/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22052 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22052 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28410 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28411 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28410 reg_state : 8 ; bool dismantle ; enum ldv_28411 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct ipv6hdr { __u8 priority : 4 ; __u8 version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_248 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_248 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_249 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_249 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_254 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_254 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_255 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_255 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_257 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_256 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_257 __annonCompField79 ; }; union __anonunion____missing_field_name_258 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_260 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_259 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_260 __annonCompField82 ; }; union __anonunion____missing_field_name_261 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_262 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_256 __annonCompField80 ; union __anonunion____missing_field_name_258 __annonCompField81 ; union __anonunion____missing_field_name_259 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_261 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_262 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_263 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_263 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_264 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_264 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; __u16 res1 : 4 ; __u16 doff : 4 ; __u16 fin : 1 ; __u16 syn : 1 ; __u16 rst : 1 ; __u16 psh : 1 ; __u16 ack : 1 ; __u16 urg : 1 ; __u16 ece : 1 ; __u16 cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct mii_if_info { int phy_id ; int advertising ; int phy_id_mask ; int reg_num_mask ; unsigned int full_duplex : 1 ; unsigned int force_media : 1 ; unsigned int supports_gmii : 1 ; struct net_device *dev ; int (*mdio_read)(struct net_device * , int , int ) ; void (*mdio_write)(struct net_device * , int , int , int ) ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_276 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_276 __annonCompField86 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_277 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_279 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_278 { struct __anonstruct____missing_field_name_279 __annonCompField88 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_277 __annonCompField87 ; union __anonunion____missing_field_name_278 __annonCompField89 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; struct atl1c_adapter; struct atl1c_hw; struct atl1c_tpd_desc { __le16 buffer_len ; __le16 vlan_tag ; __le32 word1 ; __le64 buffer_addr ; }; struct atl1c_tpd_ext_desc { u32 reservd_0 ; __le32 word1 ; __le32 pkt_len ; u32 reservd_1 ; }; struct atl1c_recv_ret_status { __le32 word0 ; __le32 rss_hash ; __le16 vlan_tag ; __le16 flag ; __le32 word3 ; }; struct atl1c_rx_free_desc { __le64 buffer_addr ; }; enum atl1c_dma_order { atl1c_dma_ord_in = 1, atl1c_dma_ord_enh = 2, atl1c_dma_ord_out = 4 } ; enum atl1c_dma_rcb { atl1c_rcb_64 = 0, atl1c_rcb_128 = 1 } ; enum atl1c_mac_speed { atl1c_mac_speed_0 = 0, atl1c_mac_speed_10_100 = 1, atl1c_mac_speed_1000 = 2 } ; enum atl1c_dma_req_block { atl1c_dma_req_128 = 0, atl1c_dma_req_256 = 1, atl1c_dma_req_512 = 2, atl1c_dma_req_1024 = 3, atl1c_dma_req_2048 = 4, atl1c_dma_req_4096 = 5 } ; enum atl1c_nic_type { athr_l1c = 0, athr_l2c = 1, athr_l2c_b = 2, athr_l2c_b2 = 3, athr_l1d = 4, athr_l1d_2 = 5 } ; enum atl1c_trans_queue { atl1c_trans_normal = 0, atl1c_trans_high = 1 } ; struct atl1c_hw_stats { unsigned long rx_ok ; unsigned long rx_bcast ; unsigned long rx_mcast ; unsigned long rx_pause ; unsigned long rx_ctrl ; unsigned long rx_fcs_err ; unsigned long rx_len_err ; unsigned long rx_byte_cnt ; unsigned long rx_runt ; unsigned long rx_frag ; unsigned long rx_sz_64 ; unsigned long rx_sz_65_127 ; unsigned long rx_sz_128_255 ; unsigned long rx_sz_256_511 ; unsigned long rx_sz_512_1023 ; unsigned long rx_sz_1024_1518 ; unsigned long rx_sz_1519_max ; unsigned long rx_sz_ov ; unsigned long rx_rxf_ov ; unsigned long rx_rrd_ov ; unsigned long rx_align_err ; unsigned long rx_bcast_byte_cnt ; unsigned long rx_mcast_byte_cnt ; unsigned long rx_err_addr ; unsigned long tx_ok ; unsigned long tx_bcast ; unsigned long tx_mcast ; unsigned long tx_pause ; unsigned long tx_exc_defer ; unsigned long tx_ctrl ; unsigned long tx_defer ; unsigned long tx_byte_cnt ; unsigned long tx_sz_64 ; unsigned long tx_sz_65_127 ; unsigned long tx_sz_128_255 ; unsigned long tx_sz_256_511 ; unsigned long tx_sz_512_1023 ; unsigned long tx_sz_1024_1518 ; unsigned long tx_sz_1519_max ; unsigned long tx_1_col ; unsigned long tx_2_col ; unsigned long tx_late_col ; unsigned long tx_abort_col ; unsigned long tx_underrun ; unsigned long tx_rd_eop ; unsigned long tx_len_err ; unsigned long tx_trunc ; unsigned long tx_bcast_byte ; unsigned long tx_mcast_byte ; }; struct atl1c_hw { u8 *hw_addr ; struct atl1c_adapter *adapter ; enum atl1c_nic_type nic_type ; enum atl1c_dma_order dma_order ; enum atl1c_dma_rcb rcb_value ; enum atl1c_dma_req_block dmar_block ; u16 device_id ; u16 vendor_id ; u16 subsystem_id ; u16 subsystem_vendor_id ; u8 revision_id ; u16 phy_id1 ; u16 phy_id2 ; u32 intr_mask ; u8 preamble_len ; u16 max_frame_size ; u16 min_frame_size ; enum atl1c_mac_speed mac_speed ; bool mac_duplex ; bool hibernate ; u16 media_type ; u16 autoneg_advertised ; u16 mii_autoneg_adv_reg ; u16 mii_1000t_ctrl_reg ; u16 tx_imt ; u16 rx_imt ; u16 ict ; u16 ctrl_flags ; u16 link_cap_flags ; u32 smb_timer ; u16 rrd_thresh ; u16 tpd_thresh ; u8 tpd_burst ; u8 rfd_burst ; u32 base_cpu ; u32 indirect_tab ; u8 mac_addr[6U] ; u8 perm_mac_addr[6U] ; bool phy_configured ; bool re_autoneg ; bool emi_ca ; bool msi_lnkpatch ; }; struct atl1c_ring_header { void *desc ; dma_addr_t dma ; unsigned int size ; }; struct atl1c_buffer { struct sk_buff *skb ; u16 length ; u16 flags ; dma_addr_t dma ; }; struct atl1c_tpd_ring { void *desc ; dma_addr_t dma ; u16 size ; u16 count ; u16 next_to_use ; atomic_t next_to_clean ; struct atl1c_buffer *buffer_info ; }; struct atl1c_rfd_ring { void *desc ; dma_addr_t dma ; u16 size ; u16 count ; u16 next_to_use ; u16 next_to_clean ; struct atl1c_buffer *buffer_info ; }; struct atl1c_rrd_ring { void *desc ; dma_addr_t dma ; u16 size ; u16 count ; u16 next_to_use ; u16 next_to_clean ; }; struct atl1c_adapter { struct net_device *netdev ; struct pci_dev *pdev ; struct napi_struct napi ; struct page *rx_page ; unsigned int rx_page_offset ; unsigned int rx_frag_size ; struct atl1c_hw hw ; struct atl1c_hw_stats hw_stats ; struct mii_if_info mii ; u16 rx_buffer_len ; unsigned long flags ; unsigned long work_event ; u32 msg_enable ; bool have_msi ; u32 wol ; u16 link_speed ; u16 link_duplex ; spinlock_t mdio_lock ; spinlock_t tx_lock ; atomic_t irq_sem ; struct work_struct common_task ; struct timer_list watchdog_timer ; struct timer_list phy_config_timer ; struct atl1c_ring_header ring_header ; struct atl1c_tpd_ring tpd_ring[2U] ; struct atl1c_rfd_ring rfd_ring ; struct atl1c_rrd_ring rrd_ring ; u32 bd_number ; }; struct atl1c_platform_patch { u16 pci_did ; u8 pci_revid ; u16 subsystem_vid ; u16 subsystem_did ; u32 patch_flag ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef struct net_device *ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; enum hrtimer_restart; enum hrtimer_restart; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int fls64(__u64 x ) { int bitpos ; { bitpos = -1; __asm__ ("bsrq %1,%q0": "+r" (bitpos): "rm" (x)); return (bitpos + 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static unsigned int fls_long(unsigned long l ) { int tmp___0 ; { { tmp___0 = fls64((__u64 )l); } return ((unsigned int )tmp___0); } } __inline static unsigned long __roundup_pow_of_two(unsigned long n ) { unsigned int tmp ; { { tmp = fls_long(n - 1UL); } return (1UL << (int )tmp); } } extern int printk(char const * , ...) ; extern int __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { { __asm__ volatile ("":); return (0); return (1); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_79(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_81(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_83(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_88(spinlock_t *ldv_func_arg1 ) ; extern int __ldv_spin_trylock(spinlock_t * ) ; static int ldv___ldv_spin_trylock_92(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_mdio_lock_of_atl1c_adapter(void) ; void ldv_spin_unlock_mdio_lock_of_atl1c_adapter(void) ; void ldv_spin_unlock_tx_lock_of_atl1c_adapter(void) ; int ldv_spin_trylock_tx_lock_of_atl1c_adapter(void) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6576; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6576; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6576; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6576; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6576: ; return (pfo_ret__ & 2147483647); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_85(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_86(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_93(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_93(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_93(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_93(spinlock_t *lock , unsigned long flags ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_87(struct timer_list *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } extern void dump_page(struct page * , char * ) ; __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; extern struct page *alloc_pages_current(gfp_t , unsigned int ) ; __inline static struct page *alloc_pages(gfp_t gfp_mask , unsigned int order ) { struct page *tmp ; { { tmp = alloc_pages_current(gfp_mask, order); } return (tmp); } } extern int device_set_wakeup_enable(struct device * , bool ) ; static void *ldv_dev_get_drvdata_58(struct device const *dev ) ; static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern int dev_warn(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void msleep(unsigned int ) ; __inline static int PageTail(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } extern bool __get_page_tail(struct page * ) ; __inline static void get_page(struct page *page ) { bool tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { tmp = __get_page_tail(page); tmp___0 = ldv__builtin_expect((long )tmp, 1L); } if (tmp___0 != 0L) { return; } else { } } else { } { tmp___3 = atomic_read((atomic_t const *)(& page->__annonCompField43.__annonCompField42.__annonCompField41._count)); tmp___4 = ldv__builtin_expect(tmp___3 <= 0, 0L); } if (tmp___4 != 0L) { { dump_page(page, (char *)0); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/mm.h"), "i" (488), "i" (12UL)); __builtin_unreachable(); } } else { } { atomic_inc(& page->__annonCompField43.__annonCompField42.__annonCompField41._count); } return; } } extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); } return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; extern struct sk_buff *build_skb(void * , unsigned int ) ; extern int pskb_expand_head(struct sk_buff * , int , int , gfp_t ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 124UL) == 0U) { return (0); } else { } { tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); } return (dataref != 1); } } __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void skb_reset_tail_pointer(struct sk_buff *skb ) { { skb->tail = (sk_buff_data_t )((long )skb->data) - (sk_buff_data_t )((long )skb->head); return; } } __inline static void skb_set_tail_pointer(struct sk_buff *skb , int const offset ) { { { skb_reset_tail_pointer(skb); skb->tail = skb->tail + (sk_buff_data_t )offset; } return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->__annonCompField68.__annonCompField67.csum_start - tmp)); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } extern int ___pskb_trim(struct sk_buff * , unsigned int ) ; __inline static void __skb_trim(struct sk_buff *skb , unsigned int len ) { int __ret_warn_on ; long tmp ; bool tmp___0 ; long tmp___1 ; { { tmp___0 = skb_is_nonlinear((struct sk_buff const *)skb); tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/skbuff.h", 1839); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return; } else { } { skb->len = len; skb_set_tail_pointer(skb, (int const )len); } return; } } __inline static int __pskb_trim(struct sk_buff *skb , unsigned int len ) { int tmp ; { if (skb->data_len != 0U) { { tmp = ___pskb_trim(skb, len); } return (tmp); } else { } { __skb_trim(skb, len); } return (0); } } __inline static int pskb_trim(struct sk_buff *skb , unsigned int len ) { int tmp ; int tmp___0 ; { if (len < skb->len) { { tmp = __pskb_trim(skb, len); tmp___0 = tmp; } } else { tmp___0 = 0; } return (tmp___0); } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } extern void synchronize_irq(unsigned int ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38347; ldv_38346: { msleep(1U); } ldv_38347: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38346; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_101(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_103(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_receive_skb(struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if ((unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_100(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_102(struct net_device *ldv_func_arg1 ) ; extern void netdev_update_features(struct net_device * ) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int pci_find_ext_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pcie_capability_write_word(struct pci_dev * , int , u16 ) ; extern int pci_enable_device(struct pci_dev * ) ; extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pcie_get_readrq(struct pci_dev * ) ; extern int pcie_set_readrq(struct pci_dev * , int ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; extern int pci_wake_from_d3(struct pci_dev * , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_104(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_105(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_58((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_59(& pdev->dev, data); } return; } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_98(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_97(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_99(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } void atl1c_phy_disable(struct atl1c_hw *hw ) ; void atl1c_hw_set_mac_addr(struct atl1c_hw *hw , u8 *mac_addr ) ; int atl1c_phy_reset(struct atl1c_hw *hw ) ; int atl1c_read_mac_addr(struct atl1c_hw *hw ) ; int atl1c_get_speed_and_duplex(struct atl1c_hw *hw , u16 *speed , u16 *duplex ) ; u32 atl1c_hash_mc_addr(struct atl1c_hw *hw , u8 *mc_addr ) ; void atl1c_hash_set(struct atl1c_hw *hw , u32 hash_value ) ; int atl1c_read_phy_reg(struct atl1c_hw *hw , u16 reg_addr , u16 *phy_data ) ; int atl1c_write_phy_reg(struct atl1c_hw *hw , u32 reg_addr , u16 phy_data ) ; int atl1c_phy_init(struct atl1c_hw *hw ) ; int atl1c_restart_autoneg(struct atl1c_hw *hw ) ; int atl1c_phy_to_ps_link(struct atl1c_hw *hw ) ; int atl1c_power_saving(struct atl1c_hw *hw , u32 wufc ) ; void atl1c_post_phy_linkchg(struct atl1c_hw *hw , u16 link_speed ) ; char atl1c_driver_name[6U] ; char atl1c_driver_version[13U] ; void atl1c_reinit_locked(struct atl1c_adapter *adapter ) ; void atl1c_set_ethtool_ops(struct net_device *netdev ) ; char atl1c_driver_name[6U] = { 'a', 't', 'l', '1', 'c', '\000'}; char atl1c_driver_version[13U] = { '1', '.', '0', '.', '1', '.', '1', '-', 'N', 'A', 'P', 'I', '\000'}; static struct pci_device_id const atl1c_pci_tbl[7U] = { {6505U, 4195U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 4194U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 8288U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 8290U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 4211U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 4227U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static int atl1c_stop_mac(struct atl1c_hw *hw ) ; static void atl1c_disable_l0s_l1(struct atl1c_hw *hw ) ; static void atl1c_set_aspm(struct atl1c_hw *hw , u16 link_speed ) ; static void atl1c_start_mac(struct atl1c_adapter *adapter ) ; static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter , int *work_done , int work_to_do ) ; static int atl1c_up(struct atl1c_adapter *adapter ) ; static void atl1c_down(struct atl1c_adapter *adapter ) ; static int atl1c_reset_mac(struct atl1c_hw *hw ) ; static void atl1c_reset_dma_ring(struct atl1c_adapter *adapter ) ; static int atl1c_configure(struct atl1c_adapter *adapter ) ; static int atl1c_alloc_rx_buffer(struct atl1c_adapter *adapter ) ; static unsigned int const atl1c_default_msg = 63U; static void atl1c_pcie_patch(struct atl1c_hw *hw ) { u32 mst_data ; u32 data ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; { { tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5120U); mst_data = readl((void const volatile *)hw->hw_addr + 5120U); } } else { { mst_data = readl((void const volatile *)hw->hw_addr + 5120U); } } { mst_data = mst_data & 4294963199U; writel(mst_data, (void volatile *)hw->hw_addr + 5120U); } if ((unsigned int )hw->nic_type <= 1U) { { tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 4096U); data = readl((void const volatile *)hw->hw_addr + 4096U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4096U); } } { data = data | 4U; writel(data, (void volatile *)hw->hw_addr + 4096U); } } else if (((unsigned long )mst_data & 32UL) == 0UL) { { writel(mst_data | 32U, (void volatile *)hw->hw_addr + 5120U); } } else { } if ((unsigned int )hw->nic_type == 2U && (unsigned int )hw->revision_id == 192U) { { tmp___1 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 4100U); data = readl((void const volatile *)hw->hw_addr + 4100U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4100U); } } { data = data | 196608U; data = data | 786432U; writel(data, (void volatile *)hw->hw_addr + 4100U); tmp___2 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___2 != 0L) { { readl((void const volatile *)hw->hw_addr + 104U); data = readl((void const volatile *)hw->hw_addr + 104U); } } else { { data = readl((void const volatile *)hw->hw_addr + 104U); } } { data = data | 128U; writel(data, (void volatile *)hw->hw_addr + 104U); } } else { } if ((unsigned int )hw->nic_type == 2U || (unsigned int )hw->nic_type == 4U) { { tmp___3 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___3 != 0L) { { readl((void const volatile *)hw->hw_addr + 4856U); data = readl((void const volatile *)hw->hw_addr + 4856U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4856U); } } { data = data | 268435456U; writel(data, (void volatile *)hw->hw_addr + 4856U); tmp___4 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___4 != 0L) { { readl((void const volatile *)hw->hw_addr + 4372U); data = readl((void const volatile *)hw->hw_addr + 4372U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4372U); } } { writel(data & 4294967294U, (void volatile *)hw->hw_addr + 4372U); } } else { } return; } } static void atl1c_reset_pcie(struct atl1c_hw *hw , u32 flag ) { u32 data ; u32 pci_cmd ; struct pci_dev *pdev ; int pos ; long tmp ; long tmp___0 ; long tmp___1 ; { { pdev = (hw->adapter)->pdev; tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4U); pci_cmd = readl((void const volatile *)hw->hw_addr + 4U); } } else { { pci_cmd = readl((void const volatile *)hw->hw_addr + 4U); } } { pci_cmd = pci_cmd & 4294966271U; pci_cmd = pci_cmd | 7U; writel(pci_cmd, (void volatile *)hw->hw_addr + 4U); pci_enable_wake(pdev, 3, 0); pci_enable_wake(pdev, 4, 0); tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5280U); data = readl((void const volatile *)hw->hw_addr + 5280U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5280U); } } { writel(0U, (void volatile *)hw->hw_addr + 5280U); pos = pci_find_ext_capability(pdev, 1); } if (pos != 0) { { pci_read_config_dword((struct pci_dev const *)pdev, pos + 12, & data); data = data & 4294959087U; pci_write_config_dword((struct pci_dev const *)pdev, pos + 12, data); } } else { } { pcie_capability_write_word(pdev, 10, 15); tmp___1 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 4860U); data = readl((void const volatile *)hw->hw_addr + 4860U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4860U); } } { data = data & 4294963199U; writel(data, (void volatile *)hw->hw_addr + 4860U); atl1c_pcie_patch(hw); } if ((int )flag & 1) { { atl1c_disable_l0s_l1(hw); } } else { } { msleep(5U); } return; } } __inline static void atl1c_irq_enable(struct atl1c_adapter *adapter ) { int tmp ; long tmp___0 ; { { tmp = atomic_dec_and_test(& adapter->irq_sem); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { { writel(2147483647U, (void volatile *)adapter->hw.hw_addr + 5632U); writel(adapter->hw.intr_mask, (void volatile *)adapter->hw.hw_addr + 5636U); readl((void const volatile *)adapter->hw.hw_addr); } } else { } return; } } __inline static void atl1c_irq_disable(struct atl1c_adapter *adapter ) { { { atomic_inc(& adapter->irq_sem); writel(0U, (void volatile *)adapter->hw.hw_addr + 5636U); writel(2147483648U, (void volatile *)adapter->hw.hw_addr + 5632U); readl((void const volatile *)adapter->hw.hw_addr); synchronize_irq((adapter->pdev)->irq); } return; } } static u32 atl1c_wait_until_idle(struct atl1c_hw *hw , u32 modu_ctrl ) { int timeout ; u32 data ; long tmp ; { timeout = 0; goto ldv_51014; ldv_51013: { tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5136U); data = readl((void const volatile *)hw->hw_addr + 5136U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5136U); } } if ((data & modu_ctrl) == 0U) { return (0U); } else { } { msleep(1U); timeout = timeout + 1; } ldv_51014: ; if (timeout <= 9) { goto ldv_51013; } else { } return (data); } } static void atl1c_phy_config(unsigned long data ) { struct atl1c_adapter *adapter ; struct atl1c_hw *hw ; unsigned long flags ; { { adapter = (struct atl1c_adapter *)data; hw = & adapter->hw; ldv___ldv_spin_lock_79(& adapter->mdio_lock); atl1c_restart_autoneg(hw); ldv_spin_unlock_irqrestore_80(& adapter->mdio_lock, flags); } return; } } void atl1c_reinit_locked(struct atl1c_adapter *adapter ) { int __ret_warn_on ; int tmp ; long tmp___0 ; { { tmp = preempt_count(); __ret_warn_on = ((unsigned long )tmp & 2096896UL) != 0UL; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/ethernet/atheros/atl1c/atl1c_main.c", 242); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); atl1c_down(adapter); atl1c_up(adapter); clear_bit(2L, (unsigned long volatile *)(& adapter->flags)); } return; } } static void atl1c_check_link_status(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; struct net_device *netdev ; struct pci_dev *pdev ; int err ; unsigned long flags ; u16 speed ; u16 duplex ; u16 phy_data ; int tmp ; long tmp___0 ; bool tmp___1 ; int tmp___2 ; { { hw = & adapter->hw; netdev = adapter->netdev; pdev = adapter->pdev; ldv___ldv_spin_lock_81(& adapter->mdio_lock); atl1c_read_phy_reg(hw, 1, & phy_data); atl1c_read_phy_reg(hw, 1, & phy_data); ldv_spin_unlock_irqrestore_80(& adapter->mdio_lock, flags); } if (((int )phy_data & 4) == 0) { { netif_carrier_off(netdev); hw->hibernate = 1; tmp = atl1c_reset_mac(hw); } if (tmp != 0) { if ((adapter->msg_enable & 8192U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "reset mac failed\n"); } } else { } } else { } { atl1c_set_aspm(hw, 65535); atl1c_post_phy_linkchg(hw, 65535); atl1c_reset_dma_ring(adapter); atl1c_configure(adapter); } } else { { hw->hibernate = 0; ldv___ldv_spin_lock_83(& adapter->mdio_lock); err = atl1c_get_speed_and_duplex(hw, & speed, & duplex); ldv_spin_unlock_irqrestore_80(& adapter->mdio_lock, flags); tmp___0 = ldv__builtin_expect(err != 0, 0L); } if (tmp___0 != 0L) { return; } else { } if ((int )adapter->link_speed != (int )speed || (int )adapter->link_duplex != (int )duplex) { { adapter->link_speed = speed; adapter->link_duplex = duplex; atl1c_set_aspm(hw, (int )speed); atl1c_post_phy_linkchg(hw, (int )speed); atl1c_start_mac(adapter); } if ((adapter->msg_enable & 4U) != 0U) { { _dev_info((struct device const *)(& pdev->dev), "%s: %s NIC Link is Up<%d Mbps %s>\n", (char *)(& atl1c_driver_name), (char *)(& netdev->name), (int )adapter->link_speed, (unsigned int )adapter->link_duplex == 2U ? (char *)"Full Duplex" : (char *)"Half Duplex"); } } else { } } else { } { tmp___1 = netif_carrier_ok((struct net_device const *)netdev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { netif_carrier_on(netdev); } } else { } } return; } } static void atl1c_link_chg_event(struct atl1c_adapter *adapter ) { struct net_device *netdev ; struct pci_dev *pdev ; u16 phy_data ; u16 link_up ; bool tmp ; { { netdev = adapter->netdev; pdev = adapter->pdev; ldv_spin_lock_85(& adapter->mdio_lock); atl1c_read_phy_reg(& adapter->hw, 1, & phy_data); atl1c_read_phy_reg(& adapter->hw, 1, & phy_data); ldv_spin_unlock_86(& adapter->mdio_lock); link_up = (unsigned int )phy_data & 4U; } if ((unsigned int )link_up == 0U) { { tmp = netif_carrier_ok((struct net_device const *)netdev); } if ((int )tmp) { { netif_carrier_off(netdev); } if ((adapter->msg_enable & 4U) != 0U) { { _dev_info((struct device const *)(& pdev->dev), "%s: %s NIC Link is Down\n", (char *)(& atl1c_driver_name), (char *)(& netdev->name)); } } else { } adapter->link_speed = 65535U; } else { } } else { } { set_bit(1L, (unsigned long volatile *)(& adapter->work_event)); schedule_work(& adapter->common_task); } return; } } static void atl1c_common_task(struct work_struct *work ) { struct atl1c_adapter *adapter ; struct net_device *netdev ; struct work_struct const *__mptr ; int tmp ; int tmp___0 ; int tmp___1 ; { { __mptr = (struct work_struct const *)work; adapter = (struct atl1c_adapter *)__mptr + 0xfffffffffffffc38UL; netdev = adapter->netdev; tmp = constant_test_bit(3L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp != 0) { return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& adapter->work_event)); } if (tmp___0 != 0) { { netif_device_detach(netdev); atl1c_down(adapter); atl1c_up(adapter); netif_device_attach(netdev); } } else { } { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->work_event)); } if (tmp___1 != 0) { { atl1c_irq_disable(adapter); atl1c_check_link_status(adapter); atl1c_irq_enable(adapter); } } else { } return; } } static void atl1c_del_timer(struct atl1c_adapter *adapter ) { { { ldv_del_timer_sync_87(& adapter->phy_config_timer); } return; } } static void atl1c_tx_timeout(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; set_bit(0L, (unsigned long volatile *)(& adapter->work_event)); schedule_work(& adapter->common_task); } return; } } static void atl1c_set_multi(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; struct netdev_hw_addr *ha ; u32 mac_ctrl_data ; u32 hash_value ; long tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5248U); mac_ctrl_data = readl((void const volatile *)hw->hw_addr + 5248U); } } else { { mac_ctrl_data = readl((void const volatile *)hw->hw_addr + 5248U); } } if ((netdev->flags & 256U) != 0U) { mac_ctrl_data = mac_ctrl_data | 32768U; } else if ((netdev->flags & 512U) != 0U) { mac_ctrl_data = mac_ctrl_data | 33554432U; mac_ctrl_data = mac_ctrl_data & 4294934527U; } else { mac_ctrl_data = mac_ctrl_data & 4261380095U; } { writel(mac_ctrl_data, (void volatile *)hw->hw_addr + 5248U); writel(0U, (void volatile *)hw->hw_addr + 5264U); writel(0U, (void volatile *)hw->hw_addr + 5268U); __mptr = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; } goto ldv_51072; ldv_51071: { hash_value = atl1c_hash_mc_addr(hw, (u8 *)(& ha->addr)); atl1c_hash_set(hw, hash_value); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_51072: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_51071; } else { } return; } } static void __atl1c_vlan_mode(netdev_features_t features , u32 *mac_ctrl_data ) { { if ((features & 256ULL) != 0ULL) { *mac_ctrl_data = *mac_ctrl_data | 16384U; } else { *mac_ctrl_data = *mac_ctrl_data & 4294950911U; } return; } } static void atl1c_vlan_mode(struct net_device *netdev , netdev_features_t features ) { struct atl1c_adapter *adapter ; void *tmp ; struct pci_dev *pdev ; u32 mac_ctrl_data ; struct _ddebug descriptor ; long tmp___0 ; long tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; pdev = adapter->pdev; mac_ctrl_data = 0U; } if ((adapter->msg_enable & 4096U) != 0U) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_vlan_mode"; descriptor.filename = "drivers/net/ethernet/atheros/atl1c/atl1c_main.c"; descriptor.format = "atl1c_vlan_mode\n"; descriptor.lineno = 439U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "atl1c_vlan_mode\n"); } } else { } } else { } { atl1c_irq_disable(adapter); tmp___1 = ldv__builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)adapter->hw.hw_addr + 5248U); mac_ctrl_data = readl((void const volatile *)adapter->hw.hw_addr + 5248U); } } else { { mac_ctrl_data = readl((void const volatile *)adapter->hw.hw_addr + 5248U); } } { __atl1c_vlan_mode(features, & mac_ctrl_data); writel(mac_ctrl_data, (void volatile *)adapter->hw.hw_addr + 5248U); atl1c_irq_enable(adapter); } return; } } static void atl1c_restore_vlan(struct atl1c_adapter *adapter ) { struct pci_dev *pdev ; struct _ddebug descriptor ; long tmp ; { pdev = adapter->pdev; if ((adapter->msg_enable & 4096U) != 0U) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_restore_vlan"; descriptor.filename = "drivers/net/ethernet/atheros/atl1c/atl1c_main.c"; descriptor.format = "atl1c_restore_vlan\n"; descriptor.lineno = 453U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "atl1c_restore_vlan\n"); } } else { } } else { } { atl1c_vlan_mode(adapter->netdev, (adapter->netdev)->features); } return; } } static int atl1c_set_mac_addr(struct net_device *netdev , void *p ) { struct atl1c_adapter *adapter ; void *tmp ; struct sockaddr *addr ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { tmp___2 = netif_running((struct net_device const *)netdev); } if ((int )tmp___2) { return (-16); } else { } { memcpy((void *)netdev->dev_addr, (void const *)(& addr->sa_data), (size_t )netdev->addr_len); memcpy((void *)(& adapter->hw.mac_addr), (void const *)(& addr->sa_data), (size_t )netdev->addr_len); atl1c_hw_set_mac_addr(& adapter->hw, (u8 *)(& adapter->hw.mac_addr)); } return (0); } } static void atl1c_set_rxbufsize(struct atl1c_adapter *adapter , struct net_device *dev ) { unsigned int head_size ; int mtu ; int __y ; int _max1 ; int _max2 ; unsigned long tmp___67 ; { mtu = (int )dev->mtu; if (mtu > 1522) { __y = 8; adapter->rx_buffer_len = (u16 )(((mtu + 29) / 8) * 8); } else { adapter->rx_buffer_len = 1522U; } { _max1 = 32; _max2 = 64; head_size = ((unsigned int )(((int )adapter->rx_buffer_len + (_max1 > _max2 ? _max1 : _max2)) + 63) & 4294967232U) + 320U; tmp___67 = __roundup_pow_of_two((unsigned long )head_size); adapter->rx_frag_size = (unsigned int )tmp___67; } return; } } static netdev_features_t atl1c_fix_features(struct net_device *netdev , netdev_features_t features ) { { if ((features & 256ULL) != 0ULL) { features = features | 128ULL; } else { features = features & 0xffffffffffffff7fULL; } if (netdev->mtu > 7168U) { features = features & 0xffffffffffeeffffULL; } else { } return (features); } } static int atl1c_set_features(struct net_device *netdev , netdev_features_t features ) { netdev_features_t changed ; { changed = netdev->features ^ features; if ((changed & 256ULL) != 0ULL) { { atl1c_vlan_mode(netdev, features); } } else { } return (0); } } static int atl1c_change_mtu(struct net_device *netdev , int new_mtu ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; int old_mtu ; int max_frame ; int tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; old_mtu = (int )netdev->mtu; max_frame = new_mtu + 22; } if (((unsigned int )hw->nic_type - 1U <= 2U && new_mtu > 1500) || (max_frame <= 63 || max_frame > 6144)) { if ((adapter->msg_enable & 4U) != 0U) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "invalid MTU setting\n"); } } else { } return (-22); } else { } if (old_mtu != new_mtu) { { tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { goto ldv_51128; ldv_51127: { msleep(1U); } ldv_51128: { tmp___0 = test_and_set_bit(2L, (unsigned long volatile *)(& adapter->flags)); } if (tmp___0 != 0) { goto ldv_51127; } else { } { netdev->mtu = (unsigned int )new_mtu; adapter->hw.max_frame_size = (u16 )new_mtu; atl1c_set_rxbufsize(adapter, netdev); atl1c_down(adapter); netdev_update_features(netdev); atl1c_up(adapter); clear_bit(2L, (unsigned long volatile *)(& adapter->flags)); } } else { } } else { } return (0); } } static int atl1c_mdio_read(struct net_device *netdev , int phy_id , int reg_num ) { struct atl1c_adapter *adapter ; void *tmp ; u16 result ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; atl1c_read_phy_reg(& adapter->hw, (int )((u16 )reg_num), & result); } return ((int )result); } } static void atl1c_mdio_write(struct net_device *netdev , int phy_id , int reg_num , int val ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; atl1c_write_phy_reg(& adapter->hw, (u32 )reg_num, (int )((u16 )val)); } return; } } static int atl1c_mii_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { struct atl1c_adapter *adapter ; void *tmp ; struct pci_dev *pdev ; struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp___0 ; unsigned long flags ; int retval ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; struct _ddebug descriptor ; long tmp___4 ; int tmp___5 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; pdev = adapter->pdev; tmp___0 = if_mii(ifr); data = tmp___0; retval = 0; tmp___1 = netif_running((struct net_device const *)netdev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-22); } else { } { ldv___ldv_spin_lock_88(& adapter->mdio_lock); } { if (cmd == 35143) { goto case_35143; } else { } if (cmd == 35144) { goto case_35144; } else { } if (cmd == 35145) { goto case_35145; } else { } goto switch_default; case_35143: /* CIL Label */ data->phy_id = 0U; goto ldv_51155; case_35144: /* CIL Label */ { tmp___3 = atl1c_read_phy_reg(& adapter->hw, (int )data->reg_num & 31, & data->val_out); } if (tmp___3 != 0) { retval = -5; goto out; } else { } goto ldv_51155; case_35145: /* CIL Label */ ; if (((int )data->reg_num & -32) != 0) { retval = -14; goto out; } else { } { descriptor.modname = "atl1c"; descriptor.function = "atl1c_mii_ioctl"; descriptor.filename = "drivers/net/ethernet/atheros/atl1c/atl1c_main.c"; descriptor.format = " write %x %x"; descriptor.lineno = 618U; descriptor.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), " write %x %x", (int )data->reg_num, (int )data->val_in); } } else { } { tmp___5 = atl1c_write_phy_reg(& adapter->hw, (u32 )data->reg_num, (int )data->val_in); } if (tmp___5 != 0) { retval = -5; goto out; } else { } goto ldv_51155; switch_default: /* CIL Label */ retval = -95; goto ldv_51155; switch_break: /* CIL Label */ ; } ldv_51155: ; out: { ldv_spin_unlock_irqrestore_80(& adapter->mdio_lock, flags); } return (retval); } } static int atl1c_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { int tmp ; { { if (cmd == 35143) { goto case_35143; } else { } if (cmd == 35144) { goto case_35144; } else { } if (cmd == 35145) { goto case_35145; } else { } goto switch_default; case_35143: /* CIL Label */ ; case_35144: /* CIL Label */ ; case_35145: /* CIL Label */ { tmp = atl1c_mii_ioctl(netdev, ifr, cmd); } return (tmp); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static int atl1c_alloc_queues(struct atl1c_adapter *adapter ) { { return (0); } } static void atl1c_set_mac_type(struct atl1c_hw *hw ) { { { if ((int )hw->device_id == 4194) { goto case_4194; } else { } if ((int )hw->device_id == 4195) { goto case_4195; } else { } if ((int )hw->device_id == 8288) { goto case_8288; } else { } if ((int )hw->device_id == 8290) { goto case_8290; } else { } if ((int )hw->device_id == 4211) { goto case_4211; } else { } if ((int )hw->device_id == 4227) { goto case_4227; } else { } goto switch_default; case_4194: /* CIL Label */ hw->nic_type = 1; goto ldv_51178; case_4195: /* CIL Label */ hw->nic_type = 0; goto ldv_51178; case_8288: /* CIL Label */ hw->nic_type = 2; goto ldv_51178; case_8290: /* CIL Label */ hw->nic_type = 3; goto ldv_51178; case_4211: /* CIL Label */ hw->nic_type = 4; goto ldv_51178; case_4227: /* CIL Label */ hw->nic_type = 5; goto ldv_51178; switch_default: /* CIL Label */ ; goto ldv_51178; switch_break: /* CIL Label */ ; } ldv_51178: ; return; } } static int atl1c_setup_mac_funcs(struct atl1c_hw *hw ) { u32 link_ctrl_data ; long tmp ; { { atl1c_set_mac_type(hw); tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 104U); link_ctrl_data = readl((void const volatile *)hw->hw_addr + 104U); } } else { { link_ctrl_data = readl((void const volatile *)hw->hw_addr + 104U); } } hw->ctrl_flags = 34U; hw->ctrl_flags = (u16 )((unsigned int )hw->ctrl_flags | 384U); hw->ctrl_flags = (u16 )((unsigned int )hw->ctrl_flags | 512U); if (((unsigned int )hw->nic_type == 0U || (unsigned int )hw->nic_type == 4U) || (unsigned int )hw->nic_type == 5U) { hw->link_cap_flags = (u16 )((unsigned int )hw->link_cap_flags | 1U); } else { } return (0); } } static struct atl1c_platform_patch const plats[20U] = { {8288U, 193U, 4121U, 33106U, 1U}, {8288U, 193U, 4121U, 8288U, 1U}, {8288U, 193U, 4121U, 57344U, 1U}, {8290U, 192U, 4121U, 33106U, 1U}, {8290U, 192U, 4121U, 8290U, 1U}, {8290U, 192U, 5208U, 57344U, 1U}, {8290U, 193U, 4121U, 33106U, 1U}, {8290U, 193U, 4121U, 8290U, 1U}, {8290U, 193U, 5208U, 57344U, 1U}, {8290U, 193U, 5477U, 10242U, 1U}, {8290U, 193U, 5477U, 10241U, 1U}, {4211U, 192U, 4121U, 33105U, 1U}, {4211U, 192U, 4121U, 4211U, 1U}, {4211U, 192U, 5208U, 57344U, 1U}, {4227U, 192U, 5208U, 57344U, 1U}, {4227U, 192U, 4121U, 33105U, 1U}, {4227U, 192U, 4121U, 4227U, 1U}, {4227U, 192U, 5218U, 30336U, 1U}, {4227U, 192U, 5477U, 10243U, 1U}, {0U, (unsigned char)0, (unsigned short)0, (unsigned short)0, 0U}}; static void atl1c_patch_assign(struct atl1c_hw *hw ) { struct pci_dev *pdev ; u32 misc_ctrl ; int i ; { pdev = (hw->adapter)->pdev; i = 0; hw->msi_lnkpatch = 0; goto ldv_51203; ldv_51202: ; if ((((int )((unsigned short )plats[i].pci_did) == (int )hw->device_id && (int )((unsigned char )plats[i].pci_revid) == (int )hw->revision_id) && (int )((unsigned short )plats[i].subsystem_vid) == (int )hw->subsystem_vendor_id) && (int )((unsigned short )plats[i].subsystem_did) == (int )hw->subsystem_id) { if ((int )plats[i].patch_flag & 1) { hw->msi_lnkpatch = 1; } else { } } else { } i = i + 1; ldv_51203: ; if ((unsigned int )((unsigned short )plats[i].pci_did) != 0U) { goto ldv_51202; } else { } if ((unsigned int )hw->device_id == 8290U && (unsigned int )hw->revision_id == 193U) { { pci_write_config_dword((struct pci_dev const *)pdev, 128, 540U); pci_read_config_dword((struct pci_dev const *)pdev, 132, & misc_ctrl); misc_ctrl = misc_ctrl & 4294967039U; pci_write_config_dword((struct pci_dev const *)pdev, 128, 540U); pci_write_config_dword((struct pci_dev const *)pdev, 132, misc_ctrl); } } else { } return; } } static int atl1c_sw_init(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; struct pci_dev *pdev ; u32 revision ; int tmp ; int tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; { { hw = & adapter->hw; pdev = adapter->pdev; adapter->wol = 0U; device_set_wakeup_enable(& pdev->dev, 0); adapter->link_speed = 65535U; adapter->link_duplex = 2U; adapter->tpd_ring[0].count = 1024U; adapter->rfd_ring.count = 512U; hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_id = pdev->subsystem_device; pci_read_config_dword((struct pci_dev const *)pdev, 8, & revision); hw->revision_id = (u8 )revision; hw->hibernate = 1; hw->media_type = 0U; tmp = atl1c_setup_mac_funcs(hw); } if (tmp != 0) { { dev_err((struct device const *)(& pdev->dev), "set mac function pointers failed\n"); } return (-1); } else { } { atl1c_patch_assign(hw); hw->intr_mask = 67237660U; hw->phy_configured = 0; hw->preamble_len = 7U; hw->max_frame_size = (u16 )(adapter->netdev)->mtu; hw->autoneg_advertised = 64U; hw->indirect_tab = 3840206052U; hw->base_cpu = 0U; hw->ict = 50000U; hw->smb_timer = 200000U; hw->rx_imt = 200U; hw->tx_imt = 1000U; hw->tpd_burst = 5U; hw->rfd_burst = 8U; hw->dma_order = 4; hw->dmar_block = 3; tmp___0 = atl1c_alloc_queues(adapter); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to allocate memory for queues\n"); } return (-12); } else { } { atl1c_set_rxbufsize(adapter, adapter->netdev); atomic_set(& adapter->irq_sem, 1); spinlock_check(& adapter->mdio_lock); __raw_spin_lock_init(& adapter->mdio_lock.__annonCompField19.rlock, "&(&adapter->mdio_lock)->rlock", & __key); spinlock_check(& adapter->tx_lock); __raw_spin_lock_init(& adapter->tx_lock.__annonCompField19.rlock, "&(&adapter->tx_lock)->rlock", & __key___0); set_bit(3L, (unsigned long volatile *)(& adapter->flags)); } return (0); } } __inline static void atl1c_clean_buffer(struct pci_dev *pdev , struct atl1c_buffer *buffer_info , int in_irq ) { u16 pci_driection ; { if ((int )buffer_info->flags & 1) { return; } else { } if (buffer_info->dma != 0ULL) { if (((int )buffer_info->flags & 32) != 0) { pci_driection = 2U; } else { pci_driection = 1U; } if (((int )buffer_info->flags & 4) != 0) { { pci_unmap_single(pdev, buffer_info->dma, (size_t )buffer_info->length, (int )pci_driection); } } else if (((int )buffer_info->flags & 8) != 0) { { pci_unmap_page(pdev, buffer_info->dma, (size_t )buffer_info->length, (int )pci_driection); } } else { } } else { } if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { if (in_irq != 0) { { dev_kfree_skb_irq(buffer_info->skb); } } else { { consume_skb(buffer_info->skb); } } } else { } buffer_info->dma = 0ULL; buffer_info->skb = (struct sk_buff *)0; buffer_info->flags = (unsigned int )buffer_info->flags & 65532U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 1U); return; } } static void atl1c_clean_tx_ring(struct atl1c_adapter *adapter , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; struct atl1c_buffer *buffer_info ; struct pci_dev *pdev ; u16 index ; u16 ring_count ; { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring) + (unsigned long )type; pdev = adapter->pdev; ring_count = tpd_ring->count; index = 0U; goto ldv_51229; ldv_51228: { buffer_info = tpd_ring->buffer_info + (unsigned long )index; atl1c_clean_buffer(pdev, buffer_info, 0); index = (u16 )((int )index + 1); } ldv_51229: ; if ((int )index < (int )ring_count) { goto ldv_51228; } else { } { memset(tpd_ring->desc, 0, (unsigned long )ring_count * 16UL); atomic_set(& tpd_ring->next_to_clean, 0); tpd_ring->next_to_use = 0U; } return; } } static void atl1c_clean_rx_ring(struct atl1c_adapter *adapter ) { struct atl1c_rfd_ring *rfd_ring ; struct atl1c_rrd_ring *rrd_ring ; struct atl1c_buffer *buffer_info ; struct pci_dev *pdev ; int j ; { rfd_ring = & adapter->rfd_ring; rrd_ring = & adapter->rrd_ring; pdev = adapter->pdev; j = 0; goto ldv_51240; ldv_51239: { buffer_info = rfd_ring->buffer_info + (unsigned long )j; atl1c_clean_buffer(pdev, buffer_info, 0); j = j + 1; } ldv_51240: ; if (j < (int )rfd_ring->count) { goto ldv_51239; } else { } { memset(rfd_ring->desc, 0, (size_t )rfd_ring->size); rfd_ring->next_to_clean = 0U; rfd_ring->next_to_use = 0U; rrd_ring->next_to_use = 0U; rrd_ring->next_to_clean = 0U; } return; } } static void atl1c_init_ring_ptrs(struct atl1c_adapter *adapter ) { struct atl1c_tpd_ring *tpd_ring ; struct atl1c_rfd_ring *rfd_ring ; struct atl1c_rrd_ring *rrd_ring ; struct atl1c_buffer *buffer_info ; int i ; int j ; { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring); rfd_ring = & adapter->rfd_ring; rrd_ring = & adapter->rrd_ring; i = 0; goto ldv_51255; ldv_51254: { (tpd_ring + (unsigned long )i)->next_to_use = 0U; atomic_set(& (tpd_ring + (unsigned long )i)->next_to_clean, 0); buffer_info = (tpd_ring + (unsigned long )i)->buffer_info; j = 0; } goto ldv_51252; ldv_51251: (buffer_info + (unsigned long )i)->flags = (unsigned int )(buffer_info + (unsigned long )i)->flags & 65532U; (buffer_info + (unsigned long )i)->flags = (u16 )((unsigned int )(buffer_info + (unsigned long )i)->flags | 1U); j = j + 1; ldv_51252: ; if (j < (int )tpd_ring->count) { goto ldv_51251; } else { } i = i + 1; ldv_51255: ; if (i <= 1) { goto ldv_51254; } else { } rfd_ring->next_to_use = 0U; rfd_ring->next_to_clean = 0U; rrd_ring->next_to_use = 0U; rrd_ring->next_to_clean = 0U; j = 0; goto ldv_51258; ldv_51257: buffer_info = rfd_ring->buffer_info + (unsigned long )j; buffer_info->flags = (unsigned int )buffer_info->flags & 65532U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 1U); j = j + 1; ldv_51258: ; if (j < (int )rfd_ring->count) { goto ldv_51257; } else { } return; } } static void atl1c_free_ring_resources(struct atl1c_adapter *adapter ) { struct pci_dev *pdev ; { { pdev = adapter->pdev; pci_free_consistent(pdev, (size_t )adapter->ring_header.size, adapter->ring_header.desc, adapter->ring_header.dma); adapter->ring_header.desc = (void *)0; } if ((unsigned long )adapter->tpd_ring[0].buffer_info != (unsigned long )((struct atl1c_buffer *)0)) { { kfree((void const *)adapter->tpd_ring[0].buffer_info); adapter->tpd_ring[0].buffer_info = (struct atl1c_buffer *)0; } } else { } if ((unsigned long )adapter->rx_page != (unsigned long )((struct page *)0)) { { put_page(adapter->rx_page); adapter->rx_page = (struct page *)0; } } else { } return; } } static int atl1c_setup_ring_resources(struct atl1c_adapter *adapter ) { struct pci_dev *pdev ; struct atl1c_tpd_ring *tpd_ring ; struct atl1c_rfd_ring *rfd_ring ; struct atl1c_rrd_ring *rrd_ring ; struct atl1c_ring_header *ring_header ; int size ; int i ; int count ; int rx_desc_count ; u32 offset ; void *tmp ; long tmp___0 ; long tmp___1 ; int __y ; int __y___0 ; int __y___1 ; int __y___2 ; { pdev = adapter->pdev; tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring); rfd_ring = & adapter->rfd_ring; rrd_ring = & adapter->rrd_ring; ring_header = & adapter->ring_header; count = 0; rx_desc_count = 0; offset = 0U; rrd_ring->count = rfd_ring->count; i = 1; goto ldv_51278; ldv_51277: (tpd_ring + (unsigned long )i)->count = tpd_ring->count; i = i + 1; ldv_51278: ; if (i <= 1) { goto ldv_51277; } else { } { size = (int )((unsigned int )((int )tpd_ring->count * 2 + (int )rfd_ring->count) * 24U); tmp = kzalloc((size_t )size, 208U); tpd_ring->buffer_info = (struct atl1c_buffer *)tmp; tmp___0 = ldv__builtin_expect((unsigned long )tpd_ring->buffer_info == (unsigned long )((struct atl1c_buffer *)0), 0L); } if (tmp___0 != 0L) { goto err_nomem; } else { } i = 0; goto ldv_51282; ldv_51281: (tpd_ring + (unsigned long )i)->buffer_info = tpd_ring->buffer_info + (unsigned long )count; count = count + (int )(tpd_ring + (unsigned long )i)->count; i = i + 1; ldv_51282: ; if (i <= 1) { goto ldv_51281; } else { } { rfd_ring->buffer_info = tpd_ring->buffer_info + (unsigned long )count; count = count + (int )rfd_ring->count; rx_desc_count = rx_desc_count + (int )rfd_ring->count; size = (int )((unsigned int )((((unsigned long )tpd_ring->count * 2UL + (unsigned long )rx_desc_count) * 2UL + (unsigned long )rx_desc_count) + 4UL) * 8U); ring_header->size = (unsigned int )size; ring_header->desc = pci_alloc_consistent(pdev, (size_t )ring_header->size, & ring_header->dma); tmp___1 = ldv__builtin_expect((unsigned long )ring_header->desc == (unsigned long )((void *)0), 0L); } if (tmp___1 != 0L) { { dev_err((struct device const *)(& pdev->dev), "pci_alloc_consistend failed\n"); } goto err_nomem; } else { } { memset(ring_header->desc, 0, (size_t )ring_header->size); __y = 8; tpd_ring->dma = ((ring_header->dma + 7ULL) / 8ULL) * 8ULL; offset = (u32 )tpd_ring->dma - (u32 )ring_header->dma; i = 0; } goto ldv_51289; ldv_51288: (tpd_ring + (unsigned long )i)->dma = ring_header->dma + (dma_addr_t )offset; (tpd_ring + (unsigned long )i)->desc = ring_header->desc + (unsigned long )offset; (tpd_ring + (unsigned long )i)->size = (unsigned int )(tpd_ring + (unsigned long )i)->count * 16U; __y___0 = 8; offset = offset + (u32 )((((int )(tpd_ring + (unsigned long )i)->size + 7) / 8) * 8); i = i + 1; ldv_51289: ; if (i <= 1) { goto ldv_51288; } else { } rfd_ring->dma = ring_header->dma + (dma_addr_t )offset; rfd_ring->desc = ring_header->desc + (unsigned long )offset; rfd_ring->size = (unsigned int )rfd_ring->count * 8U; __y___1 = 8; offset = offset + (u32 )((((int )rfd_ring->size + 7) / 8) * 8); rrd_ring->dma = ring_header->dma + (dma_addr_t )offset; rrd_ring->desc = ring_header->desc + (unsigned long )offset; rrd_ring->size = (unsigned int )rrd_ring->count * 16U; __y___2 = 8; offset = offset + (u32 )((((int )rrd_ring->size + 7) / 8) * 8); return (0); err_nomem: { kfree((void const *)tpd_ring->buffer_info); } return (-12); } } static void atl1c_configure_des_ring(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; struct atl1c_rfd_ring *rfd_ring ; struct atl1c_rrd_ring *rrd_ring ; struct atl1c_tpd_ring *tpd_ring ; { { hw = & adapter->hw; rfd_ring = & adapter->rfd_ring; rrd_ring = & adapter->rrd_ring; tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring); writel((unsigned int )(tpd_ring->dma >> 32), (void volatile *)hw->hw_addr + 5444U); writel((unsigned int )tpd_ring->dma, (void volatile *)hw->hw_addr + 5504U); writel((unsigned int )(tpd_ring + 1UL)->dma, (void volatile *)hw->hw_addr + 5500U); writel((unsigned int )tpd_ring->count, (void volatile *)hw->hw_addr + 5508U); writel((unsigned int )(rfd_ring->dma >> 32), (void volatile *)hw->hw_addr + 5440U); writel((unsigned int )rfd_ring->dma, (void volatile *)hw->hw_addr + 5456U); writel((unsigned int )rfd_ring->count & 4095U, (void volatile *)hw->hw_addr + 5472U); writel((unsigned int )adapter->rx_buffer_len, (void volatile *)hw->hw_addr + 5476U); writel((unsigned int )rrd_ring->dma, (void volatile *)hw->hw_addr + 5480U); writel((unsigned int )rrd_ring->count & 4095U, (void volatile *)hw->hw_addr + 5496U); } if ((unsigned int )hw->nic_type == 2U) { { writel(672U, (void volatile *)hw->hw_addr + 5412U); writel(256U, (void volatile *)hw->hw_addr + 5420U); writel(43974656U, (void volatile *)hw->hw_addr + 5408U); writel(46072480U, (void volatile *)hw->hw_addr + 5376U); writel(62849728U, (void volatile *)hw->hw_addr + 5416U); writel(64947136U, (void volatile *)hw->hw_addr + 5400U); writel(0U, (void volatile *)hw->hw_addr + 5528U); writel(0U, (void volatile *)hw->hw_addr + 5548U); } } else { } { writel(1U, (void volatile *)hw->hw_addr + 5428U); } return; } } static void atl1c_configure_tx(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; int max_pay_load ; u16 tx_offload_thresh ; u32 txq_ctrl_data ; int tmp ; u32 __min1 ; u32 __min2 ; { { hw = & adapter->hw; tx_offload_thresh = 7168U; writel((unsigned int )((int )tx_offload_thresh >> 3) & 2047U, (void volatile *)hw->hw_addr + 5524U); tmp = pcie_get_readrq(adapter->pdev); max_pay_load = tmp >> 8; __min1 = (u32 )max_pay_load; __min2 = hw->dmar_block; hw->dmar_block = (enum atl1c_dma_req_block )(__min1 < __min2 ? __min1 : __min2); } if ((unsigned int )hw->dmar_block <= 1U) { { pcie_set_readrq(adapter->pdev, 512); hw->dmar_block = 2; } } else { } { txq_ctrl_data = (unsigned int )hw->nic_type - 2U <= 1U ? 