/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned char u_char; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22190 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22190 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28548 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28549 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28548 reg_state : 8 ; bool dismantle ; enum ldv_28549 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct dma_pool; struct iw_param { __s32 value ; __u8 fixed ; __u8 disabled ; __u16 flags ; }; struct iw_point { void *pointer ; __u16 length ; __u16 flags ; }; struct iw_freq { __s32 m ; __s16 e ; __u8 i ; __u8 flags ; }; struct iw_quality { __u8 qual ; __u8 level ; __u8 noise ; __u8 updated ; }; struct iw_discarded { __u32 nwid ; __u32 code ; __u32 fragment ; __u32 retries ; __u32 misc ; }; struct iw_missed { __u32 beacon ; }; struct iw_scan_req { __u8 scan_type ; __u8 essid_len ; __u8 num_channels ; __u8 flags ; struct sockaddr bssid ; __u8 essid[32U] ; __u32 min_channel_time ; __u32 max_channel_time ; struct iw_freq channel_list[32U] ; }; struct iw_encode_ext { __u32 ext_flags ; __u8 tx_seq[8U] ; __u8 rx_seq[8U] ; struct sockaddr addr ; __u16 alg ; __u16 key_len ; __u8 key[0U] ; }; struct iw_mlme { __u16 cmd ; __u16 reason_code ; struct sockaddr addr ; }; struct iw_statistics { __u16 status ; struct iw_quality qual ; struct iw_discarded discard ; struct iw_missed miss ; }; union iwreq_data { char name[16U] ; struct iw_point essid ; struct iw_param nwid ; struct iw_freq freq ; struct iw_param sens ; struct iw_param bitrate ; struct iw_param txpower ; struct iw_param rts ; struct iw_param frag ; __u32 mode ; struct iw_param retry ; struct iw_point encoding ; struct iw_param power ; struct iw_quality qual ; struct sockaddr ap_addr ; struct sockaddr addr ; struct iw_param param ; struct iw_point data ; }; struct iw_range { __u32 throughput ; __u32 min_nwid ; __u32 max_nwid ; __u16 old_num_channels ; __u8 old_num_frequency ; __u8 scan_capa ; __u32 event_capa[6U] ; __s32 sensitivity ; struct iw_quality max_qual ; struct iw_quality avg_qual ; __u8 num_bitrates ; __s32 bitrate[32U] ; __s32 min_rts ; __s32 max_rts ; __s32 min_frag ; __s32 max_frag ; __s32 min_pmp ; __s32 max_pmp ; __s32 min_pmt ; __s32 max_pmt ; __u16 pmp_flags ; __u16 pmt_flags ; __u16 pm_capa ; __u16 encoding_size[8U] ; __u8 num_encoding_sizes ; __u8 max_encoding_tokens ; __u8 encoding_login_index ; __u16 txpower_capa ; __u8 num_txpower ; __s32 txpower[8U] ; __u8 we_version_compiled ; __u8 we_version_source ; __u16 retry_capa ; __u16 retry_flags ; __u16 r_time_flags ; __s32 min_retry ; __s32 max_retry ; __s32 min_r_time ; __s32 max_r_time ; __u16 num_channels ; __u8 num_frequency ; struct iw_freq freq[32U] ; __u32 enc_capa ; }; struct iw_priv_args { __u32 cmd ; __u16 set_args ; __u16 get_args ; char name[16U] ; }; struct iw_request_info { __u16 cmd ; __u16 flags ; }; typedef int (*iw_handler)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ); struct iw_handler_def { iw_handler (* const *standard)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; __u16 num_standard ; __u16 num_private ; __u16 num_private_args ; iw_handler (* const *private)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; struct iw_priv_args const *private_args ; struct iw_statistics *(*get_wireless_stats)(struct net_device * ) ; }; struct iw_spy_data { int spy_number ; u_char spy_address[8U][6U] ; struct iw_quality spy_stat[8U] ; struct iw_quality spy_thr_low ; struct iw_quality spy_thr_high ; u_char spy_thr_under[8U] ; }; struct libipw_device; struct iw_public_data { struct iw_spy_data *spy_data ; struct libipw_device *libipw ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_247 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_247 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; struct lib80211_crypto_ops { char const *name ; struct list_head list ; void *(*init)(int ) ; void (*deinit)(void * ) ; int (*encrypt_mpdu)(struct sk_buff * , int , void * ) ; int (*decrypt_mpdu)(struct sk_buff * , int , void * ) ; int (*encrypt_msdu)(struct sk_buff * , int , void * ) ; int (*decrypt_msdu)(struct sk_buff * , int , int , void * ) ; int (*set_key)(void * , int , u8 * , void * ) ; int (*get_key)(void * , int , u8 * , void * ) ; void (*print_stats)(struct seq_file * , void * ) ; unsigned long (*get_flags)(void * ) ; unsigned long (*set_flags)(unsigned long , void * ) ; int extra_mpdu_prefix_len ; int extra_mpdu_postfix_len ; int extra_msdu_prefix_len ; int extra_msdu_postfix_len ; struct module *owner ; }; struct lib80211_crypt_data { struct list_head list ; struct lib80211_crypto_ops *ops ; void *priv ; atomic_t refcnt ; }; struct lib80211_crypt_info { char *name ; spinlock_t *lock ; struct lib80211_crypt_data *crypt[4U] ; int tx_keyidx ; struct list_head crypt_deinit_list ; struct timer_list crypt_deinit_timer ; int crypt_quiesced ; }; struct ieee80211_radiotap_header { u8 it_version ; u8 it_pad ; __le16 it_len ; __le32 it_present ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NUM_NL80211_IFTYPES = 11, NL80211_IFTYPE_MAX = 10 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 *ssid ; u8 *bssid ; struct cfg80211_chan_def chandef ; u8 *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; u8 *bssid ; u8 *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct cfg80211_pkt_pattern { u8 *mask ; u8 *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_285 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct ieee80211_channel *channel ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; struct __anonstruct_wext_285 wext ; }; struct libipw_rx_stats { u32 mac_time ; s8 rssi ; u8 signal ; u8 noise ; u16 rate ; u8 received_channel ; u8 control ; u8 mask ; u8 freq ; u16 len ; u64 tsf ; u32 beacon_time ; }; struct libipw_frag_entry { unsigned long first_frag_time ; unsigned int seq ; unsigned int last_frag ; struct sk_buff *skb ; u8 src_addr[6U] ; u8 dst_addr[6U] ; }; struct libipw_stats { unsigned int tx_unicast_frames ; unsigned int tx_multicast_frames ; unsigned int tx_fragments ; unsigned int tx_unicast_octets ; unsigned int tx_multicast_octets ; unsigned int tx_deferred_transmissions ; unsigned int tx_single_retry_frames ; unsigned int tx_multiple_retry_frames ; unsigned int tx_retry_limit_exceeded ; unsigned int tx_discards ; unsigned int rx_unicast_frames ; unsigned int rx_multicast_frames ; unsigned int rx_fragments ; unsigned int rx_unicast_octets ; unsigned int rx_multicast_octets ; unsigned int rx_fcs_errors ; unsigned int rx_discards_no_buffer ; unsigned int tx_discards_wrong_sa ; unsigned int rx_discards_undecryptable ; unsigned int rx_message_in_msg_fragments ; unsigned int rx_message_in_bad_msg_fragments ; }; struct libipw_security { u16 active_key : 2 ; u16 enabled : 1 ; u16 unicast_uses_group : 1 ; u16 encrypt : 1 ; u8 auth_mode ; u8 encode_alg[4U] ; u8 key_sizes[4U] ; u8 keys[4U][32U] ; u8 level ; u16 flags ; }; struct libipw_hdr_3addr { __le16 frame_ctl ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctl ; u8 payload[0U] ; }; struct libipw_hdr_4addr { __le16 frame_ctl ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctl ; u8 addr4[6U] ; u8 payload[0U] ; }; struct libipw_hdr_3addrqos { __le16 frame_ctl ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctl ; u8 payload[0U] ; __le16 qos_ctl ; }; struct libipw_info_element { u8 id ; u8 len ; u8 data[0U] ; }; struct libipw_auth { struct libipw_hdr_3addr header ; __le16 algorithm ; __le16 transaction ; __le16 status ; struct libipw_info_element info_element[0U] ; }; struct libipw_channel_switch { u8 id ; u8 len ; u8 mode ; u8 channel ; u8 count ; }; struct libipw_action_exchange { u8 token ; struct libipw_info_element info_element[0U] ; }; union __anonunion_format_286 { struct libipw_action_exchange exchange ; struct libipw_channel_switch channel_switch ; }; struct libipw_action { struct libipw_hdr_3addr header ; u8 category ; u8 action ; union __anonunion_format_286 format ; }; struct libipw_disassoc { struct libipw_hdr_3addr header ; __le16 reason ; }; struct libipw_probe_request { struct libipw_hdr_3addr header ; struct libipw_info_element info_element[0U] ; }; struct libipw_probe_response { struct libipw_hdr_3addr header ; __le32 time_stamp[2U] ; __le16 beacon_interval ; __le16 capability ; struct libipw_info_element info_element[0U] ; }; struct libipw_reassoc_request { struct libipw_hdr_3addr header ; __le16 capability ; __le16 listen_interval ; u8 current_ap[6U] ; struct libipw_info_element info_element[0U] ; }; struct libipw_assoc_response { struct libipw_hdr_3addr header ; __le16 capability ; __le16 status ; __le16 aid ; struct libipw_info_element info_element[0U] ; }; struct libipw_txb { u8 nr_frags ; u8 encrypted ; u8 rts_included ; u8 reserved ; u16 frag_size ; u16 payload_size ; struct sk_buff *fragments[0U] ; }; struct libipw_qos_information_element { u8 elementID ; u8 length ; u8 qui[3U] ; u8 qui_type ; u8 qui_subtype ; u8 version ; u8 ac_info ; }; struct libipw_qos_parameters { __le16 cw_min[4U] ; __le16 cw_max[4U] ; u8 aifs[4U] ; u8 flag[4U] ; __le16 tx_op_limit[4U] ; }; struct libipw_qos_data { struct libipw_qos_parameters parameters ; int active ; int supported ; u8 param_count ; u8 old_param_count ; }; struct libipw_tim_parameters { u8 tim_count ; u8 tim_period ; }; struct libipw_tpc_report { u8 transmit_power ; u8 link_margin ; }; struct libipw_channel_map { u8 channel ; u8 map ; }; struct libipw_ibss_dfs { struct libipw_info_element ie ; u8 owner[6U] ; u8 recovery_interval ; struct libipw_channel_map channel_map[0U] ; }; struct libipw_csa { u8 mode ; u8 channel ; u8 count ; }; struct libipw_quiet { u8 count ; u8 period ; u8 duration ; u8 offset ; }; struct libipw_network { u8 bssid[6U] ; u8 channel ; u8 ssid[33U] ; u8 ssid_len ; struct libipw_qos_data qos_data ; struct libipw_rx_stats stats ; u16 capability ; u8 rates[12U] ; u8 rates_len ; u8 rates_ex[16U] ; u8 rates_ex_len ; unsigned long last_scanned ; u8 mode ; u32 flags ; u32 last_associate ; u32 time_stamp[2U] ; u16 beacon_interval ; u16 listen_interval ; u16 atim_window ; u8 erp_value ; u8 wpa_ie[64U] ; size_t wpa_ie_len ; u8 rsn_ie[64U] ; size_t rsn_ie_len ; struct libipw_tim_parameters tim ; u8 power_constraint ; struct libipw_tpc_report tpc_report ; struct libipw_ibss_dfs *ibss_dfs ; struct libipw_csa csa ; struct libipw_quiet quiet ; struct list_head list ; }; enum libipw_state { LIBIPW_UNINITIALIZED = 0, LIBIPW_INITIALIZED = 1, LIBIPW_ASSOCIATING = 2, LIBIPW_ASSOCIATED = 3, LIBIPW_AUTHENTICATING = 4, LIBIPW_AUTHENTICATED = 5, LIBIPW_SHUTDOWN = 6 } ; struct libipw_channel { u32 freq ; u8 channel ; u8 flags ; u8 max_power ; }; struct libipw_geo { u8 name[4U] ; u8 bg_channels ; u8 a_channels ; struct libipw_channel bg[14U] ; struct libipw_channel a[132U] ; }; struct libipw_device { struct net_device *dev ; struct wireless_dev wdev ; struct libipw_security sec ; struct libipw_stats ieee_stats ; struct libipw_geo geo ; struct ieee80211_supported_band bg_band ; struct ieee80211_supported_band a_band ; struct list_head network_free_list ; struct list_head network_list ; struct libipw_network *networks[128U] ; int scans ; int scan_age ; int iw_mode ; struct iw_spy_data