheader = firmware->pfwheader; pfw_priv = & pfwheader->fwpriv; _rtl92s_firmwareheader_priveupdate(hw, pfw_priv); puc_mappedfile = (u8 *)firmware->pfwheader + 32UL; ul_filelength = (u32 )((int )fwhdr_size + -32); } goto ldv_50717; switch_default: /* CIL Label */ { tmp___14 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Unexpected Download step!!\n", "rtl92s_download_fw", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto fail; switch_break: /* CIL Label */ ; } ldv_50717: { rtstatus = _rtl92s_firmware_downloadcode(hw, puc_mappedfile, ul_filelength); } if (! rtstatus) { { tmp___18 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> fail!\n", "rtl92s_download_fw", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto fail; } else { } { rtstatus = _rtl92s_firmware_checkready(hw, (int )fwstatus); } if (! rtstatus) { { tmp___22 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> fail!\n", "rtl92s_download_fw", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto fail; } else { } { tmp___24 = _rtl92s_firmware_get_nextstatus(firmware->fwstatus); fwstatus = (u8 )tmp___24; } ldv_50722: ; if ((unsigned int )fwstatus != 4U) { goto ldv_50721; } else { } return ((int )rtstatus); fail: ; return (0); } } static u32 _rtl92s_fill_h2c_cmd(struct sk_buff *skb , u32 h2cbufferlen , u32 cmd_num , u32 *pelement_id , u32 *pcmd_len , u8 **pcmb_buffer , u8 *cmd_start_seq ) { u32 totallen ; u32 len ; u32 tx_desclen ; u32 pre_continueoffset ; u8 *ph2c_buffer ; u8 i ; unsigned char *tmp ; { totallen = 0U; len = 0U; tx_desclen = 0U; pre_continueoffset = 0U; i = 0U; ldv_50740: len = ((*(pcmd_len + (unsigned long )i) + 7U) / 8U + 1U) * 8U; if (h2cbufferlen < (totallen + len) + tx_desclen) { goto ldv_50739; } else { } { tmp = skb_put(skb, len); ph2c_buffer = tmp; memset((void *)(ph2c_buffer + ((unsigned long )totallen + (unsigned long )tx_desclen)), 0, (size_t )len); *((u32 *)(ph2c_buffer + ((unsigned long )totallen + (unsigned long )tx_desclen))) = (*((__le32 *)(ph2c_buffer + ((unsigned long )totallen + (unsigned long )tx_desclen))) & 4294901760U) | (*(pcmd_len + (unsigned long )i) & 65535U); *((u32 *)(ph2c_buffer + ((unsigned long )totallen + (unsigned long )tx_desclen))) = (*((__le32 *)(ph2c_buffer + ((unsigned long )totallen + (unsigned long )tx_desclen))) & 4278255615U) | ((*(pelement_id + (unsigned long )i) & 255U) << 16); *cmd_start_seq = (unsigned int )*cmd_start_seq & 127U; *((u32 *)(ph2c_buffer + ((unsigned long )totallen + (unsigned long )tx_desclen))) = (*((__le32 *)(ph2c_buffer + ((unsigned long )totallen + (unsigned long )tx_desclen))) & 2164260863U) | (((unsigned int )*cmd_start_seq & 127U) << 24); *cmd_start_seq = (u8 )((int )*cmd_start_seq + 1); memcpy((void *)(ph2c_buffer + (((unsigned long )totallen + (unsigned long )tx_desclen) + 8UL)), (void const *)*(pcmb_buffer + (unsigned long )i), (size_t )*(pcmd_len + (unsigned long )i)); } if ((u32 )i < cmd_num - 1U) { *((u32 *)ph2c_buffer + (unsigned long )pre_continueoffset) = *((__le32 *)ph2c_buffer + (unsigned long )pre_continueoffset) | 2147483648U; } else { } pre_continueoffset = totallen; totallen = totallen + len; i = (u8 )((int )i + 1); if ((u32 )i < cmd_num) { goto ldv_50740; } else { } ldv_50739: ; return (totallen); } } static u32 _rtl92s_get_h2c_cmdlen(u32 h2cbufferlen , u32 cmd_num , u32 *pcmd_len ) { u32 totallen ; u32 len ; u32 tx_desclen ; u8 i ; { totallen = 0U; len = 0U; tx_desclen = 0U; i = 0U; ldv_50751: len = ((*(pcmd_len + (unsigned long )i) + 7U) / 8U + 1U) * 8U; if (h2cbufferlen < (totallen + len) + tx_desclen) { goto ldv_50750; } else { } totallen = totallen + len; i = (u8 )((int )i + 1); if ((u32 )i < cmd_num) { goto ldv_50751; } else { } ldv_50750: ; return (totallen + tx_desclen); } } static bool _rtl92s_firmware_set_h2c_cmd(struct ieee80211_hw *hw , u8 h2c_cmd , u8 *pcmd_buffer ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_tcb_desc *cb_desc ; struct sk_buff *skb ; u32 element_id ; u32 cmd_len ; u32 len ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; element_id = 0U; cmd_len = 0U; { if ((int )h2c_cmd == 0) { goto case_0; } else { } if ((int )h2c_cmd == 1) { goto case_1; } else { } if ((int )h2c_cmd == 2) { goto case_2; } else { } if ((int )h2c_cmd == 3) { goto case_3; } else { } if ((int )h2c_cmd == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ element_id = 36U; cmd_len = 14U; goto ldv_50765; case_1: /* CIL Label */ element_id = 37U; cmd_len = 12U; goto ldv_50765; case_2: /* CIL Label */ element_id = 46U; cmd_len = 66U; goto ldv_50765; case_3: /* CIL Label */ element_id = 50U; cmd_len = 8U; goto ldv_50765; case_4: /* CIL Label */ element_id = 47U; cmd_len = 1U; goto ldv_50765; switch_default: /* CIL Label */ ; goto ldv_50765; switch_break: /* CIL Label */ ; } ldv_50765: { len = _rtl92s_get_h2c_cmdlen(3200U, 1U, & cmd_len); skb = dev_alloc_skb(len); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (0); } else { } { cb_desc = (struct rtl_tcb_desc *)(& skb->cb); cb_desc->queue_index = 5U; cb_desc->cmd_or_init = 1U; cb_desc->last_inipkt = 0U; _rtl92s_fill_h2c_cmd(skb, 3200U, 1U, & element_id, & cmd_len, & pcmd_buffer, & rtlhal->h2c_txcmd_seq); _rtl92s_cmd_send_packet(hw, skb, 0); (*(((rtlpriv->cfg)->ops)->tx_polling))(hw, 5); } return (1); } } void rtl92s_set_fw_pwrmode_cmd(struct ieee80211_hw *hw , u8 Mode ) { struct rtl_mac *mac ; struct rtl_ps_ctl *ppsc ; struct h2c_set_pwrmode_parm pwrmode ; u16 max_wakeup_period ; { mac = & ((struct rtl_priv *)hw->priv)->mac80211; ppsc = & ((struct rtl_priv *)hw->priv)->psc; max_wakeup_period = 0U; pwrmode.mode = Mode; pwrmode.flag_low_traffic_en = 0U; pwrmode.flag_lpnav_en = 0U; pwrmode.flag_rf_low_snr_en = 0U; pwrmode.flag_dps_en = 0U; pwrmode.bcn_rx_en = 0U; pwrmode.bcn_to = 0U; *((u16 *)(& pwrmode) + 8U) = (mac->vif)->bss_conf.beacon_int; pwrmode.app_itv = 0U; pwrmode.awake_bcn_itvl = ppsc->reg_max_lps_awakeintvl; pwrmode.smart_ps = 1U; pwrmode.bcn_pass_period = 10U; if ((unsigned int )pwrmode.mode == 1U) { max_wakeup_period = (mac->vif)->bss_conf.beacon_int; } else if ((unsigned int )pwrmode.mode == 2U) { max_wakeup_period = (int )(mac->vif)->bss_conf.beacon_int * (int )((u16 )(mac->vif)->bss_conf.dtim_period); } else { } if ((unsigned int )max_wakeup_period > 499U) { pwrmode.bcn_pass_cnt = 1U; } else if ((unsigned int )max_wakeup_period - 300U <= 199U) { pwrmode.bcn_pass_cnt = 2U; } else if ((unsigned int )max_wakeup_period - 200U <= 99U) { pwrmode.bcn_pass_cnt = 3U; } else if ((unsigned int )max_wakeup_period - 20U <= 179U) { pwrmode.bcn_pass_cnt = 5U; } else { pwrmode.bcn_pass_cnt = 1U; } { _rtl92s_firmware_set_h2c_cmd(hw, 0, (u8 *)(& pwrmode)); } return; } } void rtl92s_set_fw_joinbss_report_cmd(struct ieee80211_hw *hw , u8 mstatus , u8 ps_qosinfo ) { struct rtl_mac *mac ; struct h2c_joinbss_rpt_parm joinbss_rpt ; { { mac = & ((struct rtl_priv *)hw->priv)->mac80211; joinbss_rpt.opmode = mstatus; joinbss_rpt.ps_qos_info = ps_qosinfo; joinbss_rpt.bssid[0] = mac->bssid[0]; joinbss_rpt.bssid[1] = mac->bssid[1]; joinbss_rpt.bssid[2] = mac->bssid[2]; joinbss_rpt.bssid[3] = mac->bssid[3]; joinbss_rpt.bssid[4] = mac->bssid[4]; joinbss_rpt.bssid[5] = mac->bssid[5]; *((u16 *)(& joinbss_rpt) + 8U) = (mac->vif)->bss_conf.beacon_int; *((u16 *)(& joinbss_rpt) + 10U) = mac->assoc_id; _rtl92s_firmware_set_h2c_cmd(hw, 1, (u8 *)(& joinbss_rpt)); } return; } } extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3190; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3190; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3190; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3190; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_3190: ; return (pfo_ret__); } } extern void synchronize_irq(unsigned int ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static u8 get_rf_type(struct rtl_phy *rtlphy ) { { return (rtlphy->rf_type); } } extern u8 efuse_read_1byte(struct ieee80211_hw * , u16 ) ; extern void rtl_efuse_shadow_map_update(struct ieee80211_hw * ) ; extern void rtl_cam_reset_all_entry(struct ieee80211_hw * ) ; extern u8 rtl_cam_add_one_entry(struct ieee80211_hw * , u8 * , u32 , u32 , u32 , u32 , u8 * ) ; extern int rtl_cam_delete_one_entry(struct ieee80211_hw * , u8 * , u32 ) ; extern void rtl_cam_mark_invalid(struct ieee80211_hw * , u8 ) ; extern void rtl_cam_empty_entry(struct ieee80211_hw * , u8 ) ; extern u8 rtl_cam_get_free_entry(struct ieee80211_hw * , u8 * ) ; extern void rtl_cam_del_entry(struct ieee80211_hw * , u8 * ) ; u32 rtl92s_phy_query_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) ; bool rtl92s_phy_mac_config(struct ieee80211_hw *hw ) ; void rtl92s_phy_switch_ephy_parameter(struct ieee80211_hw *hw ) ; bool rtl92s_phy_bb_config(struct ieee80211_hw *hw ) ; bool rtl92s_phy_rf_config(struct ieee80211_hw *hw ) ; void rtl92s_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw ) ; void rtl92s_phy_set_beacon_hwreg(struct ieee80211_hw *hw , u16 beaconinterval ) ; void rtl92se_sw_led_on(struct ieee80211_hw *hw , struct rtl_led *pled ) ; void rtl92se_sw_led_off(struct ieee80211_hw *hw , struct rtl_led *pled ) ; void rtl92se_get_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) ; void rtl92se_read_eeprom_info(struct ieee80211_hw *hw ) ; void rtl92se_interrupt_recognized(struct ieee80211_hw *hw , u32 *p_inta , u32 *p_intb ) ; int rtl92se_hw_init(struct ieee80211_hw *hw ) ; void rtl92se_card_disable(struct ieee80211_hw *hw ) ; void rtl92se_enable_interrupt(struct ieee80211_hw *hw ) ; void rtl92se_disable_interrupt(struct ieee80211_hw *hw ) ; int rtl92se_set_network_type(struct ieee80211_hw *hw , enum nl80211_iftype type ) ; void rtl92se_set_check_bssid(struct ieee80211_hw *hw , bool check_bssid ) ; void rtl92se_set_mac_addr(struct rtl_io *io , u8 const *addr ) ; void rtl92se_set_qos(struct ieee80211_hw *hw , int aci ) ; void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw ) ; void rtl92se_set_beacon_interval(struct ieee80211_hw *hw ) ; void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw , u32 add_msr , u32 rm_msr ) ; void rtl92se_set_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) ; void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi_level ) ; void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw ) ; bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw , u8 *valid ) ; void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw ) ; void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw ) ; void rtl92se_set_key(struct ieee80211_hw *hw , u32 key_index , u8 *p_macaddr , bool is_group , u8 enc_algo , bool is_wepkey , bool clear_all ) ; void rtl92se_suspend(struct ieee80211_hw *hw ) ; void rtl92se_resume(struct ieee80211_hw *hw ) ; void rtl92se_allow_all_destaddr(struct ieee80211_hw *hw , bool allow_all_da , bool write_into_reg ) ; void rtl92se_get_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_pci *rtlpci ; u64 tsf ; u32 *ptsf_low ; u32 *ptsf_high ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; { if ((int )variable == 43) { goto case_43; } else { } if ((int )variable == 39) { goto case_39; } else { } if ((int )variable == 63) { goto case_63; } else { } if ((int )variable == 81) { goto case_81; } else { } if ((int )variable == 90) { goto case_90; } else { } goto switch_default; case_43: /* CIL Label */ *((u32 *)val) = rtlpci->receive_config; goto ldv_50992; case_39: /* CIL Label */ *((enum rf_pwrstate *)val) = ppsc->rfpwr_state; goto ldv_50992; case_63: /* CIL Label */ *((bool *)val) = ppsc->fw_current_inpsmode; goto ldv_50992; case_81: /* CIL Label */ { ptsf_low = (u32 *)(& tsf); ptsf_high = (u32 *)(& tsf) + 1UL; *ptsf_high = rtl_read_dword(rtlpriv, 132U); *ptsf_low = rtl_read_dword(rtlpriv, 128U); *((u64 *)val) = tsf; } goto ldv_50992; case_90: /* CIL Label */ *((bool *)val) = rtlpriv->dm.current_mrc_switch; goto ldv_50992; switch_default: /* CIL Label */ { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> switch case not processed\n", "rtl92se_get_hw_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_50992; switch_break: /* CIL Label */ ; } ldv_50992: ; return; } } void rtl92se_set_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_mac *mac ; struct rtl_hal *rtlhal ; struct rtl_efuse *rtlefuse ; struct rtl_ps_ctl *ppsc ; u16 rate_cfg ; u8 rate_index ; u8 e_aci ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u8 reg_tmp ; u8 short_preamble ; u8 min_spacing_to_set ; u8 sec_min_space ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u8 density_to_set ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; u8 factor_toset ; u8 regtoset ; u8 factorlevel[18U] ; u8 index ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; u8 e_aci___0 ; u8 e_aci___1 ; union aci_aifsn *p_aci_aifsn ; u8 acm ; u8 acm_ctrl ; u8 tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; u8 retry_limit ; bool bmrc_toset ; u8 u1bdata ; u32 tmp___28 ; u32 tmp___29 ; u32 tmp___30 ; u32 tmp___31 ; bool enter_fwlps ; u8 rpwm_val ; u8 fw_pwrmode ; bool fw_current_inps ; int tmp___32 ; int tmp___33 ; long tmp___34 ; long tmp___35 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; ppsc = & ((struct rtl_priv *)hw->priv)->psc; { if ((int )variable == 0) { goto case_0; } else { } if ((int )variable == 2) { goto case_2; } else { } if ((int )variable == 3) { goto case_3; } else { } if ((int )variable == 14) { goto case_14; } else { } if ((int )variable == 17) { goto case_17; } else { } if ((int )variable == 18) { goto case_18; } else { } if ((int )variable == 27) { goto case_27; } else { } if ((int )variable == 28) { goto case_28; } else { } if ((int )variable == 29) { goto case_29; } else { } if ((int )variable == 31) { goto case_31; } else { } if ((int )variable == 32) { goto case_32; } else { } if ((int )variable == 43) { goto case_43; } else { } if ((int )variable == 52) { goto case_52; } else { } if ((int )variable == 84) { goto case_84; } else { } if ((int )variable == 56) { goto case_56; } else { } if ((int )variable == 55) { goto case_55; } else { } if ((int )variable == 69) { goto case_69; } else { } if ((int )variable == 26) { goto case_26; } else { } if ((int )variable == 59) { goto case_59; } else { } if ((int )variable == 60) { goto case_60; } else { } if ((int )variable == 63) { goto case_63; } else { } if ((int )variable == 61) { goto case_61; } else { } if ((int )variable == 79) { goto case_79; } else { } if ((int )variable == 81) { goto case_81; } else { } if ((int )variable == 90) { goto case_90; } else { } if ((int )variable == 65) { goto case_65; } else { } goto switch_default___1; case_0: /* CIL Label */ { rtl_write_dword(rtlpriv, 80U, *((u32 *)val)); rtl_write_word(rtlpriv, 84U, (int )*((u16 *)val + 4U)); } goto ldv_51014; case_2: /* CIL Label */ rate_cfg = *((u16 *)val); rate_index = 0U; if (rtlhal->version == 0U) { rate_cfg = (unsigned int )rate_cfg & 336U; } else { rate_cfg = (unsigned int )rate_cfg & 351U; } { rate_cfg = (u16 )((unsigned int )rate_cfg | 1U); rtl_write_byte(rtlpriv, 385U, (int )((u8 )rate_cfg)); rtl_write_byte(rtlpriv, 386U, (int )((u8 )((int )rate_cfg >> 8))); } goto ldv_51019; ldv_51018: rate_cfg = (u16 )((int )rate_cfg >> 1); rate_index = (u8 )((int )rate_index + 1); ldv_51019: ; if ((unsigned int )rate_cfg > 1U) { goto ldv_51018; } else { } { rtl_write_byte(rtlpriv, 384U, (int )rate_index); } goto ldv_51014; case_3: /* CIL Label */ { rtl_write_dword(rtlpriv, 88U, *((u32 *)val)); rtl_write_word(rtlpriv, 92U, (int )*((u16 *)val + 4U)); } goto ldv_51014; case_14: /* CIL Label */ { rtl_write_byte(rtlpriv, 142U, (int )*val); rtl_write_byte(rtlpriv, 143U, (int )*(val + 1UL)); } goto ldv_51014; case_17: /* CIL Label */ { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> HW_VAR_SLOT_TIME %x\n", "rtl92se_set_hw_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )*val); } } else { } } else { } { rtl_write_byte(rtlpriv, 137U, (int )*val); e_aci = 0U; } goto ldv_51027; ldv_51026: { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 31, & e_aci); e_aci = (u8 )((int )e_aci + 1); } ldv_51027: ; if ((unsigned int )e_aci <= 3U) { goto ldv_51026; } else { } goto ldv_51014; case_18: /* CIL Label */ short_preamble = (unsigned int )*val != 0U; reg_tmp = (int )mac->cur_40_prime_sc << 5U; if ((unsigned int )short_preamble != 0U) { reg_tmp = (u8 )((unsigned int )reg_tmp | 128U); } else { } { rtl_write_byte(rtlpriv, 387U, (int )reg_tmp); } goto ldv_51014; case_27: /* CIL Label */ min_spacing_to_set = *val; if ((unsigned int )min_spacing_to_set <= 7U) { if ((unsigned int )rtlpriv->sec.pairwise_enc_algorithm == 0U) { sec_min_space = 0U; } else { sec_min_space = 1U; } if ((int )min_spacing_to_set < (int )sec_min_space) { min_spacing_to_set = sec_min_space; } else { } if ((unsigned int )min_spacing_to_set > 5U) { min_spacing_to_set = 5U; } else { } { mac->min_space_cfg = (u8 )(((int )((signed char )mac->min_space_cfg) & -8) | (int )((signed char )min_spacing_to_set)); *val = min_spacing_to_set; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", "rtl92se_set_hw_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )mac->min_space_cfg); } } else { } } else { } { rtl_write_byte(rtlpriv, 567U, (int )mac->min_space_cfg); } } else { } goto ldv_51014; case_28: /* CIL Label */ { density_to_set = *val; mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg; mac->min_space_cfg = (u8 )((int )((signed char )mac->min_space_cfg) | (int )((signed char )((int )density_to_set << 3))); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set HW_VAR_SHORTGI_DENSITY: %#x\n", "rtl92se_set_hw_reg", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )mac->min_space_cfg); } } else { } } else { } { rtl_write_byte(rtlpriv, 567U, (int )mac->min_space_cfg); } goto ldv_51014; case_29: /* CIL Label */ factorlevel[0] = 2U; factorlevel[1] = 4U; factorlevel[2] = 4U; factorlevel[3] = 7U; factorlevel[4] = 7U; factorlevel[5] = 13U; factorlevel[6] = 13U; factorlevel[7] = 13U; factorlevel[8] = 2U; factorlevel[9] = 7U; factorlevel[10] = 7U; factorlevel[11] = 13U; factorlevel[12] = 13U; factorlevel[13] = 15U; factorlevel[14] = 15U; factorlevel[15] = 15U; factorlevel[16] = 15U; factorlevel[17] = 0U; index = 0U; factor_toset = *val; if ((unsigned int )factor_toset <= 3U) { factor_toset = (u8 )(1 << ((int )factor_toset + 2)); if ((unsigned int )factor_toset > 15U) { factor_toset = 15U; } else { } index = 0U; goto ldv_51043; ldv_51042: ; if ((int )factorlevel[(int )index] > (int )factor_toset) { factorlevel[(int )index] = factor_toset; } else { } index = (u8 )((int )index + 1); ldv_51043: ; if ((unsigned int )index <= 16U) { goto ldv_51042; } else { } index = 0U; goto ldv_51046; ldv_51045: { regtoset = (u8 )((int )((signed char )factorlevel[(int )index * 2]) | (int )((signed char )((int )factorlevel[(int )index * 2 + 1] << 4))); rtl_write_byte(rtlpriv, (u32 )((int )index + 424), (int )regtoset); index = (u8 )((int )index + 1); } ldv_51046: ; if ((unsigned int )index <= 7U) { goto ldv_51045; } else { } { regtoset = (u8 )((int )((signed char )factorlevel[16]) | (int )((signed char )((int )factorlevel[17] << 4))); rtl_write_byte(rtlpriv, 423U, (int )regtoset); tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set HW_VAR_AMPDU_FACTOR: %#x\n", "rtl92se_set_hw_reg", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, (int )factor_toset); } } else { } } else { } } else { } goto ldv_51014; case_31: /* CIL Label */ { e_aci___0 = *val; rtl92s_dm_init_edca_turbo(hw); } if ((unsigned int )rtlpci->acm_method != 2U) { { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 32, & e_aci___0); } } else { } goto ldv_51014; case_32: /* CIL Label */ { e_aci___1 = *val; p_aci_aifsn = (union aci_aifsn *)(& mac->ac[0].aifs); acm = p_aci_aifsn->f.acm; tmp___15 = rtl_read_byte(rtlpriv, 487U); acm_ctrl = tmp___15; acm_ctrl = (u8 )((int )((signed char )acm_ctrl) | ((unsigned int )rtlpci->acm_method != 2U)); } if ((unsigned int )acm != 0U) { { if ((int )e_aci___1 == 0) { goto case_0___0; } else { } if ((int )e_aci___1 == 2) { goto case_2___0; } else { } if ((int )e_aci___1 == 3) { goto case_3___0; } else { } goto switch_default; case_0___0: /* CIL Label */ acm_ctrl = (u8 )((unsigned int )acm_ctrl | 2U); goto ldv_51056; case_2___0: /* CIL Label */ acm_ctrl = (u8 )((unsigned int )acm_ctrl | 4U); goto ldv_51056; case_3___0: /* CIL Label */ acm_ctrl = (u8 )((unsigned int )acm_ctrl | 8U); goto ldv_51056; switch_default: /* CIL Label */ { tmp___18 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", "rtl92se_set_hw_reg", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (int )acm); } } else { } } else { } goto ldv_51056; switch_break___0: /* CIL Label */ ; } ldv_51056: ; } else { { if ((int )e_aci___1 == 0) { goto case_0___1; } else { } if ((int )e_aci___1 == 2) { goto case_2___1; } else { } if ((int )e_aci___1 == 3) { goto case_3___1; } else { } goto switch_default___0; case_0___1: /* CIL Label */ acm_ctrl = (unsigned int )acm_ctrl & 253U; goto ldv_51061; case_2___1: /* CIL Label */ acm_ctrl = (unsigned int )acm_ctrl & 251U; goto ldv_51061; case_3___1: /* CIL Label */ acm_ctrl = (unsigned int )acm_ctrl & 253U; goto ldv_51061; switch_default___0: /* CIL Label */ { tmp___22 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> switch case not processed\n", "rtl92se_set_hw_reg", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51061; switch_break___1: /* CIL Label */ ; } ldv_51061: ; } { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 33554432ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> HW_VAR_ACM_CTRL Write 0x%X\n", "rtl92se_set_hw_reg", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (int )acm_ctrl); } } else { } } else { } { rtl_write_byte(rtlpriv, 487U, (int )acm_ctrl); } goto ldv_51014; case_43: /* CIL Label */ { rtl_write_dword(rtlpriv, 72U, *((u32 *)val)); rtlpci->receive_config = *((u32 *)val); } goto ldv_51014; case_52: /* CIL Label */ { retry_limit = *val; rtl_write_word(rtlpriv, 500U, (int )((u16 )((int )((short )((int )retry_limit << 8)) | (int )((short )retry_limit)))); } goto ldv_51014; case_84: /* CIL Label */ ; goto ldv_51014; case_56: /* CIL Label */ rtlefuse->efuse_usedbytes = *((u16 *)val); goto ldv_51014; case_55: /* CIL Label */ rtlefuse->efuse_usedpercentage = *val; goto ldv_51014; case_69: /* CIL Label */ ; goto ldv_51014; case_26: /* CIL Label */ { rtl_write_byte(rtlpriv, 592U, (int )*val); } goto ldv_51014; case_59: /* CIL Label */ ; goto ldv_51014; case_60: /* CIL Label */ ; goto ldv_51014; case_63: /* CIL Label */ ppsc->fw_current_inpsmode = *((bool *)val); goto ldv_51014; case_61: /* CIL Label */ ; goto ldv_51014; case_79: /* CIL Label */ ; goto ldv_51014; case_81: /* CIL Label */ ; goto ldv_51014; case_90: /* CIL Label */ bmrc_toset = *((bool *)val); u1bdata = 0U; if ((int )bmrc_toset) { { rtl_set_bbreg(hw, 3076U, 255U, 51U); tmp___28 = rtl_get_bbreg(hw, 3332U, 255U); u1bdata = (unsigned char )tmp___28; rtl_set_bbreg(hw, 3332U, 255U, (u32 )(((int )u1bdata & 240) | 3)); tmp___29 = rtl_get_bbreg(hw, 3076U, 65280U); u1bdata = (unsigned char )tmp___29; rtl_set_bbreg(hw, 3076U, 65280U, (unsigned int )u1bdata | 4U); rtlpriv->dm.current_mrc_switch = bmrc_toset; } } else { { rtl_set_bbreg(hw, 3076U, 255U, 19U); tmp___30 = rtl_get_bbreg(hw, 3332U, 255U); u1bdata = (unsigned char )tmp___30; rtl_set_bbreg(hw, 3332U, 255U, (u32 )(((int )u1bdata & 240) | 1)); tmp___31 = rtl_get_bbreg(hw, 3076U, 65280U); u1bdata = (unsigned char )tmp___31; rtl_set_bbreg(hw, 3076U, 65280U, (u32 )u1bdata & 251U); rtlpriv->dm.current_mrc_switch = bmrc_toset; } } goto ldv_51014; case_65: /* CIL Label */ enter_fwlps = *((bool *)val); if ((int )enter_fwlps) { { rpwm_val = 2U; fw_current_inps = 1; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 63, (u8 *)(& fw_current_inps)); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 60, & ppsc->fwctrl_psmode); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 59, & rpwm_val); } } else { { rpwm_val = 12U; fw_pwrmode = 0U; fw_current_inps = 0; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 59, & rpwm_val); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 60, & fw_pwrmode); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 63, (u8 *)(& fw_current_inps)); } } goto ldv_51014; switch_default___1: /* CIL Label */ { tmp___34 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___34 != 0L) { { tmp___35 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___35 != 0L) { { tmp___32 = preempt_count(); tmp___33 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> switch case not processed\n", "rtl92se_set_hw_reg", (unsigned long )tmp___33 & 2096896UL, ((unsigned long )tmp___32 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51014; switch_break: /* CIL Label */ ; } ldv_51014: ; return; } } void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 sec_reg_value ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; sec_reg_value = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", "rtl92se_enable_hw_security_config", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlpriv->sec.pairwise_enc_algorithm, (unsigned int )rtlpriv->sec.group_enc_algorithm); } } else { } } else { } if ((int )((rtlpriv->cfg)->mod_params)->sw_crypto || (int )rtlpriv->sec.use_sw_sec) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> not open hw encryption\n", "rtl92se_enable_hw_security_config", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } sec_reg_value = 12U; if ((int )rtlpriv->sec.use_defaultkey) { sec_reg_value = (u8 )((unsigned int )sec_reg_value | 1U); sec_reg_value = (u8 )((unsigned int )sec_reg_value | 2U); } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> The SECR-value %x\n", "rtl92se_enable_hw_security_config", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )sec_reg_value); } } else { } } else { } { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 26, & sec_reg_value); } return; } } static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw , u8 data ) { struct rtl_priv *rtlpriv ; u8 waitcount ; bool bresult ; u8 tmpvalue ; { { rtlpriv = (struct rtl_priv *)hw->priv; waitcount = 100U; bresult = 0; rtl_write_byte(rtlpriv, 9U, (int )data); __const_udelay(1718000UL); tmpvalue = rtl_read_byte(rtlpriv, 9U); bresult = (((unsigned long )tmpvalue ^ (unsigned long )data) & 128UL) == 0UL; } if (((unsigned long )data & 192UL) == 0UL) { waitcount = 100U; tmpvalue = 0U; ldv_51103: { waitcount = (u8 )((int )waitcount - 1); tmpvalue = rtl_read_byte(rtlpriv, 9U); } if (((unsigned long )tmpvalue & 64UL) != 0UL) { goto ldv_51102; } else { } { printk("\vrtl8192se: wait for BIT(6) return value %x\n", (int )tmpvalue); } if ((unsigned int )waitcount == 0U) { goto ldv_51102; } else { } { __const_udelay(42950UL); } goto ldv_51103; ldv_51102: ; if ((unsigned int )waitcount == 0U) { bresult = 0; } else { bresult = 1; } } else { } return ((u8 )bresult); } } void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 u1tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtl_write_byte(rtlpriv, 753U, 8); u1tmp = rtl_read_byte(rtlpriv, 750U); u1tmp = (unsigned int )u1tmp & 247U; rtl_write_byte(rtlpriv, 750U, (int )u1tmp); } return; } } static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 u1tmp ; u8 retval ; unsigned long __ms ; unsigned long tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; retval = 0U; rtl_write_byte(rtlpriv, 753U, 8); u1tmp = rtl_read_byte(rtlpriv, 750U); u1tmp = (unsigned int )u1tmp & 247U; rtl_write_byte(rtlpriv, 750U, (int )u1tmp); __ms = 10UL; } goto ldv_51117; ldv_51116: { __const_udelay(4295000UL); } ldv_51117: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51116; } else { } { u1tmp = rtl_read_byte(rtlpriv, 748U); retval = ((unsigned long )u1tmp & 8UL) != 0UL ? 0U : 2U; } return (retval); } } static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_ps_ctl *ppsc ; u8 i ; u8 tmpu1b ; u16 tmpu2b ; u8 pollingcnt ; u8 tmp ; unsigned long __ms ; unsigned long tmp___0 ; unsigned long __ms___0 ; unsigned long tmp___1 ; unsigned long __ms___1 ; unsigned long tmp___2 ; unsigned long __ms___2 ; unsigned long tmp___3 ; unsigned long __ms___3 ; unsigned long tmp___4 ; u8 tmp___5 ; u8 tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; struct rtl_pci_priv *pcipriv ; struct rtl_led *pLed0 ; enum rf_pwrstate rfpwr_state_toset ; u8 tmp___11 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; ppsc = & ((struct rtl_priv *)hw->priv)->psc; pollingcnt = 20U; if ((int )rtlpci->first_init) { { tmpu1b = rtl_read_byte(rtlpriv, 3U); tmpu1b = (unsigned int )tmpu1b & 254U; rtl_write_byte(rtlpriv, 3U, (int )tmpu1b); __const_udelay(4295UL); rtl_write_byte(rtlpriv, 3U, (int )((unsigned int )tmpu1b | 1U)); } } else { } { tmpu1b = rtl_read_byte(rtlpriv, 9U); } if ((int )((signed char )tmpu1b) < 0) { { tmpu1b = (unsigned int )tmpu1b & 63U; tmp = _rtl92se_halset_sysclk(hw, (int )tmpu1b); } if ((unsigned int )tmp == 0U) { return; } else { } } else { } { rtl_write_byte(rtlpriv, 40U, 0); __const_udelay(214750UL); rtl_write_byte(rtlpriv, 32U, 52); __const_udelay(214750UL); rtl_write_byte(rtlpriv, 1377U, 0); tmpu1b = rtl_read_byte(rtlpriv, 3U); tmpu1b = (unsigned int )tmpu1b & 115U; rtl_write_byte(rtlpriv, 3U, (int )tmpu1b); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_51131; ldv_51130: { __const_udelay(4295000UL); } ldv_51131: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_51130; } else { } } { rtl_write_byte(rtlpriv, 64U, 0); rtl_write_byte(rtlpriv, 68U, 0); tmpu1b = rtl_read_byte(rtlpriv, 1378U); tmpu1b = (u8 )((unsigned int )tmpu1b | 8U); rtl_write_byte(rtlpriv, 1378U, (int )tmpu1b); tmpu1b = (unsigned int )tmpu1b & 247U; rtl_write_byte(rtlpriv, 1378U, (int )tmpu1b); tmpu1b = rtl_read_byte(rtlpriv, 38U); rtl_write_byte(rtlpriv, 38U, (int )((unsigned int )tmpu1b | 1U)); } if (1) { { __const_udelay(8590000UL); } } else { __ms___0 = 2UL; goto ldv_51135; ldv_51134: { __const_udelay(4295000UL); } ldv_51135: tmp___1 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___1 != 0UL) { goto ldv_51134; } else { } } { tmpu1b = rtl_read_byte(rtlpriv, 39U); rtl_write_byte(rtlpriv, 39U, (int )tmpu1b & 251); tmpu1b = rtl_read_byte(rtlpriv, 16U); rtl_write_byte(rtlpriv, 16U, (int )((unsigned int )tmpu1b | 1U)); } if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_51139; ldv_51138: { __const_udelay(4295000UL); } ldv_51139: tmp___2 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___2 != 0UL) { goto ldv_51138; } else { } } { tmpu1b = rtl_read_byte(rtlpriv, 16U); rtl_write_byte(rtlpriv, 16U, (int )((unsigned int )tmpu1b | 2U)); } if (1) { { __const_udelay(4295000UL); } } else { __ms___2 = 1UL; goto ldv_51143; ldv_51142: { __const_udelay(4295000UL); } ldv_51143: tmp___3 = __ms___2; __ms___2 = __ms___2 - 1UL; if (tmp___3 != 0UL) { goto ldv_51142; } else { } } { tmpu1b = rtl_read_byte(rtlpriv, 32U); rtl_write_byte(rtlpriv, 32U, (int )((unsigned int )tmpu1b | 1U)); tmpu2b = rtl_read_word(rtlpriv, 0U); rtl_write_word(rtlpriv, 0U, (int )((unsigned int )tmpu2b | 2048U)); tmpu2b = rtl_read_word(rtlpriv, 2U); rtl_write_word(rtlpriv, 2U, (int )((unsigned int )tmpu2b | 8192U)); rtl_write_byte(rtlpriv, 1U, 104); __const_udelay(859000UL); tmpu1b = rtl_read_byte(rtlpriv, 40U); rtl_write_byte(rtlpriv, 40U, (int )((unsigned int )tmpu1b | 17U)); __const_udelay(429500UL); rtl_write_byte(rtlpriv, 40U, (int )((unsigned int )tmpu1b | 81U)); __const_udelay(42950UL); rtl_write_byte(rtlpriv, 40U, (int )((unsigned int )tmpu1b | 17U)); __const_udelay(42950UL); tmpu1b = rtl_read_byte(rtlpriv, 41U); rtl_write_byte(rtlpriv, 41U, (int )((unsigned int )tmpu1b | 1U)); } if (1) { { __const_udelay(4295000UL); } } else { __ms___3 = 1UL; goto ldv_51147; ldv_51146: { __const_udelay(4295000UL); } ldv_51147: tmp___4 = __ms___3; __ms___3 = __ms___3 - 1UL; if (tmp___4 != 0UL) { goto ldv_51146; } else { } } { rtl_write_byte(rtlpriv, 0U, 166); tmpu2b = rtl_read_word(rtlpriv, 8U); rtl_write_word(rtlpriv, 8U, (int )((unsigned int )tmpu2b | 6144U)); tmpu2b = rtl_read_word(rtlpriv, 2U); rtl_write_word(rtlpriv, 2U, (int )((unsigned int )tmpu2b | 2048U)); tmpu1b = rtl_read_byte(rtlpriv, 3U); rtl_write_byte(rtlpriv, 3U, (int )tmpu1b & 127); rtl_write_word(rtlpriv, 2U, (int )((unsigned int )tmpu2b | 34816U)); tmpu2b = rtl_read_word(rtlpriv, 8U); rtl_write_word(rtlpriv, 8U, (int )tmpu2b & 65531); tmpu1b = rtl_read_byte(rtlpriv, 9U); tmpu1b = ((unsigned int )tmpu1b & 63U) | 128U; tmp___5 = _rtl92se_halset_sysclk(hw, (int )tmpu1b); } if ((unsigned int )tmp___5 == 0U) { return; } else { } { rtl_write_word(rtlpriv, 64U, 2044); rtl_write_byte(rtlpriv, 6U, 48); rtl_write_byte(rtlpriv, 73U, 240); rtl_write_byte(rtlpriv, 75U, 129); rtl_write_byte(rtlpriv, 181U, 33); rtl_write_byte(rtlpriv, 220U, 255); rtl_write_byte(rtlpriv, 221U, 255); rtl_write_byte(rtlpriv, 222U, 255); rtl_write_byte(rtlpriv, 223U, 255); rtl_write_byte(rtlpriv, 282U, 0); rtl_write_byte(rtlpriv, 283U, 0); i = 0U; } goto ldv_51150; ldv_51149: { rtl_write_byte(rtlpriv, (u32 )((int )i + 352), 27); i = (u8 )((int )i + 1); } ldv_51150: ; if ((unsigned int )i <= 31U) { goto ldv_51149; } else { } { rtl_write_byte(rtlpriv, 566U, 255); rtl_write_byte(rtlpriv, 1283U, 34); } if ((int )ppsc->support_aspm && ! ppsc->support_backdoor) { { rtl_write_byte(rtlpriv, 1376U, 64); } } else { { rtl_write_byte(rtlpriv, 1376U, 0); } } { rtl_write_byte(rtlpriv, 58U, 145); rtl_write_dword(rtlpriv, 1340U, (u32 )rtlpci->rx_ring[0].dma); rtl_write_dword(rtlpriv, 1336U, (u32 )rtlpci->rx_ring[1].dma); rtl_write_dword(rtlpriv, 1328U, (u32 )rtlpci->tx_ring[0].dma); rtl_write_dword(rtlpriv, 1324U, (u32 )rtlpci->tx_ring[1].dma); rtl_write_dword(rtlpriv, 1320U, (u32 )rtlpci->tx_ring[2].dma); rtl_write_dword(rtlpriv, 1316U, (u32 )rtlpci->tx_ring[3].dma); rtl_write_dword(rtlpriv, 1332U, (u32 )rtlpci->tx_ring[4].dma); rtl_write_dword(rtlpriv, 1308U, (u32 )rtlpci->tx_ring[5].dma); rtl_write_dword(rtlpriv, 1304U, (u32 )rtlpci->tx_ring[6].dma); rtl_write_dword(rtlpriv, 1300U, (u32 )rtlpci->tx_ring[7].dma); rtl_write_dword(rtlpriv, 1312U, (u32 )rtlpci->tx_ring[8].dma); rtl_write_word(rtlpriv, 64U, 14332); } ldv_51153: { tmpu1b = rtl_read_byte(rtlpriv, 68U); } if (((unsigned long )tmpu1b & 10UL) == 10UL) { goto ldv_51152; } else { } { __const_udelay(21475UL); tmp___6 = pollingcnt; pollingcnt = (u8 )((int )pollingcnt - 1); } if ((unsigned int )tmp___6 != 0U) { goto ldv_51153; } else { } ldv_51152: ; if ((unsigned int )pollingcnt == 0U) { { tmp___9 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n", "_rtl92se_macconfig_before_fwdownload", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )tmpu1b); } } else { } } else { } { tmpu1b = rtl_read_byte(rtlpriv, 64U); rtl_write_byte(rtlpriv, 64U, (int )tmpu1b & 239); __const_udelay(8590UL); rtl_write_byte(rtlpriv, 64U, (int )((unsigned int )tmpu1b | 16U)); } } else { } if (ppsc->rfoff_reason == 268435456U || ppsc->rfoff_reason == 0U) { { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); pLed0 = & pcipriv->ledctl.sw_led0; tmp___11 = _rtl92se_rf_onoff_detect(hw); rfpwr_state_toset = (enum rf_pwrstate )tmp___11; } if ((unsigned int )rfpwr_state_toset == 0U) { { rtl92se_sw_led_on(hw, pLed0); } } else { } } else { } return; } } static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_efuse *rtlefuse ; struct rtl_pci *rtlpci ; u8 i ; u16 tmpu2b ; u32 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; u8 tempval ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl_write_word(rtlpriv, 64U, 14332); tmp = rtl_read_dword(rtlpriv, 68U); rtl_write_dword(rtlpriv, 68U, tmp | 8388608U); rtl_write_dword(rtlpriv, 72U, rtlpci->receive_config); rtl_write_word(rtlpriv, 140U, 2570); rtl_write_word(rtlpriv, 142U, 4112); rtl_write_byte(rtlpriv, 145U, 64); rtl_write_word(rtlpriv, 148U, 100); rtl_write_word(rtlpriv, 150U, 2); tmp___0 = rtl_read_byte(rtlpriv, 189U); rtl_write_byte(rtlpriv, 189U, (int )((unsigned int )tmp___0 | 64U)); } if (rtlhal->version == 0U) { { rtl_write_byte(rtlpriv, 385U, 240); } } else if (rtlhal->version == 1U) { { rtl_write_byte(rtlpriv, 385U, 255); } } else { } { rtl_write_byte(rtlpriv, 386U, 1); rtl_write_byte(rtlpriv, 387U, 0); i = 0U; } goto ldv_51168; ldv_51167: ; if (rtlhal->version == 0U) { { rtl_write_dword(rtlpriv, (u32 )(((int )i + 97) * 4), 521138416U); } } else { } i = (u8 )((int )i + 1); ldv_51168: ; if ((unsigned int )i <= 7U) { goto ldv_51167; } else { } { rtl_write_byte(rtlpriv, 423U, 15); rtl_write_word(rtlpriv, 424U, 29762); rtl_write_word(rtlpriv, 426U, 56791); rtl_write_word(rtlpriv, 428U, 55154); rtl_write_word(rtlpriv, 430U, 65533); rtl_write_dword(rtlpriv, 432U, 67174400U); rtl_write_dword(rtlpriv, 436U, 151455237U); rtl_write_dword(rtlpriv, 440U, 67174400U); rtl_write_dword(rtlpriv, 444U, 151455237U); rtl_write_word(rtlpriv, 502U, 65535); rtl_write_word(rtlpriv, 564U, 128); rtl_write_byte(rtlpriv, 566U, 255); rtl_write_byte(rtlpriv, 567U, 7); rtl_write_byte(rtlpriv, 568U, 0); rtl_write_byte(rtlpriv, 182U, 4); tmp___1 = rtl_read_byte(rtlpriv, 2U); tmpu2b = (u16 )tmp___1; rtl_write_byte(rtlpriv, 2U, (int )((u8 )tmpu2b)); tmp___2 = rtl_read_byte(rtlpriv, 0U); tmpu2b = (u16 )tmp___2; rtl_write_byte(rtlpriv, 0U, (int )((u8 )tmpu2b)); } if ((int )rtlefuse->epromtype == 2) { { tempval = rtl_read_byte(rtlpriv, 1U); tempval = (unsigned int )tempval & 254U; rtl_write_byte(rtlpriv, 1U, (int )tempval); rtl_write_byte(rtlpriv, 51U, 114); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> EFUSE CONFIG OK\n", "_rtl92se_macconfig_after_fwdownload", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> OK\n", "_rtl92se_macconfig_after_fwdownload", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void _rtl92se_hw_configure(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u8 reg_bw_opmode ; u32 reg_rrsr ; u8 regtmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlphy = & rtlpriv->phy; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; reg_bw_opmode = 0U; reg_rrsr = 0U; regtmp = 0U; reg_bw_opmode = 4U; reg_rrsr = 4095U; regtmp = rtl_read_byte(rtlpriv, 384U); reg_rrsr = ((reg_rrsr & 1048575U) << 8) | (u32 )regtmp; rtl_write_dword(rtlpriv, 384U, reg_rrsr); rtl_write_byte(rtlpriv, 515U, (int )reg_bw_opmode); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 52, (u8 *)(& rtlpci->shortretry_limit)); rtl_write_byte(rtlpriv, 157U, 143); } { if ((int )rtlphy->rf_type == 1) { goto case_1; } else { } if ((int )rtlphy->rf_type == 0) { goto case_0; } else { } if ((int )rtlphy->rf_type == 2) { goto case_2; } else { } if ((int )rtlphy->rf_type == 3) { goto case_3; } else { } goto switch_break; case_1: /* CIL Label */ ; case_0: /* CIL Label */ rtlhal->minspace_cfg = 80U; goto ldv_51184; case_2: /* CIL Label */ ; case_3: /* CIL Label */ rtlhal->minspace_cfg = 152U; goto ldv_51184; switch_break: /* CIL Label */ ; } ldv_51184: { rtl_write_byte(rtlpriv, 567U, (int )rtlhal->minspace_cfg); } return; } } int rtl92se_hw_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; struct rtl_pci *rtlpci ; struct rtl_efuse *rtlefuse ; u8 tmp_byte ; bool rtstatus ; u8 tmp_u1b ; int err ; u8 i ; int wdcapra_add[4U] ; u8 secr_value ; u32 tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; long tmp___8 ; bool tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; bool tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; long tmp___19 ; long tmp___20 ; bool tmp___21 ; int tmp___22 ; u8 tmp___23 ; bool mrc2set ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; tmp_byte = 0U; rtstatus = 1; err = 0; wdcapra_add[0] = 472; wdcapra_add[1] = 476; wdcapra_add[2] = 468; wdcapra_add[3] = 464; secr_value = 0U; rtlpci->being_init_adapter = 1; (*((rtlpriv->intf_ops)->disable_aspm))(hw); _rtl92se_macconfig_before_fwdownload(hw); tmp = rtl_read_dword(rtlpriv, 4U); rtlhal->version = (tmp >> 16) & 15U; rtl8192se_gpiobit3_cfg_inputmode(hw); tmp___0 = rtl92s_download_fw(hw); rtstatus = tmp___0 != 0; } if (! rtstatus) { { tmp___3 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___4 != 0L) { { tmp___1 = preempt_count(); tmp___2 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Failed to download FW. Init HW without FW now... Please copy FW into /lib/firmware/rtlwifi\n", "rtl92se_hw_init", (unsigned long )tmp___2 & 2096896UL, ((unsigned long )tmp___1 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (1); } else { } { _rtl92se_macconfig_after_fwdownload(hw); rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, 868U); rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, 872U); tmp___9 = rtl92s_phy_mac_config(hw); } if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { { tmp___7 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___7 != 0L) { { tmp___8 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___8 != 0L) { { tmp___5 = preempt_count(); tmp___6 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> MAC Config failed\n", "rtl92se_hw_init", (unsigned long )tmp___6 & 2096896UL, ((unsigned long )tmp___5 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return ((int )rtstatus); } else { } { rtlpci->receive_config = rtl_read_dword(rtlpriv, 72U); rtlpci->receive_config = rtlpci->receive_config & 4294963167U; rtl_write_dword(rtlpriv, 72U, rtlpci->receive_config); rtl_write_dword(rtlpriv, 64U, 14332U); tmp___15 = rtl92s_phy_bb_config(hw); } if (tmp___15) { tmp___16 = 0; } else { tmp___16 = 1; } if (tmp___16) { { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> BB Config failed\n", "rtl92se_hw_init", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return ((int )rtstatus); } else { } { rtlphy->rf_mode = 0U; rtl_write_byte(rtlpriv, 39U, 219); } if (rtlhal->version == 0U) { { rtl_write_byte(rtlpriv, 27U, 7); } } else { { rtl_write_byte(rtlpriv, 31U, 7); } } { tmp___21 = rtl92s_phy_rf_config(hw); } if (tmp___21) { tmp___22 = 0; } else { tmp___22 = 1; } if (tmp___22) { { tmp___19 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___19 != 0L) { { tmp___20 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___20 != 0L) { { tmp___17 = preempt_count(); tmp___18 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RF Config failed\n", "rtl92se_hw_init", (unsigned long )tmp___18 & 2096896UL, ((unsigned long )tmp___17 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return ((int )rtstatus); } else { } { rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw, 0, 24U, 1048575U); rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw, 1, 24U, 1048575U); rtl_set_bbreg(hw, 2048U, 16777216U, 1U); rtl_set_bbreg(hw, 2048U, 33554432U, 1U); _rtl92se_hw_configure(hw); rtl92s_phy_get_hw_reg_originalvalue(hw); rtl92s_phy_set_txpower(hw, (int )rtlphy->current_channel); i = 0U; } goto ldv_51204; ldv_51203: { rtl_write_byte(rtlpriv, (u32 )((int )i + 80), (int )rtlefuse->dev_addr[(int )i]); i = (u8 )((int )i + 1); } ldv_51204: ; if ((unsigned int )i <= 5U) { goto ldv_51203; } else { } { tmp_u1b = rtl_read_byte(rtlpriv, 753U); rtl_write_byte(rtlpriv, 753U, (int )tmp_u1b & 247); rtl_write_byte(rtlpriv, 77U, 0); } if ((unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion > 72U) { { tmp___23 = rtl_read_byte(rtlpriv, 216U); tmp_byte = (unsigned int )tmp___23 & 239U; tmp_byte = (u8 )((unsigned int )tmp_byte | 32U); rtl_write_byte(rtlpriv, 216U, (int )tmp_byte); rtl_write_dword(rtlpriv, 220U, 4294955007U); } } else { } if ((unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion > 52U) { { rtl92s_phy_set_fw_cmd(hw, 10); } } else if ((unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion == 52U) { { rtl_write_dword(rtlpriv, 704U, 4244635686U); rtl92s_phy_chk_fwcmd_iodone(hw); } } else { { rtl_write_dword(rtlpriv, 704U, 4244635823U); rtl92s_phy_chk_fwcmd_iodone(hw); rtl_write_dword(rtlpriv, 704U, 4244635814U); rtl92s_phy_chk_fwcmd_iodone(hw); rtl_write_dword(rtlpriv, 704U, 4244635808U); rtl92s_phy_chk_fwcmd_iodone(hw); } } { rtl92s_phy_switch_ephy_parameter(hw); rtl_cam_reset_all_entry(hw); secr_value = (u8 )((unsigned int )secr_value | 4U); secr_value = (u8 )((unsigned int )secr_value | 8U); secr_value = (u8 )((unsigned int )secr_value | 32U); rtl_write_byte(rtlpriv, 592U, (int )secr_value); i = 0U; } goto ldv_51207; ldv_51206: { rtl_write_dword(rtlpriv, (u32 )wdcapra_add[(int )i], 6177570U); i = (u8 )((int )i + 1); } ldv_51207: ; if ((unsigned int )i <= 3U) { goto ldv_51206; } else { } if ((unsigned int )rtlphy->rf_type == 1U) { { mrc2set = 1; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 90, (u8 *)(& mrc2set)); } } else { } { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 1); rtl92s_dm_init(hw); rtlpci->being_init_adapter = 0; } return (err); } } void rtl92se_set_mac_addr(struct rtl_io *io , u8 const *addr ) { { return; } } void rtl92se_set_check_bssid(struct ieee80211_hw *hw , bool check_bssid ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; u32 reg_rcr ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; reg_rcr = rtlpci->receive_config; if ((unsigned int )rtlpriv->psc.rfpwr_state != 0U) { return; } else { } if ((int )check_bssid) { { reg_rcr = reg_rcr | 8388608U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 43, (u8 *)(& reg_rcr)); } } else if (! check_bssid) { { reg_rcr = reg_rcr & 4286578687U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 43, (u8 *)(& reg_rcr)); } } else { } return; } } static int _rtl92se_set_media_status(struct ieee80211_hw *hw , enum nl80211_iftype type ) { struct rtl_priv *rtlpriv ; u8 bt_msr ; u8 tmp ; u32 temp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = rtl_read_byte(rtlpriv, 76U); bt_msr = tmp; bt_msr = (unsigned int )bt_msr & 252U; } { if ((unsigned int )type == 0U) { goto case_0; } else { } if ((unsigned int )type == 1U) { goto case_1; } else { } if ((unsigned int )type == 2U) { goto case_2; } else { } if ((unsigned int )type == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { bt_msr = bt_msr; tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set Network type to NO LINK!\n", "_rtl92se_set_media_status", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51230; case_1: /* CIL Label */ { bt_msr = (u8 )((unsigned int )bt_msr | 1U); tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set Network type to Ad Hoc!\n", "_rtl92se_set_media_status", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51230; case_2: /* CIL Label */ { bt_msr = (u8 )((unsigned int )bt_msr | 2U); tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set Network type to STA!\n", "_rtl92se_set_media_status", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51230; case_3: /* CIL Label */ { bt_msr = (u8 )((unsigned int )bt_msr | 3U); tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set Network type to AP!\n", "_rtl92se_set_media_status", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51230; switch_default: /* CIL Label */ { tmp___18 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Network type %d not supported!\n", "_rtl92se_set_media_status", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )type); } } else { } } else { } return (1); switch_break: /* CIL Label */ ; } ldv_51230: { rtl_write_byte(rtlpriv, 76U, (int )bt_msr); temp = rtl_read_dword(rtlpriv, 68U); rtl_write_dword(rtlpriv, 68U, temp & 4294967039U); rtl_write_dword(rtlpriv, 68U, temp | 256U); } return (0); } } int rtl92se_set_network_type(struct ieee80211_hw *hw , enum nl80211_iftype type ) { struct rtl_priv *rtlpriv ; int tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = _rtl92se_set_media_status(hw, type); } if (tmp != 0) { return (-95); } else { } if ((unsigned int )rtlpriv->mac80211.link_state == 2U) { if ((unsigned int )type != 3U) { { rtl92se_set_check_bssid(hw, 1); } } else { } } else { { rtl92se_set_check_bssid(hw, 0); } } return (0); } } void rtl92se_set_qos(struct ieee80211_hw *hw , int aci ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtl92s_dm_init_edca_turbo(hw); } { if (aci == 1) { goto case_1; } else { } if (aci == 0) { goto case_0; } else { } if (aci == 2) { goto case_2; } else { } if (aci == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { rtl_write_dword(rtlpriv, 476U, 42063U); } goto ldv_51246; case_0: /* CIL Label */ ; goto ldv_51246; case_2: /* CIL Label */ { rtl_write_dword(rtlpriv, 468U, 6177570U); } goto ldv_51246; case_3: /* CIL Label */ { rtl_write_dword(rtlpriv, 464U, 3093026U); } goto ldv_51246; switch_default: /* CIL Label */ { printk("\017rtl8192se:%s(): invalid aci: %d !\n", "rtl92se_set_qos", aci); } goto ldv_51246; switch_break: /* CIL Label */ ; } ldv_51246: ; return; } } void rtl92se_enable_interrupt(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl_write_dword(rtlpriv, 768U, rtlpci->irq_mask[0]); rtl_write_dword(rtlpriv, 772U, rtlpci->irq_mask[1] & 63U); } return; } } void rtl92se_disable_interrupt(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned long )rtlpriv == (unsigned long )((struct rtl_priv *)0) || rtlpriv->max_fw_size == 0) { return; } else { } { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl_write_dword(rtlpriv, 768U, 0U); rtl_write_dword(rtlpriv, 772U, 0U); synchronize_irq((rtlpci->pdev)->irq); } return; } } static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw , u8 data ) { struct rtl_priv *rtlpriv ; u8 waitcnt ; bool result ; u8 tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; waitcnt = 100U; result = 0; rtl_write_byte(rtlpriv, 9U, (int )data); __const_udelay(1718000UL); tmp = rtl_read_byte(rtlpriv, 9U); result = (((unsigned long )tmp ^ (unsigned long )data) & 128UL) == 0UL; } if (((unsigned long )data & 192UL) == 0UL) { waitcnt = 100U; tmp = 0U; ldv_51271: { waitcnt = (u8 )((int )waitcnt - 1); tmp = rtl_read_byte(rtlpriv, 9U); } if (((unsigned long )tmp & 64UL) != 0UL) { goto ldv_51270; } else { } { printk("\vrtl8192se: wait for BIT(6) return value %x\n", (int )tmp); } if ((unsigned int )waitcnt == 0U) { goto ldv_51270; } else { } { __const_udelay(42950UL); } goto ldv_51271; ldv_51270: ; if ((unsigned int )waitcnt == 0U) { result = 0; } else { result = 1; } } else { } return ((u8 )result); } } static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_ps_ctl *ppsc ; u8 u1btmp ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; ppsc = & ((struct rtl_priv *)hw->priv)->psc; if ((int )rtlhal->driver_going2unload) { { rtl_write_byte(rtlpriv, 1376U, 0); } } else { } { u1btmp = rtl_read_byte(rtlpriv, 33U); u1btmp = (u8 )((unsigned int )u1btmp | 1U); rtl_write_byte(rtlpriv, 33U, (int )u1btmp); rtl_write_byte(rtlpriv, 24U, 0); rtl_write_byte(rtlpriv, 66U, 255); rtl_write_word(rtlpriv, 64U, 22524); __const_udelay(429500UL); rtl_write_word(rtlpriv, 64U, 30716); rtl_write_byte(rtlpriv, 2051U, 0); __const_udelay(42950UL); rtl_write_word(rtlpriv, 64U, 14332); __const_udelay(42950UL); rtl_write_word(rtlpriv, 64U, 30716); __const_udelay(42950UL); rtl_write_word(rtlpriv, 64U, 22524); rtl_write_word(rtlpriv, 64U, 0); } if ((int )rtlhal->driver_going2unload) { { u1btmp = rtl_read_byte(rtlpriv, 3U); u1btmp = (unsigned int )u1btmp & 254U; rtl_write_byte(rtlpriv, 3U, (int )u1btmp); } } else { } { u1btmp = rtl_read_byte(rtlpriv, 9U); } if ((int )((signed char )u1btmp) < 0) { { u1btmp = (unsigned int )u1btmp & 63U; tmp = _rtl92s_set_sysclk(hw, (int )u1btmp); } if ((unsigned int )tmp == 0U) { { printk("\vrtl8192se: Switch ctrl path fail\n"); } return; } else { } } else { } if (ppsc->rfoff_reason == 268435456U && ! rtlhal->driver_going2unload) { { rtl_write_byte(rtlpriv, 3U, 249); } } else { { rtl_write_byte(rtlpriv, 3U, 249); } } { rtl_write_byte(rtlpriv, 9U, 112); rtl_write_byte(rtlpriv, 41U, 104); rtl_write_byte(rtlpriv, 40U, 0); rtl_write_byte(rtlpriv, 32U, 52); rtl_write_byte(rtlpriv, 38U, 14); ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; } return; } } static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_pci_priv *pcipriv ; struct rtl_led *pLed0 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); pLed0 = & pcipriv->ledctl.sw_led0; if ((int )rtlpci->up_first_time) { return; } else { } if (rtlpriv->psc.rfoff_reason == 268435456U) { { rtl92se_sw_led_on(hw, pLed0); } } else { { rtl92se_sw_led_off(hw, pLed0); } } return; } } static void _rtl92se_power_domain_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u16 tmpu2b ; u8 tmpu1b ; u8 tmp ; unsigned long __ms ; unsigned long tmp___0 ; unsigned long __ms___0 ; unsigned long tmp___1 ; unsigned long __ms___1 ; unsigned long tmp___2 ; unsigned long __ms___2 ; unsigned long tmp___3 ; u8 tmp___4 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->psc.pwrdomain_protect = 1; tmpu1b = rtl_read_byte(rtlpriv, 9U); } if ((int )((signed char )tmpu1b) < 0) { { tmpu1b = (unsigned int )tmpu1b & 63U; tmp = _rtl92s_set_sysclk(hw, (int )tmpu1b); } if ((unsigned int )tmp == 0U) { rtlpriv->psc.pwrdomain_protect = 0; return; } else { } } else { } { rtl_write_byte(rtlpriv, 40U, 0); rtl_write_byte(rtlpriv, 32U, 52); tmpu1b = rtl_read_byte(rtlpriv, 3U); } if (((unsigned long )rtlpriv->psc.rfoff_reason & 1342177280UL) != 0UL) { tmpu1b = (unsigned int )tmpu1b & 251U; } else { tmpu1b = (unsigned int )tmpu1b & 115U; } { rtl_write_byte(rtlpriv, 3U, (int )tmpu1b); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_51294; ldv_51293: { __const_udelay(4295000UL); } ldv_51294: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_51293; } else { } } { rtl_write_byte(rtlpriv, 64U, 0); rtl_write_byte(rtlpriv, 68U, 0); tmpu1b = rtl_read_byte(rtlpriv, 1378U); tmpu1b = (u8 )((unsigned int )tmpu1b | 8U); rtl_write_byte(rtlpriv, 1378U, (int )tmpu1b); tmpu1b = (unsigned int )tmpu1b & 247U; rtl_write_byte(rtlpriv, 1378U, (int )tmpu1b); tmpu1b = rtl_read_byte(rtlpriv, 38U); rtl_write_byte(rtlpriv, 38U, (int )((unsigned int )tmpu1b | 1U)); __const_udelay(6442500UL); tmpu1b = rtl_read_byte(rtlpriv, 39U); rtl_write_byte(rtlpriv, 39U, (int )tmpu1b & 251); tmpu1b = rtl_read_byte(rtlpriv, 16U); rtl_write_byte(rtlpriv, 16U, (int )((unsigned int )tmpu1b | 1U)); } if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_51298; ldv_51297: { __const_udelay(4295000UL); } ldv_51298: tmp___1 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___1 != 0UL) { goto ldv_51297; } else { } } { tmpu1b = rtl_read_byte(rtlpriv, 16U); rtl_write_byte(rtlpriv, 16U, (int )((unsigned int )tmpu1b | 2U)); } if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_51302; ldv_51301: { __const_udelay(4295000UL); } ldv_51302: tmp___2 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___2 != 0UL) { goto ldv_51301; } else { } } { tmpu1b = rtl_read_byte(rtlpriv, 32U); rtl_write_byte(rtlpriv, 32U, (int )((unsigned int )tmpu1b | 1U)); tmpu2b = rtl_read_word(rtlpriv, 0U); rtl_write_word(rtlpriv, 0U, (int )((unsigned int )tmpu2b | 2048U)); tmpu2b = rtl_read_word(rtlpriv, 2U); rtl_write_word(rtlpriv, 2U, (int )((unsigned int )tmpu2b | 8192U)); rtl_write_byte(rtlpriv, 1U, 104); tmpu1b = rtl_read_byte(rtlpriv, 40U); rtl_write_byte(rtlpriv, 40U, (int )((unsigned int )tmpu1b | 17U)); tmpu1b = rtl_read_byte(rtlpriv, 41U); rtl_write_byte(rtlpriv, 41U, (int )((unsigned int )tmpu1b | 1U)); } if (1) { { __const_udelay(4295000UL); } } else { __ms___2 = 1UL; goto ldv_51306; ldv_51305: { __const_udelay(4295000UL); } ldv_51306: tmp___3 = __ms___2; __ms___2 = __ms___2 - 1UL; if (tmp___3 != 0UL) { goto ldv_51305; } else { } } { rtl_write_byte(rtlpriv, 0U, 166); tmpu2b = rtl_read_word(rtlpriv, 8U); rtl_write_word(rtlpriv, 8U, (int )((unsigned int )tmpu2b | 6144U)); tmpu2b = rtl_read_word(rtlpriv, 2U); rtl_write_word(rtlpriv, 2U, (int )((unsigned int )tmpu2b | 2048U)); rtl_write_word(rtlpriv, 2U, (int )((unsigned int )tmpu2b | 34816U)); tmpu2b = rtl_read_word(rtlpriv, 8U); rtl_write_word(rtlpriv, 8U, (int )tmpu2b & 65531); tmpu1b = rtl_read_byte(rtlpriv, 9U); tmpu1b = ((unsigned int )tmpu1b & 63U) | 128U; tmp___4 = _rtl92s_set_sysclk(hw, (int )tmpu1b); } if ((unsigned int )tmp___4 == 0U) { rtlpriv->psc.pwrdomain_protect = 0; return; } else { } { rtl_write_word(rtlpriv, 64U, 14332); _rtl92se_gen_refreshledstate(hw); rtlpriv->psc.pwrdomain_protect = 0; } return; } } void rtl92se_card_disable(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_pci *rtlpci ; struct rtl_ps_ctl *ppsc ; enum nl80211_iftype opmode ; u8 wait ; unsigned long __ms ; unsigned long tmp ; u8 tmp___0 ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; ppsc = & ((struct rtl_priv *)hw->priv)->psc; wait = 30U; (*((rtlpriv->intf_ops)->enable_aspm))(hw); } if ((int )rtlpci->driver_is_goingto_unload || ppsc->rfoff_reason > 536870912U) { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 7); } } else { } { rtl8192se_gpiobit3_cfg_inputmode(hw); } goto ldv_51323; ldv_51322: ; if ((int )rtlpriv->psc.pwrdomain_protect) { __ms = 20UL; goto ldv_51319; ldv_51318: { __const_udelay(4295000UL); } ldv_51319: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51318; } else { } } else { goto ldv_51321; } ldv_51323: tmp___0 = wait; wait = (u8 )((int )wait - 1); if ((unsigned int )tmp___0 > 9U && (int )rtlpriv->psc.pwrdomain_protect) { goto ldv_51322; } else { } ldv_51321: { mac->link_state = 0; opmode = 0; _rtl92se_set_media_status(hw, opmode); _rtl92s_phy_set_rfhalt(hw); __const_udelay(429500UL); } return; } } void rtl92se_interrupt_recognized(struct ieee80211_hw *hw , u32 *p_inta , u32 *p_intb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; u32 tmp ; u32 tmp___0 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; tmp = rtl_read_dword(rtlpriv, 776U); *p_inta = tmp & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, 776U, *p_inta); tmp___0 = rtl_read_dword(rtlpriv, 780U); *p_intb = tmp___0 & rtlpci->irq_mask[1]; rtl_write_dword(rtlpriv, 780U, *p_intb); } return; } } void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 bcntime_cfg ; u16 bcn_cw ; u16 bcn_ifs ; u16 atim_window ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; bcntime_cfg = 0U; bcn_cw = 6U; bcn_ifs = 15U; atim_window = 2U; rtl_write_word(rtlpriv, 150U, (int )atim_window); rtl_write_word(rtlpriv, 148U, (int )((u16 )mac->beacon_interval)); rtl_write_word(rtlpriv, 152U, 160); rtl_write_word(rtlpriv, 154U, 256); rtl_write_byte(rtlpriv, 156U, 100); } if ((unsigned int )mac->opmode == 1U) { bcntime_cfg = (u16 )((int )((short )bcntime_cfg) | (int )((short )((int )bcn_cw << 8))); } else { } { bcntime_cfg = (int )bcntime_cfg | (int )bcn_ifs; rtl92s_phy_set_beacon_hwreg(hw, (int )((u16 )mac->beacon_interval)); } return; } } void rtl92se_set_beacon_interval(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 bcn_interval ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; bcn_interval = (u16 )mac->beacon_interval; rtl_write_word(rtlpriv, 148U, (int )bcn_interval); rtl92s_phy_set_beacon_hwreg(hw, (int )bcn_interval); } return; } } void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw , u32 add_msr , u32 rm_msr ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 128ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> add_msr:%x, rm_msr:%x\n", "rtl92se_update_interrupt_mask", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, add_msr, rm_msr); } } else { } } else { } if (add_msr != 0U) { rtlpci->irq_mask[0] = rtlpci->irq_mask[0] | add_msr; } else { } if (rm_msr != 0U) { rtlpci->irq_mask[0] = rtlpci->irq_mask[0] & ~ rm_msr; } else { } { rtl92se_disable_interrupt(hw); rtl92se_enable_interrupt(hw); } return; } } static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw ) { struct rtl_efuse *rtlefuse ; struct rtl_hal *rtlhal ; u8 efuse_id ; { rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlhal->ic_class = 0U; if ((int )rtlefuse->epromtype == 2 && (unsigned int )rtlefuse->autoload_failflag == 0U) { { efuse_id = efuse_read_1byte(hw, 506); } if ((unsigned int )efuse_id == 254U) { rtlhal->ic_class = 1U; } else { } } else { } return; } } static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_phy *rtlphy ; u16 i ; u16 usvalue ; u16 eeprom_id ; u8 tempval ; u8 hwinfo[128U] ; u8 rf_path ; u8 index ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; struct task_struct *tmp___3 ; struct task_struct *tmp___4 ; struct _ddebug descriptor ; long tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; int tmp___28 ; int tmp___29 ; long tmp___30 ; long tmp___31 ; int tmp___32 ; int tmp___33 ; long tmp___34 ; long tmp___35 ; int tmp___36 ; int tmp___37 ; long tmp___38 ; long tmp___39 ; long tmp___40 ; long tmp___41 ; long tmp___42 ; long tmp___43 ; long tmp___44 ; long tmp___45 ; long tmp___46 ; long tmp___47 ; long tmp___48 ; long tmp___49 ; long tmp___50 ; long tmp___51 ; long tmp___52 ; long tmp___53 ; long tmp___54 ; long tmp___55 ; int tmp___56 ; int tmp___57 ; long tmp___58 ; long tmp___59 ; int tmp___60 ; int tmp___61 ; long tmp___62 ; long tmp___63 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlphy = & rtlpriv->phy; if ((int )rtlefuse->epromtype == 0) { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RTL819X Not boot from eeprom, check it !!\n", "_rtl92se_read_adapter_info", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else if ((int )rtlefuse->epromtype == 2) { { rtl_efuse_shadow_map_update(hw); memcpy((void *)(& hwinfo), (void const *)(& rtlefuse->efuse_map), 128UL); } } else { } { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___7 != 0L) { { tmp___3 = get_current(); tmp___4 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8192se", (char *)(& tmp___4->comm), tmp___3->pid, (char *)"MAP"); descriptor.modname = "rtl8192se"; descriptor.function = "_rtl92se_read_adapter_info"; descriptor.filename = "drivers/net/wireless/rtlwifi/rtl8192se/hw.c"; descriptor.format = ""; descriptor.lineno = 1678U; descriptor.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___5 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& hwinfo), 128UL, 1); } } else { } } else { } } else { } eeprom_id = *((u16 *)(& hwinfo)); if ((unsigned int )eeprom_id != 33065U) { { tmp___10 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> EEPROM ID(%#x) is invalid!!\n", "_rtl92se_read_adapter_info", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, (int )eeprom_id); } } else { } } else { } rtlefuse->autoload_failflag = 1U; } else { { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Autoload OK\n", "_rtl92se_read_adapter_info", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlefuse->autoload_failflag = 0U; } if ((unsigned int )rtlefuse->autoload_failflag != 0U) { return; } else { } { _rtl8192se_get_IC_Inferiority(hw); rtlefuse->eeprom_vid = *((u16 *)(& hwinfo) + 10U); rtlefuse->eeprom_did = *((u16 *)(& hwinfo) + 12U); rtlefuse->eeprom_svid = *((u16 *)(& hwinfo) + 14U); rtlefuse->eeprom_smid = *((u16 *)(& hwinfo) + 16U); rtlefuse->eeprom_version = (u8 )*((u16 *)(& hwinfo) + 124U); tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> EEPROMId = 0x%4x\n", "_rtl92se_read_adapter_info", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (int )eeprom_id); } } else { } } else { } { tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> EEPROM VID = 0x%4x\n", "_rtl92se_read_adapter_info", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_vid); } } else { } } else { } { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> EEPROM DID = 0x%4x\n", "_rtl92se_read_adapter_info", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_did); } } else { } } else { } { tmp___30 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___30 != 0L) { { tmp___31 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___31 != 0L) { { tmp___28 = preempt_count(); tmp___29 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> EEPROM SVID = 0x%4x\n", "_rtl92se_read_adapter_info", (unsigned long )tmp___29 & 2096896UL, ((unsigned long )tmp___28 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_svid); } } else { } } else { } { tmp___34 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___34 != 0L) { { tmp___35 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___35 != 0L) { { tmp___32 = preempt_count(); tmp___33 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> EEPROM SMID = 0x%4x\n", "_rtl92se_read_adapter_info", (unsigned long )tmp___33 & 2096896UL, ((unsigned long )tmp___32 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_smid); } } else { } } else { } i = 0U; goto ldv_51376; ldv_51375: usvalue = *((u16 *)(& hwinfo) + (unsigned long )((int )i + 18)); *((u16 *)(& rtlefuse->dev_addr) + (unsigned long )i) = usvalue; i = (unsigned int )i + 2U; ldv_51376: ; if ((unsigned int )i <= 5U) { goto ldv_51375; } else { } i = 0U; goto ldv_51379; ldv_51378: { rtl_write_byte(rtlpriv, (u32 )((int )i + 80), (int )rtlefuse->dev_addr[(int )i]); i = (u16 )((int )i + 1); } ldv_51379: ; if ((unsigned int )i <= 5U) { goto ldv_51378; } else { } { tmp___38 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___38 != 0L) { { tmp___39 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___39 != 0L) { { tmp___36 = preempt_count(); tmp___37 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> %pM\n", "_rtl92se_read_adapter_info", (unsigned long )tmp___37 & 2096896UL, ((unsigned long )tmp___36 & 0xffffffffffdfffffUL) != 0UL, (u8 *)(& rtlefuse->dev_addr)); } } else { } } else { } rf_path = 0U; goto ldv_51385; ldv_51384: i = 0U; goto ldv_51382; ldv_51381: rtlefuse->eeprom_chnlarea_txpwr_cck[(int )rf_path][(int )i] = hwinfo[((int )rf_path * 3 + 80) + (int )i]; rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[(int )rf_path][(int )i] = hwinfo[((int )rf_path * 3 + 86) + (int )i]; rtlefuse->eprom_chnl_txpwr_ht40_2sdf[(int )rf_path][(int )i] = hwinfo[((int )rf_path * 3 + 92) + (int )i]; i = (u16 )((int )i + 1); ldv_51382: ; if ((unsigned int )i <= 2U) { goto ldv_51381; } else { } rf_path = (u8 )((int )rf_path + 1); ldv_51385: ; if ((unsigned int )rf_path <= 1U) { goto ldv_51384; } else { } rf_path = 0U; goto ldv_51391; ldv_51390: i = 0U; goto ldv_51388; ldv_51387: { tmp___40 = ldv__builtin_expect((long )((int )rtlpriv->dbg.dbgp_type[17]) & 1L, 0L); } if (tmp___40 != 0L) { { printk("\017rtl8192se: RF(%d) EEPROM CCK Area(%d) = 0x%x\n", (int )rf_path, (int )i, (int )rtlefuse->eeprom_chnlarea_txpwr_cck[(int )rf_path][(int )i]); } } else { } i = (u16 )((int )i + 1); ldv_51388: ; if ((unsigned int )i <= 2U) { goto ldv_51387; } else { } rf_path = (u8 )((int )rf_path + 1); ldv_51391: ; if ((unsigned int )rf_path <= 1U) { goto ldv_51390; } else { } rf_path = 0U; goto ldv_51397; ldv_51396: i = 0U; goto ldv_51394; ldv_51393: { tmp___41 = ldv__builtin_expect((long )((int )rtlpriv->dbg.dbgp_type[17]) & 1L, 0L); } if (tmp___41 != 0L) { { printk("\017rtl8192se: RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n", (int )rf_path, (int )i, (int )rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[(int )rf_path][(int )i]); } } else { } i = (u16 )((int )i + 1); ldv_51394: ; if ((unsigned int )i <= 2U) { goto ldv_51393; } else { } rf_path = (u8 )((int )rf_path + 1); ldv_51397: ; if ((unsigned int )rf_path <= 1U) { goto ldv_51396; } else { } rf_path = 0U; goto ldv_51403; ldv_51402: i = 0U; goto ldv_51400; ldv_51399: { tmp___42 = ldv__builtin_expect((long )((int )rtlpriv->dbg.dbgp_type[17]) & 1L, 0L); } if (tmp___42 != 0L) { { printk("\017rtl8192se: RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n", (int )rf_path, (int )i, (int )rtlefuse->eprom_chnl_txpwr_ht40_2sdf[(int )rf_path][(int )i]); } } else { } i = (u16 )((int )i + 1); ldv_51400: ; if ((unsigned int )i <= 2U) { goto ldv_51399; } else { } rf_path = (u8 )((int )rf_path + 1); ldv_51403: ; if ((unsigned int )rf_path <= 1U) { goto ldv_51402; } else { } rf_path = 0U; goto ldv_51412; ldv_51411: i = 0U; goto ldv_51406; ldv_51405: ; if ((unsigned int )i <= 2U) { index = 0U; } else if ((unsigned int )i <= 7U) { index = 1U; } else { index = 2U; } rtlefuse->txpwrlevel_cck[(int )rf_path][(int )i] = rtlefuse->eeprom_chnlarea_txpwr_cck[(int )rf_path][(int )index]; rtlefuse->txpwrlevel_ht40_1s[(int )rf_path][(int )i] = rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[(int )rf_path][(int )index]; rtlefuse->txpwrlevel_ht40_2s[(int )rf_path][(int )i] = rtlefuse->eprom_chnl_txpwr_ht40_2sdf[(int )rf_path][(int )index]; i = (u16 )((int )i + 1); ldv_51406: ; if ((unsigned int )i <= 13U) { goto ldv_51405; } else { } i = 0U; goto ldv_51409; ldv_51408: { tmp___43 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___43 != 0L) { { printk("\017rtl8192se: RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", (int )rf_path, (int )i, (int )rtlefuse->txpwrlevel_cck[(int )rf_path][(int )i], (int )rtlefuse->txpwrlevel_ht40_1s[(int )rf_path][(int )i], (int )rtlefuse->txpwrlevel_ht40_2s[(int )rf_path][(int )i]); } } else { } i = (u16 )((int )i + 1); ldv_51409: ; if ((unsigned int )i <= 13U) { goto ldv_51408; } else { } rf_path = (u8 )((int )rf_path + 1); ldv_51412: ; if ((unsigned int )rf_path <= 1U) { goto ldv_51411; } else { } rf_path = 0U; goto ldv_51418; ldv_51417: i = 0U; goto ldv_51415; ldv_51414: rtlefuse->eeprom_pwrgroup[(int )rf_path][(int )i] = hwinfo[((int )rf_path * 3 + 103) + (int )i]; i = (u16 )((int )i + 1); ldv_51415: ; if ((unsigned int )i <= 2U) { goto ldv_51414; } else { } rf_path = (u8 )((int )rf_path + 1); ldv_51418: ; if ((unsigned int )rf_path <= 1U) { goto ldv_51417; } else { } rf_path = 0U; goto ldv_51424; ldv_51423: i = 0U; goto ldv_51421; ldv_51420: ; if ((unsigned int )i <= 2U) { index = 0U; } else if ((unsigned int )i <= 7U) { index = 1U; } else { index = 2U; } { rtlefuse->pwrgroup_ht20[(int )rf_path][(int )i] = (unsigned int )rtlefuse->eeprom_pwrgroup[(int )rf_path][(int )index] & 15U; rtlefuse->pwrgroup_ht40[(int )rf_path][(int )i] = (int )rtlefuse->eeprom_pwrgroup[(int )rf_path][(int )index] >> 4; tmp___44 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___44 != 0L) { { printk("\017rtl8192se: RF-%d pwrgroup_ht20[%d] = 0x%x\n", (int )rf_path, (int )i, (int )rtlefuse->pwrgroup_ht20[(int )rf_path][(int )i]); } } else { } { tmp___45 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___45 != 0L) { { printk("\017rtl8192se: RF-%d pwrgroup_ht40[%d] = 0x%x\n", (int )rf_path, (int )i, (int )rtlefuse->pwrgroup_ht40[(int )rf_path][(int )i]); } } else { } i = (u16 )((int )i + 1); ldv_51421: ; if ((unsigned int )i <= 13U) { goto ldv_51420; } else { } rf_path = (u8 )((int )rf_path + 1); ldv_51424: ; if ((unsigned int )rf_path <= 1U) { goto ldv_51423; } else { } i = 0U; goto ldv_51427; ldv_51426: ; if ((unsigned int )i <= 2U) { index = 0U; } else if ((unsigned int )i <= 7U) { index = 1U; } else { index = 2U; } tempval = hwinfo[(int )index + 98]; rtlefuse->txpwr_ht20diff[0][(int )i] = (int )((char )tempval) & 15; rtlefuse->txpwr_ht20diff[1][(int )i] = (char )((int )tempval >> 4); if ((unsigned int )i <= 2U) { index = 0U; } else if ((unsigned int )i <= 7U) { index = 17U; } else { index = 1U; } tempval = hwinfo[(int )index + 101]; rtlefuse->txpwr_legacyhtdiff[0][(int )i] = (unsigned int )tempval & 15U; rtlefuse->txpwr_legacyhtdiff[1][(int )i] = (u8 )((int )tempval >> 4); tempval = hwinfo[109]; rtlefuse->txpwr_safetyflag = (unsigned int )tempval & 1U; i = (u16 )((int )i + 1); ldv_51427: ; if ((unsigned int )i <= 13U) { goto ldv_51426; } else { } rtlefuse->eeprom_regulatory = 0U; if ((unsigned int )rtlefuse->eeprom_version > 1U) { if ((unsigned int )rtlefuse->eeprom_version > 3U) { rtlefuse->eeprom_regulatory = (unsigned int )hwinfo[109] & 7U; } else { rtlefuse->eeprom_regulatory = (unsigned int )hwinfo[109] & 1U; } } else { } { tmp___46 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___46 != 0L) { { printk("\017rtl8192se: eeprom_regulatory = 0x%x\n", (int )rtlefuse->eeprom_regulatory); } } else { } i = 0U; goto ldv_51430; ldv_51429: { tmp___47 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___47 != 0L) { { printk("\017rtl8192se: RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", (int )i, (int )rtlefuse->txpwr_ht20diff[0][(int )i]); } } else { } i = (u16 )((int )i + 1); ldv_51430: ; if ((unsigned int )i <= 13U) { goto ldv_51429; } else { } i = 0U; goto ldv_51433; ldv_51432: { tmp___48 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___48 != 0L) { { printk("\017rtl8192se: RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", (int )i, (int )rtlefuse->txpwr_legacyhtdiff[0][(int )i]); } } else { } i = (u16 )((int )i + 1); ldv_51433: ; if ((unsigned int )i <= 13U) { goto ldv_51432; } else { } i = 0U; goto ldv_51436; ldv_51435: { tmp___49 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___49 != 0L) { { printk("\017rtl8192se: RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", (int )i, (int )rtlefuse->txpwr_ht20diff[1][(int )i]); } } else { } i = (u16 )((int )i + 1); ldv_51436: ; if ((unsigned int )i <= 13U) { goto ldv_51435; } else { } i = 0U; goto ldv_51439; ldv_51438: { tmp___50 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___50 != 0L) { { printk("\017rtl8192se: RF-B Legacy to HT40 Diff[%d] = 0x%x\n", (int )i, (int )rtlefuse->txpwr_legacyhtdiff[1][(int )i]); } } else { } i = (u16 )((int )i + 1); ldv_51439: ; if ((unsigned int )i <= 13U) { goto ldv_51438; } else { } { tmp___51 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___51 != 0L) { { printk("\017rtl8192se: TxPwrSafetyFlag = %d\n", (int )rtlefuse->txpwr_safetyflag); } } else { } { tempval = hwinfo[118]; rtlefuse->eeprom_txpowerdiff = (u16 )tempval; rtlefuse->legacy_httxpowerdiff = rtlefuse->txpwr_legacyhtdiff[0][0]; tmp___52 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___52 != 0L) { { printk("\017rtl8192se: TxPowerDiff = %#x\n", (int )rtlefuse->eeprom_txpowerdiff); } } else { } { usvalue = *((u16 *)(& hwinfo) + 116U); rtlefuse->eeprom_tssi[0] = (unsigned char )((int )usvalue >> 8); usvalue = (u16 )hwinfo[117]; rtlefuse->eeprom_tssi[1] = (unsigned char )usvalue; tmp___53 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___53 != 0L) { { printk("\017rtl8192se: TSSI_A = 0x%x, TSSI_B = 0x%x\n", (int )rtlefuse->eeprom_tssi[0], (int )rtlefuse->eeprom_tssi[1]); } } else { } { tempval = hwinfo[119]; rtlefuse->eeprom_thermalmeter = tempval; tmp___54 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___54 != 0L) { { printk("\017rtl8192se: thermalmeter = 0x%x\n", (int )rtlefuse->eeprom_thermalmeter); } } else { } { rtlefuse->thermalmeter[0] = (unsigned int )rtlefuse->eeprom_thermalmeter & 31U; rtlefuse->tssi_13dbm = (unsigned int )((u16 )rtlefuse->eeprom_thermalmeter) * 100U; tempval = (u8 )((int )hwinfo[121] >> 4); rtlefuse->eeprom_crystalcap = tempval; rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap; rtlefuse->eeprom_channelplan = (u16 )hwinfo[123]; rtlefuse->txpwr_fromeprom = 1; tmp___55 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___55 != 0L) { { printk("\017rtl8192se: EEPROM ChannelPlan = 0x%4x\n", (int )rtlefuse->eeprom_channelplan); } } else { } tempval = hwinfo[126]; if ((unsigned int )tempval == 0U) { rtlphy->rf_type = 2U; } else if ((unsigned int )tempval == 1U) { rtlphy->rf_type = 1U; } else if ((unsigned int )tempval == 2U) { rtlphy->rf_type = 1U; } else if ((unsigned int )tempval == 3U) { rtlphy->rf_type = 0U; } else { } rtlefuse->b1x1_recvcombine = 0; if ((unsigned int )rtlphy->rf_type == 1U) { { tempval = rtl_read_byte(rtlpriv, 7U); } if (((unsigned long )tempval & 1UL) == 0UL) { { rtlefuse->b1x1_recvcombine = 1; tmp___58 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___58 != 0L) { { tmp___59 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___59 != 0L) { { tmp___56 = preempt_count(); tmp___57 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RF_TYPE=1T2R but only 1SS\n", "_rtl92se_read_adapter_info", (unsigned long )tmp___57 & 2096896UL, ((unsigned long )tmp___56 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } } else { } { rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine; rtlefuse->eeprom_oemid = *((u8 *)(& hwinfo) + 122UL); tmp___62 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___62 != 0L) { { tmp___63 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___63 != 0L) { { tmp___60 = preempt_count(); tmp___61 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> EEPROM Customer ID: 0x%2x", "_rtl92se_read_adapter_info", (unsigned long )tmp___61 & 2096896UL, ((unsigned long )tmp___60 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_oemid); } } else { } } else { } rtlefuse->channel_plan = 11U; return; } } void rtl92se_read_eeprom_info(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; u8 tmp_u1b ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; tmp_u1b = 0U; tmp_u1b = rtl_read_byte(rtlpriv, 10U); } if (((unsigned long )tmp_u1b & 16UL) != 0UL) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Boot from EEPROM\n", "rtl92se_read_eeprom_info", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlefuse->epromtype = 0; } else { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Boot from EFUSE\n", "rtl92se_read_eeprom_info", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlefuse->epromtype = 2; } if (((unsigned long )tmp_u1b & 32UL) != 0UL) { { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Autoload OK\n", "rtl92se_read_eeprom_info", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtlefuse->autoload_failflag = 0U; _rtl92se_read_adapter_info(hw); } } else { { tmp___13 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Autoload ERR!!