4194517U : 33554645U; writel(txq_ctrl_data, (void volatile *)hw->hw_addr + 5520U); } return; } } static void atl1c_configure_rx(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; u32 rxq_ctrl_data ; { hw = & adapter->hw; rxq_ctrl_data = (u32 )(((int )hw->rfd_burst & 63) << 20); if (((int )hw->ctrl_flags & 64) != 0) { rxq_ctrl_data = rxq_ctrl_data | 128U; } else { } if ((unsigned int )hw->nic_type != 5U && (int )hw->device_id & 1) { rxq_ctrl_data = rxq_ctrl_data | 3U; } else { } { writel(rxq_ctrl_data, (void volatile *)hw->hw_addr + 5536U); } return; } } static void atl1c_configure_dma(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; u32 dma_ctrl_data ; { { hw = & adapter->hw; dma_ctrl_data = (((u32 )hw->dmar_block & 7U) << 4U) | 293892U; writel(dma_ctrl_data, (void volatile *)hw->hw_addr + 5568U); } return; } } static int atl1c_stop_mac(struct atl1c_hw *hw ) { u32 data ; long tmp ; long tmp___0 ; long tmp___1 ; u32 tmp___2 ; { { tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5536U); data = readl((void const volatile *)hw->hw_addr + 5536U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5536U); } } { data = data & 2147483647U; writel(data, (void volatile *)hw->hw_addr + 5536U); tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5520U); data = readl((void const volatile *)hw->hw_addr + 5520U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5520U); } } { data = data & 4294967263U; writel(data, (void volatile *)hw->hw_addr + 5520U); atl1c_wait_until_idle(hw, 12U); tmp___1 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 5248U); data = readl((void const volatile *)hw->hw_addr + 5248U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5248U); } } { data = data & 4294967292U; writel(data, (void volatile *)hw->hw_addr + 5248U); tmp___2 = atl1c_wait_until_idle(hw, 3U); } return ((int )tmp___2); } } static void atl1c_start_mac(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; u32 mac ; u32 txq ; u32 rxq ; long tmp ; long tmp___0 ; long tmp___1 ; { { hw = & adapter->hw; hw->mac_duplex = (unsigned int )adapter->link_duplex == 2U; hw->mac_speed = (unsigned int )adapter->link_speed == 1000U ? 2 : 1; tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5520U); txq = readl((void const volatile *)hw->hw_addr + 5520U); } } else { { txq = readl((void const volatile *)hw->hw_addr + 5520U); } } { tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5536U); rxq = readl((void const volatile *)hw->hw_addr + 5536U); } } else { { rxq = readl((void const volatile *)hw->hw_addr + 5536U); } } { tmp___1 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 5248U); mac = readl((void const volatile *)hw->hw_addr + 5248U); } } else { { mac = readl((void const volatile *)hw->hw_addr + 5248U); } } txq = txq | 32U; rxq = rxq | 2147483648U; mac = mac | 872415439U; if ((int )hw->mac_duplex) { mac = mac | 32U; } else { mac = mac & 4294967263U; } { mac = (mac & 4291821567U) | (((u32 )hw->mac_speed & 3U) << 20U); mac = (mac & 4294951935U) | (((u32 )hw->preamble_len & 15U) << 10U); writel(txq, (void volatile *)hw->hw_addr + 5520U); writel(rxq, (void volatile *)hw->hw_addr + 5536U); writel(mac, (void volatile *)hw->hw_addr + 5248U); } return; } } static int atl1c_reset_mac(struct atl1c_hw *hw ) { struct atl1c_adapter *adapter ; struct pci_dev *pdev ; u32 ctrl_data ; long tmp ; u32 tmp___0 ; long tmp___1 ; long tmp___2 ; { { adapter = hw->adapter; pdev = adapter->pdev; ctrl_data = 0U; atl1c_stop_mac(hw); tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5120U); ctrl_data = readl((void const volatile *)hw->hw_addr + 5120U); } } else { { ctrl_data = readl((void const volatile *)hw->hw_addr + 5120U); } } { ctrl_data = ctrl_data | 64U; writel(ctrl_data | 1U, (void volatile *)hw->hw_addr + 5120U); readl((void const volatile *)hw->hw_addr); msleep(10U); tmp___0 = atl1c_wait_until_idle(hw, 15U); } if (tmp___0 != 0U) { { dev_err((struct device const *)(& pdev->dev), "MAC state machine can\'t be idle since disabled for 10ms second\n"); } return (-1); } else { } { writel(ctrl_data, (void volatile *)hw->hw_addr + 5120U); tmp___1 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 5248U); ctrl_data = readl((void const volatile *)hw->hw_addr + 5248U); } } else { { ctrl_data = readl((void const volatile *)hw->hw_addr + 5248U); } } { writel(ctrl_data | 1073741824U, (void volatile *)hw->hw_addr + 5248U); tmp___2 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___2 != 0L) { { readl((void const volatile *)hw->hw_addr + 5156U); ctrl_data = readl((void const volatile *)hw->hw_addr + 5156U); } } else { { ctrl_data = readl((void const volatile *)hw->hw_addr + 5156U); } } { if ((unsigned int )hw->nic_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->nic_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->nic_type == 5U) { goto case_5; } else { } goto switch_default; case_2: /* CIL Label */ { ctrl_data = ctrl_data & 4294574079U; writel(ctrl_data, (void volatile *)hw->hw_addr + 5156U); } goto ldv_51340; case_3: /* CIL Label */ ; case_5: /* CIL Label */ { ctrl_data = ctrl_data | 393216U; writel(ctrl_data, (void volatile *)hw->hw_addr + 5156U); } goto ldv_51340; switch_default: /* CIL Label */ ; goto ldv_51340; switch_break: /* CIL Label */ ; } ldv_51340: ; return (0); } } static void atl1c_disable_l0s_l1(struct atl1c_hw *hw ) { u16 ctrl_flags ; { { ctrl_flags = hw->ctrl_flags; hw->ctrl_flags = (unsigned int )hw->ctrl_flags & 65151U; atl1c_set_aspm(hw, 65535); hw->ctrl_flags = ctrl_flags; } return; } } static void atl1c_set_aspm(struct atl1c_hw *hw , u16 link_speed ) { u32 pm_ctrl_data ; u32 link_l1_timer ; long tmp ; { { tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4856U); pm_ctrl_data = readl((void const volatile *)hw->hw_addr + 4856U); } } else { { pm_ctrl_data = readl((void const volatile *)hw->hw_addr + 4856U); } } pm_ctrl_data = pm_ctrl_data & 3221221367U; if ((unsigned int )hw->nic_type == 3U || (unsigned int )hw->nic_type == 5U) { pm_ctrl_data = pm_ctrl_data & 4294443007U; link_l1_timer = (unsigned int )link_speed == 1000U || (unsigned int )link_speed == 100U ? 4U : 1U; pm_ctrl_data = (pm_ctrl_data & 4294508543U) | ((link_l1_timer & 7U) << 16U); } else { link_l1_timer = (unsigned int )hw->nic_type == 2U ? 7U : 15U; if ((unsigned int )link_speed != 1000U && (unsigned int )link_speed != 100U) { link_l1_timer = 1U; } else { } pm_ctrl_data = (pm_ctrl_data & 4293984255U) | ((link_l1_timer & 15U) << 16U); } if (((int )hw->ctrl_flags & 128) != 0 && (unsigned int )link_speed != 65535U) { pm_ctrl_data = pm_ctrl_data | 1073745920U; } else { } if (((int )hw->ctrl_flags & 256) != 0) { pm_ctrl_data = pm_ctrl_data | 1073741832U; } else { } if ((((unsigned int )hw->nic_type == 2U || (unsigned int )hw->nic_type == 4U) || (unsigned int )hw->nic_type == 3U) || (unsigned int )hw->nic_type == 5U) { pm_ctrl_data = pm_ctrl_data | 15728640U; pm_ctrl_data = pm_ctrl_data | 41024U; pm_ctrl_data = pm_ctrl_data & 1610612559U; if ((unsigned int )link_speed == 65535U || (unsigned int )hw->nic_type == 2U) { pm_ctrl_data = pm_ctrl_data & 4294963199U; } else { } } else { pm_ctrl_data = pm_ctrl_data & 4293984255U; if ((unsigned int )link_speed != 65535U) { pm_ctrl_data = pm_ctrl_data | 176U; pm_ctrl_data = pm_ctrl_data & 4294954935U; } else { pm_ctrl_data = pm_ctrl_data | 8192U; pm_ctrl_data = pm_ctrl_data & 4294963023U; } } { writel(pm_ctrl_data, (void volatile *)hw->hw_addr + 4856U); } return; } } static int atl1c_configure_mac(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; u32 master_ctrl_data ; u32 intr_modrt_data ; u32 data ; long tmp ; { { hw = & adapter->hw; master_ctrl_data = 0U; tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5120U); master_ctrl_data = readl((void const volatile *)hw->hw_addr + 5120U); } } else { { master_ctrl_data = readl((void const volatile *)hw->hw_addr + 5120U); } } { master_ctrl_data = master_ctrl_data & 4294947839U; writel(4294967295U, (void volatile *)hw->hw_addr + 5632U); writel(0U, (void volatile *)hw->hw_addr + 5280U); data = 63U; } if (((int )hw->ctrl_flags & 8192) != 0) { if ((unsigned int )hw->nic_type == 2U) { data = data & 4294967263U; } else { } } else { data = 0U; } { writel(data, (void volatile *)hw->hw_addr + 6164U); writel((unsigned int )hw->ict, (void volatile *)hw->hw_addr + 5640U); atl1c_configure_des_ring(adapter); } if (((int )hw->ctrl_flags & 2) != 0) { { intr_modrt_data = (u32 )hw->tx_imt; intr_modrt_data = intr_modrt_data | (u32 )((int )hw->rx_imt << 16); writel(intr_modrt_data, (void volatile *)hw->hw_addr + 5128U); master_ctrl_data = master_ctrl_data | 3072U; } } else { } if ((int )hw->ctrl_flags & 1) { master_ctrl_data = master_ctrl_data | 16384U; } else { } { master_ctrl_data = master_ctrl_data | 128U; writel(master_ctrl_data, (void volatile *)hw->hw_addr + 5120U); writel(hw->smb_timer & 16777215U, (void volatile *)hw->hw_addr + 5572U); writel((unsigned int )((int )hw->max_frame_size + 22), (void volatile *)hw->hw_addr + 5276U); atl1c_configure_tx(adapter); atl1c_configure_rx(adapter); atl1c_configure_dma(adapter); } return (0); } } static int atl1c_configure(struct atl1c_adapter *adapter ) { struct net_device *netdev ; int num ; long tmp ; int tmp___0 ; { { netdev = adapter->netdev; atl1c_init_ring_ptrs(adapter); atl1c_set_multi(netdev); atl1c_restore_vlan(adapter); num = atl1c_alloc_rx_buffer(adapter); tmp = ldv__builtin_expect(num == 0, 0L); } if (tmp != 0L) { return (-12); } else { } { tmp___0 = atl1c_configure_mac(adapter); } if (tmp___0 != 0) { return (-5); } else { } return (0); } } static void atl1c_update_hw_stats(struct atl1c_adapter *adapter ) { u16 hw_reg_addr ; unsigned long *stats_item ; u32 data ; long tmp ; long tmp___0 ; { hw_reg_addr = 0U; stats_item = (unsigned long *)0UL; hw_reg_addr = 5888U; stats_item = & adapter->hw_stats.rx_ok; goto ldv_51373; ldv_51372: { tmp = ldv__builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); data = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); } } else { { data = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); } } *stats_item = *stats_item + (unsigned long )data; stats_item = stats_item + 1; hw_reg_addr = (unsigned int )hw_reg_addr + 4U; ldv_51373: ; if ((unsigned int )hw_reg_addr <= 5980U) { goto ldv_51372; } else { } hw_reg_addr = 5984U; stats_item = & adapter->hw_stats.tx_ok; goto ldv_51376; ldv_51375: { tmp___0 = ldv__builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); data = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); } } else { { data = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); } } *stats_item = *stats_item + (unsigned long )data; stats_item = stats_item + 1; hw_reg_addr = (unsigned int )hw_reg_addr + 4U; ldv_51376: ; if ((unsigned int )hw_reg_addr <= 6080U) { goto ldv_51375; } else { } return; } } static struct net_device_stats *atl1c_get_stats(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw_stats *hw_stats ; struct net_device_stats *net_stats ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw_stats = & adapter->hw_stats; net_stats = & netdev->stats; atl1c_update_hw_stats(adapter); net_stats->rx_bytes = hw_stats->rx_byte_cnt; net_stats->tx_bytes = hw_stats->tx_byte_cnt; net_stats->multicast = hw_stats->rx_mcast; net_stats->collisions = ((hw_stats->tx_1_col + hw_stats->tx_2_col) + hw_stats->tx_late_col) + hw_stats->tx_abort_col; net_stats->rx_errors = (((((hw_stats->rx_frag + hw_stats->rx_fcs_err) + hw_stats->rx_len_err) + hw_stats->rx_sz_ov) + hw_stats->rx_rrd_ov) + hw_stats->rx_align_err) + hw_stats->rx_rxf_ov; net_stats->rx_fifo_errors = hw_stats->rx_rxf_ov; net_stats->rx_length_errors = hw_stats->rx_len_err; net_stats->rx_crc_errors = hw_stats->rx_fcs_err; net_stats->rx_frame_errors = hw_stats->rx_align_err; net_stats->rx_dropped = hw_stats->rx_rrd_ov; net_stats->tx_errors = ((hw_stats->tx_late_col + hw_stats->tx_abort_col) + hw_stats->tx_underrun) + hw_stats->tx_trunc; net_stats->tx_fifo_errors = hw_stats->tx_underrun; net_stats->tx_aborted_errors = hw_stats->tx_abort_col; net_stats->tx_window_errors = hw_stats->tx_late_col; net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors; net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors; } return (net_stats); } } __inline static void atl1c_clear_phy_int(struct atl1c_adapter *adapter ) { u16 phy_data ; { { ldv_spin_lock_85(& adapter->mdio_lock); atl1c_read_phy_reg(& adapter->hw, 19, & phy_data); ldv_spin_unlock_86(& adapter->mdio_lock); } return; } } static bool atl1c_clean_tx_irq(struct atl1c_adapter *adapter , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; struct atl1c_buffer *buffer_info ; struct pci_dev *pdev ; u16 next_to_clean ; int tmp ; u16 hw_next_to_clean ; u16 reg ; long tmp___0 ; bool tmp___1 ; bool tmp___2 ; { { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring) + (unsigned long )type; pdev = adapter->pdev; tmp = atomic_read((atomic_t const *)(& tpd_ring->next_to_clean)); next_to_clean = (u16 )tmp; reg = (unsigned int )type == 1U ? 5620U : 5622U; tmp___0 = ldv__builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp___0 != 0L) { { readw((void const volatile *)adapter->hw.hw_addr + (unsigned long )reg); hw_next_to_clean = readw((void const volatile *)adapter->hw.hw_addr + (unsigned long )reg); } } else { { hw_next_to_clean = readw((void const volatile *)adapter->hw.hw_addr + (unsigned long )reg); } } goto ldv_51399; ldv_51398: { buffer_info = tpd_ring->buffer_info + (unsigned long )next_to_clean; atl1c_clean_buffer(pdev, buffer_info, 1); next_to_clean = (u16 )((int )next_to_clean + 1); } if ((int )next_to_clean == (int )tpd_ring->count) { next_to_clean = 0U; } else { } { atomic_set(& tpd_ring->next_to_clean, (int )next_to_clean); } ldv_51399: ; if ((int )next_to_clean != (int )hw_next_to_clean) { goto ldv_51398; } else { } { tmp___1 = netif_queue_stopped((struct net_device const *)adapter->netdev); } if ((int )tmp___1) { { tmp___2 = netif_carrier_ok((struct net_device const *)adapter->netdev); } if ((int )tmp___2) { { netif_wake_queue(adapter->netdev); } } else { } } else { } return (1); } } static irqreturn_t atl1c_intr(int irq , void *data ) { struct net_device *netdev ; struct atl1c_adapter *adapter ; void *tmp ; struct pci_dev *pdev ; struct atl1c_hw *hw ; int max_ints ; int handled ; u32 status ; u32 reg_data ; long tmp___0 ; bool tmp___1 ; long tmp___2 ; { { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; pdev = adapter->pdev; hw = & adapter->hw; max_ints = 5; handled = 0; } ldv_51414: { tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5632U); reg_data = readl((void const volatile *)hw->hw_addr + 5632U); } } else { { reg_data = readl((void const volatile *)hw->hw_addr + 5632U); } } status = reg_data & hw->intr_mask; if ((int )status <= 0) { if (max_ints != 5) { handled = 1; } else { } goto ldv_51413; } else { } if ((status & 4096U) != 0U) { { atl1c_clear_phy_int(adapter); } } else { } { writel(status | 2147483648U, (void volatile *)hw->hw_addr + 5632U); } if ((status & 983040U) != 0U) { { tmp___1 = napi_schedule_prep(& adapter->napi); tmp___2 = ldv__builtin_expect((long )tmp___1, 1L); } if (tmp___2 != 0L) { { hw->intr_mask = hw->intr_mask & 4293984255U; writel(hw->intr_mask, (void volatile *)hw->hw_addr + 5636U); __napi_schedule(& adapter->napi); } } else { } } else { } if ((status & 32768U) != 0U) { { atl1c_clean_tx_irq(adapter, 0); } } else { } handled = 1; if ((status & 67126784U) != 0U) { if ((adapter->msg_enable & 8192U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "atl1c hardware error (status = 0x%x)\n", status & 67126784U); } } else { } { set_bit(0L, (unsigned long volatile *)(& adapter->work_event)); schedule_work(& adapter->common_task); } return (1); } else { } if ((status & 504U) != 0U) { if ((adapter->msg_enable & 512U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "TX/RX overflow (status = 0x%x)\n", status & 504U); } } else { } } else { } if ((status & 4100U) != 0U) { { netdev->stats.tx_carrier_errors = netdev->stats.tx_carrier_errors + 1UL; atl1c_link_chg_event(adapter); } goto ldv_51413; } else { } max_ints = max_ints - 1; if (max_ints > 0) { goto ldv_51414; } else { } ldv_51413: { writel(0U, (void volatile *)adapter->hw.hw_addr + 5632U); } return ((irqreturn_t )handled); } } __inline static void atl1c_rx_checksum(struct atl1c_adapter *adapter , struct sk_buff *skb , struct atl1c_recv_ret_status *prrs ) { { { skb_checksum_none_assert((struct sk_buff const *)skb); } return; } } static struct sk_buff *atl1c_alloc_skb(struct atl1c_adapter *adapter ) { struct sk_buff *skb ; struct page *page ; struct sk_buff *tmp ; long tmp___0 ; void *tmp___1 ; long tmp___2 ; { if (adapter->rx_frag_size > 4096U) { { tmp = netdev_alloc_skb(adapter->netdev, (unsigned int )adapter->rx_buffer_len); } return (tmp); } else { } page = adapter->rx_page; if ((unsigned long )page == (unsigned long )((struct page *)0)) { { page = alloc_pages(32U, 0U); adapter->rx_page = page; tmp___0 = ldv__builtin_expect((unsigned long )page == (unsigned long )((struct page *)0), 0L); } if (tmp___0 != 0L) { return ((struct sk_buff *)0); } else { } adapter->rx_page_offset = 0U; } else { } { tmp___1 = lowmem_page_address((struct page const *)page); skb = build_skb(tmp___1 + (unsigned long )adapter->rx_page_offset, adapter->rx_frag_size); tmp___2 = ldv__builtin_expect((unsigned long )skb != (unsigned long )((struct sk_buff *)0), 1L); } if (tmp___2 != 0L) { adapter->rx_page_offset = adapter->rx_page_offset + adapter->rx_frag_size; if (adapter->rx_page_offset > 4095U) { adapter->rx_page = (struct page *)0; } else { { get_page(page); } } } else { } return (skb); } } static int atl1c_alloc_rx_buffer(struct atl1c_adapter *adapter ) { struct atl1c_rfd_ring *rfd_ring ; struct pci_dev *pdev ; struct atl1c_buffer *buffer_info ; struct atl1c_buffer *next_info ; struct sk_buff *skb ; void *vir_addr ; u16 num_alloc ; u16 rfd_next_to_use ; u16 next_next ; struct atl1c_rx_free_desc *rfd_desc ; dma_addr_t mapping ; long tmp ; int tmp___0 ; long tmp___1 ; { rfd_ring = & adapter->rfd_ring; pdev = adapter->pdev; vir_addr = (void *)0; num_alloc = 0U; rfd_next_to_use = rfd_ring->next_to_use; next_next = rfd_next_to_use; next_next = (u16 )((int )next_next + 1); if ((int )next_next == (int )rfd_ring->count) { next_next = 0U; } else { } buffer_info = rfd_ring->buffer_info + (unsigned long )rfd_next_to_use; next_info = rfd_ring->buffer_info + (unsigned long )next_next; goto ldv_51441; ldv_51440: { rfd_desc = (struct atl1c_rx_free_desc *)rfd_ring->desc + (unsigned long )rfd_next_to_use; skb = atl1c_alloc_skb(adapter); tmp = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp != 0L) { if ((adapter->msg_enable & 64U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "alloc rx buffer failed\n"); } } else { } goto ldv_51439; } else { } { vir_addr = (void *)skb->data; buffer_info->flags = (unsigned int )buffer_info->flags & 65532U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 2U); buffer_info->skb = skb; buffer_info->length = adapter->rx_buffer_len; mapping = pci_map_single(pdev, vir_addr, (size_t )buffer_info->length, 2); tmp___0 = pci_dma_mapping_error(pdev, mapping); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { { consume_skb(skb); buffer_info->skb = (struct sk_buff *)0; buffer_info->length = 0U; buffer_info->flags = (unsigned int )buffer_info->flags & 65532U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 1U); } if ((adapter->msg_enable & 64U) != 0U) { { netdev_warn((struct net_device const *)adapter->netdev, "RX pci_map_single failed"); } } else { } goto ldv_51439; } else { } buffer_info->dma = mapping; buffer_info->flags = (unsigned int )buffer_info->flags & 65523U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 4U); buffer_info->flags = (unsigned int )buffer_info->flags & 65487U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 32U); rfd_desc->buffer_addr = buffer_info->dma; rfd_next_to_use = next_next; next_next = (u16 )((int )next_next + 1); if ((int )next_next == (int )rfd_ring->count) { next_next = 0U; } else { } buffer_info = rfd_ring->buffer_info + (unsigned long )rfd_next_to_use; next_info = rfd_ring->buffer_info + (unsigned long )next_next; num_alloc = (u16 )((int )num_alloc + 1); ldv_51441: ; if ((int )next_info->flags & 1) { goto ldv_51440; } else { } ldv_51439: ; if ((unsigned int )num_alloc != 0U) { { __asm__ volatile ("sfence": : : "memory"); rfd_ring->next_to_use = rfd_next_to_use; writel((unsigned int )rfd_ring->next_to_use, (void volatile *)adapter->hw.hw_addr + 5600U); } } else { } return ((int )num_alloc); } } static void atl1c_clean_rrd(struct atl1c_rrd_ring *rrd_ring , struct atl1c_recv_ret_status *rrs , u16 num ) { u16 i ; { i = 0U; goto ldv_51449; ldv_51448: rrs->word3 = rrs->word3 & 2147483647U; rrd_ring->next_to_clean = (u16 )((int )rrd_ring->next_to_clean + 1); if ((int )rrd_ring->next_to_clean == (int )rrd_ring->count) { rrd_ring->next_to_clean = 0U; } else { } i = (u16 )((int )i + 1); rrs = (struct atl1c_recv_ret_status *)rrd_ring->desc + (unsigned long )rrd_ring->next_to_clean; ldv_51449: ; if ((int )i < (int )num) { goto ldv_51448; } else { } return; } } static void atl1c_clean_rfd(struct atl1c_rfd_ring *rfd_ring , struct atl1c_recv_ret_status *rrs , u16 num ) { u16 i ; u16 rfd_index ; struct atl1c_buffer *buffer_info ; { buffer_info = rfd_ring->buffer_info; rfd_index = (u16 )(rrs->word0 >> 20); i = 0U; goto ldv_51460; ldv_51459: (buffer_info + (unsigned long )rfd_index)->skb = (struct sk_buff *)0; (buffer_info + (unsigned long )rfd_index)->flags = (unsigned int )(buffer_info + (unsigned long )rfd_index)->flags & 65532U; (buffer_info + (unsigned long )rfd_index)->flags = (u16 )((unsigned int )(buffer_info + (unsigned long )rfd_index)->flags | 1U); rfd_index = (u16 )((int )rfd_index + 1); if ((int )rfd_index == (int )rfd_ring->count) { rfd_index = 0U; } else { } i = (u16 )((int )i + 1); ldv_51460: ; if ((int )i < (int )num) { goto ldv_51459; } else { } rfd_ring->next_to_clean = rfd_index; return; } } static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter , int *work_done , int work_to_do ) { u16 rfd_num ; u16 rfd_index ; u16 count ; u16 length ; struct pci_dev *pdev ; struct net_device *netdev ; struct atl1c_rfd_ring *rfd_ring ; struct atl1c_rrd_ring *rrd_ring ; struct sk_buff *skb ; struct atl1c_recv_ret_status *rrs ; struct atl1c_buffer *buffer_info ; long tmp ; long tmp___0 ; long tmp___1 ; u16 vlan ; { count = 0U; pdev = adapter->pdev; netdev = adapter->netdev; rfd_ring = & adapter->rfd_ring; rrd_ring = & adapter->rrd_ring; ldv_51482: ; if (*work_done >= work_to_do) { goto ldv_51478; } else { } { rrs = (struct atl1c_recv_ret_status *)rrd_ring->desc + (unsigned long )rrd_ring->next_to_clean; tmp___0 = ldv__builtin_expect(rrs->word3 >> 31 == 1U, 1L); } if (tmp___0 != 0L) { { rfd_num = (unsigned int )((u16 )(rrs->word0 >> 16)) & 15U; tmp = ldv__builtin_expect((unsigned int )rfd_num != 1U, 0L); } if (tmp != 0L) { if ((adapter->msg_enable & 64U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "Multi rfd not support yet!