spy_data ; spinlock_t lock ; int tx_headroom ; u32 config ; int open_wep ; int host_encrypt ; int host_encrypt_msdu ; int host_decrypt ; int host_mc_decrypt ; int host_strip_iv_icv ; int host_open_frag ; int ieee802_1x ; int wpa_enabled ; int drop_unencrypted ; int privacy_invoked ; size_t wpa_ie_len ; u8 *wpa_ie ; struct lib80211_crypt_info crypt_info ; int bcrx_sta_key ; struct libipw_frag_entry frag_cache[4U] ; unsigned int frag_next_idx ; u16 fts ; u16 rts ; u8 bssid[6U] ; enum libipw_state state ; int mode ; int modulation ; int freq_band ; int abg_true ; int perfect_rssi ; int worst_rssi ; u16 prev_seq_ctl ; void (*set_security)(struct net_device * , struct libipw_security * ) ; netdev_tx_t (*hard_start_xmit)(struct libipw_txb * , struct net_device * , int ) ; int (*is_queue_full)(struct net_device * , int ) ; int (*handle_management)(struct net_device * , struct libipw_network * , u16 ) ; int (*is_qos_active)(struct net_device * , struct sk_buff * ) ; int (*handle_auth)(struct net_device * , struct libipw_auth * ) ; int (*handle_deauth)(struct net_device * , struct libipw_disassoc * ) ; int (*handle_action)(struct net_device * , struct libipw_action * , struct libipw_rx_stats * ) ; int (*handle_disassoc)(struct net_device * , struct libipw_disassoc * ) ; int (*handle_beacon)(struct net_device * , struct libipw_probe_response * , struct libipw_network * ) ; int (*handle_probe_response)(struct net_device * , struct libipw_probe_response * , struct libipw_network * ) ; int (*handle_probe_request)(struct net_device * , struct libipw_probe_request * , struct libipw_rx_stats * ) ; int (*handle_assoc_response)(struct net_device * , struct libipw_assoc_response * , struct libipw_network * ) ; int (*handle_assoc_request)(struct net_device * ) ; int (*handle_reassoc_request)(struct net_device * , struct libipw_reassoc_request * ) ; u8 priv[0U] ; }; struct ipw_qos_info { int qos_enable ; struct libipw_qos_parameters *def_qos_parm_OFDM ; struct libipw_qos_parameters *def_qos_parm_CCK ; u32 burst_duration_CCK ; u32 burst_duration_OFDM ; u16 qos_no_ack_mask ; int burst_enable ; }; struct clx2_queue { int n_bd ; int first_empty ; int last_used ; u32 reg_w ; u32 reg_r ; dma_addr_t dma_addr ; int low_mark ; int high_mark ; }; struct machdr32 { __le16 frame_ctl ; __le16 duration ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; __le16 qos_ctrl ; }; struct machdr30 { __le16 frame_ctl ; __le16 duration ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct machdr26 { __le16 frame_ctl ; __le16 duration ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; __le16 qos_ctrl ; }; struct machdr24 { __le16 frame_ctl ; __le16 duration ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; }; struct tx_tfd_32 { struct machdr32 mchdr ; __le32 uivplaceholder[2U] ; }; struct tx_tfd_30 { struct machdr30 mchdr ; u8 reserved[2U] ; __le32 uivplaceholder[2U] ; }; struct tx_tfd_26 { struct machdr26 mchdr ; u8 reserved1[2U] ; __le32 uivplaceholder[2U] ; u8 reserved2[4U] ; }; struct tx_tfd_24 { struct machdr24 mchdr ; __le32 uivplaceholder[2U] ; u8 reserved[8U] ; }; struct tfd_command { u8 index ; u8 length ; __le16 reserved ; u8 payload[0U] ; }; union __anonunion_tfd_287 { struct tx_tfd_24 tfd_24 ; struct tx_tfd_26 tfd_26 ; struct tx_tfd_30 tfd_30 ; struct tx_tfd_32 tfd_32 ; }; struct tfd_data { __le32 work_area_ptr ; u8 station_number ; u8 reserved1 ; __le16 reserved2 ; u8 cmd_id ; u8 seq_num ; __le16 len ; u8 priority ; u8 tx_flags ; u8 tx_flags_ext ; u8 key_index ; u8 wepkey[16U] ; u8 rate ; u8 antenna ; __le16 next_packet_duration ; __le16 next_frag_len ; __le16 back_off_counter ; u8 retrylimit ; __le16 cwcurrent ; u8 reserved3 ; union __anonunion_tfd_287 tfd ; __le32 num_chunks ; __le32 chunk_ptr[6U] ; __le16 chunk_len[6U] ; }; struct txrx_control_flags { u8 message_type ; u8 rx_seq_num ; u8 control_bits ; u8 reserved ; }; union __anonunion_u_288 { struct tfd_data data ; struct tfd_command cmd ; u8 raw[124U] ; }; struct tfd_frame { struct txrx_control_flags control_flags ; union __anonunion_u_288 u ; }; struct clx2_tx_queue { struct clx2_queue q ; struct tfd_frame *bd ; struct libipw_txb **txb ; }; union __anonunion_success_289 { __le32 a[8U] ; __le32 b[4U] ; __le32 g[12U] ; }; union __anonunion_failed_290 { __le32 a[8U] ; __le32 b[4U] ; __le32 g[12U] ; }; struct rate_histogram { union __anonunion_success_289 success ; union __anonunion_failed_290 failed ; }; struct ipw_cmd_stats { u8 cmd_id ; u8 seq_num ; __le16 good_sfd ; __le16 bad_plcp ; __le16 wrong_bssid ; __le16 valid_mpdu ; __le16 bad_mac_header ; __le16 reserved_frame_types ; __le16 rx_ina ; __le16 bad_crc32 ; __le16 invalid_cts ; __le16 invalid_acks ; __le16 long_distance_ina_fina ; __le16 dsp_silence_unreachable ; __le16 accumulated_rssi ; __le16 rx_ovfl_frame_tossed ; __le16 rssi_silence_threshold ; __le16 rx_ovfl_frame_supplied ; __le16 last_rx_frame_signal ; __le16 last_rx_frame_noise ; __le16 rx_autodetec_no_ofdm ; __le16 rx_autodetec_no_barker ; __le16 reserved ; }; struct notif_channel_result { u8 channel_num ; struct ipw_cmd_stats stats ; u8 uReserved ; }; struct notif_scan_complete { u8 scan_type ; u8 num_channels ; u8 status ; u8 reserved ; }; struct notif_frag_length { __le16 frag_length ; __le16 reserved ; }; struct notif_beacon_state { __le32 state ; __le32 number ; }; struct notif_tgi_tx_key { u8 key_state ; u8 security_type ; u8 station_index ; u8 reserved ; }; struct notif_link_deterioration { struct ipw_cmd_stats stats ; u8 rate ; u8 modulation ; struct rate_histogram histogram ; u8 silence_notification_type ; __le16 silence_count ; }; struct notif_association { u8 state ; }; struct notif_authenticate { u8 state ; struct machdr24 addr ; __le16 status ; }; struct notif_calibration { u8 data[104U] ; }; struct notif_noise { __le32 value ; }; union __anonunion_u_291 { struct notif_association assoc ; struct notif_authenticate auth ; struct notif_channel_result channel_result ; struct notif_scan_complete scan_complete ; struct notif_frag_length frag_len ; struct notif_beacon_state beacon_state ; struct notif_tgi_tx_key tgi_tx_key ; struct notif_link_deterioration link_deterioration ; struct notif_calibration calibration ; struct notif_noise noise ; u8 raw[0U] ; }; struct ipw_rx_notification { u8 reserved[8U] ; u8 subtype ; u8 flags ; __le16 size ; union __anonunion_u_291 u ; }; struct ipw_rx_frame { __le32 reserved1 ; u8 parent_tsf[4U] ; u8 received_channel ; u8 frameStatus ; u8 rate ; u8 rssi ; u8 agc ; u8 rssi_dbm ; __le16 signal ; __le16 noise ; u8 antennaAndPhy ; u8 control ; u8 rtscts_rate ; u8 rtscts_seen ; __le16 length ; u8 data[0U] ; }; struct ipw_rx_header { u8 message_type ; u8 rx_seq_num ; u8 control_bits ; u8 reserved ; }; union __anonunion_u_292 { struct ipw_rx_frame frame ; struct ipw_rx_notification notification ; }; struct ipw_rx_packet { struct ipw_rx_header header ; union __anonunion_u_292 u ; }; struct ipw_rx_mem_buffer { dma_addr_t dma_addr ; struct sk_buff *skb ; struct list_head list ; }; struct ipw_rx_queue { struct ipw_rx_mem_buffer pool[64U] ; struct ipw_rx_mem_buffer *queue[32U] ; u32 processed ; u32 read ; u32 write ; u32 free_count ; struct list_head rx_free ; struct list_head rx_used ; spinlock_t lock ; }; struct alive_command_responce { u8 alive_command ; u8 sequence_number ; __le16 software_revision ; u8 device_identifier ; u8 reserved1[5U] ; __le16 reserved2 ; __le16 reserved3 ; __le16 clock_settle_time ; __le16 powerup_settle_time ; __le16 reserved4 ; u8 time_stamp[5U] ; u8 ucode_valid ; }; struct ipw_rates { u8 num_rates ; u8 rates[12U] ; }; struct command_block { unsigned int control ; u32 source_addr ; u32 dest_addr ; unsigned int status ; }; struct fw_image_desc { unsigned long last_cb_index ; unsigned long current_cb_index ; struct command_block cb_list[64U] ; void *v_addr ; unsigned long p_addr ; unsigned long len ; }; struct ipw_sys_config { u8 bt_coexistence ; u8 reserved1 ; u8 answer_broadcast_ssid_probe ; u8 accept_all_data_frames ; u8 accept_non_directed_frames ; u8 exclude_unicast_unencrypted ; u8 disable_unicast_decryption ; u8 exclude_multicast_unencrypted ; u8 disable_multicast_decryption ; u8 antenna_diversity ; u8 pass_crc_to_host ; u8 dot11g_auto_detection ; u8 enable_cts_to_self ; u8 enable_multicast_filtering ; u8 bt_coexist_collision_thr ; u8 silence_threshold ; u8 accept_all_mgmt_bcpr ; u8 accept_all_mgmt_frames ; u8 pass_noise_stats_to_host ; u8 reserved3 ; }; struct ipw_wep_key { u8 cmd_id ; u8 seq_num ; u8 key_index ; u8 key_size ; u8 key[16U] ; }; struct ipw_tgi_tx_key { u8 key_id ; u8 security_type ; u8 station_index ; u8 flags ; u8 key[16U] ; __le32 tx_counter[2U] ; }; struct ipw_scan_request_ext { __le32 full_scan_index ; u8 channels_list[54U] ; u8 scan_type[27U] ; u8 reserved ; __le16 dwell_time[5U] ; }; struct ipw_associate { u8 channel ; u8 auth_type : 4 ; u8 auth_key : 4 ; u8 assoc_type ; u8 reserved ; __le16 policy_support ; u8 preamble_length ; u8 ieee_mode ; u8 bssid[6U] ; __le32 assoc_tsf_msw ; __le32 assoc_tsf_lsw ; __le16 capability ; __le16 listen_interval ; __le16 beacon_interval ; u8 dest[6U] ; __le16 atim_window ; u8 smr ; u8 reserved1 ; __le16 reserved2 ; }; struct ipw_supported_rates { u8 ieee_mode ; u8 num_rates ; u8 purpose ; u8 reserved ; u8 supported_rates[12U] ; }; struct ipw_rts_threshold { __le16 rts_threshold ; __le16 reserved ; }; struct ipw_frag_threshold { __le16 frag_threshold ; __le16 reserved ; }; struct ipw_retry_limit { u8 short_retry_limit ; u8 long_retry_limit ; __le16 reserved ; }; struct ipw_channel_tx_power { u8 channel_number ; s8 tx_power ; }; struct ipw_tx_power { u8 num_channels ; u8 ieee_mode ; struct ipw_channel_tx_power channels_tx_power[37U] ; }; struct ipw_sensitivity_calib { __le16 beacon_rssi_raw ; __le16 reserved ; }; struct ipw_cmd { u32 cmd ; u32 status ; u32 status_len ; u32 len ; u32 param[0U] ; }; struct ipw_station_entry { u8 mac_addr[6U] ; u8 reserved ; u8 support_mode ; }; struct average { s16 entries[8U] ; u8 pos ; u8 init ; s32 sum ; }; struct ipw_ibss_seq { u8 mac[6U] ; u16 seq_num ; u16 frag_num ; unsigned long packet_time ; struct list_head list ; }; struct ipw_error_elem { u32 desc ; u32 time ; u32 blink1 ; u32 blink2 ; u32 link1 ; u32 link2 ; u32 data ; }; struct ipw_event { u32 event ; u32 time ; u32 data ; }; struct ipw_fw_error { unsigned long jiffies ; u32 status ; u32 config ; u32 elem_len ; u32 log_len ; struct ipw_error_elem *elem ; struct ipw_event *log ; u8 payload[0U] ; }; enum ipw_prom_filter { IPW_PROM_CTL_HEADER_ONLY = 1, IPW_PROM_MGMT_HEADER_ONLY = 2, IPW_PROM_DATA_HEADER_ONLY = 4, IPW_PROM_ALL_HEADER_ONLY = 15, IPW_PROM_NO_TX = 16, IPW_PROM_NO_RX = 32, IPW_PROM_NO_CTL = 64, IPW_PROM_NO_MGMT = 128, IPW_PROM_NO_DATA = 256 } ; struct ipw_priv; struct ipw_prom_priv { struct ipw_priv *priv ; struct libipw_device *ieee ; enum ipw_prom_filter filter ; int tx_packets ; int rx_packets ; }; struct ipw_rt_hdr { struct ieee80211_radiotap_header rt_hdr ; u64 rt_tsf ; u8 rt_flags ; u8 rt_rate ; __le16 rt_channel ; __le16 rt_chbitmask ; s8 rt_dbmsignal ; s8 rt_dbmnoise ; u8 rt_antenna ; u8 payload[0U] ; }; struct ipw_cmd_log; struct ipw_priv { struct libipw_device *ieee ; spinlock_t lock ; spinlock_t irq_lock ; struct mutex mutex ; struct pci_dev *pci_dev ; struct net_device *net_dev ; struct ipw_prom_priv *prom_priv ; struct net_device *prom_net_dev ; void *hw_base ; unsigned long hw_len ; struct fw_image_desc sram_desc ; struct alive_command_responce dino_alive ; wait_queue_head_t wait_command_queue ; wait_queue_head_t wait_state ; struct ipw_rx_queue *rxq ; struct clx2_tx_queue txq_cmd ; struct clx2_tx_queue txq[4U] ; u32 status ; u32 config ; u32 capability ; struct average average_missed_beacons ; s16 exp_avg_rssi ; s16 exp_avg_noise ; u32 port_type ; int rx_bufs_min ; int rx_pend_max ; u32 hcmd_seq ; u32 disassociate_threshold ; u32 roaming_threshold ; struct ipw_associate assoc_request ; struct libipw_network *assoc_network ; unsigned long ts_scan_abort ; struct ipw_supported_rates rates ; struct ipw_rates phy[3U] ; struct ipw_rates supp ; struct ipw_rates extended ; struct notif_link_deterioration last_link_deterioration ; struct ipw_cmd *hcmd ; wait_queue_head_t hcmd_wq ; u32 tsf_bcn[2U] ; struct notif_calibration calib ; u32 table0_addr ; u32 table0_len ; u32 table1_addr ; u32 table1_len ; u32 table2_addr ; u32 table2_len ; u8 essid[32U] ; u8 essid_len ; u8 nick[32U] ; u16 rates_mask ; u8 channel ; struct ipw_sys_config sys_config ; u32 power_mode ; u8 bssid[6U] ; u16 rts_threshold ; u8 mac_addr[6U] ; u8 num_stations ; u8 stations[32U][6U] ; u8 short_retry_limit ; u8 long_retry_limit ; u32 notif_missed_beacons ; u32 last_missed_beacons ; u32 last_tx_packets ; u32 last_rx_packets ; u32 last_tx_failures ; u32 last_rx_err ; u32 last_rate ; u32 missed_adhoc_beacons ; u32 missed_beacons ; u32 rx_packets ; u32 tx_packets ; u32 quality ; u8 speed_scan[100U] ; u8 speed_scan_pos ; u16 last_seq_num ; u16 last_frag_num ; unsigned long last_packet_time ; struct list_head ibss_mac_hash[31U] ; u8 eeprom[256U] ; u8 country[4U] ; int eeprom_delay ; struct iw_statistics wstats ; struct iw_public_data wireless_data ; int user_requested_scan ; u8 direct_scan_ssid[32U] ; u8 direct_scan_ssid_len ; struct delayed_work adhoc_check ; struct work_struct associate ; struct work_struct disassociate ; struct work_struct system_config ; struct work_struct rx_replenish ; struct delayed_work request_scan ; struct delayed_work request_direct_scan ; struct delayed_work request_passive_scan ; struct delayed_work scan_event ; struct work_struct adapter_restart ; struct delayed_work rf_kill ; struct work_struct up ; struct work_struct down ; struct delayed_work gather_stats ; struct work_struct abort_scan ; struct work_struct roam ; struct delayed_work scan_check ; struct work_struct link_up ; struct work_struct link_down ; struct tasklet_struct irq_tasklet ; u8 nic_type ; u32 led_activity_on ; u32 led_activity_off ; u32 led_association_on ; u32 led_association_off ; u32 led_ofdm_on ; u32 led_ofdm_off ; struct delayed_work led_link_on ; struct delayed_work led_link_off ; struct delayed_work led_act_off ; struct work_struct merge_networks ; struct ipw_cmd_log *cmdlog ; int cmdlog_len ; int cmdlog_pos ; u8 adapter ; s8 tx_power ; unsigned long suspend_at ; unsigned long suspend_time ; u32 pm_state[16U] ; struct ipw_fw_error *error ; u32 isr_inta ; struct ipw_qos_info qos_data ; struct work_struct qos_activate ; u32 indirect_dword ; u32 direct_dword ; u32 indirect_byte ; }; struct ipw_fixed_rate { __le16 tx_rates ; __le16 reserved ; }; struct host_cmd { u8 cmd ; u8 len ; u16 reserved ; u32 *param ; }; struct cmdlog_host_cmd { u8 cmd ; u8 len ; __le16 reserved ; char param[124U] ; }; struct ipw_cmd_log { unsigned long jiffies ; int retcode ; struct cmdlog_host_cmd cmd ; }; struct fw_chunk { __le32 address ; __le32 length ; }; struct ipw_fw { __le32 ver ; __le32 boot_size ; __le32 ucode_size ; __le32 fw_size ; u8 data[0U] ; }; struct ipw_status_code { u16 status ; char const *reason ; }; struct ipw_network_match { struct libipw_network *network ; struct ipw_supported_rates rates ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static void le32_add_cpu(__le32 *var , u32 val ) { { *var = *var + val; return; } } extern int printk(char const * , ...) ; extern unsigned long simple_strtoul(char const * , char ** , unsigned int ) ; extern long simple_strtol(char const * , char ** , unsigned int ) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int sscanf(char const * , char const * , ...) ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void *memmove(void * , void const * , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern char *strcpy(char * , char const * ) ; extern char *strncpy(char * , char const * , __kernel_size_t ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern char *strchr(char const * , int ) ; extern __kernel_size_t strnlen(char const * , __kernel_size_t ) ; extern void *kmemdup(void const * , size_t , gfp_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_60(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_62(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_64(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_66(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_68(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_70(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_72(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_110(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_112(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_114(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_118(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_121(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_123(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_125(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_127(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_129(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_131(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_133(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_135(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_137(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_139(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_141(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_143(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_148(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_irq_lock_of_ipw_priv(void) ; void ldv_spin_unlock_irq_lock_of_ipw_priv(void) ; void ldv_spin_lock_lock_of_ipw_priv(void) ; void ldv_spin_unlock_lock_of_ipw_priv(void) ; void ldv_spin_lock_lock_of_ipw_rx_queue(void) ; void ldv_spin_unlock_lock_of_ipw_rx_queue(void) ; void ldv_spin_lock_lock_of_libipw_device(void) ; void ldv_spin_unlock_lock_of_libipw_device(void) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern void mutex_lock_nested(struct mutex * , unsigned int ) ; extern void mutex_unlock(struct mutex * ) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6691; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6691; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6691; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6691; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6691: ; return (pfo_ret__ & 2147483647); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_145(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_146(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_146(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_61(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_61(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_61(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_126(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_126(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_126(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern unsigned long get_seconds(void) ; extern int sysfs_create_group(struct kobject * , struct attribute_group const * ) ; extern void sysfs_remove_group(struct kobject * , struct attribute_group const * ) ; extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern unsigned long round_jiffies_relative(unsigned long ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; extern bool mod_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; extern bool cancel_work_sync(struct work_struct * ) ; extern bool cancel_delayed_work(struct delayed_work * ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work_on(8192, wq, dwork, delay); } return (tmp); } } __inline static bool mod_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = mod_delayed_work_on(8192, wq, dwork, delay); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work(system_wq, dwork, delay); } return (tmp); } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void iounmap(void volatile * ) ; __inline static void memcpy_toio(void volatile *dst , void const *src , size_t count ) { { { memcpy((void *)dst, src, count); } return; } } extern int driver_create_file(struct device_driver * , struct driver_attribute const * ) ; extern void driver_remove_file(struct device_driver * , struct driver_attribute const * ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) ; static void *ldv_dev_get_drvdata_74(struct device const *dev ) ; static void *ldv_dev_get_drvdata_75(struct device const *dev ) ; static void *ldv_dev_get_drvdata_76(struct device const *dev ) ; static void *ldv_dev_get_drvdata_77(struct device const *dev ) ; static void *ldv_dev_get_drvdata_78(struct device const *dev ) ; static void *ldv_dev_get_drvdata_79(struct device const *dev ) ; static void *ldv_dev_get_drvdata_80(struct device const *dev ) ; static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static void *ldv_dev_get_drvdata_82(struct device const *dev ) ; static void *ldv_dev_get_drvdata_83(struct device const *dev ) ; static void *ldv_dev_get_drvdata_84(struct device const *dev ) ; static void *ldv_dev_get_drvdata_85(struct device const *dev ) ; static void *ldv_dev_get_drvdata_86(struct device const *dev ) ; static void *ldv_dev_get_drvdata_87(struct device const *dev ) ; static void *ldv_dev_get_drvdata_88(struct device const *dev ) ; static void *ldv_dev_get_drvdata_89(struct device const *dev ) ; static void *ldv_dev_get_drvdata_90(struct device const *dev ) ; static void *ldv_dev_get_drvdata_91(struct device const *dev ) ; static void *ldv_dev_get_drvdata_92(struct device const *dev ) ; static void *ldv_dev_get_drvdata_93(struct device const *dev ) ; static void *ldv_dev_get_drvdata_94(struct device const *dev ) ; static void *ldv_dev_get_drvdata_95(struct device const *dev ) ; static void *ldv_dev_get_drvdata_96(struct device const *dev ) ; static void *ldv_dev_get_drvdata_97(struct device const *dev ) ; static void *ldv_dev_get_drvdata_98(struct device const *dev ) ; static void *ldv_dev_get_drvdata_99(struct device const *dev ) ; static void *ldv_dev_get_drvdata_100(struct device const *dev ) ; static void *ldv_dev_get_drvdata_101(struct device const *dev ) ; static void *ldv_dev_get_drvdata_102(struct device const *dev ) ; static void *ldv_dev_get_drvdata_103(struct device const *dev ) ; static void *ldv_dev_get_drvdata_104(struct device const *dev ) ; static void *ldv_dev_get_drvdata_105(struct device const *dev ) ; static void *ldv_dev_get_drvdata_106(struct device const *dev ) ; static void *ldv_dev_get_drvdata_107(struct device const *dev ) ; static void *ldv_dev_get_drvdata_108(struct device const *dev ) ; static void *ldv_dev_get_drvdata_109(struct device const *dev ) ; static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) ; extern void __udelay(unsigned long ) ; extern void __const_udelay(unsigned long ) ; extern long schedule_timeout(long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void get_random_bytes(void * , int ) ; extern void kfree(void const * ) ; extern void *ldv_malloc(size_t); void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && n > 0xffffffffffffffffUL / size) { return ((void *)0); } else { } { tmp = __kmalloc(n * size, flags); } return (tmp); } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { { tmp = kmalloc_array(n, size, flags | 32768U); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } extern void consume_skb(struct sk_buff * ) ; extern struct sk_buff *__alloc_skb(unsigned int , gfp_t , int , int ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t priority ) { struct sk_buff *tmp ; { { tmp = __alloc_skb(size, priority, 0, -1); } return (tmp); } } extern struct sk_buff *skb_copy(struct sk_buff const * , gfp_t ) ; __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; __inline static int skb_tailroom(struct sk_buff const *skb ) { bool tmp ; { { tmp = skb_is_nonlinear(skb); } return ((int )tmp ? 