/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28246 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28247 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28246 reg_state : 8 ; bool dismantle ; enum ldv_28247 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum hrtimer_restart; struct lmc___softc; typedef struct lmc___softc lmc_softc_t; struct lmc___media; typedef struct lmc___media lmc_media_t; struct lmc___ctl; typedef struct lmc___ctl lmc_ctl_t; struct lmc_regfile_t { unsigned long csr_busmode ; unsigned long csr_txpoll ; unsigned long csr_rxpoll ; unsigned long csr_rxlist ; unsigned long csr_txlist ; unsigned long csr_status ; unsigned long csr_command ; unsigned long csr_intr ; unsigned long csr_missed_frames ; unsigned long csr_9 ; unsigned long csr_10 ; unsigned long csr_11 ; unsigned long csr_12 ; unsigned long csr_13 ; unsigned long csr_14 ; unsigned long csr_15 ; }; struct __anonstruct_lmc_av9110_t_242 { u32 n ; u32 m ; u32 v ; u32 x ; u32 r ; u32 f ; u32 exact ; }; typedef struct __anonstruct_lmc_av9110_t_242 lmc_av9110_t; union __anonunion_cardspec_243 { lmc_av9110_t ssi ; }; struct lmc___ctl { u32 cardtype ; u32 clock_source ; u32 clock_rate ; u32 crc_length ; u32 cable_length ; u32 scrambler_onoff ; u32 cable_type ; u32 keepalive_onoff ; u32 ticks ; union __anonunion_cardspec_243 cardspec ; u32 circuit_type ; }; struct tulip_desc_t { s32 status ; s32 length ; u32 buffer1 ; u32 buffer2 ; }; struct lmc___media { void (*init)(lmc_softc_t * const ) ; void (*defaults)(lmc_softc_t * const ) ; void (*set_status)(lmc_softc_t * const , lmc_ctl_t * ) ; void (*set_clock_source)(lmc_softc_t * const , int ) ; void (*set_speed)(lmc_softc_t * const , lmc_ctl_t * ) ; void (*set_cable_length)(lmc_softc_t * const , int ) ; void (*set_scrambler)(lmc_softc_t * const , int ) ; int (*get_link_status)(lmc_softc_t * const ) ; void (*set_link_status)(lmc_softc_t * const , int ) ; void (*set_crc_length)(lmc_softc_t * const , int ) ; void (*set_circuit_type)(lmc_softc_t * const , int ) ; void (*watchdog)(lmc_softc_t * const ) ; }; struct lmc_extra_statistics { u32 version_size ; u32 lmc_cardtype ; u32 tx_ProcTimeout ; u32 tx_IntTimeout ; u32 tx_NoCompleteCnt ; u32 tx_MaxXmtsB4Int ; u32 tx_TimeoutCnt ; u32 tx_OutOfSyncPtr ; u32 tx_tbusy0 ; u32 tx_tbusy1 ; u32 tx_tbusy_calls ; u32 resetCount ; u32 lmc_txfull ; u32 tbusy ; u32 dirtyTx ; u32 lmc_next_tx ; u32 otherTypeCnt ; u32 lastType ; u32 lastTypeOK ; u32 txLoopCnt ; u32 usedXmtDescripCnt ; u32 txIndexCnt ; u32 rxIntLoopCnt ; u32 rx_SmallPktCnt ; u32 rx_BadPktSurgeCnt ; u32 rx_BuffAllocErr ; u32 tx_lossOfClockCnt ; u32 framingBitErrorCount ; u32 lineCodeViolationCount ; u32 lossOfFrameCount ; u32 changeOfFrameAlignmentCount ; u32 severelyErroredFrameCount ; u32 check ; }; struct lmc_xinfo { u32 Magic0 ; u32 PciCardType ; u32 PciSlotNumber ; u16 DriverMajorVersion ; u16 DriverMinorVersion ; u16 DriverSubVersion ; u16 XilinxRevisionNumber ; u16 MaxFrameSize ; u16 t1_alarm1_status ; u16 t1_alarm2_status ; int link_status ; u32 mii_reg16 ; u32 Magic1 ; }; typedef struct lmc_xinfo LMC_XINFO; struct lmc___softc { char *name ; u8 board_idx ; struct lmc_extra_statistics extra_stats ; struct net_device *lmc_device ; int hang ; int rxdesc ; int bad_packet ; int some_counter ; u32 txgo ; struct lmc_regfile_t lmc_csrs ; u32 volatile lmc_txtick ; u32 volatile lmc_rxtick ; u32 lmc_flags ; u32 lmc_intrmask ; u32 lmc_cmdmode ; u32 lmc_busmode ; u32 lmc_gpio_io ; u32 lmc_gpio ; struct sk_buff *lmc_txq[32U] ; struct sk_buff *lmc_rxq[32U] ; struct tulip_desc_t volatile lmc_rxring[32U] ; struct tulip_desc_t volatile lmc_txring[32U] ; unsigned int lmc_next_rx ; unsigned int lmc_next_tx ; unsigned int volatile lmc_taint_tx ; unsigned int volatile lmc_taint_rx ; int lmc_tx_start ; int lmc_txfull ; int lmc_txbusy ; u16 lmc_miireg16 ; int lmc_ok ; int last_link_status ; int lmc_cardtype ; u32 last_frameerr ; lmc_media_t *lmc_media ; struct timer_list timer ; lmc_ctl_t ictl ; u32 TxDescriptControlInit ; int tx_TimeoutInd ; int tx_TimeoutDisplay ; unsigned int lastlmc_taint_tx ; int lasttx_packets ; u32 tx_clockState ; u32 lmc_crcSize ; LMC_XINFO lmc_xinfo ; char lmc_yel ; char lmc_blue ; char lmc_red ; char lmc_timing ; int got_irq ; char last_led_err[4U] ; u32 last_int ; u32 num_int ; spinlock_t lmc_lock ; u16 if_type ; u8 failed_ring ; u8 failed_recv_alloc ; u32 check ; }; typedef short s16; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef void (*ctor_fn_t)(void); struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct static_key; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; enum hrtimer_restart; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pci_bus; struct exception_table_entry { int insn ; int fixup ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct hdlc_proto { int (*open)(struct net_device * ) ; void (*close)(struct net_device * ) ; void (*start)(struct net_device * ) ; void (*stop)(struct net_device * ) ; void (*detach)(struct net_device * ) ; int (*ioctl)(struct net_device * , struct ifreq * ) ; __be16 (*type_trans)(struct sk_buff * , struct net_device * ) ; int (*netif_rx)(struct sk_buff * ) ; netdev_tx_t (*xmit)(struct sk_buff * , struct net_device * ) ; struct module *module ; struct hdlc_proto *next ; }; struct hdlc_device { int (*attach)(struct net_device * , unsigned short , unsigned short ) ; netdev_tx_t (*xmit)(struct sk_buff * , struct net_device * ) ; struct hdlc_proto const *proto ; int carrier ; int open ; spinlock_t state_lock ; void *state ; void *priv ; }; enum lmc_xilinx_c { lmc_xilinx_reset = 1, lmc_xilinx_load_prom = 2, lmc_xilinx_load = 3 } ; struct lmc_xilinx_control { enum lmc_xilinx_c command ; int len ; char *data ; }; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; enum hrtimer_restart; typedef struct hdlc_device hdlc_device; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void ldv_assume(int expression ) ; void lmc_trace(struct net_device *dev , char *msg ) ; void lmc_trace(struct net_device *dev , char *msg ) { { return; } } int ldv_del_timer(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_instance_deregister_9_1(struct timer_list *arg0 ) ; void ldv_switch_automaton_state_7_1(void) ; struct timer_list *ldv_7_container_timer_list ; int ldv_statevar_7 ; int ldv_del_timer(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_9_timer_list_timer_list ; { { ldv_9_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_7 == 2); ldv_dispatch_instance_deregister_9_1(ldv_9_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_instance_deregister_9_1(struct timer_list *arg0 ) { { { ldv_7_container_timer_list = arg0; ldv_switch_automaton_state_7_1(); } return; } } extern int printk(char const * , ...) ; __inline static void outl(unsigned int value , int port ) { { __asm__ volatile ("outl %0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned int inl(int port ) { unsigned int value ; { __asm__ volatile ("inl %w1, %0": "=a" (value): "Nd" (port)); return (value); } } unsigned int lmc_mii_readreg(lmc_softc_t * const sc , unsigned int devaddr , unsigned int regno ) ; void lmc_mii_writereg(lmc_softc_t * const sc , unsigned int devaddr , unsigned int regno , unsigned int data ) ; void lmc_led_on(lmc_softc_t * const sc , u32 led ) ; void lmc_led_off(lmc_softc_t * const sc , u32 led ) ; void lmc_gpio_mkinput(lmc_softc_t * const sc , u32 bits ) ; void lmc_gpio_mkoutput(lmc_softc_t * const sc , u32 bits ) ; lmc_media_t lmc_ds3_media ; lmc_media_t lmc_ssi_media ; lmc_media_t lmc_t1_media ; lmc_media_t lmc_hssi_media ; static void lmc_set_protocol(lmc_softc_t * const sc , lmc_ctl_t *ctl ) ; static void lmc_ds3_init(lmc_softc_t * const sc ) ; static void lmc_ds3_default(lmc_softc_t * const sc ) ; static void lmc_ds3_set_status(lmc_softc_t * const sc , lmc_ctl_t *ctl ) ; static void lmc_ds3_set_100ft(lmc_softc_t * const sc , int ie ) ; static int lmc_ds3_get_link_status(lmc_softc_t * const sc ) ; static void lmc_ds3_set_crc_length(lmc_softc_t * const sc , int state ) ; static void lmc_ds3_set_scram(lmc_softc_t * const sc , int ie ) ; static void lmc_ds3_watchdog(lmc_softc_t * const sc ) ; static void lmc_hssi_init(lmc_softc_t * const sc ) ; static void lmc_hssi_default(lmc_softc_t * const sc ) ; static void lmc_hssi_set_status(lmc_softc_t * const sc , lmc_ctl_t *ctl ) ; static void lmc_hssi_set_clock(lmc_softc_t * const sc , int ie ) ; static int lmc_hssi_get_link_status(lmc_softc_t * const sc ) ; static void lmc_hssi_set_link_status(lmc_softc_t * const sc , int state ) ; static void lmc_hssi_set_crc_length(lmc_softc_t * const sc , int state ) ; static void lmc_hssi_watchdog(lmc_softc_t * const sc ) ; static void lmc_ssi_init(lmc_softc_t * const sc ) ; static void lmc_ssi_default(lmc_softc_t * const sc ) ; static void lmc_ssi_set_status(lmc_softc_t * const sc , lmc_ctl_t *ctl ) ; static void lmc_ssi_set_clock(lmc_softc_t * const sc , int ie ) ; static void lmc_ssi_set_speed(lmc_softc_t * const sc , lmc_ctl_t *ctl ) ; static int lmc_ssi_get_link_status(lmc_softc_t * const sc ) ; static void lmc_ssi_set_link_status(lmc_softc_t * const sc , int state ) ; static void lmc_ssi_set_crc_length(lmc_softc_t * const sc , int state ) ; static void lmc_ssi_watchdog(lmc_softc_t * const sc ) ; static void lmc_t1_init(lmc_softc_t * const sc ) ; static void lmc_t1_default(lmc_softc_t * const sc ) ; static void lmc_t1_set_status(lmc_softc_t * const sc , lmc_ctl_t *ctl ) ; static int lmc_t1_get_link_status(lmc_softc_t * const sc ) ; static void lmc_t1_set_circuit_type(lmc_softc_t * const sc , int ie ) ; static void lmc_t1_set_crc_length(lmc_softc_t * const sc , int state ) ; static void lmc_t1_set_clock(lmc_softc_t * const sc , int ie ) ; static void lmc_t1_watchdog(lmc_softc_t * const sc ) ; static void lmc_dummy_set_1(lmc_softc_t * const sc , int a ) ; static void lmc_dummy_set2_1(lmc_softc_t * const sc , lmc_ctl_t *a ) ; __inline static void write_av9110_bit(lmc_softc_t *sc , int c ) ; static void write_av9110(lmc_softc_t *sc , u32 n , u32 m , u32 v , u32 x , u32 r ) ; lmc_media_t lmc_ds3_media = {& lmc_ds3_init, & lmc_ds3_default, & lmc_ds3_set_status, & lmc_dummy_set_1, & lmc_dummy_set2_1, & lmc_ds3_set_100ft, & lmc_ds3_set_scram, & lmc_ds3_get_link_status, & lmc_dummy_set_1, & lmc_ds3_set_crc_length, & lmc_dummy_set_1, & lmc_ds3_watchdog}; lmc_media_t lmc_hssi_media = {& lmc_hssi_init, & lmc_hssi_default, & lmc_hssi_set_status, & lmc_hssi_set_clock, & lmc_dummy_set2_1, & lmc_dummy_set_1, & lmc_dummy_set_1, & lmc_hssi_get_link_status, & lmc_hssi_set_link_status, & lmc_hssi_set_crc_length, & lmc_dummy_set_1, & lmc_hssi_watchdog}; lmc_media_t lmc_ssi_media = {& lmc_ssi_init, & lmc_ssi_default, & lmc_ssi_set_status, & lmc_ssi_set_clock, & lmc_ssi_set_speed, & lmc_dummy_set_1, & lmc_dummy_set_1, & lmc_ssi_get_link_status, & lmc_ssi_set_link_status, & lmc_ssi_set_crc_length, & lmc_dummy_set_1, & lmc_ssi_watchdog}; lmc_media_t lmc_t1_media = {& lmc_t1_init, & lmc_t1_default, & lmc_t1_set_status, & lmc_t1_set_clock, & lmc_dummy_set2_1, & lmc_dummy_set_1, & lmc_dummy_set_1, & lmc_t1_get_link_status, & lmc_dummy_set_1, & lmc_t1_set_crc_length, & lmc_t1_set_circuit_type, & lmc_t1_watchdog}; static void lmc_dummy_set_1(lmc_softc_t * const sc , int a ) { { return; } } static void lmc_dummy_set2_1(lmc_softc_t * const sc , lmc_ctl_t *a ) { { return; } } static void lmc_hssi_init(lmc_softc_t * const sc ) { { { sc->ictl.cardtype = 0U; lmc_gpio_mkoutput(sc, 8U); } return; } } static void lmc_hssi_default(lmc_softc_t * const sc ) { { { sc->lmc_miireg16 = 1920U; (*((sc->lmc_media)->set_link_status))(sc, 0); (*((sc->lmc_media)->set_clock_source))(sc, 0); (*((sc->lmc_media)->set_crc_length))(sc, 16); } return; } } static void lmc_hssi_set_status(lmc_softc_t * const sc , lmc_ctl_t *ctl ) { { if ((unsigned long )ctl == (unsigned long )((lmc_ctl_t *)0)) { { (*((sc->lmc_media)->set_clock_source))(sc, (int )sc->ictl.clock_source); lmc_set_protocol(sc, (lmc_ctl_t *)0); } return; } else { } if (ctl->clock_source != 0U && sc->ictl.clock_source == 0U) { { (*((sc->lmc_media)->set_clock_source))(sc, 1); sc->lmc_timing = 1; } } else if (ctl->clock_source == 0U && sc->ictl.clock_source != 0U) { { sc->lmc_timing = 0; (*((sc->lmc_media)->set_clock_source))(sc, 0); } } else { } { lmc_set_protocol(sc, ctl); } return; } } static void lmc_hssi_set_clock(lmc_softc_t * const sc , int ie ) { int old ; { old = (int )sc->ictl.clock_source; if (ie == 0) { { sc->lmc_gpio = sc->lmc_gpio | 8U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); sc->ictl.clock_source = 0U; } if (old != ie) { { printk("%s: clock external\n", (char *)(& (sc->lmc_device)->name)); } } else { } } else { { sc->lmc_gpio = sc->lmc_gpio & 4294967287U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); sc->ictl.clock_source = 1U; } if (old != ie) { { printk("%s: clock internal\n", (char *)(& (sc->lmc_device)->name)); } } else { } } return; } } static int lmc_hssi_get_link_status(lmc_softc_t * const sc ) { int tmp ; { { tmp = lmc_ssi_get_link_status(sc); } return (tmp); } } static void lmc_hssi_set_link_status(lmc_softc_t * const sc , int state ) { { if (state == 1) { sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 1U); } else { sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 65534U; } { lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); } return; } } static void lmc_hssi_set_crc_length(lmc_softc_t * const sc , int state ) { { if (state == 32) { sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 64U); sc->ictl.crc_length = 32U; } else { sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 65471U; sc->ictl.crc_length = 16U; } { lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); } return; } } static void lmc_hssi_watchdog(lmc_softc_t * const sc ) { { return; } } static void lmc_ds3_set_100ft(lmc_softc_t * const sc , int ie ) { { if (ie == 1) { sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 65534U; sc->ictl.cable_length = 1U; } else if (ie == 0) { sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 1U); sc->ictl.cable_length = 0U; } else { } { lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); } return; } } static void lmc_ds3_default(lmc_softc_t * const sc ) { { { sc->lmc_miireg16 = 1920U; (*((sc->lmc_media)->set_link_status))(sc, 0); (*((sc->lmc_media)->set_cable_length))(sc, 0); (*((sc->lmc_media)->set_scrambler))(sc, 0); (*((sc->lmc_media)->set_crc_length))(sc, 16); } return; } } static void lmc_ds3_set_status(lmc_softc_t * const sc , lmc_ctl_t *ctl ) { { if ((unsigned long )ctl == (unsigned long )((lmc_ctl_t *)0)) { { (*((sc->lmc_media)->set_cable_length))(sc, (int )sc->ictl.cable_length); (*((sc->lmc_media)->set_scrambler))(sc, (int )sc->ictl.scrambler_onoff); lmc_set_protocol(sc, (lmc_ctl_t *)0); } return; } else { } if (ctl->cable_length != 0U && sc->ictl.cable_length == 0U) { { lmc_ds3_set_100ft(sc, 1); } } else if (ctl->cable_length == 0U && sc->ictl.cable_length != 0U) { { lmc_ds3_set_100ft(sc, 0); } } else { } if (ctl->scrambler_onoff != 0U && sc->ictl.scrambler_onoff == 0U) { { lmc_ds3_set_scram(sc, 1); } } else if (ctl->scrambler_onoff == 0U && sc->ictl.scrambler_onoff != 0U) { { lmc_ds3_set_scram(sc, 0); } } else { } { lmc_set_protocol(sc, ctl); } return; } } static void lmc_ds3_init(lmc_softc_t * const sc ) { int i ; { sc->ictl.cardtype = 1U; i = 0; goto ldv_42800; ldv_42799: { lmc_mii_writereg(sc, 0U, 17U, (unsigned int )i); lmc_mii_writereg(sc, 0U, 18U, 0U); i = i + 1; } ldv_42800: ; if (i <= 20) { goto ldv_42799; } else { } { lmc_mii_writereg(sc, 0U, 17U, 1U); lmc_mii_writereg(sc, 0U, 18U, 37U); lmc_mii_writereg(sc, 0U, 17U, 5U); lmc_mii_writereg(sc, 0U, 18U, 128U); lmc_mii_writereg(sc, 0U, 17U, 14U); lmc_mii_writereg(sc, 0U, 18U, 48U); i = 0; } goto ldv_42803; ldv_42802: { lmc_mii_writereg(sc, 0U, 17U, (unsigned int )i); lmc_mii_readreg(sc, 0U, 18U); i = i + 1; } ldv_42803: ; if (i <= 20) { goto ldv_42802; } else { } return; } } static void lmc_ds3_set_scram(lmc_softc_t * const sc , int ie ) { { if (ie == 1) { sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 8192U); sc->ictl.scrambler_onoff = 1U; } else { sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 57343U; sc->ictl.scrambler_onoff = 0U; } { lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); } return; } } static int lmc_ds3_get_link_status(lmc_softc_t * const sc ) { u16 link_status ; u16 link_status_11 ; int ret ; unsigned int tmp ; u16 r1 ; unsigned int tmp___0 ; u16 r1___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; { { ret = 1; lmc_mii_writereg(sc, 0U, 17U, 7U); tmp = lmc_mii_readreg(sc, 0U, 18U); link_status = (u16 )tmp; lmc_led_on(sc, 1024U); } if (((unsigned int )link_status & 192U) != 0U) { ret = 0; if ((int )((signed char )sc->last_led_err[3]) != 1) { { lmc_mii_writereg(sc, 0U, 17U, 1U); tmp___0 = lmc_mii_readreg(sc, 0U, 18U); r1 = (u16 )tmp___0; r1 = (unsigned int )r1 & 254U; lmc_mii_writereg(sc, 0U, 18U, (unsigned int )r1); printk("\f%s: Red Alarm - Loss of Signal or Loss of Framing\n", sc->name); } } else { } { lmc_led_on(sc, 512U); sc->last_led_err[3] = 1; } } else { { lmc_led_off(sc, 512U); } if ((int )((signed char )sc->last_led_err[3]) == 1) { { lmc_mii_writereg(sc, 0U, 17U, 1U); tmp___1 = lmc_mii_readreg(sc, 0U, 18U); r1___0 = (u16 )tmp___1; r1___0 = (u16 )((unsigned int )r1___0 | 1U); lmc_mii_writereg(sc, 0U, 18U, (unsigned int )r1___0); } } else { } sc->last_led_err[3] = 0; } { lmc_mii_writereg(sc, 0U, 17U, 16U); tmp___2 = lmc_mii_readreg(sc, 0U, 18U); link_status_11 = (u16 )tmp___2; } if (((int )link_status & 32) != 0 || (int )link_status_11 & 1) { ret = 0; if ((int )((signed char )sc->last_led_err[0]) != 1) { { printk("\f%s: AIS Alarm or XBit Error\n", sc->name); printk("\f%s: Remote end has loss of signal or framing\n", sc->name); } } else { } { lmc_led_on(sc, 256U); sc->last_led_err[0] = 1; } } else { { lmc_led_off(sc, 256U); sc->last_led_err[0] = 0; } } { lmc_mii_writereg(sc, 0U, 17U, 9U); tmp___3 = lmc_mii_readreg(sc, 0U, 18U); link_status = (u16 )tmp___3; } if (((int )link_status & 2) != 0) { ret = 0; if ((int )((signed char )sc->last_led_err[1]) != 1) { { printk("\f%s: Blue Alarm - Receiving all 1\'s\n", sc->name); } } else { } { lmc_led_on(sc, 128U); sc->last_led_err[1] = 1; } } else { { lmc_led_off(sc, 128U); sc->last_led_err[1] = 0; } } return (ret); } } static void lmc_ds3_set_crc_length(lmc_softc_t * const sc , int state ) { { if (state == 32) { sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 4096U); sc->ictl.crc_length = 32U; } else { sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 61439U; sc->ictl.crc_length = 16U; } { lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); } return; } } static void lmc_ds3_watchdog(lmc_softc_t * const sc ) { { return; } } static void lmc_ssi_init(lmc_softc_t * const sc ) { u16 mii17 ; int cable ; unsigned int tmp ; { { sc->ictl.cardtype = 2U; tmp = lmc_mii_readreg(sc, 0U, 17U); mii17 = (u16 )tmp; cable = ((int )mii17 & 56) >> 3; sc->ictl.cable_type = (u32 )cable; lmc_gpio_mkoutput(sc, 8U); } return; } } static void lmc_ssi_default(lmc_softc_t * const sc ) { { { sc->lmc_miireg16 = 1920U; lmc_gpio_mkoutput(sc, 8U); (*((sc->lmc_media)->set_link_status))(sc, 0); (*((sc->lmc_media)->set_clock_source))(sc, 0); (*((sc->lmc_media)->set_speed))(sc, (lmc_ctl_t *)0); (*((sc->lmc_media)->set_crc_length))(sc, 16); } return; } } static void lmc_ssi_set_status(lmc_softc_t * const sc , lmc_ctl_t *ctl ) { { if ((unsigned long )ctl == (unsigned long )((lmc_ctl_t *)0)) { { (*((sc->lmc_media)->set_clock_source))(sc, (int )sc->ictl.clock_source); (*((sc->lmc_media)->set_speed))(sc, & sc->ictl); lmc_set_protocol(sc, (lmc_ctl_t *)0); } return; } else { } if (ctl->clock_source == 1U && sc->ictl.clock_source == 0U) { { (*((sc->lmc_media)->set_clock_source))(sc, 1); sc->lmc_timing = 1; } } else if (ctl->clock_source == 0U && sc->ictl.clock_source == 1U) { { (*((sc->lmc_media)->set_clock_source))(sc, 0); sc->lmc_timing = 0; } } else { } if (ctl->clock_rate != sc->ictl.clock_rate) { { (*((sc->lmc_media)->set_speed))(sc, ctl); } } else { } { lmc_set_protocol(sc, ctl); } return; } } static void lmc_ssi_set_clock(lmc_softc_t * const sc , int ie ) { int old ; { old = ie; if (ie == 0) { { sc->lmc_gpio = sc->lmc_gpio & 4294967287U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); sc->ictl.clock_source = 0U; } if (ie != old) { { printk("%s: clock external\n", (char *)(& (sc->lmc_device)->name)); } } else { } } else { { sc->lmc_gpio = sc->lmc_gpio | 8U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); sc->ictl.clock_source = 1U; } if (ie != old) { { printk("%s: clock internal\n", (char *)(& (sc->lmc_device)->name)); } } else { } } return; } } static void lmc_ssi_set_speed(lmc_softc_t * const sc , lmc_ctl_t *ctl ) { lmc_ctl_t *ictl ; lmc_av9110_t *av ; { ictl = & sc->ictl; if ((unsigned long )ctl == (unsigned long )((lmc_ctl_t *)0)) { { av = & ictl->cardspec.ssi; ictl->clock_rate = 1500000U; av->f = ictl->clock_rate; av->n = 120U; av->m = 100U; av->v = 1U; av->x = 1U; av->r = 2U; write_av9110(sc, av->n, av->m, av->v, av->x, av->r); } return; } else { } av = & ctl->cardspec.ssi; if (av->f == 0U) { return; } else { } { ictl->clock_rate = av->f; ictl->cardspec.ssi = *av; write_av9110(sc, av->n, av->m, av->v, av->x, av->r); } return; } } static int lmc_ssi_get_link_status(lmc_softc_t * const sc ) { u16 link_status ; u32 ticks ; int ret ; int hw_hdsk ; unsigned int tmp ; { { ret = 1; hw_hdsk = 1; tmp = lmc_mii_readreg(sc, 0U, 16U); link_status = (u16 )tmp; ticks = inl((int )sc->lmc_csrs.csr_11); ticks = ~ ticks & 65535U; lmc_led_on(sc, 128U); } if ((int )((signed char )sc->lmc_timing) == 1) { { lmc_led_off(sc, 1024U); } } else if (ticks == 0U) { ret = 0; if ((int )((signed char )sc->last_led_err[3]) != 1) { { sc->extra_stats.tx_lossOfClockCnt = sc->extra_stats.tx_lossOfClockCnt + 1U; printk("\f%s: Lost Clock, Link Down\n", sc->name); } } else { } { sc->last_led_err[3] = 1; lmc_led_on(sc, 1024U); } } else { if ((int )((signed char )sc->last_led_err[3]) == 1) { { printk("\f%s: Clock Returned\n", sc->name); } } else { } { sc->last_led_err[3] = 0; lmc_led_off(sc, 1024U); } } if (((int )link_status & 2) == 0) { ret = 0; hw_hdsk = 0; } else { } if (((int )link_status & 24) == 0) { ret = 0; hw_hdsk = 0; } else { } if (hw_hdsk == 0) { if ((int )((signed char )sc->last_led_err[1]) != 1) { { printk("\f%s: DSR not asserted\n", sc->name); } } else { } { sc->last_led_err[1] = 1; lmc_led_off(sc, 256U); } } else { if ((int )((signed char )sc->last_led_err[1]) != 0) { { printk("\f%s: DSR now asserted\n", sc->name); } } else { } { sc->last_led_err[1] = 0; lmc_led_on(sc, 256U); } } if (ret == 1) { { lmc_led_on(sc, 512U); } } else { } return (ret); } } static void lmc_ssi_set_link_status(lmc_softc_t * const sc , int state ) { { if (state == 1) { { sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 5U); printk("%s: asserting DTR and RTS\n", (char *)(& (sc->lmc_device)->name)); } } else { { sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 65530U; printk("%s: deasserting DTR and RTS\n", (char *)(& (sc->lmc_device)->name)); } } { lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); } return; } } static void lmc_ssi_set_crc_length(lmc_softc_t * const sc , int state ) { { if (state == 32) { sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 4096U); sc->ictl.crc_length = 32U; sc->lmc_crcSize = 4U; } else { sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 61439U; sc->ictl.crc_length = 16U; sc->lmc_crcSize = 2U; } { lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); } return; } } __inline static void write_av9110_bit(lmc_softc_t *sc , int c ) { { sc->lmc_gpio = sc->lmc_gpio & 4294967167U; if (c & 1) { sc->lmc_gpio = sc->lmc_gpio | 64U; } else { sc->lmc_gpio = sc->lmc_gpio & 4294967231U; } { outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); sc->lmc_gpio = sc->lmc_gpio | 128U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); sc->lmc_gpio = sc->lmc_gpio & 4294967167U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); } return; } } static void write_av9110(lmc_softc_t *sc , u32 n , u32 m , u32 v , u32 x , u32 r ) { int i ; { { sc->lmc_gpio = sc->lmc_gpio | 4U; sc->lmc_gpio = sc->lmc_gpio & 4294967103U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); lmc_gpio_mkoutput(sc, 196U); sc->lmc_gpio = sc->lmc_gpio & 4294967291U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); i = 0; } goto ldv_42876; ldv_42875: { write_av9110_bit(sc, (int )(n >> i)); i = i + 1; } ldv_42876: ; if (i <= 6) { goto ldv_42875; } else { } i = 0; goto ldv_42879; ldv_42878: { write_av9110_bit(sc, (int )(m >> i)); i = i + 1; } ldv_42879: ; if (i <= 6) { goto ldv_42878; } else { } i = 0; goto ldv_42882; ldv_42881: { write_av9110_bit(sc, (int )(v >> i)); i = i + 1; } ldv_42882: ; if (i <= 0) { goto ldv_42881; } else { } i = 0; goto ldv_42885; ldv_42884: { write_av9110_bit(sc, (int )(x >> i)); i = i + 1; } ldv_42885: ; if (i <= 1) { goto ldv_42884; } else { } i = 0; goto ldv_42888; ldv_42887: { write_av9110_bit(sc, (int )(r >> i)); i = i + 1; } ldv_42888: ; if (i <= 1) { goto ldv_42887; } else { } i = 0; goto ldv_42891; ldv_42890: { write_av9110_bit(sc, 23 >> i); i = i + 1; } ldv_42891: ; if (i <= 4) { goto ldv_42890; } else { } { lmc_gpio_mkinput(sc, 196U); } return; } } static void lmc_ssi_watchdog(lmc_softc_t * const sc ) { u16 mii17 ; unsigned int tmp ; { { tmp = lmc_mii_readreg(sc, 0U, 17U); mii17 = (u16 )tmp; } if ((((int )mii17 >> 3) & 7) == 7) { { lmc_led_off(sc, 512U); } } else { { lmc_led_on(sc, 512U); } } return; } } static void lmc_t1_write(lmc_softc_t * const sc , int a , int d ) { { { lmc_mii_writereg(sc, 0U, 17U, (unsigned int )a); lmc_mii_writereg(sc, 0U, 18U, (unsigned int )d); } return; } } static void lmc_t1_init(lmc_softc_t * const sc ) { u16 mii16 ; int i ; unsigned int tmp ; { { sc->ictl.cardtype = 3U; tmp = lmc_mii_readreg(sc, 0U, 16U); mii16 = (u16 )tmp; mii16 = (unsigned int )mii16 & 65527U; lmc_mii_writereg(sc, 0U, 16U, (unsigned int )mii16 | 8U); lmc_mii_writereg(sc, 0U, 16U, (unsigned int )mii16); sc->lmc_miireg16 = mii16; lmc_t1_set_circuit_type(sc, 1); mii16 = sc->lmc_miireg16; lmc_t1_write(sc, 1, 27); lmc_t1_write(sc, 2, 66); lmc_t1_write(sc, 20, 0); lmc_t1_write(sc, 21, 0); lmc_t1_write(sc, 24, 255); lmc_t1_write(sc, 25, 48); lmc_t1_write(sc, 26, 15); lmc_t1_write(sc, 32, 65); lmc_t1_write(sc, 34, 118); lmc_t1_write(sc, 64, 3); lmc_t1_write(sc, 69, 0); lmc_t1_write(sc, 70, 5); lmc_t1_write(sc, 104, 64); lmc_t1_write(sc, 112, 13); lmc_t1_write(sc, 113, 5); lmc_t1_write(sc, 114, 11); lmc_t1_write(sc, 115, 0); lmc_t1_write(sc, 116, 0); lmc_t1_write(sc, 117, 0); lmc_t1_write(sc, 118, 0); lmc_t1_write(sc, 119, 0); lmc_t1_write(sc, 144, 5); lmc_t1_write(sc, 145, 5); lmc_t1_write(sc, 166, 0); lmc_t1_write(sc, 177, 0); lmc_t1_write(sc, 208, 71); lmc_t1_write(sc, 209, 112); lmc_t1_write(sc, 212, 48); i = 0; } goto ldv_42908; ldv_42907: { lmc_t1_write(sc, i + 224, 0); lmc_t1_write(sc, i + 256, 0); lmc_t1_write(sc, i + 384, 0); i = i + 1; } ldv_42908: ; if (i <= 31) { goto ldv_42907; } else { } i = 1; goto ldv_42911; ldv_42910: { lmc_t1_write(sc, i + 224, 13); i = i + 1; } ldv_42911: ; if (i <= 24) { goto ldv_42910; } else { } { mii16 = (u16 )((unsigned int )mii16 | 4U); lmc_mii_writereg(sc, 0U, 16U, (unsigned int )mii16); sc->lmc_miireg16 = mii16; } return; } } static void lmc_t1_default(lmc_softc_t * const sc ) { { { sc->lmc_miireg16 = 1920U; (*((sc->lmc_media)->set_link_status))(sc, 0); (*((sc->lmc_media)->set_circuit_type))(sc, 1); (*((sc->lmc_media)->set_crc_length))(sc, 16); sc->ictl.clock_source = 1U; } return; } } static void lmc_t1_set_status(lmc_softc_t * const sc , lmc_ctl_t *ctl ) { { if ((unsigned long )ctl == (unsigned long )((lmc_ctl_t *)0)) { { (*((sc->lmc_media)->set_circuit_type))(sc, (int )sc->ictl.circuit_type); lmc_set_protocol(sc, (lmc_ctl_t *)0); } return; } else { } if (ctl->circuit_type == 1U && sc->ictl.circuit_type == 0U) { { (*((sc->lmc_media)->set_circuit_type))(sc, 0); } } else if (ctl->circuit_type == 0U && sc->ictl.circuit_type == 1U) { { (*((sc->lmc_media)->set_circuit_type))(sc, 1); } } else { } { lmc_set_protocol(sc, ctl); } return; } } static int lmc_t1_get_link_status(lmc_softc_t * const sc ) { u16 link_status ; int ret ; unsigned int tmp ; unsigned int tmp___0 ; { { ret = 1; lmc_trace(sc->lmc_device, (char *)"lmc_t1_get_link_status in"); lmc_led_on(sc, 1024U); lmc_mii_writereg(sc, 0U, 17U, 71U); tmp = lmc_mii_readreg(sc, 0U, 18U); link_status = (u16 )tmp; } if (((int )link_status & 16) != 0) { ret = 0; if ((int )((signed char )sc->last_led_err[1]) != 1) { { printk("\f%s: Receive AIS/Blue Alarm. Far end in RED alarm\n", sc->name); } } else { } { lmc_led_on(sc, 128U); sc->last_led_err[1] = 1; } } else { if ((int )((signed char )sc->last_led_err[1]) != 0) { { printk("\f%s: End AIS/Blue Alarm\n", sc->name); } } else { } { lmc_led_off(sc, 128U); sc->last_led_err[1] = 0; } } if (((int )link_status & 128) != 0) { ret = 0; if ((int )((signed char )sc->last_led_err[0]) != 1) { { printk("\f%s: Receive Yellow AIS Alarm\n", sc->name); } } else { } { lmc_led_on(sc, 256U); sc->last_led_err[0] = 1; } } else { if ((int )((signed char )sc->last_led_err[0]) != 0) { { printk("\f%s: End of Yellow AIS Alarm\n", sc->name); } } else { } { lmc_led_off(sc, 256U); sc->last_led_err[0] = 0; } } if (((int )link_status & 2) != 0) { ret = 0; if ((int )((signed char )sc->last_led_err[3]) != 1) { { printk("\f%s: Local Red Alarm: Loss of Framing\n", sc->name); } } else { } { lmc_led_on(sc, 512U); sc->last_led_err[3] = 1; } } else { if ((int )((signed char )sc->last_led_err[3]) != 0) { { printk("\f%s: End Red Alarm (LOF)\n", sc->name); } } else { } if (((int )link_status & 4) == 0) { { lmc_led_off(sc, 512U); } } else { } sc->last_led_err[3] = 0; } if (((int )link_status & 4) != 0) { ret = 0; if ((int )((signed char )sc->last_led_err[2]) != 1) { { printk("\f%s: Local Red Alarm: Loss of Signal\n", sc->name); } } else { } { lmc_led_on(sc, 512U); sc->last_led_err[2] = 1; } } else { if ((int )((signed char )sc->last_led_err[2]) != 0) { { printk("\f%s: End Red Alarm (LOS)\n", sc->name); } } else { } if (((int )link_status & 2) == 0) { { lmc_led_off(sc, 512U); } } else { } sc->last_led_err[2] = 0; } { sc->lmc_xinfo.t1_alarm1_status = link_status; lmc_mii_writereg(sc, 0U, 17U, 72U); tmp___0 = lmc_mii_readreg(sc, 0U, 18U); sc->lmc_xinfo.t1_alarm2_status = (u16 )tmp___0; lmc_trace(sc->lmc_device, (char *)"lmc_t1_get_link_status out"); } return (ret); } } static void lmc_t1_set_circuit_type(lmc_softc_t * const sc , int ie ) { { if (ie == 1) { { sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 16U); sc->ictl.circuit_type = 1U; printk("\016%s: In T1 Mode\n", sc->name); } } else { { sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 65519U; sc->ictl.circuit_type = 0U; printk("\016%s: In E1 Mode\n", sc->name); } } { lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); } return; } } static void lmc_t1_set_crc_length(lmc_softc_t * const sc , int state ) { { if (state == 32) { sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 4096U); sc->ictl.crc_length = 32U; sc->lmc_crcSize = 4U; } else { sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 61439U; sc->ictl.crc_length = 16U; sc->lmc_crcSize = 2U; } { lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); } return; } } static void lmc_t1_set_clock(lmc_softc_t * const sc , int ie ) { int old ; { old = ie; if (ie == 0) { { sc->lmc_gpio = sc->lmc_gpio & 4294967287U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); sc->ictl.clock_source = 0U; } if (old != ie) { { printk("%s: clock external\n", (char *)(& (sc->lmc_device)->name)); } } else { } } else { { sc->lmc_gpio = sc->lmc_gpio | 8U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); sc->ictl.clock_source = 1U; } if (old != ie) { { printk("%s: clock internal\n", (char *)(& (sc->lmc_device)->name)); } } else { } } return; } } static void lmc_t1_watchdog(lmc_softc_t * const sc ) { { return; } } static void lmc_set_protocol(lmc_softc_t * const sc , lmc_ctl_t *ctl ) { { if ((unsigned long )ctl == (unsigned long )((lmc_ctl_t *)0)) { sc->ictl.keepalive_onoff = 1U; } else { } return; } } void ldv_dummy_resourceless_instance_callback_3_12(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_15(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_18(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_24(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_27(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_28(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_29(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_3(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_7(int (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_8(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_9(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_12(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_15(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_18(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_21(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_24(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_27(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_28(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_29(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_3(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_7(int (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_8(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_9(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_12(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_15(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_18(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_21(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_24(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_27(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_28(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_29(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_3(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_7(int (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_8(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_9(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_12(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_15(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_18(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_21(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_24(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_27(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_28(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_29(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_3(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_7(int (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_8(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_9(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void (*ldv_3_callback_defaults)(struct lmc___softc * ) ; int (*ldv_3_callback_get_link_status)(struct lmc___softc * ) ; void (*ldv_3_callback_init)(struct lmc___softc * ) ; void (*ldv_3_callback_set_cable_length)(struct lmc___softc * , int ) ; void (*ldv_3_callback_set_circuit_type)(struct lmc___softc * , int ) ; void (*ldv_3_callback_set_clock_source)(struct lmc___softc * , int ) ; void (*ldv_3_callback_set_crc_length)(struct lmc___softc * , int ) ; void (*ldv_3_callback_set_scrambler)(struct lmc___softc * , int ) ; void (*ldv_3_callback_set_speed)(struct lmc___softc * , struct lmc___ctl * ) ; void (*ldv_3_callback_set_status)(struct lmc___softc * , struct lmc___ctl * ) ; void (*ldv_3_callback_watchdog)(struct lmc___softc * ) ; void (*ldv_4_callback_defaults)(struct lmc___softc * ) ; int (*ldv_4_callback_get_link_status)(struct lmc___softc * ) ; void (*ldv_4_callback_init)(struct lmc___softc * ) ; void (*ldv_4_callback_set_cable_length)(struct lmc___softc * , int ) ; void (*ldv_4_callback_set_circuit_type)(struct lmc___softc * , int ) ; void (*ldv_4_callback_set_clock_source)(struct lmc___softc * , int ) ; void (*ldv_4_callback_set_crc_length)(struct lmc___softc * , int ) ; void (*ldv_4_callback_set_link_status)(struct lmc___softc * , int ) ; void (*ldv_4_callback_set_scrambler)(struct lmc___softc * , int ) ; void (*ldv_4_callback_set_speed)(struct lmc___softc * , struct lmc___ctl * ) ; void (*ldv_4_callback_set_status)(struct lmc___softc * , struct lmc___ctl * ) ; void (*ldv_4_callback_watchdog)(struct lmc___softc * ) ; void (*ldv_5_callback_defaults)(struct lmc___softc * ) ; int (*ldv_5_callback_get_link_status)(struct lmc___softc * ) ; void (*ldv_5_callback_init)(struct lmc___softc * ) ; void (*ldv_5_callback_set_cable_length)(struct lmc___softc * , int ) ; void (*ldv_5_callback_set_circuit_type)(struct lmc___softc * , int ) ; void (*ldv_5_callback_set_clock_source)(struct lmc___softc * , int ) ; void (*ldv_5_callback_set_crc_length)(struct lmc___softc * , int ) ; void (*ldv_5_callback_set_link_status)(struct lmc___softc * , int ) ; void (*ldv_5_callback_set_scrambler)(struct lmc___softc * , int ) ; void (*ldv_5_callback_set_speed)(struct lmc___softc * , struct lmc___ctl * ) ; void (*ldv_5_callback_set_status)(struct lmc___softc * , struct lmc___ctl * ) ; void (*ldv_5_callback_watchdog)(struct lmc___softc * ) ; void (*ldv_6_callback_defaults)(struct lmc___softc * ) ; int (*ldv_6_callback_get_link_status)(struct lmc___softc * ) ; void (*ldv_6_callback_init)(struct lmc___softc * ) ; void (*ldv_6_callback_set_cable_length)(struct lmc___softc * , int ) ; void (*ldv_6_callback_set_circuit_type)(struct lmc___softc * , int ) ; void (*ldv_6_callback_set_clock_source)(struct lmc___softc * , int ) ; void (*ldv_6_callback_set_crc_length)(struct lmc___softc * , int ) ; void (*ldv_6_callback_set_link_status)(struct lmc___softc * , int ) ; void (*ldv_6_callback_set_scrambler)(struct lmc___softc * , int ) ; void (*ldv_6_callback_set_speed)(struct lmc___softc * , struct lmc___ctl * ) ; void (*ldv_6_callback_set_status)(struct lmc___softc * , struct lmc___ctl * ) ; void (*ldv_6_callback_watchdog)(struct lmc___softc * ) ; void (*ldv_3_callback_defaults)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_ds3_default); int (*ldv_3_callback_get_link_status)(struct lmc___softc * ) = (int (*)(struct lmc___softc * ))(& lmc_ds3_get_link_status); void (*ldv_3_callback_init)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_ds3_init); void (*ldv_3_callback_set_cable_length)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_ds3_set_100ft); void (*ldv_3_callback_set_circuit_type)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_t1_set_circuit_type); void (*ldv_3_callback_set_clock_source)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_t1_set_clock); void (*ldv_3_callback_set_crc_length)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_ds3_set_crc_length); void (*ldv_3_callback_set_scrambler)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_ds3_set_scram); void (*ldv_3_callback_set_speed)(struct lmc___softc * , struct lmc___ctl * ) = (void (*)(struct lmc___softc * , struct lmc___ctl * ))(& lmc_dummy_set2_1); void (*ldv_3_callback_set_status)(struct lmc___softc * , struct lmc___ctl * ) = (void (*)(struct lmc___softc * , struct lmc___ctl * ))(& lmc_ds3_set_status); void (*ldv_3_callback_watchdog)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_ds3_watchdog); void (*ldv_4_callback_defaults)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_hssi_default); int (*ldv_4_callback_get_link_status)(struct lmc___softc * ) = (int (*)(struct lmc___softc * ))(& lmc_hssi_get_link_status); void (*ldv_4_callback_init)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_hssi_init); void (*ldv_4_callback_set_cable_length)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_dummy_set_1); void (*ldv_4_callback_set_circuit_type)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_t1_set_circuit_type); void (*ldv_4_callback_set_clock_source)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_hssi_set_clock); void (*ldv_4_callback_set_crc_length)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_hssi_set_crc_length); void (*ldv_4_callback_set_link_status)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_hssi_set_link_status); void (*ldv_4_callback_set_scrambler)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_dummy_set_1); void (*ldv_4_callback_set_speed)(struct lmc___softc * , struct lmc___ctl * ) = (void (*)(struct lmc___softc * , struct lmc___ctl * ))(& lmc_ssi_set_speed); void (*ldv_4_callback_set_status)(struct lmc___softc * , struct lmc___ctl * ) = (void (*)(struct lmc___softc * , struct lmc___ctl * ))(& lmc_hssi_set_status); void (*ldv_4_callback_watchdog)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_hssi_watchdog); void (*ldv_5_callback_defaults)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_ssi_default); int (*ldv_5_callback_get_link_status)(struct lmc___softc * ) = (int (*)(struct lmc___softc * ))(& lmc_ssi_get_link_status); void (*ldv_5_callback_init)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_ssi_init); void (*ldv_5_callback_set_cable_length)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_dummy_set_1); void (*ldv_5_callback_set_circuit_type)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_t1_set_circuit_type); void (*ldv_5_callback_set_clock_source)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_ssi_set_clock); void (*ldv_5_callback_set_crc_length)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_ssi_set_crc_length); void (*ldv_5_callback_set_link_status)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_ssi_set_link_status); void (*ldv_5_callback_set_scrambler)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_dummy_set_1); void (*ldv_5_callback_set_speed)(struct lmc___softc * , struct lmc___ctl * ) = (void (*)(struct lmc___softc * , struct lmc___ctl * ))(& lmc_ssi_set_speed); void (*ldv_5_callback_set_status)(struct lmc___softc * , struct lmc___ctl * ) = (void (*)(struct lmc___softc * , struct lmc___ctl * ))(& lmc_ssi_set_status); void (*ldv_5_callback_watchdog)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_ssi_watchdog); void (*ldv_6_callback_defaults)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_t1_default); int (*ldv_6_callback_get_link_status)(struct lmc___softc * ) = (int (*)(struct lmc___softc * ))(& lmc_t1_get_link_status); void (*ldv_6_callback_init)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_t1_init); void (*ldv_6_callback_set_cable_length)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_dummy_set_1); void (*ldv_6_callback_set_circuit_type)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_t1_set_circuit_type); void (*ldv_6_callback_set_clock_source)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_t1_set_clock); void (*ldv_6_callback_set_crc_length)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_t1_set_crc_length); void (*ldv_6_callback_set_link_status)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_ssi_set_link_status); void (*ldv_6_callback_set_scrambler)(struct lmc___softc * , int ) = (void (*)(struct lmc___softc * , int ))(& lmc_dummy_set_1); void (*ldv_6_callback_set_speed)(struct lmc___softc * , struct lmc___ctl * ) = (void (*)(struct lmc___softc * , struct lmc___ctl * ))(& lmc_ssi_set_speed); void (*ldv_6_callback_set_status)(struct lmc___softc * , struct lmc___ctl * ) = (void (*)(struct lmc___softc * , struct lmc___ctl * ))(& lmc_t1_set_status); void (*ldv_6_callback_watchdog)(struct lmc___softc * ) = (void (*)(struct lmc___softc * ))(& lmc_t1_watchdog); void ldv_dummy_resourceless_instance_callback_3_12(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_t1_set_circuit_type((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_15(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_t1_set_clock((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_18(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_ds3_set_crc_length((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_24(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_ds3_set_scram((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_27(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) { { { lmc_dummy_set2_1((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_28(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) { { { lmc_ds3_set_status((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_29(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_ds3_watchdog((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_ds3_default((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_7(int (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_ds3_get_link_status((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_8(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_ds3_init((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_ds3_set_100ft((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_12(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_t1_set_circuit_type((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_15(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_hssi_set_clock((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_18(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_hssi_set_crc_length((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_21(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_hssi_set_link_status((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_24(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_dummy_set_1((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_27(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) { { { lmc_ssi_set_speed((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_28(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) { { { lmc_hssi_set_status((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_29(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_hssi_watchdog((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_hssi_default((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_7(int (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_hssi_get_link_status((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_8(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_hssi_init((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_dummy_set_1((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_12(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_t1_set_circuit_type((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_15(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_ssi_set_clock((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_18(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_ssi_set_crc_length((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_21(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_ssi_set_link_status((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_24(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_dummy_set_1((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_27(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) { { { lmc_ssi_set_speed((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_28(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) { { { lmc_ssi_set_status((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_29(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_ssi_watchdog((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_ssi_default((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_7(int (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_ssi_get_link_status((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_8(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_ssi_init((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_dummy_set_1((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_12(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_t1_set_circuit_type((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_15(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_t1_set_clock((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_18(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_t1_set_crc_length((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_21(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_ssi_set_link_status((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_24(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_dummy_set_1((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_27(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) { { { lmc_ssi_set_speed((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_28(void (*arg0)(struct lmc___softc * , struct lmc___ctl * ) , struct lmc___softc *arg1 , struct lmc___ctl *arg2 ) { { { lmc_t1_set_status((lmc_softc_t */* const */)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_29(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_t1_watchdog((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_t1_default((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_7(int (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_t1_get_link_status((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_8(void (*arg0)(struct lmc___softc * ) , struct lmc___softc *arg1 ) { { { lmc_t1_init((lmc_softc_t */* const */)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_9(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { lmc_dummy_set_1((lmc_softc_t */* const */)arg1, arg2); } return; } } long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } extern void might_fault(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static void rep_nop(void) { { __asm__ volatile ("rep; nop": : : "memory"); return; } } __inline static void cpu_relax(void) { { { rep_nop(); } return; } } extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_63(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_65(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_67(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_69(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_71(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_73(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_75(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_77(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_79(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_81(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_83(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_95(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_97(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_101(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_lmc_lock_of_lmc___softc(void) ; void ldv_spin_unlock_lmc_lock_of_lmc___softc(void) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_93(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_94(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int del_timer(struct timer_list * ) ; static int ldv_del_timer_91(struct timer_list *ldv_func_arg1 ) ; extern void add_timer(struct timer_list * ) ; __inline static phys_addr_t virt_to_phys(void volatile *address ) { unsigned long tmp ; { { tmp = __phys_addr((unsigned long )address); } return ((phys_addr_t )tmp); } } static void *ldv_dev_get_drvdata_59(struct device const *dev ) ; static int ldv_dev_set_drvdata_60(struct device *dev , void *data ) ; extern void __const_udelay(unsigned long ) ; extern bool capable(int ) ; extern void kfree(void const * ) ; extern void *ldv_malloc(size_t); void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } extern void consume_skb(struct sk_buff * ) ; __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned char *skb_tail_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->tail); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static int skb_tailroom(struct sk_buff const *skb ) { bool tmp ; { { tmp = skb_is_nonlinear(skb); } return ((int )tmp ? 