\n"); } } else { } } else { } goto rrs_checked; } else { goto ldv_51478; } rrs_checked: { atl1c_clean_rrd(rrd_ring, rrs, (int )rfd_num); } if ((rrs->word3 & 1074790400U) != 0U) { { atl1c_clean_rfd(rfd_ring, rrs, (int )rfd_num); } if ((adapter->msg_enable & 64U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "wrong packet! rrs word3 is %x\n", rrs->word3); } } else { } goto ldv_51480; } else { } { length = (unsigned int )((unsigned short )rrs->word3) & 16383U; tmp___1 = ldv__builtin_expect((unsigned int )rfd_num == 1U, 1L); } if (tmp___1 != 0L) { { rfd_index = (u16 )(rrs->word0 >> 20); buffer_info = rfd_ring->buffer_info + (unsigned long )rfd_index; pci_unmap_single(pdev, buffer_info->dma, (size_t )buffer_info->length, 2); skb = buffer_info->skb; } } else { if ((adapter->msg_enable & 64U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "Multi rfd not support yet!\n"); } } else { } goto ldv_51478; } { atl1c_clean_rfd(rfd_ring, rrs, (int )rfd_num); skb_put(skb, (unsigned int )((int )length + -4)); skb->protocol = eth_type_trans(skb, netdev); atl1c_rx_checksum(adapter, skb, rrs); } if ((rrs->word3 & 65536U) != 0U) { { vlan = (u16 )((int )((short )((int )rrs->vlan_tag >> 8)) | (int )((short )((int )rrs->vlan_tag << 8))); vlan = vlan; __vlan_hwaccel_put_tag(skb, 129, (int )vlan); } } else { } { netif_receive_skb(skb); *work_done = *work_done + 1; count = (u16 )((int )count + 1); } ldv_51480: ; goto ldv_51482; ldv_51478: ; if ((unsigned int )count != 0U) { { atl1c_alloc_rx_buffer(adapter); } } else { } return; } } static int atl1c_clean(struct napi_struct *napi , int budget ) { struct atl1c_adapter *adapter ; struct napi_struct const *__mptr ; int work_done ; bool tmp ; int tmp___0 ; { { __mptr = (struct napi_struct const *)napi; adapter = (struct atl1c_adapter *)__mptr + 0xfffffffffffffff0UL; work_done = 0; tmp = netif_carrier_ok((struct net_device const *)adapter->netdev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto quit_polling; } else { } { atl1c_clean_rx_irq(adapter, & work_done, budget); } if (work_done < budget) { quit_polling: { napi_complete(napi); adapter->hw.intr_mask = adapter->hw.intr_mask | 983040U; writel(adapter->hw.intr_mask, (void volatile *)adapter->hw.hw_addr + 5636U); } } else { } return (work_done); } } static void atl1c_netpoll(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; disable_irq((adapter->pdev)->irq); atl1c_intr((int )(adapter->pdev)->irq, (void *)netdev); enable_irq((adapter->pdev)->irq); } return; } } __inline static u16 atl1c_tpd_avail(struct atl1c_adapter *adapter , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; u16 next_to_use ; u16 next_to_clean ; int tmp ; { { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring) + (unsigned long )type; next_to_use = 0U; next_to_clean = 0U; tmp = atomic_read((atomic_t const *)(& tpd_ring->next_to_clean)); next_to_clean = (u16 )tmp; next_to_use = tpd_ring->next_to_use; } return ((int )next_to_clean > (int )next_to_use ? (unsigned int )((int )next_to_clean - (int )next_to_use) + 65535U : (unsigned int )(((int )tpd_ring->count + (int )next_to_clean) - (int )next_to_use) + 65535U); } } static struct atl1c_tpd_desc *atl1c_get_tpd(struct atl1c_adapter *adapter , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; struct atl1c_tpd_desc *tpd_desc ; u16 next_to_use ; { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring) + (unsigned long )type; next_to_use = 0U; next_to_use = tpd_ring->next_to_use; tpd_ring->next_to_use = (u16 )((int )tpd_ring->next_to_use + 1); if ((int )tpd_ring->next_to_use == (int )tpd_ring->count) { tpd_ring->next_to_use = 0U; } else { } { tpd_desc = (struct atl1c_tpd_desc *)tpd_ring->desc + (unsigned long )next_to_use; memset((void *)tpd_desc, 0, 16UL); } return (tpd_desc); } } static struct atl1c_buffer *atl1c_get_tx_buffer(struct atl1c_adapter *adapter , struct atl1c_tpd_desc *tpd ) { struct atl1c_tpd_ring *tpd_ring ; { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring); return (tpd_ring->buffer_info + (unsigned long )(((long )tpd - (long )tpd_ring->desc) / 16L)); } } static u16 atl1c_cal_tpd_req(struct sk_buff const *skb ) { u16 tpd_req ; u16 proto_hdr_len ; unsigned char *tmp ; int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; bool tmp___4 ; { { proto_hdr_len = 0U; tmp = skb_end_pointer(skb); tpd_req = (unsigned int )((u16 )((struct skb_shared_info *)tmp)->nr_frags) + 1U; tmp___4 = skb_is_gso(skb); } if ((int )tmp___4) { { tmp___0 = skb_transport_offset(skb); tmp___1 = tcp_hdrlen(skb); proto_hdr_len = (int )((u16 )tmp___0) + (int )((u16 )tmp___1); tmp___2 = skb_headlen(skb); } if ((unsigned int )proto_hdr_len < tmp___2) { tpd_req = (u16 )((int )tpd_req + 1); } else { } { tmp___3 = skb_end_pointer(skb); } if (((int )((struct skb_shared_info *)tmp___3)->gso_type & 16) != 0) { tpd_req = (u16 )((int )tpd_req + 1); } else { } } else { } return (tpd_req); } } static int atl1c_tso_csum(struct atl1c_adapter *adapter , struct sk_buff *skb , struct atl1c_tpd_desc **tpd , enum atl1c_trans_queue type ) { struct pci_dev *pdev ; u8 hdr_len ; u32 real_len ; unsigned short offload_type ; int err ; long tmp ; int tmp___0 ; unsigned char *tmp___1 ; struct iphdr *tmp___2 ; struct iphdr *tmp___3 ; __u16 tmp___4 ; int tmp___5 ; unsigned int tmp___6 ; struct iphdr *tmp___7 ; struct tcphdr *tmp___8 ; struct iphdr *tmp___9 ; struct iphdr *tmp___10 ; __sum16 tmp___11 ; long tmp___12 ; struct atl1c_tpd_ext_desc *etpd ; struct ipv6hdr *tmp___13 ; int tmp___14 ; unsigned int tmp___15 ; struct tcphdr *tmp___16 ; struct ipv6hdr *tmp___17 ; struct ipv6hdr *tmp___18 ; __sum16 tmp___19 ; long tmp___20 ; int tmp___21 ; unsigned char *tmp___22 ; bool tmp___23 ; u8 css ; u8 cso ; int tmp___24 ; long tmp___25 ; long tmp___26 ; { { pdev = adapter->pdev; tmp___23 = skb_is_gso((struct sk_buff const *)skb); } if ((int )tmp___23) { { tmp___0 = skb_header_cloned((struct sk_buff const *)skb); } if (tmp___0 != 0) { { err = pskb_expand_head(skb, 0, 0, 32U); tmp = ldv__builtin_expect(err != 0, 0L); } if (tmp != 0L) { return (-1); } else { } } else { } { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); offload_type = ((struct skb_shared_info *)tmp___1)->gso_type; } if ((int )offload_type & 1) { { tmp___2 = ip_hdr((struct sk_buff const *)skb); tmp___3 = ip_hdr((struct sk_buff const *)skb); tmp___4 = __fswab16((int )tmp___3->tot_len); real_len = ((u32 )((long )tmp___2) - (u32 )((long )skb->data)) + (u32 )tmp___4; } if (real_len < skb->len) { { pskb_trim(skb, real_len); } } else { } { tmp___5 = skb_transport_offset((struct sk_buff const *)skb); tmp___6 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (int )((u8 )tmp___5) + (int )((u8 )tmp___6); tmp___12 = ldv__builtin_expect(skb->len == (unsigned int )hdr_len, 0L); } if (tmp___12 != 0L) { if ((adapter->msg_enable & 256U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "IPV4 tso with zero data??\n"); } } else { } goto check_sum; } else { { tmp___7 = ip_hdr((struct sk_buff const *)skb); tmp___7->check = 0U; tmp___8 = tcp_hdr((struct sk_buff const *)skb); tmp___9 = ip_hdr((struct sk_buff const *)skb); tmp___10 = ip_hdr((struct sk_buff const *)skb); tmp___11 = csum_tcpudp_magic(tmp___10->saddr, tmp___9->daddr, 0, 6, 0U); tmp___8->check = ~ ((int )tmp___11); (*tpd)->word1 = (*tpd)->word1 | 65536U; } } } else { } if (((int )offload_type & 16) != 0) { { etpd = *((struct atl1c_tpd_ext_desc **)tpd); memset((void *)etpd, 0, 16UL); *tpd = atl1c_get_tpd(adapter, type); tmp___13 = ipv6_hdr((struct sk_buff const *)skb); tmp___13->payload_len = 0U; tmp___14 = skb_transport_offset((struct sk_buff const *)skb); tmp___15 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (int )((u8 )tmp___14) + (int )((u8 )tmp___15); tmp___20 = ldv__builtin_expect(skb->len == (unsigned int )hdr_len, 0L); } if (tmp___20 != 0L) { if ((adapter->msg_enable & 256U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "IPV6 tso with zero data??\n"); } } else { } goto check_sum; } else { { tmp___16 = tcp_hdr((struct sk_buff const *)skb); tmp___17 = ipv6_hdr((struct sk_buff const *)skb); tmp___18 = ipv6_hdr((struct sk_buff const *)skb); tmp___19 = csum_ipv6_magic((struct in6_addr const *)(& tmp___18->saddr), (struct in6_addr const *)(& tmp___17->daddr), 0U, 6, 0U); tmp___16->check = ~ ((int )tmp___19); } } etpd->word1 = etpd->word1 | 4096U; etpd->word1 = etpd->word1 | 8192U; etpd->pkt_len = skb->len; (*tpd)->word1 = (*tpd)->word1 | 8192U; } else { } { (*tpd)->word1 = (*tpd)->word1 | 4096U; tmp___21 = skb_transport_offset((struct sk_buff const *)skb); (*tpd)->word1 = (*tpd)->word1 | ((__le32 )tmp___21 & 255U); tmp___22 = skb_end_pointer((struct sk_buff const *)skb); (*tpd)->word1 = (*tpd)->word1 | (__le32 )(((int )((struct skb_shared_info *)tmp___22)->gso_size & 8191) << 18); } return (0); } else { } check_sum: { tmp___26 = ldv__builtin_expect((unsigned int )*((unsigned char *)skb + 124UL) == 12U, 1L); } if (tmp___26 != 0L) { { tmp___24 = skb_checksum_start_offset((struct sk_buff const *)skb); cso = (u8 )tmp___24; tmp___25 = ldv__builtin_expect((long )cso & 1L, 0L); } if (tmp___25 != 0L) { if ((adapter->msg_enable & 128U) != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "payload offset should not an event number\n"); } } else { } return (-1); } else { css = (int )cso + (int )((u8 )skb->__annonCompField68.__annonCompField67.csum_offset); (*tpd)->word1 = (*tpd)->word1 | (__le32 )((int )cso >> 1); (*tpd)->word1 = (*tpd)->word1 | (__le32 )(((int )css >> 1) << 18); (*tpd)->word1 = (*tpd)->word1 | 256U; } } else { } return (0); } } static void atl1c_tx_rollback(struct atl1c_adapter *adpt , struct atl1c_tpd_desc *first_tpd , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; struct atl1c_buffer *buffer_info ; struct atl1c_tpd_desc *tpd ; u16 first_index ; u16 index ; { tpd_ring = (struct atl1c_tpd_ring *)(& adpt->tpd_ring) + (unsigned long )type; first_index = (u16 )(((long )first_tpd - (long )tpd_ring->desc) / 16L); index = first_index; goto ldv_51546; ldv_51545: { tpd = (struct atl1c_tpd_desc *)tpd_ring->desc + (unsigned long )index; buffer_info = tpd_ring->buffer_info + (unsigned long )index; atl1c_clean_buffer(adpt->pdev, buffer_info, 0); memset((void *)tpd, 0, 16UL); index = (u16 )((int )index + 1); } if ((int )index == (int )tpd_ring->count) { index = 0U; } else { } ldv_51546: ; if ((int )index != (int )tpd_ring->next_to_use) { goto ldv_51545; } else { } tpd_ring->next_to_use = first_index; return; } } static int atl1c_tx_map(struct atl1c_adapter *adapter , struct sk_buff *skb , struct atl1c_tpd_desc *tpd , enum atl1c_trans_queue type ) { struct atl1c_tpd_desc *use_tpd ; struct atl1c_buffer *buffer_info ; u16 buf_len ; unsigned int tmp ; u16 map_len ; u16 mapped_len ; u16 hdr_len ; u16 nr_frags ; u16 f ; int tso ; unsigned char *tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; int tmp___3 ; long tmp___4 ; int tmp___5 ; long tmp___6 ; struct skb_frag_struct *frag ; unsigned char *tmp___7 ; unsigned int tmp___8 ; int tmp___9 ; { { use_tpd = (struct atl1c_tpd_desc *)0; buffer_info = (struct atl1c_buffer *)0; tmp = skb_headlen((struct sk_buff const *)skb); buf_len = (u16 )tmp; map_len = 0U; mapped_len = 0U; hdr_len = 0U; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); nr_frags = (u16 )((struct skb_shared_info *)tmp___0)->nr_frags; tso = (int )(tpd->word1 >> 12) & 1; } if (tso != 0) { { tmp___1 = skb_transport_offset((struct sk_buff const *)skb); tmp___2 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (int )((u16 )tmp___1) + (int )((u16 )tmp___2); map_len = hdr_len; use_tpd = tpd; buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = map_len; buffer_info->dma = pci_map_single(adapter->pdev, (void *)skb->data, (size_t )hdr_len, 1); tmp___3 = pci_dma_mapping_error(adapter->pdev, buffer_info->dma); tmp___4 = ldv__builtin_expect(tmp___3 != 0, 0L); } if (tmp___4 != 0L) { goto err_dma; } else { } buffer_info->flags = (unsigned int )buffer_info->flags & 65532U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 2U); buffer_info->flags = (unsigned int )buffer_info->flags & 65523U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 4U); buffer_info->flags = (unsigned int )buffer_info->flags & 65487U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 16U); mapped_len = (int )mapped_len + (int )map_len; use_tpd->buffer_addr = buffer_info->dma; use_tpd->buffer_len = buffer_info->length; } else { } if ((int )mapped_len < (int )buf_len) { if ((unsigned int )mapped_len == 0U) { use_tpd = tpd; } else { { use_tpd = atl1c_get_tpd(adapter, type); memcpy((void *)use_tpd, (void const *)tpd, 16UL); } } { buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = (int )buf_len - (int )mapped_len; buffer_info->dma = pci_map_single(adapter->pdev, (void *)skb->data + (unsigned long )mapped_len, (size_t )buffer_info->length, 1); tmp___5 = pci_dma_mapping_error(adapter->pdev, buffer_info->dma); tmp___6 = ldv__builtin_expect(tmp___5 != 0, 0L); } if (tmp___6 != 0L) { goto err_dma; } else { } buffer_info->flags = (unsigned int )buffer_info->flags & 65532U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 2U); buffer_info->flags = (unsigned int )buffer_info->flags & 65523U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 4U); buffer_info->flags = (unsigned int )buffer_info->flags & 65487U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 16U); use_tpd->buffer_addr = buffer_info->dma; use_tpd->buffer_len = buffer_info->length; } else { } f = 0U; goto ldv_51566; ldv_51565: { tmp___7 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp___7)->frags) + (unsigned long )f; use_tpd = atl1c_get_tpd(adapter, type); memcpy((void *)use_tpd, (void const *)tpd, 16UL); buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); tmp___8 = skb_frag_size((skb_frag_t const *)frag); buffer_info->length = (u16 )tmp___8; buffer_info->dma = skb_frag_dma_map(& (adapter->pdev)->dev, (skb_frag_t const *)frag, 0UL, (size_t )buffer_info->length, 1); tmp___9 = dma_mapping_error(& (adapter->pdev)->dev, buffer_info->dma); } if (tmp___9 != 0) { goto err_dma; } else { } buffer_info->flags = (unsigned int )buffer_info->flags & 65532U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 2U); buffer_info->flags = (unsigned int )buffer_info->flags & 65523U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 8U); buffer_info->flags = (unsigned int )buffer_info->flags & 65487U; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 16U); use_tpd->buffer_addr = buffer_info->dma; use_tpd->buffer_len = buffer_info->length; f = (u16 )((int )f + 1); ldv_51566: ; if ((int )f < (int )nr_frags) { goto ldv_51565; } else { } use_tpd->word1 = use_tpd->word1 | 2147483648U; buffer_info->skb = skb; return (0); err_dma: buffer_info->dma = 0ULL; buffer_info->length = 0U; return (-1); } } static void atl1c_tx_queue(struct atl1c_adapter *adapter , struct sk_buff *skb , struct atl1c_tpd_desc *tpd , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; u16 reg ; { { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring) + (unsigned long )type; reg = (unsigned int )type == 1U ? 5616U : 5618U; writew((int )tpd_ring->next_to_use, (void volatile *)adapter->hw.hw_addr + (unsigned long )reg); } return; } } static netdev_tx_t atl1c_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; unsigned long flags ; u16 tpd_req ; struct atl1c_tpd_desc *tpd ; enum atl1c_trans_queue type ; int tmp___0 ; int tmp___1 ; u16 tmp___2 ; int tmp___3 ; u16 vlan ; __le16 tag ; long tmp___4 ; int tmp___5 ; int tmp___6 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; tpd_req = 1U; type = 0; tmp___0 = constant_test_bit(3L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___0 != 0) { { dev_kfree_skb_any(skb); } return (0); } else { } { tpd_req = atl1c_cal_tpd_req((struct sk_buff const *)skb); tmp___1 = ldv___ldv_spin_trylock_92(& adapter->tx_lock); } if (tmp___1 == 0) { if ((adapter->msg_enable & 4096U) != 0U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "tx locked\n"); } } else { } return (32); } else { } { tmp___2 = atl1c_tpd_avail(adapter, type); } if ((int )tmp___2 < (int )tpd_req) { { netif_stop_queue(netdev); ldv_spin_unlock_irqrestore_93(& adapter->tx_lock, flags); } return (16); } else { } { tpd = atl1c_get_tpd(adapter, type); tmp___3 = atl1c_tso_csum(adapter, skb, & tpd, type); } if (tmp___3 != 0) { { ldv_spin_unlock_irqrestore_93(& adapter->tx_lock, flags); dev_kfree_skb_any(skb); } return (0); } else { } { tmp___4 = ldv__builtin_expect(((int )skb->vlan_tci & 4096) != 0, 0L); } if (tmp___4 != 0L) { vlan = (unsigned int )skb->vlan_tci & 61439U; vlan = vlan; tag = (__le16 )((int )((short )((int )vlan >> 8)) | (int )((short )((int )vlan << 8))); tpd->word1 = tpd->word1 | 32768U; tpd->vlan_tag = tag; } else { } { tmp___5 = skb_network_offset((struct sk_buff const *)skb); } if (tmp___5 != 14) { tpd->word1 = tpd->word1 | 131072U; } else { } { tmp___6 = atl1c_tx_map(adapter, skb, tpd, type); } if (tmp___6 < 0) { if ((adapter->msg_enable & 1024U) != 0U) { { netdev_info((struct net_device const *)adapter->netdev, "tx-skb droppted due to dma error\n"); } } else { } { atl1c_tx_rollback(adapter, tpd, type); ldv_spin_unlock_irqrestore_93(& adapter->tx_lock, flags); consume_skb(skb); } } else { { atl1c_tx_queue(adapter, skb, tpd, type); ldv_spin_unlock_irqrestore_93(& adapter->tx_lock, flags); } } return (0); } } static void atl1c_free_irq(struct atl1c_adapter *adapter ) { struct net_device *netdev ; { { netdev = adapter->netdev; ldv_free_irq_97((adapter->pdev)->irq, (void *)netdev); } if ((int )adapter->have_msi) { { pci_disable_msi(adapter->pdev); } } else { } return; } } static int atl1c_request_irq(struct atl1c_adapter *adapter ) { struct pci_dev *pdev ; struct net_device *netdev ; int flags ; int err ; struct _ddebug descriptor ; long tmp ; { { pdev = adapter->pdev; netdev = adapter->netdev; flags = 0; err = 0; adapter->have_msi = 1; err = pci_enable_msi_block(adapter->pdev, 1); } if (err != 0) { if ((adapter->msg_enable & 32U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Unable to allocate MSI interrupt Error: %d\n", err); } } else { } adapter->have_msi = 0; } else { } if (! adapter->have_msi) { flags = flags | 128; } else { } { err = ldv_request_irq_98((adapter->pdev)->irq, & atl1c_intr, (unsigned long )flags, (char const *)(& netdev->name), (void *)netdev); } if (err != 0) { if ((adapter->msg_enable & 32U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Unable to allocate interrupt Error: %d\n", err); } } else { } if ((int )adapter->have_msi) { { pci_disable_msi(adapter->pdev); } } else { } return (err); } else { } if ((adapter->msg_enable & 32U) != 0U) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_request_irq"; descriptor.filename = "drivers/net/ethernet/atheros/atl1c/atl1c_main.c"; descriptor.format = "atl1c_request_irq OK\n"; descriptor.lineno = 2311U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "atl1c_request_irq OK\n"); } } else { } } else { } return (err); } } static void atl1c_reset_dma_ring(struct atl1c_adapter *adapter ) { { { atl1c_clean_tx_ring(adapter, 0); atl1c_clean_tx_ring(adapter, 1); atl1c_clean_rx_ring(adapter); } return; } } static int atl1c_up(struct atl1c_adapter *adapter ) { struct net_device *netdev ; int err ; long tmp ; long tmp___0 ; { { netdev = adapter->netdev; netif_carrier_off(netdev); err = atl1c_configure(adapter); tmp = ldv__builtin_expect(err != 0, 0L); } if (tmp != 0L) { goto err_up; } else { } { err = atl1c_request_irq(adapter); tmp___0 = ldv__builtin_expect(err != 0, 0L); } if (tmp___0 != 0L) { goto err_up; } else { } { atl1c_check_link_status(adapter); clear_bit(3L, (unsigned long volatile *)(& adapter->flags)); napi_enable(& adapter->napi); atl1c_irq_enable(adapter); netif_start_queue(netdev); } return (err); err_up: { atl1c_clean_rx_ring(adapter); } return (err); } } static void atl1c_down(struct atl1c_adapter *adapter ) { struct net_device *netdev ; { { netdev = adapter->netdev; atl1c_del_timer(adapter); adapter->work_event = 0UL; set_bit(3L, (unsigned long volatile *)(& adapter->flags)); netif_carrier_off(netdev); napi_disable(& adapter->napi); atl1c_irq_disable(adapter); atl1c_free_irq(adapter); atl1c_disable_l0s_l1(& adapter->hw); atl1c_reset_mac(& adapter->hw); msleep(1U); adapter->link_speed = 65535U; adapter->link_duplex = 65535U; atl1c_reset_dma_ring(adapter); } return; } } static int atl1c_open(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; int err ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___0 != 0) { return (-16); } else { } { err = atl1c_setup_ring_resources(adapter); tmp___1 = ldv__builtin_expect(err != 0, 0L); } if (tmp___1 != 0L) { return (err); } else { } { err = atl1c_up(adapter); tmp___2 = ldv__builtin_expect(err != 0, 0L); } if (tmp___2 != 0L) { goto err_up; } else { } return (0); err_up: { atl1c_free_irq(adapter); atl1c_free_ring_resources(adapter); atl1c_reset_mac(& adapter->hw); } return (err); } } static int atl1c_close(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; int __ret_warn_on ; int tmp___0 ; long tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/ethernet/atheros/atl1c/atl1c_main.c", 2429); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); set_bit(3L, (unsigned long volatile *)(& adapter->flags)); cancel_work_sync(& adapter->common_task); atl1c_down(adapter); atl1c_free_ring_resources(adapter); } return (0); } } static int atl1c_suspend(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; struct atl1c_hw *hw ; u32 wufc ; int __ret_warn_on ; int tmp___1 ; long tmp___2 ; bool tmp___3 ; struct _ddebug descriptor ; long tmp___4 ; int tmp___5 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; hw = & adapter->hw; wufc = adapter->wol; atl1c_disable_l0s_l1(hw); tmp___3 = netif_running((struct net_device const *)netdev); } if ((int )tmp___3) { { tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); __ret_warn_on = tmp___1 != 0; tmp___2 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/net/ethernet/atheros/atl1c/atl1c_main.c", 2447); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); atl1c_down(adapter); } } else { } { netif_device_detach(netdev); } if (wufc != 0U) { { tmp___5 = atl1c_phy_to_ps_link(hw); } if (tmp___5 != 0) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_suspend"; descriptor.filename = "drivers/net/ethernet/atheros/atl1c/atl1c_main.c"; descriptor.format = "phy power saving failed"; descriptor.lineno = 2454U; descriptor.