0 : (int )((unsigned int )skb->end - (unsigned int )skb->tail)); } } __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static void skb_reset_mac_header(struct sk_buff *skb ) { { skb->mac_header = (int )((__u16 )((long )skb->data)) - (int )((__u16 )((long )skb->head)); return; } } extern void skb_trim(struct sk_buff * , unsigned int ) ; __inline static void skb_copy_from_linear_data(struct sk_buff const *skb , void *to , unsigned int const len ) { { { memcpy(to, (void const *)skb->data, (size_t )len); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_rx(struct sk_buff * ) ; extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_150(struct net_device *ldv_func_arg1 ) ; static int ldv_register_netdev_153(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_151(struct net_device *ldv_func_arg1 ) ; static void ldv_unregister_netdev_154(struct net_device *ldv_func_arg1 ) ; static void ldv_unregister_netdev_156(struct net_device *ldv_func_arg1 ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_158(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_159(struct pci_driver *ldv_func_arg1 ) ; static void ldv_pci_unregister_driver_160(struct pci_driver *ldv_func_arg1 ) ; extern struct dma_pool *dma_pool_create(char const * , struct device * , size_t , size_t , size_t ) ; extern void dma_pool_destroy(struct dma_pool * ) ; extern void *dma_pool_alloc(struct dma_pool * , gfp_t , dma_addr_t * ) ; extern void dma_pool_free(struct dma_pool * , void * , dma_addr_t ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_58((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_59(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern void *pci_ioremap_bar(struct pci_dev * , int ) ; extern void wireless_send_event(struct net_device * , unsigned int , union iwreq_data * , char const * ) ; extern int iw_handler_set_spy(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int iw_handler_get_spy(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int iw_handler_set_thrspy(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int iw_handler_get_thrspy(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int cfg80211_wext_giwname(struct net_device * , struct iw_request_info * , char * , char * ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_152(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_155(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_157(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_schedule(t); } } else { } return; } } extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; extern int eth_mac_addr(struct net_device * , void * ) ; extern int eth_validate_addr(struct net_device * ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_broadcast_ether_addr(u8 const *addr ) { { return ((unsigned int )(((int )((unsigned short )*((u16 const *)addr)) & (int )((unsigned short )*((u16 const *)addr + 2U))) & (int )((unsigned short )*((u16 const *)addr + 4U))) == 65535U); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; extern char const *print_ssid(char * , char const * , u8 ) ; __inline static void set_wiphy_dev(struct wiphy *wiphy , struct device *dev ) { { wiphy->dev.parent = dev; return; } } extern int wiphy_register(struct wiphy * ) ; extern void wiphy_unregister(struct wiphy * ) ; extern void wiphy_rfkill_set_hw_state(struct wiphy * , bool ) ; __inline static void *libipw_priv(struct net_device *dev ) { void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); } return ((void *)(& ((struct libipw_device *)tmp)->priv)); } } __inline static int libipw_is_valid_mode(struct libipw_device *ieee , int mode ) { { if (mode & 1 && *((unsigned long *)ieee + 527UL) == 8589934594UL) { return (1); } else { } if ((mode & 4) != 0 && *((unsigned long *)ieee + 527UL) == 4294967298UL) { return (1); } else { } if ((mode & 2) != 0 && *((unsigned long *)ieee + 527UL) == 4294967297UL) { return (1); } else { } return (0); } } __inline static int libipw_get_hdrlen(u16 fc ) { int hdrlen ; u16 stype ; { hdrlen = 24; stype = (unsigned int )fc & 240U; { if (((int )fc & 12) == 8) { goto case_8; } else { } if (((int )fc & 12) == 4) { goto case_4; } else { } goto switch_break; case_8: /* CIL Label */ ; if (((unsigned int )fc & 768U) == 768U) { hdrlen = 30; } else { } if (((int )stype & 128) != 0) { hdrlen = hdrlen + 2; } else { } goto ldv_48079; case_4: /* CIL Label */ ; { if (((int )fc & 240) == 192) { goto case_192; } else { } if (((int )fc & 240) == 208) { goto case_208; } else { } goto switch_default; case_192: /* CIL Label */ ; case_208: /* CIL Label */ hdrlen = 10; goto ldv_48083; switch_default: /* CIL Label */ hdrlen = 16; goto ldv_48083; switch_break___0: /* CIL Label */ ; } ldv_48083: ; goto ldv_48079; switch_break: /* CIL Label */ ; } ldv_48079: ; return (hdrlen); } } extern void free_libipw(struct net_device * , int ) ; extern struct net_device *alloc_libipw(int , int ) ; extern int libipw_change_mtu(struct net_device * , int ) ; extern void libipw_networks_age(struct libipw_device * , unsigned long ) ; extern netdev_tx_t libipw_xmit(struct sk_buff * , struct net_device * ) ; extern void libipw_txb_free(struct libipw_txb * ) ; extern int libipw_rx(struct libipw_device * , struct sk_buff * , struct libipw_rx_stats * ) ; extern void libipw_rx_mgt(struct libipw_device * , struct libipw_hdr_4addr * , struct libipw_rx_stats * ) ; extern struct libipw_geo const *libipw_get_geo(struct libipw_device * ) ; extern void libipw_set_geo(struct libipw_device * , struct libipw_geo const * ) ; extern int libipw_is_valid_channel(struct libipw_device * , u8 ) ; extern int libipw_channel_to_index(struct libipw_device * , u8 ) ; extern u8 libipw_freq_to_channel(struct libipw_device * , u32 ) ; extern int libipw_wx_get_scan(struct libipw_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int libipw_wx_set_encode(struct libipw_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int libipw_wx_get_encode(struct libipw_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int libipw_wx_set_encodeext(struct libipw_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int libipw_wx_get_encodeext(struct libipw_device * , struct iw_request_info * , union iwreq_data * , char * ) ; __inline static int libipw_get_scans(struct libipw_device *ieee ) { { return (ieee->scans); } } __inline static void ipw_set_scan_type(struct ipw_scan_request_ext *scan , u8 index , u8 scan_type ) { { if ((int )index & 1) { scan->scan_type[(int )((unsigned int )index / 2U)] = (u8 )(((int )((signed char )scan->scan_type[(int )((unsigned int )index / 2U)]) & -16) | ((int )((signed char )scan_type) & 15)); } else { scan->scan_type[(int )((unsigned int )index / 2U)] = (u8 )(((int )((signed char )scan->scan_type[(int )((unsigned int )index / 2U)]) & 15) | (int )((signed char )((int )scan_type << 4))); } return; } } extern unsigned char const _ctype[] ; static u32 const ipw_cipher_suites[4U] = { 1027073U, 1027077U, 1027074U, 1027076U}; static int cmdlog = 0; static int debug = 0; static int default_channel = 0; static int network_mode = 0; static u32 ipw_debug_level ; static int associate ; static int auto_create = 1; static int led_support = 1; static int disable = 0; static int bt_coexist = 0; static int hwcrypto = 0; static int roaming = 1; static char const ipw_modes[4U] = { 97, 98, 103, 63}; static int antenna = 0; static int rtap_iface = 0; static struct ieee80211_rate ipw2200_rates[12U] = { {0U, 10U, (unsigned short)0, (unsigned short)0}, {1U, 20U, (unsigned short)0, (unsigned short)0}, {1U, 55U, (unsigned short)0, (unsigned short)0}, {1U, 110U, (unsigned short)0, (unsigned short)0}, {0U, 60U, (unsigned short)0, (unsigned short)0}, {0U, 90U, (unsigned short)0, (unsigned short)0}, {0U, 120U, (unsigned short)0, (unsigned short)0}, {0U, 180U, (unsigned short)0, (unsigned short)0}, {0U, 240U, (unsigned short)0, (unsigned short)0}, {0U, 360U, (unsigned short)0, (unsigned short)0}, {0U, 480U, (unsigned short)0, (unsigned short)0}, {0U, 540U, (unsigned short)0, (unsigned short)0}}; static int qos_enable = 0; static int qos_burst_enable = 0; static int burst_duration_CCK = 0; static int burst_duration_OFDM = 0; static struct libipw_qos_parameters def_qos_parameters_OFDM = {{15U, 15U, 7U, 3U}, {1023U, 1023U, 15U, 7U}, {1U, 5U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 3008U, 1504U}}; static struct libipw_qos_parameters def_qos_parameters_CCK = {{31U, 31U, 15U, 7U}, {1023U, 1023U, 31U, 15U}, {1U, 5U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 6016U, 3264U}}; static struct libipw_qos_parameters def_parameters_OFDM = {{15U, 15U, 15U, 15U}, {1023U, 1023U, 1023U, 1023U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}}; static struct libipw_qos_parameters def_parameters_CCK = {{31U, 31U, 31U, 31U}, {1023U, 1023U, 1023U, 1023U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}}; static u8 qos_oui[3U] = { 0U, 80U, 242U}; static int from_priority_to_tx_queue[8U] = { 1, 2, 2, 1, 3, 3, 4, 4}; static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv ) ; static int ipw_send_qos_params_command(struct ipw_priv *priv , struct libipw_qos_parameters *qos_param ) ; static int ipw_send_qos_info_command(struct ipw_priv *priv , struct libipw_qos_information_element *qos_param ) ; static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev ) ; static void ipw_remove_current_network(struct ipw_priv *priv ) ; static void ipw_rx(struct ipw_priv *priv ) ; static int ipw_queue_tx_reclaim(struct ipw_priv *priv , struct clx2_tx_queue *txq , int qindex ) ; static int ipw_queue_reset(struct ipw_priv *priv ) ; static int ipw_queue_tx_hcmd(struct ipw_priv *priv , int hcmd , void *buf , int len , int sync ) ; static void ipw_tx_queue_free(struct ipw_priv *priv ) ; static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv ) ; static void ipw_rx_queue_free(struct ipw_priv *priv , struct ipw_rx_queue *rxq ) ; static void ipw_rx_queue_replenish(void *data ) ; static int ipw_up(struct ipw_priv *priv ) ; static void ipw_bg_up(struct work_struct *work ) ; static