0 : (int )((unsigned int )skb->end - (unsigned int )skb->tail)); } } __inline static void skb_reset_mac_header(struct sk_buff *skb ) { { skb->mac_header = (int )((__u16 )((long )skb->data)) - (int )((__u16 )((long )skb->head)); return; } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, 32U); } return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { { tmp = netdev_alloc_skb((struct net_device *)0, length); } return (tmp); } } __inline static void skb_copy_from_linear_data(struct sk_buff const *skb , void *to , unsigned int const len ) { { { memcpy(to, (void const *)skb->data, (size_t )len); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_87(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_89(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } extern unsigned long dev_trans_start(struct net_device * ) ; extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_86(struct net_device *ldv_func_arg1 ) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_99(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_100(struct pci_driver *ldv_func_arg1 ) ; __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_59((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_60(& pdev->dev, data); } return; } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_90(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_92(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void unregister_hdlc_device(struct net_device * ) ; static void ldv_unregister_hdlc_device_88(struct net_device *ldv_func_arg1 ) ; extern struct net_device *alloc_hdlcdev(void * ) ; __inline static struct hdlc_device *dev_to_hdlc(struct net_device *dev ) { void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); } return ((struct hdlc_device *)tmp); } } extern int hdlc_change_mtu(struct net_device * , int ) ; extern netdev_tx_t hdlc_start_xmit(struct sk_buff * , struct net_device * ) ; int lmc_ioctl(struct net_device *dev , struct ifreq *ifr , int cmd ) ; void lmc_proto_attach(lmc_softc_t *sc ) ; int lmc_proto_ioctl(lmc_softc_t *sc , struct ifreq *ifr , int cmd ) ; int lmc_proto_open(lmc_softc_t *sc ) ; void lmc_proto_close(lmc_softc_t *sc ) ; __be16 lmc_proto_type(lmc_softc_t *sc , struct sk_buff *skb ) ; void lmc_proto_netif(lmc_softc_t *sc , struct sk_buff *skb ) ; __inline static lmc_softc_t *dev_to_sc(struct net_device *dev ) { struct hdlc_device *tmp ; { { tmp = dev_to_hdlc(dev); } return ((lmc_softc_t *)tmp->priv); } } static int LMC_PKT_BUF_SZ = 1542; static struct pci_device_id const lmc_pci_tbl[3U] = { {4113U, 9U, 4982U, 4294967295U, 0U, 0U, 0UL}, {4113U, 9U, 4294967295U, 4982U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static netdev_tx_t lmc_start_xmit(struct sk_buff *skb , struct net_device *dev ) ; static int lmc_rx(struct net_device *dev ) ; static int lmc_open(struct net_device *dev ) ; static int lmc_close(struct net_device *dev ) ; static struct net_device_stats *lmc_get_stats(struct net_device *dev ) ; static irqreturn_t lmc_interrupt(int irq , void *dev_instance ) ; static void lmc_initcsrs(lmc_softc_t * const sc , unsigned long csr_base , size_t csr_size ) ; static void lmc_softreset(lmc_softc_t * const sc ) ; static void lmc_running_reset(struct net_device *dev ) ; static int lmc_ifdown(struct net_device * const dev ) ; static void lmc_watchdog(unsigned long data ) ; static void lmc_reset(lmc_softc_t * const sc ) ; static void lmc_dec_reset(lmc_softc_t * const sc ) ; static void lmc_driver_timeout(struct net_device *dev ) ; int lmc_ioctl(struct net_device *dev , struct ifreq *ifr , int cmd ) { lmc_softc_t *sc ; lmc_softc_t *tmp ; lmc_ctl_t ctl ; int ret ; u16 regVal ; unsigned long flags ; unsigned long tmp___0 ; bool tmp___1 ; int tmp___2 ; unsigned long tmp___3 ; u16 old_type ; u16 new_type ; bool tmp___4 ; int tmp___5 ; unsigned long tmp___6 ; unsigned int tmp___7 ; unsigned long tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; unsigned int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned long tmp___14 ; unsigned long tmp___15 ; bool tmp___16 ; int tmp___17 ; bool tmp___18 ; int tmp___19 ; unsigned long tmp___20 ; bool tmp___21 ; int tmp___22 ; unsigned int tmp___23 ; unsigned int tmp___24 ; struct lmc_xilinx_control xc ; bool tmp___25 ; int tmp___26 ; unsigned long tmp___27 ; u16 mii ; unsigned int tmp___28 ; int i ; unsigned long __ms ; unsigned long tmp___29 ; unsigned long __ms___0 ; unsigned long tmp___30 ; unsigned long __ms___1 ; unsigned long tmp___31 ; unsigned long __ms___2 ; unsigned long tmp___32 ; u16 mii___0 ; int timeout ; unsigned int tmp___33 ; unsigned int tmp___34 ; int tmp___35 ; char *data ; int pos ; int timeout___0 ; void *tmp___36 ; unsigned long tmp___37 ; unsigned int tmp___38 ; int tmp___39 ; unsigned int tmp___40 ; unsigned int tmp___41 ; { { tmp = dev_to_sc(dev); sc = tmp; ret = -95; lmc_trace(dev, (char *)"lmc_ioctl in"); } { if (cmd == 35315) { goto case_35315; } else { } if (cmd == 35316) { goto case_35316; } else { } if (cmd == 35325) { goto case_35325; } else { } if (cmd == 35320) { goto case_35320; } else { } if (cmd == 35317) { goto case_35317; } else { } if (cmd == 35318) { goto case_35318; } else { } if (cmd == 35321) { goto case_35321; } else { } if (cmd == 35323) { goto case_35323; } else { } if (cmd == 35324) { goto case_35324; } else { } if (cmd == 35326) { goto case_35326; } else { } goto switch_default___1; case_35315: /* CIL Label */ { tmp___0 = copy_to_user(ifr->ifr_ifru.ifru_data, (void const *)(& sc->ictl), 68UL); } if (tmp___0 != 0UL) { ret = -14; } else { ret = 0; } goto ldv_43832; case_35316: /* CIL Label */ { tmp___1 = capable(12); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { ret = -1; goto ldv_43832; } else { } if ((int )dev->flags & 1) { ret = -16; goto ldv_43832; } else { } { tmp___3 = copy_from_user((void *)(& ctl), (void const *)ifr->ifr_ifru.ifru_data, 68UL); } if (tmp___3 != 0UL) { ret = -14; goto ldv_43832; } else { } { ldv___ldv_spin_lock_63(& sc->lmc_lock); (*((sc->lmc_media)->set_status))(sc, & ctl); } if (ctl.crc_length != sc->ictl.crc_length) { { (*((sc->lmc_media)->set_crc_length))(sc, (int )ctl.crc_length); } if (sc->ictl.crc_length == 16U) { sc->TxDescriptControlInit = sc->TxDescriptControlInit | 67108864U; } else { sc->TxDescriptControlInit = sc->TxDescriptControlInit & 4227858431U; } } else { } { ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); ret = 0; } goto ldv_43832; case_35325: /* CIL Label */ { old_type = sc->if_type; tmp___4 = capable(12); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { ret = -1; goto ldv_43832; } else { } { tmp___6 = copy_from_user((void *)(& new_type), (void const *)ifr->ifr_ifru.ifru_data, 2UL); } if (tmp___6 != 0UL) { ret = -14; goto ldv_43832; } else { } if ((int )new_type == (int )old_type) { ret = 0; goto ldv_43832; } else { } { ldv___ldv_spin_lock_65(& sc->lmc_lock); lmc_proto_close(sc); sc->if_type = new_type; lmc_proto_attach(sc); ret = lmc_proto_open(sc); ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); } goto ldv_43832; case_35320: /* CIL Label */ { ldv___ldv_spin_lock_67(& sc->lmc_lock); sc->lmc_xinfo.Magic0 = 3203386110U; sc->lmc_xinfo.PciCardType = (u32 )sc->lmc_cardtype; sc->lmc_xinfo.PciSlotNumber = 0U; sc->lmc_xinfo.DriverMajorVersion = 1U; sc->lmc_xinfo.DriverMinorVersion = 34U; sc->lmc_xinfo.DriverSubVersion = 0U; tmp___7 = lmc_mii_readreg(sc, 0U, 3U); sc->lmc_xinfo.XilinxRevisionNumber = (unsigned int )((u16 )tmp___7) & 15U; sc->lmc_xinfo.MaxFrameSize = (u16 )LMC_PKT_BUF_SZ; sc->lmc_xinfo.link_status = (*((sc->lmc_media)->get_link_status))(sc); sc->lmc_xinfo.mii_reg16 = lmc_mii_readreg(sc, 0U, 16U); ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); sc->lmc_xinfo.Magic1 = 3735928559U; tmp___8 = copy_to_user(ifr->ifr_ifru.ifru_data, (void const *)(& sc->lmc_xinfo), 40UL); } if (tmp___8 != 0UL) { ret = -14; } else { ret = 0; } goto ldv_43832; case_35317: /* CIL Label */ { ldv___ldv_spin_lock_69(& sc->lmc_lock); } if (sc->lmc_cardtype == 4) { { lmc_mii_writereg(sc, 0U, 17U, 80U); tmp___9 = lmc_mii_readreg(sc, 0U, 18U); sc->extra_stats.framingBitErrorCount = sc->extra_stats.framingBitErrorCount + (tmp___9 & 255U); lmc_mii_writereg(sc, 0U, 17U, 81U); tmp___10 = lmc_mii_readreg(sc, 0U, 18U); sc->extra_stats.framingBitErrorCount = sc->extra_stats.framingBitErrorCount + ((tmp___10 << 8) & 65535U); lmc_mii_writereg(sc, 0U, 17U, 84U); tmp___11 = lmc_mii_readreg(sc, 0U, 18U); sc->extra_stats.lineCodeViolationCount = sc->extra_stats.lineCodeViolationCount + (tmp___11 & 255U); lmc_mii_writereg(sc, 0U, 17U, 85U); tmp___12 = lmc_mii_readreg(sc, 0U, 18U); sc->extra_stats.lineCodeViolationCount = sc->extra_stats.lineCodeViolationCount + ((tmp___12 << 8) & 65535U); lmc_mii_writereg(sc, 0U, 17U, 90U); tmp___13 = lmc_mii_readreg(sc, 0U, 18U); regVal = (unsigned int )((u16 )tmp___13) & 255U; sc->extra_stats.lossOfFrameCount = sc->extra_stats.lossOfFrameCount + (u32 )(((int )regVal & 240) >> 4); sc->extra_stats.changeOfFrameAlignmentCount = sc->extra_stats.changeOfFrameAlignmentCount + (u32 )(((int )regVal & 192) >> 2); sc->extra_stats.severelyErroredFrameCount = sc->extra_stats.severelyErroredFrameCount + ((u32 )regVal & 3U); } } else { } { ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); tmp___14 = copy_to_user(ifr->ifr_ifru.ifru_data, (void const *)(& (sc->lmc_device)->stats), 184UL); } if (tmp___14 != 0UL) { ret = -14; } else { { tmp___15 = copy_to_user(ifr->ifr_ifru.ifru_data + 184UL, (void const *)(& sc->extra_stats), 132UL); } if (tmp___15 != 0UL) { ret = -14; } else { ret = 0; } } goto ldv_43832; case_35318: /* CIL Label */ { tmp___16 = capable(12); } if (tmp___16) { tmp___17 = 0; } else { tmp___17 = 1; } if (tmp___17) { ret = -1; goto ldv_43832; } else { } { ldv___ldv_spin_lock_71(& sc->lmc_lock); memset((void *)(& (sc->lmc_device)->stats), 0, 184UL); memset((void *)(& sc->extra_stats), 0, 132UL); sc->extra_stats.check = 3203386110U; sc->extra_stats.version_size = 19005756U; sc->extra_stats.lmc_cardtype = (u32 )sc->lmc_cardtype; ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); ret = 0; } goto ldv_43832; case_35321: /* CIL Label */ { tmp___18 = capable(12); } if (tmp___18) { tmp___19 = 0; } else { tmp___19 = 1; } if (tmp___19) { ret = -1; goto ldv_43832; } else { } if ((int )dev->flags & 1) { ret = -16; goto ldv_43832; } else { } { tmp___20 = copy_from_user((void *)(& ctl), (void const *)ifr->ifr_ifru.ifru_data, 68UL); } if (tmp___20 != 0UL) { ret = -14; goto ldv_43832; } else { } { ldv___ldv_spin_lock_73(& sc->lmc_lock); (*((sc->lmc_media)->set_circuit_type))(sc, (int )ctl.circuit_type); sc->ictl.circuit_type = ctl.circuit_type; ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); ret = 0; } goto ldv_43832; case_35323: /* CIL Label */ { tmp___21 = capable(12); } if (tmp___21) { tmp___22 = 0; } else { tmp___22 = 1; } if (tmp___22) { ret = -1; goto ldv_43832; } else { } { ldv___ldv_spin_lock_75(& sc->lmc_lock); tmp___23 = lmc_mii_readreg(sc, 0U, 16U); printk(" REG16 before reset +%04x\n", tmp___23); lmc_running_reset(dev); tmp___24 = lmc_mii_readreg(sc, 0U, 16U); printk(" REG16 after reset +%04x\n", tmp___24); ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); ret = 0; } goto ldv_43832; case_35324: /* CIL Label */ ; if (sc->lmc_cardtype != 4) { ret = -95; goto ldv_43832; } else { } goto ldv_43832; case_35326: /* CIL Label */ { tmp___25 = capable(12); } if (tmp___25) { tmp___26 = 0; } else { tmp___26 = 1; } if (tmp___26) { ret = -1; goto ldv_43832; } else { } { netif_stop_queue(dev); tmp___27 = copy_from_user((void *)(& xc), (void const *)ifr->ifr_ifru.ifru_data, 16UL); } if (tmp___27 != 0UL) { ret = -14; goto ldv_43832; } else { } { if ((unsigned int )xc.command == 1U) { goto case_1; } else { } if ((unsigned int )xc.command == 2U) { goto case_2; } else { } if ((unsigned int )xc.command == 3U) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { ldv___ldv_spin_lock_77(& sc->lmc_lock); tmp___28 = lmc_mii_readreg(sc, 0U, 16U); mii = (u16 )tmp___28; lmc_gpio_mkinput(sc, 255U); lmc_gpio_mkoutput(sc, 2U); sc->lmc_gpio = sc->lmc_gpio & 4294967293U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); __const_udelay(214750UL); sc->lmc_gpio = sc->lmc_gpio | 2U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); lmc_gpio_mkinput(sc, 255U); (*((sc->lmc_media)->set_link_status))(sc, 1); (*((sc->lmc_media)->set_status))(sc, (lmc_ctl_t *)0); i = 0; } goto ldv_43865; ldv_43864: { lmc_led_on(sc, 256U); __ms = 100UL; } goto ldv_43850; ldv_43849: { __const_udelay(4295000UL); } ldv_43850: tmp___29 = __ms; __ms = __ms - 1UL; if (tmp___29 != 0UL) { goto ldv_43849; } else { } { lmc_led_off(sc, 256U); lmc_led_on(sc, 128U); __ms___0 = 100UL; } goto ldv_43854; ldv_43853: { __const_udelay(4295000UL); } ldv_43854: tmp___30 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___30 != 0UL) { goto ldv_43853; } else { } { lmc_led_off(sc, 128U); lmc_led_on(sc, 512U); __ms___1 = 100UL; } goto ldv_43858; ldv_43857: { __const_udelay(4295000UL); } ldv_43858: tmp___31 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___31 != 0UL) { goto ldv_43857; } else { } { lmc_led_off(sc, 512U); lmc_led_on(sc, 1024U); __ms___2 = 100UL; } goto ldv_43862; ldv_43861: { __const_udelay(4295000UL); } ldv_43862: tmp___32 = __ms___2; __ms___2 = __ms___2 - 1UL; if (tmp___32 != 0UL) { goto ldv_43861; } else { } { lmc_led_off(sc, 1024U); i = i + 1; } ldv_43865: ; if (i <= 4) { goto ldv_43864; } else { } { ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); ret = 0; } goto ldv_43867; case_2: /* CIL Label */ { timeout = 500000; ldv___ldv_spin_lock_79(& sc->lmc_lock); tmp___33 = lmc_mii_readreg(sc, 0U, 16U); mii___0 = (u16 )tmp___33; lmc_gpio_mkinput(sc, 255U); lmc_gpio_mkoutput(sc, 34U); sc->lmc_gpio = sc->lmc_gpio & 4294967261U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); __const_udelay(214750UL); sc->lmc_gpio = sc->lmc_gpio | 34U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); } goto ldv_43872; ldv_43871: { cpu_relax(); } ldv_43872: { tmp___34 = inl((int )sc->lmc_csrs.csr_12); } if ((tmp___34 & 1U) == 0U) { tmp___35 = timeout; timeout = timeout - 1; if (tmp___35 > 0) { goto ldv_43871; } else { goto ldv_43873; } } else { } ldv_43873: { lmc_gpio_mkinput(sc, 255U); ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); ret = 0; } goto ldv_43867; case_3: /* CIL Label */ timeout___0 = 500000; if ((unsigned long )xc.data == (unsigned long )((char *)0)) { ret = -22; goto ldv_43867; } else { } { tmp___36 = kmalloc((size_t )xc.len, 208U); data = (char *)tmp___36; } if ((unsigned long )data == (unsigned long )((char *)0)) { ret = -12; goto ldv_43867; } else { } { tmp___37 = copy_from_user((void *)data, (void const *)xc.data, (unsigned long )xc.len); } if (tmp___37 != 0UL) { { kfree((void const *)data); ret = -12; } goto ldv_43867; } else { } { printk("%s: Starting load of data Len: %d at 0x%p == 0x%p\n", (char *)(& dev->name), xc.len, xc.data, data); ldv___ldv_spin_lock_81(& sc->lmc_lock); lmc_gpio_mkinput(sc, 255U); sc->lmc_gpio = 0U; sc->lmc_gpio = sc->lmc_gpio & 4294967263U; sc->lmc_gpio = sc->lmc_gpio & 4294967293U; sc->lmc_gpio = sc->lmc_gpio | 16U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); lmc_gpio_mkoutput(sc, 50U); __const_udelay(214750UL); lmc_gpio_mkinput(sc, 34U); sc->lmc_gpio = 0U; sc->lmc_gpio = sc->lmc_gpio | 16U; sc->lmc_gpio = sc->lmc_gpio | 64U; sc->lmc_gpio = sc->lmc_gpio | 128U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); lmc_gpio_mkoutput(sc, 208U); } goto ldv_43879; ldv_43878: { cpu_relax(); } ldv_43879: { tmp___38 = inl((int )sc->lmc_csrs.csr_12); } if ((tmp___38 & 1U) == 0U) { tmp___39 = timeout___0; timeout___0 = timeout___0 - 1; if (tmp___39 > 0) { goto ldv_43878; } else { goto ldv_43880; } } else { } ldv_43880: { printk("\017%s: Waited %d for the Xilinx to clear it\'s memory\n", (char *)(& dev->name), 500000 - timeout___0); pos = 0; } goto ldv_43886; ldv_43885: ; { if ((int )*(data + (unsigned long )pos) == 0) { goto case_0; } else { } if ((int )*(data + (unsigned long )pos) == 1) { goto case_1___0; } else { } goto switch_default; case_0: /* CIL Label */ sc->lmc_gpio = sc->lmc_gpio & 4294967231U; goto ldv_43882; case_1___0: /* CIL Label */ sc->lmc_gpio = sc->lmc_gpio | 64U; goto ldv_43882; switch_default: /* CIL Label */ { printk("\f%s Bad data in xilinx programming data at %d, got %d wanted 0 or 1\n", (char *)(& dev->name), pos, (int )*(data + (unsigned long )pos)); sc->lmc_gpio = sc->lmc_gpio | 64U; } switch_break___1: /* CIL Label */ ; } ldv_43882: { sc->lmc_gpio = sc->lmc_gpio & 4294967167U; sc->lmc_gpio = sc->lmc_gpio | 16U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); __const_udelay(4295UL); sc->lmc_gpio = sc->lmc_gpio | 128U; sc->lmc_gpio = sc->lmc_gpio | 16U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); __const_udelay(4295UL); pos = pos + 1; } ldv_43886: ; if (pos < xc.len) { goto ldv_43885; } else { } { tmp___41 = inl((int )sc->lmc_csrs.csr_12); } if ((tmp___41 & 1U) == 0U) { { printk("\f%s: Reprogramming FAILED. Needs to be reprogrammed. (corrupted data)\n", (char *)(& dev->name)); } } else { { tmp___40 = inl((int )sc->lmc_csrs.csr_12); } if ((tmp___40 & 32U) == 0U) { { printk("\f%s: Reprogramming FAILED. Needs to be reprogrammed. (done)\n", (char *)(& dev->name)); } } else { { printk("\017%s: Done reprogramming Xilinx, %d bits, good luck!\n", (char *)(& dev->name), pos); } } } { lmc_gpio_mkinput(sc, 255U); sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 2048U); lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 63487U; lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); kfree((void const *)data); ret = 0; } goto ldv_43867; switch_default___0: /* CIL Label */ ret = -52; goto ldv_43867; switch_break___0: /* CIL Label */ ; } ldv_43867: { netif_wake_queue(dev); sc->lmc_txfull = 0; } goto ldv_43832; switch_default___1: /* CIL Label */ { ret = lmc_proto_ioctl(sc, ifr, cmd); } goto ldv_43832; switch_break: /* CIL Label */ ; } ldv_43832: { lmc_trace(dev, (char *)"lmc_ioctl out"); } return (ret); } } static void lmc_watchdog(unsigned long data ) { struct net_device *dev ; lmc_softc_t *sc ; lmc_softc_t *tmp ; int link_status ; u32 ticks ; unsigned long flags ; { { dev = (struct net_device *)data; tmp = dev_to_sc(dev); sc = tmp; lmc_trace(dev, (char *)"lmc_watchdog in"); ldv___ldv_spin_lock_83(& sc->lmc_lock); } if (sc->check != 3199191806U) { { printk("LMC: Corrupt net_device struct, breaking out\n"); ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); } return; } else { } { outl(17U, (int )sc->lmc_csrs.csr_15); sc->lmc_cmdmode = sc->lmc_cmdmode | 8194U; outl(sc->lmc_cmdmode, (int )sc->lmc_csrs.csr_command); } if (sc->lmc_ok == 0) { goto kick_timer; } else { } if (((unsigned int )sc->lmc_taint_tx == sc->lastlmc_taint_tx && (sc->lmc_device)->stats.tx_packets > (unsigned long )sc->lasttx_packets) && sc->tx_TimeoutInd == 0) { sc->tx_TimeoutInd = 1; } else if (((unsigned int )sc->lmc_taint_tx == sc->lastlmc_taint_tx && (sc->lmc_device)->stats.tx_packets > (unsigned long )sc->lasttx_packets) && sc->tx_TimeoutInd != 0) { { sc->tx_TimeoutDisplay = 1; sc->extra_stats.tx_TimeoutCnt = sc->extra_stats.tx_TimeoutCnt + 1U; lmc_running_reset(dev); sc->tx_TimeoutInd = 0; sc->lastlmc_taint_tx = sc->lmc_taint_tx; sc->lasttx_packets = (int )(sc->lmc_device)->stats.tx_packets; } } else { sc->tx_TimeoutInd = 0; sc->lastlmc_taint_tx = sc->lmc_taint_tx; sc->lasttx_packets = (int )(sc->lmc_device)->stats.tx_packets; } { link_status = (*((sc->lmc_media)->get_link_status))(sc); } if (link_status == 0 && sc->last_link_status != 0) { { printk("\f%s: hardware/physical link down\n", (char *)(& dev->name)); sc->last_link_status = 0; netif_carrier_off(dev); } } else { } if (link_status != 0 && sc->last_link_status == 0) { { printk("\f%s: hardware/physical link up\n", (char *)(& dev->name)); sc->last_link_status = 1; netif_carrier_on(dev); } } else { } { (*((sc->lmc_media)->watchdog))(sc); outl(0U, (int )sc->lmc_csrs.csr_rxpoll); } if ((unsigned int )sc->failed_ring == 1U) { { sc->failed_ring = 0U; lmc_softreset(sc); } } else { } if ((unsigned int )sc->failed_recv_alloc == 1U) { { sc->failed_recv_alloc = 0U; lmc_softreset(sc); } } else { } kick_timer: { ticks = inl((int )sc->lmc_csrs.csr_11); outl(4294967295U, (int )sc->lmc_csrs.csr_11); sc->ictl.ticks = ~ ticks & 65535U; sc->timer.expires = (unsigned long )jiffies + 250UL; add_timer(& sc->timer); ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); lmc_trace(dev, (char *)"lmc_watchdog out"); } return; } } static int lmc_attach(struct net_device *dev , unsigned short encoding , unsigned short parity ) { { if ((unsigned int )encoding == 1U && (unsigned int )parity == 5U) { return (0); } else { } return (-22); } } static struct net_device_ops const lmc_ops = {0, 0, & lmc_open, & lmc_close, & hdlc_start_xmit, 0, 0, 0, 0, 0, & lmc_ioctl, 0, & hdlc_change_mtu, 0, & lmc_driver_timeout, 0, & lmc_get_stats, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int lmc_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { lmc_softc_t *sc ; struct net_device *dev ; u16 subdevice ; u16 AdapModelNum ; int err ; int cards_found ; void *tmp ; struct hdlc_device *tmp___0 ; struct hdlc_device *tmp___1 ; struct lock_class_key __key ; unsigned int tmp___2 ; int tmp___3 ; { { err = pci_enable_device(pdev); } if (err != 0) { { printk("\vlmc: pci enable failed: %d\n", err); } return (err); } else { } { err = pci_request_regions(pdev, "lmc"); } if (err != 0) { { printk("\vlmc: pci_request_region failed\n"); } goto err_req_io; } else { } { tmp = kzalloc(2296UL, 208U); sc = (lmc_softc_t *)tmp; } if ((unsigned long )sc == (unsigned long )((lmc_softc_t *)0)) { err = -12; goto err_kzalloc; } else { } { dev = alloc_hdlcdev((void *)sc); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { { printk("\vlmc:alloc_netdev for device failed\n"); } goto err_hdlcdev; } else { } { dev->type = 513U; tmp___0 = dev_to_hdlc(dev); tmp___0->xmit = & lmc_start_xmit; tmp___1 = dev_to_hdlc(dev); tmp___1->attach = & lmc_attach; dev->netdev_ops = & lmc_ops; dev->watchdog_timeo = 250; dev->tx_queue_len = 100UL; sc->lmc_device = dev; sc->name = (char *)(& dev->name); sc->if_type = 1U; sc->check = 3199191806U; dev->base_addr = (unsigned long )pdev->resource[0].start; dev->irq = (int )pdev->irq; pci_set_drvdata(pdev, (void *)dev); dev->dev.parent = & pdev->dev; lmc_proto_attach(sc); spinlock_check(& sc->lmc_lock); __raw_spin_lock_init(& sc->lmc_lock.