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "phy power saving failed"); } } else { } } else { } } else { } { atl1c_power_saving(hw, wufc); } return (0); } } static int atl1c_resume(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; writel(0U, (void volatile *)adapter->hw.hw_addr + 5280U); atl1c_reset_pcie(& adapter->hw, 1U); atl1c_phy_reset(& adapter->hw); atl1c_reset_mac(& adapter->hw); atl1c_phy_init(& adapter->hw); netif_device_attach(netdev); tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { atl1c_up(adapter); } } else { } return (0); } } static void atl1c_shutdown(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; atl1c_suspend(& pdev->dev); pci_wake_from_d3(pdev, adapter->wol != 0U); pci_set_power_state(pdev, 3); } return; } } static struct net_device_ops const atl1c_netdev_ops = {0, 0, & atl1c_open, & atl1c_close, & atl1c_xmit_frame, 0, 0, & atl1c_set_multi, & atl1c_set_mac_addr, & eth_validate_addr, & atl1c_ioctl, 0, & atl1c_change_mtu, 0, & atl1c_tx_timeout, 0, & atl1c_get_stats, 0, 0, & atl1c_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & atl1c_fix_features, & atl1c_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int atl1c_init_netdev(struct net_device *netdev , struct pci_dev *pdev ) { { { netdev->dev.parent = & pdev->dev; pci_set_drvdata(pdev, (void *)netdev); netdev->netdev_ops = & atl1c_netdev_ops; netdev->watchdog_timeo = 1250; atl1c_set_ethtool_ops(netdev); netdev->hw_features = 1114377ULL; netdev->features = netdev->hw_features | 128ULL; } return (0); } } static int atl1c_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *netdev ; struct atl1c_adapter *adapter ; int cards_found ; int err ; int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; struct lock_class_key __key ; int tmp___3 ; struct _ddebug descriptor ; long tmp___4 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; { { err = 0; err = pci_enable_device_mem(pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "cannot enable PCI device\n"); } return (err); } else { } { tmp = pci_set_dma_mask(pdev, 4294967295ULL); } if (tmp != 0) { { dev_err((struct device const *)(& pdev->dev), "No usable DMA configuration,aborting\n"); } goto err_dma; } else { { tmp___0 = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "No usable DMA configuration,aborting\n"); } goto err_dma; } else { } } { err = pci_request_regions(pdev, (char const *)(& atl1c_driver_name)); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "cannot obtain PCI resources\n"); } goto err_pci_reg; } else { } { pci_set_master(pdev); netdev = ldv_alloc_etherdev_mqs_99(1472, 1U, 1U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { err = -12; goto err_alloc_etherdev; } else { } { err = atl1c_init_netdev(netdev, pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "init netdevice failed\n"); } goto err_init_netdev; } else { } { tmp___1 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___1; adapter->bd_number = (u32 )cards_found; adapter->netdev = netdev; adapter->pdev = pdev; adapter->hw.adapter = adapter; adapter->msg_enable = netif_msg_init(-1, (int )atl1c_default_msg); tmp___2 = ioremap(pdev->resource[0].start, pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL) : 0UL); adapter->hw.hw_addr = (u8 *)tmp___2; } if ((unsigned long )adapter->hw.hw_addr == (unsigned long )((u8 *)0U)) { { err = -5; dev_err((struct device const *)(& pdev->dev), "cannot map device registers\n"); } goto err_ioremap; } else { } { adapter->mii.dev = netdev; adapter->mii.mdio_read = & atl1c_mdio_read; adapter->mii.mdio_write = & atl1c_mdio_write; adapter->mii.phy_id_mask = 31; adapter->mii.reg_num_mask = 31; netif_napi_add(netdev, & adapter->napi, & atl1c_clean, 64); init_timer_key(& adapter->phy_config_timer, 0U, "((&adapter->phy_config_timer))", & __key); adapter->phy_config_timer.function = & atl1c_phy_config; adapter->phy_config_timer.data = (unsigned long )adapter; err = atl1c_sw_init(adapter); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "net device private data init failed\n"); } goto err_sw_init; } else { } { atl1c_reset_pcie(& adapter->hw, 1U); atl1c_phy_reset(& adapter->hw); err = atl1c_reset_mac(& adapter->hw); } if (err != 0) { err = -5; goto err_reset; } else { } { err = atl1c_phy_init(& adapter->hw); } if (err != 0) { err = -5; goto err_reset; } else { } { tmp___3 = atl1c_read_mac_addr(& adapter->hw); } if (tmp___3 != 0) { netdev->addr_assign_type = 1U; } else { } { memcpy((void *)netdev->dev_addr, (void const *)(& adapter->hw.mac_addr), (size_t )netdev->addr_len); } if ((adapter->msg_enable & 2U) != 0U) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_probe"; descriptor.filename = "drivers/net/ethernet/atheros/atl1c/atl1c_main.c"; descriptor.format = "mac address : %pM\n"; descriptor.lineno = 2651U; descriptor.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "mac address : %pM\n", (u8 *)(& adapter->hw.mac_addr)); } } else { } } else { } { atl1c_hw_set_mac_addr(& adapter->hw, (u8 *)(& adapter->hw.mac_addr)); __init_work(& adapter->common_task, 0); __constr_expr_0.counter = 137438953408L; adapter->common_task.data = __constr_expr_0; lockdep_init_map(& adapter->common_task.lockdep_map, "(&adapter->common_task)", & __key___0, 0); INIT_LIST_HEAD(& adapter->common_task.entry); adapter->common_task.func = & atl1c_common_task; adapter->work_event = 0UL; err = ldv_register_netdev_100(netdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "register netdevice failed\n"); } goto err_register; } else { } if ((adapter->msg_enable & 2U) != 0U) { { _dev_info((struct device const *)(& pdev->dev), "version %s\n", (char *)"1.0.1.1-NAPI"); } } else { } cards_found = cards_found + 1; return (0); err_reset: ; err_register: ; err_sw_init: { iounmap((void volatile *)adapter->hw.hw_addr); } err_init_netdev: ; err_ioremap: { ldv_free_netdev_101(netdev); } err_alloc_etherdev: { pci_release_regions(pdev); } err_pci_reg: ; err_dma: { pci_disable_device(pdev); } return (err); } } static void atl1c_remove(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; ldv_unregister_netdev_102(netdev); atl1c_hw_set_mac_addr(& adapter->hw, (u8 *)(& adapter->hw.perm_mac_addr)); atl1c_phy_disable(& adapter->hw); iounmap((void volatile *)adapter->hw.hw_addr); pci_release_regions(pdev); pci_disable_device(pdev); ldv_free_netdev_103(netdev); } return; } } static pci_ers_result_t atl1c_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; netif_device_detach(netdev); } if (state == 3U) { return (4U); } else { } { tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { atl1c_down(adapter); } } else { } { pci_disable_device(pdev); } return (3U); } } static pci_ers_result_t atl1c_io_slot_reset(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; tmp___1 = pci_enable_device(pdev); } if (tmp___1 != 0) { if ((adapter->msg_enable & 8192U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Cannot re-enable PCI device after reset\n"); } } else { } return (4U); } else { } { pci_set_master(pdev); pci_enable_wake(pdev, 3, 0); pci_enable_wake(pdev, 4, 0); atl1c_reset_mac(& adapter->hw); } return (5U); } } static void atl1c_io_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; tmp___2 = netif_running((struct net_device const *)netdev); } if ((int )tmp___2) { { tmp___1 = atl1c_up(adapter); } if (tmp___1 != 0) { if ((adapter->msg_enable & 8192U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Cannot bring device back up after reset\n"); } } else { } return; } else { } } else { } { netif_device_attach(netdev); } return; } } static struct pci_error_handlers const atl1c_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& atl1c_io_error_detected), 0, 0, & atl1c_io_slot_reset, & atl1c_io_resume}; static struct dev_pm_ops const atl1c_pm_ops = {0, 0, & atl1c_suspend, & atl1c_resume, & atl1c_suspend, & atl1c_resume, & atl1c_suspend, & atl1c_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct pci_driver atl1c_driver = {{0, 0}, (char const *)(& atl1c_driver_name), (struct pci_device_id const *)(& atl1c_pci_tbl), & atl1c_probe, & atl1c_remove, 0, 0, 0, 0, & atl1c_shutdown, 0, & atl1c_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & atl1c_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int atl1c_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_104(& atl1c_driver, & __this_module, "atl1c"); } return (tmp); } } static void atl1c_driver_exit(void) { { { ldv_pci_unregister_driver_105(& atl1c_driver); } return; } } void ldv_EMGentry_exit_atl1c_driver_exit_16_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_atl1c_driver_init_16_11(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_13_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_14_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_16_16_4(void) ; void ldv_dispatch_deregister_platform_instance_14_16_5(void) ; void ldv_dispatch_instance_deregister_8_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_6_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_9_1(int arg0 ) ; void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_4_5(void) ; void ldv_dispatch_pm_register_4_6(void) ; void ldv_dispatch_register_11_4(struct net_device *arg0 ) ; void ldv_dispatch_register_15_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_factory_16_16_6(void) ; void ldv_dispatch_register_platform_instance_14_16_7(void) ; void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_13(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_14(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_16(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_17(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_20(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_23(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_26(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_27(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_28(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_31(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_32(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_33(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_35(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_36(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_37(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_40(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_41(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_entry_EMGentry_16(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_4_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_4_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_3_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_3_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_3_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_3_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_3_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_3_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_3_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_3_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_3_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_3_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_3_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_3_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_3_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_3_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_3_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_3_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_3_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_3_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_3_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_3_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_3_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_3_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_3_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_4(void *arg0 ) ; void ldv_pm_pm_ops_instance_3(void *arg0 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; int ldv_switch_3(void) ; int ldv_switch_4(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_29(void) ; void ldv_switch_automaton_state_4_17(void) ; void ldv_switch_automaton_state_4_8(void) ; void ldv_switch_automaton_state_5_1(void) ; void ldv_switch_automaton_state_5_3(void) ; void ldv_switch_automaton_state_6_1(void) ; void ldv_switch_automaton_state_6_4(void) ; void ldv_timer_dummy_factory_6(void *arg0 ) ; void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_5(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_13_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_16_exit_atl1c_driver_exit_default)(void) ; int (*ldv_16_init_atl1c_driver_init_default)(void) ; int ldv_16_ret_default ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) ; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_1_callback_get_regs_len)(struct net_device * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) ; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_1_callback_nway_reset)(struct net_device * ) ; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; struct net_device *ldv_1_container_net_device ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_eeprom *ldv_1_container_struct_ethtool_eeprom_ptr ; struct ethtool_regs *ldv_1_container_struct_ethtool_regs_ptr ; struct ethtool_wolinfo *ldv_1_container_struct_ethtool_wolinfo_ptr ; struct ifreq *ldv_1_container_struct_ifreq_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; int ldv_1_ldv_param_17_1_default ; int ldv_1_ldv_param_20_2_default ; unsigned long long ldv_1_ldv_param_23_1_default ; unsigned long long ldv_1_ldv_param_28_1_default ; unsigned int ldv_1_ldv_param_37_1_default ; unsigned char *ldv_1_ldv_param_7_2_default ; unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) ; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; enum pci_channel_state ldv_2_resource_enum_pci_channel_state ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; struct device *ldv_3_device_device ; struct dev_pm_ops *ldv_3_pm_ops_dev_pm_ops ; struct platform_driver *ldv_4_container_platform_driver ; struct platform_device *ldv_4_ldv_param_14_0_default ; struct platform_device *ldv_4_ldv_param_3_0_default ; int ldv_4_probed_default ; struct timer_list *ldv_5_container_timer_list ; struct timer_list *ldv_6_container_timer_list ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_16 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; int ldv_statevar_6 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & atl1c_intr; void (*ldv_16_exit_atl1c_driver_exit_default)(void) = & atl1c_driver_exit; int (*ldv_16_init_atl1c_driver_init_default)(void) = & atl1c_driver_init; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) = & atl1c_change_mtu; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & atl1c_ioctl; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) = & atl1c_fix_features; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) = & atl1c_get_stats; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) = & atl1c_netpoll; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) = & atl1c_set_features; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) = & atl1c_set_mac_addr; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) = & atl1c_set_multi; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & atl1c_xmit_frame; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) = & atl1c_tx_timeout; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) = (unsigned int (*)(struct pci_dev * , enum pci_channel_state ))(& atl1c_io_error_detected); void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) = & atl1c_io_resume; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) = & atl1c_io_slot_reset; void ldv_EMGentry_exit_atl1c_driver_exit_16_2(void (*arg0)(void) ) { { { atl1c_driver_exit(); } return; } } int ldv_EMGentry_init_atl1c_driver_init_16_11(int (*arg0)(void) ) { int tmp ; { { tmp = atl1c_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_15_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_15_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_15_2(ldv_15_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_7_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_7_netdev_net_device = (struct net_device *)tmp; } return (ldv_7_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void *ldv_malloc(size_t size ) ; void ldv_allocate_external_0(void) { { { ldv_0_data_data = ldv_malloc(0UL); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_1_container_net_device = ldv_malloc(sizeof(struct net_device)); ldv_1_container_struct_ethtool_cmd_ptr = ldv_malloc(sizeof(struct ethtool_cmd)); ldv_1_container_struct_ethtool_drvinfo_ptr = ldv_malloc(sizeof(struct ethtool_drvinfo)); ldv_1_container_struct_ethtool_eeprom_ptr = ldv_malloc(sizeof(struct ethtool_eeprom)); ldv_1_container_struct_ethtool_regs_ptr = ldv_malloc(sizeof(struct ethtool_regs)); ldv_1_container_struct_ethtool_wolinfo_ptr = ldv_malloc(sizeof(struct ethtool_wolinfo)); ldv_1_container_struct_ifreq_ptr = ldv_malloc(sizeof(struct ifreq)); ldv_1_container_struct_sk_buff_ptr = ldv_malloc(sizeof(struct sk_buff)); ldv_1_ldv_param_7_2_default = ldv_malloc(sizeof(unsigned char)); ldv_2_resource_dev = ldv_malloc(sizeof(struct pci_dev)); ldv_3_device_device = ldv_malloc(sizeof(struct device)); ldv_4_container_platform_driver = ldv_malloc(sizeof(struct platform_driver)); ldv_4_ldv_param_14_0_default = ldv_malloc(sizeof(struct platform_device)); ldv_4_ldv_param_3_0_default = ldv_malloc(sizeof(struct platform_device)); ldv_5_container_timer_list = ldv_malloc(sizeof(struct timer_list)); ldv_6_container_timer_list = ldv_malloc(sizeof(struct timer_list)); } return; } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_8_timer_list_timer_list ; { { ldv_8_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_5 == 2); ldv_dispatch_instance_deregister_8_1(ldv_8_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_13_1(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_14_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_deregister_dummy_factory_16_16_4(void) { { { ldv_switch_automaton_state_6_1(); } return; } } void ldv_dispatch_deregister_platform_instance_14_16_5(void) { { { ldv_switch_automaton_state_4_8(); } return; } } void ldv_dispatch_instance_deregister_8_1(struct timer_list *arg0 ) { { { ldv_5_container_timer_list = arg0; ldv_switch_automaton_state_5_1(); } return; } } void ldv_dispatch_instance_register_6_3(struct timer_list *arg0 ) { { { ldv_5_container_timer_list = arg0; ldv_switch_automaton_state_5_3(); } return; } } void ldv_dispatch_irq_deregister_9_1(int arg0 ) { { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_pm_deregister_4_5(void) { { { ldv_switch_automaton_state_3_1(); } return; } } void ldv_dispatch_pm_register_4_6(void) { { { ldv_switch_automaton_state_3_29(); } return; } } void ldv_dispatch_register_11_4(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } return; } } void ldv_dispatch_register_15_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_dispatch_register_dummy_factory_16_16_6(void) { { { ldv_switch_automaton_state_6_4(); } return; } } void ldv_dispatch_register_platform_instance_14_16_7(void) { { { ldv_switch_automaton_state_4_17(); } return; } } void ldv_dummy_resourceless_instance_callback_1_17(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { atl1c_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_20(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { atl1c_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_23(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { atl1c_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_26(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { atl1c_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_27(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { atl1c_netpoll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_28(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { atl1c_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_31(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { atl1c_set_mac_addr(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_32(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { atl1c_set_multi(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_33(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { atl1c_xmit_frame(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { atl1c_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_35(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_entry_EMGentry_16(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_16 == 2) { goto case_2; } else { } if (ldv_statevar_16 == 3) { goto case_3; } else { } if (ldv_statevar_16 == 4) { goto case_4; } else { } if (ldv_statevar_16 == 5) { goto case_5; } else { } if (ldv_statevar_16 == 6) { goto case_6; } else { } if (ldv_statevar_16 == 7) { goto case_7; } else { } if (ldv_statevar_16 == 8) { goto case_8; } else { } if (ldv_statevar_16 == 10) { goto case_10; } else { } if (ldv_statevar_16 == 11) { goto case_11; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_atl1c_driver_exit_16_2(ldv_16_exit_atl1c_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_16 = 11; } goto ldv_52483; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_atl1c_driver_exit_16_2(ldv_16_exit_atl1c_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_16 = 11; } goto ldv_52483; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_6 == 2); ldv_dispatch_deregister_dummy_factory_16_16_4(); ldv_statevar_16 = 2; } goto ldv_52483; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 9); ldv_dispatch_deregister_platform_instance_14_16_5(); ldv_statevar_16 = 4; } goto ldv_52483; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_6 == 4); ldv_dispatch_register_dummy_factory_16_16_6(); ldv_statevar_16 = 5; } goto ldv_52483; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 17); ldv_dispatch_register_platform_instance_14_16_7(); ldv_statevar_16 = 6; } goto ldv_52483; case_8: /* CIL Label */ { ldv_assume(ldv_16_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_16 = 3; } else { ldv_statevar_16 = 7; } goto ldv_52483; case_10: /* CIL Label */ { ldv_assume(ldv_16_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_16 = 11; } goto ldv_52483; case_11: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 20); ldv_16_ret_default = ldv_EMGentry_init_atl1c_driver_init_16_11(ldv_16_init_atl1c_driver_init_default); ldv_16_ret_default = ldv_post_init(ldv_16_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_16 = 8; } else { ldv_statevar_16 = 10; } goto ldv_52483; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52483: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_16 = 11; ldv_statevar_0 = 6; ldv_statevar_1 = 5; ldv_2_ret_default = 1; ldv_statevar_2 = 20; ldv_statevar_3 = 29; ldv_4_probed_default = 1; ldv_statevar_4 = 17; ldv_statevar_5 = 3; ldv_statevar_6 = 4; } ldv_52505: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_16((void *)0); } goto ldv_52496; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_52496; case_2: /* CIL Label */ { ldv_net_dummy_resourceless_instance_1((void *)0); } goto ldv_52496; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_52496; case_4: /* CIL Label */ { ldv_pm_pm_ops_instance_3((void *)0); } goto ldv_52496; case_5: /* CIL Label */ { ldv_pm_platform_instance_4((void *)0); } goto ldv_52496; case_6: /* CIL Label */ { ldv_timer_timer_instance_5((void *)0); } goto ldv_52496; case_7: /* CIL Label */ { ldv_timer_dummy_factory_6((void *)0); } goto ldv_52496; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52496: ; goto ldv_52505; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_9_line_line ; { { ldv_9_line_line = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_dispatch_irq_deregister_9_1(ldv_9_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_10_netdev_net_device ; { { ldv_10_netdev_net_device = arg1; ldv_free((void *)ldv_10_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = atl1c_intr(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_52537; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_52537; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_52537; case_6: /* CIL Label */ ; goto ldv_52537; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52537: ; return; } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { void *tmp ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 8) { goto case_8; } else { } if (ldv_statevar_1 == 10) { goto case_10; } else { } if (ldv_statevar_1 == 11) { goto