void ipw_down(struct ipw_priv *priv ) ; static void ipw_bg_down(struct work_struct *work ) ; static int ipw_config(struct ipw_priv *priv ) ; static int init_supported_rates(struct ipw_priv *priv , struct ipw_supported_rates *rates ) ; static void ipw_set_hwcrypto_keys(struct ipw_priv *priv ) ; static void ipw_send_wep_keys(struct ipw_priv *priv , int type ) ; static int snprint_line(char *buf , size_t count , u8 const *data , u32 len , u32 ofs ) { int out ; int i ; int j ; int l ; char c ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { out = snprintf(buf, count, "%08X", ofs); l = 0; i = 0; } goto ldv_49088; ldv_49087: { tmp = snprintf(buf + (unsigned long )out, count - (size_t )out, " "); out = out + tmp; j = 0; } goto ldv_49082; ldv_49081: { tmp___0 = snprintf(buf + (unsigned long )out, count - (size_t )out, "%02X ", (int )*(data + (unsigned long )(i * 8 + j))); out = out + tmp___0; j = j + 1; l = l + 1; } ldv_49082: ; if (j <= 7 && (u32 )l < len) { goto ldv_49081; } else { } goto ldv_49085; ldv_49084: { tmp___1 = snprintf(buf + (unsigned long )out, count - (size_t )out, " "); out = out + tmp___1; j = j + 1; } ldv_49085: ; if (j <= 7) { goto ldv_49084; } else { } i = i + 1; ldv_49088: ; if (i <= 1) { goto ldv_49087; } else { } { tmp___2 = snprintf(buf + (unsigned long )out, count - (size_t )out, " "); out = out + tmp___2; l = 0; i = 0; } goto ldv_49097; ldv_49096: { tmp___3 = snprintf(buf + (unsigned long )out, count - (size_t )out, " "); out = out + tmp___3; j = 0; } goto ldv_49091; ldv_49090: c = (char )*(data + (unsigned long )(i * 8 + j)); if ((int )((signed char )c) < 0 || ((int )_ctype[(int )((unsigned char )c)] & 151) == 0) { c = 46; } else { } { tmp___4 = snprintf(buf + (unsigned long )out, count - (size_t )out, "%c", (int )c); out = out + tmp___4; j = j + 1; l = l + 1; } ldv_49091: ; if (j <= 7 && (u32 )l < len) { goto ldv_49090; } else { } goto ldv_49094; ldv_49093: { tmp___5 = snprintf(buf + (unsigned long )out, count - (size_t )out, " "); out = out + tmp___5; j = j + 1; } ldv_49094: ; if (j <= 7) { goto ldv_49093; } else { } i = i + 1; ldv_49097: ; if (i <= 1) { goto ldv_49096; } else { } return (out); } } static void printk_buf(int level , u8 const *data , u32 len ) { char line[81U] ; u32 ofs ; u32 _min1 ; unsigned int _min2 ; u32 _min1___0 ; unsigned int _min2___0 ; { ofs = 0U; if ((ipw_debug_level & (u32 )level) == 0U) { return; } else { } goto ldv_49113; ldv_49112: { _min1 = len; _min2 = 16U; snprint_line((char *)(& line), 81UL, data + (unsigned long )ofs, _min1 < _min2 ? _min1 : _min2, ofs); printk("\017%s\n", (char *)(& line)); ofs = ofs + 16U; _min1___0 = len; _min2___0 = 16U; len = len - (_min1___0 < _min2___0 ? _min1___0 : _min2___0); } ldv_49113: ; if (len != 0U) { goto ldv_49112; } else { } return; } } static int snprintk_buf(u8 *output , size_t size , u8 const *data , size_t len ) { size_t out ; u32 ofs ; int total ; size_t __min1 ; size_t __min2 ; int tmp ; size_t __min1___0 ; size_t __min2___0 ; { out = size; ofs = 0U; total = 0; goto ldv_49131; ldv_49130: { __min1 = len; __min2 = 16UL; tmp = snprint_line((char *)output, size, data + (unsigned long )ofs, (u32 )(__min1 < __min2 ? __min1 : __min2), ofs); out = (size_t )tmp; ofs = ofs + 16U; output = output + out; size = size - out; __min1___0 = len; __min2___0 = 16UL; len = len - (__min1___0 < __min2___0 ? __min1___0 : __min2___0); total = (int )((unsigned int )total + (unsigned int )out); } ldv_49131: ; if (size != 0UL && len != 0UL) { goto ldv_49130; } else { } return (total); } } static u32 _ipw_read_reg32(struct ipw_priv *priv , u32 reg ) ; static u8 _ipw_read_reg8(struct ipw_priv *priv , u32 reg ) ; static void _ipw_write_reg8(struct ipw_priv *priv , u32 reg , u8 value ) ; __inline static void ipw_write_reg8(struct ipw_priv *a , u32 b , u8 c ) { int tmp ; { if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_indirect8(0x%08X, 0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_write_reg8", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 317, b, (unsigned int )c); } } else { } { _ipw_write_reg8(a, b, (int )c); } return; } } static void _ipw_write_reg16(struct ipw_priv *priv , u32 reg , u16 value ) ; __inline static void ipw_write_reg16(struct ipw_priv *a , u32 b , u16 c ) { int tmp ; { if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_indirect16(0x%08X, 0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_write_reg16", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 326, b, (unsigned int )c); } } else { } { _ipw_write_reg16(a, b, (int )c); } return; } } static void _ipw_write_reg32(struct ipw_priv *priv , u32 reg , u32 value ) ; __inline static void ipw_write_reg32(struct ipw_priv *a , u32 b , u32 c ) { int tmp ; { if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_indirect32(0x%08X, 0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_write_reg32", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 335, b, c); } } else { } { _ipw_write_reg32(a, b, c); } return; } } __inline static void _ipw_write8(struct ipw_priv *ipw , unsigned long ofs , u8 val ) { { { writeb((int )val, (void volatile *)(ipw->hw_base + ofs)); } return; } } __inline static void _ipw_write16(struct ipw_priv *ipw , unsigned long ofs , u16 val ) { { { writew((int )val, (void volatile *)(ipw->hw_base + ofs)); } return; } } __inline static void _ipw_write32(struct ipw_priv *ipw , unsigned long ofs , u32 val ) { { { writel(val, (void volatile *)(ipw->hw_base + ofs)); } return; } } __inline static u8 _ipw_read8(struct ipw_priv *ipw , unsigned long ofs ) { unsigned char tmp ; { { tmp = readb((void const volatile *)(ipw->hw_base + ofs)); } return (tmp); } } __inline static u32 _ipw_read32(struct ipw_priv *ipw , unsigned long ofs ) { unsigned int tmp ; { { tmp = readl((void const volatile *)(ipw->hw_base + ofs)); } return (tmp); } } static void _ipw_read_indirect(struct ipw_priv *priv , u32 addr , u8 *buf , int num ) ; static void _ipw_write_indirect(struct ipw_priv *priv , u32 addr , u8 *buf , int num ) ; static void _ipw_write_reg32(struct ipw_priv *priv , u32 reg , u32 value ) { int tmp ; { if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %p : reg = 0x%8X : value = 0x%8X\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "_ipw_write_reg32", priv, reg, value); } } else { } { _ipw_write32(priv, 16UL, reg); _ipw_write32(priv, 20UL, value); } return; } } static void _ipw_write_reg8(struct ipw_priv *priv , u32 reg , u8 value ) { u32 aligned_addr ; u32 dif_len ; int tmp ; { aligned_addr = reg & 4294967292U; dif_len = reg - aligned_addr; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s reg = 0x%8X : value = 0x%8X\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "_ipw_write_reg8", reg, (int )value); } } else { } { _ipw_write32(priv, 16UL, aligned_addr); _ipw_write8(priv, (unsigned long )(dif_len + 20U), (int )value); } return; } } static void _ipw_write_reg16(struct ipw_priv *priv , u32 reg , u16 value ) { u32 aligned_addr ; u32 dif_len ; int tmp ; { aligned_addr = reg & 4294967292U; dif_len = (reg - aligned_addr) & 4294967294U; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s reg = 0x%8X : value = 0x%8X\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "_ipw_write_reg16", reg, (int )value); } } else { } { _ipw_write32(priv, 16UL, aligned_addr); _ipw_write16(priv, (unsigned long )(dif_len + 20U), (int )value); } return; } } static u8 _ipw_read_reg8(struct ipw_priv *priv , u32 reg ) { u32 word ; int tmp ; { { _ipw_write32(priv, 16UL, reg & 4294967292U); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s reg = 0x%8X :\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "_ipw_read_reg8", reg); } } else { } { word = _ipw_read32(priv, 20UL); } return ((u8 )(word >> (int )((reg & 3U) * 8U))); } } static u32 _ipw_read_reg32(struct ipw_priv *priv , u32 reg ) { u32 value ; int tmp ; int tmp___0 ; { if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %p : reg = 0x%08x\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "_ipw_read_reg32", priv, reg); } } else { } { _ipw_write32(priv, 16UL, reg); value = _ipw_read32(priv, 20UL); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s reg = 0x%4X : value = 0x%4x\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "_ipw_read_reg32", reg, value); } } else { } return (value); } } static void _ipw_read_indirect(struct ipw_priv *priv , u32 addr , u8 *buf , int num ) { u32 aligned_addr ; u32 dif_len ; u32 i ; int tmp ; u8 *tmp___0 ; long tmp___1 ; u8 *tmp___2 ; int tmp___3 ; u8 tmp___4 ; long tmp___5 ; { aligned_addr = addr & 4294967292U; dif_len = addr - aligned_addr; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s addr = %i, buf = %p, num = %i\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "_ipw_read_indirect", addr, buf, num); } } else { } if (num <= 0) { return; } else { } { tmp___1 = ldv__builtin_expect(dif_len != 0U, 0L); } if (tmp___1 != 0L) { { _ipw_write32(priv, 16UL, aligned_addr); i = dif_len; } goto ldv_49251; ldv_49250: { tmp___0 = buf; buf = buf + 1; *tmp___0 = _ipw_read8(priv, (unsigned long )(i + 20U)); i = i + 1U; num = num - 1; } ldv_49251: ; if (i <= 3U && num > 0) { goto ldv_49250; } else { } aligned_addr = aligned_addr + 4U; } else { } { _ipw_write32(priv, 24UL, aligned_addr); } goto ldv_49254; ldv_49253: { *((u32 *)buf) = _ipw_read32(priv, 28UL); buf = buf + 4UL; aligned_addr = aligned_addr + 4U; num = num + -4; } ldv_49254: ; if (num > 3) { goto ldv_49253; } else { } { tmp___5 = ldv__builtin_expect(num != 0, 0L); } if (tmp___5 != 0L) { { _ipw_write32(priv, 16UL, aligned_addr); i = 0U; } goto ldv_49258; ldv_49257: tmp___2 = buf; buf = buf + 1; if ((ipw_debug_level & 134217728U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct8(0x%08X)\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "_ipw_read_indirect", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 523, i + 20U); } } else { } { tmp___4 = _ipw_read8(priv, (unsigned long )(i + 20U)); *tmp___2 = tmp___4; i = i + 1U; num = num - 1; } ldv_49258: ; if (num > 0) { goto ldv_49257; } else { } } else { } return; } } static void _ipw_write_indirect(struct ipw_priv *priv , u32 addr , u8 *buf , int num ) { u32 aligned_addr ; u32 dif_len ; u32 i ; int tmp ; long tmp___0 ; long tmp___1 ; { aligned_addr = addr & 4294967292U; dif_len = addr - aligned_addr; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s addr = %i, buf = %p, num = %i\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "_ipw_write_indirect", addr, buf, num); } } else { } if (num <= 0) { return; } else { } { tmp___0 = ldv__builtin_expect(dif_len != 0U, 0L); } if (tmp___0 != 0L) { { _ipw_write32(priv, 16UL, aligned_addr); i = dif_len; } goto ldv_49271; ldv_49270: { _ipw_write8(priv, (unsigned long )(i + 20U), (int )*buf); i = i + 1U; num = num - 1; buf = buf + 1; } ldv_49271: ; if (i <= 3U && num > 0) { goto ldv_49270; } else { } aligned_addr = aligned_addr + 4U; } else { } { _ipw_write32(priv, 24UL, aligned_addr); } goto ldv_49274; ldv_49273: { _ipw_write32(priv, 28UL, *((u32 *)buf)); buf = buf + 4UL; aligned_addr = aligned_addr + 4U; num = num + -4; } ldv_49274: ; if (num > 3) { goto ldv_49273; } else { } { tmp___1 = ldv__builtin_expect(num != 0, 0L); } if (tmp___1 != 0L) { { _ipw_write32(priv, 16UL, aligned_addr); i = 0U; } goto