\n", "rtl92se_read_eeprom_info", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlefuse->autoload_failflag = 1U; } return; } } static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw , struct ieee80211_sta *sta ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_hal *rtlhal ; u32 ratr_value ; u8 ratr_index ; u8 nmode ; u8 mimo_ps ; u16 shortgi_rate ; u32 tmp_ratr_value ; u8 curtxbw_40mhz ; u8 curshortgi_40mhz ; u8 curshortgi_20mhz ; enum wireless_mode wirelessmode ; u32 ratr_mask ; u8 tmp ; u8 tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; ratr_index = 0U; nmode = mac->ht_enable; mimo_ps = 1U; shortgi_rate = 0U; tmp_ratr_value = 0U; curtxbw_40mhz = mac->bw_40; curshortgi_40mhz = ((int )sta->ht_cap.cap & 64) != 0; curshortgi_20mhz = ((int )sta->ht_cap.cap & 32) != 0; wirelessmode = (enum wireless_mode )mac->mode; if ((unsigned int )rtlhal->current_bandtype == 1U) { ratr_value = sta->supp_rates[1] << 4; } else { ratr_value = sta->supp_rates[0]; } if ((unsigned int )mac->opmode == 1U) { ratr_value = 4095U; } else { } ratr_value = ratr_value | (u32 )(((int )sta->ht_cap.mcs.rx_mask[1] << 20) | ((int )sta->ht_cap.mcs.rx_mask[0] << 12)); { if ((unsigned int )wirelessmode == 2U) { goto case_2; } else { } if ((unsigned int )wirelessmode == 4U) { goto case_4; } else { } if ((unsigned int )wirelessmode == 16U) { goto case_16; } else { } if ((unsigned int )wirelessmode == 32U) { goto case_32; } else { } goto switch_default; case_2: /* CIL Label */ ratr_value = ratr_value & 13U; goto ldv_51467; case_4: /* CIL Label */ ratr_value = ratr_value & 4085U; goto ldv_51467; case_16: /* CIL Label */ ; case_32: /* CIL Label */ nmode = 1U; if ((unsigned int )mimo_ps == 2U) { ratr_value = ratr_value & 520197U; } else { { tmp = get_rf_type(rtlphy); } if ((unsigned int )tmp == 1U) { goto _L; } else { { tmp___0 = get_rf_type(rtlphy); } if ((unsigned int )tmp___0 == 0U) { _L: /* CIL Label */ if ((unsigned int )curtxbw_40mhz != 0U) { ratr_mask = 1044501U; } else { ratr_mask = 1044485U; } } else if ((unsigned int )curtxbw_40mhz != 0U) { ratr_mask = 252702741U; } else { ratr_mask = 252702725U; } } ratr_value = ratr_value & ratr_mask; } goto ldv_51467; switch_default: /* CIL Label */ ; if ((unsigned int )rtlphy->rf_type == 1U) { ratr_value = ratr_value & 1044735U; } else { ratr_value = ratr_value & 252702975U; } goto ldv_51467; switch_break: /* CIL Label */ ; } ldv_51467: ; if (rtlpriv->rtlhal.version != 0U) { ratr_value = ratr_value & 268435455U; } else if (rtlpriv->rtlhal.version == 0U) { ratr_value = ratr_value & 268435440U; } else { } if ((unsigned int )nmode != 0U && (((unsigned int )curtxbw_40mhz != 0U && (unsigned int )curshortgi_40mhz != 0U) || ((unsigned int )curtxbw_40mhz == 0U && (unsigned int )curshortgi_20mhz != 0U))) { ratr_value = ratr_value | 268435456U; tmp_ratr_value = ratr_value >> 12; shortgi_rate = 15U; goto ldv_51475; ldv_51474: ; if (((u32 )(1 << (int )shortgi_rate) & tmp_ratr_value) != 0U) { goto ldv_51473; } else { } shortgi_rate = (u16 )((int )shortgi_rate - 1); ldv_51475: ; if ((unsigned int )shortgi_rate != 0U) { goto ldv_51474; } else { } ldv_51473: { shortgi_rate = (u16 )((((int )((short )((int )shortgi_rate << 12)) | (int )((short )((int )shortgi_rate << 8))) | (int )((short )((int )shortgi_rate << 4))) | (int )((short )shortgi_rate)); rtl_write_byte(rtlpriv, 502U, (int )((u8 )shortgi_rate)); } } else { } { rtl_write_dword(rtlpriv, (u32 )(((int )ratr_index + 97) * 4), ratr_value); } if ((ratr_value & 4294963200U) != 0U) { { rtl92s_phy_set_fw_cmd(hw, 8); } } else { { rtl92s_phy_set_fw_cmd(hw, 9); } } { tmp___4 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4194304ULL) != 0ULL, 0L); } if (tmp___4 != 0L) { { tmp___5 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___5 != 0L) { { tmp___1 = rtl_read_dword(rtlpriv, 388U); tmp___2 = preempt_count(); tmp___3 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> %x\n", "rtl92se_update_hal_rate_table", (unsigned long )tmp___3 & 2096896UL, ((unsigned long )tmp___2 & 0xffffffffffdfffffUL) != 0UL, tmp___1); } } else { } } else { } return; } } static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi_level ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_hal *rtlhal ; struct rtl_sta_info *sta_entry ; u32 ratr_bitmap ; u8 ratr_index ; u8 curtxbw_40mhz ; u8 curshortgi_40mhz ; u8 curshortgi_20mhz ; enum wireless_mode wirelessmode ; bool shortgi ; u32 ratr_value ; u8 shortgi_rate ; u32 mask ; u32 band ; bool bmulticast ; u8 macid ; u8 mimo_ps ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; sta_entry = (struct rtl_sta_info *)0; ratr_index = 0U; curtxbw_40mhz = (unsigned int )sta->bandwidth != 0U; curshortgi_40mhz = ((int )sta->ht_cap.cap & 64) != 0; curshortgi_20mhz = ((int )sta->ht_cap.cap & 32) != 0; wirelessmode = 0; shortgi = 0; ratr_value = 0U; shortgi_rate = 0U; mask = 0U; band = 0U; bmulticast = 0; macid = 0U; mimo_ps = 1U; sta_entry = (struct rtl_sta_info *)(& sta->drv_priv); wirelessmode = (enum wireless_mode )sta_entry->wireless_mode; if ((unsigned int )mac->opmode == 2U) { curtxbw_40mhz = mac->bw_40; } else if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 1U) { macid = (unsigned int )((u8 )sta->aid) + 1U; } else { } if ((unsigned int )rtlhal->current_bandtype == 1U) { ratr_bitmap = sta->supp_rates[1] << 4; } else { ratr_bitmap = sta->supp_rates[0]; } if ((unsigned int )mac->opmode == 1U) { ratr_bitmap = 4095U; } else { } ratr_bitmap = ratr_bitmap | (u32 )(((int )sta->ht_cap.mcs.rx_mask[1] << 20) | ((int )sta->ht_cap.mcs.rx_mask[0] << 12)); { if ((unsigned int )wirelessmode == 2U) { goto case_2; } else { } if ((unsigned int )wirelessmode == 4U) { goto case_4; } else { } if ((unsigned int )wirelessmode == 1U) { goto case_1; } else { } if ((unsigned int )wirelessmode == 16U) { goto case_16; } else { } if ((unsigned int )wirelessmode == 32U) { goto case_32; } else { } goto switch_default; case_2: /* CIL Label */ band = band | 1U; ratr_index = 6U; if ((ratr_bitmap & 12U) != 0U) { ratr_bitmap = ratr_bitmap & 13U; } else { ratr_bitmap = ratr_bitmap & 15U; } goto ldv_51502; case_4: /* CIL Label */ band = band | 3U; ratr_index = 4U; if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 3840U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 4080U; } else { ratr_bitmap = ratr_bitmap & 4085U; } goto ldv_51502; case_1: /* CIL Label */ band = band | 4U; ratr_index = 8U; ratr_bitmap = ratr_bitmap & 4080U; goto ldv_51502; case_16: /* CIL Label */ ; case_32: /* CIL Label */ band = band | 11U; ratr_index = 0U; if ((unsigned int )mimo_ps == 2U) { if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 458752U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 520192U; } else { ratr_bitmap = ratr_bitmap & 520197U; } } else if ((unsigned int )rtlphy->rf_type <= 1U) { if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 983040U; } else if ((unsigned int )rssi_level == 3U) { ratr_bitmap = ratr_bitmap & 1032192U; } else if ((unsigned int )rssi_level == 5U) { ratr_bitmap = ratr_bitmap & 1044480U; } else if ((unsigned int )curtxbw_40mhz != 0U) { ratr_bitmap = ratr_bitmap & 1044501U; } else { ratr_bitmap = ratr_bitmap & 1044485U; } } else if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 261029888U; } else if ((unsigned int )rssi_level == 3U) { ratr_bitmap = ratr_bitmap & 261079040U; } else if ((unsigned int )rssi_level == 5U) { ratr_bitmap = ratr_bitmap & 261091328U; } else if ((unsigned int )curtxbw_40mhz != 0U) { ratr_bitmap = ratr_bitmap & 261091349U; } else { ratr_bitmap = ratr_bitmap & 261091333U; } if (((unsigned int )curtxbw_40mhz != 0U && (unsigned int )curshortgi_40mhz != 0U) || ((unsigned int )curtxbw_40mhz == 0U && (unsigned int )curshortgi_20mhz != 0U)) { if ((unsigned int )macid == 0U) { shortgi = 1; } else if ((unsigned int )macid == 1U) { shortgi = 0; } else { } } else { } goto ldv_51502; switch_default: /* CIL Label */ band = band | 11U; ratr_index = 0U; if ((unsigned int )rtlphy->rf_type == 1U) { ratr_bitmap = ratr_bitmap & 1044735U; } else { ratr_bitmap = ratr_bitmap & 261091583U; } goto ldv_51502; switch_break: /* CIL Label */ ; } ldv_51502: sta_entry->ratr_index = ratr_index; if (rtlpriv->rtlhal.version != 0U) { ratr_bitmap = ratr_bitmap & 268435455U; } else if (rtlpriv->rtlhal.version == 0U) { ratr_bitmap = ratr_bitmap & 268435440U; } else { } if ((int )shortgi) { ratr_bitmap = ratr_bitmap | 268435456U; ratr_value = ratr_bitmap >> 12; shortgi_rate = 15U; goto ldv_51510; ldv_51509: ; if (((u32 )(1 << (int )shortgi_rate) & ratr_value) != 0U) { goto ldv_51508; } else { } shortgi_rate = (u8 )((int )shortgi_rate - 1); ldv_51510: ; if ((unsigned int )shortgi_rate != 0U) { goto ldv_51509; } else { } ldv_51508: { shortgi_rate = (u8 )((((int )((signed char )((int )shortgi_rate << 12)) | (int )((signed char )((int )shortgi_rate << 8))) | (int )((signed char )((int )shortgi_rate << 4))) | (int )((signed char )shortgi_rate)); rtl_write_byte(rtlpriv, 502U, (int )shortgi_rate); } } else { } { mask = mask | ((u32 )(((int )bmulticast << 9) | (((int )macid & 31) << 4)) | (band & 15U)); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4194304ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> mask = %x, bitmap = %x\n", "rtl92se_update_hal_rate_mask", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, mask, ratr_bitmap); } } else { } } else { } { rtl_write_dword(rtlpriv, 708U, ratr_bitmap); rtl_write_dword(rtlpriv, 704U, (mask << 8) | 4244635810U); } if ((unsigned int )macid != 0U) { sta_entry->ratr_index = ratr_index; } else { } return; } } void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi_level ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((int )rtlpriv->dm.useramask) { { rtl92se_update_hal_rate_mask(hw, sta, (int )rssi_level); } } else { { rtl92se_update_hal_rate_table(hw, sta); } } return; } } void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 sifs_timer ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 17, & mac->slot_time); sifs_timer = 3598U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 14, (u8 *)(& sifs_timer)); } return; } } bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw , u8 *valid ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_pci *rtlpci ; enum rf_pwrstate rfpwr_toset ; unsigned long flag ; bool actuallyset ; bool turnonbypowerdomain ; raw_spinlock_t *tmp ; u8 tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; long tmp___8 ; raw_spinlock_t *tmp___9 ; raw_spinlock_t *tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; flag = 0UL; actuallyset = 0; turnonbypowerdomain = 0; if ((int )rtlpci->up_first_time || (int )rtlpci->being_init_adapter) { return (0); } else { } if ((int )ppsc->swrf_processing) { return (0); } else { } { tmp = spinlock_check(& rtlpriv->locks.rf_ps_lock); flag = _raw_spin_lock_irqsave(tmp); } if ((int )ppsc->rfchange_inprogress) { { spin_unlock_irqrestore(& rtlpriv->locks.rf_ps_lock, flag); } return (0); } else { { ppsc->rfchange_inprogress = 1; spin_unlock_irqrestore(& rtlpriv->locks.rf_ps_lock, flag); } } if (((unsigned long )ppsc->cur_ps_level & 8UL) != 0UL) { { _rtl92se_power_domain_init(hw); turnonbypowerdomain = 1; } } else { } { tmp___0 = _rtl92se_rf_onoff_detect(hw); rfpwr_toset = (enum rf_pwrstate )tmp___0; } if ((int )ppsc->hwradiooff && (unsigned int )rfpwr_toset == 0U) { { tmp___3 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___4 != 0L) { { tmp___1 = preempt_count(); tmp___2 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RFKILL-HW Radio ON, RF ON\n", "rtl92se_gpio_radio_on_off_checking", (unsigned long )tmp___2 & 2096896UL, ((unsigned long )tmp___1 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rfpwr_toset = 0; ppsc->hwradiooff = 0; actuallyset = 1; } else if (! ppsc->hwradiooff && (unsigned int )rfpwr_toset == 2U) { { tmp___7 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___7 != 0L) { { tmp___8 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___8 != 0L) { { tmp___5 = preempt_count(); tmp___6 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RFKILL-HW Radio OFF, RF OFF\n", "rtl92se_gpio_radio_on_off_checking", (unsigned long )tmp___6 & 2096896UL, ((unsigned long )tmp___5 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rfpwr_toset = 2; ppsc->hwradiooff = 1; actuallyset = 1; } else { } if ((int )actuallyset) { { tmp___9 = spinlock_check(& rtlpriv->locks.rf_ps_lock); flag = _raw_spin_lock_irqsave(tmp___9); ppsc->rfchange_inprogress = 0; spin_unlock_irqrestore(& rtlpriv->locks.rf_ps_lock, flag); } } else { if (((unsigned long )ppsc->reg_rfps_level & 8UL) != 0UL && (int )turnonbypowerdomain) { { _rtl92s_phy_set_rfhalt(hw); ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; } } else { } { tmp___10 = spinlock_check(& rtlpriv->locks.rf_ps_lock); flag = _raw_spin_lock_irqsave(tmp___10); ppsc->rfchange_inprogress = 0; spin_unlock_irqrestore(& rtlpriv->locks.rf_ps_lock, flag); } } *valid = 1U; return ((bool )(! ((int )ppsc->hwradiooff != 0))); } } void rtl92se_set_key(struct ieee80211_hw *hw , u32 key_index , u8 *p_macaddr , bool is_group , u8 enc_algo , bool is_wepkey , bool clear_all ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; u8 *macaddr ; u32 entry_id ; bool is_pairwise ; u8 cam_const_addr[4U][6U] ; u8 cam_const_broad[6U] ; u8 idx ; u8 cam_offset ; u8 clear_number ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u8 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; macaddr = p_macaddr; entry_id = 0U; is_pairwise = 0; cam_const_addr[0][0] = 0U; cam_const_addr[0][1] = 0U; cam_const_addr[0][2] = 0U; cam_const_addr[0][3] = 0U; cam_const_addr[0][4] = 0U; cam_const_addr[0][5] = 0U; cam_const_addr[1][0] = 0U; cam_const_addr[1][1] = 0U; cam_const_addr[1][2] = 0U; cam_const_addr[1][3] = 0U; cam_const_addr[1][4] = 0U; cam_const_addr[1][5] = 1U; cam_const_addr[2][0] = 0U; cam_const_addr[2][1] = 0U; cam_const_addr[2][2] = 0U; cam_const_addr[2][3] = 0U; cam_const_addr[2][4] = 0U; cam_const_addr[2][5] = 2U; cam_const_addr[3][0] = 0U; cam_const_addr[3][1] = 0U; cam_const_addr[3][2] = 0U; cam_const_addr[3][3] = 0U; cam_const_addr[3][4] = 0U; cam_const_addr[3][5] = 3U; cam_const_broad[0] = 255U; cam_const_broad[1] = 255U; cam_const_broad[2] = 255U; cam_const_broad[3] = 255U; cam_const_broad[4] = 255U; cam_const_broad[5] = 255U; if ((int )clear_all) { { idx = 0U; cam_offset = 0U; clear_number = 5U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> clear_all\n", "rtl92se_set_key", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } idx = 0U; goto ldv_51567; ldv_51566: { rtl_cam_mark_invalid(hw, (int )cam_offset + (int )idx); rtl_cam_empty_entry(hw, (int )cam_offset + (int )idx); } if ((unsigned int )idx <= 4U) { { memset((void *)(& rtlpriv->sec.key_buf) + (unsigned long )idx, 0, 61UL); rtlpriv->sec.key_len[(int )idx] = 0U; } } else { } idx = (u8 )((int )idx + 1); ldv_51567: ; if ((int )idx < (int )clear_number) { goto ldv_51566; } else { } } else { { if ((int )enc_algo == 1) { goto case_1; } else { } if ((int )enc_algo == 5) { goto case_5; } else { } if ((int )enc_algo == 2) { goto case_2; } else { } if ((int )enc_algo == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ enc_algo = 1U; goto ldv_51570; case_5: /* CIL Label */ enc_algo = 5U; goto ldv_51570; case_2: /* CIL Label */ enc_algo = 2U; goto ldv_51570; case_4: /* CIL Label */ enc_algo = 4U; goto ldv_51570; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> switch case not processed\n", "rtl92se_set_key", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } enc_algo = 2U; goto ldv_51570; switch_break: /* CIL Label */ ; } ldv_51570: ; if ((int )is_wepkey || (int )rtlpriv->sec.use_defaultkey) { macaddr = (u8 *)(& cam_const_addr) + (unsigned long )key_index; entry_id = key_index; } else if ((int )is_group) { macaddr = (u8 *)(& cam_const_broad); entry_id = key_index; } else { if ((unsigned int )mac->opmode == 3U) { { tmp___7 = rtl_cam_get_free_entry(hw, p_macaddr); entry_id = (u32 )tmp___7; } if (entry_id > 31U) { { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Can not find free hw security cam entry\n", "rtl92se_set_key", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } } else { entry_id = 4U; } key_index = 0U; is_pairwise = 1; } if ((unsigned int )rtlpriv->sec.key_len[key_index] == 0U) { { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> delete one entry, entry_id is %d\n", "rtl92se_set_key", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL, entry_id); } } else { } } else { } if ((unsigned int )mac->opmode == 3U) { { rtl_cam_del_entry(hw, p_macaddr); } } else { } { rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); } } else { { tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> add one entry\n", "rtl92se_set_key", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((int )is_pairwise) { { tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> set Pairwise key\n", "rtl92se_set_key", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )key_index); } } else { { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> set group key\n", "rtl92se_set_key", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((unsigned int )mac->opmode == 1U) { { rtl_cam_add_one_entry(hw, (u8 *)(& rtlefuse->dev_addr), 0U, 4U, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )entry_id); } } else { } { rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )entry_id); } } } } return; } } void rtl92se_suspend(struct ieee80211_hw *hw ) { struct rtl_pci *rtlpci ; { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlpci->up_first_time = 1; return; } } void rtl92se_resume(struct ieee80211_hw *hw ) { struct rtl_pci *rtlpci ; u32 val ; { { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; pci_read_config_dword((struct pci_dev const *)rtlpci->pdev, 64, & val); } if ((val & 65280U) != 0U) { { pci_write_config_dword((struct pci_dev const *)rtlpci->pdev, 64, val & 4294902015U); } } else { } return; } } void rtl92se_allow_all_destaddr(struct ieee80211_hw *hw , bool allow_all_da , bool write_into_reg ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; if ((int )allow_all_da) { rtlpci->receive_config = rtlpci->receive_config | 1U; } else { rtlpci->receive_config = rtlpci->receive_config & 4294967294U; } if ((int )write_into_reg) { { rtl_write_dword(rtlpriv, 72U, rtlpci->receive_config); } } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2097156ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> receive_config=0x%08X, write_into_reg=%d\n", "rtl92se_allow_all_destaddr", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, rtlpci->receive_config, (int )write_into_reg); } } else { } } else { } return; } } void rtl92se_init_sw_leds(struct ieee80211_hw *hw ) ; void rtl92se_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) ; static void _rtl92se_init_led(struct ieee80211_hw *hw , struct rtl_led *pled , enum rtl_led_pin ledpin ) { { pled->hw = (void *)hw; pled->ledpin = ledpin; pled->ledon = 0; return; } } void rtl92se_init_sw_leds(struct ieee80211_hw *hw ) { struct rtl_pci_priv *pcipriv ; { { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); _rtl92se_init_led(hw, & pcipriv->ledctl.sw_led0, 1); _rtl92se_init_led(hw, & pcipriv->ledctl.sw_led1, 2); } return; } } void rtl92se_sw_led_on(struct ieee80211_hw *hw , struct rtl_led *pled ) { u8 ledcfg ; struct rtl_priv *rtlpriv ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> LedAddr:%X ledpin=%d\n", "rtl92se_sw_led_on", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, 754, (unsigned int )pled->ledpin); } } else { } } else { } { ledcfg = rtl_read_byte(rtlpriv, 754U); } { if ((unsigned int )pled->ledpin == 0U) { goto case_0; } else { } if ((unsigned int )pled->ledpin == 1U) { goto case_1; } else { } if ((unsigned int )pled->ledpin == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_50288; case_1: /* CIL Label */ { rtl_write_byte(rtlpriv, 754U, (int )ledcfg & 240); } goto ldv_50288; case_2: /* CIL Label */ { rtl_write_byte(rtlpriv, 754U, (int )ledcfg & 15); } goto ldv_50288; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> switch case not processed\n", "rtl92se_sw_led_on", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_50288; switch_break: /* CIL Label */ ; } ldv_50288: pled->ledon = 1; return; } } void rtl92se_sw_led_off(struct ieee80211_hw *hw , struct rtl_led *pled ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; u8 ledcfg ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned long )rtlpriv == (unsigned long )((struct rtl_priv *)0) || rtlpriv->max_fw_size != 0) { return; } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> LedAddr:%X ledpin=%d\n", "rtl92se_sw_led_off", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, 754, (unsigned int )pled->ledpin); } } else { } } else { } { ledcfg = rtl_read_byte(rtlpriv, 754U); } { if ((unsigned int )pled->ledpin == 0U) { goto case_0; } else { } if ((unsigned int )pled->ledpin == 1U) { goto case_1; } else { } if ((unsigned int )pled->ledpin == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_50301; case_1: /* CIL Label */ ledcfg = (unsigned int )ledcfg & 240U; if ((int )pcipriv->ledctl.led_opendrain) { { rtl_write_byte(rtlpriv, 754U, (int )((unsigned int )ledcfg | 2U)); } } else { { rtl_write_byte(rtlpriv, 754U, (int )((unsigned int )ledcfg | 8U)); } } goto ldv_50301; case_2: /* CIL Label */ { ledcfg = (unsigned int )ledcfg & 15U; rtl_write_byte(rtlpriv, 754U, (int )((unsigned int )ledcfg | 8U)); } goto ldv_50301; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> switch case not processed\n", "rtl92se_sw_led_off", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_50301; switch_break: /* CIL Label */ ; } ldv_50301: pled->ledon = 0; return; } } static void _rtl92se_sw_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) { struct rtl_pci_priv *pcipriv ; struct rtl_led *pLed0 ; { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); pLed0 = & pcipriv->ledctl.sw_led0; { if ((unsigned int )ledaction == 1U) { goto case_1; } else { } if ((unsigned int )ledaction == 2U) { goto case_2; } else { } if ((unsigned int )ledaction == 3U) { goto case_3; } else { } if ((unsigned int )ledaction == 7U) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ { rtl92se_sw_led_on(hw, pLed0); } goto ldv_50314; case_7: /* CIL Label */ { rtl92se_sw_led_off(hw, pLed0); } goto ldv_50314; switch_default: /* CIL Label */ ; goto ldv_50314; switch_break: /* CIL Label */ ; } ldv_50314: ; return; } } void rtl92se_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; if (ppsc->rfoff_reason > 536870912U && ((((unsigned int )ledaction - 4U <= 2U || (unsigned int )ledaction == 2U) || ((unsigned int )ledaction == 3U || (unsigned int )ledaction == 8U)) || (unsigned int )ledaction == 1U)) { return; } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> ledaction %d\n", "rtl92se_led_control", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )ledaction); } } else { } } else { } { _rtl92se_sw_led_control(hw, ledaction); } return; } } extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField20.rlock); } return; } } __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField20.rlock); } return; } } extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; extern bool rtl_ps_enable_nic(struct ieee80211_hw * ) ; extern bool rtl_ps_disable_nic(struct ieee80211_hw * ) ; u32 rtl92s_phy_query_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) ; void rtl92s_phy_set_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) ; void rtl92s_phy_scan_operation_backup(struct ieee80211_hw *hw , u8 operation ) ; void rtl92s_phy_set_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) ; void rtl92s_phy_set_bw_mode(struct ieee80211_hw *hw , enum nl80211_channel_type ch_type ) ; u8 rtl92s_phy_sw_chnl(struct ieee80211_hw *hw ) ; bool rtl92s_phy_set_rf_power_state(struct ieee80211_hw *hw , enum rf_pwrstate rfpwr_state ) ; u8 rtl92s_phy_config_rf(struct ieee80211_hw *hw , enum radio_path rfpath ) ; void rtl92s_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw , u8 bandwidth ) ; bool rtl92s_phy_rf6052_config(struct ieee80211_hw *hw ) ; void rtl92s_phy_rf6052_set_ccktxpower(struct ieee80211_hw *hw , u8 pwrlevel ) ; void rtl92s_phy_rf6052_set_ofdmtxpower(struct ieee80211_hw *hw , u8 *p_pwrlevel , u8 chnl ) ; u32 rtl8192sephy_reg_2t2rarray[372U] ; u32 rtl8192sephy_changeto_1t1rarray[48U] ; u32 rtl8192sephy_changeto_1t2rarray[45U] ; u32 rtl8192sephy_reg_array_pg[84U] ; u32 rtl8192seradioa_1t_array[202U] ; u32 rtl8192seradiob_array[22U] ; u32 rtl8192seradiob_gm_array[10U] ; u32 rtl8192semac_2t_array[106U] ; u32 rtl8192seagctab_array[320U] ; static u32 _rtl92s_phy_calculate_bit_shift(u32 bitmask ) { u32 i ; { i = 0U; goto ldv_50765; ldv_50764: ; if ((int )(bitmask >> (int )i) & 1) { goto ldv_50763; } else { } i = i + 1U; ldv_50765: ; if (i <= 31U) { goto ldv_50764; } else { } ldv_50763: ; return (i); } } u32 rtl92s_phy_query_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 returnvalue ; u32 originalvalue ; u32 bitshift ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; returnvalue = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> regaddr(%#x), bitmask(%#x)\n", "rtl92s_phy_query_bb_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask); } } else { } } else { } { originalvalue = rtl_read_dword(rtlpriv, regaddr); bitshift = _rtl92s_phy_calculate_bit_shift(bitmask); returnvalue = (originalvalue & bitmask) >> (int )bitshift; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> BBR MASK=0x%x Addr[0x%x]=0x%x\n", "rtl92s_phy_query_bb_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, bitmask, regaddr, originalvalue); } } else { } } else { } return (returnvalue); } } void rtl92s_phy_set_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; u32 originalvalue ; u32 bitshift ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x)\n", "rtl92s_phy_set_bb_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data); } } else { } } else { } if (bitmask != 4294967295U) { { originalvalue = rtl_read_dword(rtlpriv, regaddr); bitshift = _rtl92s_phy_calculate_bit_shift(bitmask); data = (originalvalue & ~ bitmask) | (data << (int )bitshift); } } else { } { rtl_write_dword(rtlpriv, regaddr, data); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x)\n", "rtl92s_phy_set_bb_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data); } } else { } } else { } return; } } static u32 _rtl92s_phy_rf_serial_read(struct ieee80211_hw *hw , enum radio_path rfpath , u32 offset ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct bb_reg_def *pphyreg ; u32 newoffset ; u32 tmplong ; u32 tmplong2 ; u8 rfpi_enable ; u32 retvalue ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; unsigned long __ms___1 ; unsigned long tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; pphyreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; rfpi_enable = 0U; retvalue = 0U; offset = offset & 63U; newoffset = offset; tmplong = rtl_get_bbreg(hw, 2084U, 4294967295U); } if ((unsigned int )rfpath == 0U) { tmplong2 = tmplong; } else { { tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, 4294967295U); } } { tmplong2 = ((tmplong2 & 2155872255U) | (newoffset << 23)) | 2147483648U; rtl_set_bbreg(hw, 2084U, 4294967295U, tmplong & 2147483647U); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_50801; ldv_50800: { __const_udelay(4295000UL); } ldv_50801: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_50800; } else { } } { rtl_set_bbreg(hw, pphyreg->rfhssi_para2, 4294967295U, tmplong2); } if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_50805; ldv_50804: { __const_udelay(4295000UL); } ldv_50805: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_50804; } else { } } { rtl_set_bbreg(hw, 2084U, 4294967295U, tmplong | 2147483648U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_50809; ldv_50808: { __const_udelay(4295000UL); } ldv_50809: tmp___1 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___1 != 0UL) { goto ldv_50808; } else { } } if ((unsigned int )rfpath == 0U) { { tmp___2 = rtl_get_bbreg(hw, 2080U, 256U); rfpi_enable = (unsigned char )tmp___2; } } else if ((unsigned int )rfpath == 1U) { { tmp___3 = rtl_get_bbreg(hw, 2088U, 256U); rfpi_enable = (unsigned char )tmp___3; } } else { } if ((unsigned int )rfpi_enable != 0U) { { retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi, 1048575U); } } else { { retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb, 1048575U); } } { retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb, 1048575U); tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RFR-%d Addr[0x%x]=0x%x\n", "_rtl92s_phy_rf_serial_read", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rfpath, pphyreg->rf_rb, retvalue); } } else { } } else { } return (retvalue); } } static void _rtl92s_phy_rf_serial_write(struct ieee80211_hw *hw , enum radio_path rfpath , u32 offset , u32 data ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct bb_reg_def *pphyreg ; u32 data_and_addr ; u32 newoffset ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; pphyreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; data_and_addr = 0U; offset = offset & 63U; newoffset = offset; data_and_addr = ((newoffset << 20) | (data & 1048575U)) & 268435455U; rtl_set_bbreg(hw, pphyreg->rf3wire_offset, 4294967295U, data_and_addr); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RFW-%d Addr[0x%x]=0x%x\n", "_rtl92s_phy_rf_serial_write", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rfpath, pphyreg->rf3wire_offset, data_and_addr); } } else { } } else { } return; } } u32 rtl92s_phy_query_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 original_value ; u32 readback_value ; u32 bitshift ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> regaddr(%#x), rfpath(%#x), bitmask(%#x)\n", "rtl92s_phy_query_rf_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, (unsigned int )rfpath, bitmask); } } else { } } else { } { spin_lock(& rtlpriv->locks.rf_lock); original_value = _rtl92s_phy_rf_serial_read(hw, rfpath, regaddr); bitshift = _rtl92s_phy_calculate_bit_shift(bitmask); readback_value = (original_value & bitmask) >> (int )bitshift; spin_unlock(& rtlpriv->locks.rf_lock); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n", "rtl92s_phy_query_rf_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, regaddr, (unsigned int )rfpath, bitmask, original_value); } } else { } } else { } return (readback_value); } } void rtl92s_phy_set_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 original_value ; u32 bitshift ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; if ((((int )rtlphy->rf_pathmap >> (int )rfpath) & 1) == 0) { return; } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", "rtl92s_phy_set_rf_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data, (unsigned int )rfpath); } } else { } } else { } { spin_lock(& rtlpriv->locks.rf_lock); } if (bitmask != 1048575U) { { original_value = _rtl92s_phy_rf_serial_read(hw, rfpath, regaddr); bitshift = _rtl92s_phy_calculate_bit_shift(bitmask); data = (original_value & ~ bitmask) | (data << (int )bitshift); } } else { } { _rtl92s_phy_rf_serial_write(hw, rfpath, regaddr, data); spin_unlock(& rtlpriv->locks.rf_lock); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", "rtl92s_phy_set_rf_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data, (unsigned int )rfpath); } } else { } } else { } return; } } void rtl92s_phy_scan_operation_backup(struct ieee80211_hw *hw , u8 operation ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp___3 = is_hal_stop(rtlhal); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { if ((int )operation == 0) { goto case_0; } else { } if ((int )operation == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ { rtl92s_phy_set_fw_cmd(hw, 15); } goto ldv_50854; case_1: /* CIL Label */ { rtl92s_phy_set_fw_cmd(hw, 16); } goto ldv_50854; switch_default: /* CIL Label */ { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Unknown operation\n", "rtl92s_phy_scan_operation_backup", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_50854; switch_break: /* CIL Label */ ; } ldv_50854: ; } else { } return; } } void rtl92s_phy_set_bw_mode(struct ieee80211_hw *hw , enum nl80211_channel_type ch_type ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; u8 reg_bw_opmode ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Switch to %s bandwidth\n", "rtl92s_phy_set_bw_mode", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->current_chan_bw == 0U ? (char *)"20MHz" : (char *)"40MHz"); } } else { } } else { } if ((unsigned int )rtlphy->set_bwmode_inprogress != 0U) { return; } else { } { tmp___3 = is_hal_stop(rtlhal); } if ((int )tmp___3) { return; } else { } { rtlphy->set_bwmode_inprogress = 1U; reg_bw_opmode = rtl_read_byte(rtlpriv, 515U); rtl_read_byte(rtlpriv, 387U); } { if ((int )rtlphy->current_chan_bw == 0) { goto case_0; } else { } if ((int )rtlphy->current_chan_bw == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ { reg_bw_opmode = (u8 )((unsigned int )reg_bw_opmode | 4U); rtl_write_byte(rtlpriv, 515U, (int )reg_bw_opmode); } goto ldv_50869; case_1: /* CIL Label */ { reg_bw_opmode = (unsigned int )reg_bw_opmode & 251U; rtl_write_byte(rtlpriv, 515U, (int )reg_bw_opmode); } goto ldv_50869; switch_default: /* CIL Label */ { tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl92s_phy_set_bw_mode", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_chan_bw); } } else { } } else { } goto ldv_50869; switch_break: /* CIL Label */ ; } ldv_50869: ; { if ((int )rtlphy->current_chan_bw == 0) { goto case_0___0; } else { } if ((int )rtlphy->current_chan_bw == 1) { goto case_1___0; } else { } goto switch_default___0; case_0___0: /* CIL Label */ { rtl_set_bbreg(hw, 2048U, 1U, 0U); rtl_set_bbreg(hw, 2304U, 1U, 0U); } if (rtlhal->version != 0U) { { rtl_write_byte(rtlpriv, 2180U, 88); } } else { } goto ldv_50873; case_1___0: /* CIL Label */ { rtl_set_bbreg(hw, 2048U, 