__annonCompField19.rlock, "&(&sc->lmc_lock)->rlock", & __key); pci_set_master(pdev); printk("\016%s: detected at %lx, irq %d\n", (char *)(& dev->name), dev->base_addr, dev->irq); err = ldv_register_netdev_86(dev); } if (err != 0) { { printk("\v%s: register_netdev failed.\n", (char *)(& dev->name)); ldv_free_netdev_87(dev); } goto err_hdlcdev; } else { } sc->lmc_cardtype = -1; sc->lmc_timing = 0; subdevice = pdev->subsystem_device; if ((unsigned int )subdevice == 4982U) { subdevice = pdev->subsystem_vendor; } else { } { if ((int )subdevice == 3) { goto case_3; } else { } if ((int )subdevice == 4) { goto case_4; } else { } if ((int )subdevice == 5) { goto case_5; } else { } if ((int )subdevice == 6) { goto case_6; } else { } goto switch_default; case_3: /* CIL Label */ { printk("\016%s: LMC HSSI\n", (char *)(& dev->name)); sc->lmc_cardtype = 1; sc->lmc_media = & lmc_hssi_media; } goto ldv_43920; case_4: /* CIL Label */ { printk("\016%s: LMC DS3\n", (char *)(& dev->name)); sc->lmc_cardtype = 2; sc->lmc_media = & lmc_ds3_media; } goto ldv_43920; case_5: /* CIL Label */ { printk("\016%s: LMC SSI\n", (char *)(& dev->name)); sc->lmc_cardtype = 3; sc->lmc_media = & lmc_ssi_media; } goto ldv_43920; case_6: /* CIL Label */ { printk("\016%s: LMC T1\n", (char *)(& dev->name)); sc->lmc_cardtype = 4; sc->lmc_media = & lmc_t1_media; } goto ldv_43920; switch_default: /* CIL Label */ { printk("\f%s: LMC UNKNOWN CARD!\n", (char *)(& dev->name)); } goto ldv_43920; switch_break: /* CIL Label */ ; } ldv_43920: { lmc_initcsrs(sc, dev->base_addr, 8UL); lmc_gpio_mkinput(sc, 255U); sc->lmc_gpio = 0U; (*((sc->lmc_media)->defaults))(sc); (*((sc->lmc_media)->set_link_status))(sc, 1); tmp___2 = lmc_mii_readreg(sc, 0U, 3U); AdapModelNum = (u16 )((tmp___2 & 1008U) >> 4); } if (((((unsigned int )AdapModelNum != 5U || (unsigned int )subdevice != 6U) && ((unsigned int )AdapModelNum != 4U || (unsigned int )subdevice != 5U)) && ((unsigned int )AdapModelNum != 3U || (unsigned int )subdevice != 4U)) && ((unsigned int )AdapModelNum != 2U || (unsigned int )subdevice != 3U)) { { printk("\f%s: Model number (%d) miscompare for PCI Subsystem ID = 0x%04x\n", (char *)(& dev->name), (int )AdapModelNum, (int )subdevice); } } else { } { outl(4294967295U, (int )sc->lmc_csrs.csr_11); tmp___3 = cards_found; cards_found = cards_found + 1; sc->board_idx = (u8 )tmp___3; sc->extra_stats.check = 3203386110U; sc->extra_stats.version_size = 19005756U; sc->extra_stats.lmc_cardtype = (u32 )sc->lmc_cardtype; sc->lmc_ok = 0; sc->last_link_status = 0; lmc_trace(dev, (char *)"lmc_init_one out"); } return (0); err_hdlcdev: { kfree((void const *)sc); } err_kzalloc: { pci_release_regions(pdev); } err_req_io: { pci_disable_device(pdev); } return (err); } } static void lmc_remove_one(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; } if ((unsigned long )dev != (unsigned long )((struct net_device *)0)) { { printk("\017%s: removing...\n", (char *)(& dev->name)); ldv_unregister_hdlc_device_88(dev); ldv_free_netdev_89(dev); pci_release_regions(pdev); pci_disable_device(pdev); } } else { } return; } } static int lmc_open(struct net_device *dev ) { lmc_softc_t *sc ; lmc_softc_t *tmp ; int err ; int tmp___0 ; struct lock_class_key __key ; { { tmp = dev_to_sc(dev); sc = tmp; lmc_trace(dev, (char *)"lmc_open in"); lmc_led_on(sc, 256U); lmc_dec_reset(sc); lmc_reset(sc); } if (sc->lmc_ok != 0) { { lmc_trace(dev, (char *)"lmc_open lmc_ok out"); } return (0); } else { } { lmc_softreset(sc); tmp___0 = ldv_request_irq_90((unsigned int )dev->irq, & lmc_interrupt, 128UL, (char const *)(& dev->name), (void *)dev); } if (tmp___0 != 0) { { printk("\f%s: could not get irq: %d\n", (char *)(& dev->name), dev->irq); lmc_trace(dev, (char *)"lmc_open irq failed out"); } return (-11); } else { } { sc->got_irq = 1; sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 1920U); (*((sc->lmc_media)->set_link_status))(sc, 1); (*((sc->lmc_media)->set_status))(sc, (lmc_ctl_t *)0); sc->TxDescriptControlInit = 3783262208U; } if (sc->ictl.crc_length == 16U) { sc->TxDescriptControlInit = sc->TxDescriptControlInit | 67108864U; } else { } { (*((sc->lmc_media)->set_crc_length))(sc, (int )sc->ictl.crc_length); err = lmc_proto_open(sc); } if (err != 0) { return (err); } else { } { netif_start_queue(dev); sc->extra_stats.tx_tbusy0 = sc->extra_stats.tx_tbusy0 + 1U; sc->lmc_intrmask = 0U; sc->lmc_intrmask = sc->lmc_intrmask | 106979U; outl(sc->lmc_intrmask, (int )sc->lmc_csrs.csr_intr); sc->lmc_cmdmode = sc->lmc_cmdmode | 8192U; sc->lmc_cmdmode = sc->lmc_cmdmode | 2U; outl(sc->lmc_cmdmode, (int )sc->lmc_csrs.csr_command); sc->lmc_ok = 1; sc->last_link_status = 1; init_timer_key(& sc->timer, 0U, "(&sc->timer)", & __key); sc->timer.expires = (unsigned long )jiffies + 250UL; sc->timer.data = (unsigned long )dev; sc->timer.function = & lmc_watchdog; add_timer(& sc->timer); lmc_trace(dev, (char *)"lmc_open out"); } return (0); } } static void lmc_running_reset(struct net_device *dev ) { lmc_softc_t *sc ; lmc_softc_t *tmp ; { { tmp = dev_to_sc(dev); sc = tmp; lmc_trace(dev, (char *)"lmc_running_reset in"); outl(0U, (int )sc->lmc_csrs.csr_intr); lmc_dec_reset(sc); lmc_reset(sc); lmc_softreset(sc); (*((sc->lmc_media)->set_link_status))(sc, 1); (*((sc->lmc_media)->set_status))(sc, (lmc_ctl_t *)0); netif_wake_queue(dev); sc->lmc_txfull = 0; sc->extra_stats.tx_tbusy0 = sc->extra_stats.tx_tbusy0 + 1U; sc->lmc_intrmask = 106851U; outl(sc->lmc_intrmask, (int )sc->lmc_csrs.csr_intr); sc->lmc_cmdmode = sc->lmc_cmdmode | 8194U; outl(sc->lmc_cmdmode, (int )sc->lmc_csrs.csr_command); lmc_trace(dev, (char *)"lmc_runnin_reset_out"); } return; } } static int lmc_close(struct net_device *dev ) { lmc_softc_t *sc ; lmc_softc_t *tmp ; { { tmp = dev_to_sc(dev); sc = tmp; lmc_trace(dev, (char *)"lmc_close in"); sc->lmc_ok = 0; (*((sc->lmc_media)->set_link_status))(sc, 0); ldv_del_timer_91(& sc->timer); lmc_proto_close(sc); lmc_ifdown(dev); lmc_trace(dev, (char *)"lmc_close out"); } return (0); } } static int lmc_ifdown(struct net_device * const dev ) { lmc_softc_t *sc ; lmc_softc_t *tmp ; u32 csr6 ; int i ; unsigned int tmp___0 ; struct sk_buff *skb ; { { tmp = dev_to_sc(dev); sc = tmp; lmc_trace(dev, (char *)"lmc_ifdown in"); netif_stop_queue(dev); sc->extra_stats.tx_tbusy1 = sc->extra_stats.tx_tbusy1 + 1U; outl(0U, (int )sc->lmc_csrs.csr_intr); csr6 = inl((int )sc->lmc_csrs.csr_command); csr6 = csr6 & 4294959103U; csr6 = csr6 & 4294967293U; outl(csr6, (int )sc->lmc_csrs.csr_command); tmp___0 = inl((int )sc->lmc_csrs.csr_missed_frames); (sc->lmc_device)->stats.rx_missed_errors = (sc->lmc_device)->stats.rx_missed_errors + ((unsigned long )tmp___0 & 65535UL); } if (sc->got_irq == 1) { { ldv_free_irq_92((unsigned int )dev->irq, (void *)dev); sc->got_irq = 0; } } else { } i = 0; goto ldv_43951; ldv_43950: skb = sc->lmc_rxq[i]; sc->lmc_rxq[i] = (struct sk_buff *)0; sc->lmc_rxring[i].status = 0; sc->lmc_rxring[i].length = 0; sc->lmc_rxring[i].buffer1 = 3735928559U; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { consume_skb(skb); } } else { } sc->lmc_rxq[i] = (struct sk_buff *)0; i = i + 1; ldv_43951: ; if (i <= 31) { goto ldv_43950; } else { } i = 0; goto ldv_43954; ldv_43953: ; if ((unsigned long )sc->lmc_txq[i] != (unsigned long )((struct sk_buff *)0)) { { consume_skb(sc->lmc_txq[i]); } } else { } sc->lmc_txq[i] = (struct sk_buff *)0; i = i + 1; ldv_43954: ; if (i <= 31) { goto ldv_43953; } else { } { lmc_led_off(sc, 1920U); netif_wake_queue(dev); sc->extra_stats.tx_tbusy0 = sc->extra_stats.tx_tbusy0 + 1U; lmc_trace(dev, (char *)"lmc_ifdown out"); } return (0); } } static irqreturn_t lmc_interrupt(int irq , void *dev_instance ) { struct net_device *dev ; lmc_softc_t *sc ; lmc_softc_t *tmp ; u32 csr ; int i ; s32 stat ; unsigned int badtx ; u32 firstcsr ; int max_work ; int handled ; int n_compl ; u32 error ; int tmp___0 ; { { dev = (struct net_device *)dev_instance; tmp = dev_to_sc(dev); sc = tmp; max_work = 32; handled = 0; lmc_trace(dev, (char *)"lmc_interrupt in"); ldv_spin_lock_93(& sc->lmc_lock); csr = inl((int )sc->lmc_csrs.csr_status); } if ((csr & sc->lmc_intrmask) == 0U) { goto lmc_int_fail_out; } else { } firstcsr = csr; goto ldv_43982; ldv_43981: { handled = 1; outl(csr, (int )sc->lmc_csrs.csr_status); } if (((long )csr & 32768L) != 0L) { { lmc_running_reset(dev); } goto ldv_43970; } else { } if (((long )csr & 64L) != 0L) { { lmc_trace(dev, (char *)"rx interrupt"); lmc_rx(dev); } } else { } if (((long )csr & 7L) != 0L) { n_compl = 0; sc->extra_stats.tx_NoCompleteCnt = 0U; badtx = sc->lmc_taint_tx; i = (int )badtx & 31; goto ldv_43973; ldv_43974: stat = sc->lmc_txring[i].status; if (stat < 0) { goto ldv_43972; } else { } n_compl = n_compl + 1; if ((unsigned long )sc->lmc_txq[i] == (unsigned long )((struct sk_buff *)0)) { goto ldv_43973; } else { } if ((stat & 32768) != 0) { (sc->lmc_device)->stats.tx_errors = (sc->lmc_device)->stats.tx_errors + 1UL; if ((stat & 16644) != 0) { (sc->lmc_device)->stats.tx_aborted_errors = (sc->lmc_device)->stats.tx_aborted_errors + 1UL; } else { } if ((stat & 3072) != 0) { (sc->lmc_device)->stats.tx_carrier_errors = (sc->lmc_device)->stats.tx_carrier_errors + 1UL; } else { } if ((stat & 512) != 0) { (sc->lmc_device)->stats.tx_window_errors = (sc->lmc_device)->stats.tx_window_errors + 1UL; } else { } if ((stat & 2) != 0) { (sc->lmc_device)->stats.tx_fifo_errors = (sc->lmc_device)->stats.tx_fifo_errors + 1UL; } else { } } else { (sc->lmc_device)->stats.tx_bytes = (sc->lmc_device)->stats.tx_bytes + ((unsigned long )sc->lmc_txring[i].length & 2047UL); (sc->lmc_device)->stats.tx_packets = (sc->lmc_device)->stats.tx_packets + 1UL; } { dev_kfree_skb_irq(sc->lmc_txq[i]); sc->lmc_txq[i] = (struct sk_buff *)0; badtx = badtx + 1U; i = (int )badtx & 31; } ldv_43973: ; if (badtx < sc->lmc_next_tx) { goto ldv_43974; } else { } ldv_43972: ; if (sc->lmc_next_tx - badtx > 32U) { { printk("%s: out of sync pointer\n", (char *)(& dev->name)); badtx = badtx + 32U; } } else { } { sc->lmc_txfull = 0; netif_wake_queue(dev); sc->extra_stats.tx_tbusy0 = sc->extra_stats.tx_tbusy0 + 1U; sc->lmc_taint_tx = badtx; } } else { } if (((long )csr & 8192L) != 0L) { { printk("\f%s: system bus error csr: %#8.8x\n", (char *)(& dev->name), csr); error = (csr >> 23) & 7U; } { if (error == 0U) { goto case_0; } else { } if (error == 1U) { goto case_1; } else { } if (error == 16U) { goto case_16; } else { } goto switch_default; case_0: /* CIL Label */ { printk("\f%s: Parity Fault (bad)\n", (char *)(& dev->name)); } goto ldv_43977; case_1: /* CIL Label */ { printk("\f%s: Master Abort (naughty)\n", (char *)(& dev->name)); } goto ldv_43977; case_16: /* CIL Label */ { printk("\f%s: Target Abort (not so naughty)\n", (char *)(& dev->name)); } goto ldv_43977; switch_default: /* CIL Label */ { printk("\f%s: This bus error code was supposed to be reserved!\n", (char *)(& dev->name)); } switch_break: /* CIL Label */ ; } ldv_43977: { lmc_dec_reset(sc); lmc_reset(sc); } } else { } tmp___0 = max_work; max_work = max_work - 1; if (tmp___0 <= 0) { goto ldv_43970; } else { } { csr = inl((int )sc->lmc_csrs.csr_status); } ldv_43982: ; if ((csr & sc->lmc_intrmask) != 0U) { goto ldv_43981; } else { } ldv_43970: ; lmc_int_fail_out: { ldv_spin_unlock_94(& sc->lmc_lock); lmc_trace(dev, (char *)"lmc_interrupt out"); } return (handled != 0); } } static netdev_tx_t lmc_start_xmit(struct sk_buff *skb , struct net_device *dev ) { lmc_softc_t *sc ; lmc_softc_t *tmp ; u32 flag ; int entry ; unsigned long flags ; phys_addr_t tmp___0 ; s32 volatile tmp___1 ; { { tmp = dev_to_sc(dev); sc = tmp; lmc_trace(dev, (char *)"lmc_start_xmit in"); ldv___ldv_spin_lock_95(& sc->lmc_lock); entry = (int )sc->lmc_next_tx & 31; sc->lmc_txq[entry] = skb; tmp___0 = virt_to_phys((void volatile *)skb->data); sc->lmc_txring[entry].buffer1 = (u32 volatile )tmp___0; } if (sc->lmc_next_tx - (unsigned int )sc->lmc_taint_tx <= 15U) { { flag = 1610612736U; netif_wake_queue(dev); } } else if (sc->lmc_next_tx - (unsigned int )sc->lmc_taint_tx == 16U) { { flag = 3758096384U; netif_wake_queue(dev); } } else if (sc->lmc_next_tx - (unsigned int )sc->lmc_taint_tx <= 30U) { { flag = 1610612736U; netif_wake_queue(dev); } } else { { flag = 3758096384U; sc->lmc_txfull = 1; netif_stop_queue(dev); } } if (entry == 31) { flag = flag | 33554432U; } else { } { tmp___1 = (s32 volatile )((skb->len | flag) | sc->TxDescriptControlInit); sc->lmc_txring[entry].length = tmp___1; flag = (u32 )tmp___1; sc->extra_stats.tx_NoCompleteCnt = sc->extra_stats.tx_NoCompleteCnt + 1U; sc->lmc_next_tx = sc->lmc_next_tx + 1U; sc->lmc_txring[entry].status = (-0x7FFFFFFF-1); outl(0U, (int )sc->lmc_csrs.csr_txpoll); ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); lmc_trace(dev, (char *)"lmc_start_xmit_out"); } return (0); } } static int lmc_rx(struct net_device *dev ) { lmc_softc_t *sc ; lmc_softc_t *tmp ; int i ; int rx_work_limit ; unsigned int next_rx ; int rxIntLoopCnt ; int localLengthErrCnt ; long stat ; struct sk_buff *skb ; struct sk_buff *nsb ; u16 len ; unsigned char *tmp___0 ; phys_addr_t tmp___1 ; unsigned char *tmp___2 ; phys_addr_t tmp___3 ; unsigned char *tmp___4 ; { { tmp = dev_to_sc(dev); sc = tmp; rx_work_limit = 32; localLengthErrCnt = 0; lmc_trace(dev, (char *)"lmc_rx in"); lmc_led_on(sc, 512U); rxIntLoopCnt = 0; i = (int )sc->lmc_next_rx & 31; next_rx = sc->lmc_next_rx; } goto ldv_44009; ldv_44008: rxIntLoopCnt = rxIntLoopCnt + 1; len = (u16 )((stat & 1073676288L) >> 16); if ((stat & 768L) != 768L) { if ((stat & 65535L) != 32767L) { (sc->lmc_device)->stats.rx_length_errors = (sc->lmc_device)->stats.rx_length_errors + 1UL; goto skip_packet; } else { } } else { } if ((stat & 8L) != 0L) { (sc->lmc_device)->stats.rx_errors = (sc->lmc_device)->stats.rx_errors + 1UL; (sc->lmc_device)->stats.rx_frame_errors = (sc->lmc_device)->stats.rx_frame_errors + 1UL; goto skip_packet; } else { } if ((stat & 4L) != 0L) { (sc->lmc_device)->stats.rx_errors = (sc->lmc_device)->stats.rx_errors + 1UL; (sc->lmc_device)->stats.rx_crc_errors = (sc->lmc_device)->stats.rx_crc_errors + 1UL; goto skip_packet; } else { } if ((int )len > LMC_PKT_BUF_SZ) { (sc->lmc_device)->stats.rx_length_errors = (sc->lmc_device)->stats.rx_length_errors + 1UL; localLengthErrCnt = localLengthErrCnt + 1; goto skip_packet; } else { } if ((u32 )len < sc->lmc_crcSize + 2U) { (sc->lmc_device)->stats.rx_length_errors = (sc->lmc_device)->stats.rx_length_errors + 1UL; sc->extra_stats.rx_SmallPktCnt = sc->extra_stats.rx_SmallPktCnt + 1U; localLengthErrCnt = localLengthErrCnt + 1; goto skip_packet; } else { } if ((stat & 16384L) != 0L) { { printk("\f%s: Receiver descriptor error, receiver out of sync?