ldv_49277; ldv_49276: { _ipw_write8(priv, (unsigned long )(i + 20U), (int )*buf); i = i + 1U; num = num - 1; buf = buf + 1; } ldv_49277: ; if (num > 0) { goto ldv_49276; } else { } } else { } return; } } static void ipw_write_direct(struct ipw_priv *priv , u32 addr , void *buf , int num ) { { { memcpy_toio((void volatile *)priv->hw_base + (unsigned long )addr, (void const *)buf, (size_t )num); } return; } } __inline static void ipw_set_bit(struct ipw_priv *priv , u32 reg , u32 mask ) { int tmp ; u32 tmp___0 ; int tmp___1 ; int tmp___2 ; u32 tmp___3 ; { if ((ipw_debug_level & 134217728U) != 0U) { if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_set_bit", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 575, reg); } } else { } { tmp___0 = _ipw_read32(priv, (unsigned long )reg); tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_bit", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 575, reg, tmp___0 | mask); } } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_bit", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 575, reg); } } else { } { tmp___3 = _ipw_read32(priv, (unsigned long )reg); _ipw_write32(priv, (unsigned long )reg, tmp___3 | mask); } return; } } __inline static void ipw_clear_bit(struct ipw_priv *priv , u32 reg , u32 mask ) { int tmp ; u32 tmp___0 ; int tmp___1 ; int tmp___2 ; u32 tmp___3 ; { if ((ipw_debug_level & 134217728U) != 0U) { if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_clear_bit", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 581, reg); } } else { } { tmp___0 = _ipw_read32(priv, (unsigned long )reg); tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_clear_bit", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 581, reg, tmp___0 & ~ mask); } } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_clear_bit", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 581, reg); } } else { } { tmp___3 = _ipw_read32(priv, (unsigned long )reg); _ipw_write32(priv, (unsigned long )reg, tmp___3 & ~ mask); } return; } } __inline static void __ipw_enable_interrupts(struct ipw_priv *priv ) { int tmp ; { if ((priv->status & 2U) != 0U) { return; } else { } priv->status = priv->status | 2U; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "__ipw_enable_interrupts", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 589, 12U, 3308386354U); } } else { } { _ipw_write32(priv, 12UL, 3308386354U); } return; } } __inline static void __ipw_disable_interrupts(struct ipw_priv *priv ) { int tmp ; { if ((priv->status & 2U) == 0U) { return; } else { } priv->status = priv->status & 4294967293U; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "__ipw_disable_interrupts", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 597, 12U, 986580941U); } } else { } { _ipw_write32(priv, 12UL, 986580941U); } return; } } __inline static void ipw_enable_interrupts(struct ipw_priv *priv ) { unsigned long flags ; { { ldv___ldv_spin_lock_60(& priv->irq_lock); __ipw_enable_interrupts(priv); ldv_spin_unlock_irqrestore_61(& priv->irq_lock, flags); } return; } } __inline static void ipw_disable_interrupts(struct ipw_priv *priv ) { unsigned long flags ; { { ldv___ldv_spin_lock_62(& priv->irq_lock); __ipw_disable_interrupts(priv); ldv_spin_unlock_irqrestore_61(& priv->irq_lock, flags); } return; } } static char *ipw_error_desc(u32 val ) { { { if (val == 0U) { goto case_0; } else { } if (val == 1U) { goto case_1; } else { } if (val == 2U) { goto case_2; } else { } if (val == 3U) { goto case_3; } else { } if (val == 4U) { goto case_4; } else { } if (val == 5U) { goto case_5; } else { } if (val == 6U) { goto case_6; } else { } if (val == 7U) { goto case_7; } else { } if (val == 8U) { goto case_8; } else { } if (val == 9U) { goto case_9; } else { } if (val == 10U) { goto case_10; } else { } if (val == 11U) { goto case_11; } else { } if (val == 12U) { goto case_12; } else { } if (val == 13U) { goto case_13; } else { } if (val == 14U) { goto case_14; } else { } goto switch_default; case_0: /* CIL Label */ ; return ((char *)"ERROR_OK"); case_1: /* CIL Label */ ; return ((char *)"ERROR_FAIL"); case_2: /* CIL Label */ ; return ((char *)"MEMORY_UNDERFLOW"); case_3: /* CIL Label */ ; return ((char *)"MEMORY_OVERFLOW"); case_4: /* CIL Label */ ; return ((char *)"BAD_PARAM"); case_5: /* CIL Label */ ; return ((char *)"BAD_CHECKSUM"); case_6: /* CIL Label */ ; return ((char *)"NMI_INTERRUPT"); case_7: /* CIL Label */ ; return ((char *)"BAD_DATABASE"); case_8: /* CIL Label */ ; return ((char *)"ALLOC_FAIL"); case_9: /* CIL Label */ ; return ((char *)"DMA_UNDERRUN"); case_10: /* CIL Label */ ; return ((char *)"DMA_STATUS"); case_11: /* CIL Label */ ; return ((char *)"DINO_ERROR"); case_12: /* CIL Label */ ; return ((char *)"EEPROM_ERROR"); case_13: /* CIL Label */ ; return ((char *)"SYSASSERT"); case_14: /* CIL Label */ ; return ((char *)"FATAL_ERROR"); switch_default: /* CIL Label */ ; return ((char *)"UNKNOWN_ERROR"); switch_break: /* CIL Label */ ; } } } static void ipw_dump_error_log(struct ipw_priv *priv , struct ipw_fw_error *error ) { u32 i ; char *tmp ; { if ((unsigned long )error == (unsigned long )((struct ipw_fw_error *)0)) { { printk("\vipw2200: Error allocating and capturing error log. Nothing to dump.\n"); } return; } else { } { printk("\vipw2200: Start IPW Error Log Dump:\n"); printk("\vipw2200: Status: 0x%08X, Config: %08X\n", error->status, error->config); i = 0U; } goto ldv_49342; ldv_49341: { tmp = ipw_error_desc((error->elem + (unsigned long )i)->desc); printk("\vipw2200: %s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", tmp, (error->elem + (unsigned long )i)->time, (error->elem + (unsigned long )i)->blink1, (error->elem + (unsigned long )i)->blink2, (error->elem + (unsigned long )i)->link1, (error->elem + (unsigned long )i)->link2, (error->elem + (unsigned long )i)->data); i = i + 1U; } ldv_49342: ; if (i < error->elem_len) { goto ldv_49341; } else { } i = 0U; goto ldv_49345; ldv_49344: { printk("\vipw2200: %i\t0x%08x\t%i\n", (error->log + (unsigned long )i)->time, (error->log + (unsigned long )i)->data, (error->log + (unsigned long )i)->event); i = i + 1U; } ldv_49345: ; if (i < error->log_len) { goto ldv_49344; } else { } return; } } __inline static int ipw_is_init(struct ipw_priv *priv ) { { return ((priv->status & 32U) != 0U); } } static int ipw_get_ordinal(struct ipw_priv *priv , u32 ord , void *val , u32 *len ) { u32 addr ; u32 field_info ; u32 field_len ; u32 field_count ; u32 total_len ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; u32 tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; { if ((ipw_debug_level & 1048576U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s ordinal = %i\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal", ord); } } else { } if (((unsigned long )priv == (unsigned long )((struct ipw_priv *)0) || (unsigned long )val == (unsigned long )((void *)0)) || (unsigned long )len == (unsigned long )((u32 *)0U)) { if ((ipw_debug_level & 1048576U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Invalid argument\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal"); } } else { } return (-22); } else { } if ((priv->table0_addr == 0U || priv->table1_addr == 0U) || priv->table2_addr == 0U) { if ((ipw_debug_level & 1048576U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Access ordinals before initialization\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal"); } } else { } return (-22); } else { } { if ((ord & 65280U) == 61440U) { goto case_61440; } else { } if ((ord & 65280U) == 61696U) { goto case_61696; } else { } if ((ord & 65280U) == 61952U) { goto case_61952; } else { } goto switch_default; case_61440: /* CIL Label */ ord = ord & 255U; if (ord > priv->table0_len) { if ((ipw_debug_level & 1048576U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s ordinal value (%i) longer then max (%i)\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal", ord, priv->table0_len); } } else { } return (-22); } else { } if (*len <= 3U) { if ((ipw_debug_level & 1048576U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s ordinal buffer length too small, need %zd\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal", 4UL); } } else { } return (-22); } else { } if ((ipw_debug_level & 1048576U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s Reading TABLE0[%i] from offset 0x%08x\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal", ord, priv->table0_addr + (ord << 2)); } } else { } *len = 4U; ord = ord << 2; if ((ipw_debug_level & 134217728U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 738, priv->table0_addr + ord); } } else { } { tmp___6 = _ipw_read32(priv, (unsigned long )(priv->table0_addr + ord)); *((u32 *)val) = tmp___6; } goto ldv_49364; case_61696: /* CIL Label */ ord = ord & 255U; if (ord > priv->table1_len) { if ((ipw_debug_level & 1048576U) != 0U) { { tmp___7 = preempt_count(); printk("\017ipw2200: %c %s ordinal value too long\n", ((unsigned long )tmp___7 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal"); } } else { } return (-22); } else { } if (*len <= 3U) { if ((ipw_debug_level & 1048576U) != 0U) { { tmp___8 = preempt_count(); printk("\017ipw2200: %c %s ordinal buffer length too small, need %zd\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal", 4UL); } } else { } return (-22); } else { } { *((u32 *)val) = _ipw_read_reg32(priv, priv->table1_addr + (ord << 2)); *len = 4U; } goto ldv_49364; case_61952: /* CIL Label */ ord = ord & 255U; if (ord > priv->table2_len) { if ((ipw_debug_level & 1048576U) != 0U) { { tmp___9 = preempt_count(); printk("\017ipw2200: %c %s ordinal value too long\n", ((unsigned long )tmp___9 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal"); } } else { } return (-22); } else { } { addr = _ipw_read_reg32(priv, priv->table2_addr + (ord << 3)); field_info = _ipw_read_reg32(priv, (priv->table2_addr + (ord << 3)) + 4U); field_len = (u32 )*((u16 *)(& field_info)); field_count = (u32 )*((u16 *)(& field_info) + 1UL); total_len = field_len * field_count; } if (total_len > *len) { *len = total_len; return (-22); } else { } *len = total_len; if (total_len == 0U) { return (0); } else { } if ((ipw_debug_level & 1048576U) != 0U) { { tmp___10 = preempt_count(); printk("\017ipw2200: %c %s addr = 0x%08x, total_len = %i, field_info = 0x%08x\n", ((unsigned long )tmp___10 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal", addr, total_len, field_info); } } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___11 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_indirect(0x%08X) %u bytes\n", ((unsigned long )tmp___11 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 820, addr, total_len); } } else { } { _ipw_read_indirect(priv, addr, (u8 *)val, (int )total_len); } goto ldv_49364; switch_default: /* CIL Label */ ; if ((ipw_debug_level & 1048576U) != 0U) { { tmp___12 = preempt_count(); printk("\017ipw2200: %c %s Invalid ordinal!\n", ((unsigned long )tmp___12 & 2096896UL) != 0UL ? 