case_11; } else { } if (ldv_statevar_1 == 12) { goto case_12; } else { } if (ldv_statevar_1 == 13) { goto case_13; } else { } if (ldv_statevar_1 == 14) { goto case_14; } else { } if (ldv_statevar_1 == 15) { goto case_15; } else { } if (ldv_statevar_1 == 16) { goto case_16; } else { } if (ldv_statevar_1 == 18) { goto case_18; } else { } if (ldv_statevar_1 == 21) { goto case_21; } else { } if (ldv_statevar_1 == 24) { goto case_24; } else { } if (ldv_statevar_1 == 26) { goto case_26; } else { } if (ldv_statevar_1 == 27) { goto case_27; } else { } if (ldv_statevar_1 == 29) { goto case_29; } else { } if (ldv_statevar_1 == 31) { goto case_31; } else { } if (ldv_statevar_1 == 32) { goto case_32; } else { } if (ldv_statevar_1 == 33) { goto case_33; } else { } if (ldv_statevar_1 == 34) { goto case_34; } else { } if (ldv_statevar_1 == 35) { goto case_35; } else { } if (ldv_statevar_1 == 36) { goto case_36; } else { } if (ldv_statevar_1 == 38) { goto case_38; } else { } if (ldv_statevar_1 == 40) { goto case_40; } else { } if (ldv_statevar_1 == 41) { goto case_41; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_52546; case_2: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_52546; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); ldv_statevar_1 = 2; } goto ldv_52546; case_4: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_52546; case_5: /* CIL Label */ ; goto ldv_52546; case_8: /* CIL Label */ { tmp = ldv_xmalloc(1UL); ldv_1_ldv_param_7_2_default = (unsigned char *)tmp; ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_7_2_default); ldv_free((void *)ldv_1_ldv_param_7_2_default); ldv_statevar_1 = 2; } goto ldv_52546; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_10(ldv_1_callback_get_eeprom_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_get_link, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_get_msglevel, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_get_regs, ldv_1_container_net_device, ldv_1_container_struct_ethtool_regs_ptr, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_52546; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_get_regs_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_52546; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_16(ldv_1_callback_get_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); ldv_statevar_1 = 2; } goto ldv_52546; case_18: /* CIL Label */ { ldv_assume((ldv_statevar_0 == 6 || ldv_statevar_0 == 2) || ldv_statevar_5 == 2); ldv_dummy_resourceless_instance_callback_1_17(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_17_1_default); ldv_statevar_1 = 2; } goto ldv_52546; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_20(ldv_1_callback_ndo_do_ioctl, ldv_1_container_net_device, ldv_1_container_struct_ifreq_ptr, ldv_1_ldv_param_20_2_default); ldv_statevar_1 = 2; } goto ldv_52546; case_24: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_23(ldv_1_callback_ndo_fix_features, ldv_1_container_net_device, ldv_1_ldv_param_23_1_default); ldv_statevar_1 = 2; } goto ldv_52546; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_26(ldv_1_callback_ndo_get_stats, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_27(ldv_1_callback_ndo_poll_controller, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_28(ldv_1_callback_ndo_set_features, ldv_1_container_net_device, ldv_1_ldv_param_28_1_default); ldv_statevar_1 = 2; } goto ldv_52546; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_31(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_52546; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_32(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_33(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_34(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_35: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_35(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_36(ldv_1_callback_nway_reset, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52546; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_37(ldv_1_callback_set_msglevel, ldv_1_container_net_device, ldv_1_ldv_param_37_1_default); ldv_statevar_1 = 2; } goto ldv_52546; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_40(ldv_1_callback_set_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_52546; case_41: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_41(ldv_1_callback_set_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); ldv_statevar_1 = 2; } goto ldv_52546; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52546: ; return; } } void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { atl1c_io_error_detected(arg1, (pci_channel_state_t )arg2); } return; } } void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { atl1c_io_resume(arg1); } return; } } void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { atl1c_io_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = atl1c_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { atl1c_remove(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { atl1c_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } if (ldv_statevar_2 == 23) { goto case_23; } else { } if (ldv_statevar_2 == 24) { goto case_24; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_52637; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 1); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_52637; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); ldv_statevar_2 = 2; } goto ldv_52637; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_52637; case_5: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 4; goto ldv_52637; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_52637; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_52637; case_8: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_52637; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_52637; case_10: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_5 == 2); ldv_pci_instance_callback_2_10(ldv_2_callback_error_detected, ldv_2_resource_dev, ldv_2_resource_enum_pci_channel_state); ldv_statevar_2 = 9; } goto ldv_52637; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_52637; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_52637; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_52637; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 5); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_52637; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_52637; case_20: /* CIL Label */ ; goto ldv_52637; case_23: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 6); ldv_pci_instance_callback_2_23(ldv_2_callback_func_1_ptr, ldv_2_resource_dev); ldv_statevar_2 = 9; } goto ldv_52637; case_24: /* CIL Label */ { ldv_pci_instance_callback_2_24(ldv_2_callback_slot_reset, ldv_2_resource_dev); ldv_statevar_2 = 9; } goto ldv_52637; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52637: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_14_pci_driver_pci_driver ; { { ldv_14_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_14_1(ldv_14_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_4_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_4_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_3_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_3_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { atl1c_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_3_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_3_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_3_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { atl1c_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_3_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_3_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_3_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_3_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { atl1c_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_3_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_3_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_3_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { atl1c_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_3_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_3_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_3_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_3_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_3_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_3_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { atl1c_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_3_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_3_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_3_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { atl1c_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_3_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_3_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_4(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 6) { goto case_6; } else { } if (ldv_statevar_4 == 7) { goto case_7; } else { } if (ldv_statevar_4 == 9) { goto case_9; } else { } if (ldv_statevar_4 == 11) { goto case_11; } else { } if (ldv_statevar_4 == 13) { goto case_13; } else { } if (ldv_statevar_4 == 16) { goto case_16; } else { } if (ldv_statevar_4 == 17) { goto case_17; } else { } if (ldv_statevar_4 == 20) { goto case_20; } else { } if (ldv_statevar_4 == 22) { goto case_22; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_4 = 9; } else { ldv_statevar_4 = 22; } goto ldv_52790; case_4: /* CIL Label */ { ldv_statevar_4 = ldv_switch_4(); } goto ldv_52790; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 1); ldv_dispatch_pm_deregister_4_5(); ldv_statevar_4 = 4; } goto ldv_52790; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 29); ldv_dispatch_pm_register_4_6(); ldv_statevar_4 = 5; } goto ldv_52790; case_7: /* CIL Label */ ldv_statevar_4 = 4; goto ldv_52790; case_9: /* CIL Label */ ldv_4_probed_default = 1; ldv_statevar_4 = 17; goto ldv_52790; case_11: /* CIL Label */ { ldv_assume(ldv_4_probed_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_4 = 9; } else { ldv_statevar_4 = 22; } goto ldv_52790; case_13: /* CIL Label */ { ldv_assume(ldv_4_probed_default == 0); ldv_statevar_4 = ldv_switch_4(); } goto ldv_52790; case_16: /* CIL Label */ { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_4 = 9; } else { ldv_statevar_4 = 22; } goto ldv_52790; case_17: /* CIL Label */ ; goto ldv_52790; case_20: /* CIL Label */ { tmp___2 = ldv_xmalloc(1432UL); ldv_4_ldv_param_3_0_default = (struct platform_device *)tmp___2; } if ((unsigned long )ldv_4_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_4_3(ldv_4_container_platform_driver->remove, ldv_4_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_4_ldv_param_3_0_default); ldv_4_probed_default = 1; ldv_statevar_4 = 1; } goto ldv_52790; case_22: /* CIL Label */ { tmp___3 = ldv_xmalloc(1432UL); ldv_4_ldv_param_14_0_default = (struct platform_device *)tmp___3; ldv_pre_probe(); } if ((unsigned long )ldv_4_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_4_probed_default = ldv_platform_instance_probe_4_14(ldv_4_container_platform_driver->probe, ldv_4_ldv_param_14_0_default); } } else { } { ldv_4_probed_default = ldv_post_probe(ldv_4_probed_default); ldv_free((void *)ldv_4_ldv_param_14_0_default); tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_4 = 11; } else { ldv_statevar_4 = 13; } goto ldv_52790; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52790: ; return; } } void ldv_pm_pm_ops_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 6) { goto case_6; } else { } if (ldv_statevar_3 == 7) { goto case_7; } else { } if (ldv_statevar_3 == 8) { goto case_8; } else { } if (ldv_statevar_3 == 9) { goto case_9; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } if (ldv_statevar_3 == 11) { goto case_11; } else { } if (ldv_statevar_3 == 12) { goto case_12; } else { } if (ldv_statevar_3 == 13) { goto case_13; } else { } if (ldv_statevar_3 == 14) { goto case_14; } else { } if (ldv_statevar_3 == 15) { goto case_15; } else { } if (ldv_statevar_3 == 16) { goto case_16; } else { } if (ldv_statevar_3 == 17) { goto case_17; } else { } if (ldv_statevar_3 == 18) { goto case_18; } else { } if (ldv_statevar_3 == 19) { goto case_19; } else { } if (ldv_statevar_3 == 20) { goto case_20; } else { } if (ldv_statevar_3 == 21) { goto case_21; } else { } if (ldv_statevar_3 == 22) { goto case_22; } else { } if (ldv_statevar_3 == 23) { goto case_23; } else { } if (ldv_statevar_3 == 24) { goto case_24; } else { } if (ldv_statevar_3 == 25) { goto case_25; } else { } if (ldv_statevar_3 == 26) { goto case_26; } else { } if (ldv_statevar_3 == 27) { goto case_27; } else { } if (ldv_statevar_3 == 28) { goto case_28; } else { } if (ldv_statevar_3 == 29) { goto case_29; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_52807; case_2: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_52807; case_3: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_3_3(ldv_3_pm_ops_dev_pm_ops->complete, ldv_3_device_device); } } else { } ldv_statevar_3 = 2; goto ldv_52807; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 6); ldv_pm_ops_instance_restore_3_4(ldv_3_pm_ops_dev_pm_ops->restore, ldv_3_device_device); ldv_statevar_3 = 3; } goto ldv_52807; case_5: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_3_5(ldv_3_pm_ops_dev_pm_ops->restore_noirq, ldv_3_device_device); } } else { } ldv_statevar_3 = 4; goto ldv_52807; case_6: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_3_6(ldv_3_pm_ops_dev_pm_ops->poweroff_noirq, ldv_3_device_device); } } else { } ldv_statevar_3 = 5; goto ldv_52807; case_7: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_3_7(ldv_3_pm_ops_dev_pm_ops->restore_early, ldv_3_device_device); } } else { } ldv_statevar_3 = 4; goto ldv_52807; case_8: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_3_8(ldv_3_pm_ops_dev_pm_ops->poweroff_late, ldv_3_device_device); } } else { } ldv_statevar_3 = 7; goto ldv_52807; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_5 == 2); ldv_pm_ops_instance_poweroff_3_9(ldv_3_pm_ops_dev_pm_ops->poweroff, ldv_3_device_device); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 6; } else { ldv_statevar_3 = 8; } goto ldv_52807; case_10: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 6); ldv_pm_ops_instance_thaw_3_10(ldv_3_pm_ops_dev_pm_ops->thaw, ldv_3_device_device); ldv_statevar_3 = 3; } goto ldv_52807; case_11: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_3_11(ldv_3_pm_ops_dev_pm_ops->thaw_noirq, ldv_3_device_device); } } else { } ldv_statevar_3 = 10; goto ldv_52807; case_12: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_3_12(ldv_3_pm_ops_dev_pm_ops->freeze_noirq, ldv_3_device_device); } } else { } ldv_statevar_3 = 11; goto ldv_52807; case_13: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_3_13(ldv_3_pm_ops_dev_pm_ops->thaw_early, ldv_3_device_device); } } else { } ldv_statevar_3 = 10; goto ldv_52807; case_14: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_3_14(ldv_3_pm_ops_dev_pm_ops->freeze_late, ldv_3_device_device); } } else { } ldv_statevar_3 = 13; goto ldv_52807; case_15: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_5 == 2); ldv_pm_ops_instance_freeze_3_15(ldv_3_pm_ops_dev_pm_ops->freeze, ldv_3_device_device); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 12; } else { ldv_statevar_3 = 14; } goto ldv_52807; case_16: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 6); ldv_pm_ops_instance_resume_3_16(ldv_3_pm_ops_dev_pm_ops->resume, ldv_3_device_device); ldv_statevar_3 = 3; } goto ldv_52807; case_17: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_3_17(ldv_3_pm_ops_dev_pm_ops->resume_early, ldv_3_device_device); } } else { } ldv_statevar_3 = 16; goto ldv_52807; case_18: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_3_18(ldv_3_pm_ops_dev_pm_ops->suspend_late, ldv_3_device_device); } } else { } ldv_statevar_3 = 17; goto ldv_52807; case_19: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_3_19(ldv_3_pm_ops_dev_pm_ops->resume_noirq, ldv_3_device_device); } } else { } ldv_statevar_3 = 16; goto ldv_52807; case_20: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_3_20(ldv_3_pm_ops_dev_pm_ops->suspend_noirq, ldv_3_device_device); } } else { } ldv_statevar_3 = 19; goto ldv_52807; case_21: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_5 == 2); ldv_pm_ops_instance_suspend_3_21(ldv_3_pm_ops_dev_pm_ops->suspend, ldv_3_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_3 = 18; } else { ldv_statevar_3 = 20; } goto ldv_52807; case_22: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_3_22(ldv_3_pm_ops_dev_pm_ops->prepare, ldv_3_device_device); } } else { } { ldv_statevar_3 = ldv_switch_3(); } goto ldv_52807; case_23: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_52807; case_24: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_3_24(ldv_3_pm_ops_dev_pm_ops->runtime_resume, ldv_3_device_device); } } else { } ldv_statevar_3 = 23; goto ldv_52807; case_25: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_3_25(ldv_3_pm_ops_dev_pm_ops->runtime_suspend, ldv_3_device_device); } } else { } ldv_statevar_3 = 24; goto ldv_52807; case_26: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_52807; case_27: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_3_27(ldv_3_pm_ops_dev_pm_ops->runtime_idle, ldv_3_device_device); } } else { } ldv_statevar_3 = 26; goto ldv_52807; case_28: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_52807; case_29: /* CIL Label */ ; goto ldv_52807; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52807: ; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; int ldv_11_ret_default ; int tmp ; int tmp___0 ; { { ldv_11_ret_default = 1; ldv_11_ret_default = ldv_pre_register_netdev(); ldv_11_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_11_ret_default == 0); ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_0 == 2); ldv_11_ret_default = ldv_register_netdev_open_11_6((ldv_11_netdev_net_device->netdev_ops)->ndo_open, ldv_11_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_11_ret_default == 0); ldv_assume(ldv_statevar_1 == 5); ldv_dispatch_register_11_4(ldv_11_netdev_net_device); } } else { { ldv_assume(ldv_11_ret_default != 0); } } } else { { ldv_assume(ldv_11_ret_default != 0); } } return (ldv_11_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = atl1c_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_12_callback_handler)(int , void * ) ; void *ldv_12_data_data ; int ldv_12_line_line ; enum irqreturn (*ldv_12_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_12_line_line = (int )arg1; ldv_12_callback_handler = arg2; ldv_12_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_12_data_data = arg5; ldv_assume(ldv_statevar_0 == 6); ldv_dispatch_irq_register_12_2(ldv_12_line_line, ldv_12_callback_handler, ldv_12_thread_thread, ldv_12_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (8); case_3: /* CIL Label */ ; return (10); case_4: /* CIL Label */ ; return (11); case_5: /* CIL Label */ ; return (12); case_6: /* CIL Label */ ; return (13); case_7: /* CIL Label */ ; return (14); case_8: /* CIL Label */ ; return (15); case_9: /* CIL Label */ ; return (16); case_10: /* CIL Label */ ; return (18); case_11: /* CIL Label */ ; return (21); case_12: /* CIL Label */ ; return (24); case_13: /* CIL Label */ ; return (26); case_14: /* CIL Label */ ; return (27); case_15: /* CIL Label */ ; return (29); case_16: /* CIL Label */ ; return (31); case_17: /* CIL Label */ ; return (32); case_18: /* CIL Label */ ; return (33); case_19: /* CIL Label */ ; return (34); case_20: /* CIL Label */ ; return (35); case_21: /* CIL Label */ ; return (36); case_22: /* CIL Label */ ; return (38); case_23: /* CIL Label */ ; return (40); case_24: /* CIL Label */ ; return (41); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); case_3: /* CIL Label */ ; return (23); case_4: /* CIL Label */ ; return (24); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (22); case_2: /* CIL Label */ ; return (25); case_3: /* CIL Label */ ; return (27); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_3(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (9); case_1: /* CIL Label */ ; return (15); case_2: /* CIL Label */ ; return (21); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_4(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (6); case_1: /* CIL Label */ ; return (7); case_2: /* CIL Label */ ; return (20); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 29; return; } } void ldv_switch_automaton_state_3_29(void) { { ldv_statevar_3 = 28; return; } } void ldv_switch_automaton_state_4_17(void) { { ldv_statevar_4 = 16; return; } } void ldv_switch_automaton_state_4_8(void) { { ldv_4_probed_default = 1; ldv_statevar_4 = 17; return; } } void ldv_switch_automaton_state_5_1(void) { { ldv_statevar_5 = 3; return; } } void ldv_switch_automaton_state_5_3(void) { { ldv_statevar_5 = 2; return; } } void ldv_switch_automaton_state_6_1(void) { { ldv_statevar_6 = 4; return; } } void ldv_switch_automaton_state_6_4(void) { { ldv_statevar_6 = 3; return; } } void ldv_timer_dummy_factory_6(void *arg0 ) { { { if (ldv_statevar_6 == 2) { goto case_2; } else { } if (ldv_statevar_6 == 3) { goto case_3; } else { } if (ldv_statevar_6 == 4) { goto case_4; } else { } goto switch_default; case_2: /* CIL Label */ ldv_statevar_6 = 4; goto ldv_52953; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 3); ldv_dispatch_instance_register_6_3(ldv_6_container_timer_list); ldv_statevar_6 = 2; } goto ldv_52953; case_4: /* CIL Label */ ; goto ldv_52953; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52953: ; return; } } void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_5(void *arg0 ) { { { if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_5_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_5_2(ldv_5_container_timer_list->function, ldv_5_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_5 = 3; } goto ldv_52966; case_3: /* CIL Label */ ; goto ldv_52966; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52966: ; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_13_netdev_net_device ; { { ldv_13_netdev_net_device = arg1; ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_5 == 2); ldv_unregister_netdev_stop_13_2((ldv_13_netdev_net_device->netdev_ops)->ndo_stop, ldv_13_netdev_net_device); ldv_assume(ldv_statevar_1 == 1); ldv_dispatch_deregister_13_1(ldv_13_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_13_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { atl1c_close(arg1); } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static void ldv___ldv_spin_lock_79(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_mdio_lock_of_atl1c_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_mdio_lock_of_atl1c_adapter(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_81(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_mdio_lock_of_atl1c_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_83(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_mdio_lock_of_atl1c_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_85(spinlock_t *lock ) { { { ldv_spin_lock_mdio_lock_of_atl1c_adapter(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_86(spinlock_t *lock ) { { { ldv_spin_unlock_mdio_lock_of_atl1c_adapter(); spin_unlock(lock); } return; } } static int ldv_del_timer_sync_87(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_88(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_mdio_lock_of_atl1c_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv___ldv_spin_trylock_92(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_tx_lock_of_atl1c_adapter(); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_unlock_irqrestore_93(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_tx_lock_of_atl1c_adapter(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv_free_irq_97(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_98(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_99(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___3 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_100(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_101(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_102(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_103(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_104(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_105(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } extern