\n", (char *)(& dev->name)); } } else { } len = (int )len - (int )((u16 )sc->lmc_crcSize); skb = sc->lmc_rxq[i]; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { nsb = dev_alloc_skb((unsigned int )(LMC_PKT_BUF_SZ + 2)); } if ((unsigned long )nsb != (unsigned long )((struct sk_buff *)0)) { { sc->lmc_rxq[i] = nsb; nsb->dev = dev; tmp___0 = skb_tail_pointer((struct sk_buff const *)nsb); tmp___1 = virt_to_phys((void volatile *)tmp___0); sc->lmc_rxring[i].buffer1 = (u32 volatile )tmp___1; } } else { } sc->failed_recv_alloc = 1U; goto skip_packet; } else { } (sc->lmc_device)->stats.rx_packets = (sc->lmc_device)->stats.rx_packets + 1UL; (sc->lmc_device)->stats.rx_bytes = (sc->lmc_device)->stats.rx_bytes + (unsigned long )len; if ((unsigned int )len > 1125U) { give_it_anyways: { sc->lmc_rxq[i] = (struct sk_buff *)0; sc->lmc_rxring[i].buffer1 = 0U; skb_put(skb, (unsigned int )len); skb->protocol = lmc_proto_type(sc, skb); skb_reset_mac_header(skb); skb->dev = dev; lmc_proto_netif(sc, skb); nsb = dev_alloc_skb((unsigned int )(LMC_PKT_BUF_SZ + 2)); } if ((unsigned long )nsb != (unsigned long )((struct sk_buff *)0)) { { sc->lmc_rxq[i] = nsb; nsb->dev = dev; tmp___2 = skb_tail_pointer((struct sk_buff const *)nsb); tmp___3 = virt_to_phys((void volatile *)tmp___2); sc->lmc_rxring[i].buffer1 = (u32 volatile )tmp___3; } } else { sc->extra_stats.rx_BuffAllocErr = sc->extra_stats.rx_BuffAllocErr + 1U; sc->failed_recv_alloc = 1U; goto skip_out_of_mem; } } else { { nsb = dev_alloc_skb((unsigned int )len); } if ((unsigned long )nsb == (unsigned long )((struct sk_buff *)0)) { goto give_it_anyways; } else { } { tmp___4 = skb_put(nsb, (unsigned int )len); skb_copy_from_linear_data((struct sk_buff const *)skb, (void *)tmp___4, (unsigned int const )len); nsb->protocol = lmc_proto_type(sc, nsb); skb_reset_mac_header(nsb); nsb->dev = dev; lmc_proto_netif(sc, nsb); } } skip_packet: sc->lmc_rxring[i].status = (-0x7FFFFFFF-1); sc->lmc_next_rx = sc->lmc_next_rx + 1U; i = (int )sc->lmc_next_rx & 31; rx_work_limit = rx_work_limit - 1; if (rx_work_limit < 0) { goto ldv_44007; } else { } ldv_44009: stat = (long )sc->lmc_rxring[i].status; if ((stat & 2147483648L) == 0L) { goto ldv_44008; } else { } ldv_44007: ; if ((u32 )rxIntLoopCnt > sc->extra_stats.rxIntLoopCnt) { sc->extra_stats.rxIntLoopCnt = (u32 )rxIntLoopCnt; } else { } { lmc_led_off(sc, 512U); } skip_out_of_mem: { lmc_trace(dev, (char *)"lmc_rx out"); } return (0); } } static struct net_device_stats *lmc_get_stats(struct net_device *dev ) { lmc_softc_t *sc ; lmc_softc_t *tmp ; unsigned long flags ; unsigned int tmp___0 ; { { tmp = dev_to_sc(dev); sc = tmp; lmc_trace(dev, (char *)"lmc_get_stats in"); ldv___ldv_spin_lock_97(& sc->lmc_lock); tmp___0 = inl((int )sc->lmc_csrs.csr_missed_frames); (sc->lmc_device)->stats.rx_missed_errors = (sc->lmc_device)->stats.rx_missed_errors + ((unsigned long )tmp___0 & 65535UL); ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); lmc_trace(dev, (char *)"lmc_get_stats out"); } return (& (sc->lmc_device)->stats); } } static struct pci_driver lmc_driver = {{0, 0}, "lmc", (struct pci_device_id const *)(& lmc_pci_tbl), & lmc_init_one, & lmc_remove_one, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int lmc_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_99(& lmc_driver, & __this_module, "lmc"); } return (tmp); } } static void lmc_driver_exit(void) { { { ldv_pci_unregister_driver_100(& lmc_driver); } return; } } unsigned int lmc_mii_readreg(lmc_softc_t * const sc , unsigned int devaddr , unsigned int regno ) { int i ; int command ; int retval ; int n ; int dataval ; unsigned int tmp ; { { command = (int )(((devaddr << 5) | regno) | 251904U); retval = 0; lmc_trace(sc->lmc_device, (char *)"lmc_mii_readreg in"); n = 32; } goto ldv_44042; ldv_44041: { outl(131072U, (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); outl(196608U, (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); n = n - 1; } ldv_44042: ; if (n >= 0) { goto ldv_44041; } else { } { lmc_trace(sc->lmc_device, (char *)"lmc_mii_readreg: done sync"); i = 15; } goto ldv_44046; ldv_44045: { dataval = (command >> i) & 1 ? 131072 : 0; outl((unsigned int )dataval, (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); outl((unsigned int )(dataval | 65536), (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); i = i - 1; } ldv_44046: ; if (i >= 0) { goto ldv_44045; } else { } { lmc_trace(sc->lmc_device, (char *)"lmc_mii_readreg: done1"); i = 19; } goto ldv_44049; ldv_44048: { outl(262144U, (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); tmp = inl((int )sc->lmc_csrs.csr_9); retval = (retval << 1) | ((tmp & 524288U) != 0U); outl(327680U, (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); i = i - 1; } ldv_44049: ; if (i > 0) { goto ldv_44048; } else { } { lmc_trace(sc->lmc_device, (char *)"lmc_mii_readreg out"); } return ((unsigned int )(retval >> 1) & 65535U); } } void lmc_mii_writereg(lmc_softc_t * const sc , unsigned int devaddr , unsigned int regno , unsigned int data ) { int i ; int command ; int n ; int datav ; { { i = 32; command = (int )((((devaddr << 23) | (regno << 18)) | data) | 1342308352U); lmc_trace(sc->lmc_device, (char *)"lmc_mii_writereg in"); n = 32; } goto ldv_44061; ldv_44060: { outl(131072U, (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); outl(196608U, (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); n = n - 1; } ldv_44061: ; if (n >= 0) { goto ldv_44060; } else { } i = 31; goto ldv_44065; ldv_44064: ; if ((command >> i) & 1) { datav = 131072; } else { datav = 0; } { outl((unsigned int )datav, (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); outl((unsigned int )(datav | 65536), (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); i = i - 1; } ldv_44065: ; if (i >= 0) { goto ldv_44064; } else { } i = 2; goto ldv_44068; ldv_44067: { outl(262144U, (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); outl(327680U, (int )sc->lmc_csrs.csr_9); inl((int )sc->lmc_csrs.csr_9); i = i - 1; } ldv_44068: ; if (i > 0) { goto ldv_44067; } else { } { lmc_trace(sc->lmc_device, (char *)"lmc_mii_writereg out"); } return; } } static void lmc_softreset(lmc_softc_t * const sc ) { int i ; struct sk_buff *skb ; int tmp ; phys_addr_t tmp___0 ; phys_addr_t tmp___1 ; phys_addr_t tmp___2 ; phys_addr_t tmp___3 ; phys_addr_t tmp___4 ; phys_addr_t tmp___5 ; phys_addr_t tmp___6 ; { { lmc_trace(sc->lmc_device, (char *)"lmc_softreset in"); sc->lmc_txfull = 0; sc->lmc_next_rx = 0U; sc->lmc_next_tx = 0U; sc->lmc_taint_rx = 0U; sc->lmc_taint_tx = 0U; i = 0; } goto ldv_44077; ldv_44076: ; if ((unsigned long )sc->lmc_rxq[i] == (unsigned long )((struct sk_buff *)0)) { { skb = dev_alloc_skb((unsigned int )(LMC_PKT_BUF_SZ + 2)); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { printk("\f%s: Failed to allocate receiver ring, will try again\n", sc->name); sc->failed_ring = 1U; } goto ldv_44075; } else { sc->lmc_rxq[i] = skb; } } else { skb = sc->lmc_rxq[i]; } { skb->dev = sc->lmc_device; sc->lmc_rxring[i].status = (-0x7FFFFFFF-1); tmp = skb_tailroom((struct sk_buff const *)skb); sc->lmc_rxring[i].length = tmp; tmp___0 = virt_to_phys((void volatile *)skb->data); sc->lmc_rxring[i].buffer1 = (u32 volatile )tmp___0; tmp___1 = virt_to_phys((void volatile *)(& sc->lmc_rxring) + ((unsigned long )i + 1UL)); sc->lmc_rxring[i].buffer2 = (u32 volatile )tmp___1; i = i + 1; } ldv_44077: ; if (i <= 31) { goto ldv_44076; } else { } ldv_44075: ; if (i != 0) { { sc->lmc_rxring[i + -1].length = (int )sc->lmc_rxring[i + -1].length | 33554432; tmp___2 = virt_to_phys((void volatile *)(& sc->lmc_rxring)); sc->lmc_rxring[i + -1].buffer2 = (u32 volatile )tmp___2; } } else { } { tmp___3 = virt_to_phys((void volatile *)(& sc->lmc_rxring)); outl((unsigned int )tmp___3, (int )sc->lmc_csrs.csr_rxlist); i = 0; } goto ldv_44079; ldv_44078: ; if ((unsigned long )sc->lmc_txq[i] != (unsigned long )((struct sk_buff *)0)) { { consume_skb(sc->lmc_txq[i]); (sc->lmc_device)->stats.tx_dropped = (sc->lmc_device)->stats.tx_dropped + 1UL; } } else { } { sc->lmc_txq[i] = (struct sk_buff *)0; sc->lmc_txring[i].status = 0; tmp___4 = virt_to_phys((void volatile *)(& sc->lmc_txring) + ((unsigned long )i + 1UL)); sc->lmc_txring[i].buffer2 = (u32 volatile )tmp___4; i = i + 1; } ldv_44079: ; if (i <= 31) { goto ldv_44078; } else { } { tmp___5 = virt_to_phys((void volatile *)(& sc->lmc_txring)); sc->lmc_txring[i + -1].buffer2 = (u32 volatile )tmp___5; tmp___6 = virt_to_phys((void volatile *)(& sc->lmc_txring)); outl((unsigned int )tmp___6, (int )sc->lmc_csrs.csr_txlist); lmc_trace(sc->lmc_device, (char *)"lmc_softreset out"); } return; } } void lmc_gpio_mkinput(lmc_softc_t * const sc , u32 bits ) { { { lmc_trace(sc->lmc_device, (char *)"lmc_gpio_mkinput in"); sc->lmc_gpio_io = sc->lmc_gpio_io & ~ bits; outl(sc->lmc_gpio_io | 256U, (int )sc->lmc_csrs.csr_12); lmc_trace(sc->lmc_device, (char *)"lmc_gpio_mkinput out"); } return; } } void lmc_gpio_mkoutput(lmc_softc_t * const sc , u32 bits ) { { { lmc_trace(sc->lmc_device, (char *)"lmc_gpio_mkoutput in"); sc->lmc_gpio_io = sc->lmc_gpio_io | bits; outl(sc->lmc_gpio_io | 256U, (int )sc->lmc_csrs.csr_12); lmc_trace(sc->lmc_device, (char *)"lmc_gpio_mkoutput out"); } return; } } void lmc_led_on(lmc_softc_t * const sc , u32 led ) { { { lmc_trace(sc->lmc_device, (char *)"lmc_led_on in"); } if (((u32 )(~ ((int )sc->lmc_miireg16)) & led) != 0U) { { lmc_trace(sc->lmc_device, (char *)"lmc_led_on aon out"); } return; } else { } { sc->lmc_miireg16 = (int )sc->lmc_miireg16 & ~ ((int )((u16 )led)); lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); lmc_trace(sc->lmc_device, (char *)"lmc_led_on out"); } return; } } void lmc_led_off(lmc_softc_t * const sc , u32 led ) { { { lmc_trace(sc->lmc_device, (char *)"lmc_led_off in"); } if (((u32 )sc->lmc_miireg16 & led) != 0U) { { lmc_trace(sc->lmc_device, (char *)"lmc_led_off aoff out"); } return; } else { } { sc->lmc_miireg16 = (int )sc->lmc_miireg16 | (int )((u16 )led); lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); lmc_trace(sc->lmc_device, (char *)"lmc_led_off out"); } return; } } static void lmc_reset(lmc_softc_t * const sc ) { { { lmc_trace(sc->lmc_device, (char *)"lmc_reset in"); sc->lmc_miireg16 = (u16 )((unsigned int )sc->lmc_miireg16 | 2048U); lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); sc->lmc_miireg16 = (unsigned int )sc->lmc_miireg16 & 63487U; lmc_mii_writereg(sc, 0U, 16U, (unsigned int )sc->lmc_miireg16); lmc_gpio_mkoutput(sc, 2U); sc->lmc_gpio = sc->lmc_gpio & 4294967293U; outl(sc->lmc_gpio, (int )sc->lmc_csrs.csr_12); __const_udelay(214750UL); lmc_gpio_mkinput(sc, 2U); (*((sc->lmc_media)->init))(sc); sc->extra_stats.resetCount = sc->extra_stats.resetCount + 1U; lmc_trace(sc->lmc_device, (char *)"lmc_reset out"); } return; } } static void lmc_dec_reset(lmc_softc_t * const sc ) { u32 val ; { { lmc_trace(sc->lmc_device, (char *)"lmc_dec_reset in"); sc->lmc_intrmask = 0U; outl(sc->lmc_intrmask, (int )sc->lmc_csrs.csr_intr); outl(1U, (int )sc->lmc_csrs.csr_busmode); __const_udelay(107375UL); sc->lmc_cmdmode = inl((int )sc->lmc_csrs.csr_command); sc->lmc_cmdmode = sc->lmc_cmdmode | 1108083273U; sc->lmc_cmdmode = sc->lmc_cmdmode & 4288623615U; outl(sc->lmc_cmdmode, (int )sc->lmc_csrs.csr_command); val = inl((int )sc->lmc_csrs.csr_15); val = val | 17U; outl(val, (int )sc->lmc_csrs.csr_15); lmc_trace(sc->lmc_device, (char *)"lmc_dec_reset out"); } return; } } static void lmc_initcsrs(lmc_softc_t * const sc , unsigned long csr_base , size_t csr_size ) { { { lmc_trace(sc->lmc_device, (char *)"lmc_initcsrs in"); sc->lmc_csrs.csr_busmode = csr_base; sc->lmc_csrs.csr_txpoll = csr_base + csr_size; sc->lmc_csrs.csr_rxpoll = csr_base + csr_size * 2UL; sc->lmc_csrs.csr_rxlist = csr_base + csr_size * 3UL; sc->lmc_csrs.csr_txlist = csr_base + csr_size * 4UL; sc->lmc_csrs.csr_status = csr_base + csr_size * 5UL; sc->lmc_csrs.csr_command = csr_base + csr_size * 6UL; sc->lmc_csrs.csr_intr = csr_base + csr_size * 7UL; sc->lmc_csrs.csr_missed_frames = csr_base + csr_size * 8UL; sc->lmc_csrs.csr_9 = csr_base + csr_size * 9UL; sc->lmc_csrs.csr_10 = csr_base + csr_size * 10UL; sc->lmc_csrs.csr_11 = csr_base + csr_size * 11UL; sc->lmc_csrs.csr_12 = csr_base + csr_size * 12UL; sc->lmc_csrs.csr_13 = csr_base + csr_size * 13UL; sc->lmc_csrs.csr_14 = csr_base + csr_size * 14UL; sc->lmc_csrs.csr_15 = csr_base + csr_size * 15UL; lmc_trace(sc->lmc_device, (char *)"lmc_initcsrs out"); } return; } } static void lmc_driver_timeout(struct net_device *dev ) { lmc_softc_t *sc ; lmc_softc_t *tmp ; u32 csr6 ; unsigned long flags ; unsigned long tmp___0 ; { { tmp = dev_to_sc(dev); sc = tmp; lmc_trace(dev, (char *)"lmc_driver_timeout in"); ldv___ldv_spin_lock_101(& sc->lmc_lock); printk("%s: Xmitter busy|\n", (char *)(& dev->name)); sc->extra_stats.tx_tbusy_calls = sc->extra_stats.tx_tbusy_calls + 1U; tmp___0 = dev_trans_start(dev); } if ((unsigned long )jiffies - tmp___0 <= 499UL) { goto bug_out; } else { } { lmc_running_reset(dev); csr6 = inl((int )sc->lmc_csrs.csr_command); outl(csr6 | 2U, (int )sc->lmc_csrs.csr_command); outl(csr6 | 8194U, (int )sc->lmc_csrs.csr_command); outl(0U, (int )sc->lmc_csrs.csr_txpoll); (sc->lmc_device)->stats.tx_errors = (sc->lmc_device)->stats.tx_errors + 1UL; sc->extra_stats.tx_ProcTimeout = sc->extra_stats.tx_ProcTimeout + 1U; dev->trans_start = jiffies; } bug_out: { ldv_spin_unlock_irqrestore_64(& sc->lmc_lock, flags); lmc_trace(dev, (char *)"lmc_driver_timeout out"); } return; } } void ldv_EMGentry_exit_lmc_driver_exit_17_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_lmc_driver_init_17_11(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_allocate_external_0(void) ; void ldv_dispatch_deregister_14_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_15_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_14_17_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_12_17_5(void) ; void ldv_dispatch_instance_register_8_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_10_1(int arg0 ) ; void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_12_4(struct net_device *arg0 ) ; void ldv_dispatch_register_16_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_factory_14_17_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_12_17_7(void) ; void ldv_dummy_resourceless_instance_callback_1_12(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_13(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_14(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_15(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_21(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) ; void ldv_entry_EMGentry_17(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_12_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_lmc___media_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_lmc___media_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_lmc___media_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_lmc___media_dummy_resourceless_instance_6(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_5(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_5(void) ; void ldv_switch_automaton_state_5_1(void) ; void ldv_switch_automaton_state_5_5(void) ; void ldv_switch_automaton_state_6_1(void) ; void ldv_switch_automaton_state_6_5(void) ; void ldv_switch_automaton_state_7_3(void) ; void ldv_switch_automaton_state_8_1(void) ; void ldv_switch_automaton_state_8_4(void) ; void ldv_timer_dummy_factory_8(void *arg0 ) ; void ldv_timer_instance_callback_7_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_7(void *arg0 ) ; void ldv_unregister_hdlc_device(void *arg0 , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_17_exit_lmc_driver_exit_default)(void) ; int (*ldv_17_init_lmc_driver_init_default)(void) ; int ldv_17_ret_default ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; int (*ldv_1_callback_ndo_stop)(struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; struct net_device *ldv_1_container_net_device ; struct ifreq *ldv_1_container_struct_ifreq_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; int ldv_1_ldv_param_3_1_default ; int ldv_1_ldv_param_9_2_default ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; void (*ldv_3_callback_set_link_status)(struct lmc___softc * , int ) ; struct lmc___ctl *ldv_3_container_struct_lmc___ctl_ptr ; struct lmc___softc *ldv_3_container_struct_lmc___softc_ptr ; int ldv_3_ldv_param_12_1_default ; int ldv_3_ldv_param_15_1_default ; int ldv_3_ldv_param_18_1_default ; int ldv_3_ldv_param_21_1_default ; int ldv_3_ldv_param_24_1_default ; int ldv_3_ldv_param_9_1_default ; struct lmc___ctl *ldv_4_container_struct_lmc___ctl_ptr ; struct lmc___softc *ldv_4_container_struct_lmc___softc_ptr ; int ldv_4_ldv_param_12_1_default ; int ldv_4_ldv_param_15_1_default ; int ldv_4_ldv_param_18_1_default ; int ldv_4_ldv_param_21_1_default ; int ldv_4_ldv_param_24_1_default ; int ldv_4_ldv_param_9_1_default ; struct lmc___ctl *ldv_5_container_struct_lmc___ctl_ptr ; struct lmc___softc *ldv_5_container_struct_lmc___softc_ptr ; int ldv_5_ldv_param_12_1_default ; int ldv_5_ldv_param_15_1_default ; int ldv_5_ldv_param_18_1_default ; int ldv_5_ldv_param_21_1_default ; int ldv_5_ldv_param_24_1_default ; int ldv_5_ldv_param_9_1_default ; struct lmc___ctl *ldv_6_container_struct_lmc___ctl_ptr ; struct lmc___softc *ldv_6_container_struct_lmc___softc_ptr ; int ldv_6_ldv_param_12_1_default ; int ldv_6_ldv_param_15_1_default ; int ldv_6_ldv_param_18_1_default ; int ldv_6_ldv_param_21_1_default ; int ldv_6_ldv_param_24_1_default ; int ldv_6_ldv_param_9_1_default ; struct timer_list *ldv_7_container_timer_list ; struct timer_list *ldv_8_container_timer_list ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_17 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; int ldv_statevar_6 ; int ldv_statevar_7 ; int ldv_statevar_8 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & lmc_interrupt; void (*ldv_17_exit_lmc_driver_exit_default)(void) = & lmc_driver_exit; int (*ldv_17_init_lmc_driver_init_default)(void) = & lmc_driver_init; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) = & hdlc_change_mtu; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & lmc_ioctl; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) = & lmc_get_stats; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & hdlc_start_xmit; int (*ldv_1_callback_ndo_stop)(struct net_device * ) = & lmc_close; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) = & lmc_driver_timeout; void ldv_EMGentry_exit_lmc_driver_exit_17_2(void (*arg0)(void) ) { { { lmc_driver_exit(); } return; } } int ldv_EMGentry_init_lmc_driver_init_17_11(int (*arg0)(void) ) { int tmp ; { { tmp = lmc_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_16_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_16_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_16_2(ldv_16_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { { { ldv_0_data_data = ldv_malloc(0UL); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_1_container_net_device = ldv_malloc(sizeof(struct