1U, 1U); rtl_set_bbreg(hw, 2304U, 1U, 1U); rtl_set_bbreg(hw, 2560U, 16U, (u32 )((int )mac->cur_40_prime_sc >> 1)); rtl_set_bbreg(hw, 3328U, 3072U, (u32 )mac->cur_40_prime_sc); } if (rtlhal->version != 0U) { { rtl_write_byte(rtlpriv, 2180U, 24); } } else { } goto ldv_50873; switch_default___0: /* CIL Label */ { tmp___10 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl92s_phy_set_bw_mode", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_chan_bw); } } else { } } else { } goto ldv_50873; switch_break___0: /* CIL Label */ ; } ldv_50873: { rtl92s_phy_rf6052_set_bandwidth(hw, (int )rtlphy->current_chan_bw); rtlphy->set_bwmode_inprogress = 0U; tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> <==\n", "rtl92s_phy_set_bw_mode", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static bool _rtl92s_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable , u32 cmdtableidx , u32 cmdtablesz , enum swchnlcmd_id cmdid , u32 para1 , u32 para2 , u32 msdelay ) { struct swchnlcmd *pcmd ; { if ((unsigned long )cmdtable == (unsigned long )((struct swchnlcmd *)0)) { { printk("\017rtl8192se:%s(): cmdtable cannot be NULL\n", "_rtl92s_phy_set_sw_chnl_cmdarray"); } return (0); } else { } if (cmdtableidx >= cmdtablesz) { return (0); } else { } pcmd = cmdtable + (unsigned long )cmdtableidx; pcmd->cmdid = cmdid; pcmd->para1 = para1; pcmd->para2 = para2; pcmd->msdelay = msdelay; return (1); } } static bool _rtl92s_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw , u8 channel , u8 *stage , u8 *step , u32 *delay ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct swchnlcmd precommoncmd[16U] ; u32 precommoncmdcnt ; struct swchnlcmd postcommoncmd[16U] ; u32 postcommoncmdcnt ; struct swchnlcmd rfdependcmd[16U] ; u32 rfdependcmdcnt ; struct swchnlcmd *currentcmd ; u8 rfpath ; u8 num_total_rfpath ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; currentcmd = (struct swchnlcmd *)0; num_total_rfpath = rtlphy->num_total_rfpath; precommoncmdcnt = 0U; tmp = precommoncmdcnt; precommoncmdcnt = precommoncmdcnt + 1U; _rtl92s_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& precommoncmd), tmp, 16U, 1, 0U, 0U, 0U); tmp___0 = precommoncmdcnt; precommoncmdcnt = precommoncmdcnt + 1U; _rtl92s_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& precommoncmd), tmp___0, 16U, 0, 0U, 0U, 0U); postcommoncmdcnt = 0U; tmp___1 = postcommoncmdcnt; postcommoncmdcnt = postcommoncmdcnt + 1U; _rtl92s_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& postcommoncmd), tmp___1, 16U, 0, 0U, 0U, 0U); rfdependcmdcnt = 0U; } if ((unsigned int )channel - 1U > 13U) { { printk("\017rtl8192se:%s(): invalid channel for Zebra: %d\n", "_rtl92s_phy_sw_chnl_step_by_step", (int )channel); } } else { } { tmp___2 = rfdependcmdcnt; rfdependcmdcnt = rfdependcmdcnt + 1U; _rtl92s_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& rfdependcmd), tmp___2, 16U, 6, 24U, (u32 )channel, 10U); tmp___3 = rfdependcmdcnt; rfdependcmdcnt = rfdependcmdcnt + 1U; _rtl92s_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& rfdependcmd), tmp___3, 16U, 0, 0U, 0U, 0U); } ldv_50922: ; { if ((int )*stage == 0) { goto case_0; } else { } if ((int )*stage == 1) { goto case_1; } else { } if ((int )*stage == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ currentcmd = (struct swchnlcmd *)(& precommoncmd) + (unsigned long )*step; goto ldv_50907; case_1: /* CIL Label */ currentcmd = (struct swchnlcmd *)(& rfdependcmd) + (unsigned long )*step; goto ldv_50907; case_2: /* CIL Label */ currentcmd = (struct swchnlcmd *)(& postcommoncmd) + (unsigned long )*step; goto ldv_50907; switch_break: /* CIL Label */ ; } ldv_50907: ; if ((unsigned int )currentcmd->cmdid == 0U) { if ((unsigned int )*stage == 2U) { return (1); } else { *stage = (u8 )((int )*stage + 1); *step = 0U; goto ldv_50910; } } else { } { if ((unsigned int )currentcmd->cmdid == 1U) { goto case_1___0; } else { } if ((unsigned int )currentcmd->cmdid == 3U) { goto case_3; } else { } if ((unsigned int )currentcmd->cmdid == 4U) { goto case_4; } else { } if ((unsigned int )currentcmd->cmdid == 5U) { goto case_5; } else { } if ((unsigned int )currentcmd->cmdid == 6U) { goto case_6; } else { } goto switch_default; case_1___0: /* CIL Label */ { rtl92s_phy_set_txpower(hw, (int )channel); } goto ldv_50912; case_3: /* CIL Label */ { rtl_write_dword(rtlpriv, currentcmd->para1, currentcmd->para2); } goto ldv_50912; case_4: /* CIL Label */ { rtl_write_word(rtlpriv, currentcmd->para1, (int )((unsigned short )currentcmd->para2)); } goto ldv_50912; case_5: /* CIL Label */ { rtl_write_byte(rtlpriv, currentcmd->para1, (int )((unsigned char )currentcmd->para2)); } goto ldv_50912; case_6: /* CIL Label */ rfpath = 0U; goto ldv_50918; ldv_50917: { rtlphy->rfreg_chnlval[(int )rfpath] = (rtlphy->rfreg_chnlval[(int )rfpath] & 4294966272U) | currentcmd->para2; rtl_set_rfreg(hw, (enum radio_path )rfpath, currentcmd->para1, 1048575U, rtlphy->rfreg_chnlval[(int )rfpath]); rfpath = (u8 )((int )rfpath + 1); } ldv_50918: ; if ((int )rfpath < (int )num_total_rfpath) { goto ldv_50917; } else { } goto ldv_50912; switch_default: /* CIL Label */ { tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> switch case not processed\n", "_rtl92s_phy_sw_chnl_step_by_step", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_50912; switch_break___0: /* CIL Label */ ; } ldv_50912: ; goto ldv_50921; ldv_50910: ; goto ldv_50922; ldv_50921: *delay = currentcmd->msdelay; *step = (u8 )((int )*step + 1); return (0); } } u8 rtl92s_phy_sw_chnl(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; u32 delay ; bool ret ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; unsigned long __ms ; unsigned long tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; long tmp___8 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> switch to channel%d\n", "rtl92s_phy_sw_chnl", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_channel); } } else { } } else { } if ((unsigned int )rtlphy->sw_chnl_inprogress != 0U) { return (0U); } else { } if ((unsigned int )rtlphy->set_bwmode_inprogress != 0U) { return (0U); } else { } { tmp___3 = is_hal_stop(rtlhal); } if ((int )tmp___3) { return (0U); } else { } rtlphy->sw_chnl_inprogress = 1U; rtlphy->sw_chnl_stage = 0U; rtlphy->sw_chnl_step = 0U; ldv_50938: ; if ((unsigned int )rtlphy->sw_chnl_inprogress == 0U) { goto ldv_50932; } else { } { ret = _rtl92s_phy_sw_chnl_step_by_step(hw, (int )rtlphy->current_channel, & rtlphy->sw_chnl_stage, & rtlphy->sw_chnl_step, & delay); } if (! ret) { if (delay != 0U) { __ms = (unsigned long )delay; goto ldv_50935; ldv_50934: { __const_udelay(4295000UL); } ldv_50935: tmp___4 = __ms; __ms = __ms - 1UL; if (tmp___4 != 0UL) { goto ldv_50934; } else { } } else { goto ldv_50937; } } else { rtlphy->sw_chnl_inprogress = 0U; } goto ldv_50932; ldv_50937: ; goto ldv_50938; ldv_50932: { rtlphy->sw_chnl_inprogress = 0U; tmp___7 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___7 != 0L) { { tmp___8 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___8 != 0L) { { tmp___5 = preempt_count(); tmp___6 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> <==\n", "rtl92s_phy_sw_chnl", (unsigned long )tmp___6 & 2096896UL, ((unsigned long )tmp___5 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (1U); } } static void _rtl92se_phy_set_rf_sleep(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 u1btmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; u1btmp = rtl_read_byte(rtlpriv, 33U); u1btmp = (u8 )((unsigned int )u1btmp | 1U); rtl_write_byte(rtlpriv, 33U, (int )u1btmp); rtl_write_byte(rtlpriv, 24U, 0); rtl_write_byte(rtlpriv, 66U, 255); rtl_write_word(rtlpriv, 64U, 22524); __const_udelay(429500UL); rtl_write_word(rtlpriv, 64U, 30716); rtl_write_byte(rtlpriv, 2051U, 0); __const_udelay(42950UL); rtl_write_word(rtlpriv, 64U, 14332); __const_udelay(42950UL); rtl_write_word(rtlpriv, 64U, 30716); __const_udelay(42950UL); rtl_write_word(rtlpriv, 64U, 22524); rtl8192se_gpiobit3_cfg_inputmode(hw); } return; } } bool rtl92s_phy_set_rf_power_state(struct ieee80211_hw *hw , enum rf_pwrstate rfpwr_state ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; struct rtl_mac *mac ; struct rtl_ps_ctl *ppsc ; bool bresult ; u8 i ; u8 queue_id ; struct rtl8192_tx_ring *ring ; bool rtstatus ; u32 InitializeCount ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; unsigned int tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; __u32 tmp___12 ; int tmp___13 ; int tmp___14 ; long tmp___15 ; long tmp___16 ; __u32 tmp___17 ; __u32 tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; unsigned int tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; unsigned int tmp___28 ; int tmp___29 ; int tmp___30 ; long tmp___31 ; long tmp___32 ; int tmp___33 ; int tmp___34 ; long tmp___35 ; long tmp___36 ; { rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); mac = & ((struct rtl_priv *)hw->priv)->mac80211; ppsc = & ((struct rtl_priv *)hw->priv)->psc; bresult = 1; ring = (struct rtl8192_tx_ring *)0; if ((unsigned int )rfpwr_state == (unsigned int )ppsc->rfpwr_state) { return (0); } else { } { if ((unsigned int )rfpwr_state == 0U) { goto case_0; } else { } if ((unsigned int )rfpwr_state == 2U) { goto case_2; } else { } if ((unsigned int )rfpwr_state == 1U) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )ppsc->rfpwr_state == 2U && ((unsigned long )ppsc->cur_ps_level & 8UL) != 0UL) { InitializeCount = 0U; ldv_50960: { InitializeCount = InitializeCount + 1U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> IPS Set eRf nic enable\n", "rtl92s_phy_set_rf_power_state", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtstatus = rtl_ps_enable_nic(hw); } if (! rtstatus && InitializeCount <= 9U) { goto ldv_50960; } else { } ppsc->cur_ps_level = ppsc->cur_ps_level & 4294967287U; } else { { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___7 != 0L) { { tmp___3 = jiffies_to_msecs((unsigned long )jiffies - ppsc->last_sleep_jiffies); tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> awake, sleeped:%d ms state_inap:%x\n", "rtl92s_phy_set_rf_power_state", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, tmp___3, (int )rtlpriv->psc.state_inap); } } else { } } else { } { ppsc->last_awake_jiffies = jiffies; rtl_write_word(rtlpriv, 64U, 14332); rtl_write_byte(rtlpriv, 66U, 0); rtl_write_byte(rtlpriv, 2051U, 3); } } if ((unsigned int )mac->link_state == 2U) { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 2); } } else { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 3); } } goto ldv_50962; case_2: /* CIL Label */ ; if (((unsigned long )ppsc->reg_rfps_level & 8UL) != 0UL) { { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> IPS Set eRf nic disable\n", "rtl92s_phy_set_rf_power_state", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_ps_disable_nic(hw); ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; } } else if (ppsc->rfoff_reason == 268435456U) { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 3); } } else { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 7); } } goto ldv_50962; case_1: /* CIL Label */ ; if ((unsigned int )ppsc->rfpwr_state == 2U) { return (0); } else { } queue_id = 0U; i = 0U; goto ldv_50965; ldv_50967: { ring = (struct rtl8192_tx_ring *)(& pcipriv->dev.tx_ring) + (unsigned long )queue_id; tmp___17 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); } if (tmp___17 == 0U || (unsigned int )queue_id == 4U) { queue_id = (u8 )((int )queue_id + 1); goto ldv_50965; } else { { tmp___15 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___15 != 0L) { { tmp___16 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___16 != 0L) { { tmp___12 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___13 = preempt_count(); tmp___14 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> eRf Off/Sleep: %d times TcbBusyQueue[%d] = %d before doze!\n", "rtl92s_phy_set_rf_power_state", (unsigned long )tmp___14 & 2096896UL, ((unsigned long )tmp___13 & 0xffffffffffdfffffUL) != 0UL, (int )i + 1, (int )queue_id, tmp___12); } } else { } } else { } { __const_udelay(42950UL); i = (u8 )((int )i + 1); } } if ((unsigned int )i > 63U) { { tmp___21 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___22 != 0L) { { tmp___18 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> ERFOFF: %d times TcbBusyQueue[%d] = %d !\n", "rtl92s_phy_set_rf_power_state", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL, 64, (int )queue_id, tmp___18); } } else { } } else { } goto ldv_50966; } else { } ldv_50965: ; if ((unsigned int )queue_id <= 8U) { goto ldv_50967; } else { } ldv_50966: { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___27 != 0L) { { tmp___23 = jiffies_to_msecs((unsigned long )jiffies - ppsc->last_awake_jiffies); tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set ERFSLEEP awaked:%d ms\n", "rtl92s_phy_set_rf_power_state", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, tmp___23); } } else { } } else { } { tmp___31 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___31 != 0L) { { tmp___32 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___32 != 0L) { { tmp___28 = jiffies_to_msecs((unsigned long )jiffies - ppsc->last_awake_jiffies); tmp___29 = preempt_count(); tmp___30 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> sleep awaked:%d ms state_inap:%x\n", "rtl92s_phy_set_rf_power_state", (unsigned long )tmp___30 & 2096896UL, ((unsigned long )tmp___29 & 0xffffffffffdfffffUL) != 0UL, tmp___28, (int )rtlpriv->psc.state_inap); } } else { } } else { } { ppsc->last_sleep_jiffies = jiffies; _rtl92se_phy_set_rf_sleep(hw); } goto ldv_50962; switch_default: /* CIL Label */ { tmp___35 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___35 != 0L) { { tmp___36 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___36 != 0L) { { tmp___33 = preempt_count(); tmp___34 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> switch case not processed\n", "rtl92s_phy_set_rf_power_state", (unsigned long )tmp___34 & 2096896UL, ((unsigned long )tmp___33 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } bresult = 0; goto ldv_50962; switch_break: /* CIL Label */ ; } ldv_50962: ; if ((int )bresult) { ppsc->rfpwr_state = rfpwr_state; } else { } return (bresult); } } static bool _rtl92s_phy_config_rfpa_bias_current(struct ieee80211_hw *hw , enum radio_path rfpath ) { struct rtl_hal *rtlhal ; bool rtstatus ; u32 tmpval ; { rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtstatus = 1; tmpval = 0U; if ((unsigned int )rtlhal->ic_class != 0U) { { tmpval = rtl92s_phy_query_rf_reg(hw, rfpath, 21U, 15U); rtl92s_phy_set_rf_reg(hw, rfpath, 21U, 15U, tmpval + 1U); } } else { } return (rtstatus); } } static void _rtl92s_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw , u32 reg_addr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int index ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; if (reg_addr == 3584U) { index = 0; } else if (reg_addr == 3588U) { index = 1; } else if (reg_addr == 3592U) { index = 6; } else if (reg_addr == 3600U) { index = 2; } else if (reg_addr == 3604U) { index = 3; } else if (reg_addr == 3608U) { index = 4; } else if (reg_addr == 3612U) { index = 5; } else { return; } rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][index] = data; if (index == 5) { rtlphy->pwrgroup_cnt = (u8 )((int )rtlphy->pwrgroup_cnt + 1); } else { } return; } } static void _rtl92s_phy_init_register_definition(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlphy->phyreg_def[0].rfintfs = 2160U; rtlphy->phyreg_def[1].rfintfs = 2160U; rtlphy->phyreg_def[2].rfintfs = 2164U; rtlphy->phyreg_def[3].rfintfs = 2164U; rtlphy->phyreg_def[0].rfintfi = 2272U; rtlphy->phyreg_def[1].rfintfi = 2272U; rtlphy->phyreg_def[2].rfintfi = 2276U; rtlphy->phyreg_def[3].rfintfi = 2276U; rtlphy->phyreg_def[0].rfintfo = 2144U; rtlphy->phyreg_def[1].rfintfo = 2148U; rtlphy->phyreg_def[2].rfintfo = 2152U; rtlphy->phyreg_def[3].rfintfo = 2156U; rtlphy->phyreg_def[0].rfintfe = 2144U; rtlphy->phyreg_def[1].rfintfe = 2148U; rtlphy->phyreg_def[2].rfintfe = 2152U; rtlphy->phyreg_def[3].rfintfe = 2156U; rtlphy->phyreg_def[0].rf3wire_offset = 2112U; rtlphy->phyreg_def[1].rf3wire_offset = 2116U; rtlphy->phyreg_def[2].rf3wire_offset = 2120U; rtlphy->phyreg_def[3].rf3wire_offset = 2124U; rtlphy->phyreg_def[0].rflssi_select = 2168U; rtlphy->phyreg_def[1].rflssi_select = 2168U; rtlphy->phyreg_def[2].rflssi_select = 2172U; rtlphy->phyreg_def[3].rflssi_select = 2172U; rtlphy->phyreg_def[0].rftxgain_stage = 2060U; rtlphy->phyreg_def[1].rftxgain_stage = 2060U; rtlphy->phyreg_def[2].rftxgain_stage = 2060U; rtlphy->phyreg_def[3].rftxgain_stage = 2060U; rtlphy->phyreg_def[0].rfhssi_para1 = 2080U; rtlphy->phyreg_def[1].rfhssi_para1 = 2088U; rtlphy->phyreg_def[2].rfhssi_para1 = 2096U; rtlphy->phyreg_def[3].rfhssi_para1 = 2104U; rtlphy->phyreg_def[0].rfhssi_para2 = 2084U; rtlphy->phyreg_def[1].rfhssi_para2 = 2092U; rtlphy->phyreg_def[2].rfhssi_para2 = 2100U; rtlphy->phyreg_def[3].rfhssi_para2 = 2108U; rtlphy->phyreg_def[0].rfsw_ctrl = 2136U; rtlphy->phyreg_def[1].rfsw_ctrl = 2136U; rtlphy->phyreg_def[2].rfsw_ctrl = 2140U; rtlphy->phyreg_def[3].rfsw_ctrl = 2140U; rtlphy->phyreg_def[0].rfagc_control1 = 3152U; rtlphy->phyreg_def[1].rfagc_control1 = 3160U; rtlphy->phyreg_def[2].rfagc_control1 = 3168U; rtlphy->phyreg_def[3].rfagc_control1 = 3176U; rtlphy->phyreg_def[0].rfagc_control2 = 3156U; rtlphy->phyreg_def[1].rfagc_control2 = 3164U; rtlphy->phyreg_def[2].rfagc_control2 = 3172U; rtlphy->phyreg_def[3].rfagc_control2 = 3180U; rtlphy->phyreg_def[0].rfrxiq_imbal = 3092U; rtlphy->phyreg_def[1].rfrxiq_imbal = 3100U; rtlphy->phyreg_def[2].rfrxiq_imbal = 3108U; rtlphy->phyreg_def[3].rfrxiq_imbal = 3116U; rtlphy->phyreg_def[0].rfrx_afe = 3088U; rtlphy->phyreg_def[1].rfrx_afe = 3096U; rtlphy->phyreg_def[2].rfrx_afe = 3104U; rtlphy->phyreg_def[3].rfrx_afe = 3112U; rtlphy->phyreg_def[0].rftxiq_imbal = 3200U; rtlphy->phyreg_def[1].rftxiq_imbal = 3208U; rtlphy->phyreg_def[2].rftxiq_imbal = 3216U; rtlphy->phyreg_def[3].rftxiq_imbal = 3224U; rtlphy->phyreg_def[0].rftx_afe = 3204U; rtlphy->phyreg_def[1].rftx_afe = 3212U; rtlphy->phyreg_def[2].rftx_afe = 3220U; rtlphy->phyreg_def[3].rftx_afe = 3228U; rtlphy->phyreg_def[0].rf_rb = 2208U; rtlphy->phyreg_def[1].rf_rb = 2212U; rtlphy->phyreg_def[2].rf_rb = 2216U; rtlphy->phyreg_def[3].rf_rb = 2220U; rtlphy->phyreg_def[0].rf_rbpi = 2232U; rtlphy->phyreg_def[1].rf_rbpi = 2236U; return; } } static bool _rtl92s_phy_config_bb(struct ieee80211_hw *hw , u8 configtype ) { int i ; u32 *phy_reg_table ; u32 *agc_table ; u16 phy_reg_len ; u16 agc_len ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; unsigned long __ms___1 ; unsigned long tmp___1 ; { agc_len = 320U; agc_table = (u32 *)(& rtl8192seagctab_array); phy_reg_len = 372U; phy_reg_table = (u32 *)(& rtl8192sephy_reg_2t2rarray); if ((unsigned int )configtype == 0U) { i = 0; goto ldv_51012; ldv_51011: ; if (*(phy_reg_table + (unsigned long )i) == 254U) { __ms = 50UL; goto ldv_51001; ldv_51000: { __const_udelay(4295000UL); } ldv_51001: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51000; } else { } } else if (*(phy_reg_table + (unsigned long )i) == 253U) { if (1) { { __const_udelay(21475000UL); } } else { __ms___0 = 5UL; goto ldv_51005; ldv_51004: { __const_udelay(4295000UL); } ldv_51005: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_51004; } else { } } } else if (*(phy_reg_table + (unsigned long )i) == 252U) { if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_51009; ldv_51008: { __const_udelay(4295000UL); } ldv_51009: tmp___1 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___1 != 0UL) { goto ldv_51008; } else { } } } else if (*(phy_reg_table + (unsigned long )i) == 251U) { { __const_udelay(214750UL); } } else if (*(phy_reg_table + (unsigned long )i) == 250U) { { __const_udelay(21475UL); } } else if (*(phy_reg_table + (unsigned long )i) == 249U) { { __const_udelay(4295UL); } } else { } { __const_udelay(4295UL); rtl92s_phy_set_bb_reg(hw, *(phy_reg_table + (unsigned long )i), 4294967295U, *(phy_reg_table + ((unsigned long )i + 1UL))); i = i + 2; } ldv_51012: ; if (i < (int )phy_reg_len) { goto ldv_51011; } else { } } else if ((unsigned int )configtype == 1U) { i = 0; goto ldv_51015; ldv_51014: { rtl92s_phy_set_bb_reg(hw, *(agc_table + (unsigned long )i), 4294967295U, *(agc_table + ((unsigned long )i + 1UL))); __const_udelay(4295UL); i = i + 2; } ldv_51015: ; if (i < (int )agc_len) { goto ldv_51014; } else { } } else { } return (1); } } static bool _rtl92s_phy_set_bb_to_diff_rf(struct ieee80211_hw *hw , u8 configtype ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 *phy_regarray2xtxr_table ; u16 phy_regarray2xtxr_len ; int i ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; unsigned long __ms___1 ; unsigned long tmp___1 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; if ((unsigned int )rtlphy->rf_type == 0U) { phy_regarray2xtxr_table = (u32 *)(& rtl8192sephy_changeto_1t1rarray); phy_regarray2xtxr_len = 48U; } else if ((unsigned int )rtlphy->rf_type == 1U) { phy_regarray2xtxr_table = (u32 *)(& rtl8192sephy_changeto_1t2rarray); phy_regarray2xtxr_len = 45U; } else { return (0); } if ((unsigned int )configtype == 0U) { i = 0; goto ldv_51039; ldv_51038: ; if (*(phy_regarray2xtxr_table + (unsigned long )i) == 254U) { __ms = 50UL; goto ldv_51028; ldv_51027: { __const_udelay(4295000UL); } ldv_51028: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51027; } else { } } else if (*(phy_regarray2xtxr_table + (unsigned long )i) == 253U) { if (1) { { __const_udelay(21475000UL); } } else { __ms___0 = 5UL; goto ldv_51032; ldv_51031: { __const_udelay(4295000UL); } ldv_51032: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_51031; } else { } } } else if (*(phy_regarray2xtxr_table + (unsigned long )i) == 252U) { if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_51036; ldv_51035: { __const_udelay(4295000UL); } ldv_51036: tmp___1 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___1 != 0UL) { goto ldv_51035; } else { } } } else if (*(phy_regarray2xtxr_table + (unsigned long )i) == 251U) { { __const_udelay(214750UL); } } else if (*(phy_regarray2xtxr_table + (unsigned long )i) == 250U) { { __const_udelay(21475UL); } } else if (*(phy_regarray2xtxr_table + (unsigned long )i) == 249U) { { __const_udelay(4295UL); } } else { } { rtl92s_phy_set_bb_reg(hw, *(phy_regarray2xtxr_table + (unsigned long )i), *(phy_regarray2xtxr_table + ((unsigned long )i + 1UL)), *(phy_regarray2xtxr_table + ((unsigned long )i + 2UL))); i = i + 3; } ldv_51039: ; if (i < (int )phy_regarray2xtxr_len) { goto ldv_51038; } else { } } else { } return (1); } } static bool _rtl92s_phy_config_bb_with_pg(struct ieee80211_hw *hw , u8 configtype ) { int i ; u32 *phy_table_pg ; u16 phy_pg_len ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; unsigned long __ms___1 ; unsigned long tmp___1 ; { phy_pg_len = 84U; phy_table_pg = (u32 *)(& rtl8192sephy_reg_array_pg); if ((unsigned int )configtype == 0U) { i = 0; goto ldv_51061; ldv_51060: ; if (*(phy_table_pg + (unsigned long )i) == 254U) { __ms = 50UL; goto ldv_51050; ldv_51049: { __const_udelay(4295000UL); } ldv_51050: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51049; } else { } } else if (*(phy_table_pg + (unsigned long )i) == 253U) { if (1) { { __const_udelay(21475000UL); } } else { __ms___0 = 5UL; goto ldv_51054; ldv_51053: { __const_udelay(4295000UL); } ldv_51054: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_51053; } else { } } } else if (*(phy_table_pg + (unsigned long )i) == 252U) { if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_51058; ldv_51057: { __const_udelay(4295000UL); } ldv_51058: tmp___1 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___1 != 0UL) { goto ldv_51057; } else { } } } else if (*(phy_table_pg + (unsigned long )i) == 251U) { { __const_udelay(214750UL); } } else if (*(phy_table_pg + (unsigned long )i) == 250U) { { __const_udelay(21475UL); } } else if (*(phy_table_pg + (unsigned long )i) == 249U) { { __const_udelay(4295UL); } } else { } { _rtl92s_store_pwrindex_diffrate_offset(hw, *(phy_table_pg + (unsigned long )i), *(phy_table_pg + ((unsigned long )i + 1UL)), *(phy_table_pg + ((unsigned long )i + 2UL))); rtl92s_phy_set_bb_reg(hw, *(phy_table_pg + (unsigned long )i), *(phy_table_pg + ((unsigned long )i + 1UL)), *(phy_table_pg + ((unsigned long )i + 2UL))); i = i + 3; } ldv_51061: ; if (i < (int )phy_pg_len) { goto ldv_51060; } else { } } else { } return (1); } } static bool _rtl92s_phy_bb_config_parafile(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; bool rtstatus ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtstatus = 1; if ((unsigned int )rtlphy->rf_type <= 3U) { { rtstatus = _rtl92s_phy_config_bb(hw, 0); } if ((unsigned int )rtlphy->rf_type - 2U > 1U) { { rtstatus = _rtl92s_phy_set_bb_to_diff_rf(hw, 0); } } else { } } else { rtstatus = 0; } if (! rtstatus) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Write BB Reg Fail!!\n", "_rtl92s_phy_bb_config_parafile", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto phy_BB8190_Config_ParaFile_Fail; } else { } if ((unsigned int )rtlefuse->autoload_failflag == 0U) { { rtlphy->pwrgroup_cnt = 0U; rtstatus = _rtl92s_phy_config_bb_with_pg(hw, 0); } } else { } if (! rtstatus) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> _rtl92s_phy_bb_config_parafile(): BB_PG Reg Fail!!\n", "_rtl92s_phy_bb_config_parafile", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto phy_BB8190_Config_ParaFile_Fail; } else { } { rtstatus = _rtl92s_phy_config_bb(hw, 1); } if (! rtstatus) { { printk("\vrtl8192se: %s(): AGC Table Fail\n", "_rtl92s_phy_bb_config_parafile"); } goto phy_BB8190_Config_ParaFile_Fail; } else { } { tmp___7 = rtl92s_phy_query_bb_reg(hw, 2084U, 512U); rtlphy->cck_high_power = tmp___7 != 0U; } phy_BB8190_Config_ParaFile_Fail: ; return (rtstatus); } } u8 rtl92s_phy_config_rf(struct ieee80211_hw *hw , enum radio_path rfpath ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int i ; bool rtstatus ; u32 *radio_a_table ; u32 *radio_b_table ; u16 radio_a_tblen ; u16 radio_b_tblen ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; unsigned long __ms ; unsigned long tmp___3 ; unsigned long __ms___0 ; unsigned long tmp___4 ; unsigned long __ms___1 ; unsigned long tmp___5 ; unsigned long __ms___2 ; unsigned long tmp___6 ; unsigned long __ms___3 ; unsigned long tmp___7 ; unsigned long __ms___4 ; unsigned long tmp___8 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtstatus = 1; radio_a_tblen = 202U; radio_a_table = (u32 *)(& rtl8192seradioa_1t_array); if ((unsigned int )rtlphy->rf_type == 3U) { radio_b_table = (u32 *)(& rtl8192seradiob_gm_array); radio_b_tblen = 10U; } else { radio_b_table = (u32 *)(& rtl8192seradiob_array); radio_b_tblen = 22U; } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Radio No %x\n", "rtl92s_phy_config_rf", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rfpath); } } else { } } else { } rtstatus = 1; { if ((unsigned int )rfpath == 0U) { goto case_0; } else { } if ((unsigned int )rfpath == 1U) { goto case_1; } else { } if ((unsigned int )rfpath == 2U) { goto case_2; } else { } if ((unsigned int )rfpath == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ i = 0; goto ldv_51099; ldv_51098: ; if (*(radio_a_table + (unsigned long )i) == 254U) { __ms = 50UL; goto ldv_51088; ldv_51087: { __const_udelay(4295000UL); } ldv_51088: tmp___3 = __ms; __ms = __ms - 1UL; if (tmp___3 != 0UL) { goto ldv_51087; } else { } } else if (*(radio_a_table + (unsigned long )i) == 253U) { if (1) { { __const_udelay(21475000UL); } } else { __ms___0 = 5UL; goto ldv_51092; ldv_51091: { __const_udelay(4295000UL); } ldv_51092: tmp___4 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___4 != 0UL) { goto ldv_51091; } else { } } } else if (*(radio_a_table + (unsigned long )i) == 252U) { if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_51096; ldv_51095: { __const_udelay(4295000UL); } ldv_51096: tmp___5 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___5 != 0UL) { goto ldv_51095; } else { } } } else if (*(radio_a_table + (unsigned long )i) == 251U) { { __const_udelay(214750UL); } } else if (*(radio_a_table + (unsigned long )i) == 250U) { { __const_udelay(21475UL); } } else if (*(radio_a_table + (unsigned long )i) == 249U) { { __const_udelay(4295UL); } } else { { rtl92s_phy_set_rf_reg(hw, rfpath, *(radio_a_table + (unsigned long )i), 1048575U, *(radio_a_table + ((unsigned long )i + 1UL))); } } { __const_udelay(4295UL); i = i + 2; } ldv_51099: ; if (i < (int )radio_a_tblen) { goto ldv_51098; } else { } { _rtl92s_phy_config_rfpa_bias_current(hw, rfpath); } goto ldv_51101; case_1: /* CIL Label */ i = 0; goto ldv_51116; ldv_51115: ; if (*(radio_b_table + (unsigned long )i) == 254U) { __ms___2 = 50UL; goto ldv_51105; ldv_51104: { __const_udelay(4295000UL); } ldv_51105: tmp___6 = __ms___2; __ms___2 = __ms___2 - 1UL; if (tmp___6 != 0UL) { goto ldv_51104; } else { } } else if (*(radio_b_table + (unsigned long )i) == 253U) { if (1) { { __const_udelay(21475000UL); } } else { __ms___3 = 5UL; goto ldv_51109; ldv_51108: { __const_udelay(4295000UL); } ldv_51109: tmp___7 = __ms___3; __ms___3 = __ms___3 - 1UL; if (tmp___7 != 0UL) { goto ldv_51108; } else { } } } else if (*(radio_b_table + (unsigned long )i) == 252U) { if (1) { { __const_udelay(4295000UL); } } else { __ms___4 = 1UL; goto ldv_51113; ldv_51112: { __const_udelay(4295000UL); } ldv_51113: tmp___8 = __ms___4; __ms___4 = __ms___4 - 1UL; if (tmp___8 != 0UL) { goto ldv_51112; } else { } } } else if (*(radio_b_table + (unsigned long )i) == 251U) { { __const_udelay(214750UL); } } else if (*(radio_b_table + (unsigned long )i) == 250U) { { __const_udelay(21475UL); } } else if (*(radio_b_table + (unsigned long )i) == 249U) { { __const_udelay(4295UL); } } else { { rtl92s_phy_set_rf_reg(hw, rfpath, *(radio_b_table + (unsigned long )i), 1048575U, *(radio_b_table + ((unsigned long )i + 1UL))); } } { __const_udelay(4295UL); i = i + 2; } ldv_51116: ; if (i < (int )radio_b_tblen) { goto ldv_51115; } else { } goto ldv_51101; case_2: /* CIL Label */ ; goto ldv_51101; case_3: /* CIL Label */ ; goto ldv_51101; switch_default: /* CIL Label */ ; goto ldv_51101; switch_break: /* CIL Label */ ; } ldv_51101: ; return ((u8 )rtstatus); } } bool rtl92s_phy_mac_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 i ; u32 arraylength ; u32 *ptraArray ; { rtlpriv = (struct rtl_priv *)hw->priv; arraylength = 106U; ptraArray = (u32 *)(& rtl8192semac_2t_array); i = 0U; goto ldv_51129; ldv_51128: { rtl_write_byte(rtlpriv, *(ptraArray + (unsigned long )i), (int )((unsigned char )*(ptraArray + (unsigned long )(i + 1U)))); i = i + 2U; } ldv_51129: ; if (i < arraylength) { goto ldv_51128; } else { } return (1); } } bool rtl92s_phy_bb_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; bool rtstatus ; u8 pathmap ; u8 index ; u8 rf_num ; u8 path1 ; u8 path2 ; u32 tmp ; unsigned long __ms ; unsigned long tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; int tmp___6 ; int tmp___7 ; long tmp___8 ; long tmp___9 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtstatus = 1; rf_num = 0U; _rtl92s_phy_init_register_definition(hw); rtstatus = _rtl92s_phy_bb_config_parafile(hw); tmp = rtl92s_phy_query_bb_reg(hw, 2052U, 15U); path1 = (unsigned char )tmp; __ms = 10UL; } goto ldv_51144; ldv_51143: { __const_udelay(4295000UL); } ldv_51144: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_51143; } else { } { tmp___1 = rtl92s_phy_query_bb_reg(hw, 3076U, 15U); path2 = (unsigned char )tmp___1; pathmap = (u8 )((int )path1 | (int )path2); rtlphy->rf_pathmap = (u16 )pathmap; index = 0U; } goto ldv_51147; ldv_51146: ; if (((int )pathmap >> (int )index) & 1) { rf_num = (u8 )((int )rf_num + 1); } else { } index = (u8 )((int )index + 1); ldv_51147: ; if ((unsigned int )index <= 3U) { goto ldv_51146; } else { } if (((((unsigned int )rtlphy->rf_type == 0U && (unsigned int )rf_num != 1U) || ((unsigned int )rtlphy->rf_type == 1U && (unsigned int )rf_num != 2U)) || ((unsigned int )rtlphy->rf_type == 2U && (unsigned int )rf_num != 2U)) || ((unsigned int )rtlphy->rf_type == 3U && (unsigned int )rf_num != 2U)) { { tmp___4 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___4 != 0L) { { tmp___5 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___5 != 0L) { { tmp___2 = preempt_count(); tmp___3 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RF_Type(%x) does not match RF_Num(%x)!!\n", "rtl92s_phy_bb_config", (unsigned long )tmp___3 & 2096896UL, ((unsigned long )tmp___2 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->rf_type, (int )rf_num); } } else { } } else { } { tmp___8 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___8 != 0L) { { tmp___9 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___9 != 0L) { { tmp___6 = preempt_count(); tmp___7 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> path1 0x%x, path2 0x%x, pathmap 0x%x\n", "rtl92s_phy_bb_config", (unsigned long )tmp___7 & 2096896UL, ((unsigned long )tmp___6 & 0xffffffffffdfffffUL) != 0UL, (int )path1, (int )path2, (int )pathmap); } } else { } } else { } } else { } return (rtstatus); } } bool rtl92s_phy_rf_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; bool tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; if ((unsigned int )rtlphy->rf_type == 0U) { rtlphy->num_total_rfpath = 1U; } else { rtlphy->num_total_rfpath = 2U; } { tmp = rtl92s_phy_rf6052_config(hw); } return (tmp); } } void rtl92s_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; tmp = rtl_get_bbreg(hw, 3152U, 255U); rtlphy->default_initialgain[0] = (u8 )tmp; tmp___0 = rtl_get_bbreg(hw, 3160U, 255U); rtlphy->default_initialgain[1] = (u8 )tmp___0; tmp___1 = rtl_get_bbreg(hw, 3168U, 255U); rtlphy->default_initialgain[2] = (u8 )tmp___1; tmp___2 = rtl_get_bbreg(hw, 3176U, 255U); rtlphy->default_initialgain[3] = (u8 )tmp___2; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x)\n", "rtl92s_phy_get_hw_reg_originalvalue", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->default_initialgain[0], (int )rtlphy->default_initialgain[1], (int )rtlphy->default_initialgain[2], (int )rtlphy->default_initialgain[3]); } } else { } } else { } { tmp___7 = rtl_get_bbreg(hw, 3128U, 255U); rtlphy->framesync = (u8 )tmp___7; rtlphy->framesync_c34 = rtl_get_bbreg(hw, 3124U, 4294967295U); tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Default framesync (0x%x) = 0x%x\n", "rtl92s_phy_get_hw_reg_originalvalue", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, 3128, (int )rtlphy->framesync); } } else { } } else { } return; } } static void _rtl92s_phy_get_txpower_index(struct ieee80211_hw *hw , u8 channel , u8 *cckpowerlevel , u8 *ofdmpowerLevel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; u8 index ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; index = (unsigned int )channel + 255U; *cckpowerlevel = rtlefuse->txpwrlevel_cck[0][(int )index]; *(cckpowerlevel + 1UL) = rtlefuse->txpwrlevel_cck[1][(int )index]; if ((unsigned int )rtlphy->rf_type <= 1U) { *ofdmpowerLevel = rtlefuse->txpwrlevel_ht40_1s[0][(int )index]; *(ofdmpowerLevel + 1UL) = rtlefuse->txpwrlevel_ht40_1s[1][(int )index]; } else if ((unsigned int )rtlphy->rf_type == 2U) { *ofdmpowerLevel = rtlefuse->txpwrlevel_ht40_2s[0][(int )index]; *(ofdmpowerLevel + 1UL) = rtlefuse->txpwrlevel_ht40_2s[1][(int )index]; } else { *ofdmpowerLevel = 0U; *(ofdmpowerLevel + 1UL) = 0U; } return; } } static void _rtl92s_phy_ccxpower_indexcheck(struct ieee80211_hw *hw , u8 channel , u8 *cckpowerlevel , u8 *ofdmpowerlevel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlphy->cur_cck_txpwridx = *cckpowerlevel; rtlphy->cur_ofdm24g_txpwridx = *ofdmpowerlevel; return; } } void rtl92s_phy_set_txpower(struct ieee80211_hw *hw , u8 channel ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; u8 cckpowerlevel[2U] ; u8 ofdmpowerLevel[2U] ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; if (! rtlefuse->txpwr_fromeprom) { return; } else { } { _rtl92s_phy_get_txpower_index(hw, (int )channel, (u8 *)(& cckpowerlevel), (u8 *)(& ofdmpowerLevel)); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Channel-%d, cckPowerLevel (A / B) = 0x%x / 0x%x, ofdmPowerLevel (A / B) = 0x%x / 0x%x\n", "rtl92s_phy_set_txpower", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )channel, (int )cckpowerlevel[0], (int )cckpowerlevel[1], (int )ofdmpowerLevel[0], (int )ofdmpowerLevel[1]); } } else { } } else { } { _rtl92s_phy_ccxpower_indexcheck(hw, (int )channel, (u8 *)(& cckpowerlevel), (u8 *)(& ofdmpowerLevel)); rtl92s_phy_rf6052_set_ccktxpower(hw, (int )cckpowerlevel[0]); rtl92s_phy_rf6052_set_ofdmtxpower(hw, (u8 *)(& ofdmpowerLevel), (int )channel); } return; } } void rtl92s_phy_chk_fwcmd_iodone(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u16 pollingcnt ; u32 tmpvalue ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; pollingcnt = 10000U; ldv_51195: { __const_udelay(42950UL); tmpvalue = rtl_read_dword(rtlpriv, 704U); } if (tmpvalue == 0U) { goto ldv_51194; } else { } pollingcnt = (u16 )((int )pollingcnt - 1); if ((unsigned int )pollingcnt != 0U) { goto ldv_51195; } else { } ldv_51194: ; if ((unsigned int )pollingcnt == 0U) { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set FW Cmd fail!!