void __const_udelay(unsigned long ) ; extern void get_random_bytes(void * , int ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; __inline static void eth_random_addr(u8 *addr ) { { { get_random_bytes((void *)addr, 6); *addr = (unsigned int )*addr & 254U; *addr = (u8 )((unsigned int )*addr | 2U); } return; } } bool atl1c_read_eeprom(struct atl1c_hw *hw , u32 offset , u32 *p_value ) ; int atl1c_check_eeprom_exist(struct atl1c_hw *hw ) ; bool atl1c_wait_mdio_idle(struct atl1c_hw *hw ) ; void atl1c_stop_phy_polling(struct atl1c_hw *hw ) ; void atl1c_start_phy_polling(struct atl1c_hw *hw , u16 clk_sel ) ; int atl1c_read_phy_core(struct atl1c_hw *hw , bool ext , u8 dev , u16 reg , u16 *phy_data ) ; int atl1c_write_phy_core(struct atl1c_hw *hw , bool ext , u8 dev , u16 reg , u16 phy_data ) ; int atl1c_read_phy_ext(struct atl1c_hw *hw , u8 dev_addr , u16 reg_addr , u16 *phy_data ) ; int atl1c_write_phy_ext(struct atl1c_hw *hw , u8 dev_addr , u16 reg_addr , u16 phy_data ) ; int atl1c_read_phy_dbg(struct atl1c_hw *hw , u16 reg_addr , u16 *phy_data ) ; int atl1c_write_phy_dbg(struct atl1c_hw *hw , u16 reg_addr , u16 phy_data ) ; int atl1c_check_eeprom_exist(struct atl1c_hw *hw ) { u32 data ; long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4360U); data = readl((void const volatile *)hw->hw_addr + 4360U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4360U); } } if (((unsigned long )data & 536870912UL) != 0UL) { return (1); } else { } { tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5120U); data = readl((void const volatile *)hw->hw_addr + 5120U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5120U); } } if ((int )data < 0) { return (1); } else { } return (0); } } void atl1c_hw_set_mac_addr(struct atl1c_hw *hw , u8 *mac_addr ) { u32 value ; { { value = (u32 )(((((int )*(mac_addr + 2UL) << 24) | ((int )*(mac_addr + 3UL) << 16)) | ((int )*(mac_addr + 4UL) << 8)) | (int )*(mac_addr + 5UL)); writel(value, (void volatile *)hw->hw_addr + 5256U); value = (u32 )(((int )*mac_addr << 8) | (int )*(mac_addr + 1UL)); writel(value, (void volatile *)hw->hw_addr + 5260U); } return; } } static bool atl1c_read_current_addr(struct atl1c_hw *hw , u8 *eth_addr ) { u32 addr[2U] ; long tmp ; long tmp___0 ; __u32 tmp___1 ; __u16 tmp___2 ; bool tmp___3 ; { { tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5256U); *((u32 *)(& addr)) = readl((void const volatile *)hw->hw_addr + 5256U); } } else { { *((u32 *)(& addr)) = readl((void const volatile *)hw->hw_addr + 5256U); } } { tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5260U); *((u32 *)(& addr) + 1UL) = readl((void const volatile *)hw->hw_addr + 5260U); } } else { { *((u32 *)(& addr) + 1UL) = readl((void const volatile *)hw->hw_addr + 5260U); } } { tmp___1 = __fswab32(addr[0]); *((u32 *)eth_addr + 2U) = tmp___1; tmp___2 = __fswab16((int )((unsigned short )addr[1])); *((u16 *)eth_addr) = tmp___2; tmp___3 = is_valid_ether_addr((u8 const *)eth_addr); } return (tmp___3); } } static int atl1c_get_permanent_address(struct atl1c_hw *hw ) { u32 i ; u32 otp_ctrl_data ; u32 twsi_ctrl_data ; u16 phy_data ; bool raise_vol ; bool tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; bool tmp___4 ; { { raise_vol = 0; tmp = atl1c_read_current_addr(hw, (u8 *)(& hw->perm_mac_addr)); } if ((int )tmp) { return (0); } else { } { tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 4848U); otp_ctrl_data = readl((void const volatile *)hw->hw_addr + 4848U); } } else { { otp_ctrl_data = readl((void const volatile *)hw->hw_addr + 4848U); } } { tmp___3 = atl1c_check_eeprom_exist(hw); } if (tmp___3 != 0) { if ((unsigned int )hw->nic_type <= 1U) { if (((unsigned long )otp_ctrl_data & 2UL) == 0UL) { { otp_ctrl_data = otp_ctrl_data | 2U; writel(otp_ctrl_data, (void volatile *)hw->hw_addr + 4848U); readl((void const volatile *)hw->hw_addr); msleep(1U); } } else { } } else { } if ((unsigned int )hw->nic_type - 2U <= 1U) { { atl1c_read_phy_dbg(hw, 0, & phy_data); phy_data = (unsigned int )phy_data & 65407U; atl1c_write_phy_dbg(hw, 0, (int )phy_data); atl1c_read_phy_dbg(hw, 59, & phy_data); phy_data = (u16 )((unsigned int )phy_data | 8U); atl1c_write_phy_dbg(hw, 59, (int )phy_data); __const_udelay(85900UL); raise_vol = 1; } } else { } { tmp___1 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 536U); twsi_ctrl_data = readl((void const volatile *)hw->hw_addr + 536U); } } else { { twsi_ctrl_data = readl((void const volatile *)hw->hw_addr + 536U); } } { twsi_ctrl_data = twsi_ctrl_data | 2048U; writel(twsi_ctrl_data, (void volatile *)hw->hw_addr + 536U); i = 0U; } goto ldv_50830; ldv_50829: { msleep(10U); tmp___2 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___2 != 0L) { { readl((void const volatile *)hw->hw_addr + 536U); twsi_ctrl_data = readl((void const volatile *)hw->hw_addr + 536U); } } else { { twsi_ctrl_data = readl((void const volatile *)hw->hw_addr + 536U); } } if (((unsigned long )twsi_ctrl_data & 2048UL) == 0UL) { goto ldv_50828; } else { } i = i + 1U; ldv_50830: ; if (i <= 99U) { goto ldv_50829; } else { } ldv_50828: ; if (i > 99U) { return (-1); } else { } } else { } if ((unsigned int )hw->nic_type <= 1U) { { otp_ctrl_data = otp_ctrl_data & 4294967293U; writel(otp_ctrl_data, (void volatile *)hw->hw_addr + 4848U); msleep(1U); } } else { } if ((int )raise_vol) { { atl1c_read_phy_dbg(hw, 0, & phy_data); phy_data = (u16 )((unsigned int )phy_data | 128U); atl1c_write_phy_dbg(hw, 0, (int )phy_data); atl1c_read_phy_dbg(hw, 59, & phy_data); phy_data = (unsigned int )phy_data & 65527U; atl1c_write_phy_dbg(hw, 59, (int )phy_data); __const_udelay(85900UL); } } else { } { tmp___4 = atl1c_read_current_addr(hw, (u8 *)(& hw->perm_mac_addr)); } if ((int )tmp___4) { return (0); } else { } return (-1); } } bool atl1c_read_eeprom(struct atl1c_hw *hw , u32 offset , u32 *p_value ) { int i ; bool ret ; u32 otp_ctrl_data ; u32 control ; u32 data ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; __u32 tmp___3 ; { ret = 0; if ((offset & 3U) != 0U) { return (ret); } else { } { tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4848U); otp_ctrl_data = readl((void const volatile *)hw->hw_addr + 4848U); } } else { { otp_ctrl_data = readl((void const volatile *)hw->hw_addr + 4848U); } } if (((unsigned long )otp_ctrl_data & 2UL) == 0UL) { { writel(otp_ctrl_data | 2U, (void volatile *)hw->hw_addr + 4848U); } } else { } { writel(0U, (void volatile *)hw->hw_addr + 4804U); control = (offset & 1023U) << 16; writel(control, (void volatile *)hw->hw_addr + 4800U); i = 0; } goto ldv_50843; ldv_50842: { __const_udelay(429500UL); tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 4800U); control = readl((void const volatile *)hw->hw_addr + 4800U); } } else { { control = readl((void const volatile *)hw->hw_addr + 4800U); } } if ((int )control < 0) { goto ldv_50841; } else { } i = i + 1; ldv_50843: ; if (i <= 9) { goto ldv_50842; } else { } ldv_50841: ; if ((int )control < 0) { { tmp___1 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 4800U); data = readl((void const volatile *)hw->hw_addr + 4800U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4800U); } } { tmp___2 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___2 != 0L) { { readl((void const volatile *)hw->hw_addr + 4804U); *p_value = readl((void const volatile *)hw->hw_addr + 4804U); } } else { { *p_value = readl((void const volatile *)hw->hw_addr + 4804U); } } { data = data & 65535U; tmp___3 = __fswab32((data << 16) | (*p_value >> 16)); *p_value = tmp___3; ret = 1; } } else { } if (((unsigned long )otp_ctrl_data & 2UL) == 0UL) { { writel(otp_ctrl_data, (void volatile *)hw->hw_addr + 4848U); } } else { } return (ret); } } int atl1c_read_mac_addr(struct atl1c_hw *hw ) { int err ; { { err = 0; err = atl1c_get_permanent_address(hw); } if (err != 0) { { eth_random_addr((u8 *)(& hw->perm_mac_addr)); } } else { } { memcpy((void *)(& hw->mac_addr), (void const *)(& hw->perm_mac_addr), 6UL); } return (err); } } u32 atl1c_hash_mc_addr(struct atl1c_hw *hw , u8 *mc_addr ) { u32 crc32 ; u32 value ; int i ; { { value = 0U; crc32 = crc32_le(4294967295U, (unsigned char const *)mc_addr, 6UL); i = 0; } goto ldv_50856; ldv_50855: value = value | (((crc32 >> i) & 1U) << (31 - i)); i = i + 1; ldv_50856: ; if (i <= 31) { goto ldv_50855; } else { } return (value); } } void atl1c_hash_set(struct atl1c_hw *hw , u32 hash_value ) { u32 hash_bit ; u32 hash_reg ; u32 mta ; { { hash_reg = hash_value >> 31; hash_bit = (hash_value >> 26) & 31U; mta = readl((void const volatile *)(hw->hw_addr + ((unsigned long )(hash_reg << 2) + 5264UL))); mta = mta | (u32 )(1 << (int )hash_bit); writel(mta, (void volatile *)(hw->hw_addr + ((unsigned long )(hash_reg << 2) + 5264UL))); } return; } } bool atl1c_wait_mdio_idle(struct atl1c_hw *hw ) { u32 val ; int i ; long tmp ; { i = 0; goto ldv_50872; ldv_50871: { tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5140U); val = readl((void const volatile *)hw->hw_addr + 5140U); } } else { { val = readl((void const volatile *)hw->hw_addr + 5140U); } } if (((unsigned long )val & 142606336UL) == 0UL) { goto ldv_50870; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_50872: ; if (i <= 119) { goto ldv_50871; } else { } ldv_50870: ; return (i != 120); } } void atl1c_stop_phy_polling(struct atl1c_hw *hw ) { { if ((int )((short )hw->ctrl_flags) >= 0) { return; } else { } { writel(0U, (void volatile *)hw->hw_addr + 5140U); atl1c_wait_mdio_idle(hw); } return; } } void atl1c_start_phy_polling(struct atl1c_hw *hw , u16 clk_sel ) { u32 val ; { if ((int )((short )hw->ctrl_flags) >= 0) { return; } else { } { val = (((u32 )clk_sel & 7U) << 24U) | 14745600U; writel(val, (void volatile *)hw->hw_addr + 5140U); atl1c_wait_mdio_idle(hw); val = val | 268435456U; val = val & 4286578687U; writel(val, (void volatile *)hw->hw_addr + 5140U); __const_udelay(128850UL); } return; } } int atl1c_read_phy_core(struct atl1c_hw *hw , bool ext , u8 dev , u16 reg , u16 *phy_data ) { u32 val ; u16 clk_sel ; bool tmp ; int tmp___0 ; long tmp___1 ; { { clk_sel = 0U; atl1c_stop_phy_polling(hw); *phy_data = 0U; } if (((unsigned int )hw->nic_type == 3U || (unsigned int )hw->nic_type == 5U) && (int )hw->hibernate) { clk_sel = 7U; } else { } if ((int )ext) { { val = (((u32 )dev & 31U) << 16U) | (u32 )reg; writel(val, (void volatile *)hw->hw_addr + 5192U); val = (((u32 )clk_sel & 7U) << 24U) | 1088421888U; } } else { val = ((((u32 )clk_sel & 7U) << 24U) | (((u32 )reg & 31U) << 16U)) | 14680064U; } { writel(val, (void volatile *)hw->hw_addr + 5140U); tmp = atl1c_wait_mdio_idle(hw); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-1); } else { } { tmp___1 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 5140U); val = readl((void const volatile *)hw->hw_addr + 5140U); } } else { { val = readl((void const volatile *)hw->hw_addr + 5140U); } } { *phy_data = (unsigned short )val; atl1c_start_phy_polling(hw, (int )clk_sel); } return (0); } } int atl1c_write_phy_core(struct atl1c_hw *hw , bool ext , u8 dev , u16 reg , u16 phy_data ) { u32 val ; u16 clk_sel ; bool tmp ; int tmp___0 ; { { clk_sel = 0U; atl1c_stop_phy_polling(hw); } if (((unsigned int )hw->nic_type == 3U || (unsigned int )hw->nic_type == 5U) && (int )hw->hibernate) { clk_sel = 7U; } else { } if ((int )ext) { { val = (((u32 )dev & 31U) << 16U) | (u32 )reg; writel(val, (void volatile *)hw->hw_addr + 5192U); val = ((((u32 )clk_sel & 7U) << 24U) | (u32 )phy_data) | 1086324736U; } } else { val = (((((u32 )clk_sel & 7U) << 24U) | (u32 )phy_data) | (((u32 )reg & 31U) << 16U)) | 12582912U; } { writel(val, (void volatile *)hw->hw_addr + 5140U); tmp = atl1c_wait_mdio_idle(hw); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-1); } else { } { atl1c_start_phy_polling(hw, (int )clk_sel); } return (0); } } int atl1c_read_phy_reg(struct atl1c_hw *hw , u16 reg_addr , u16 *phy_data ) { int tmp ; { { tmp = atl1c_read_phy_core(hw, 0, 0, (int )reg_addr, phy_data); } return (tmp); } } int atl1c_write_phy_reg(struct atl1c_hw *hw , u32 reg_addr , u16 phy_data ) { int tmp ; { { tmp = atl1c_write_phy_core(hw, 0, 0, (int )((u16 )reg_addr), (int )phy_data); } return (tmp); } } int atl1c_read_phy_ext(struct atl1c_hw *hw , u8 dev_addr , u16 reg_addr , u16 *phy_data ) { int tmp ; { { tmp = atl1c_read_phy_core(hw, 1, (int )dev_addr, (int )reg_addr, phy_data); } return (tmp); } } int atl1c_write_phy_ext(struct atl1c_hw *hw , u8 dev_addr , u16 reg_addr , u16 phy_data ) { int tmp ; { { tmp = atl1c_write_phy_core(hw, 1, (int )dev_addr, (int )reg_addr, (int )phy_data); } return (tmp); } } int atl1c_read_phy_dbg(struct atl1c_hw *hw , u16 reg_addr , u16 *phy_data ) { int err ; long tmp ; { { err = atl1c_write_phy_reg(hw, 29U, (int )reg_addr); tmp = ldv__builtin_expect(err != 0, 0L); } if (tmp != 0L) { return (err); } else { { err = atl1c_read_phy_reg(hw, 30, phy_data); } } return (err); } } int atl1c_write_phy_dbg(struct atl1c_hw *hw , u16 reg_addr , u16 phy_data ) { int err ; long tmp ; { { err = atl1c_write_phy_reg(hw, 29U, (int )reg_addr); tmp = ldv__builtin_expect(err != 0, 0L); } if (tmp != 0L) { return (err); } else { { err = atl1c_write_phy_reg(hw, 30U, (int )phy_data); } } return (err); } } static int atl1c_phy_setup_adv(struct atl1c_hw *hw ) { u16 mii_adv_data ; u16 mii_giga_ctrl_data ; int tmp ; int tmp___0 ; { mii_adv_data = 3072U; mii_giga_ctrl_data = 0U; if ((int )hw->autoneg_advertised & 1) { mii_adv_data = (u16 )((unsigned int )mii_adv_data | 32U); } else { } if (((int )hw->autoneg_advertised & 2) != 0) { mii_adv_data = (u16 )((unsigned int )mii_adv_data | 64U); } else { } if (((int )hw->autoneg_advertised & 4) != 0) { mii_adv_data = (u16 )((unsigned int )mii_adv_data | 128U); } else { } if (((int )hw->autoneg_advertised & 8) != 0) { mii_adv_data = (u16 )((unsigned int )mii_adv_data | 256U); } else { } if (((int )hw->autoneg_advertised & 64) != 0) { mii_adv_data = (u16 )((unsigned int )mii_adv_data | 480U); } else { } if ((int )hw->link_cap_flags & 1) { if (((int )hw->autoneg_advertised & 16) != 0) { mii_giga_ctrl_data = (u16 )((unsigned int )mii_giga_ctrl_data | 256U); } else { } if (((int )hw->autoneg_advertised & 32) != 0) { mii_giga_ctrl_data = (u16 )((unsigned int )mii_giga_ctrl_data | 512U); } else { } if (((int )hw->autoneg_advertised & 64) != 0) { mii_giga_ctrl_data = (u16 )((unsigned int )mii_giga_ctrl_data | 768U); } else { } } else { } { tmp = atl1c_write_phy_reg(hw, 4U, (int )mii_adv_data); } if (tmp != 0) { return (-1); } else { { tmp___0 = atl1c_write_phy_reg(hw, 9U, (int )mii_giga_ctrl_data); } if (tmp___0 != 0) { return (-1); } else { } } return (0); } } void atl1c_phy_disable(struct atl1c_hw *hw ) { { { atl1c_power_saving(hw, 0U); } return; } } int atl1c_phy_reset(struct atl1c_hw *hw ) { struct atl1c_adapter *adapter ; struct pci_dev *pdev ; u16 phy_data ; u32 phy_ctrl_data ; u32 lpi_ctrl ; int err ; long tmp ; long tmp___0 ; { { adapter = hw->adapter; pdev = adapter->pdev; tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5132U); phy_ctrl_data = readl((void const volatile *)hw->hw_addr + 5132U); } } else { { phy_ctrl_data = readl((void const volatile *)hw->hw_addr + 5132U); } } phy_ctrl_data = phy_ctrl_data & 4294811482U; phy_ctrl_data = phy_ctrl_data | 4096U; if (((int )hw->ctrl_flags & 1024) == 0) { phy_ctrl_data = phy_ctrl_data | 3072U; } else { phy_ctrl_data = phy_ctrl_data & 4294964223U; } { writel(phy_ctrl_data, (void volatile *)hw->hw_addr + 5132U); readl((void const volatile *)hw->hw_addr); __const_udelay(42950UL); writel(phy_ctrl_data | 1U, (void volatile *)hw->hw_addr + 5132U); readl((void const volatile *)hw->hw_addr); __const_udelay(3436000UL); } if ((unsigned int )hw->nic_type == 2U) { { atl1c_read_phy_dbg(hw, 10, & phy_data); atl1c_write_phy_dbg(hw, 10, (int )phy_data & 57343); } } else { } if ((unsigned int )hw->nic_type - 2U <= 1U) { { atl1c_read_phy_dbg(hw, 62, & phy_data); phy_data = (u16 )((unsigned int )phy_data | 32768U); atl1c_write_phy_dbg(hw, 62, (int )phy_data); } } else { } if (((int )hw->ctrl_flags & 1024) == 0) { if ((unsigned int )hw->nic_type - 2U <= 1U) { { atl1c_read_phy_dbg(hw, 59, & phy_data); phy_data = (unsigned int )phy_data & 65527U; atl1c_write_phy_dbg(hw, 59, (int )phy_data); } } else { } { phy_data = (unsigned int )hw->nic_type - 4U <= 1U ? 4765U : 14045U; atl1c_write_phy_dbg(hw, 41, (int )phy_data); atl1c_write_phy_dbg(hw, 4, 35003); } } else { { atl1c_read_phy_dbg(hw, 41, & phy_data); atl1c_write_phy_dbg(hw, 41, (int )phy_data & 32767); atl1c_read_phy_dbg(hw, 11, & phy_data); atl1c_write_phy_dbg(hw, 11, (int )phy_data & 32768); } } if ((unsigned int )hw->nic_type - 3U <= 2U) { { tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5184U); lpi_ctrl = readl((void const volatile *)hw->hw_addr + 5184U); } } else { { lpi_ctrl = readl((void const volatile *)hw->hw_addr + 5184U); } } { writel(lpi_ctrl & 4294967294U, (void volatile *)hw->hw_addr + 5184U); atl1c_write_phy_ext(hw, 7, 60, 0); atl1c_write_phy_ext(hw, 3, 32771, 19737); } } else { } { atl1c_write_phy_dbg(hw, 0, 751); atl1c_write_phy_dbg(hw, 5, 11334); atl1c_write_phy_dbg(hw, 18, 19460); atl1c_write_phy_dbg(hw, 54, 57772); phy_data = 3072U; err = atl1c_write_phy_reg(hw, 18U, (int )phy_data); } if (err != 0) { if ((adapter->msg_enable & 8192U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Error enable PHY linkChange Interrupt\n"); } } else { } return (err); } else { } return (0); } } int atl1c_phy_init(struct atl1c_hw *hw ) { struct atl1c_adapter *adapter ; struct pci_dev *pdev ; int ret_val ; u16 mii_bmcr_data ; int tmp ; int tmp___0 ; { { adapter = hw->adapter; pdev = adapter->pdev; mii_bmcr_data = 32768U; tmp = atl1c_read_phy_reg(hw, 2, & hw->phy_id1); } if (tmp != 0) { { dev_err((struct device const *)(& pdev->dev), "Error get phy ID\n"); } return (-1); } else { { tmp___0 = atl1c_read_phy_reg(hw, 3, & hw->phy_id2); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "Error get phy ID\n"); } return (-1); } else { } } { if ((int )hw->media_type == 0) { goto case_0; } else { } if ((int )hw->media_type == 1) { goto case_1; } else { } if ((int )hw->media_type == 2) { goto case_2; } else { } if ((int )hw->media_type == 3) { goto case_3; } else { } if ((int )hw->media_type == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ { ret_val = atl1c_phy_setup_adv(hw); } if (ret_val != 0) { if ((adapter->msg_enable & 4U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Error Setting up Auto-Negotiation\n"); } } else { } return (ret_val); } else { } mii_bmcr_data = (u16 )((unsigned int )mii_bmcr_data | 4608U); goto ldv_50958; case_1: /* CIL Label */ mii_bmcr_data = (u16 )((unsigned int )mii_bmcr_data | 8448U); goto ldv_50958; case_2: /* CIL Label */ mii_bmcr_data = (u16 )((unsigned int )mii_bmcr_data | 8192U); goto ldv_50958; case_3: /* CIL Label */ mii_bmcr_data = (u16 )((unsigned int )mii_bmcr_data | 256U); goto ldv_50958; case_4: /* CIL Label */ ; goto ldv_50958; switch_default: /* CIL Label */ ; if ((adapter->msg_enable & 4U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Wrong Media type %d\n", (int )hw->media_type); } } else { } return (-1); switch_break: /* CIL Label */ ; } ldv_50958: { ret_val = atl1c_write_phy_reg(hw, 0U, (int )mii_bmcr_data); } if (ret_val != 0) { return (ret_val); } else { } hw->phy_configured = 1; return (0); } } int atl1c_get_speed_and_duplex(struct atl1c_hw *hw , u16 *speed , u16 *duplex ) { int err ; u16 phy_data ; { { err = atl1c_read_phy_reg(hw, 17, & phy_data); } if (err != 0) { return (err); } else { } if (((int )phy_data & 2048) == 0) { return (-1); } else { } { if (((int )phy_data & 49152) == 32768) { goto case_32768; } else { } if (((int )phy_data & 49152) == 16384) { goto case_16384; } else { } if (((int )phy_data & 49152) == 0) { goto case_0; } else { } goto switch_default; case_32768: /* CIL Label */ *speed = 1000U; goto ldv_50972; case_16384: /* CIL Label */ *speed = 100U; goto ldv_50972; case_0: /* CIL Label */ *speed = 10U; goto ldv_50972; switch_default: /* CIL Label */ ; return (-1); switch_break: /* CIL Label */ ; } ldv_50972: ; if (((int )phy_data & 8192) != 0) { *duplex = 2U; } else { *duplex = 1U; } return (0); } } int atl1c_phy_to_ps_link(struct atl1c_hw *hw ) { struct atl1c_adapter *adapter ; struct pci_dev *pdev ; int ret ; u16 autoneg_advertised ; u16 save_autoneg_advertised ; u16 phy_data ; u16 mii_lpa_data ; u16 speed ; u16 duplex ; int i ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; struct _ddebug descriptor___0 ; long tmp___2 ; int tmp___3 ; { { adapter = hw->adapter; pdev = adapter->pdev; ret = 0; autoneg_advertised = 1U; speed = 65535U; duplex = 2U; atl1c_read_phy_reg(hw, 1, & phy_data); atl1c_read_phy_reg(hw, 1, & phy_data); } if (((int )phy_data & 4) != 0) { { atl1c_read_phy_reg(hw, 5, & mii_lpa_data); } if (((int )mii_lpa_data & 64) != 0) { autoneg_advertised = 2U; } else if (((int )mii_lpa_data & 32) != 0) { autoneg_advertised = 1U; } else if (((int )mii_lpa_data & 128) != 0) { autoneg_advertised = 4U; } else if (((int )mii_lpa_data & 256) != 0) { autoneg_advertised = 8U; } else { } { save_autoneg_advertised = hw->autoneg_advertised; hw->phy_configured = 0; hw->autoneg_advertised = autoneg_advertised; tmp___0 = atl1c_restart_autoneg(hw); } if (tmp___0 != 0) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_phy_to_ps_link"; descriptor.filename = "drivers/net/ethernet/atheros/atl1c/atl1c_hw.c"; descriptor.format = "phy autoneg failed\n"; descriptor.lineno = 727U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "phy autoneg failed\n"); } } else { } ret = -1; } else { } hw->autoneg_advertised = save_autoneg_advertised; if ((unsigned int )mii_lpa_data != 0U) { i = 0; goto ldv_50998; ldv_50997: __ms = 100UL; goto ldv_50993; ldv_50992: { __const_udelay(4295000UL); } ldv_50993: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_50992; } else { } { atl1c_read_phy_reg(hw, 1, & phy_data); atl1c_read_phy_reg(hw, 1, & phy_data); } if (((int )phy_data & 4) != 0) { { tmp___3 = atl1c_get_speed_and_duplex(hw, & speed, & duplex); } if (tmp___3 != 0) { { descriptor___0.modname = "atl1c"; descriptor___0.function = "atl1c_phy_to_ps_link"; descriptor___0.filename = "drivers/net/ethernet/atheros/atl1c/atl1c_hw.c"; descriptor___0.format = "get speed and duplex failed\n"; descriptor___0.lineno = 741U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& pdev->dev), "get speed and duplex failed\n"); } } else { } } else { } goto ldv_50996; } else { } i = i + 1; ldv_50998: ; if (i <= 99) { goto ldv_50997; } else { } ldv_50996: ; } else { } } else { speed = 10U; duplex = 1U; } adapter->link_speed = speed; adapter->link_duplex = duplex; return (ret); } } int atl1c_restart_autoneg(struct atl1c_hw *hw ) { int err ; u16 mii_bmcr_data ; int tmp ; { { err = 0; mii_bmcr_data = 32768U; err = atl1c_phy_setup_adv(hw); } if (err != 0) { return (err); } else { } { mii_bmcr_data = (u16 )((unsigned int )mii_bmcr_data | 4608U); tmp = atl1c_write_phy_reg(hw, 0U, (int )mii_bmcr_data); } return (tmp); } } int atl1c_power_saving(struct atl1c_hw *hw , u32 wufc ) { struct atl1c_adapter *adapter ; struct pci_dev *pdev ; u32 master_ctrl ; u32 mac_ctrl ; u32 phy_ctrl ; u32 wol_ctrl ; u32 speed ; u16 phy_data ; long tmp ; long tmp___0 ; long tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; int tmp___3 ; struct _ddebug descriptor___0 ; long tmp___4 ; { { adapter = hw->adapter; pdev = adapter->pdev; wol_ctrl = 0U; speed = (unsigned int )adapter->link_speed == 1000U ? 