net_device)); ldv_1_container_struct_ifreq_ptr = ldv_malloc(sizeof(struct ifreq)); ldv_1_container_struct_sk_buff_ptr = ldv_malloc(sizeof(struct sk_buff)); ldv_2_resource_dev = ldv_malloc(sizeof(struct pci_dev)); ldv_3_callback_set_link_status = (void (*)(struct lmc___softc * , int ))0; ldv_3_container_struct_lmc___ctl_ptr = ldv_malloc(sizeof(struct lmc___ctl)); ldv_3_container_struct_lmc___softc_ptr = ldv_malloc(sizeof(struct lmc___softc)); ldv_4_container_struct_lmc___ctl_ptr = ldv_malloc(sizeof(struct lmc___ctl)); ldv_4_container_struct_lmc___softc_ptr = ldv_malloc(sizeof(struct lmc___softc)); ldv_5_container_struct_lmc___ctl_ptr = ldv_malloc(sizeof(struct lmc___ctl)); ldv_5_container_struct_lmc___softc_ptr = ldv_malloc(sizeof(struct lmc___softc)); ldv_6_container_struct_lmc___ctl_ptr = ldv_malloc(sizeof(struct lmc___ctl)); ldv_6_container_struct_lmc___softc_ptr = ldv_malloc(sizeof(struct lmc___softc)); ldv_7_container_timer_list = ldv_malloc(sizeof(struct timer_list)); ldv_8_container_timer_list = ldv_malloc(sizeof(struct timer_list)); } return; } } void ldv_dispatch_deregister_14_1(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_15_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_deregister_dummy_factory_14_17_4(void) { { { ldv_switch_automaton_state_8_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_12_17_5(void) { { { ldv_switch_automaton_state_3_1(); ldv_switch_automaton_state_4_1(); ldv_switch_automaton_state_5_1(); ldv_switch_automaton_state_6_1(); } return; } } void ldv_dispatch_instance_register_8_3(struct timer_list *arg0 ) { { { ldv_7_container_timer_list = arg0; ldv_switch_automaton_state_7_3(); } return; } } void ldv_dispatch_irq_deregister_10_1(int arg0 ) { { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_register_12_4(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } return; } } void ldv_dispatch_register_16_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_dispatch_register_dummy_factory_14_17_6(void) { { { ldv_switch_automaton_state_8_4(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_12_17_7(void) { { { ldv_switch_automaton_state_3_5(); ldv_switch_automaton_state_4_5(); ldv_switch_automaton_state_5_5(); ldv_switch_automaton_state_6_5(); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { lmc_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { hdlc_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { lmc_close(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { lmc_driver_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { hdlc_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { lmc_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_21(void (*arg0)(struct lmc___softc * , int ) , struct lmc___softc *arg1 , int arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_entry_EMGentry_17(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_17 == 2) { goto case_2; } else { } if (ldv_statevar_17 == 3) { goto case_3; } else { } if (ldv_statevar_17 == 4) { goto case_4; } else { } if (ldv_statevar_17 == 5) { goto case_5; } else { } if (ldv_statevar_17 == 6) { goto case_6; } else { } if (ldv_statevar_17 == 7) { goto case_7; } else { } if (ldv_statevar_17 == 8) { goto case_8; } else { } if (ldv_statevar_17 == 10) { goto case_10; } else { } if (ldv_statevar_17 == 11) { goto case_11; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_lmc_driver_exit_17_2(ldv_17_exit_lmc_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_17 = 11; } goto ldv_44944; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_lmc_driver_exit_17_2(ldv_17_exit_lmc_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_17 = 11; } goto ldv_44944; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_8 == 2); ldv_dispatch_deregister_dummy_factory_14_17_4(); ldv_statevar_17 = 2; } goto ldv_44944; case_5: /* CIL Label */ { ldv_assume(((ldv_statevar_3 == 1 || ldv_statevar_4 == 1) || ldv_statevar_5 == 1) || ldv_statevar_6 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_12_17_5(); ldv_statevar_17 = 4; } goto ldv_44944; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_8 == 4); ldv_dispatch_register_dummy_factory_14_17_6(); ldv_statevar_17 = 5; } goto ldv_44944; case_7: /* CIL Label */ { ldv_assume(((ldv_statevar_3 == 5 || ldv_statevar_4 == 5) || ldv_statevar_5 == 5) || ldv_statevar_6 == 5); ldv_dispatch_register_dummy_resourceless_instance_12_17_7(); ldv_statevar_17 = 6; } goto ldv_44944; case_8: /* CIL Label */ { ldv_assume(ldv_17_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_17 = 3; } else { ldv_statevar_17 = 7; } goto ldv_44944; case_10: /* CIL Label */ { ldv_assume(ldv_17_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_17 = 11; } goto ldv_44944; case_11: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 20); ldv_17_ret_default = ldv_EMGentry_init_lmc_driver_init_17_11(ldv_17_init_lmc_driver_init_default); ldv_17_ret_default = ldv_post_init(ldv_17_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_17 = 8; } else { ldv_statevar_17 = 10; } goto ldv_44944; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_44944: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_17 = 11; ldv_statevar_0 = 6; ldv_statevar_1 = 5; ldv_2_ret_default = 1; ldv_statevar_2 = 20; ldv_statevar_3 = 5; ldv_statevar_4 = 5; ldv_statevar_5 = 5; ldv_statevar_6 = 5; ldv_statevar_7 = 3; ldv_statevar_8 = 4; } ldv_44968: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_17((void *)0); } goto ldv_44957; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_44957; case_2: /* CIL Label */ { ldv_net_dummy_resourceless_instance_1((void *)0); } goto ldv_44957; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_44957; case_4: /* CIL Label */ { ldv_struct_lmc___media_dummy_resourceless_instance_3((void *)0); } goto ldv_44957; case_5: /* CIL Label */ { ldv_struct_lmc___media_dummy_resourceless_instance_4((void *)0); } goto ldv_44957; case_6: /* CIL Label */ { ldv_struct_lmc___media_dummy_resourceless_instance_5((void *)0); } goto ldv_44957; case_7: /* CIL Label */ { ldv_struct_lmc___media_dummy_resourceless_instance_6((void *)0); } goto ldv_44957; case_8: /* CIL Label */ { ldv_timer_timer_instance_7((void *)0); } goto ldv_44957; case_9: /* CIL Label */ { ldv_timer_dummy_factory_8((void *)0); } goto ldv_44957; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_44957: ; goto ldv_44968; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_10_line_line ; { { ldv_10_line_line = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_dispatch_irq_deregister_10_1(ldv_10_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; { { ldv_11_netdev_net_device = arg1; ldv_free((void *)ldv_11_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = lmc_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_45000; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_45000; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_45000; case_6: /* CIL Label */ ; goto ldv_45000; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45000: ; return; } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 7) { goto case_7; } else { } if (ldv_statevar_1 == 10) { goto case_10; } else { } if (ldv_statevar_1 == 12) { goto case_12; } else { } if (ldv_statevar_1 == 13) { goto case_13; } else { } if (ldv_statevar_1 == 14) { goto case_14; } else { } if (ldv_statevar_1 == 15) { goto case_15; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_45009; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 1; } else { ldv_statevar_1 = 7; } goto ldv_45009; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_3_1_default); ldv_statevar_1 = 2; } goto ldv_45009; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_1 = 1; } else { ldv_statevar_1 = 7; } goto ldv_45009; case_5: /* CIL Label */ ; goto ldv_45009; case_7: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_45009; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_9(ldv_1_callback_ndo_do_ioctl, ldv_1_container_net_device, ldv_1_container_struct_ifreq_ptr, ldv_1_ldv_param_9_2_default); ldv_statevar_1 = 2; } goto ldv_45009; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_ndo_get_stats, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_45009; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_45009; case_14: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_7 == 2); ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_ndo_stop, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_45009; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_45009; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45009: ; return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = lmc_init_one(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { lmc_remove_one(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_45066; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 1); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_45066; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 2; goto ldv_45066; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_45066; case_5: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 4; goto ldv_45066; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_45066; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_45066; case_8: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_45066; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_45066; case_10: /* CIL Label */ ldv_statevar_2 = 9; goto ldv_45066; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_45066; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_45066; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_45066; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 5); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_45066; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_45066; case_20: /* CIL Label */ ; goto ldv_45066; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45066: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_15_pci_driver_pci_driver ; { { ldv_15_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_15_1(ldv_15_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_12_netdev_net_device ; int ldv_12_ret_default ; int tmp ; int tmp___0 ; { { ldv_12_ret_default = 1; ldv_12_ret_default = ldv_pre_register_netdev(); ldv_12_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_12_ret_default == 0); ldv_assume(ldv_statevar_0 == 6); ldv_12_ret_default = ldv_register_netdev_open_12_6((ldv_12_netdev_net_device->netdev_ops)->ndo_open, ldv_12_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_12_ret_default == 0); ldv_assume(ldv_statevar_1 == 5); ldv_dispatch_register_12_4(ldv_12_netdev_net_device); } } else { { ldv_assume(ldv_12_ret_default != 0); } } } else { { ldv_assume(ldv_12_ret_default != 0); } } return (ldv_12_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_12_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = lmc_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_13_callback_handler)(int , void * ) ; void *ldv_13_data_data ; int ldv_13_line_line ; enum irqreturn (*ldv_13_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_line_line = (int )arg1; ldv_13_callback_handler = arg2; ldv_13_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_13_data_data = arg5; ldv_assume(ldv_statevar_0 == 6); ldv_dispatch_irq_register_13_2(ldv_13_line_line, ldv_13_callback_handler, ldv_13_thread_thread, ldv_13_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_lmc___media_dummy_resourceless_instance_3(void *arg0 ) { { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 7) { goto case_7; } else { } if (ldv_statevar_3 == 8) { goto case_8; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } if (ldv_statevar_3 == 13) { goto case_13; } else { } if (ldv_statevar_3 == 16) { goto case_16; } else { } if (ldv_statevar_3 == 19) { goto case_19; } else { } if (ldv_statevar_3 == 22) { goto case_22; } else { } if (ldv_statevar_3 == 25) { goto case_25; } else { } if (ldv_statevar_3 == 27) { goto case_27; } else { } if (ldv_statevar_3 == 28) { goto case_28; } else { } if (ldv_statevar_3 == 29) { goto case_29; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_45121; case_2: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_45121; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_defaults, ldv_3_container_struct_lmc___softc_ptr); ldv_statevar_3 = 2; } goto ldv_45121; case_4: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_45121; case_5: /* CIL Label */ ; goto ldv_45121; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_7(ldv_3_callback_get_link_status, ldv_3_container_struct_lmc___softc_ptr); ldv_statevar_3 = 2; } goto ldv_45121; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_8(ldv_3_callback_init, ldv_3_container_struct_lmc___softc_ptr); ldv_statevar_3 = 2; } goto ldv_45121; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_set_cable_length, ldv_3_container_struct_lmc___softc_ptr, ldv_3_ldv_param_9_1_default); ldv_statevar_3 = 2; } goto ldv_45121; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_12(ldv_3_callback_set_circuit_type, ldv_3_container_struct_lmc___softc_ptr, ldv_3_ldv_param_12_1_default); ldv_statevar_3 = 2; } goto ldv_45121; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_15(ldv_3_callback_set_clock_source, ldv_3_container_struct_lmc___softc_ptr, ldv_3_ldv_param_15_1_default); ldv_statevar_3 = 2; } goto ldv_45121; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_18(ldv_3_callback_set_crc_length, ldv_3_container_struct_lmc___softc_ptr, ldv_3_ldv_param_18_1_default); ldv_statevar_3 = 2; } goto ldv_45121; case_22: /* CIL Label */ ; if ((unsigned long )ldv_3_callback_set_link_status != (unsigned long )((void (*)(struct lmc___softc * , int ))0)) { { ldv_dummy_resourceless_instance_callback_3_21(ldv_3_callback_set_link_status, ldv_3_container_struct_lmc___softc_ptr, ldv_3_ldv_param_21_1_default); } } else { } ldv_statevar_3 = 2; goto ldv_45121; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_24(ldv_3_callback_set_scrambler, ldv_3_container_struct_lmc___softc_ptr, ldv_3_ldv_param_24_1_default); ldv_statevar_3 = 2; } goto ldv_45121; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_27(ldv_3_callback_set_speed, ldv_3_container_struct_lmc___softc_ptr, ldv_3_container_struct_lmc___ctl_ptr); ldv_statevar_3 = 2; } goto ldv_45121; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_28(ldv_3_callback_set_status, ldv_3_container_struct_lmc___softc_ptr, ldv_3_container_struct_lmc___ctl_ptr); ldv_statevar_3 = 2; } goto ldv_45121; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_29(ldv_3_callback_watchdog, ldv_3_container_struct_lmc___softc_ptr); ldv_statevar_3 = 2; } goto ldv_45121; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45121: ; return; } } void ldv_struct_lmc___media_dummy_resourceless_instance_4(void *arg0 ) { { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 7) { goto case_7; } else { } if (ldv_statevar_4 == 8) { goto case_8; } else { } if (ldv_statevar_4 == 10) { goto case_10; } else { } if (ldv_statevar_4 == 13) { goto case_13; } else { } if (ldv_statevar_4 == 16) { goto case_16; } else { } if (ldv_statevar_4 == 19) { goto case_19; } else { } if (ldv_statevar_4 == 22) { goto case_22; } else { } if (ldv_statevar_4 == 25) { goto case_25; } else { } if (ldv_statevar_4 == 27) { goto case_27; } else { } if (ldv_statevar_4 == 28) { goto case_28; } else { } if (ldv_statevar_4 == 29) { goto case_29; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_45142; case_2: /* CIL Label */ { ldv_statevar_4 = ldv_switch_2(); } goto ldv_45142; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_defaults, ldv_4_container_struct_lmc___softc_ptr); ldv_statevar_4 = 2; } goto ldv_45142; case_4: /* CIL Label */ { ldv_statevar_4 = ldv_switch_2(); } goto ldv_45142; case_5: /* CIL Label */ ; goto ldv_45142; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_7(ldv_4_callback_get_link_status, ldv_4_container_struct_lmc___softc_ptr); ldv_statevar_4 = 2; } goto ldv_45142; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_8(ldv_4_callback_init, ldv_4_container_struct_lmc___softc_ptr); ldv_statevar_4 = 2; } goto ldv_45142; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_set_cable_length, ldv_4_container_struct_lmc___softc_ptr, ldv_4_ldv_param_9_1_default); ldv_statevar_4 = 2; } goto ldv_45142; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_12(ldv_4_callback_set_circuit_type, ldv_4_container_struct_lmc___softc_ptr, ldv_4_ldv_param_12_1_default); ldv_statevar_4 = 2; } goto ldv_45142; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_15(ldv_4_callback_set_clock_source, ldv_4_container_struct_lmc___softc_ptr, ldv_4_ldv_param_15_1_default); ldv_statevar_4 = 2; } goto ldv_45142; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_18(ldv_4_callback_set_crc_length, ldv_4_container_struct_lmc___softc_ptr, ldv_4_ldv_param_18_1_default); ldv_statevar_4 = 2; } goto ldv_45142; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_21(ldv_4_callback_set_link_status, ldv_4_container_struct_lmc___softc_ptr, ldv_4_ldv_param_21_1_default); ldv_statevar_4 = 2; } goto ldv_45142; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_24(ldv_4_callback_set_scrambler, ldv_4_container_struct_lmc___softc_ptr, ldv_4_ldv_param_24_1_default); ldv_statevar_4 = 2; } goto ldv_45142; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_27(ldv_4_callback_set_speed, ldv_4_container_struct_lmc___softc_ptr, ldv_4_container_struct_lmc___ctl_ptr); ldv_statevar_4 = 2; } goto ldv_45142; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_28(ldv_4_callback_set_status, ldv_4_container_struct_lmc___softc_ptr, ldv_4_container_struct_lmc___ctl_ptr); ldv_statevar_4 = 2; } goto ldv_45142; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_29(ldv_4_callback_watchdog, ldv_4_container_struct_lmc___softc_ptr); ldv_statevar_4 = 2; } goto ldv_45142; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45142: ; return; } } void ldv_struct_lmc___media_dummy_resourceless_instance_5(void *arg0 ) { { { if (ldv_statevar_5 == 1) { goto case_1; } else { } if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } if (ldv_statevar_5 == 4) { goto case_4; } else { } if (ldv_statevar_5 == 5) { goto case_5; } else { } if (ldv_statevar_5 == 7) { goto case_7; } else { } if (ldv_statevar_5 == 8) { goto case_8; } else { } if (ldv_statevar_5 == 10) { goto case_10; } else { } if (ldv_statevar_5 == 13) { goto case_13; } else { } if (ldv_statevar_5 == 16) { goto case_16; } else { } if (ldv_statevar_5 == 19) { goto case_19; } else { } if (ldv_statevar_5 == 22) { goto case_22; } else { } if (ldv_statevar_5 == 25) { goto case_25; } else { } if (ldv_statevar_5 == 27) { goto case_27; } else { } if (ldv_statevar_5 == 28) { goto case_28; } else { } if (ldv_statevar_5 == 29) { goto case_29; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_45163; case_2: /* CIL Label */ { ldv_statevar_5 = ldv_switch_2(); } goto ldv_45163; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_defaults, ldv_5_container_struct_lmc___softc_ptr); ldv_statevar_5 = 2; } goto ldv_45163; case_4: /* CIL Label */ { ldv_statevar_5 = ldv_switch_2(); } goto ldv_45163; case_5: /* CIL Label */ ; goto ldv_45163; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_7(ldv_5_callback_get_link_status, ldv_5_container_struct_lmc___softc_ptr); ldv_statevar_5 = 2; } goto ldv_45163; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_8(ldv_5_callback_init, ldv_5_container_struct_lmc___softc_ptr); ldv_statevar_5 = 2; } goto ldv_45163; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_set_cable_length, ldv_5_container_struct_lmc___softc_ptr, ldv_5_ldv_param_9_1_default); ldv_statevar_5 = 2; } goto ldv_45163; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_12(ldv_5_callback_set_circuit_type, ldv_5_container_struct_lmc___softc_ptr, ldv_5_ldv_param_12_1_default); ldv_statevar_5 = 2; } goto ldv_45163; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_15(ldv_5_callback_set_clock_source, ldv_5_container_struct_lmc___softc_ptr, ldv_5_ldv_param_15_1_default); ldv_statevar_5 = 2; } goto ldv_45163; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_18(ldv_5_callback_set_crc_length, ldv_5_container_struct_lmc___softc_ptr, ldv_5_ldv_param_18_1_default); ldv_statevar_5 = 2; } goto ldv_45163; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_21(ldv_5_callback_set_link_status, ldv_5_container_struct_lmc___softc_ptr, ldv_5_ldv_param_21_1_default); ldv_statevar_5 = 2; } goto ldv_45163; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_24(ldv_5_callback_set_scrambler, ldv_5_container_struct_lmc___softc_ptr, ldv_5_ldv_param_24_1_default); ldv_statevar_5 = 2; } goto ldv_45163; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_27(ldv_5_callback_set_speed, ldv_5_container_struct_lmc___softc_ptr, ldv_5_container_struct_lmc___ctl_ptr); ldv_statevar_5 = 2; } goto ldv_45163; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_28(ldv_5_callback_set_status, ldv_5_container_struct_lmc___softc_ptr, ldv_5_container_struct_lmc___ctl_ptr); ldv_statevar_5 = 2; } goto ldv_45163; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_29(ldv_5_callback_watchdog, ldv_5_container_struct_lmc___softc_ptr); ldv_statevar_5 = 2; } goto ldv_45163; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45163: ; return; } } void ldv_struct_lmc___media_dummy_resourceless_instance_6(void *arg0 ) { { { if (ldv_statevar_6 == 1) { goto case_1; } else { } if (ldv_statevar_6 == 2) { goto case_2; } else { } if (ldv_statevar_6 == 3) { goto case_3; } else { } if (ldv_statevar_6 == 4) { goto case_4; } else { } if (ldv_statevar_6 == 5) { goto case_5; } else { } if (ldv_statevar_6 == 7) { goto case_7; } else { } if (ldv_statevar_6 == 8) { goto case_8; } else { } if (ldv_statevar_6 == 10) { goto case_10; } else { } if (ldv_statevar_6 == 13) { goto case_13; } else { } if (ldv_statevar_6 == 16) { goto case_16; } else { } if (ldv_statevar_6 == 19) { goto case_19; } else { } if (ldv_statevar_6 == 22) { goto case_22; } else { } if (ldv_statevar_6 == 25) { goto case_25; } else { } if (ldv_statevar_6 == 27) { goto case_27; } else { } if (ldv_statevar_6 == 28) { goto case_28; } else { } if (ldv_statevar_6 == 29) { goto case_29; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_45184; case_2: /* CIL Label */ { ldv_statevar_6 = ldv_switch_2(); } goto ldv_45184; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_defaults, ldv_6_container_struct_lmc___softc_ptr); ldv_statevar_6 = 2; } goto ldv_45184; case_4: /* CIL Label */ { ldv_statevar_6 = ldv_switch_2(); } goto ldv_45184; case_5: /* CIL Label */ ; goto ldv_45184; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_7(ldv_6_callback_get_link_status, ldv_6_container_struct_lmc___softc_ptr); ldv_statevar_6 = 2; } goto ldv_45184; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_8(ldv_6_callback_init, ldv_6_container_struct_lmc___softc_ptr); ldv_statevar_6 = 2; } goto ldv_45184; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_9(ldv_6_callback_set_cable_length, ldv_6_container_struct_lmc___softc_ptr, ldv_6_ldv_param_9_1_default); ldv_statevar_6 = 2; } goto ldv_45184; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_12(ldv_6_callback_set_circuit_type, ldv_6_container_struct_lmc___softc_ptr, ldv_6_ldv_param_12_1_default); ldv_statevar_6 = 2; } goto ldv_45184; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_15(ldv_6_callback_set_clock_source, ldv_6_container_struct_lmc___softc_ptr, ldv_6_ldv_param_15_1_default); ldv_statevar_6 = 2; } goto ldv_45184; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_18(ldv_6_callback_set_crc_length, ldv_6_container_struct_lmc___softc_ptr, ldv_6_ldv_param_18_1_default); ldv_statevar_6 = 2; } goto ldv_45184; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_21(ldv_6_callback_set_link_status, ldv_6_container_struct_lmc___softc_ptr, ldv_6_ldv_param_21_1_default); ldv_statevar_6 = 2; } goto ldv_45184; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_24(ldv_6_callback_set_scrambler, ldv_6_container_struct_lmc___softc_ptr, ldv_6_ldv_param_24_1_default); ldv_statevar_6 = 2; } goto ldv_45184; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_27(ldv_6_callback_set_speed, ldv_6_container_struct_lmc___softc_ptr, ldv_6_container_struct_lmc___ctl_ptr); ldv_statevar_6 = 2; } goto ldv_45184; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_28(ldv_6_callback_set_status, ldv_6_container_struct_lmc___softc_ptr, ldv_6_container_struct_lmc___ctl_ptr); ldv_statevar_6 = 2; } goto ldv_45184; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_29(ldv_6_callback_watchdog, ldv_6_container_struct_lmc___softc_ptr); ldv_statevar_6 = 2; } goto ldv_45184; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45184: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (10); case_2: /* CIL Label */ ; return (12); case_3: /* CIL Label */ ; return (13); case_4: /* CIL Label */ ; return (14); case_5: /* CIL Label */ ; return (15); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (7); case_3: /* CIL Label */ ; return (8); case_4: /* CIL Label */ ; return (10); case_5: /* CIL Label */ ; return (13); case_6: /* CIL Label */ ; return (16); case_7: /* CIL Label */ ; return (19); case_8: /* CIL Label */ ; return (22); case_9: /* CIL Label */ ; return (25); case_10: /* CIL Label */ ; return (27); case_11: /* CIL Label */ ; return (28); case_12: /* CIL Label */ ; return (29); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 5; return; } } void ldv_switch_automaton_state_3_5(void) { { ldv_statevar_3 = 4; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 5; return; } } void ldv_switch_automaton_state_4_5(void) { { ldv_statevar_4 = 4; return; } } void ldv_switch_automaton_state_5_1(void) { { ldv_statevar_5 = 5; return; } } void ldv_switch_automaton_state_5_5(void) { { ldv_statevar_5 = 4; return; } } void ldv_switch_automaton_state_6_1(void) { { ldv_statevar_6 = 5; return; } } void ldv_switch_automaton_state_6_5(void) { { ldv_statevar_6 = 4; return; } } void ldv_switch_automaton_state_7_1(void) { { ldv_statevar_7 = 3; return; } } void ldv_switch_automaton_state_7_3(void) { { ldv_statevar_7 = 2; return; } } void ldv_switch_automaton_state_8_1(void) { { ldv_statevar_8 = 4; return; } } void ldv_switch_automaton_state_8_4(void) { { ldv_statevar_8 = 3; return; } } void ldv_timer_dummy_factory_8(void *arg0 ) { { { if (ldv_statevar_8 == 2) { goto case_2; } else { } if (ldv_statevar_8 == 3) { goto case_3; } else { } if (ldv_statevar_8 == 4) { goto case_4; } else { } goto switch_default; case_2: /* CIL Label */ ldv_statevar_8 = 4; goto ldv_45272; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_7 == 3); ldv_dispatch_instance_register_8_3(ldv_8_container_timer_list); ldv_statevar_8 = 2; } goto ldv_45272; case_4: /* CIL Label */ ; goto ldv_45272; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45272: ; return; } } void ldv_timer_instance_callback_7_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_7(void *arg0 ) { { { if (ldv_statevar_7 == 2) { goto case_2; } else { } if (ldv_statevar_7 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_7_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_7_2(ldv_7_container_timer_list->function, ldv_7_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_7 = 3; } goto ldv_45285; case_3: /* CIL Label */ ; goto ldv_45285; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_45285: ; return; } } void ldv_unregister_hdlc_device(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_14_net_device_net_device ; { { ldv_14_net_device_net_device = arg1; ldv_assume(ldv_statevar_1 == 1); ldv_dispatch_deregister_14_1(ldv_14_net_device_net_device); } return; return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void *ldv_dev_get_drvdata_59(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_60(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static void ldv___ldv_spin_lock_63(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_64(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lmc_lock_of_lmc___softc(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_65(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_67(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_69(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_71(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_73(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_75(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_77(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_79(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_81(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_83(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv_register_netdev_86(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_87(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_hdlc_device_88(struct net_device *ldv_func_arg1 ) { { { unregister_hdlc_device(ldv_func_arg1); ldv_unregister_hdlc_device((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_89(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } __inline static int ldv_request_irq_90(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_91(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_92(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static void ldv_spin_lock_93(spinlock_t *lock ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_94(spinlock_t *lock ) { { { ldv_spin_unlock_lmc_lock_of_lmc___softc(); spin_unlock(lock); } return; } } static void ldv___ldv_spin_lock_95(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_97(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv___pci_register_driver_99(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_100(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_101(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lmc_lock_of_lmc___softc(); __ldv_spin_lock(ldv_func_arg1); } return; } } extern int netif_rx(struct sk_buff * ) ; extern int hdlc_ioctl(struct net_device * , struct ifreq * , int ) ; extern int hdlc_open(struct net_device * ) ; extern void hdlc_close(struct net_device * ) ; __inline static __be16 hdlc_type_trans(struct sk_buff *skb , struct net_device *dev ) { hdlc_device *hdlc ; struct hdlc_device *tmp ; __be16 tmp___0 ; { { tmp = dev_to_hdlc(dev); hdlc = tmp; skb->dev = dev; skb_reset_mac_header(skb); } if ((unsigned long )(hdlc->proto)->type_trans != (unsigned long )((__be16 (*/* const */)(struct sk_buff * , struct net_device * ))0)) { { tmp___0 = (*((hdlc->proto)->type_trans))(skb, dev); } return (tmp___0); } else { return (6400U); } } } void lmc_proto_attach(lmc_softc_t *sc ) { struct net_device *dev ; { { lmc_trace(sc->lmc_device, (char *)"lmc_proto_attach in"); } if ((unsigned int )sc->if_type == 2U) { dev = sc->lmc_device; dev->flags = dev->flags | 16U; dev->hard_header_len = 0U; dev->addr_len = 0U; } else { } { lmc_trace(sc->lmc_device, (char *)"lmc_proto_attach out"); } return; } } int lmc_proto_ioctl(lmc_softc_t *sc , struct ifreq *ifr , int cmd ) { int tmp ; { { lmc_trace(sc->lmc_device, (char *)"lmc_proto_ioctl"); } if ((unsigned int )sc->if_type == 1U) { { tmp = hdlc_ioctl(sc->lmc_device, ifr, cmd); } return (tmp); } else { } return (-95); } } int lmc_proto_open(lmc_softc_t *sc ) { int ret ; { { ret = 0; lmc_trace(sc->lmc_device, (char *)"lmc_proto_open in"); } if ((unsigned int )sc->if_type == 1U) { { ret = hdlc_open(sc->lmc_device); } if (ret < 0) { { printk("\f%s: HDLC open failed: %d\n", sc->name, ret); } } else { } } else { } { lmc_trace(sc->lmc_device, (char *)"lmc_proto_open out"); } return (ret); } } void lmc_proto_close(lmc_softc_t *sc ) { { { lmc_trace(sc->lmc_device, (char *)"lmc_proto_close in"); } if ((unsigned int )sc->if_type == 1U) { { hdlc_close(sc->lmc_device); } } else { } { lmc_trace(sc->lmc_device, (char *)"lmc_proto_close out"); } return; } } __be16 lmc_proto_type(lmc_softc_t *sc , struct sk_buff *skb ) { __be16 tmp ; { { lmc_trace(sc->lmc_device, (char *)"lmc_proto_type in"); } { if ((int )sc->if_type == 1) { goto case_1; } else { } if ((int )sc->if_type == 2) { goto case_2; } else { } if ((int )sc->if_type == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = hdlc_type_trans(skb, sc->lmc_device); } return (tmp); case_2: /* CIL Label */ ; return (1024U); case_3: /* CIL Label */ ; return (1024U); switch_default: /* CIL Label */ { printk("\f%s: No protocol set for this interface, assuming 802.2 (which is wrong!!)\n", sc->name); } return (1024U); switch_break: /* CIL Label */ ; } { lmc_trace(sc->lmc_device, (char *)"lmc_proto_tye out"); } } } void lmc_proto_netif(lmc_softc_t *sc , struct sk_buff *skb ) { { { lmc_trace(sc->lmc_device, (char *)"lmc_proto_netif in"); } { if ((int )sc->if_type == 1) { goto case_1; } else { } if ((int )sc->if_type == 2) { goto case_2; } else { } if ((int )sc->if_type == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; switch_default: /* CIL Label */ { netif_rx(skb); } goto ldv_42773; case_3: /* CIL Label */ ; goto ldv_42773; switch_break: /* CIL Label */ ; } ldv_42773: { lmc_trace(sc->lmc_device, (char *)"lmc_proto_netif out"); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_dma_spin_lock = 1; void ldv_spin_lock_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); ldv_spin_dma_spin_lock = 2; } return; } } void ldv_spin_unlock_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_dma_spin_lock == 2); ldv_assume(ldv_spin_dma_spin_lock == 2); ldv_spin_dma_spin_lock = 1; } return; } } int ldv_spin_trylock_dma_spin_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_dma_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); } return; } } int ldv_spin_is_locked_dma_spin_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_dma_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_dma_spin_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_dma_spin_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_dma_spin_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_dma_spin_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_dma_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lmc_lock_of_lmc___softc = 1; void ldv_spin_lock_lmc_lock_of_lmc___softc(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lmc_lock_of_lmc___softc == 1); ldv_assume(ldv_spin_lmc_lock_of_lmc___softc == 1); ldv_spin_lmc_lock_of_lmc___softc = 2; } return; } } void ldv_spin_unlock_lmc_lock_of_lmc___softc(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lmc_lock_of_lmc___softc == 2); ldv_assume(ldv_spin_lmc_lock_of_lmc___softc == 2); ldv_spin_lmc_lock_of_lmc___softc = 1; } return; } } int ldv_spin_trylock_lmc_lock_of_lmc___softc(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lmc_lock_of_lmc___softc == 1); ldv_assume(ldv_spin_lmc_lock_of_lmc___softc == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lmc_lock_of_lmc___softc = 2; return (1); } } } void ldv_spin_unlock_wait_lmc_lock_of_lmc___softc(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lmc_lock_of_lmc___softc == 1); ldv_assume(ldv_spin_lmc_lock_of_lmc___softc == 1); } return; } } int ldv_spin_is_locked_lmc_lock_of_lmc___softc(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lmc_lock_of_lmc___softc == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lmc_lock_of_lmc___softc(void) { int tmp ; { { tmp = ldv_spin_is_locked_lmc_lock_of_lmc___softc(); } return (tmp == 0); } } int ldv_spin_is_contended_lmc_lock_of_lmc___softc(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lmc_lock_of_lmc___softc(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lmc_lock_of_lmc___softc == 1); ldv_assume(ldv_spin_lmc_lock_of_lmc___softc == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lmc_lock_of_lmc___softc = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_dma_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lmc_lock_of_lmc___softc == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_dma_spin_lock == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lmc_lock_of_lmc___softc == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__complex_emg__linux-kernel-locking-spinlock__drivers-net-wan-lmc-lmc_true-unreach-call.cil.env.c" #include "model/common.env.c"