\n", "rtl92s_phy_chk_fwcmd_iodone", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } return; } } static void _rtl92s_phy_set_fwcmd_io(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; u32 input ; u32 current_aid ; bool tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; int tmp___28 ; int tmp___29 ; long tmp___30 ; long tmp___31 ; int tmp___32 ; int tmp___33 ; long tmp___34 ; long tmp___35 ; int tmp___36 ; int tmp___37 ; long tmp___38 ; long tmp___39 ; int tmp___40 ; int tmp___41 ; long tmp___42 ; long tmp___43 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; current_aid = 0U; tmp = is_hal_stop(rtlhal); } if ((int )tmp) { return; } else { } if ((unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion <= 51U) { goto skip; } else { } { if ((int )rtlhal->current_fwcmd_io == 8) { goto case_8; } else { } if ((int )rtlhal->current_fwcmd_io == 9) { goto case_9; } else { } goto switch_default; case_8: /* CIL Label */ rtlhal->current_fwcmd_io = 17U; goto ldv_51207; case_9: /* CIL Label */ rtlhal->current_fwcmd_io = 18U; goto ldv_51207; switch_default: /* CIL Label */ ; goto ldv_51207; switch_break: /* CIL Label */ ; } ldv_51207: ; skip: ; { if ((int )rtlhal->current_fwcmd_io == 6) { goto case_6; } else { } if ((int )rtlhal->current_fwcmd_io == 7) { goto case_7; } else { } if ((int )rtlhal->current_fwcmd_io == 8) { goto case_8___0; } else { } if ((int )rtlhal->current_fwcmd_io == 9) { goto case_9___0; } else { } if ((int )rtlhal->current_fwcmd_io == 17) { goto case_17; } else { } if ((int )rtlhal->current_fwcmd_io == 18) { goto case_18; } else { } if ((int )rtlhal->current_fwcmd_io == 30) { goto case_30; } else { } if ((int )rtlhal->current_fwcmd_io == 15) { goto case_15; } else { } if ((int )rtlhal->current_fwcmd_io == 16) { goto case_16; } else { } if ((int )rtlhal->current_fwcmd_io == 5) { goto case_5; } else { } if ((int )rtlhal->current_fwcmd_io == 4) { goto case_4; } else { } if ((int )rtlhal->current_fwcmd_io == 22) { goto case_22; } else { } if ((int )rtlhal->current_fwcmd_io == 23) { goto case_23; } else { } if ((int )rtlhal->current_fwcmd_io == 26) { goto case_26; } else { } if ((int )rtlhal->current_fwcmd_io == 27) { goto case_27; } else { } goto switch_default___0; case_6: /* CIL Label */ { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_RA_RESET\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_write_dword(rtlpriv, 704U, 4244635823U); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; case_7: /* CIL Label */ { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_RA_ACTIVE\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_write_dword(rtlpriv, 704U, 4244635814U); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; case_8___0: /* CIL Label */ { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_RA_REFRESH_N\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { input = 4244635808U; rtl_write_dword(rtlpriv, 704U, input); rtl92s_phy_chk_fwcmd_iodone(hw); rtl_write_dword(rtlpriv, 704U, 4244635821U); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; case_9___0: /* CIL Label */ { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_RA_REFRESH_BG\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_write_dword(rtlpriv, 704U, 4244635808U); rtl92s_phy_chk_fwcmd_iodone(hw); rtl_write_dword(rtlpriv, 704U, 4244635820U); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; case_17: /* CIL Label */ { tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_RA_REFRESH_N_COMB\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { input = 4244635697U; rtl_write_dword(rtlpriv, 704U, input); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; case_18: /* CIL Label */ { tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_RA_REFRESH_BG_COMB\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { input = 4244635696U; rtl_write_dword(rtlpriv, 704U, input); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; case_30: /* CIL Label */ { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_IQK_ENABLE\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_write_dword(rtlpriv, 704U, 4026531872U); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; case_15: /* CIL Label */ { rtl_set_bbreg(hw, 3152U, 255U, 23U); rtl_set_bbreg(hw, 3160U, 255U, 23U); rtl_set_bbreg(hw, 2568U, 16711680U, 64U); } goto ldv_51212; case_16: /* CIL Label */ { rtl_set_bbreg(hw, 2568U, 16711680U, 205U); rtl92s_phy_set_txpower(hw, (int )rtlphy->current_channel); } goto ldv_51212; case_5: /* CIL Label */ ; if (((unsigned long )rtlpriv->dm.dm_flag & 2UL) != 0UL) { goto ldv_51212; } else { } { rtl_set_bbreg(hw, 3152U, 255U, 23U); rtl_set_bbreg(hw, 3160U, 255U, 23U); rtl_set_bbreg(hw, 2568U, 16711680U, 64U); } goto ldv_51212; case_4: /* CIL Label */ ; if (((unsigned long )rtlpriv->dm.dm_flag & 2UL) != 0UL || (int )rtlpriv->dm.dynamic_txpower_enable) { goto ldv_51212; } else { } { rtl_set_bbreg(hw, 2568U, 16711680U, 205U); } goto ldv_51212; case_22: /* CIL Label */ { tmp___30 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___30 != 0L) { { tmp___31 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___31 != 0L) { { tmp___28 = preempt_count(); tmp___29 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_LPS_ENTER\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___29 & 2096896UL, ((unsigned long )tmp___28 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { current_aid = (u32 )rtlpriv->mac80211.assoc_id; rtl_write_dword(rtlpriv, 704U, ((current_aid | 49152U) << 8) | 4261412880U); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; case_23: /* CIL Label */ { tmp___34 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___34 != 0L) { { tmp___35 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___35 != 0L) { { tmp___32 = preempt_count(); tmp___33 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_LPS_LEAVE\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___33 & 2096896UL, ((unsigned long )tmp___32 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_write_dword(rtlpriv, 704U, 4261412881U); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; case_26: /* CIL Label */ { tmp___38 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___38 != 0L) { { tmp___39 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___39 != 0L) { { tmp___36 = preempt_count(); tmp___37 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_ADD_A2_ENTRY\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___37 & 2096896UL, ((unsigned long )tmp___36 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_write_dword(rtlpriv, 704U, 4244635670U); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; case_27: /* CIL Label */ { tmp___42 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___42 != 0L) { { tmp___43 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___43 != 0L) { { tmp___40 = preempt_count(); tmp___41 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> FW_CMD_CTRL_DM_BY_DRIVER\n", "_rtl92s_phy_set_fwcmd_io", (unsigned long )tmp___41 & 2096896UL, ((unsigned long )tmp___40 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_write_dword(rtlpriv, 704U, 4244635690U); rtl92s_phy_chk_fwcmd_iodone(hw); } goto ldv_51212; switch_default___0: /* CIL Label */ ; goto ldv_51212; switch_break___0: /* CIL Label */ ; } ldv_51212: { rtl92s_phy_chk_fwcmd_iodone(hw); rtlhal->set_fwcmd_inprogress = 0; } return; } } bool rtl92s_phy_set_fw_cmd(struct ieee80211_hw *hw , enum fwcmd_iotype fw_cmdio ) { struct rtl_priv *rtlpriv ; struct dig_t *digtable ; struct rtl_hal *rtlhal ; struct rtl_efuse *rtlefuse ; u32 fw_param ; u16 fw_cmdmap ; bool postprocessing ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; u8 thermalval ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; { { rtlpriv = (struct rtl_priv *)hw->priv; digtable = & rtlpriv->dm_digtable; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; fw_param = rtlpriv->rtlhal.fwcmd_ioparam; fw_cmdmap = rtlpriv->rtlhal.fwcmd_iomap; postprocessing = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set FW Cmd(%#x), set_fwcmd_inprogress(%d)\n", "rtl92s_phy_set_fw_cmd", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )fw_cmdio, (int )rtlhal->set_fwcmd_inprogress); } } else { } } else { } if ((unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion > 52U) { { if ((unsigned int )fw_cmdio == 8U) { goto case_8; } else { } if ((unsigned int )fw_cmdio == 9U) { goto case_9; } else { } goto switch_default; case_8: /* CIL Label */ fw_cmdio = 17; goto ldv_51241; case_9: /* CIL Label */ fw_cmdio = 18; goto ldv_51241; switch_default: /* CIL Label */ ; goto ldv_51241; switch_break: /* CIL Label */ ; } ldv_51241: ; } else if (((unsigned int )fw_cmdio == 30U || (unsigned int )fw_cmdio == 8U) || (unsigned int )fw_cmdio == 9U) { postprocessing = 1; goto ldv_51244; } else { } if ((unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion > 61U) { if ((unsigned int )fw_cmdio == 27U) { fw_cmdio = 28; } else { } } else { } { if ((unsigned int )fw_cmdio == 10U) { goto case_10; } else { } if ((unsigned int )fw_cmdio == 1U) { goto case_1; } else { } if ((unsigned int )fw_cmdio == 0U) { goto case_0; } else { } if ((unsigned int )fw_cmdio == 3U) { goto case_3; } else { } if ((unsigned int )fw_cmdio == 2U) { goto case_2; } else { } if ((unsigned int )fw_cmdio == 14U) { goto case_14; } else { } if ((unsigned int )fw_cmdio == 17U) { goto case_17; } else { } if ((unsigned int )fw_cmdio == 18U) { goto case_18; } else { } if ((unsigned int )fw_cmdio == 30U) { goto case_30; } else { } if ((unsigned int )fw_cmdio == 28U) { goto case_28; } else { } if ((unsigned int )fw_cmdio == 16U) { goto case_16; } else { } if ((unsigned int )fw_cmdio == 15U) { goto case_15; } else { } if ((unsigned int )fw_cmdio == 5U) { goto case_5; } else { } if ((unsigned int )fw_cmdio == 4U) { goto case_4; } else { } if ((unsigned int )fw_cmdio == 25U) { goto case_25; } else { } if ((unsigned int )fw_cmdio == 24U) { goto case_24; } else { } if ((unsigned int )fw_cmdio == 29U) { goto case_29; } else { } goto switch_default___0; case_10: /* CIL Label */ { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RA init!!\n", "rtl92s_phy_set_fw_cmd", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { fw_cmdmap = (u16 )((unsigned int )fw_cmdmap | 8U); rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; __const_udelay(4295000UL); rtlpriv->rtlhal.fwcmd_iomap = (unsigned int )rtlpriv->rtlhal.fwcmd_iomap & 65527U; } goto ldv_51246; case_1: /* CIL Label */ { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set DIG disable!!\n", "rtl92s_phy_set_fw_cmd", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { fw_cmdmap = (unsigned int )fw_cmdmap & 65534U; rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; } goto ldv_51246; case_0: /* CIL Label */ ; case_3: /* CIL Label */ ; if (((unsigned long )rtlpriv->dm.dm_flag & 1UL) == 0UL) { { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set DIG enable or resume!!\n", "rtl92s_phy_set_fw_cmd", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { fw_cmdmap = (u16 )((unsigned int )fw_cmdmap | 5U); rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; } } else { } goto ldv_51246; case_2: /* CIL Label */ { tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set DIG halt!!\n", "rtl92s_phy_set_fw_cmd", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { fw_cmdmap = (unsigned int )fw_cmdmap & 65530U; rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; } goto ldv_51246; case_14: /* CIL Label */ { thermalval = 0U; fw_cmdmap = (u16 )((unsigned int )fw_cmdmap | 64U); fw_param = fw_param & 65535U; thermalval = rtlpriv->dm.thermalvalue; fw_param = fw_param | (u32 )(((int )thermalval << 24) | ((int )rtlefuse->thermalmeter[0] << 16)); tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Set TxPwr tracking!! FwCmdMap(%#x), FwParam(%#x)\n", "rtl92s_phy_set_fw_cmd", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL, (int )fw_cmdmap, fw_param); } } else { } } else { } { rtl_write_dword(rtlpriv, 872U, fw_param); rtlpriv->rtlhal.fwcmd_ioparam = fw_param; rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; __const_udelay(4295000UL); rtlpriv->rtlhal.fwcmd_iomap = (unsigned int )rtlpriv->rtlhal.fwcmd_iomap & 65471U; } goto ldv_51246; case_17: /* CIL Label */ { fw_cmdmap = (u16 )((unsigned int )fw_cmdmap | 32U); fw_cmdmap = (unsigned int )fw_cmdmap & 65511U; fw_param = fw_param & 4294901760U; tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count(); tmp___24 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> [FW CMD] [New Version] Set RA/IOT Comb in n mode!! FwCmdMap(%#x), FwParam(%#x)\n", "rtl92s_phy_set_fw_cmd", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, (int )fw_cmdmap, fw_param); } } else { } } else { } { rtl_write_dword(rtlpriv, 872U, fw_param); rtlpriv->rtlhal.fwcmd_ioparam = fw_param; rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; __const_udelay(4295000UL); rtlpriv->rtlhal.fwcmd_iomap = (unsigned int )rtlpriv->rtlhal.fwcmd_iomap & 65503U; } goto ldv_51246; case_18: /* CIL Label */ { fw_cmdmap = (u16 )((unsigned int )fw_cmdmap | 16U); fw_cmdmap = (unsigned int )fw_cmdmap & 65495U; fw_param = fw_param & 4294901760U; rtl_write_dword(rtlpriv, 872U, fw_param); rtlpriv->rtlhal.fwcmd_ioparam = fw_param; rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; __const_udelay(4295000UL); rtlpriv->rtlhal.fwcmd_iomap = (unsigned int )rtlpriv->rtlhal.fwcmd_iomap & 65519U; } goto ldv_51246; case_30: /* CIL Label */ { fw_cmdmap = (u16 )((unsigned int )fw_cmdmap | 128U); rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; __const_udelay(4295000UL); rtlpriv->rtlhal.fwcmd_iomap = (unsigned int )rtlpriv->rtlhal.fwcmd_iomap & 65407U; } goto ldv_51246; case_28: /* CIL Label */ { fw_cmdmap = (u16 )((unsigned int )fw_cmdmap | 512U); rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; } goto ldv_51246; case_16: /* CIL Label */ fw_cmdmap = (u16 )((unsigned int )fw_cmdmap | 7U); if ((int )rtlpriv->dm.dm_flag & 1 || (unsigned int )digtable->dig_enable_flag == 0U) { fw_cmdmap = (unsigned int )fw_cmdmap & 65534U; } else { } if (((unsigned long )rtlpriv->dm.dm_flag & 2UL) != 0UL || (int )rtlpriv->dm.dynamic_txpower_enable) { fw_cmdmap = (unsigned int )fw_cmdmap & 65533U; } else { } if ((unsigned int )digtable->dig_ext_port_stage <= 1U) { fw_cmdmap = (unsigned int )fw_cmdmap & 65534U; } else { } { rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; postprocessing = 1; } goto ldv_51246; case_15: /* CIL Label */ { fw_cmdmap = (unsigned int )fw_cmdmap & 65528U; rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; postprocessing = 1; } goto ldv_51246; case_5: /* CIL Label */ { fw_cmdmap = (unsigned int )fw_cmdmap & 65533U; rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; postprocessing = 1; } goto ldv_51246; case_4: /* CIL Label */ ; if (((unsigned long )rtlpriv->dm.dm_flag & 2UL) == 0UL && ! rtlpriv->dm.dynamic_txpower_enable) { { fw_cmdmap = (u16 )((unsigned int )fw_cmdmap | 6U); rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; postprocessing = 1; } } else { } goto ldv_51246; case_25: /* CIL Label */ { fw_cmdmap = (u16 )((unsigned int )fw_cmdmap | 256U); rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; } goto ldv_51246; case_24: /* CIL Label */ { fw_cmdmap = (unsigned int )fw_cmdmap & 65279U; rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; } goto ldv_51246; case_29: /* CIL Label */ { tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___30 != 0L) { { tmp___27 = preempt_count(); tmp___28 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> [FW CMD] Set PAPE Control\n", "rtl92s_phy_set_fw_cmd", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { fw_cmdmap = (unsigned int )fw_cmdmap & 64511U; rtl_write_word(rtlpriv, 868U, (int )fw_cmdmap); rtlpriv->rtlhal.fwcmd_iomap = fw_cmdmap; } goto ldv_51246; switch_default___0: /* CIL Label */ postprocessing = 1; goto ldv_51246; switch_break___0: /* CIL Label */ ; } ldv_51246: ; ldv_51244: ; if ((int )postprocessing && ! rtlhal->set_fwcmd_inprogress) { rtlhal->set_fwcmd_inprogress = 1; rtlhal->current_fwcmd_io = (u8 )fw_cmdio; } else { return (0); } { _rtl92s_phy_set_fwcmd_io(hw); } return (1); } } static void _rtl92s_phy_check_ephy_switchready(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 delay ; u8 regu1 ; { { rtlpriv = (struct rtl_priv *)hw->priv; delay = 100U; regu1 = rtl_read_byte(rtlpriv, 1364U); } goto ldv_51272; ldv_51271: { regu1 = rtl_read_byte(rtlpriv, 1364U); delay = delay - 1U; __const_udelay(214750UL); } ldv_51272: ; if (((unsigned long )regu1 & 32UL) != 0UL && delay != 0U) { goto ldv_51271; } else { } return; } } void rtl92s_phy_switch_ephy_parameter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; { { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtl_write_dword(rtlpriv, 1344U, 474129U); rtl_write_dword(rtlpriv, 1352U, 147580U); rtl_write_word(rtlpriv, 1360U, 4096); rtl_write_byte(rtlpriv, 1364U, 32); _rtl92s_phy_check_ephy_switchready(hw); rtl_write_word(rtlpriv, 1360U, 41195); rtl_write_byte(rtlpriv, 1364U, 62); _rtl92s_phy_check_ephy_switchready(hw); rtl_write_word(rtlpriv, 1360U, 65408); rtl_write_byte(rtlpriv, 1364U, 57); _rtl92s_phy_check_ephy_switchready(hw); } if ((int )ppsc->support_aspm && ! ppsc->support_backdoor) { { rtl_write_byte(rtlpriv, 1376U, 64); } } else { { rtl_write_byte(rtlpriv, 1376U, 0); } } return; } } void rtl92s_phy_set_beacon_hwreg(struct ieee80211_hw *hw , u16 beaconinterval ) { struct rtl_priv *rtlpriv ; u32 new_bcn_num ; { rtlpriv = (struct rtl_priv *)hw->priv; new_bcn_num = 0U; if ((unsigned int )((struct rt_firmware *)rtlpriv->rtlhal.pfirmware)->firmwareversion > 50U) { { rtl_write_dword(rtlpriv, 704U, (unsigned int )((int )beaconinterval << 8) | 4043309056U); } } else { { new_bcn_num = (u32 )(((int )beaconinterval + -2) * 32); rtl_write_dword(rtlpriv, 676U, new_bcn_num); rtl_write_dword(rtlpriv, 672U, 2955280508U); } } return; } } static void _rtl92s_get_powerbase(struct ieee80211_hw *hw , u8 *p_pwrlevel , u8 chnl , u32 *ofdmbase , u32 *mcsbase , u8 *p_final_pwridx ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; u32 pwrbase0 ; u32 pwrbase1 ; u8 legacy_pwrdiff ; u8 ht20_pwrdiff ; u8 i ; u8 pwrlevel[4U] ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; legacy_pwrdiff = 0U; ht20_pwrdiff = 0U; i = 0U; goto ldv_50353; ldv_50352: pwrlevel[(int )i] = *(p_pwrlevel + (unsigned long )i); i = (u8 )((int )i + 1); ldv_50353: ; if ((unsigned int )i <= 1U) { goto ldv_50352; } else { } if ((unsigned int )rtlefuse->eeprom_version <= 1U) { pwrbase0 = (u32 )((int )pwrlevel[0] + ((int )rtlefuse->legacy_httxpowerdiff & 15)); } else if ((unsigned int )rtlefuse->eeprom_version > 1U) { legacy_pwrdiff = rtlefuse->txpwr_legacyhtdiff[0][(int )chnl + -1]; pwrbase0 = (u32 )((int )pwrlevel[0] + (int )legacy_pwrdiff); } else { } pwrbase0 = (((pwrbase0 << 24) | (pwrbase0 << 16)) | (pwrbase0 << 8)) | pwrbase0; *ofdmbase = pwrbase0; if ((unsigned int )rtlefuse->eeprom_version > 1U) { if ((unsigned int )rtlphy->current_chan_bw == 0U) { i = 0U; goto ldv_50356; ldv_50355: ht20_pwrdiff = (u8 )rtlefuse->txpwr_ht20diff[(int )i][(int )chnl + -1]; if ((unsigned int )ht20_pwrdiff <= 7U) { pwrlevel[(int )i] = (int )pwrlevel[(int )i] + (int )ht20_pwrdiff; } else { pwrlevel[(int )i] = (unsigned int )((int )pwrlevel[(int )i] + (int )ht20_pwrdiff) + 240U; } i = (u8 )((int )i + 1); ldv_50356: ; if ((unsigned int )i <= 1U) { goto ldv_50355; } else { } } else { } } else { } pwrbase1 = (u32 )pwrlevel[0]; pwrbase1 = (((pwrbase1 << 24) | (pwrbase1 << 16)) | (pwrbase1 << 8)) | pwrbase1; *mcsbase = pwrbase1; *p_final_pwridx = pwrlevel[0]; *(p_final_pwridx + 1UL) = pwrlevel[1]; { if ((int )rtlefuse->eeprom_regulatory == 3) { goto case_3; } else { } goto switch_default; case_3: /* CIL Label */ ; if ((unsigned int )rtlphy->current_chan_bw == 1U) { *p_final_pwridx = (int )*p_final_pwridx + (int )rtlefuse->pwrgroup_ht40[0][(int )chnl + -1]; *(p_final_pwridx + 1UL) = (int )*(p_final_pwridx + 1UL) + (int )rtlefuse->pwrgroup_ht40[1][(int )chnl + -1]; } else { *p_final_pwridx = (int )*p_final_pwridx + (int )rtlefuse->pwrgroup_ht20[0][(int )chnl + -1]; *(p_final_pwridx + 1UL) = (int )*(p_final_pwridx + 1UL) + (int )rtlefuse->pwrgroup_ht20[1][(int )chnl + -1]; } goto ldv_50359; switch_default: /* CIL Label */ ; goto ldv_50359; switch_break: /* CIL Label */ ; } ldv_50359: ; if ((unsigned int )rtlphy->current_chan_bw == 1U) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> 40MHz finalpwr_idx (A / B) = 0x%x / 0x%x\n", "_rtl92s_get_powerbase", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )*p_final_pwridx, (int )*(p_final_pwridx + 1UL)); } } else { } } else { } } else { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> 20MHz finalpwr_idx (A / B) = 0x%x / 0x%x\n", "_rtl92s_get_powerbase", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )*p_final_pwridx, (int )*(p_final_pwridx + 1UL)); } } else { } } else { } } return; } } static void _rtl92s_set_antennadiff(struct ieee80211_hw *hw , u8 *p_final_pwridx ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_phy *rtlphy ; char ant_pwr_diff ; u32 u4reg_val ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlphy = & rtlpriv->phy; ant_pwr_diff = 0; u4reg_val = 0U; if ((unsigned int )rtlphy->rf_type == 2U) { ant_pwr_diff = (char )((int )*(p_final_pwridx + 1UL) - (int )*p_final_pwridx); if ((int )((signed char )ant_pwr_diff) > 7) { ant_pwr_diff = 7; } else { } if ((int )((signed char )ant_pwr_diff) < -8) { ant_pwr_diff = -8; } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Antenna Diff from RF-B to RF-A = %d (0x%x)\n", "_rtl92s_set_antennadiff", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )ant_pwr_diff, (int )ant_pwr_diff & 15); } } else { } } else { } ant_pwr_diff = (int )ant_pwr_diff & 15; } else { } { rtlefuse->antenna_txpwdiff[2] = 0U; rtlefuse->antenna_txpwdiff[1] = 0U; rtlefuse->antenna_txpwdiff[0] = (unsigned char )ant_pwr_diff; u4reg_val = (u32 )((((int )rtlefuse->antenna_txpwdiff[2] << 8) | ((int )rtlefuse->antenna_txpwdiff[1] << 4)) | (int )rtlefuse->antenna_txpwdiff[0]); rtl_set_bbreg(hw, 2060U, 1048320U, u4reg_val); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Write BCD-Diff(0x%x) = 0x%x\n", "_rtl92s_set_antennadiff", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, 2060, u4reg_val); } } else { } } else { } return; } } static void _rtl92s_get_txpower_writeval_byregulatory(struct ieee80211_hw *hw , u8 chnl , u8 index , u32 pwrbase0 , u32 pwrbase1 , u32 *p_outwrite_val ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; u8 i ; u8 chnlgroup ; u8 pwrdiff_limit[4U] ; u32 writeval ; u32 customer_limit ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; int tmp___31 ; int tmp___32 ; long tmp___33 ; long tmp___34 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; { if ((int )rtlefuse->eeprom_regulatory == 0) { goto case_0; } else { } if ((int )rtlefuse->eeprom_regulatory == 1) { goto case_1; } else { } if ((int )rtlefuse->eeprom_regulatory == 2) { goto case_2; } else { } if ((int )rtlefuse->eeprom_regulatory == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { chnlgroup = 0U; writeval = rtlphy->mcs_offset[(int )chnlgroup][(int )index] + ((unsigned int )index <= 1U ? pwrbase0 : pwrbase1); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RTK better performance, writeval = 0x%x\n", "_rtl92s_get_txpower_writeval_byregulatory", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, writeval); } } else { } } else { } goto ldv_50390; case_1: /* CIL Label */ ; if ((unsigned int )rtlphy->current_chan_bw == 1U) { { writeval = (unsigned int )index <= 1U ? pwrbase0 : pwrbase1; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Realtek regulatory, 40MHz, writeval = 0x%x\n", "_rtl92s_get_txpower_writeval_byregulatory", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, writeval); } } else { } } else { } } else { if ((unsigned int )rtlphy->pwrgroup_cnt == 1U) { chnlgroup = 0U; } else { } if ((unsigned int )rtlphy->pwrgroup_cnt > 2U) { if ((unsigned int )chnl <= 3U) { chnlgroup = 0U; } else if ((unsigned int )chnl - 4U <= 4U) { chnlgroup = 1U; } else if ((unsigned int )chnl > 8U) { chnlgroup = 2U; } else { } if ((unsigned int )rtlphy->pwrgroup_cnt == 4U) { chnlgroup = (u8 )((int )chnlgroup + 1); } else { } } else { } { writeval = rtlphy->mcs_offset[(int )chnlgroup][(int )index] + ((unsigned int )index <= 1U ? pwrbase0 : pwrbase1); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Realtek regulatory, 20MHz, writeval = 0x%x\n", "_rtl92s_get_txpower_writeval_byregulatory", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, writeval); } } else { } } else { } } goto ldv_50390; case_2: /* CIL Label */ { writeval = (unsigned int )index <= 1U ? pwrbase0 : pwrbase1; tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Better regulatory, writeval = 0x%x\n", "_rtl92s_get_txpower_writeval_byregulatory", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, writeval); } } else { } } else { } goto ldv_50390; case_3: /* CIL Label */ chnlgroup = 0U; if ((unsigned int )rtlphy->current_chan_bw == 1U) { { tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> customer\'s limit, 40MHz = 0x%x\n", "_rtl92s_get_txpower_writeval_byregulatory", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->pwrgroup_ht40[0][(int )chnl + -1]); } } else { } } else { } } else { { tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> customer\'s limit, 20MHz = 0x%x\n", "_rtl92s_get_txpower_writeval_byregulatory", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->pwrgroup_ht20[0][(int )chnl + -1]); } } else { } } else { } } i = 0U; goto ldv_50395; ldv_50394: pwrdiff_limit[(int )i] = (unsigned char )((rtlphy->mcs_offset[(int )chnlgroup][(int )index] & (u32 )(127 << (int )i * 8)) >> (int )i * 8); if ((unsigned int )rtlphy->current_chan_bw == 1U) { if ((int )pwrdiff_limit[(int )i] > (int )rtlefuse->pwrgroup_ht40[0][(int )chnl + -1]) { pwrdiff_limit[(int )i] = rtlefuse->pwrgroup_ht40[0][(int )chnl + -1]; } else { } } else if ((int )pwrdiff_limit[(int )i] > (int )rtlefuse->pwrgroup_ht20[0][(int )chnl + -1]) { pwrdiff_limit[(int )i] = rtlefuse->pwrgroup_ht20[0][(int )chnl + -1]; } else { } i = (u8 )((int )i + 1); ldv_50395: ; if ((unsigned int )i <= 3U) { goto ldv_50394; } else { } { customer_limit = (u32 )(((((int )pwrdiff_limit[3] << 24) | ((int )pwrdiff_limit[2] << 16)) | ((int )pwrdiff_limit[1] << 8)) | (int )pwrdiff_limit[0]); tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count(); tmp___24 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Customer\'s limit = 0x%x\n", "_rtl92s_get_txpower_writeval_byregulatory", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, customer_limit); } } else { } } else { } { writeval = customer_limit + ((unsigned int )index <= 1U ? pwrbase0 : pwrbase1); tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___30 != 0L) { { tmp___27 = preempt_count(); tmp___28 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Customer, writeval = 0x%x\n", "_rtl92s_get_txpower_writeval_byregulatory", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL, writeval); } } else { } } else { } goto ldv_50390; switch_default: /* CIL Label */ { chnlgroup = 0U; writeval = rtlphy->mcs_offset[(int )chnlgroup][(int )index] + ((unsigned int )index <= 1U ? pwrbase0 : pwrbase1); tmp___33 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___33 != 0L) { { tmp___34 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___34 != 0L) { { tmp___31 = preempt_count(); tmp___32 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> RTK better performance, writeval = 0x%x\n", "_rtl92s_get_txpower_writeval_byregulatory", (unsigned long )tmp___32 & 2096896UL, ((unsigned long )tmp___31 & 0xffffffffffdfffffUL) != 0UL, writeval); } } else { } } else { } goto ldv_50390; switch_break: /* CIL Label */ ; } ldv_50390: ; if ((unsigned int )rtlpriv->dm.dynamic_txhighpower_lvl == 1U) { writeval = 269488144U; } else if ((unsigned int )rtlpriv->dm.dynamic_txhighpower_lvl == 2U) { writeval = 0U; } else { } *p_outwrite_val = writeval; return; } } static void _rtl92s_write_ofdm_powerreg(struct ieee80211_hw *hw , u8 index , u32 val ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; u16 regoffset[6U] ; u8 i ; u8 rfa_pwr[4U] ; u8 rfa_lower_bound ; u8 rfa_upper_bound ; u8 rf_pwr_diff ; u32 writeval ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; regoffset[0] = 3584U; regoffset[1] = 3588U; regoffset[2] = 3600U; regoffset[3] = 3604U; regoffset[4] = 3608U; regoffset[5] = 3612U; rfa_lower_bound = 0U; rfa_upper_bound = 0U; rf_pwr_diff = 0U; writeval = val; if ((unsigned int )rtlphy->rf_type == 2U) { rf_pwr_diff = rtlefuse->antenna_txpwdiff[0]; if ((unsigned int )rf_pwr_diff > 7U) { rfa_lower_bound = 16U - (unsigned int )rf_pwr_diff; } else { rfa_upper_bound = 63U - (unsigned int )rf_pwr_diff; } } else { } i = 0U; goto ldv_50414; ldv_50413: rfa_pwr[(int )i] = (unsigned char )((writeval & (u32 )(127 << (int )i * 8)) >> (int )i * 8); if ((unsigned int )rfa_pwr[(int )i] > 63U) { rfa_pwr[(int )i] = 63U; } else { } if ((unsigned int )rtlphy->rf_type == 2U) { if ((unsigned int )rf_pwr_diff > 7U) { if ((int )rfa_pwr[(int )i] < (int )rfa_lower_bound) { rfa_pwr[(int )i] = rfa_lower_bound; } else { } } else if ((unsigned int )rf_pwr_diff != 0U) { if ((int )rfa_pwr[(int )i] > (int )rfa_upper_bound) { rfa_pwr[(int )i] = rfa_upper_bound; } else { } } else { } } else { } i = (u8 )((int )i + 1); ldv_50414: ; if ((unsigned int )i <= 3U) { goto ldv_50413; } else { } { writeval = (u32 )(((((int )rfa_pwr[3] << 24) | ((int )rfa_pwr[2] << 16)) | ((int )rfa_pwr[1] << 8)) | (int )rfa_pwr[0]); rtl_set_bbreg(hw, (u32 )regoffset[(int )index], 2139062143U, writeval); } return; } } void rtl92s_phy_rf6052_set_ofdmtxpower(struct ieee80211_hw *hw , u8 *p_pwrlevel , u8 chnl ) { u32 writeval ; u32 pwrbase0 ; u32 pwrbase1 ; u8 index ; u8 finalpwr_idx[4U] ; { { index = 0U; _rtl92s_get_powerbase(hw, p_pwrlevel, (int )chnl, & pwrbase0, & pwrbase1, (u8 *)(& finalpwr_idx)); _rtl92s_set_antennadiff(hw, (u8 *)(& finalpwr_idx)); index = 0U; } goto ldv_50427; ldv_50426: { _rtl92s_get_txpower_writeval_byregulatory(hw, (int )chnl, (int )index, pwrbase0, pwrbase1, & writeval); _rtl92s_write_ofdm_powerreg(hw, (int )index, writeval); index = (u8 )((int )index + 1); } ldv_50427: ; if ((unsigned int )index <= 5U) { goto ldv_50426; } else { } return; } } void rtl92s_phy_rf6052_set_ccktxpower(struct ieee80211_hw *hw , u8 pwrlevel ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; u32 txagc ; bool dont_inc_cck_or_turboscanoff ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; txagc = 0U; dont_inc_cck_or_turboscanoff = 0; if ((unsigned int )rtlefuse->eeprom_version > 1U && ((unsigned int )rtlefuse->txpwr_safetyflag == 1U || (unsigned int )rtlefuse->eeprom_regulatory != 0U)) { dont_inc_cck_or_turboscanoff = 1; } else { } if ((int )mac->act_scanning) { txagc = 63U; if ((int )dont_inc_cck_or_turboscanoff) { txagc = (u32 )pwrlevel; } else { } } else { txagc = (u32 )pwrlevel; if ((unsigned int )rtlpriv->dm.dynamic_txhighpower_lvl == 1U) { txagc = 16U; } else if ((unsigned int )rtlpriv->dm.dynamic_txhighpower_lvl == 2U) { txagc = 0U; } else { } } if (txagc > 63U) { txagc = 63U; } else { } { rtl_set_bbreg(hw, 3592U, 32512U, txagc); } return; } } bool rtl92s_phy_rf6052_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 u4reg_val ; u8 rfpath ; bool rtstatus ; struct bb_reg_def *pphyreg ; u8 tmp ; u8 tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; u4reg_val = 0U; rtstatus = 1; rfpath = 0U; goto ldv_50464; ldv_50463: pphyreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; { if ((int )rfpath == 0) { goto case_0; } else { } if ((int )rfpath == 2) { goto case_2; } else { } if ((int )rfpath == 1) { goto case_1; } else { } if ((int )rfpath == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ ; case_2: /* CIL Label */ { u4reg_val = rtl92s_phy_query_bb_reg(hw, pphyreg->rfintfs, 16U); } goto ldv_50449; case_1: /* CIL Label */ ; case_3: /* CIL Label */ { u4reg_val = rtl92s_phy_query_bb_reg(hw, pphyreg->rfintfs, 1048576U); } goto ldv_50449; switch_break: /* CIL Label */ ; } ldv_50449: { rtl92s_phy_set_bb_reg(hw, pphyreg->rfintfe, 1048576U, 1U); rtl92s_phy_set_bb_reg(hw, pphyreg->rfintfo, 16U, 1U); rtl92s_phy_set_bb_reg(hw, pphyreg->rfhssi_para2, 1024U, 0U); rtl92s_phy_set_bb_reg(hw, pphyreg->rfhssi_para2, 2048U, 0U); } { if ((int )rfpath == 0) { goto case_0___0; } else { } if ((int )rfpath == 1) { goto case_1___0; } else { } if ((int )rfpath == 2) { goto case_2___0; } else { } if ((int )rfpath == 3) { goto case_3___0; } else { } goto switch_break___0; case_0___0: /* CIL Label */ { tmp = rtl92s_phy_config_rf(hw, (enum radio_path )rfpath); rtstatus = (unsigned int )tmp != 0U; } goto ldv_50453; case_1___0: /* CIL Label */ { tmp___0 = rtl92s_phy_config_rf(hw, (enum radio_path )rfpath); rtstatus = (unsigned int )tmp___0 != 0U; } goto ldv_50453; case_2___0: /* CIL Label */ ; goto ldv_50453; case_3___0: /* CIL Label */ ; goto ldv_50453; switch_break___0: /* CIL Label */ ; } ldv_50453: ; { if ((int )rfpath == 0) { goto case_0___1; } else { } if ((int )rfpath == 2) { goto case_2___1; } else { } if ((int )rfpath == 1) { goto case_1___1; } else { } if ((int )rfpath == 3) { goto case_3___1; } else { } goto switch_break___1; case_0___1: /* CIL Label */ ; case_2___1: /* CIL Label */ { rtl92s_phy_set_bb_reg(hw, pphyreg->rfintfs, 16U, u4reg_val); } goto ldv_50459; case_1___1: /* CIL Label */ ; case_3___1: /* CIL Label */ { rtl92s_phy_set_bb_reg(hw, pphyreg->rfintfs, 1048576U, u4reg_val); } goto ldv_50459; switch_break___1: /* CIL Label */ ; } ldv_50459: ; if (! rtstatus) { { printk("\vrtl8192se: Radio[%d] Fail!!\n", (int )rfpath); } goto fail; } else { } rfpath = (u8 )((int )rfpath + 1); ldv_50464: ; if ((int )rfpath < (int )rtlphy->num_total_rfpath) { goto ldv_50463; } else { } return (rtstatus); fail: ; return (rtstatus); } } void rtl92s_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw , u8 bandwidth ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; { if ((int )bandwidth == 0) { goto case_0; } else { } if ((int )bandwidth == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ { rtlphy->rfreg_chnlval[0] = (rtlphy->rfreg_chnlval[0] & 4294964223U) | 1024U; rtl_set_rfreg(hw, 0, 24U, 1048575U, rtlphy->rfreg_chnlval[0]); } goto ldv_50473; case_1: /* CIL Label */ { rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] & 4294964223U; rtl_set_rfreg(hw, 0, 24U, 1048575U, rtlphy->rfreg_chnlval[0]); } goto ldv_50473; switch_default: /* CIL Label */ { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl92s_phy_rf6052_set_bandwidth", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )bandwidth); } } else { } } else { } goto ldv_50473; switch_break: /* CIL Label */ ; } ldv_50473: ; return; } } void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } extern void complete(struct completion * ) ; extern void *vzalloc(unsigned long ) ; extern void vfree(void const * ) ; extern int ieee80211_register_hw(struct ieee80211_hw * ) ; static int ldv_ieee80211_register_hw_19(struct ieee80211_hw *ldv_func_arg1 ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_20(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_21(struct pci_driver *ldv_func_arg1 ) ; extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; extern int request_firmware_nowait(struct module * , bool , char const * , struct device * , gfp_t , void * , void (*)(struct firmware const * , void * ) ) ; extern void release_firmware(struct firmware const * ) ; extern void rtl_init_rfkill(struct ieee80211_hw * ) ; extern int rtl_pci_probe(struct pci_dev * , struct pci_device_id const * ) ; extern void rtl_pci_disconnect(struct pci_dev * ) ; extern int rtl_pci_suspend(struct device * ) ; extern int rtl_pci_resume(struct device * ) ; void rtl92se_tx_fill_desc(struct ieee80211_hw *hw , struct ieee80211_hdr *hdr , u8 *pdesc_tx , struct ieee80211_tx_info *info , struct ieee80211_sta *sta , struct sk_buff *skb , u8 hw_queue , struct rtl_tcb_desc *ptcb_desc ) ; void rtl92se_tx_fill_cmddesc(struct ieee80211_hw *hw , u8 *pdesc , bool firstseg , bool lastseg , struct sk_buff *skb ) ; bool rtl92se_rx_query_desc(struct ieee80211_hw *hw , struct rtl_stats *stats , struct ieee80211_rx_status *rx_status , u8 *pdesc , struct sk_buff *skb ) ; void rtl92se_set_desc(u8 *pdesc , bool istx , u8 desc_name , u8 *val ) ; u32 rtl92se_get_desc(u8 *desc , bool istx , u8 desc_name ) ; void rtl92se_tx_polling(struct ieee80211_hw *hw , u8 hw_queue ) ; static void rtl92s_init_aspm_vars(struct ieee80211_hw *hw ) { struct rtl_pci *rtlpci ; { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlpci->const_amdpci_aspm = 0U; rtlpci->const_pci_aspm = 2U; rtlpci->const_devicepci_aspm_setting = 3U; rtlpci->const_hostpci_aspm_setting = 2U; rtlpci->const_hwsw_rfoff_d3 = 2U; rtlpci->const_support_pciaspm = 2U; return; } } static void rtl92se_fw_cb(struct firmware const *firmware , void *context ) { struct ieee80211_hw *hw ; struct rtl_pci_priv *pcipriv ; struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rt_firmware *pfirmware ; int err ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { hw = (struct ieee80211_hw *)context; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & pcipriv->dev; pfirmware = (struct rt_firmware *)0; tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Firmware callback routine entered!