2U : 1U; tmp = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5120U); master_ctrl = readl((void const volatile *)hw->hw_addr + 5120U); } } else { { master_ctrl = readl((void const volatile *)hw->hw_addr + 5120U); } } { tmp___0 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5248U); mac_ctrl = readl((void const volatile *)hw->hw_addr + 5248U); } } else { { mac_ctrl = readl((void const volatile *)hw->hw_addr + 5248U); } } { tmp___1 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 5132U); phy_ctrl = readl((void const volatile *)hw->hw_addr + 5132U); } } else { { phy_ctrl = readl((void const volatile *)hw->hw_addr + 5132U); } } master_ctrl = master_ctrl & 4294963199U; mac_ctrl = (mac_ctrl & 4291821567U) | ((speed & 3U) << 20U); mac_ctrl = mac_ctrl & 4294967260U; if ((unsigned int )adapter->link_duplex == 2U) { mac_ctrl = mac_ctrl | 32U; } else { } phy_ctrl = phy_ctrl & 4294828026U; phy_ctrl = phy_ctrl | 7168U; if (wufc == 0U) { { master_ctrl = master_ctrl | 4096U; phy_ctrl = phy_ctrl | 16512U; writel(master_ctrl, (void volatile *)hw->hw_addr + 5120U); writel(mac_ctrl, (void volatile *)hw->hw_addr + 5248U); writel(phy_ctrl, (void volatile *)hw->hw_addr + 5132U); writel(0U, (void volatile *)hw->hw_addr + 5280U); hw->phy_configured = 0; } return (0); } else { } phy_ctrl = phy_ctrl | 1U; if ((wufc & 2U) != 0U) { mac_ctrl = mac_ctrl | 67108866U; wol_ctrl = wol_ctrl | 12U; if ((unsigned int )hw->nic_type == 2U && (unsigned int )hw->revision_id == 193U) { wol_ctrl = wol_ctrl | 3U; } else { } } else { } if ((int )wufc & 1) { { wol_ctrl = wol_ctrl | 48U; tmp___3 = atl1c_write_phy_reg(hw, 18U, 1024); } if (tmp___3 != 0) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_power_saving"; descriptor.filename = "drivers/net/ethernet/atheros/atl1c/atl1c_hw.c"; descriptor.format = "%s: write phy MII_IER failed.\n"; descriptor.lineno = 814U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "%s: write phy MII_IER failed.\n", (char *)(& atl1c_driver_name)); } } else { } } else { } } else { } { atl1c_read_phy_reg(hw, 19, & phy_data); descriptor___0.modname = "atl1c"; descriptor___0.function = "atl1c_power_saving"; descriptor___0.filename = "drivers/net/ethernet/atheros/atl1c/atl1c_hw.c"; descriptor___0.format = "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n"; descriptor___0.lineno = 821U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& pdev->dev), "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n", (char *)(& atl1c_driver_name), mac_ctrl, master_ctrl, phy_ctrl, wol_ctrl); } } else { } { writel(master_ctrl, (void volatile *)hw->hw_addr + 5120U); writel(mac_ctrl, (void volatile *)hw->hw_addr + 5248U); writel(phy_ctrl, (void volatile *)hw->hw_addr + 5132U); writel(wol_ctrl, (void volatile *)hw->hw_addr + 5280U); } return (0); } } void atl1c_post_phy_linkchg(struct atl1c_hw *hw , u16 link_speed ) { u16 phy_val ; bool adj_thresh ; { adj_thresh = 0; if ((unsigned int )hw->nic_type - 2U <= 3U) { adj_thresh = 1; } else { } if ((unsigned int )link_speed != 65535U) { if ((unsigned int )hw->nic_type == 5U) { { atl1c_read_phy_ext(hw, 3, 32774, & phy_val); phy_val = (unsigned int )phy_val & 511U; phy_val = (unsigned int )phy_val > 80U ? 45584U : 12832U; atl1c_write_phy_dbg(hw, 21, (int )phy_val); } } else { } if (((int )adj_thresh && (unsigned int )link_speed == 100U) && (int )hw->msi_lnkpatch) { { atl1c_write_phy_dbg(hw, 24, 1514); atl1c_write_phy_dbg(hw, 4, 20411); } } else { } } else if ((int )adj_thresh && (int )hw->msi_lnkpatch) { { atl1c_write_phy_dbg(hw, 4, 35003); atl1c_write_phy_dbg(hw, 24, 746); } } else { } return; } } extern size_t strlcpy(char * , char const * , size_t ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } extern void *ldv_malloc(size_t); void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } static int atl1c_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; ecmd->supported = 207U; } if ((int )hw->link_cap_flags & 1) { ecmd->supported = ecmd->supported | 32U; } else { } ecmd->advertising = 128U; ecmd->advertising = ecmd->advertising | (__u32 )hw->autoneg_advertised; ecmd->port = 0U; ecmd->phy_address = 0U; ecmd->transceiver = 0U; if ((unsigned int )adapter->link_speed != 65535U) { { ethtool_cmd_speed_set(ecmd, (__u32 )adapter->link_speed); } if ((unsigned int )adapter->link_duplex == 2U) { ecmd->duplex = 1U; } else { ecmd->duplex = 0U; } } else { { ethtool_cmd_speed_set(ecmd, 4294967295U); ecmd->duplex = 255U; } } ecmd->autoneg = 1U; return (0); } } static int atl1c_set_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; u16 autoneg_advertised ; int tmp___0 ; u32 speed ; __u32 tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; } goto ldv_50792; ldv_50791: { msleep(1U); } ldv_50792: { tmp___0 = test_and_set_bit(2L, (unsigned long volatile *)(& adapter->flags)); } if (tmp___0 != 0) { goto ldv_50791; } else { } if ((unsigned int )ecmd->autoneg == 1U) { autoneg_advertised = 64U; } else { { tmp___1 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); speed = tmp___1; } if (speed == 1000U) { if ((unsigned int )ecmd->duplex != 1U) { if ((adapter->msg_enable & 4U) != 0U) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "1000M half is invalid\n"); } } else { } { clear_bit(2L, (unsigned long volatile *)(& adapter->flags)); } return (-22); } else { } autoneg_advertised = 32U; } else if (speed == 100U) { if ((unsigned int )ecmd->duplex == 1U) { autoneg_advertised = 8U; } else { autoneg_advertised = 4U; } } else if ((unsigned int )ecmd->duplex == 1U) { autoneg_advertised = 2U; } else { autoneg_advertised = 1U; } } if ((int )hw->autoneg_advertised != (int )autoneg_advertised) { { hw->autoneg_advertised = autoneg_advertised; tmp___2 = atl1c_restart_autoneg(hw); } if (tmp___2 != 0) { if ((adapter->msg_enable & 4U) != 0U) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "ethtool speed/duplex setting failed\n"); } } else { } { clear_bit(2L, (unsigned long volatile *)(& adapter->flags)); } return (-22); } else { } } else { } { clear_bit(2L, (unsigned long volatile *)(& adapter->flags)); } return (0); } } static u32 atl1c_get_msglevel(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; } return (adapter->msg_enable); } } static void atl1c_set_msglevel(struct net_device *netdev , u32 data ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; adapter->msg_enable = data; } return; } } static int atl1c_get_regs_len(struct net_device *netdev ) { { return (296); } } static void atl1c_get_regs(struct net_device *netdev , struct ethtool_regs *regs , void *p ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; u32 *regs_buff ; u16 phy_data ; void *tmp___0 ; void *tmp___1 ; long tmp___2 ; void *tmp___3 ; void *tmp___4 ; long tmp___5 ; void *tmp___6 ; void *tmp___7 ; long tmp___8 ; void *tmp___9 ; void *tmp___10 ; long tmp___11 ; void *tmp___12 ; void *tmp___13 ; long tmp___14 ; void *tmp___15 ; void *tmp___16 ; long tmp___17 ; void *tmp___18 ; void *tmp___19 ; long tmp___20 ; void *tmp___21 ; void *tmp___22 ; long tmp___23 ; void *tmp___24 ; void *tmp___25 ; long tmp___26 ; void *tmp___27 ; void *tmp___28 ; long tmp___29 ; void *tmp___30 ; void *tmp___31 ; long tmp___32 ; void *tmp___33 ; void *tmp___34 ; long tmp___35 ; void *tmp___36 ; void *tmp___37 ; long tmp___38 ; void *tmp___39 ; void *tmp___40 ; long tmp___41 ; void *tmp___42 ; void *tmp___43 ; long tmp___44 ; void *tmp___45 ; void *tmp___46 ; long tmp___47 ; void *tmp___48 ; void *tmp___49 ; long tmp___50 ; void *tmp___51 ; void *tmp___52 ; long tmp___53 ; void *tmp___54 ; void *tmp___55 ; long tmp___56 ; void *tmp___57 ; void *tmp___58 ; long tmp___59 ; void *tmp___60 ; void *tmp___61 ; long tmp___62 ; void *tmp___63 ; void *tmp___64 ; long tmp___65 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; regs_buff = (u32 *)p; memset(p, 0, 296UL); regs->version = 1U; tmp___2 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___2 != 0L) { { readl((void const volatile *)hw->hw_addr + 4856U); tmp___0 = p; p = p + 1; *((u32 *)tmp___0) = readl((void const volatile *)hw->hw_addr + 4856U); } } else { { tmp___1 = p; p = p + 1; *((u32 *)tmp___1) = readl((void const volatile *)hw->hw_addr + 4856U); } } { tmp___5 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___5 != 0L) { { readl((void const volatile *)hw->hw_addr + 5272U); tmp___3 = p; p = p + 1; *((u32 *)tmp___3) = readl((void const volatile *)hw->hw_addr + 5272U); } } else { { tmp___4 = p; p = p + 1; *((u32 *)tmp___4) = readl((void const volatile *)hw->hw_addr + 5272U); } } { tmp___8 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___8 != 0L) { { readl((void const volatile *)hw->hw_addr + 536U); tmp___6 = p; p = p + 1; *((u32 *)tmp___6) = readl((void const volatile *)hw->hw_addr + 536U); } } else { { tmp___7 = p; p = p + 1; *((u32 *)tmp___7) = readl((void const volatile *)hw->hw_addr + 536U); } } { tmp___11 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___11 != 0L) { { readl((void const volatile *)hw->hw_addr + 540U); tmp___9 = p; p = p + 1; *((u32 *)tmp___9) = readl((void const volatile *)hw->hw_addr + 540U); } } else { { tmp___10 = p; p = p + 1; *((u32 *)tmp___10) = readl((void const volatile *)hw->hw_addr + 540U); } } { tmp___14 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___14 != 0L) { { readl((void const volatile *)hw->hw_addr + 5120U); tmp___12 = p; p = p + 1; *((u32 *)tmp___12) = readl((void const volatile *)hw->hw_addr + 5120U); } } else { { tmp___13 = p; p = p + 1; *((u32 *)tmp___13) = readl((void const volatile *)hw->hw_addr + 5120U); } } { tmp___17 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___17 != 0L) { { readl((void const volatile *)hw->hw_addr + 5124U); tmp___15 = p; p = p + 1; *((u32 *)tmp___15) = readl((void const volatile *)hw->hw_addr + 5124U); } } else { { tmp___16 = p; p = p + 1; *((u32 *)tmp___16) = readl((void const volatile *)hw->hw_addr + 5124U); } } { tmp___20 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___20 != 0L) { { readl((void const volatile *)hw->hw_addr + 5128U); tmp___18 = p; p = p + 1; *((u32 *)tmp___18) = readl((void const volatile *)hw->hw_addr + 5128U); } } else { { tmp___19 = p; p = p + 1; *((u32 *)tmp___19) = readl((void const volatile *)hw->hw_addr + 5128U); } } { tmp___23 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___23 != 0L) { { readl((void const volatile *)hw->hw_addr + 5132U); tmp___21 = p; p = p + 1; *((u32 *)tmp___21) = readl((void const volatile *)hw->hw_addr + 5132U); } } else { { tmp___22 = p; p = p + 1; *((u32 *)tmp___22) = readl((void const volatile *)hw->hw_addr + 5132U); } } { tmp___26 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___26 != 0L) { { readl((void const volatile *)hw->hw_addr + 104U); tmp___24 = p; p = p + 1; *((u32 *)tmp___24) = readl((void const volatile *)hw->hw_addr + 104U); } } else { { tmp___25 = p; p = p + 1; *((u32 *)tmp___25) = readl((void const volatile *)hw->hw_addr + 104U); } } { tmp___29 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___29 != 0L) { { readl((void const volatile *)hw->hw_addr + 5136U); tmp___27 = p; p = p + 1; *((u32 *)tmp___27) = readl((void const volatile *)hw->hw_addr + 5136U); } } else { { tmp___28 = p; p = p + 1; *((u32 *)tmp___28) = readl((void const volatile *)hw->hw_addr + 5136U); } } { tmp___32 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___32 != 0L) { { readl((void const volatile *)hw->hw_addr + 5140U); tmp___30 = p; p = p + 1; *((u32 *)tmp___30) = readl((void const volatile *)hw->hw_addr + 5140U); } } else { { tmp___31 = p; p = p + 1; *((u32 *)tmp___31) = readl((void const volatile *)hw->hw_addr + 5140U); } } { tmp___35 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___35 != 0L) { { readl((void const volatile *)hw->hw_addr + 5156U); tmp___33 = p; p = p + 1; *((u32 *)tmp___33) = readl((void const volatile *)hw->hw_addr + 5156U); } } else { { tmp___34 = p; p = p + 1; *((u32 *)tmp___34) = readl((void const volatile *)hw->hw_addr + 5156U); } } { tmp___38 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___38 != 0L) { { readl((void const volatile *)hw->hw_addr + 5248U); tmp___36 = p; p = p + 1; *((u32 *)tmp___36) = readl((void const volatile *)hw->hw_addr + 5248U); } } else { { tmp___37 = p; p = p + 1; *((u32 *)tmp___37) = readl((void const volatile *)hw->hw_addr + 5248U); } } { tmp___41 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___41 != 0L) { { readl((void const volatile *)hw->hw_addr + 5252U); tmp___39 = p; p = p + 1; *((u32 *)tmp___39) = readl((void const volatile *)hw->hw_addr + 5252U); } } else { { tmp___40 = p; p = p + 1; *((u32 *)tmp___40) = readl((void const volatile *)hw->hw_addr + 5252U); } } { tmp___44 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___44 != 0L) { { readl((void const volatile *)hw->hw_addr + 5256U); tmp___42 = p; p = p + 1; *((u32 *)tmp___42) = readl((void const volatile *)hw->hw_addr + 5256U); } } else { { tmp___43 = p; p = p + 1; *((u32 *)tmp___43) = readl((void const volatile *)hw->hw_addr + 5256U); } } { tmp___47 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___47 != 0L) { { readl((void const volatile *)hw->hw_addr + 5260U); tmp___45 = p; p = p + 1; *((u32 *)tmp___45) = readl((void const volatile *)hw->hw_addr + 5260U); } } else { { tmp___46 = p; p = p + 1; *((u32 *)tmp___46) = readl((void const volatile *)hw->hw_addr + 5260U); } } { tmp___50 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___50 != 0L) { { readl((void const volatile *)hw->hw_addr + 5264U); tmp___48 = p; p = p + 1; *((u32 *)tmp___48) = readl((void const volatile *)hw->hw_addr + 5264U); } } else { { tmp___49 = p; p = p + 1; *((u32 *)tmp___49) = readl((void const volatile *)hw->hw_addr + 5264U); } } { tmp___53 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___53 != 0L) { { readl((void const volatile *)hw->hw_addr + 5268U); tmp___51 = p; p = p + 1; *((u32 *)tmp___51) = readl((void const volatile *)hw->hw_addr + 5268U); } } else { { tmp___52 = p; p = p + 1; *((u32 *)tmp___52) = readl((void const volatile *)hw->hw_addr + 5268U); } } { tmp___56 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___56 != 0L) { { readl((void const volatile *)hw->hw_addr + 5536U); tmp___54 = p; p = p + 1; *((u32 *)tmp___54) = readl((void const volatile *)hw->hw_addr + 5536U); } } else { { tmp___55 = p; p = p + 1; *((u32 *)tmp___55) = readl((void const volatile *)hw->hw_addr + 5536U); } } { tmp___59 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___59 != 0L) { { readl((void const volatile *)hw->hw_addr + 5520U); tmp___57 = p; p = p + 1; *((u32 *)tmp___57) = readl((void const volatile *)hw->hw_addr + 5520U); } } else { { tmp___58 = p; p = p + 1; *((u32 *)tmp___58) = readl((void const volatile *)hw->hw_addr + 5520U); } } { tmp___62 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___62 != 0L) { { readl((void const volatile *)hw->hw_addr + 5276U); tmp___60 = p; p = p + 1; *((u32 *)tmp___60) = readl((void const volatile *)hw->hw_addr + 5276U); } } else { { tmp___61 = p; p = p + 1; *((u32 *)tmp___61) = readl((void const volatile *)hw->hw_addr + 5276U); } } { tmp___65 = ldv__builtin_expect((long )hw->hibernate, 0L); } if (tmp___65 != 0L) { { readl((void const volatile *)hw->hw_addr + 5280U); tmp___63 = p; p = p + 1; *((u32 *)tmp___63) = readl((void const volatile *)hw->hw_addr + 5280U); } } else { { tmp___64 = p; p = p + 1; *((u32 *)tmp___64) = readl((void const volatile *)hw->hw_addr + 5280U); } } { atl1c_read_phy_reg(hw, 0, & phy_data); *(regs_buff + 72UL) = (unsigned int )phy_data; atl1c_read_phy_reg(hw, 1, & phy_data); *(regs_buff + 73UL) = (unsigned int )phy_data; } return; } } static int atl1c_get_eeprom_len(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; tmp___0 = atl1c_check_eeprom_exist(& adapter->hw); } if (tmp___0 != 0) { return (512); } else { return (0); } } } static int atl1c_get_eeprom(struct net_device *netdev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; u32 *eeprom_buff ; int first_dword ; int last_dword ; int ret_val ; int i ; int tmp___0 ; void *tmp___1 ; bool tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; ret_val = 0; } if (eeprom->len == 0U) { return (-22); } else { } { tmp___0 = atl1c_check_eeprom_exist(hw); } if (tmp___0 == 0) { return (-22); } else { } { eeprom->magic = (__u32 )((int )(adapter->pdev)->vendor | ((int )(adapter->pdev)->device << 16)); first_dword = (int )(eeprom->offset >> 2); last_dword = (int )(((eeprom->offset + eeprom->len) - 1U) >> 2); tmp___1 = kmalloc((unsigned long )((last_dword - first_dword) + 1) * 4UL, 208U); eeprom_buff = (u32 *)tmp___1; } if ((unsigned long )eeprom_buff == (unsigned long )((u32 *)0U)) { return (-12); } else { } i = first_dword; goto ldv_50833; ldv_50832: { tmp___2 = atl1c_read_eeprom(hw, (u32 )(i * 4), eeprom_buff + (unsigned long )(i - first_dword)); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { kfree((void const *)eeprom_buff); } return (-5); } else { } i = i + 1; ldv_50833: ; if (i < last_dword) { goto ldv_50832; } else { } { memcpy((void *)bytes, (void const *)eeprom_buff + ((unsigned long )eeprom->offset & 3UL), (size_t )eeprom->len); kfree((void const *)eeprom_buff); } return (ret_val); return (0); } } static void atl1c_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *drvinfo ) { struct atl1c_adapter *adapter ; void *tmp ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; strlcpy((char *)(& drvinfo->driver), (char const *)(& atl1c_driver_name), 32UL); strlcpy((char *)(& drvinfo->version), (char const *)(& atl1c_driver_version), 32UL); tmp___0 = pci_name((struct pci_dev const *)adapter->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); drvinfo->n_stats = 0U; drvinfo->testinfo_len = 0U; tmp___1 = atl1c_get_regs_len(netdev); drvinfo->regdump_len = (__u32 )tmp___1; tmp___2 = atl1c_get_eeprom_len(netdev); drvinfo->eedump_len = (__u32 )tmp___2; } return; } } static void atl1c_get_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; wol->supported = 33U; wol->wolopts = 0U; } if ((adapter->wol & 4U) != 0U) { wol->wolopts = wol->wolopts | 2U; } else { } if ((adapter->wol & 8U) != 0U) { wol->wolopts = wol->wolopts | 4U; } else { } if ((adapter->wol & 16U) != 0U) { wol->wolopts = wol->wolopts | 8U; } else { } if ((adapter->wol & 2U) != 0U) { wol->wolopts = wol->wolopts | 32U; } else { } if ((int )adapter->wol & 1) { wol->wolopts = wol->wolopts | 1U; } else { } return; } } static int atl1c_set_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; } if ((wol->wolopts & 94U) != 0U) { return (-95); } else { } adapter->wol = 0U; if ((wol->wolopts & 32U) != 0U) { adapter->wol = adapter->wol | 2U; } else { } if ((int )wol->wolopts & 1) { adapter->wol = adapter->wol | 1U; } else { } { device_set_wakeup_enable(& (adapter->pdev)->dev, adapter->wol != 0U); } return (0); } } static int atl1c_nway_reset(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { atl1c_reinit_locked(adapter); } } else { } return (0); } } static struct ethtool_ops const atl1c_ethtool_ops = {& atl1c_get_settings, & atl1c_set_settings, & atl1c_get_drvinfo, & atl1c_get_regs_len, & atl1c_get_regs, & atl1c_get_wol, & atl1c_set_wol, & atl1c_get_msglevel, & atl1c_set_msglevel, & atl1c_nway_reset, & ethtool_op_get_link, & atl1c_get_eeprom_len, & atl1c_get_eeprom, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void atl1c_set_ethtool_ops(struct net_device *netdev ) { { netdev->ethtool_ops = & atl1c_ethtool_ops; return; } } void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & atl1c_get_drvinfo; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & atl1c_get_eeprom; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) = & atl1c_get_eeprom_len; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) = & ethtool_op_get_link; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) = & atl1c_get_msglevel; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) = & atl1c_get_regs; int (*ldv_1_callback_get_regs_len)(struct net_device * ) = & atl1c_get_regs_len; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & atl1c_get_settings; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) = & atl1c_get_wol; int (*ldv_1_callback_nway_reset)(struct net_device * ) = & atl1c_nway_reset; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) = & atl1c_set_msglevel; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & atl1c_set_settings; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) = & atl1c_set_wol; void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { atl1c_get_eeprom_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { atl1c_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { atl1c_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { atl1c_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { atl1c_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_16(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { atl1c_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { atl1c_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_36(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { atl1c_nway_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_37(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { atl1c_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_40(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { atl1c_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_41(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { atl1c_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { atl1c_get_eeprom(arg1, arg2, arg3); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_mdio_lock_of_atl1c_adapter = 1; void ldv_spin_lock_mdio_lock_of_atl1c_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_mdio_lock_of_atl1c_adapter == 1); ldv_assume(ldv_spin_mdio_lock_of_atl1c_adapter == 1); ldv_spin_mdio_lock_of_atl1c_adapter = 2; } return; } } void ldv_spin_unlock_mdio_lock_of_atl1c_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_mdio_lock_of_atl1c_adapter == 2); ldv_assume(ldv_spin_mdio_lock_of_atl1c_adapter == 2); ldv_spin_mdio_lock_of_atl1c_adapter = 1; } return; } } int ldv_spin_trylock_mdio_lock_of_atl1c_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_mdio_lock_of_atl1c_adapter == 1); ldv_assume(ldv_spin_mdio_lock_of_atl1c_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_mdio_lock_of_atl1c_adapter = 2; return (1); } } } void ldv_spin_unlock_wait_mdio_lock_of_atl1c_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_mdio_lock_of_atl1c_adapter == 1); ldv_assume(ldv_spin_mdio_lock_of_atl1c_adapter == 1); } return; } } int ldv_spin_is_locked_mdio_lock_of_atl1c_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_mdio_lock_of_atl1c_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_mdio_lock_of_atl1c_adapter(void) { int tmp ; { { tmp = ldv_spin_is_locked_mdio_lock_of_atl1c_adapter(); } return (tmp == 0); } } int ldv_spin_is_contended_mdio_lock_of_atl1c_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_mdio_lock_of_atl1c_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_mdio_lock_of_atl1c_adapter == 1); ldv_assume(ldv_spin_mdio_lock_of_atl1c_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_mdio_lock_of_atl1c_adapter = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_lock_of_atl1c_adapter = 1; void ldv_spin_lock_tx_lock_of_atl1c_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_lock_of_atl1c_adapter == 1); ldv_assume(ldv_spin_tx_lock_of_atl1c_adapter == 1); ldv_spin_tx_lock_of_atl1c_adapter = 2; } return; } } void ldv_spin_unlock_tx_lock_of_atl1c_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_lock_of_atl1c_adapter == 2); ldv_assume(ldv_spin_tx_lock_of_atl1c_adapter == 2); ldv_spin_tx_lock_of_atl1c_adapter = 1; } return; } } int ldv_spin_trylock_tx_lock_of_atl1c_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_lock_of_atl1c_adapter == 1); ldv_assume(ldv_spin_tx_lock_of_atl1c_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_lock_of_atl1c_adapter = 2; return (1); } } } void ldv_spin_unlock_wait_tx_lock_of_atl1c_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_lock_of_atl1c_adapter == 1); ldv_assume(ldv_spin_tx_lock_of_atl1c_adapter == 1); } return; } } int ldv_spin_is_locked_tx_lock_of_atl1c_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_lock_of_atl1c_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_lock_of_atl1c_adapter(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_lock_of_atl1c_adapter(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_lock_of_atl1c_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_lock_of_atl1c_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_lock_of_atl1c_adapter == 1); ldv_assume(ldv_spin_tx_lock_of_atl1c_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_lock_of_atl1c_adapter = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_res_counter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_mdio_lock_of_atl1c_adapter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_lock_of_atl1c_adapter == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_mdio_lock_of_atl1c_adapter == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_tx_lock_of_atl1c_adapter == 2) { return (1); } else { } return (0); } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__complex_emg__linux-kernel-locking-spinlock__drivers-net-ethernet-atheros-atl1c-atl1c_true-unreach-call.cil.env.c" #include "model/common.env.c"