73 : 85, "ipw_get_ordinal"); } } else { } return (-22); switch_break: /* CIL Label */ ; } ldv_49364: ; return (0); } } static void ipw_init_ordinals(struct ipw_priv *priv ) { int tmp ; u32 tmp___0 ; int tmp___1 ; int tmp___2 ; u32 tmp___3 ; int tmp___4 ; int tmp___5 ; u32 tmp___6 ; int tmp___7 ; { priv->table0_addr = 1792U; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_init_ordinals", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 835, priv->table0_addr); } } else { } { tmp___0 = _ipw_read32(priv, (unsigned long )priv->table0_addr); priv->table0_len = tmp___0; } if ((ipw_debug_level & 1048576U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s table 0 offset at 0x%08x, len = %i\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_init_ordinals", priv->table0_addr, priv->table0_len); } } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_init_ordinals", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 840, 900U); } } else { } { tmp___3 = _ipw_read32(priv, 900UL); priv->table1_addr = tmp___3; priv->table1_len = _ipw_read_reg32(priv, priv->table1_addr); } if ((ipw_debug_level & 1048576U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s table 1 offset at 0x%08x, len = %i\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_init_ordinals", priv->table1_addr, priv->table1_len); } } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_init_ordinals", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 846, 904U); } } else { } { tmp___6 = _ipw_read32(priv, 904UL); priv->table2_addr = tmp___6; priv->table2_len = _ipw_read_reg32(priv, priv->table2_addr); priv->table2_len = priv->table2_len & 65535U; } if ((ipw_debug_level & 1048576U) != 0U) { { tmp___7 = preempt_count(); printk("\017ipw2200: %c %s table 2 offset at 0x%08x, len = %i\n", ((unsigned long )tmp___7 & 2096896UL) != 0UL ? 73 : 85, "ipw_init_ordinals", priv->table2_addr, priv->table2_len); } } else { } return; } } static u32 ipw_register_toggle(u32 reg ) { { reg = reg & 4294967291U; if ((reg & 33554432U) != 0U) { reg = reg & 4261412863U; } else { } if ((reg & 67108864U) != 0U) { reg = reg & 4227858431U; } else { } if ((reg & 536870912U) != 0U) { reg = reg & 3758096383U; } else { } return (reg); } } static void ipw_led_link_on(struct ipw_priv *priv ) { unsigned long flags ; u32 led ; int tmp ; int tmp___0 ; unsigned long tmp___1 ; { if ((priv->config & 512U) != 0U || (unsigned int )priv->nic_type == 1U) { return; } else { } { ldv___ldv_spin_lock_64(& priv->lock); } if (*((unsigned int *)priv + 482UL) == 0U) { if ((ipw_debug_level & 524288U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Link LED On\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_led_link_on"); } } else { } { led = _ipw_read_reg32(priv, 3145732U); led = led | priv->led_association_on; led = ipw_register_toggle(led); } if ((ipw_debug_level & 524288U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Reg: 0x%08X\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_led_link_on", led); } } else { } { ipw_write_reg32(priv, 3145732U, led); priv->status = priv->status | 16777216U; } if ((priv->status & 128U) == 0U) { { tmp___1 = msecs_to_jiffies(300U); schedule_delayed_work(& priv->led_link_off, tmp___1); } } else { } } else { } { ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } return; } } static void ipw_bg_led_link_on(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe650UL; mutex_lock_nested(& priv->mutex, 0U); ipw_led_link_on(priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_led_link_off(struct ipw_priv *priv ) { unsigned long flags ; u32 led ; int tmp ; int tmp___0 ; unsigned long tmp___1 ; { if ((priv->config & 512U) != 0U || (unsigned int )priv->nic_type == 1U) { return; } else { } { ldv___ldv_spin_lock_66(& priv->lock); } if ((priv->status & 16777216U) != 0U) { { led = _ipw_read_reg32(priv, 3145732U); led = led & priv->led_association_off; led = ipw_register_toggle(led); } if ((ipw_debug_level & 524288U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Reg: 0x%08X\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_led_link_off", led); } } else { } { ipw_write_reg32(priv, 3145732U, led); } if ((ipw_debug_level & 524288U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Link LED Off\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_led_link_off"); } } else { } priv->status = priv->status & 4278190079U; if (*((unsigned int *)priv + 482UL) == 0U) { { tmp___1 = msecs_to_jiffies(2700U); schedule_delayed_work(& priv->led_link_on, tmp___1); } } else { } } else { } { ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } return; } } static void ipw_bg_led_link_off(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe570UL; mutex_lock_nested(& priv->mutex, 0U); ipw_led_link_off(priv); mutex_unlock(& priv->mutex); } return; } } static void __ipw_led_activity_on(struct ipw_priv *priv ) { u32 led ; int tmp ; int tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; { if ((priv->config & 512U) != 0U) { return; } else { } if ((priv->status & 12U) != 0U) { return; } else { } if ((priv->status & 33554432U) == 0U) { { led = _ipw_read_reg32(priv, 3145732U); led = led | priv->led_activity_on; led = ipw_register_toggle(led); } if ((ipw_debug_level & 524288U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Reg: 0x%08X\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "__ipw_led_activity_on", led); } } else { } { ipw_write_reg32(priv, 3145732U, led); } if ((ipw_debug_level & 524288U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Activity LED On\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "__ipw_led_activity_on"); } } else { } { priv->status = priv->status | 33554432U; cancel_delayed_work(& priv->led_act_off); tmp___1 = msecs_to_jiffies(250U); schedule_delayed_work(& priv->led_act_off, tmp___1); } } else { { cancel_delayed_work(& priv->led_act_off); tmp___2 = msecs_to_jiffies(250U); schedule_delayed_work(& priv->led_act_off, tmp___2); } } return; } } static void ipw_led_activity_off(struct ipw_priv *priv ) { unsigned long flags ; u32 led ; int tmp ; int tmp___0 ; { if ((priv->config & 512U) != 0U) { return; } else { } { ldv___ldv_spin_lock_68(& priv->lock); } if ((priv->status & 33554432U) != 0U) { { led = _ipw_read_reg32(priv, 3145732U); led = led & priv->led_activity_off; led = ipw_register_toggle(led); } if ((ipw_debug_level & 524288U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Reg: 0x%08X\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_led_activity_off", led); } } else { } { ipw_write_reg32(priv, 3145732U, led); } if ((ipw_debug_level & 524288U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Activity LED Off\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_led_activity_off"); } } else { } priv->status = priv->status & 4261412863U; } else { } { ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } return; } } static void ipw_bg_led_activity_off(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe490UL; mutex_lock_nested(& priv->mutex, 0U); ipw_led_activity_off(priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_led_band_on(struct ipw_priv *priv ) { unsigned long flags ; u32 led ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { if (((priv->config & 512U) != 0U || (unsigned int )priv->nic_type != 1U) || (unsigned long )priv->assoc_network == (unsigned long )((struct libipw_network *)0)) { return; } else { } { ldv___ldv_spin_lock_70(& priv->lock); led = _ipw_read_reg32(priv, 3145732U); } if ((unsigned int )(priv->assoc_network)->mode == 1U) { led = led | priv->led_ofdm_on; led = led & priv->led_association_off; if ((ipw_debug_level & 524288U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Mode LED On: 802.11a\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_led_band_on"); } } else { } } else if ((unsigned int )(priv->assoc_network)->mode == 4U) { led = led | priv->led_ofdm_on; led = led | priv->led_association_on; if ((ipw_debug_level & 524288U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Mode LED On: 802.11g\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_led_band_on"); } } else { } } else { led = led & priv->led_ofdm_off; led = led | priv->led_association_on; if ((ipw_debug_level & 524288U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Mode LED On: 802.11b\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_led_band_on"); } } else { } } { led = ipw_register_toggle(led); } if ((ipw_debug_level & 524288U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Reg: 0x%08X\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_led_band_on", led); } } else { } { ipw_write_reg32(priv, 3145732U, led); ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } return; } } static void ipw_led_band_off(struct ipw_priv *priv ) { unsigned long flags ; u32 led ; int tmp ; { if ((priv->config & 512U) != 0U || (unsigned int )priv->nic_type != 1U) { return; } else { } { ldv___ldv_spin_lock_72(& priv->lock); led = _ipw_read_reg32(priv, 3145732U); led = led & priv->led_ofdm_off; led = led & priv->led_association_off; led = ipw_register_toggle(led); } if ((ipw_debug_level & 524288U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Reg: 0x%08X\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_led_band_off", led); } } else { } { ipw_write_reg32(priv, 3145732U, led); ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } return; } } static void ipw_led_radio_on(struct ipw_priv *priv ) { { { ipw_led_link_on(priv); } return; } } static void ipw_led_radio_off(struct ipw_priv *priv ) { { { ipw_led_activity_off(priv); ipw_led_link_off(priv); } return; } } static void ipw_led_link_up(struct ipw_priv *priv ) { { { ipw_led_link_on(priv); } return; } } static void ipw_led_link_down(struct ipw_priv *priv ) { { { ipw_led_activity_off(priv); ipw_led_link_off(priv); } if ((priv->status & 12U) != 0U) { { ipw_led_radio_off(priv); } } else { } return; } } static void ipw_led_init(struct ipw_priv *priv ) { int tmp ; { priv->nic_type = priv->eeprom[74UL]; priv->led_activity_on = 16U; priv->led_activity_off = 4294967279U; priv->led_association_on = 32U; priv->led_association_off = 4294967263U; priv->led_ofdm_on = 64U; priv->led_ofdm_off = 4294967231U; { if ((int )priv->nic_type == 1) { goto case_1; } else { } if ((int )priv->nic_type == 3) { goto case_3; } else { } if ((int )priv->nic_type == 2) { goto case_2; } else { } if ((int )priv->nic_type == 4) { goto case_4; } else { } if ((int )priv->nic_type == 0) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ priv->led_activity_on = 32U; priv->led_activity_off = 4294967263U; priv->led_association_on = 16U; priv->led_association_off = 4294967279U; if ((priv->config & 512U) == 0U) { { ipw_led_band_on(priv); } } else { } return; case_3: /* CIL Label */ ; case_2: /* CIL Label */ ; case_4: /* CIL Label */ ; case_0: /* CIL Label */ ; goto ldv_49451; switch_default: /* CIL Label */ ; if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Unknown NIC type from EEPROM: %d\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_led_init", (int )priv->nic_type); } } else { } priv->nic_type = 0U; goto ldv_49451; switch_break: /* CIL Label */ ; } ldv_49451: ; if ((priv->config & 512U) == 0U) { if ((priv->status & 128U) != 0U) { { ipw_led_link_on(priv); } } else { { ipw_led_link_off(priv); } } } else { } return; } } static void ipw_led_shutdown(struct ipw_priv *priv ) { { { ipw_led_activity_off(priv); ipw_led_link_off(priv); ipw_led_band_off(priv); cancel_delayed_work(& priv->led_link_on); cancel_delayed_work(& priv->led_link_off); cancel_delayed_work(& priv->led_act_off); } return; } } static ssize_t show_debug_level(struct device_driver *d , char *buf ) { int tmp ; { { tmp = sprintf(buf, "0x%08X\n", ipw_debug_level); } return ((ssize_t )tmp); } } static ssize_t store_debug_level(struct device_driver *d , char const *buf , size_t count ) { char *p ; u32 val ; unsigned long tmp ; unsigned long tmp___0 ; __kernel_size_t tmp___1 ; { p = (char *)buf; if ((((int )*(p + 1UL) == 120 || (int )*(p + 1UL) == 88) || (int )((signed char )*p) == 120) || (int )((signed char )*p) == 88) { p = p + 1; if ((int )*p == 120 || (int )*p == 88) { p = p + 1; } else { } { tmp = simple_strtoul((char const *)p, & p, 16U); val = (u32 )tmp; } } else { { tmp___0 = simple_strtoul((char const *)p, & p, 10U); val = (u32 )tmp___0; } } if ((unsigned long )((char const *)p) == (unsigned long )buf) { { printk("\016ipw2200: %s is not in hex or decimal form.