\n", "rtl92se_fw_cb", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { complete(& rtlpriv->firmware_loading_complete); } if ((unsigned long )firmware == (unsigned long )((struct firmware const *)0)) { { printk("\vrtl8192se: Firmware %s not available\n", (rtlpriv->cfg)->fw_name); rtlpriv->max_fw_size = 0; } return; } else { } if ((unsigned long )firmware->size > (unsigned long )rtlpriv->max_fw_size) { { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Firmware is too big!\n", "rtl92se_fw_cb", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtlpriv->max_fw_size = 0; release_firmware(firmware); } return; } else { } { pfirmware = (struct rt_firmware *)rtlpriv->rtlhal.pfirmware; memcpy((void *)(& pfirmware->sz_fw_tmpbuffer), (void const *)firmware->data, firmware->size); pfirmware->sz_fw_tmpbufferlen = (u32 )firmware->size; release_firmware(firmware); err = ldv_ieee80211_register_hw_19(hw); } if (err != 0) { { tmp___9 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Can\'t register mac80211 hw\n", "rtl92se_fw_cb", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { rtlpriv->mac80211.mac80211_registered = 1U; } { rtlpci->irq_alloc = 1U; set_bit(0L, (unsigned long volatile *)(& rtlpriv->status)); rtl_init_rfkill(hw); } return; } } static int rtl92s_init_sw_vars(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; int err ; u16 earlyrxthreshold ; void *tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; err = 0; earlyrxthreshold = 7U; rtlpriv->dm.dm_initialgain_enable = 1; rtlpriv->dm.dm_flag = 0U; rtlpriv->dm.disable_framebursting = 0; rtlpriv->dm.thermalvalue = 0U; rtlpriv->dm.useramask = 1; rtlpriv->rtlhal.current_bandtype = 0; rtlpriv->rtlhal.bandset = 0; rtlpriv->rtlhal.macphymode = 0; rtlpci->transmit_config = 0U; rtlpci->receive_config = (u32 )((int )earlyrxthreshold << 13) | 2203521070U; rtlpci->irq_mask[0] = 16383U; rtlpci->irq_mask[1] = 0U; rtlpci->shortretry_limit = 48U; rtlpci->longretry_limit = 48U; rtlpci->first_init = 1; rtlpriv->dbg.global_debuglevel = ((rtlpriv->cfg)->mod_params)->debug; rtlpriv->psc.inactiveps = ((rtlpriv->cfg)->mod_params)->inactiveps; rtlpriv->psc.swctrl_lps = ((rtlpriv->cfg)->mod_params)->swctrl_lps; rtlpriv->psc.fwctrl_lps = ((rtlpriv->cfg)->mod_params)->fwctrl_lps; if (! rtlpriv->psc.inactiveps) { { printk("\016rtl8192se: Power Save off (module option)\n"); } } else { } if (! rtlpriv->psc.fwctrl_lps) { { printk("\016rtl8192se: FW Power Save off (module option)\n"); } } else { } { rtlpriv->psc.reg_fwctrl_lps = 3U; rtlpriv->psc.reg_max_lps_awakeintvl = 5U; rtl92s_init_aspm_vars(hw); } if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 1U) { rtlpriv->psc.fwctrl_psmode = 1U; } else if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 2U) { rtlpriv->psc.fwctrl_psmode = 2U; } else if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 3U) { rtlpriv->psc.fwctrl_psmode = 3U; } else { } { tmp = vzalloc(218032UL); rtlpriv->rtlhal.pfirmware = (u8 *)tmp; } if ((unsigned long )rtlpriv->rtlhal.pfirmware == (unsigned long )((u8 *)0U)) { return (1); } else { } { rtlpriv->max_fw_size = 90000; printk("\016rtl8192se: Driver for Realtek RTL8192SE/RTL8191SE\nLoading firmware %s\n", (rtlpriv->cfg)->fw_name); err = request_firmware_nowait(& __this_module, 1, (char const *)(rtlpriv->cfg)->fw_name, rtlpriv->io.dev, 208U, (void *)hw, & rtl92se_fw_cb); } if (err != 0) { { tmp___2 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> Failed to request firmware!\n", "rtl92s_init_sw_vars", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (1); } else { } return (err); } } static void rtl92s_deinit_sw_vars(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned long )rtlpriv->rtlhal.pfirmware != (unsigned long )((u8 *)0U)) { { vfree((void const *)rtlpriv->rtlhal.pfirmware); rtlpriv->rtlhal.pfirmware = (u8 *)0U; } } else { } return; } } static struct rtl_hal_ops rtl8192se_hal_ops = {& rtl92s_init_sw_vars, & rtl92s_deinit_sw_vars, 0, & rtl92se_read_eeprom_info, & rtl92se_interrupt_recognized, & rtl92se_hw_init, & rtl92se_card_disable, & rtl92se_suspend, & rtl92se_resume, & rtl92se_enable_interrupt, & rtl92se_disable_interrupt, & rtl92se_set_network_type, & rtl92se_set_check_bssid, & rtl92s_phy_set_bw_mode, & rtl92s_phy_sw_chnl, & rtl92se_set_qos, & rtl92se_set_beacon_related_registers, & rtl92se_set_beacon_interval, & rtl92se_update_interrupt_mask, & rtl92se_get_hw_reg, & rtl92se_set_hw_reg, & rtl92se_update_hal_rate_tbl, 0, & rtl92se_tx_fill_desc, 0, & rtl92se_tx_fill_cmddesc, 0, & rtl92se_rx_query_desc, & rtl92se_update_channel_access_setting, & rtl92se_gpio_radio_on_off_checking, & rtl92s_dm_watchdog, & rtl92s_phy_scan_operation_backup, & rtl92s_phy_set_rf_power_state, & rtl92se_led_control, & rtl92se_set_desc, & rtl92se_get_desc, & rtl92se_tx_polling, & rtl92se_enable_hw_security_config, & rtl92se_set_key, & rtl92se_init_sw_leds, 0, & rtl92s_phy_query_bb_reg, & rtl92s_phy_set_bb_reg, & rtl92s_phy_query_rf_reg, & rtl92s_phy_set_rf_reg, & rtl92se_allow_all_destaddr, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct rtl_mod_params rtl92se_mod_params = {0, 0, 1, 1, 0}; static struct rtl_hal_cfg rtl92se_hal_cfg = {1U, 0, (char *)"rtl92s_pci", (char *)"rtlwifi/rtl8192sefw.bin", 0, & rtl8192se_hal_ops, & rtl92se_mod_params, 0, {0U, 2U, 8U, 4U, 8U, 32U, 524288U, 1U, 52U, 48U, 760U, 48U, 0U, 0U, 0U, 15U, 128U, 16U, 512U, 15U, 0U, 576U, 580U, 584U, 588U, 592U, 0U, 1U, 2U, 4U, 5U, 2147483648U, 1073741824U, 536870912U, 268435456U, 134217728U, 67108864U, 33554432U, 16777216U, 8388608U, 4194304U, 2097152U, 1048576U, 524288U, 262144U, 131072U, 65536U, 32768U, 16384U, 8192U, 4096U, 2048U, 16U, 512U, 256U, 128U, 8U, 64U, 4U, 16U, 8U, 4U, 2U, 1U, 8204U, 0U, 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 19U, 27U}}; static struct pci_device_id rtl92se_pci_ids[6U] = { {4332U, 33170U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& rtl92se_hal_cfg)}, {4332U, 33137U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& rtl92se_hal_cfg)}, {4332U, 33138U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& rtl92se_hal_cfg)}, {4332U, 33139U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& rtl92se_hal_cfg)}, {4332U, 33140U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& rtl92se_hal_cfg)}}; struct pci_device_id const __mod_pci_device_table ; static struct dev_pm_ops const rtlwifi_pm_ops = {0, 0, & rtl_pci_suspend, & rtl_pci_resume, & rtl_pci_suspend, & rtl_pci_resume, & rtl_pci_suspend, & rtl_pci_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct pci_driver rtl92se_driver = {{0, 0}, "rtl8192se", (struct pci_device_id const *)(& rtl92se_pci_ids), & rtl_pci_probe, & rtl_pci_disconnect, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & rtlwifi_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int rtl92se_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_20(& rtl92se_driver, & __this_module, "rtl8192se"); } return (tmp); } } static void rtl92se_driver_exit(void) { { { ldv_pci_unregister_driver_21(& rtl92se_driver); } return; } } void ldv_EMGentry_exit_rtl92se_driver_exit_7_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_rtl92se_driver_init_7_10(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_allocate_external_0(void) ; void ldv_dispatch_deregister_5_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_ieee80211_instance_1_7_4(void) ; void ldv_dispatch_deregister_platform_instance_7_7_5(void) ; void ldv_dispatch_pm_deregister_3_5(void) ; void ldv_dispatch_pm_register_3_6(void) ; void ldv_dispatch_register_4_2(struct ieee80211_hw *arg0 ) ; void ldv_dispatch_register_6_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_platform_instance_7_7_6(void) ; void ldv_entry_EMGentry_7(void *arg0 ) ; int main(void) ; void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) ; void ldv_ieee80211_instance_callback_0_10(void (*arg0)(struct ieee80211_hw * , _Bool , _Bool ) , struct ieee80211_hw *arg1 , _Bool arg2 , _Bool arg3 ) ; void ldv_ieee80211_instance_callback_0_20(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_21(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_22(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_23(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_24(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_25(void (*arg0)(struct ieee80211_hw * , unsigned char * , _Bool , _Bool , struct sk_buff * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 , _Bool arg3 , _Bool arg4 , struct sk_buff *arg5 ) ; void ldv_ieee80211_instance_callback_0_28(void (*arg0)(struct ieee80211_hw * , struct ieee80211_hdr * , unsigned char * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , unsigned char , struct rtl_tcb_desc * ) , struct ieee80211_hw *arg1 , struct ieee80211_hdr *arg2 , unsigned char *arg3 , struct ieee80211_tx_info *arg4 , struct ieee80211_sta *arg5 , struct sk_buff *arg6 , unsigned char arg7 , struct rtl_tcb_desc *arg8 ) ; void ldv_ieee80211_instance_callback_0_31(unsigned int (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_ieee80211_instance_callback_0_34(unsigned int (*arg0)(unsigned char * , _Bool , unsigned char ) , unsigned char *arg1 , _Bool arg2 , unsigned char arg3 ) ; void ldv_ieee80211_instance_callback_0_37(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) ; void ldv_ieee80211_instance_callback_0_40(unsigned int (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_0_43(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_44(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_45(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_46(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_47(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_48(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_49(void (*arg0)(struct ieee80211_hw * , unsigned int * , unsigned int * ) , struct ieee80211_hw *arg1 , unsigned int *arg2 , unsigned int *arg3 ) ; void ldv_ieee80211_instance_callback_0_52(void (*arg0)(struct ieee80211_hw * , enum led_ctl_mode ) , struct ieee80211_hw *arg1 , enum led_ctl_mode arg2 ) ; void ldv_ieee80211_instance_callback_0_53(_Bool (*arg0)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , unsigned char * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct rtl_stats *arg2 , struct ieee80211_rx_status *arg3 , unsigned char *arg4 , struct sk_buff *arg5 ) ; void ldv_ieee80211_instance_callback_0_56(_Bool (*arg0)(struct ieee80211_hw * , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 ) ; void ldv_ieee80211_instance_callback_0_59(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_60(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_0_63(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_0_66(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_67(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_68(void (*arg0)(struct ieee80211_hw * , enum nl80211_channel_type ) , struct ieee80211_hw *arg1 , enum nl80211_channel_type arg2 ) ; void ldv_ieee80211_instance_callback_0_69(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_70(void (*arg0)(struct ieee80211_hw * , _Bool ) , struct ieee80211_hw *arg1 , _Bool arg2 ) ; void ldv_ieee80211_instance_callback_0_73(void (*arg0)(unsigned char * , _Bool , unsigned char , unsigned char * ) , unsigned char *arg1 , _Bool arg2 , unsigned char arg3 , unsigned char *arg4 ) ; void ldv_ieee80211_instance_callback_0_76(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) ; void ldv_ieee80211_instance_callback_0_79(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned char * , _Bool , unsigned char , _Bool , _Bool ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned char *arg3 , _Bool arg4 , unsigned char arg5 , _Bool arg6 , _Bool arg7 ) ; void ldv_ieee80211_instance_callback_0_82(int (*arg0)(struct ieee80211_hw * , enum nl80211_iftype ) , struct ieee80211_hw *arg1 , enum nl80211_iftype arg2 ) ; void ldv_ieee80211_instance_callback_0_83(void (*arg0)(struct ieee80211_hw * , int ) , struct ieee80211_hw *arg1 , int arg2 ) ; void ldv_ieee80211_instance_callback_0_86(_Bool (*arg0)(struct ieee80211_hw * , enum rf_pwrstate ) , struct ieee80211_hw *arg1 , enum rf_pwrstate arg2 ) ; void ldv_ieee80211_instance_callback_0_87(void (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 ) ; void ldv_ieee80211_instance_callback_0_90(unsigned char (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_91(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_0_94(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_ieee80211_instance_callback_0_97(void (*arg0)(struct ieee80211_hw * , struct ieee80211_sta * , unsigned char ) , struct ieee80211_hw *arg1 , struct ieee80211_sta *arg2 , unsigned char arg3 ) ; void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_register_hw(int arg0 , struct ieee80211_hw *arg1 ) ; void ldv_initialize_external_data(void) ; int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_1(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_3_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_3_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_2_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_2_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_2_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_2_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_2_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_2_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_2_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_2_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_2_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_2_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_2_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_2_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_2_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_2_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_2_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_2_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_2_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_2_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_2_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_2_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_2_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_2_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_2_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_3(void *arg0 ) ; void ldv_pm_pm_ops_instance_2(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; int ldv_switch_3(void) ; int ldv_switch_4(void) ; int ldv_switch_5(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_15(void) ; void ldv_switch_automaton_state_1_11(void) ; void ldv_switch_automaton_state_1_20(void) ; void ldv_switch_automaton_state_2_1(void) ; void ldv_switch_automaton_state_2_29(void) ; void ldv_switch_automaton_state_3_17(void) ; void ldv_switch_automaton_state_3_8(void) ; void (*ldv_0_callback_allow_all_destaddr)(struct ieee80211_hw * , _Bool , _Bool ) ; void (*ldv_0_callback_deinit_sw_vars)(struct ieee80211_hw * ) ; void (*ldv_0_callback_disable_interrupt)(struct ieee80211_hw * ) ; void (*ldv_0_callback_dm_watchdog)(struct ieee80211_hw * ) ; void (*ldv_0_callback_enable_hw_sec)(struct ieee80211_hw * ) ; void (*ldv_0_callback_enable_interrupt)(struct ieee80211_hw * ) ; void (*ldv_0_callback_fill_tx_cmddesc)(struct ieee80211_hw * , unsigned char * , _Bool , _Bool , struct sk_buff * ) ; void (*ldv_0_callback_fill_tx_desc)(struct ieee80211_hw * , struct ieee80211_hdr * , unsigned char * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , unsigned char , struct rtl_tcb_desc * ) ; unsigned int (*ldv_0_callback_get_bbreg)(struct ieee80211_hw * , unsigned int , unsigned int ) ; unsigned int (*ldv_0_callback_get_desc)(unsigned char * , _Bool , unsigned char ) ; void (*ldv_0_callback_get_hw_reg)(struct ieee80211_hw * , unsigned char , unsigned char * ) ; unsigned int (*ldv_0_callback_get_rfreg)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int ) ; void (*ldv_0_callback_hw_disable)(struct ieee80211_hw * ) ; int (*ldv_0_callback_hw_init)(struct ieee80211_hw * ) ; void (*ldv_0_callback_hw_resume)(struct ieee80211_hw * ) ; void (*ldv_0_callback_hw_suspend)(struct ieee80211_hw * ) ; void (*ldv_0_callback_init_sw_leds)(struct ieee80211_hw * ) ; int (*ldv_0_callback_init_sw_vars)(struct ieee80211_hw * ) ; void (*ldv_0_callback_interrupt_recognized)(struct ieee80211_hw * , unsigned int * , unsigned int * ) ; void (*ldv_0_callback_led_control)(struct ieee80211_hw * , enum led_ctl_mode ) ; _Bool (*ldv_0_callback_query_rx_desc)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , unsigned char * , struct sk_buff * ) ; _Bool (*ldv_0_callback_radio_onoff_checking)(struct ieee80211_hw * , unsigned char * ) ; void (*ldv_0_callback_read_eeprom_info)(struct ieee80211_hw * ) ; void (*ldv_0_callback_scan_operation_backup)(struct ieee80211_hw * , unsigned char ) ; void (*ldv_0_callback_set_bbreg)(struct ieee80211_hw * , unsigned int , unsigned int , unsigned int ) ; void (*ldv_0_callback_set_bcn_intv)(struct ieee80211_hw * ) ; void (*ldv_0_callback_set_bcn_reg)(struct ieee80211_hw * ) ; void (*ldv_0_callback_set_bw_mode)(struct ieee80211_hw * , enum nl80211_channel_type ) ; void (*ldv_0_callback_set_channel_access)(struct ieee80211_hw * ) ; void (*ldv_0_callback_set_chk_bssid)(struct ieee80211_hw * , _Bool ) ; void (*ldv_0_callback_set_desc)(unsigned char * , _Bool , unsigned char , unsigned char * ) ; void (*ldv_0_callback_set_hw_reg)(struct ieee80211_hw * , unsigned char , unsigned char * ) ; void (*ldv_0_callback_set_key)(struct ieee80211_hw * , unsigned int , unsigned char * , _Bool , unsigned char , _Bool , _Bool ) ; int (*ldv_0_callback_set_network_type)(struct ieee80211_hw * , enum nl80211_iftype ) ; void (*ldv_0_callback_set_qos)(struct ieee80211_hw * , int ) ; _Bool (*ldv_0_callback_set_rf_power_state)(struct ieee80211_hw * , enum rf_pwrstate ) ; void (*ldv_0_callback_set_rfreg)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int , unsigned int ) ; unsigned char (*ldv_0_callback_switch_channel)(struct ieee80211_hw * ) ; void (*ldv_0_callback_tx_polling)(struct ieee80211_hw * , unsigned char ) ; void (*ldv_0_callback_update_interrupt_mask)(struct ieee80211_hw * , unsigned int , unsigned int ) ; void (*ldv_0_callback_update_rate_tbl)(struct ieee80211_hw * , struct ieee80211_sta * , unsigned char ) ; struct ieee80211_ops *ldv_0_container_ieee80211_ops ; _Bool ldv_0_ldv_param_10_1_default ; _Bool ldv_0_ldv_param_10_2_default ; unsigned char *ldv_0_ldv_param_25_1_default ; _Bool ldv_0_ldv_param_25_2_default ; _Bool ldv_0_ldv_param_25_3_default ; unsigned char *ldv_0_ldv_param_28_2_default ; unsigned char ldv_0_ldv_param_28_6_default ; unsigned int ldv_0_ldv_param_31_1_default ; unsigned int ldv_0_ldv_param_31_2_default ; unsigned char *ldv_0_ldv_param_34_0_default ; _Bool ldv_0_ldv_param_34_1_default ; unsigned char ldv_0_ldv_param_34_2_default ; unsigned char ldv_0_ldv_param_37_1_default ; unsigned char *ldv_0_ldv_param_37_2_default ; unsigned int ldv_0_ldv_param_40_2_default ; unsigned int ldv_0_ldv_param_40_3_default ; unsigned int *ldv_0_ldv_param_49_1_default ; unsigned int *ldv_0_ldv_param_49_2_default ; unsigned char *ldv_0_ldv_param_53_3_default ; unsigned char *ldv_0_ldv_param_56_1_default ; unsigned char ldv_0_ldv_param_60_1_default ; unsigned int ldv_0_ldv_param_63_1_default ; unsigned int ldv_0_ldv_param_63_2_default ; unsigned int ldv_0_ldv_param_63_3_default ; _Bool ldv_0_ldv_param_70_1_default ; unsigned char *ldv_0_ldv_param_73_0_default ; _Bool ldv_0_ldv_param_73_1_default ; unsigned char ldv_0_ldv_param_73_2_default ; unsigned char *ldv_0_ldv_param_73_3_default ; unsigned char ldv_0_ldv_param_76_1_default ; unsigned char *ldv_0_ldv_param_76_2_default ; unsigned int ldv_0_ldv_param_79_1_default ; unsigned char *ldv_0_ldv_param_79_2_default ; _Bool ldv_0_ldv_param_79_3_default ; unsigned char ldv_0_ldv_param_79_4_default ; _Bool ldv_0_ldv_param_79_5_default ; _Bool ldv_0_ldv_param_79_6_default ; int ldv_0_ldv_param_83_1_default ; unsigned int ldv_0_ldv_param_87_2_default ; unsigned int ldv_0_ldv_param_87_3_default ; unsigned int ldv_0_ldv_param_87_4_default ; unsigned char ldv_0_ldv_param_91_1_default ; unsigned int ldv_0_ldv_param_94_1_default ; unsigned int ldv_0_ldv_param_94_2_default ; unsigned char ldv_0_ldv_param_97_2_default ; enum led_ctl_mode ldv_0_resource_enum_led_ctl_mode ; enum nl80211_channel_type ldv_0_resource_enum_nl80211_channel_type ; enum nl80211_iftype ldv_0_resource_enum_nl80211_iftype ; enum radio_path ldv_0_resource_enum_radio_path ; enum rf_pwrstate ldv_0_resource_enum_rf_pwrstate ; struct ieee80211_hw *ldv_0_resource_ieee80211_hw ; struct ieee80211_hdr *ldv_0_resource_struct_ieee80211_hdr_ptr ; struct ieee80211_rx_status *ldv_0_resource_struct_ieee80211_rx_status_ptr ; struct ieee80211_sta *ldv_0_resource_struct_ieee80211_sta_ptr ; struct ieee80211_tx_info *ldv_0_resource_struct_ieee80211_tx_info_ptr ; struct rtl_stats *ldv_0_resource_struct_rtl_stats_ptr ; struct rtl_tcb_desc *ldv_0_resource_struct_rtl_tcb_desc_ptr ; struct sk_buff *ldv_0_resource_struct_sk_buff_ptr ; int ldv_0_ret_default ; struct pci_driver *ldv_1_container_pci_driver ; struct pci_dev *ldv_1_resource_dev ; struct pm_message ldv_1_resource_pm_message ; struct pci_device_id *ldv_1_resource_struct_pci_device_id_ptr ; int ldv_1_ret_default ; struct device *ldv_2_device_device ; struct dev_pm_ops *ldv_2_pm_ops_dev_pm_ops ; struct platform_driver *ldv_3_container_platform_driver ; struct platform_device *ldv_3_ldv_param_14_0_default ; struct platform_device *ldv_3_ldv_param_3_0_default ; int ldv_3_probed_default ; void (*ldv_7_exit_rtl92se_driver_exit_default)(void) ; int (*ldv_7_init_rtl92se_driver_init_default)(void) ; int ldv_7_ret_default ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_7 ; void (*ldv_0_callback_allow_all_destaddr)(struct ieee80211_hw * , _Bool , _Bool ) = & rtl92se_allow_all_destaddr; void (*ldv_0_callback_deinit_sw_vars)(struct ieee80211_hw * ) = & rtl92s_deinit_sw_vars; void (*ldv_0_callback_disable_interrupt)(struct ieee80211_hw * ) = & rtl92se_disable_interrupt; void (*ldv_0_callback_dm_watchdog)(struct ieee80211_hw * ) = & rtl92s_dm_watchdog; void (*ldv_0_callback_enable_hw_sec)(struct ieee80211_hw * ) = & rtl92se_enable_hw_security_config; void (*ldv_0_callback_enable_interrupt)(struct ieee80211_hw * ) = & rtl92se_enable_interrupt; void (*ldv_0_callback_fill_tx_cmddesc)(struct ieee80211_hw * , unsigned char * , _Bool , _Bool , struct sk_buff * ) = & rtl92se_tx_fill_cmddesc; void (*ldv_0_callback_fill_tx_desc)(struct ieee80211_hw * , struct ieee80211_hdr * , unsigned char * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , unsigned char , struct rtl_tcb_desc * ) = & rtl92se_tx_fill_desc; unsigned int (*ldv_0_callback_get_bbreg)(struct ieee80211_hw * , unsigned int , unsigned int ) = & rtl92s_phy_query_bb_reg; unsigned int (*ldv_0_callback_get_desc)(unsigned char * , _Bool , unsigned char ) = & rtl92se_get_desc; void (*ldv_0_callback_get_hw_reg)(struct ieee80211_hw * , unsigned char , unsigned char * ) = & rtl92se_get_hw_reg; unsigned int (*ldv_0_callback_get_rfreg)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int ) = & rtl92s_phy_query_rf_reg; void (*ldv_0_callback_hw_disable)(struct ieee80211_hw * ) = & rtl92se_card_disable; int (*ldv_0_callback_hw_init)(struct ieee80211_hw * ) = & rtl92se_hw_init; void (*ldv_0_callback_hw_resume)(struct ieee80211_hw * ) = & rtl92se_resume; void (*ldv_0_callback_hw_suspend)(struct ieee80211_hw * ) = & rtl92se_suspend; void (*ldv_0_callback_init_sw_leds)(struct ieee80211_hw * ) = & rtl92se_init_sw_leds; int (*ldv_0_callback_init_sw_vars)(struct ieee80211_hw * ) = & rtl92s_init_sw_vars; void (*ldv_0_callback_interrupt_recognized)(struct ieee80211_hw * , unsigned int * , unsigned int * ) = & rtl92se_interrupt_recognized; void (*ldv_0_callback_led_control)(struct ieee80211_hw * , enum led_ctl_mode ) = & rtl92se_led_control; _Bool (*ldv_0_callback_query_rx_desc)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , unsigned char * , struct sk_buff * ) = & rtl92se_rx_query_desc; _Bool (*ldv_0_callback_radio_onoff_checking)(struct ieee80211_hw * , unsigned char * ) = & rtl92se_gpio_radio_on_off_checking; void (*ldv_0_callback_read_eeprom_info)(struct ieee80211_hw * ) = & rtl92se_read_eeprom_info; void (*ldv_0_callback_scan_operation_backup)(struct ieee80211_hw * , unsigned char ) = & rtl92s_phy_scan_operation_backup; void (*ldv_0_callback_set_bbreg)(struct ieee80211_hw * , unsigned int , unsigned int , unsigned int ) = & rtl92s_phy_set_bb_reg; void (*ldv_0_callback_set_bcn_intv)(struct ieee80211_hw * ) = & rtl92se_set_beacon_interval; void (*ldv_0_callback_set_bcn_reg)(struct ieee80211_hw * ) = & rtl92se_set_beacon_related_registers; void (*ldv_0_callback_set_bw_mode)(struct ieee80211_hw * , enum nl80211_channel_type ) = & rtl92s_phy_set_bw_mode; void (*ldv_0_callback_set_channel_access)(struct ieee80211_hw * ) = & rtl92se_update_channel_access_setting; void (*ldv_0_callback_set_chk_bssid)(struct ieee80211_hw * , _Bool ) = & rtl92se_set_check_bssid; void (*ldv_0_callback_set_desc)(unsigned char * , _Bool , unsigned char , unsigned char * ) = & rtl92se_set_desc; void (*ldv_0_callback_set_hw_reg)(struct ieee80211_hw * , unsigned char , unsigned char * ) = & rtl92se_set_hw_reg; void (*ldv_0_callback_set_key)(struct ieee80211_hw * , unsigned int , unsigned char * , _Bool , unsigned char , _Bool , _Bool ) = & rtl92se_set_key; int (*ldv_0_callback_set_network_type)(struct ieee80211_hw * , enum nl80211_iftype ) = & rtl92se_set_network_type; void (*ldv_0_callback_set_qos)(struct ieee80211_hw * , int ) = & rtl92se_set_qos; _Bool (*ldv_0_callback_set_rf_power_state)(struct ieee80211_hw * , enum rf_pwrstate ) = & rtl92s_phy_set_rf_power_state; void (*ldv_0_callback_set_rfreg)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int , unsigned int ) = & rtl92s_phy_set_rf_reg; unsigned char (*ldv_0_callback_switch_channel)(struct ieee80211_hw * ) = & rtl92s_phy_sw_chnl; void (*ldv_0_callback_tx_polling)(struct ieee80211_hw * , unsigned char ) = & rtl92se_tx_polling; void (*ldv_0_callback_update_interrupt_mask)(struct ieee80211_hw * , unsigned int , unsigned int ) = & rtl92se_update_interrupt_mask; void (*ldv_0_callback_update_rate_tbl)(struct ieee80211_hw * , struct ieee80211_sta * , unsigned char ) = & rtl92se_update_hal_rate_tbl; void (*ldv_7_exit_rtl92se_driver_exit_default)(void) = & rtl92se_driver_exit; int (*ldv_7_init_rtl92se_driver_init_default)(void) = & rtl92se_driver_init; void ldv_EMGentry_exit_rtl92se_driver_exit_7_2(void (*arg0)(void) ) { { { rtl92se_driver_exit(); } return; } } int ldv_EMGentry_init_rtl92se_driver_init_7_10(int (*arg0)(void) ) { int tmp ; { { tmp = rtl92se_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_6_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_6_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_1 == 20); ldv_dispatch_register_6_2(ldv_6_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void *ldv_malloc(size_t size ) ; void ldv_allocate_external_0(void) { { { ldv_0_container_ieee80211_ops = ldv_malloc(sizeof(struct ieee80211_ops)); ldv_0_ldv_param_25_1_default = ldv_malloc(sizeof(unsigned char)); ldv_0_ldv_param_28_2_default = ldv_malloc(sizeof(unsigned char)); ldv_0_ldv_param_34_0_default = ldv_malloc(sizeof(unsigned char)); ldv_0_ldv_param_37_2_default = ldv_malloc(sizeof(unsigned char)); ldv_0_ldv_param_49_1_default = ldv_malloc(sizeof(unsigned int)); ldv_0_ldv_param_49_2_default = ldv_malloc(sizeof(unsigned int)); ldv_0_ldv_param_53_3_default = ldv_malloc(sizeof(unsigned char)); ldv_0_ldv_param_56_1_default = ldv_malloc(sizeof(unsigned char)); ldv_0_ldv_param_73_0_default = ldv_malloc(sizeof(unsigned char)); ldv_0_ldv_param_73_3_default = ldv_malloc(sizeof(unsigned char)); ldv_0_ldv_param_76_2_default = ldv_malloc(sizeof(unsigned char)); ldv_0_ldv_param_79_2_default = ldv_malloc(sizeof(unsigned char)); ldv_0_resource_ieee80211_hw = ldv_malloc(sizeof(struct ieee80211_hw)); ldv_0_resource_struct_ieee80211_hdr_ptr = ldv_malloc(sizeof(struct ieee80211_hdr)); ldv_0_resource_struct_ieee80211_rx_status_ptr = ldv_malloc(sizeof(struct ieee80211_rx_status)); ldv_0_resource_struct_ieee80211_sta_ptr = ldv_malloc(sizeof(struct ieee80211_sta)); ldv_0_resource_struct_ieee80211_tx_info_ptr = ldv_malloc(sizeof(struct ieee80211_tx_info)); ldv_0_resource_struct_rtl_stats_ptr = ldv_malloc(sizeof(struct rtl_stats)); ldv_0_resource_struct_rtl_tcb_desc_ptr = ldv_malloc(sizeof(struct rtl_tcb_desc)); ldv_0_resource_struct_sk_buff_ptr = ldv_malloc(sizeof(struct sk_buff)); ldv_1_resource_dev = ldv_malloc(sizeof(struct pci_dev)); ldv_2_device_device = ldv_malloc(sizeof(struct device)); ldv_3_container_platform_driver = ldv_malloc(sizeof(struct platform_driver)); ldv_3_ldv_param_14_0_default = ldv_malloc(sizeof(struct platform_device)); ldv_3_ldv_param_3_0_default = ldv_malloc(sizeof(struct platform_device)); } return; } } void ldv_dispatch_deregister_5_1(struct pci_driver *arg0 ) { { { ldv_1_container_pci_driver = arg0; ldv_switch_automaton_state_1_11(); } return; } } void ldv_dispatch_deregister_ieee80211_instance_1_7_4(void) { { { ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_deregister_platform_instance_7_7_5(void) { { { ldv_switch_automaton_state_3_8(); } return; } } void ldv_dispatch_pm_deregister_3_5(void) { { { ldv_switch_automaton_state_2_1(); } return; } } void ldv_dispatch_pm_register_3_6(void) { { { ldv_switch_automaton_state_2_29(); } return; } } void ldv_dispatch_register_4_2(struct ieee80211_hw *arg0 ) { { { ldv_0_resource_ieee80211_hw = arg0; ldv_switch_automaton_state_0_15(); } return; } } void ldv_dispatch_register_6_2(struct pci_driver *arg0 ) { { { ldv_1_container_pci_driver = arg0; ldv_switch_automaton_state_1_20(); } return; } } void ldv_dispatch_register_platform_instance_7_7_6(void) { { { ldv_switch_automaton_state_3_17(); } return; } } void ldv_entry_EMGentry_7(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_7 == 2) { goto case_2; } else { } if (ldv_statevar_7 == 3) { goto case_3; } else { } if (ldv_statevar_7 == 4) { goto case_4; } else { } if (ldv_statevar_7 == 5) { goto case_5; } else { } if (ldv_statevar_7 == 6) { goto case_6; } else { } if (ldv_statevar_7 == 7) { goto case_7; } else { } if (ldv_statevar_7 == 9) { goto case_9; } else { } if (ldv_statevar_7 == 10) { goto case_10; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 12); ldv_EMGentry_exit_rtl92se_driver_exit_7_2(ldv_7_exit_rtl92se_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_7 = 10; } goto ldv_52704; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 12); ldv_EMGentry_exit_rtl92se_driver_exit_7_2(ldv_7_exit_rtl92se_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_7 = 10; } goto ldv_52704; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 1); ldv_dispatch_deregister_ieee80211_instance_1_7_4(); ldv_statevar_7 = 2; } goto ldv_52704; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 9); ldv_dispatch_deregister_platform_instance_7_7_5(); ldv_statevar_7 = 4; } goto ldv_52704; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 17); ldv_dispatch_register_platform_instance_7_7_6(); ldv_statevar_7 = 5; } goto ldv_52704; case_7: /* CIL Label */ { ldv_assume(ldv_7_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_7 = 3; } else { ldv_statevar_7 = 6; } goto ldv_52704; case_9: /* CIL Label */ { ldv_assume(ldv_7_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_7 = 10; } goto ldv_52704; case_10: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 20); ldv_7_ret_default = ldv_EMGentry_init_rtl92se_driver_init_7_10(ldv_7_init_rtl92se_driver_init_default); ldv_7_ret_default = ldv_post_init(ldv_7_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_7 = 7; } else { ldv_statevar_7 = 9; } goto ldv_52704; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52704: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_7 = 10; ldv_statevar_0 = 15; ldv_1_ret_default = 1; ldv_statevar_1 = 20; ldv_statevar_2 = 29; ldv_3_probed_default = 1; ldv_statevar_3 = 17; } ldv_52722: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_7((void *)0); } goto ldv_52716; case_1: /* CIL Label */ { ldv_ieee80211_ieee80211_instance_0((void *)0); } goto ldv_52716; case_2: /* CIL Label */ { ldv_pci_pci_instance_1((void *)0); } goto ldv_52716; case_3: /* CIL Label */ { ldv_pm_pm_ops_instance_2((void *)0); } goto ldv_52716; case_4: /* CIL Label */ { ldv_pm_platform_instance_3((void *)0); } goto ldv_52716; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52716: ; goto ldv_52722; } } void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; { { if (ldv_statevar_0 == 1) { goto case_1; } else { } if (ldv_statevar_0 == 3) { goto case_3; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } if (ldv_statevar_0 == 7) { goto case_7; } else { } if (ldv_statevar_0 == 8) { goto case_8; } else { } if (ldv_statevar_0 == 9) { goto case_9; } else { } if (ldv_statevar_0 == 10) { goto case_10; } else { } if (ldv_statevar_0 == 11) { goto case_11; } else { } if (ldv_statevar_0 == 12) { goto case_12; } else { } if (ldv_statevar_0 == 13) { goto case_13; } else { } if (ldv_statevar_0 == 14) { goto case_14; } else { } if (ldv_statevar_0 == 15) { goto case_15; } else { } if (ldv_statevar_0 == 18) { goto case_18; } else { } if (ldv_statevar_0 == 20) { goto case_20; } else { } if (ldv_statevar_0 == 21) { goto case_21; } else { } if (ldv_statevar_0 == 22) { goto case_22; } else { } if (ldv_statevar_0 == 23) { goto case_23; } else { } if (ldv_statevar_0 == 24) { goto case_24; } else { } if (ldv_statevar_0 == 26) { goto case_26; } else { } if (ldv_statevar_0 == 29) { goto case_29; } else { } if (ldv_statevar_0 == 32) { goto case_32; } else { } if (ldv_statevar_0 == 35) { goto case_35; } else { } if (ldv_statevar_0 == 38) { goto case_38; } else { } if (ldv_statevar_0 == 41) { goto case_41; } else { } if (ldv_statevar_0 == 43) { goto case_43; } else { } if (ldv_statevar_0 == 44) { goto case_44; } else { } if (ldv_statevar_0 == 45) { goto case_45; } else { } if (ldv_statevar_0 == 46) { goto case_46; } else { } if (ldv_statevar_0 == 47) { goto case_47; } else { } if (ldv_statevar_0 == 48) { goto case_48; } else { } if (ldv_statevar_0 == 50) { goto case_50; } else { } if (ldv_statevar_0 == 52) { goto case_52; } else { } if (ldv_statevar_0 == 54) { goto case_54; } else { } if (ldv_statevar_0 == 57) { goto case_57; } else { } if (ldv_statevar_0 == 59) { goto case_59; } else { } if (ldv_statevar_0 == 61) { goto case_61; } else { } if (ldv_statevar_0 == 64) { goto case_64; } else { } if (ldv_statevar_0 == 66) { goto case_66; } else { } if (ldv_statevar_0 == 67) { goto case_67; } else { } if (ldv_statevar_0 == 68) { goto case_68; } else { } if (ldv_statevar_0 == 69) { goto case_69; } else { } if (ldv_statevar_0 == 71) { goto case_71; } else { } if (ldv_statevar_0 == 74) { goto case_74; } else { } if (ldv_statevar_0 == 77) { goto case_77; } else { } if (ldv_statevar_0 == 80) { goto case_80; } else { } if (ldv_statevar_0 == 82) { goto case_82; } else { } if (ldv_statevar_0 == 84) { goto case_84; } else { } if (ldv_statevar_0 == 86) { goto case_86; } else { } if (ldv_statevar_0 == 88) { goto case_88; } else { } if (ldv_statevar_0 == 90) { goto case_90; } else { } if (ldv_statevar_0 == 92) { goto case_92; } else { } if (ldv_statevar_0 == 95) { goto case_95; } else { } if (ldv_statevar_0 == 98) { goto case_98; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_52727; case_3: /* CIL Label */ { ldv_assume(ldv_0_ret_default != 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 1; } else { ldv_statevar_0 = 6; } goto ldv_52727; case_5: /* CIL Label */ { ldv_assume(ldv_0_ret_default == 0); ldv_statevar_0 = ldv_switch_0(); } goto ldv_52727; case_6: /* CIL Label */ { rtnl_lock(); } if ((unsigned long )ldv_0_container_ieee80211_ops->start != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_0_ret_default = ldv_ieee80211_instance_start_0_6(ldv_0_container_ieee80211_ops->start, ldv_0_resource_ieee80211_hw); } } else { } { ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); rtnl_unlock(); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_0 = 3; } else { ldv_statevar_0 = 5; } goto ldv_52727; case_7: /* CIL Label */ { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_0 = 1; } else { ldv_statevar_0 = 6; } goto ldv_52727; case_8: /* CIL Label */ { rtnl_lock(); } if ((unsigned long )ldv_0_container_ieee80211_ops->stop != (unsigned long )((void (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_stop_0_8(ldv_0_container_ieee80211_ops->stop, ldv_0_resource_ieee80211_hw); } } else { } { rtnl_unlock(); ldv_statevar_0 = 7; } goto ldv_52727; case_9: /* CIL Label */ { ldv_statevar_0 = ldv_switch_0(); } goto ldv_52727; case_10: /* CIL Label */ { ldv_ieee80211_instance_callback_0_10(ldv_0_callback_allow_all_destaddr, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_10_1_default, (int )ldv_0_ldv_param_10_2_default); ldv_statevar_0 = 9; } goto ldv_52727; case_11: /* CIL Label */ { ldv_statevar_0 = ldv_switch_0(); } goto ldv_52727; case_12: /* CIL Label */ ; if ((unsigned long )ldv_0_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_0_12(ldv_0_container_ieee80211_ops->resume, ldv_0_resource_ieee80211_hw); } } else { } ldv_statevar_0 = 11; goto ldv_52727; case_13: /* CIL Label */ ldv_statevar_0 = 12; goto ldv_52727; case_14: /* CIL Label */ { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_0 = 1; } else { ldv_statevar_0 = 6; } goto ldv_52727; case_15: /* CIL Label */ ; goto ldv_52727; case_18: /* CIL Label */ { ldv_statevar_0 = ldv_switch_1(); } goto ldv_52727; case_20: /* CIL Label */ { ldv_ieee80211_instance_callback_0_20(ldv_0_callback_deinit_sw_vars, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_21: /* CIL Label */ { ldv_ieee80211_instance_callback_0_21(ldv_0_callback_disable_interrupt, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_22: /* CIL Label */ { ldv_ieee80211_instance_callback_0_22(ldv_0_callback_dm_watchdog, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_23: /* CIL Label */ { ldv_ieee80211_instance_callback_0_23(ldv_0_callback_enable_hw_sec, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_24: /* CIL Label */ { ldv_ieee80211_instance_callback_0_24(ldv_0_callback_enable_interrupt, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_26: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_0_ldv_param_25_1_default = (unsigned char *)tmp___3; ldv_ieee80211_instance_callback_0_25(ldv_0_callback_fill_tx_cmddesc, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_25_1_default, (int )ldv_0_ldv_param_25_2_default, (int )ldv_0_ldv_param_25_3_default, ldv_0_resource_struct_sk_buff_ptr); ldv_free((void *)ldv_0_ldv_param_25_1_default); ldv_statevar_0 = 9; } goto ldv_52727; case_29: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_0_ldv_param_28_2_default = (unsigned char *)tmp___4; ldv_ieee80211_instance_callback_0_28(ldv_0_callback_fill_tx_desc, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_hdr_ptr, ldv_0_ldv_param_28_2_default, ldv_0_resource_struct_ieee80211_tx_info_ptr, ldv_0_resource_struct_ieee80211_sta_ptr, ldv_0_resource_struct_sk_buff_ptr, (int )ldv_0_ldv_param_28_6_default, ldv_0_resource_struct_rtl_tcb_desc_ptr); ldv_free((void *)ldv_0_ldv_param_28_2_default); ldv_statevar_0 = 9; } goto ldv_52727; case_32: /* CIL Label */ { ldv_ieee80211_instance_callback_0_31(ldv_0_callback_get_bbreg, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_31_1_default, ldv_0_ldv_param_31_2_default); ldv_statevar_0 = 9; } goto ldv_52727; case_35: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_34_0_default = (unsigned char *)tmp___5; ldv_ieee80211_instance_callback_0_34(ldv_0_callback_get_desc, ldv_0_ldv_param_34_0_default, (int )ldv_0_ldv_param_34_1_default, (int )ldv_0_ldv_param_34_2_default); ldv_free((void *)ldv_0_ldv_param_34_0_default); ldv_statevar_0 = 9; } goto ldv_52727; case_38: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_0_ldv_param_37_2_default = (unsigned char *)tmp___6; ldv_ieee80211_instance_callback_0_37(ldv_0_callback_get_hw_reg, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_37_1_default, ldv_0_ldv_param_37_2_default); ldv_free((void *)ldv_0_ldv_param_37_2_default); ldv_statevar_0 = 9; } goto ldv_52727; case_41: /* CIL Label */ { ldv_ieee80211_instance_callback_0_40(ldv_0_callback_get_rfreg, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_radio_path, ldv_0_ldv_param_40_2_default, ldv_0_ldv_param_40_3_default); ldv_statevar_0 = 9; } goto ldv_52727; case_43: /* CIL Label */ { ldv_ieee80211_instance_callback_0_43(ldv_0_callback_hw_disable, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_44: /* CIL Label */ { ldv_ieee80211_instance_callback_0_44(ldv_0_callback_hw_init, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_45: /* CIL Label */ { ldv_ieee80211_instance_callback_0_45(ldv_0_callback_hw_resume, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_46: /* CIL Label */ { ldv_ieee80211_instance_callback_0_46(ldv_0_callback_hw_suspend, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_47: /* CIL Label */ { ldv_ieee80211_instance_callback_0_47(ldv_0_callback_init_sw_leds, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_48: /* CIL Label */ { ldv_ieee80211_instance_callback_0_48(ldv_0_callback_init_sw_vars, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_50: /* CIL Label */ { tmp___7 = ldv_xmalloc(4UL); ldv_0_ldv_param_49_1_default = (unsigned int *)tmp___7; tmp___8 = ldv_xmalloc(4UL); ldv_0_ldv_param_49_2_default = (unsigned int *)tmp___8; ldv_ieee80211_instance_callback_0_49(ldv_0_callback_interrupt_recognized, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_49_1_default, ldv_0_ldv_param_49_2_default); ldv_free((void *)ldv_0_ldv_param_49_1_default); ldv_free((void *)ldv_0_ldv_param_49_2_default); ldv_statevar_0 = 9; } goto ldv_52727; case_52: /* CIL Label */ { ldv_ieee80211_instance_callback_0_52(ldv_0_callback_led_control, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_led_ctl_mode); ldv_statevar_0 = 9; } goto ldv_52727; case_54: /* CIL Label */ { tmp___9 = ldv_xmalloc(1UL); ldv_0_ldv_param_53_3_default = (unsigned char *)tmp___9; ldv_ieee80211_instance_callback_0_53(ldv_0_callback_query_rx_desc, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_rtl_stats_ptr, ldv_0_resource_struct_ieee80211_rx_status_ptr, ldv_0_ldv_param_53_3_default, ldv_0_resource_struct_sk_buff_ptr); ldv_free((void *)ldv_0_ldv_param_53_3_default); ldv_statevar_0 = 9; } goto ldv_52727; case_57: /* CIL Label */ { tmp___10 = ldv_xmalloc(1UL); ldv_0_ldv_param_56_1_default = (unsigned char *)tmp___10; ldv_ieee80211_instance_callback_0_56(ldv_0_callback_radio_onoff_checking, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_56_1_default); ldv_free((void *)ldv_0_ldv_param_56_1_default); ldv_statevar_0 = 9; } goto ldv_52727; case_59: /* CIL Label */ { ldv_ieee80211_instance_callback_0_59(ldv_0_callback_read_eeprom_info, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_61: /* CIL Label */ { ldv_ieee80211_instance_callback_0_60(ldv_0_callback_scan_operation_backup, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_60_1_default); ldv_statevar_0 = 9; } goto ldv_52727; case_64: /* CIL Label */ { ldv_ieee80211_instance_callback_0_63(ldv_0_callback_set_bbreg, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_63_1_default, ldv_0_ldv_param_63_2_default, ldv_0_ldv_param_63_3_default); ldv_statevar_0 = 9; } goto ldv_52727; case_66: /* CIL Label */ { ldv_ieee80211_instance_callback_0_66(ldv_0_callback_set_bcn_intv, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_67: /* CIL Label */ { ldv_ieee80211_instance_callback_0_67(ldv_0_callback_set_bcn_reg, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_68: /* CIL Label */ { ldv_ieee80211_instance_callback_0_68(ldv_0_callback_set_bw_mode, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_nl80211_channel_type); ldv_statevar_0 = 9; } goto ldv_52727; case_69: /* CIL Label */ { ldv_ieee80211_instance_callback_0_69(ldv_0_callback_set_channel_access, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_71: /* CIL Label */ { ldv_ieee80211_instance_callback_0_70(ldv_0_callback_set_chk_bssid, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_70_1_default); ldv_statevar_0 = 9; } goto ldv_52727; case_74: /* CIL Label */ { tmp___11 = ldv_xmalloc(1UL); ldv_0_ldv_param_73_0_default = (unsigned char *)tmp___11; tmp___12 = ldv_xmalloc(1UL); ldv_0_ldv_param_73_3_default = (unsigned char *)tmp___12; ldv_ieee80211_instance_callback_0_73(ldv_0_callback_set_desc, ldv_0_ldv_param_73_0_default, (int )ldv_0_ldv_param_73_1_default, (int )ldv_0_ldv_param_73_2_default, ldv_0_ldv_param_73_3_default); ldv_free((void *)ldv_0_ldv_param_73_0_default); ldv_free((void *)ldv_0_ldv_param_73_3_default); ldv_statevar_0 = 9; } goto ldv_52727; case_77: /* CIL Label */ { tmp___13 = ldv_xmalloc(1UL); ldv_0_ldv_param_76_2_default = (unsigned char *)tmp___13; ldv_ieee80211_instance_callback_0_76(ldv_0_callback_set_hw_reg, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_76_1_default, ldv_0_ldv_param_76_2_default); ldv_free((void *)ldv_0_ldv_param_76_2_default); ldv_statevar_0 = 9; } goto ldv_52727; case_80: /* CIL Label */ { tmp___14 = ldv_xmalloc(1UL); ldv_0_ldv_param_79_2_default = (unsigned char *)tmp___14; ldv_ieee80211_instance_callback_0_79(ldv_0_callback_set_key, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_79_1_default, ldv_0_ldv_param_79_2_default, (int )ldv_0_ldv_param_79_3_default, (int )ldv_0_ldv_param_79_4_default, (int )ldv_0_ldv_param_79_5_default, (int )ldv_0_ldv_param_79_6_default); ldv_free((void *)ldv_0_ldv_param_79_2_default); ldv_statevar_0 = 9; } goto ldv_52727; case_82: /* CIL Label */ { ldv_ieee80211_instance_callback_0_82(ldv_0_callback_set_network_type, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_nl80211_iftype); ldv_statevar_0 = 9; } goto ldv_52727; case_84: /* CIL Label */ { ldv_ieee80211_instance_callback_0_83(ldv_0_callback_set_qos, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_83_1_default); ldv_statevar_0 = 9; } goto ldv_52727; case_86: /* CIL Label */ { ldv_ieee80211_instance_callback_0_86(ldv_0_callback_set_rf_power_state, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_rf_pwrstate); ldv_statevar_0 = 9; } goto ldv_52727; case_88: /* CIL Label */ { ldv_ieee80211_instance_callback_0_87(ldv_0_callback_set_rfreg, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_radio_path, ldv_0_ldv_param_87_2_default, ldv_0_ldv_param_87_3_default, ldv_0_ldv_param_87_4_default); ldv_statevar_0 = 9; } goto ldv_52727; case_90: /* CIL Label */ { ldv_ieee80211_instance_callback_0_90(ldv_0_callback_switch_channel, ldv_0_resource_ieee80211_hw); ldv_statevar_0 = 9; } goto ldv_52727; case_92: /* CIL Label */ { ldv_ieee80211_instance_callback_0_91(ldv_0_callback_tx_polling, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_91_1_default); ldv_statevar_0 = 9; } goto ldv_52727; case_95: /* CIL Label */ { ldv_ieee80211_instance_callback_0_94(ldv_0_callback_update_interrupt_mask, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_94_1_default, ldv_0_ldv_param_94_2_default); ldv_statevar_0 = 9; } goto ldv_52727; case_98: /* CIL Label */ { ldv_ieee80211_instance_callback_0_97(ldv_0_callback_update_rate_tbl, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_sta_ptr, (int )ldv_0_ldv_param_97_2_default); ldv_statevar_0 = 9; } goto ldv_52727; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52727: ; return; } } void ldv_ieee80211_instance_callback_0_10(void (*arg0)(struct ieee80211_hw * , _Bool , _Bool ) , struct ieee80211_hw *arg1 , _Bool arg2 , _Bool arg3 ) { { { rtl92se_allow_all_destaddr(arg1, (int )arg2, (int )arg3); } return; } } void ldv_ieee80211_instance_callback_0_20(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92s_deinit_sw_vars(arg1); } return; } } void ldv_ieee80211_instance_callback_0_21(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_disable_interrupt(arg1); } return; } } void ldv_ieee80211_instance_callback_0_22(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92s_dm_watchdog(arg1); } return; } } void ldv_ieee80211_instance_callback_0_23(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_enable_hw_security_config(arg1); } return; } } void ldv_ieee80211_instance_callback_0_24(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_enable_interrupt(arg1); } return; } } void ldv_ieee80211_instance_callback_0_25(void (*arg0)(struct ieee80211_hw * , unsigned char * , _Bool , _Bool , struct sk_buff * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 , _Bool arg3 , _Bool arg4 , struct sk_buff *arg5 ) { { { rtl92se_tx_fill_cmddesc(arg1, arg2, (int )arg3, (int )arg4, arg5); } return; } } void ldv_ieee80211_instance_callback_0_28(void (*arg0)(struct ieee80211_hw * , struct ieee80211_hdr * , unsigned char * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , unsigned char , struct rtl_tcb_desc * ) , struct ieee80211_hw *arg1 , struct ieee80211_hdr *arg2 , unsigned char *arg3 , struct ieee80211_tx_info *arg4 , struct ieee80211_sta *arg5 , struct sk_buff *arg6 , unsigned char arg7 , struct rtl_tcb_desc *arg8 ) { { { rtl92se_tx_fill_desc(arg1, arg2, arg3, arg4, arg5, arg6, (int )arg7, arg8); } return; } } void ldv_ieee80211_instance_callback_0_31(unsigned int (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { rtl92s_phy_query_bb_reg(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_34(unsigned int (*arg0)(unsigned char * , _Bool , unsigned char ) , unsigned char *arg1 , _Bool arg2 , unsigned char arg3 ) { { { rtl92se_get_desc(arg1, (int )arg2, (int )arg3); } return; } } void ldv_ieee80211_instance_callback_0_37(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) { { { rtl92se_get_hw_reg(arg1, (int )arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_40(unsigned int (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 ) { { { rtl92s_phy_query_rf_reg(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_43(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_card_disable(arg1); } return; } } void ldv_ieee80211_instance_callback_0_44(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_hw_init(arg1); } return; } } void ldv_ieee80211_instance_callback_0_45(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_resume(arg1); } return; } } void ldv_ieee80211_instance_callback_0_46(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_suspend(arg1); } return; } } void ldv_ieee80211_instance_callback_0_47(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_init_sw_leds(arg1); } return; } } void ldv_ieee80211_instance_callback_0_48(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92s_init_sw_vars(arg1); } return; } } void ldv_ieee80211_instance_callback_0_49(void (*arg0)(struct ieee80211_hw * , unsigned int * , unsigned int * ) , struct ieee80211_hw *arg1 , unsigned int *arg2 , unsigned int *arg3 ) { { { rtl92se_interrupt_recognized(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_52(void (*arg0)(struct ieee80211_hw * , enum led_ctl_mode ) , struct ieee80211_hw *arg1 , enum led_ctl_mode arg2 ) { { { rtl92se_led_control(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_53(_Bool (*arg0)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , unsigned char * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct rtl_stats *arg2 , struct ieee80211_rx_status *arg3 , unsigned char *arg4 , struct sk_buff *arg5 ) { { { rtl92se_rx_query_desc(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_ieee80211_instance_callback_0_56(_Bool (*arg0)(struct ieee80211_hw * , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 ) { { { rtl92se_gpio_radio_on_off_checking(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_59(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_read_eeprom_info(arg1); } return; } } void ldv_ieee80211_instance_callback_0_60(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) { { { rtl92s_phy_scan_operation_backup(arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_0_63(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 ) { { { rtl92s_phy_set_bb_reg(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_66(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_set_beacon_interval(arg1); } return; } } void ldv_ieee80211_instance_callback_0_67(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_set_beacon_related_registers(arg1); } return; } } void ldv_ieee80211_instance_callback_0_68(void (*arg0)(struct ieee80211_hw * , enum nl80211_channel_type ) , struct ieee80211_hw *arg1 , enum nl80211_channel_type arg2 ) { { { rtl92s_phy_set_bw_mode(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_69(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92se_update_channel_access_setting(arg1); } return; } } void ldv_ieee80211_instance_callback_0_70(void (*arg0)(struct ieee80211_hw * , _Bool ) , struct ieee80211_hw *arg1 , _Bool arg2 ) { { { rtl92se_set_check_bssid(arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_0_73(void (*arg0)(unsigned char * , _Bool , unsigned char , unsigned char * ) , unsigned char *arg1 , _Bool arg2 , unsigned char arg3 , unsigned char *arg4 ) { { { rtl92se_set_desc(arg1, (int )arg2, (int )arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_76(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) { { { rtl92se_set_hw_reg(arg1, (int )arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_79(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned char * , _Bool , unsigned char , _Bool , _Bool ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned char *arg3 , _Bool arg4 , unsigned char arg5 , _Bool arg6 , _Bool arg7 ) { { { rtl92se_set_key(arg1, arg2, arg3, (int )arg4, (int )arg5, (int )arg6, (int )arg7); } return; } } void ldv_ieee80211_instance_callback_0_82(int (*arg0)(struct ieee80211_hw * , enum nl80211_iftype ) , struct ieee80211_hw *arg1 , enum nl80211_iftype arg2 ) { { { rtl92se_set_network_type(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_83(void (*arg0)(struct ieee80211_hw * , int ) , struct ieee80211_hw *arg1 , int arg2 ) { { { rtl92se_set_qos(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_86(_Bool (*arg0)(struct ieee80211_hw * , enum rf_pwrstate ) , struct ieee80211_hw *arg1 , enum rf_pwrstate arg2 ) { { { rtl92s_phy_set_rf_power_state(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_87(void (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 ) { { { rtl92s_phy_set_rf_reg(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_ieee80211_instance_callback_0_90(unsigned char (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl92s_phy_sw_chnl(arg1); } return; } } void ldv_ieee80211_instance_callback_0_91(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) { { { rtl92se_tx_polling(arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_0_94(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { rtl92se_update_interrupt_mask(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_97(void (*arg0)(struct ieee80211_hw * , struct ieee80211_sta * , unsigned char ) , struct ieee80211_hw *arg1 , struct ieee80211_sta *arg2 , unsigned char arg3 ) { { { rtl92se_update_hal_rate_tbl(arg1, arg2, (int )arg3); } return; } } void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_ieee80211_register_hw(int arg0 , struct ieee80211_hw *arg1 ) { struct ieee80211_hw *ldv_4_ieee80211_hw_ieee80211_hw ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_4_ieee80211_hw_ieee80211_hw = arg1; ldv_assume(ldv_statevar_0 == 15); ldv_dispatch_register_4_2(ldv_4_ieee80211_hw_ieee80211_hw); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = rtl_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { rtl_pci_disconnect(arg1); } return; } } void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_1(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 6) { goto case_6; } else { } if (ldv_statevar_1 == 7) { goto case_7; } else { } if (ldv_statevar_1 == 8) { goto case_8; } else { } if (ldv_statevar_1 == 9) { goto case_9; } else { } if (ldv_statevar_1 == 10) { goto case_10; } else { } if (ldv_statevar_1 == 12) { goto case_12; } else { } if (ldv_statevar_1 == 14) { goto case_14; } else { } if (ldv_statevar_1 == 16) { goto case_16; } else { } if (ldv_statevar_1 == 17) { goto case_17; } else { } if (ldv_statevar_1 == 19) { goto case_19; } else { } if (ldv_statevar_1 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 12; } else { ldv_statevar_1 = 17; } goto ldv_53172; case_2: /* CIL Label */ { ldv_pci_instance_release_1_2(ldv_1_container_pci_driver->remove, ldv_1_resource_dev); ldv_statevar_1 = 1; } goto ldv_53172; case_3: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_1_3(ldv_1_container_pci_driver->shutdown, ldv_1_resource_dev); } } else { } ldv_statevar_1 = 2; goto ldv_53172; case_4: /* CIL Label */ { ldv_statevar_1 = ldv_switch_2(); } goto ldv_53172; case_5: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_1_5(ldv_1_container_pci_driver->resume, ldv_1_resource_dev); } } else { } ldv_statevar_1 = 4; goto ldv_53172; case_6: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_1_6(ldv_1_container_pci_driver->resume_early, ldv_1_resource_dev); } } else { } ldv_statevar_1 = 5; goto ldv_53172; case_7: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_late_1_7(ldv_1_container_pci_driver->suspend_late, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); ldv_statevar_1 = 6; } goto ldv_53172; case_8: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_1_8(ldv_1_container_pci_driver->suspend, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); ldv_statevar_1 = 7; } goto ldv_53172; case_9: /* CIL Label */ { ldv_statevar_1 = ldv_switch_2(); } goto ldv_53172; case_10: /* CIL Label */ ldv_statevar_1 = 9; goto ldv_53172; case_12: /* CIL Label */ { ldv_free((void *)ldv_1_resource_dev); ldv_free((void *)ldv_1_resource_struct_pci_device_id_ptr); ldv_1_ret_default = 1; ldv_statevar_1 = 20; } goto ldv_53172; case_14: /* CIL Label */ { ldv_assume(ldv_1_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_1 = 12; } else { ldv_statevar_1 = 17; } goto ldv_53172; case_16: /* CIL Label */ { ldv_assume(ldv_1_ret_default == 0); ldv_statevar_1 = ldv_switch_2(); } goto ldv_53172; case_17: /* CIL Label */ { ldv_pre_probe(); ldv_1_ret_default = ldv_pci_instance_probe_1_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_1_container_pci_driver->probe, ldv_1_resource_dev, ldv_1_resource_struct_pci_device_id_ptr); ldv_1_ret_default = ldv_post_probe(ldv_1_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_1 = 14; } else { ldv_statevar_1 = 16; } goto ldv_53172; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_1_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_1_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_1 = 12; } else { ldv_statevar_1 = 17; } goto ldv_53172; case_20: /* CIL Label */ ; goto ldv_53172; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53172: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_5_pci_driver_pci_driver ; { { ldv_5_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_1 == 12); ldv_dispatch_deregister_5_1(ldv_5_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_3_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_3_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_2_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_2_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_2_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_2_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_2_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_2_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_2_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_2_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_2_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_2_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_2_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_2_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_2_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_2_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_2_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_2_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_2_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_2_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_2_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_2_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_2_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_2_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_2_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 6) { goto case_6; } else { } if (ldv_statevar_3 == 7) { goto case_7; } else { } if (ldv_statevar_3 == 9) { goto case_9; } else { } if (ldv_statevar_3 == 11) { goto case_11; } else { } if (ldv_statevar_3 == 13) { goto case_13; } else { } if (ldv_statevar_3 == 16) { goto case_16; } else { } if (ldv_statevar_3 == 17) { goto case_17; } else { } if (ldv_statevar_3 == 20) { goto case_20; } else { } if (ldv_statevar_3 == 22) { goto case_22; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 9; } else { ldv_statevar_3 = 22; } goto ldv_53323; case_4: /* CIL Label */ { ldv_statevar_3 = ldv_switch_5(); } goto ldv_53323; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 1); ldv_dispatch_pm_deregister_3_5(); ldv_statevar_3 = 4; } goto ldv_53323; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 29); ldv_dispatch_pm_register_3_6(); ldv_statevar_3 = 5; } goto ldv_53323; case_7: /* CIL Label */ ldv_statevar_3 = 4; goto ldv_53323; case_9: /* CIL Label */ ldv_3_probed_default = 1; ldv_statevar_3 = 17; goto ldv_53323; case_11: /* CIL Label */ { ldv_assume(ldv_3_probed_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 9; } else { ldv_statevar_3 = 22; } goto ldv_53323; case_13: /* CIL Label */ { ldv_assume(ldv_3_probed_default == 0); ldv_statevar_3 = ldv_switch_5(); } goto ldv_53323; case_16: /* CIL Label */ { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_3 = 9; } else { ldv_statevar_3 = 22; } goto ldv_53323; case_17: /* CIL Label */ ; goto ldv_53323; case_20: /* CIL Label */ { tmp___2 = ldv_xmalloc(1432UL); ldv_3_ldv_param_3_0_default = (struct platform_device *)tmp___2; } if ((unsigned long )ldv_3_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_3_3(ldv_3_container_platform_driver->remove, ldv_3_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_3_ldv_param_3_0_default); ldv_3_probed_default = 1; ldv_statevar_3 = 1; } goto ldv_53323; case_22: /* CIL Label */ { tmp___3 = ldv_xmalloc(1432UL); ldv_3_ldv_param_14_0_default = (struct platform_device *)tmp___3; ldv_pre_probe(); } if ((unsigned long )ldv_3_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_3_probed_default = ldv_platform_instance_probe_3_14(ldv_3_container_platform_driver->probe, ldv_3_ldv_param_14_0_default); } } else { } { ldv_3_probed_default = ldv_post_probe(ldv_3_probed_default); ldv_free((void *)ldv_3_ldv_param_14_0_default); tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_3 = 11; } else { ldv_statevar_3 = 13; } goto ldv_53323; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53323: ; return; } } void ldv_pm_pm_ops_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 11) { goto case_11; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 13) { goto case_13; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 15) { goto case_15; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 18) { goto case_18; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } if (ldv_statevar_2 == 21) { goto case_21; } else { } if (ldv_statevar_2 == 22) { goto case_22; } else { } if (ldv_statevar_2 == 23) { goto case_23; } else { } if (ldv_statevar_2 == 24) { goto case_24; } else { } if (ldv_statevar_2 == 25) { goto case_25; } else { } if (ldv_statevar_2 == 26) { goto case_26; } else { } if (ldv_statevar_2 == 27) { goto case_27; } else { } if (ldv_statevar_2 == 28) { goto case_28; } else { } if (ldv_statevar_2 == 29) { goto case_29; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53340; case_2: /* CIL Label */ { ldv_statevar_2 = ldv_switch_3(); } goto ldv_53340; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_2_3(ldv_2_pm_ops_dev_pm_ops->complete, ldv_2_device_device); } } else { } ldv_statevar_2 = 2; goto ldv_53340; case_4: /* CIL Label */ { ldv_pm_ops_instance_restore_2_4(ldv_2_pm_ops_dev_pm_ops->restore, ldv_2_device_device); ldv_statevar_2 = 3; } goto ldv_53340; case_5: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_2_5(ldv_2_pm_ops_dev_pm_ops->restore_noirq, ldv_2_device_device); } } else { } ldv_statevar_2 = 4; goto ldv_53340; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_2_6(ldv_2_pm_ops_dev_pm_ops->poweroff_noirq, ldv_2_device_device); } } else { } ldv_statevar_2 = 5; goto ldv_53340; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_2_7(ldv_2_pm_ops_dev_pm_ops->restore_early, ldv_2_device_device); } } else { } ldv_statevar_2 = 4; goto ldv_53340; case_8: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_2_8(ldv_2_pm_ops_dev_pm_ops->poweroff_late, ldv_2_device_device); } } else { } ldv_statevar_2 = 7; goto ldv_53340; case_9: /* CIL Label */ { ldv_pm_ops_instance_poweroff_2_9(ldv_2_pm_ops_dev_pm_ops->poweroff, ldv_2_device_device); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 6; } else { ldv_statevar_2 = 8; } goto ldv_53340; case_10: /* CIL Label */ { ldv_pm_ops_instance_thaw_2_10(ldv_2_pm_ops_dev_pm_ops->thaw, ldv_2_device_device); ldv_statevar_2 = 3; } goto ldv_53340; case_11: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_2_11(ldv_2_pm_ops_dev_pm_ops->thaw_noirq, ldv_2_device_device); } } else { } ldv_statevar_2 = 10; goto ldv_53340; case_12: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_2_12(ldv_2_pm_ops_dev_pm_ops->freeze_noirq, ldv_2_device_device); } } else { } ldv_statevar_2 = 11; goto ldv_53340; case_13: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_2_13(ldv_2_pm_ops_dev_pm_ops->thaw_early, ldv_2_device_device); } } else { } ldv_statevar_2 = 10; goto ldv_53340; case_14: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_2_14(ldv_2_pm_ops_dev_pm_ops->freeze_late, ldv_2_device_device); } } else { } ldv_statevar_2 = 13; goto ldv_53340; case_15: /* CIL Label */ { ldv_pm_ops_instance_freeze_2_15(ldv_2_pm_ops_dev_pm_ops->freeze, ldv_2_device_device); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 14; } goto ldv_53340; case_16: /* CIL Label */ { ldv_pm_ops_instance_resume_2_16(ldv_2_pm_ops_dev_pm_ops->resume, ldv_2_device_device); ldv_statevar_2 = 3; } goto ldv_53340; case_17: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_2_17(ldv_2_pm_ops_dev_pm_ops->resume_early, ldv_2_device_device); } } else { } ldv_statevar_2 = 16; goto ldv_53340; case_18: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_2_18(ldv_2_pm_ops_dev_pm_ops->suspend_late, ldv_2_device_device); } } else { } ldv_statevar_2 = 17; goto ldv_53340; case_19: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_2_19(ldv_2_pm_ops_dev_pm_ops->resume_noirq, ldv_2_device_device); } } else { } ldv_statevar_2 = 16; goto ldv_53340; case_20: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_2_20(ldv_2_pm_ops_dev_pm_ops->suspend_noirq, ldv_2_device_device); } } else { } ldv_statevar_2 = 19; goto ldv_53340; case_21: /* CIL Label */ { ldv_pm_ops_instance_suspend_2_21(ldv_2_pm_ops_dev_pm_ops->suspend, ldv_2_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 18; } else { ldv_statevar_2 = 20; } goto ldv_53340; case_22: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_2_22(ldv_2_pm_ops_dev_pm_ops->prepare, ldv_2_device_device); } } else { } { ldv_statevar_2 = ldv_switch_4(); } goto ldv_53340; case_23: /* CIL Label */ { ldv_statevar_2 = ldv_switch_3(); } goto ldv_53340; case_24: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_2_24(ldv_2_pm_ops_dev_pm_ops->runtime_resume, ldv_2_device_device); } } else { } ldv_statevar_2 = 23; goto ldv_53340; case_25: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_2_25(ldv_2_pm_ops_dev_pm_ops->runtime_suspend, ldv_2_device_device); } } else { } ldv_statevar_2 = 24; goto ldv_53340; case_26: /* CIL Label */ { ldv_statevar_2 = ldv_switch_3(); } goto ldv_53340; case_27: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_2_27(ldv_2_pm_ops_dev_pm_ops->runtime_idle, ldv_2_device_device); } } else { } ldv_statevar_2 = 26; goto ldv_53340; case_28: /* CIL Label */ { ldv_statevar_2 = ldv_switch_3(); } goto ldv_53340; case_29: /* CIL Label */ ; goto ldv_53340; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53340: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (8); case_1: /* CIL Label */ ; return (13); case_2: /* CIL Label */ ; return (18); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } if (tmp == 30) { goto case_30; } else { } if (tmp == 31) { goto case_31; } else { } if (tmp == 32) { goto case_32; } else { } if (tmp == 33) { goto case_33; } else { } if (tmp == 34) { goto case_34; } else { } if (tmp == 35) { goto case_35; } else { } if (tmp == 36) { goto case_36; } else { } if (tmp == 37) { goto case_37; } else { } if (tmp == 38) { goto case_38; } else { } if (tmp == 39) { goto case_39; } else { } if (tmp == 40) { goto case_40; } else { } goto switch_default; case_0: /* CIL Label */ ; return (10); case_1: /* CIL Label */ ; return (20); case_2: /* CIL Label */ ; return (21); case_3: /* CIL Label */ ; return (22); case_4: /* CIL Label */ ; return (23); case_5: /* CIL Label */ ; return (24); case_6: /* CIL Label */ ; return (26); case_7: /* CIL Label */ ; return (29); case_8: /* CIL Label */ ; return (32); case_9: /* CIL Label */ ; return (35); case_10: /* CIL Label */ ; return (38); case_11: /* CIL Label */ ; return (41); case_12: /* CIL Label */ ; return (43); case_13: /* CIL Label */ ; return (44); case_14: /* CIL Label */ ; return (45); case_15: /* CIL Label */ ; return (46); case_16: /* CIL Label */ ; return (47); case_17: /* CIL Label */ ; return (48); case_18: /* CIL Label */ ; return (50); case_19: /* CIL Label */ ; return (52); case_20: /* CIL Label */ ; return (54); case_21: /* CIL Label */ ; return (57); case_22: /* CIL Label */ ; return (59); case_23: /* CIL Label */ ; return (61); case_24: /* CIL Label */ ; return (64); case_25: /* CIL Label */ ; return (66); case_26: /* CIL Label */ ; return (67); case_27: /* CIL Label */ ; return (68); case_28: /* CIL Label */ ; return (69); case_29: /* CIL Label */ ; return (71); case_30: /* CIL Label */ ; return (74); case_31: /* CIL Label */ ; return (77); case_32: /* CIL Label */ ; return (80); case_33: /* CIL Label */ ; return (82); case_34: /* CIL Label */ ; return (84); case_35: /* CIL Label */ ; return (86); case_36: /* CIL Label */ ; return (88); case_37: /* CIL Label */ ; return (90); case_38: /* CIL Label */ ; return (92); case_39: /* CIL Label */ ; return (95); case_40: /* CIL Label */ ; return (98); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_3(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (22); case_2: /* CIL Label */ ; return (25); case_3: /* CIL Label */ ; return (27); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_4(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (9); case_1: /* CIL Label */ ; return (15); case_2: /* CIL Label */ ; return (21); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_5(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (6); case_1: /* CIL Label */ ; return (7); case_2: /* CIL Label */ ; return (20); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 15; return; } } void ldv_switch_automaton_state_0_15(void) { { ldv_statevar_0 = 14; return; } } void ldv_switch_automaton_state_1_11(void) { { ldv_1_ret_default = 1; ldv_statevar_1 = 20; return; } } void ldv_switch_automaton_state_1_20(void) { { ldv_statevar_1 = 19; return; } } void ldv_switch_automaton_state_2_1(void) { { ldv_statevar_2 = 29; return; } } void ldv_switch_automaton_state_2_29(void) { { ldv_statevar_2 = 28; return; } } void ldv_switch_automaton_state_3_17(void) { { ldv_statevar_3 = 16; return; } } void ldv_switch_automaton_state_3_8(void) { { ldv_3_probed_default = 1; ldv_statevar_3 = 17; return; } } static int ldv_ieee80211_register_hw_19(struct ieee80211_hw *ldv_func_arg1 ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = ieee80211_register_hw(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_ieee80211_register_hw(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_20(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_21(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } u32 rtl8192sephy_reg_2t2rarray[372U] = { 28U, 117440512U, 2048U, 262144U, 2052U, 32771U, 2056U, 64512U, 2060U, 10U, 2064U, 268456072U, 2068U, 34356496U, 2072U, 2097541U, 2076U, 0U, 2080U, 16777216U, 2084U, 3735556U, 2088U, 16777216U, 2092U, 3735556U, 2096U, 4U, 2100U, 6881792U, 2104U, 4U, 2108U, 6881792U, 2112U, 65536U, 2116U, 65536U, 2120U, 0U, 2124U, 0U, 2128U, 0U, 2132U, 0U, 2136U, 1212696648U, 2140U, 1705600425U, 2144U, 259981616U, 2148U, 259981616U, 2152U, 259981616U, 2156U, 259981616U, 2160U, 50333440U, 2164U, 50332416U, 2168U, 131074U, 2172U, 5177857U, 2176U, 2821720769U, 2180U, 88U, 2184U, 8U, 2188U, 4U, 2192U, 0U, 2196U, 4294967294U, 2200U, 1076895760U, 2204U, 7364688U, 2224U, 0U, 2272U, 0U, 2276U, 0U, 3584U, 808661811U, 3588U, 707604015U, 3592U, 12850U, 3600U, 808661811U, 3604U, 707604015U, 3608U, 808661811U, 3612U, 707604015U, 3632U, 16808960U, 3636U, 16795648U, 3640U, 268491807U, 3644U, 268471327U, 3648U, 34865312U, 3652U, 672530592U, 3656U, 4160749569U, 3660U, 10512U, 3664U, 16808960U, 3668U, 16795648U, 3672U, 268491807U, 3676U, 268471327U, 3680U, 34865312U, 3684U, 672530592U, 3692U, 10512U, 3696U, 837653243U, 3700U, 907359995U, 3704U, 907359995U, 3708U, 907359995U, 3712U, 907359995U, 3716U, 889595U, 3720U, 889595U, 3724U, 837653243U, 3792U, 837653243U, 3796U, 837653243U, 3800U, 889595U, 3804U, 889595U, 3808U, 889595U, 3812U, 22959176U, 3816U, 559240264U, 2304U, 0U, 2308U, 35U, 2312U, 0U, 2316U, 17961747U, 2560U, 13649864U, 2564U, 2164195336U, 2568U, 2362278656U, 2572U, 778179087U, 2576U, 2499853176U, 2580U, 286539816U, 2584U, 8917271U, 2588U, 2299793152U, 2592U, 437977088U, 2596U, 151917335U, 2600U, 516U, 2604U, 282263552U, 3072U, 1074208064U, 3076U, 10507827U, 3080U, 228U, 3084U, 1819044972U, 3088U, 142606336U, 3092U, 1073742080U, 3096U, 134217728U, 3100U, 1073742080U, 3104U, 134217728U, 3108U, 1073742080U, 3112U, 134217728U, 3116U, 1073742080U, 3120U, 1844030532U, 3124U, 1184256719U, 3128U, 1232689556U, 3132U, 177706852U, 3136U, 528236607U, 3140U, 65719U, 3144U, 3959554048U, 3148U, 8323967U, 3152U, 1767126048U, 3156U, 1128005780U, 3160U, 1767126048U, 3164U, 1128005780U, 3168U, 1767126048U, 3172U, 1128005780U, 3176U, 1767126048U, 3180U, 1128005780U, 3184U, 746520589U, 3188U, 25564507U, 3192U, 31U, 3196U, 12129810U, 3200U, 1073742080U, 3204U, 552992768U, 3208U, 536871040U, 3212U, 538968064U, 3216U, 1073742080U, 3220U, 0U, 3224U, 1073742080U, 3228U, 0U, 3232U, 4793490U, 3236U, 0U, 3240U, 0U, 3244U, 0U, 3248U, 0U, 3252U, 0U, 3256U, 0U, 3260U, 671088640U, 3264U, 0U, 3268U, 0U, 3272U, 0U, 3276U, 0U, 3280U, 0U, 3284U, 0U, 3288U, 1689396263U, 3292U, 7760178U, 3296U, 2236962U, 3300U, 0U, 3304U, 929317634U, 3308U, 798479372U, 3328U, 1872U, 3332U, 1027U, 3336U, 36991U, 3340U, 1U, 3344U, 2690855731U, 3348U, 858995811U, 3352U, 1787779947U, 3356U, 0U, 3360U, 0U, 3364U, 0U, 3368U, 0U, 3372U, 3432487285U, 3376U, 0U, 3380U, 0U, 3384U, 0U, 3388U, 160403U, 3392U, 0U, 3396U, 0U, 3400U, 0U, 3408U, 1681331210U, 3412U, 38649090U, 3416U, 0U, 3420U, 805511268U, 3424U, 1179901544U, 3428U, 5343804U, 3432U, 8449U, 3860U, 3U, 3916U, 0U, 3840U, 768U}; u32 rtl8192sephy_changeto_1t1rarray[48U] = { 2116U, 4294967295U, 65536U, 2052U, 15U, 1U, 2084U, 15728655U, 3145732U, 2092U, 15728655U, 1048578U, 2160U, 67108864U, 1U, 2148U, 1024U, 0U, 2168U, 983055U, 2U, 3700U, 251658240U, 2U, 3704U, 251658240U, 2U, 3708U, 251658240U, 2U, 3712U, 251658240U, 2U, 2316U, 255U, 17U, 3076U, 255U, 17U, 3332U, 15U, 1U, 500U, 4294901760U, 30583U, 564U, 4160749568U, 10U}; u32 rtl8192sephy_changeto_1t2rarray[45U] = { 2052U, 15U, 3U, 2084U, 15728655U, 3145732U, 2092U, 15728655U, 3145730U, 2160U, 67108864U, 1U, 2148U, 1024U, 0U, 2168U, 983055U, 2U, 3700U, 251658240U, 2U, 3704U, 251658240U, 2U, 3708U, 251658240U, 2U, 3712U, 251658240U, 2U, 2316U, 255U, 17U, 3076U, 255U, 51U, 3332U, 15U, 3U, 500U, 4294901760U, 30583U, 564U, 4160749568U, 10U}; u32 rtl8192sephy_reg_array_pg[84U] = { 3584U, 4294967295U, 101255433U, 3588U, 4294967295U, 197638U, 3592U, 65280U, 0U, 3600U, 4294967295U, 168561934U, 3604U, 4294967295U, 67569673U, 3608U, 4294967295U, 168561934U, 3612U, 4294967295U, 67569673U, 3584U, 4294967295U, 67372036U, 3588U, 4294967295U, 131588U, 3592U, 65280U, 0U, 3600U, 4294967295U, 33817604U, 3604U, 4294967295U, 2U, 3608U, 4294967295U, 33817604U, 3612U, 4294967295U, 2U, 3584U, 4294967295U, 67372036U, 3588U, 4294967295U, 131588U, 3592U, 65280U, 0U, 3600U, 4294967295U, 33817604U, 3604U, 4294967295U, 2U, 3608U, 4294967295U, 33817604U, 3612U, 4294967295U, 2U, 3584U, 4294967295U, 33686018U, 3588U, 4294967295U, 131586U, 3592U, 65280U, 0U, 3600U, 4294967295U, 33686018U, 3604U, 4294967295U, 2U, 3608U, 4294967295U, 33686018U, 3612U, 4294967295U, 2U}; u32 rtl8192seradioa_1t_array[202U] = { 0U, 196953U, 1U, 197200U, 2U, 65536U, 16U, 524303U, 17U, 143868U, 16U, 786447U, 17U, 260600U, 16U, 131087U, 17U, 131329U, 20U, 67902U, 20U, 592190U, 21U, 63732U, 23U, 1008896U, 26U, 77910U, 27U, 393216U, 28U, 768U, 30U, 200793U, 33U, 344064U, 34U, 2108U, 35U, 5464U, 36U, 96U, 37U, 140675U, 38U, 61952U, 39U, 961777U, 40U, 638292U, 41U, 17794U, 42U, 1U, 43U, 135988U, 42U, 0U, 43U, 10U, 42U, 1U, 43U, 2056U, 43U, 340787U, 44U, 12U, 42U, 2U, 43U, 2056U, 43U, 373555U, 44U, 13U, 42U, 3U, 43U, 2056U, 43U, 406323U, 44U, 13U, 42U, 4U, 43U, 2056U, 43U, 439091U, 44U, 13U, 42U, 5U, 43U, 1801U, 43U, 340787U, 44U, 13U, 42U, 6U, 43U, 1801U, 43U, 373555U, 44U, 13U, 42U, 7U, 43U, 1801U, 43U, 406323U, 44U, 13U, 42U, 8U, 43U, 1801U, 43U, 439091U, 44U, 13U, 42U, 9U, 43U, 1546U, 43U, 340787U, 44U, 13U, 42U, 10U, 43U, 1546U, 43U, 373555U, 44U, 13U, 42U, 11U, 43U, 1546U, 43U, 406323U, 44U, 13U, 42U, 12U, 43U, 1546U, 43U, 439091U, 44U, 13U, 42U, 13U, 43U, 1291U, 43U, 340787U, 44U, 13U, 42U, 14U, 43U, 1291U, 43U, 419363U, 44U, 26U, 42U, 933888U, 48U, 131072U, 49U, 759345U, 50U, 4877U, 51U, 391U, 19U, 106092U, 19U, 89748U, 0U, 65881U, 24U, 62465U, 254U, 0U, 30U, 200795U, 254U, 0U, 0U, 196953U, 16U, 262159U, 17U, 132089U}; u32 rtl8192seradiob_array[22U] = { 0U, 196953U, 1U, 4161U, 2U, 69632U, 5U, 528320U, 7U, 1034243U, 19U, 97456U, 19U, 72896U, 19U, 56416U, 19U, 35936U, 19U, 17488U, 19U, 32U}; u32 rtl8192seradiob_gm_array[10U] = { 0U, 196953U, 1U, 4161U, 2U, 69632U, 5U, 528320U, 7U, 1034243U}; u32 rtl8192semac_2t_array[106U] = { 32U, 53U, 72U, 14U, 73U, 240U, 74U, 119U, 75U, 131U, 181U, 33U, 220U, 255U, 221U, 255U, 222U, 255U, 223U, 255U, 278U, 0U, 279U, 0U, 280U, 0U, 281U, 0U, 282U, 0U, 283U, 0U, 284U, 0U, 285U, 0U, 352U, 11U, 353U, 11U, 354U, 11U, 355U, 11U, 356U, 11U, 357U, 11U, 358U, 11U, 359U, 11U, 360U, 11U, 361U, 11U, 362U, 11U, 363U, 11U, 364U, 11U, 365U, 11U, 366U, 11U, 367U, 11U, 368U, 11U, 369U, 11U, 370U, 11U, 371U, 11U, 372U, 11U, 373U, 11U, 374U, 11U, 375U, 11U, 376U, 11U, 377U, 11U, 378U, 11U, 379U, 11U, 380U, 11U, 381U, 11U, 382U, 11U, 383U, 11U, 566U, 12U, 1283U, 34U, 1376U, 0U}; u32 rtl8192seagctab_array[320U] = { 3192U, 2130706433U, 3192U, 2130771969U, 3192U, 2114060289U, 3192U, 2097348609U, 3192U, 2080636929U, 3192U, 2063925249U, 3192U, 2047213569U, 3192U, 2030501889U, 3192U, 2013790209U, 3192U, 1997078529U, 3192U, 1980366849U, 3192U, 1963655169U, 3192U, 1946943489U, 3192U, 1930231809U, 3192U, 1913520129U, 3192U, 1896808449U, 3192U, 1880096769U, 3192U, 1863385089U, 3192U, 1863450625U, 3192U, 1846738945U, 3192U, 1830027265U, 3192U, 1830092801U, 3192U, 1813381121U, 3192U, 1796669441U, 3192U, 1779957761U, 3192U, 1780023297U, 3192U, 1763311617U, 3192U, 1746599937U, 3192U, 1729888257U, 3192U, 1713176577U, 3192U, 1696464897U, 3192U, 1679753217U, 3192U, 1663041537U, 3192U, 1277231105U, 3192U, 1260519425U, 3192U, 1243807745U, 3192U, 1227096065U, 3192U, 1210384385U, 3192U, 1193672705U, 3192U, 1176961025U, 3192U, 1160249345U, 3192U, 1143537665U, 3192U, 740950017U, 3192U, 724238337U, 3192U, 707526657U, 3192U, 690814977U, 3192U, 674103297U, 3192U, 657391617U, 3192U, 640679937U, 3192U, 623968257U, 3192U, 607256577U, 3192U, 590544897U, 3192U, 573833217U, 3192U, 154468353U, 3192U, 137756673U, 3192U, 121044993U, 3192U, 104333313U, 3192U, 87621633U, 3192U, 70909953U, 3192U, 54198273U, 3192U, 37486593U, 3192U, 20774913U, 3192U, 4063233U, 3192U, 4128769U, 3192U, 2134900737U, 3192U, 2134966273U, 3192U, 2118254593U, 3192U, 2101542913U, 3192U, 2084831233U, 3192U, 2068119553U, 3192U, 2051407873U, 3192U, 2034696193U, 3192U, 2017984513U, 3192U, 2001272833U, 3192U, 1984561153U, 3192U, 1967849473U, 3192U, 1951137793U, 3192U, 1934426113U, 3192U, 1917714433U, 3192U, 1901002753U, 3192U, 1884291073U, 3192U, 1867579393U, 3192U, 1867644929U, 3192U, 1850933249U, 3192U, 1834221569U, 3192U, 1834287105U, 3192U, 1817575425U, 3192U, 1800863745U, 3192U, 1784152065U, 3192U, 1784217601U, 3192U, 1767505921U, 3192U, 1750794241U, 3192U, 1734082561U, 3192U, 1717370881U, 3192U, 1700659201U, 3192U, 1683947521U, 3192U, 1667235841U, 3192U, 1281425409U, 3192U, 1264713729U, 3192U, 1248002049U, 3192U, 1231290369U, 3192U, 1214578689U, 3192U, 1197867009U, 3192U, 1181155329U, 3192U, 1164443649U, 3192U, 1147731969U, 3192U, 745144321U, 3192U, 728432641U, 3192U, 711720961U, 3192U, 695009281U, 3192U, 678297601U, 3192U, 661585921U, 3192U, 644874241U, 3192U, 628162561U, 3192U, 611450881U, 3192U, 594739201U, 3192U, 578027521U, 3192U, 158662657U, 3192U, 141950977U, 3192U, 125239297U, 3192U, 108527617U, 3192U, 91815937U, 3192U, 75104257U, 3192U, 58392577U, 3192U, 41680897U, 3192U, 24969217U, 3192U, 8257537U, 3192U, 8323073U, 3192U, 805306398U, 3192U, 805371934U, 3192U, 805437470U, 3192U, 805503006U, 3192U, 805568542U, 3192U, 872742942U, 3192U, 939917342U, 3192U, 1040646174U, 3192U, 1040711710U, 3192U, 1141440542U, 3192U, 1175060510U, 3192U, 1208680478U, 3192U, 1208746014U, 3192U, 1309474846U, 3192U, 1443758110U, 3192U, 1510932510U, 3192U, 1578106910U, 3192U, 1645281310U, 3192U, 1813119006U, 3192U, 1913847838U, 3192U, 1913913374U, 3192U, 1913978910U, 3192U, 1914044446U, 3192U, 1914109982U, 3192U, 1914175518U, 3192U, 1914241054U, 3192U, 1914306590U, 3192U, 1914372126U, 3192U, 1914437662U, 3192U, 1914503198U, 3192U, 1914568734U, 3192U, 1914634270U}; extern unsigned long __phys_addr(unsigned long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } __inline static int ieee80211_has_protected(__le16 fc ) { { return (((int )fc & 16384) != 0); } } __inline static int ieee80211_is_mgmt(__le16 fc ) { { return (((int )fc & 12) == 0); } } __inline static int ieee80211_is_ctl(__le16 fc ) { { return (((int )fc & 12) == 4); } } __inline static int ieee80211_is_data_qos(__le16 fc ) { { return (((int )fc & 140) == 136); } } __inline static int ieee80211_is_beacon(__le16 fc ) { { return (((int )fc & 252) == 128); } } __inline static int ieee80211_is_disassoc(__le16 fc ) { { return (((int )fc & 252) == 160); } } __inline static int ieee80211_is_deauth(__le16 fc ) { { return (((int )fc & 252) == 192); } } __inline static int ieee80211_is_action(__le16 fc ) { { return (((int )fc & 252) == 208); } } __inline static int ieee80211_is_nullfunc(__le16 fc ) { { return (((int )fc & 252) == 72); } } __inline static bool ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr ) { int tmp ; int tmp___0 ; u8 *category ; int tmp___1 ; int tmp___2 ; { { tmp = ieee80211_is_disassoc((int )hdr->frame_control); } if (tmp != 0) { return (1); } else { { tmp___0 = ieee80211_is_deauth((int )hdr->frame_control); } if (tmp___0 != 0) { return (1); } else { } } { tmp___2 = ieee80211_is_action((int )hdr->frame_control); } if (tmp___2 != 0) { { tmp___1 = ieee80211_has_protected((int )hdr->frame_control); } if (tmp___1 != 0) { return (1); } else { } category = (u8 *)hdr + 24UL; return ((bool )((((unsigned int )*category != 4U && (unsigned int )*category != 7U) && (unsigned int )*category != 15U) && (unsigned int )*category != 127U)); } else { } return (0); } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } __inline static struct ieee80211_hdr *rtl_get_hdr(struct sk_buff *skb ) { { return ((struct ieee80211_hdr *)skb->data); } } __inline static __le16 rtl_get_fc(struct sk_buff *skb ) { struct ieee80211_hdr *tmp ; { { tmp = rtl_get_hdr(skb); } return (tmp->frame_control); } } extern void rtl_get_tcb_desc(struct ieee80211_hw * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , struct rtl_tcb_desc * ) ; extern int rtlwifi_rate_mapping(struct ieee80211_hw * , bool , u8 , bool ) ; extern u8 rtl_query_rxpwrpercentage(char ) ; extern u8 rtl_evm_db_to_percentage(char ) ; extern long rtl_signal_scale_mapping(struct ieee80211_hw * , long ) ; extern void rtl_process_phyinfo(struct ieee80211_hw * , u8 * , struct rtl_stats * ) ; static u8 _rtl92se_map_hwqueue_to_fwqueue(struct sk_buff *skb , u8 skb_queue ) { __le16 fc ; __le16 tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = rtl_get_fc(skb); fc = tmp; tmp___0 = ieee80211_is_beacon((int )fc); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { return (16U); } else { } { tmp___2 = ieee80211_is_mgmt((int )fc); } if (tmp___2 != 0) { return (18U); } else { { tmp___3 = ieee80211_is_ctl((int )fc); } if (tmp___3 != 0) { return (18U); } else { } } { tmp___4 = ieee80211_is_nullfunc((int )fc); } if (tmp___4 != 0) { return (17U); } else { } return ((u8 )skb->priority); } } static void _rtl92se_query_rxphystatus(struct ieee80211_hw *hw , struct rtl_stats *pstats , u8 *pdesc , struct rx_fwinfo *p_drvinfo , bool packet_match_bssid , bool packet_toself , bool packet_beacon ) { struct rtl_priv *rtlpriv ; struct phy_sts_cck_8192s_t *cck_buf ; struct rtl_ps_ctl *ppsc ; s8 rx_pwr_all ; s8 rx_pwr[4U] ; u8 rf_rx_num ; u8 evm ; u8 pwdb_all ; u8 i ; u8 max_spatial_stream ; u32 rssi ; u32 total_rssi ; bool is_cck ; u8 report ; u8 cck_highpwr ; u32 tmp ; u8 cck_agc_rpt ; u8 cck_agc_rpt___0 ; u8 sq ; bool tmp___0 ; u8 tmp___1 ; long tmp___2 ; long tmp___3 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & rtlpriv->psc; rx_pwr_all = 0; rf_rx_num = 0U; total_rssi = 0U; is_cck = pstats->is_cck; pstats->packet_matchbssid = packet_match_bssid; pstats->packet_toself = packet_toself; pstats->packet_beacon = packet_beacon; pstats->rx_mimo_sig_qual[0] = -1; pstats->rx_mimo_sig_qual[1] = -1; if ((int )is_cck) { cck_buf = (struct phy_sts_cck_8192s_t *)p_drvinfo; if ((unsigned int )ppsc->rfpwr_state == 0U) { { tmp = rtl_get_bbreg(hw, 2084U, 512U); cck_highpwr = (unsigned char )tmp; } } else { cck_highpwr = 0U; } if ((unsigned int )cck_highpwr == 0U) { cck_agc_rpt = cck_buf->cck_agc_rpt; report = (unsigned int )cck_buf->cck_agc_rpt & 192U; report = (u8 )((int )report >> 6); { if ((int )report == 3) { goto case_3; } else { } if ((int )report == 2) { goto case_2; } else { } if ((int )report == 1) { goto case_1; } else { } if ((int )report == 0) { goto case_0; } else { } goto switch_break; case_3: /* CIL Label */ rx_pwr_all = (s8 )(216U - ((unsigned int )cck_agc_rpt & 62U)); goto ldv_50765; case_2: /* CIL Label */ rx_pwr_all = (s8 )(236U - ((unsigned int )cck_agc_rpt & 62U)); goto ldv_50765; case_1: /* CIL Label */ rx_pwr_all = (s8 )(254U - ((unsigned int )cck_agc_rpt & 62U)); goto ldv_50765; case_0: /* CIL Label */ rx_pwr_all = (s8 )(14U - ((unsigned int )cck_agc_rpt & 62U)); goto ldv_50765; switch_break: /* CIL Label */ ; } ldv_50765: ; } else { cck_agc_rpt___0 = cck_buf->cck_agc_rpt; report = (unsigned int )p_drvinfo->cfosho[0] & 96U; report = (u8 )((int )report >> 5); { if ((int )report == 3) { goto case_3___0; } else { } if ((int )report == 2) { goto case_2___0; } else { } if ((int )report == 1) { goto case_1___0; } else { } if ((int )report == 0) { goto case_0___0; } else { } goto switch_break___0; case_3___0: /* CIL Label */ rx_pwr_all = (s8 )(216U - (((unsigned int )cck_agc_rpt___0 & 31U) << 1U)); goto ldv_50771; case_2___0: /* CIL Label */ rx_pwr_all = (s8 )(236U - (((unsigned int )cck_agc_rpt___0 & 31U) << 1U)); goto ldv_50771; case_1___0: /* CIL Label */ rx_pwr_all = (s8 )(254U - (((unsigned int )cck_agc_rpt___0 & 31U) << 1U)); goto ldv_50771; case_0___0: /* CIL Label */ rx_pwr_all = (s8 )(14U - (((unsigned int )cck_agc_rpt___0 & 31U) << 1U)); goto ldv_50771; switch_break___0: /* CIL Label */ ; } ldv_50771: ; } { pwdb_all = rtl_query_rxpwrpercentage((int )rx_pwr_all); pwdb_all = (unsigned int )pwdb_all + 6U; } if ((unsigned int )pwdb_all > 100U) { pwdb_all = 100U; } else { } if ((unsigned int )pwdb_all - 35U <= 7U) { pwdb_all = (unsigned int )pwdb_all + 254U; } else if ((unsigned int )pwdb_all - 27U <= 7U) { pwdb_all = (unsigned int )pwdb_all + 250U; } else if ((unsigned int )pwdb_all - 15U <= 11U) { pwdb_all = (unsigned int )pwdb_all + 248U; } else if ((unsigned int )pwdb_all - 5U <= 9U) { pwdb_all = (unsigned int )pwdb_all + 252U; } else { } pstats->rx_pwdb_all = (u32 )pwdb_all; pstats->recvsignalpower = (s32 )rx_pwr_all; if ((int )packet_match_bssid) { if (pstats->rx_pwdb_all > 40U) { sq = 100U; } else { sq = cck_buf->sq_rpt; if ((unsigned int )sq > 64U) { sq = 0U; } else if ((unsigned int )sq <= 19U) { sq = 100U; } else { sq = (u8 )(((int )sq * -100 + 6400) / 44); } } pstats->signalquality = sq; pstats->rx_mimo_sig_qual[0] = (s8 )sq; pstats->rx_mimo_sig_qual[1] = -1; } else { } } else { tmp___0 = 1; rtlpriv->dm.rfpath_rxenable[1] = tmp___0; rtlpriv->dm.rfpath_rxenable[0] = tmp___0; i = 0U; goto ldv_50777; ldv_50776: ; if ((int )rtlpriv->dm.rfpath_rxenable[(int )i]) { rf_rx_num = (u8 )((int )rf_rx_num + 1); } else { } { rx_pwr[(int )i] = (s8 )((unsigned int )((unsigned char )(((int )p_drvinfo->gain_trsw[(int )i] & 63) + -55)) * 2U); tmp___1 = rtl_query_rxpwrpercentage((int )rx_pwr[(int )i]); rssi = (u32 )tmp___1; total_rssi = total_rssi + rssi; rtlpriv->stats.rx_snr_db[(int )i] = (long )((int )p_drvinfo->rxsnr[(int )i] / 2); } if ((int )packet_match_bssid) { pstats->rx_mimo_signalstrength[(int )i] = (unsigned char )rssi; } else { } i = (u8 )((int )i + 1); ldv_50777: ; if ((unsigned int )i <= 1U) { goto ldv_50776; } else { } { rx_pwr_all = (s8 )((unsigned int )((int )p_drvinfo->pwdb_all >> 1) + 146U); pwdb_all = rtl_query_rxpwrpercentage((int )rx_pwr_all); pstats->rx_pwdb_all = (u32 )pwdb_all; pstats->rxpower = rx_pwr_all; pstats->recvsignalpower = (s32 )rx_pwr_all; } if (((int )pstats->is_ht && (unsigned int )pstats->rate > 19U) && (unsigned int )pstats->rate <= 27U) { max_spatial_stream = 2U; } else { max_spatial_stream = 1U; } i = 0U; goto ldv_50780; ldv_50779: { evm = rtl_evm_db_to_percentage((int )p_drvinfo->rxevm[(int )i]); } if ((int )packet_match_bssid) { if ((unsigned int )i == 0U) { pstats->signalquality = evm; } else { } pstats->rx_mimo_sig_qual[(int )i] = (s8 )evm; } else { } i = (u8 )((int )i + 1); ldv_50780: ; if ((int )i < (int )max_spatial_stream) { goto ldv_50779; } else { } } if ((int )is_cck) { { tmp___2 = rtl_signal_scale_mapping(hw, (long )pwdb_all); pstats->signalstrength = (unsigned char )tmp___2; } } else if ((unsigned int )rf_rx_num != 0U) { { total_rssi = total_rssi / (u32 )rf_rx_num; tmp___3 = rtl_signal_scale_mapping(hw, (long )total_rssi); pstats->signalstrength = (unsigned char )tmp___3; } } else { } return; } } static void _rtl92se_translate_rx_signal_stuff(struct ieee80211_hw *hw , struct sk_buff *skb , struct rtl_stats *pstats , u8 *pdesc , struct rx_fwinfo *p_drvinfo ) { struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; struct ieee80211_hdr *hdr ; u8 *tmp_buf ; u8 *praddr ; __le16 fc ; u16 type ; u16 cfc ; bool packet_matchbssid ; bool packet_toself ; bool packet_beacon ; bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; packet_beacon = 0; tmp_buf = skb->data + ((unsigned long )pstats->rx_drvinfo_size + (unsigned long )pstats->rx_bufshift); hdr = (struct ieee80211_hdr *)tmp_buf; fc = hdr->frame_control; cfc = fc; type = (unsigned int )fc & 12U; praddr = (u8 *)(& hdr->addr1); if ((unsigned int )type != 4U) { { tmp = ether_addr_equal((u8 const *)(& mac->bssid), (u8 const *)(((int )cfc & 256) != 0 ? & hdr->addr1 : (((int )cfc & 512) != 0 ? & hdr->addr2 : & hdr->addr3))); } if ((int )tmp) { if ((unsigned int )*((unsigned char *)pstats + 58UL) == 0U) { tmp___0 = 1; } else { tmp___0 = 0; } } else { tmp___0 = 0; } } else { tmp___0 = 0; } packet_matchbssid = (bool )tmp___0; if ((int )packet_matchbssid) { { tmp___1 = ether_addr_equal((u8 const *)praddr, (u8 const *)(& rtlefuse->dev_addr)); } if ((int )tmp___1) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } { packet_toself = (bool )tmp___2; tmp___3 = ieee80211_is_beacon((int )fc); } if (tmp___3 != 0) { packet_beacon = 1; } else { } { _rtl92se_query_rxphystatus(hw, pstats, pdesc, p_drvinfo, (int )packet_matchbssid, (int )packet_toself, (int )packet_beacon); rtl_process_phyinfo(hw, tmp_buf, pstats); } return; } } bool rtl92se_rx_query_desc(struct ieee80211_hw *hw , struct rtl_stats *stats , struct ieee80211_rx_status *rx_status , u8 *pdesc , struct sk_buff *skb ) { struct rx_fwinfo *p_drvinfo ; u32 phystatus ; struct ieee80211_hdr *hdr ; bool first_ampdu ; bool tmp ; int tmp___0 ; int tmp___1 ; { phystatus = (*((__le32 *)pdesc) >> 26) & 1U; first_ampdu = 0; stats->length = (unsigned int )((unsigned short )*((__le32 *)pdesc)) & 16383U; stats->rx_drvinfo_size = ((unsigned int )((u8 )(*((__le32 *)pdesc) >> 16)) & 15U) * 8U; stats->rx_bufshift = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 24)) & 3U; stats->icv = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 15)) & 1U; stats->crc = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 14)) & 1U; stats->hwerror = (int )((unsigned char )stats->crc) | (int )((unsigned char )stats->icv); stats->decrypted = (*((__le32 *)pdesc) & 134217728U) == 0U; stats->rate = (unsigned int )((unsigned char )*((__le32 *)pdesc + 12U)) & 63U; stats->shortpreamble = (unsigned int )((unsigned char )(*((__le32 *)pdesc + 12U) >> 8)) & 1U; stats->isampdu = (*((__le32 *)pdesc + 4U) & 16384U) != 0U; stats->isfirst_ampdu = (*((__le32 *)pdesc + 4U) & 49152U) == 49152U; stats->timestamp_low = *((__le32 *)pdesc + 20U); stats->rx_is40Mhzpacket = (*((__le32 *)pdesc + 12U) & 512U) != 0U; stats->is_ht = (*((__le32 *)pdesc + 12U) & 64U) != 0U; stats->is_cck = (*((__le32 *)pdesc + 12U) & 63U) <= 3U; if ((unsigned int )*((unsigned char *)stats + 58UL) != 0U) { return (0); } else { } rx_status->freq = (hw->conf.chandef.chan)->center_freq; rx_status->band = (u8 )(hw->conf.chandef.chan)->band; if ((unsigned int )*((unsigned char *)stats + 58UL) != 0U) { rx_status->flag = rx_status->flag | 32U; } else { } if ((int )stats->rx_is40Mhzpacket) { rx_status->flag = rx_status->flag | 1024U; } else { } if ((int )stats->is_ht) { rx_status->flag = rx_status->flag | 512U; } else { } rx_status->flag = rx_status->flag | 128U; if ((unsigned int )*((unsigned char *)stats + 58UL) != 0U) { hdr = (struct ieee80211_hdr *)(skb->data + ((unsigned long )stats->rx_drvinfo_size + (unsigned long )stats->rx_bufshift)); if ((unsigned long )hdr == (unsigned long )((struct ieee80211_hdr *)0)) { return (0); } else { } { tmp = ieee80211_is_robust_mgmt_frame(hdr); } if ((int )tmp) { { tmp___0 = ieee80211_has_protected((int )hdr->frame_control); } if (tmp___0 != 0) { rx_status->flag = rx_status->flag & 4294967293U; } else { rx_status->flag = rx_status->flag | 2U; } } else { rx_status->flag = rx_status->flag | 2U; } } else { } { tmp___1 = rtlwifi_rate_mapping(hw, (int )stats->is_ht, (int )stats->rate, (int )first_ampdu); rx_status->rate_idx = (u8 )tmp___1; rx_status->mactime = (u64 )stats->timestamp_low; } if (phystatus != 0U) { { p_drvinfo = (struct rx_fwinfo *)skb->data + (unsigned long )stats->rx_bufshift; _rtl92se_translate_rx_signal_stuff(hw, skb, stats, pdesc, p_drvinfo); } } else { } rx_status->signal = (s8 )((unsigned int )((unsigned char )stats->recvsignalpower) + 10U); return (1); } } void rtl92se_tx_fill_desc(struct ieee80211_hw *hw , struct ieee80211_hdr *hdr , u8 *pdesc_tx , struct ieee80211_tx_info *info , struct ieee80211_sta *sta , struct sk_buff *skb , u8 hw_queue , struct rtl_tcb_desc *ptcb_desc ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_pci *rtlpci ; struct rtl_hal *rtlhal ; u8 *pdesc ; u16 seq_number ; __le16 fc ; u8 reserved_macid ; u8 fw_qsel ; u8 tmp ; bool firstseg ; bool lastseg ; dma_addr_t mapping ; dma_addr_t tmp___0 ; u8 bw_40 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; size_t __min1 ; size_t __min2 ; int tmp___6 ; int tmp___7 ; struct ieee80211_key_conf *keyconf ; int tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; pdesc = pdesc_tx; fc = hdr->frame_control; reserved_macid = 0U; tmp = _rtl92se_map_hwqueue_to_fwqueue(skb, (int )hw_queue); fw_qsel = tmp; firstseg = ((int )hdr->seq_ctrl & 15) == 0; lastseg = ((int )hdr->frame_control & 1024) == 0; tmp___0 = pci_map_single(rtlpci->pdev, (void *)skb->data, (size_t )skb->len, 1); mapping = tmp___0; bw_40 = 0U; tmp___5 = pci_dma_mapping_error(rtlpci->pdev, mapping); } if (tmp___5 != 0) { { tmp___3 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___4 != 0L) { { tmp___1 = preempt_count(); tmp___2 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> DMA mapping error", "rtl92se_tx_fill_desc", (unsigned long )tmp___2 & 2096896UL, ((unsigned long )tmp___1 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } if ((unsigned int )mac->opmode == 2U) { bw_40 = mac->bw_40; } else if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 1U) { if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { bw_40 = (unsigned int )sta->bandwidth != 0U; } else { } } else { } { seq_number = (u16 )((int )hdr->seq_ctrl >> 4); rtl_get_tcb_desc(hw, info, sta, skb, ptcb_desc); __min1 = 64UL; __min2 = 36UL; memset((void *)pdesc, 0, __min1 < __min2 ? __min1 : __min2); tmp___6 = ieee80211_is_nullfunc((int )fc); } if (tmp___6 != 0) { firstseg = 1; lastseg = 1; } else { { tmp___7 = ieee80211_is_ctl((int )fc); } if (tmp___7 != 0) { firstseg = 1; lastseg = 1; } else { } } if ((int )firstseg) { if ((int )rtlpriv->dm.useramask) { if ((unsigned int )ptcb_desc->mac_id <= 31U) { *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294967264U) | ((__le32 )ptcb_desc->mac_id & 31U); reserved_macid = (u8 )((int )reserved_macid | (int )ptcb_desc->mac_id); } else { } } else { } *((__le32 *)pdesc + 8U) = (*((__le32 *)pdesc + 8U) & 3774873599U) | (((unsigned int )reserved_macid & 31U) << 24); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294901759U) | ((unsigned int )ptcb_desc->hw_rate > 11U ? 65536U : 0U); if (rtlhal->version == 0U) { if ((unsigned int )ptcb_desc->hw_rate <= 3U) { ptcb_desc->hw_rate = 6U; } else { } } else { } *((__le32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294935039U) | (((unsigned int )ptcb_desc->hw_rate & 63U) << 9); if ((unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U) { *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4294836223U; } else { } if ((info->flags & 64U) != 0U) { *((__le32 *)pdesc + 8U) = *((__le32 *)pdesc + 8U) | 536870912U; } else { } *((__le32 *)pdesc + 12U) = (*((__le32 *)pdesc + 12U) & 4026597375U) | (((unsigned int )seq_number & 4095U) << 16); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294963199U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) == 16U ? 4096U : 0U); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294965247U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 2048U : 0U); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 2684354559U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 536870912U : 0U); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294967232U) | ((__le32 )ptcb_desc->rts_rate & 63U); *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4227858431U; *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 3892314111U) | ((unsigned int )ptcb_desc->rts_sc << 27); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4261412863U) | ((unsigned int )ptcb_desc->rts_rate <= 11U ? ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 33554432U : 0U) : ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 33554432U : 0U)); if ((unsigned int )bw_40 != 0U) { if ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U) { *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 262144U; *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4293394431U; } else { *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4294705151U; *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4293394431U) | (((unsigned int )mac->cur_40_prime_sc & 3U) << 19); } } else { *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4294705151U; *((__le32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4293394431U; } *((__le32 *)pdesc) = *((__le32 *)pdesc) & 4026531839U; *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2097152U; *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294909951U) | (((unsigned int )ptcb_desc->ratr_index << 13) & 65535U); if ((unsigned long )info->__annonCompField79.control.hw_key != (unsigned long )((struct ieee80211_key_conf *)0)) { keyconf = info->__annonCompField79.control.hw_key; { if (keyconf->cipher == 1027073U) { goto case_1027073; } else { } if (keyconf->cipher == 1027077U) { goto case_1027077; } else { } if (keyconf->cipher == 1027074U) { goto case_1027074; } else { } if (keyconf->cipher == 1027076U) { goto case_1027076; } else { } goto switch_default; case_1027073: /* CIL Label */ ; case_1027077: /* CIL Label */ *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4282384383U) | 4194304U; goto ldv_50841; case_1027074: /* CIL Label */ *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4282384383U) | 8388608U; goto ldv_50841; case_1027076: /* CIL Label */ *((__le32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) | 12582912U; goto ldv_50841; switch_default: /* CIL Label */ *((__le32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) & 4282384383U; goto ldv_50841; switch_break: /* CIL Label */ ; } ldv_50841: ; } else { } { *((__le32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) & 4294966784U; *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294959359U) | (((unsigned int )fw_qsel & 31U) << 8); *((__le32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) | 2031616U; *((__le32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 2147483647U) | ((unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U ? 2147483648U : 0U); tmp___8 = ieee80211_is_data_qos((int )fc); } if (tmp___8 == 0) { *((__le32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) | 65536U; } else { } } else { } { *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4160749567U) | ((int )firstseg ? 134217728U : 0U); *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4227858431U) | ((int )lastseg ? 67108864U : 0U); *((__le32 *)pdesc + 28U) = (*((__le32 *)pdesc + 28U) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((__le32 *)pdesc + 32U) = (__le32 )mapping; tmp___11 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___11 != 0L) { { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___12 != 0L) { { tmp___9 = preempt_count(); tmp___10 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> \n", "rtl92se_tx_fill_desc", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } void rtl92se_tx_fill_cmddesc(struct ieee80211_hw *hw , u8 *pdesc , bool firstseg , bool lastseg , struct sk_buff *skb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_hal *rtlhal ; struct rtl_tcb_desc *tcb_desc ; dma_addr_t mapping ; dma_addr_t tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; size_t __min1 ; size_t __min2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tcb_desc = (struct rtl_tcb_desc *)(& skb->cb); tmp = pci_map_single(rtlpci->pdev, (void *)skb->data, (size_t )skb->len, 1); mapping = tmp; tmp___4 = pci_dma_mapping_error(rtlpci->pdev, mapping); } if (tmp___4 != 0) { { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8192se:%s():<%lx-%x> DMA mapping error", "rtl92se_tx_fill_cmddesc", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } { __min1 = 64UL; __min2 = 36UL; memset((void *)pdesc, 0, __min1 < __min2 ? __min1 : __min2); } if ((unsigned int )*((unsigned char *)tcb_desc + 7UL) == 0U) { *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4026531839U) | ((unsigned int )tcb_desc->last_inipkt << 28); *((__le32 *)pdesc) = *((__le32 *)pdesc) | 134217728U; *((__le32 *)pdesc) = *((__le32 *)pdesc) | 67108864U; *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((__le32 *)pdesc + 28U) = (*((__le32 *)pdesc + 28U) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((__le32 *)pdesc + 32U) = (__le32 )mapping; __asm__ volatile ("sfence": : : "memory"); *((__le32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; } else { *((__le32 *)pdesc) = *((__le32 *)pdesc) | 134217728U; *((__le32 *)pdesc) = *((__le32 *)pdesc) | 67108864U; *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2097152U; *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((__le32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294959359U) | 4864U; *((u32 *)skb->data) = (*((__le32 *)skb->data) & 2164260863U) | (((unsigned int )rtlhal->h2c_txcmd_seq & 127U) << 24); *((__le32 *)pdesc + 28U) = (*((__le32 *)pdesc + 28U) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((__le32 *)pdesc + 32U) = (__le32 )mapping; __asm__ volatile ("sfence": : : "memory"); *((__le32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; } return; } } void rtl92se_set_desc(u8 *pdesc , bool istx , u8 desc_name , u8 *val ) { { if ((int )istx) { { if ((int )desc_name == 0) { goto case_0; } else { } if ((int )desc_name == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ __asm__ volatile ("sfence": : : "memory"); *((__le32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; goto ldv_50868; case_2: /* CIL Label */ *((__le32 *)pdesc + 36U) = *((u32 *)val); goto ldv_50868; switch_default: /* CIL Label */ { printk("\017rtl8192se:%s(): ERR txdesc :%d not process\n", "rtl92se_set_desc", (int )desc_name); } goto ldv_50868; switch_break: /* CIL Label */ ; } ldv_50868: ; } else { { if ((int )desc_name == 1) { goto case_1; } else { } if ((int )desc_name == 4) { goto case_4; } else { } if ((int )desc_name == 5) { goto case_5; } else { } if ((int )desc_name == 6) { goto case_6; } else { } goto switch_default___0; case_1: /* CIL Label */ __asm__ volatile ("sfence": : : "memory"); *((__le32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; goto ldv_50873; case_4: /* CIL Label */ *((__le32 *)pdesc + 24U) = *((u32 *)val); goto ldv_50873; case_5: /* CIL Label */ *((__le32 *)pdesc) = (*((__le32 *)pdesc) & 4294950912U) | (*((u32 *)val) & 16383U); goto ldv_50873; case_6: /* CIL Label */ *((__le32 *)pdesc) = *((__le32 *)pdesc) | 1073741824U; goto ldv_50873; switch_default___0: /* CIL Label */ { printk("\017rtl8192se:%s(): ERR rxdesc :%d not process\n", "rtl92se_set_desc", (int )desc_name); } goto ldv_50873; switch_break___0: /* CIL Label */ ; } ldv_50873: ; } return; } } u32 rtl92se_get_desc(u8 *desc , bool istx , u8 desc_name ) { u32 ret ; { ret = 0U; if ((int )istx) { { if ((int )desc_name == 0) { goto case_0; } else { } if ((int )desc_name == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ret = *((__le32 *)desc) >> 31; goto ldv_50885; case_3: /* CIL Label */ ret = *((__le32 *)desc + 32U); goto ldv_50885; switch_default: /* CIL Label */ { printk("\017rtl8192se:%s(): ERR txdesc :%d not process\n", "rtl92se_get_desc", (int )desc_name); } goto ldv_50885; switch_break: /* CIL Label */ ; } ldv_50885: ; } else { { if ((int )desc_name == 0) { goto case_0___0; } else { } if ((int )desc_name == 5) { goto case_5; } else { } goto switch_default___0; case_0___0: /* CIL Label */ ret = *((__le32 *)desc) >> 31; goto ldv_50890; case_5: /* CIL Label */ ret = *((__le32 *)desc) & 16383U; goto ldv_50890; switch_default___0: /* CIL Label */ { printk("\017rtl8192se:%s(): ERR rxdesc :%d not process\n", "rtl92se_get_desc", (int )desc_name); } goto ldv_50890; switch_break___0: /* CIL Label */ ; } ldv_50890: ; } return (ret); } } void rtl92se_tx_polling(struct ieee80211_hw *hw , u8 hw_queue ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtl_write_word(rtlpriv, 1280U, (int )((u16 )(1UL << (int )hw_queue))); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_MUTEXES_i_mutex_of_inode ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_i_mutex_of_inode); LDV_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_i_mutex_of_inode); tmp = ldv_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_i_mutex_of_inode); LDV_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_MUTEXES_lock ; void ldv_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_lock); LDV_MUTEXES_lock = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_lock); tmp = ldv_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_lock = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_lock(lock); } return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_lock); LDV_MUTEXES_lock = 0; } return; } } ldv_set LDV_MUTEXES_mutex_of_device ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_mutex_of_device); LDV_MUTEXES_mutex_of_device = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_mutex_of_device); tmp = ldv_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_mutex_of_device); LDV_MUTEXES_mutex_of_device = 0; } return; } } void ldv_initialize(void) { { LDV_MUTEXES_i_mutex_of_inode = 0; LDV_MUTEXES_lock = 0; LDV_MUTEXES_mutex_of_device = 0; return; } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_mutex_of_device); } return; } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__complex_emg__linux-kernel-locking-mutex__drivers-net-wireless-rtlwifi-rtl8192se-rtl8192se_true-unreach-call.cil.env.c" #include "model/common.env.c"