\n", buf); } } else { ipw_debug_level = val; } { tmp___1 = strnlen(buf, count); } return ((ssize_t )tmp___1); } } static struct driver_attribute driver_attr_debug_level = {{"debug_level", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_debug_level, & store_debug_level}; __inline static u32 ipw_get_event_log_len(struct ipw_priv *priv ) { int tmp ; u32 tmp___0 ; u32 tmp___1 ; { if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_get_event_log_len", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 1231, 1556U); } } else { } { tmp___0 = _ipw_read32(priv, 1556UL); tmp___1 = _ipw_read_reg32(priv, tmp___0); } return (tmp___1); } } static void ipw_capture_event_log(struct ipw_priv *priv , u32 log_len , struct ipw_event *log ) { u32 base ; int tmp ; u32 tmp___0 ; int tmp___1 ; { if (log_len != 0U) { if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_capture_event_log", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 1240, 1556U); } } else { } { tmp___0 = _ipw_read32(priv, 1556UL); base = tmp___0; } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_indirect(0x%08X) %u bytes\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_capture_event_log", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 1242, base + 8U, log_len * 12U); } } else { } { _ipw_read_indirect(priv, base + 8U, (u8 *)log, (int )(log_len * 12U)); } } else { } return; } } static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv ) { struct ipw_fw_error *error ; u32 log_len ; u32 tmp ; u32 base ; int tmp___0 ; u32 tmp___1 ; u32 elem_len ; u32 tmp___2 ; void *tmp___3 ; int tmp___4 ; { { tmp = ipw_get_event_log_len(priv); log_len = tmp; } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_alloc_error_log", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 1250, 1552U); } } else { } { tmp___1 = _ipw_read32(priv, 1552UL); base = tmp___1; tmp___2 = _ipw_read_reg32(priv, base); elem_len = tmp___2; tmp___3 = kmalloc(((unsigned long )elem_len * 28UL + (unsigned long )log_len * 12UL) + 40UL, 32U); error = (struct ipw_fw_error *)tmp___3; } if ((unsigned long )error == (unsigned long )((struct ipw_fw_error *)0)) { { printk("\vipw2200: Memory allocation for firmware error log failed.\n"); } return ((struct ipw_fw_error *)0); } else { } { error->jiffies = jiffies; error->status = priv->status; error->config = priv->config; error->elem_len = elem_len; error->log_len = log_len; error->elem = (struct ipw_error_elem *)(& error->payload); error->log = (struct ipw_event *)error->elem + (unsigned long )elem_len; ipw_capture_event_log(priv, log_len, error->log); } if (elem_len != 0U) { if ((ipw_debug_level & 134217728U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_indirect(0x%08X) %u bytes\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_alloc_error_log", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 1273, base + 4U, elem_len * 28U); } } else { } { _ipw_read_indirect(priv, base + 4U, (u8 *)error->elem, (int )(elem_len * 28U)); } } else { } return (error); } } static ssize_t show_event_log(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; u32 log_len ; u32 tmp___0 ; u32 log_size ; struct ipw_event *log ; u32 len ; u32 i ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = ldv_dev_get_drvdata_74((struct device const *)d); priv = (struct ipw_priv *)tmp; tmp___0 = ipw_get_event_log_len(priv); log_len = tmp___0; len = 0U; log_size = log_len <= 340U ? log_len * 12U : 4096U; tmp___1 = kzalloc((size_t )log_size, 208U); log = (struct ipw_event *)tmp___1; } if ((unsigned long )log == (unsigned long )((struct ipw_event *)0)) { { printk("\vipw2200: Unable to allocate memory for log\n"); } return (0L); } else { } { log_len = log_size / 12U; ipw_capture_event_log(priv, log_len, log); tmp___2 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "%08X", log_len); len = len + (u32 )tmp___2; i = 0U; } goto ldv_49503; ldv_49502: { tmp___3 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "\n%08X%08X%08X", (log + (unsigned long )i)->time, (log + (unsigned long )i)->event, (log + (unsigned long )i)->data); len = len + (u32 )tmp___3; i = i + 1U; } ldv_49503: ; if (i < log_len) { goto ldv_49502; } else { } { tmp___4 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "\n"); len = len + (u32 )tmp___4; kfree((void const *)log); } return ((ssize_t )len); } } static struct device_attribute dev_attr_event_log = {{"event_log", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_event_log, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_error(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; u32 len ; u32 i ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = ldv_dev_get_drvdata_75((struct device const *)d); priv = (struct ipw_priv *)tmp; len = 0U; } if ((unsigned long )priv->error == (unsigned long )((struct ipw_fw_error *)0)) { return (0L); } else { } { tmp___0 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "%08lX%08X%08X%08X", (priv->error)->jiffies, (priv->error)->status, (priv->error)->config, (priv->error)->elem_len); len = len + (u32 )tmp___0; i = 0U; } goto ldv_49515; ldv_49514: { tmp___1 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "\n%08X%08X%08X%08X%08X%08X%08X", ((priv->error)->elem + (unsigned long )i)->time, ((priv->error)->elem + (unsigned long )i)->desc, ((priv->error)->elem + (unsigned long )i)->blink1, ((priv->error)->elem + (unsigned long )i)->blink2, ((priv->error)->elem + (unsigned long )i)->link1, ((priv->error)->elem + (unsigned long )i)->link2, ((priv->error)->elem + (unsigned long )i)->data); len = len + (u32 )tmp___1; i = i + 1U; } ldv_49515: ; if (i < (priv->error)->elem_len) { goto ldv_49514; } else { } { tmp___2 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "\n%08X", (priv->error)->log_len); len = len + (u32 )tmp___2; i = 0U; } goto ldv_49518; ldv_49517: { tmp___3 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "\n%08X%08X%08X", ((priv->error)->log + (unsigned long )i)->time, ((priv->error)->log + (unsigned long )i)->event, ((priv->error)->log + (unsigned long )i)->data); len = len + (u32 )tmp___3; i = i + 1U; } ldv_49518: ; if (i < (priv->error)->log_len) { goto ldv_49517; } else { } { tmp___4 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "\n"); len = len + (u32 )tmp___4; } return ((ssize_t )len); } } static ssize_t clear_error(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; { { tmp = ldv_dev_get_drvdata_76((struct device const *)d); priv = (struct ipw_priv *)tmp; kfree((void const *)priv->error); priv->error = (struct ipw_fw_error *)0; } return ((ssize_t )count); } } static struct device_attribute dev_attr_error = {{"error", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_error, & clear_error}; static ssize_t show_cmd_log(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; u32 len ; u32 i ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = ldv_dev_get_drvdata_77((struct device const *)d); priv = (struct ipw_priv *)tmp; len = 0U; } if ((unsigned long )priv->cmdlog == (unsigned long )((struct ipw_cmd_log *)0)) { return (0L); } else { } i = (u32 )((priv->cmdlog_pos + 1) % priv->cmdlog_len); goto ldv_49537; ldv_49536: { tmp___0 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "\n%08lX%08X%08X%08X\n", (priv->cmdlog + (unsigned long )i)->jiffies, (priv->cmdlog + (unsigned long )i)->retcode, (int )(priv->cmdlog + (unsigned long )i)->cmd.cmd, (int )(priv->cmdlog + (unsigned long )i)->cmd.len); len = len + (u32 )tmp___0; tmp___1 = snprintk_buf((u8 *)buf + (unsigned long )len, 4096UL - (unsigned long )len, (u8 const *)(& (priv->cmdlog + (unsigned long )i)->cmd.param), (size_t )(priv->cmdlog + (unsigned long )i)->cmd.len); len = len + (u32 )tmp___1; tmp___2 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "\n"); len = len + (u32 )tmp___2; i = (i + 1U) % (u32 )priv->cmdlog_len; } ldv_49537: ; if (i != (u32 )priv->cmdlog_pos && len != 4096U) { goto ldv_49536; } else { } { tmp___3 = snprintf(buf + (unsigned long )len, 4096UL - (unsigned long )len, "\n"); len = len + (u32 )tmp___3; } return ((ssize_t )len); } } static struct device_attribute dev_attr_cmd_log = {{"cmd_log", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_cmd_log, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static void ipw_prom_free(struct ipw_priv *priv ) ; static int ipw_prom_alloc(struct ipw_priv *priv ) ; static ssize_t store_rtap_iface(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; int rc ; bool tmp___0 ; { { tmp = ldv_dev_get_drvdata_78((struct device const *)d); priv = (struct ipw_priv *)tmp; rc = 0; } if (count == 0UL) { return (-22L); } else { } { if ((int )*buf == 48) { goto case_48; } else { } if ((int )*buf == 49) { goto case_49; } else { } goto switch_default; case_48: /* CIL Label */ ; if (rtap_iface == 0) { return ((ssize_t )count); } else { } { tmp___0 = netif_running((struct net_device const *)priv->prom_net_dev); } if ((int )tmp___0) { { printk("\fipw2200: Interface is up. Cannot unregister.\n"); } return ((ssize_t )count); } else { } { ipw_prom_free(priv); rtap_iface = 0; } goto ldv_49553; case_49: /* CIL Label */ ; if (rtap_iface != 0) { return ((ssize_t )count); } else { } { rc = ipw_prom_alloc(priv); } if (rc == 0) { rtap_iface = 1; } else { } goto ldv_49553; switch_default: /* CIL Label */ ; return (-22L); switch_break: /* CIL Label */ ; } ldv_49553: ; if (rc != 0) { { printk("\vipw2200: Failed to register promiscuous network device (error %d).\n", rc); } } else { } return ((ssize_t )count); } } static ssize_t show_rtap_iface(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_79((struct device const *)d); priv = (struct ipw_priv *)tmp; } if (rtap_iface != 0) { { tmp___0 = sprintf(buf, "%s", (char *)(& (priv->prom_net_dev)->name)); } return ((ssize_t )tmp___0); } else { *buf = 45; *(buf + 1UL) = 49; *(buf + 2UL) = 0; return (3L); } } } static struct device_attribute dev_attr_rtap_iface = {{"rtap_iface", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_rtap_iface, & store_rtap_iface}; static ssize_t store_rtap_filter(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp = ldv_dev_get_drvdata_80((struct device const *)d); priv = (struct ipw_priv *)tmp; } if ((unsigned long )priv->prom_priv == (unsigned long )((struct ipw_prom_priv *)0)) { { printk("\vipw2200: Attempting to set filter without rtap_iface enabled.\n"); } return (-1L); } else { } { tmp___0 = simple_strtol(buf, (char **)0, 0U); (priv->prom_priv)->filter = (enum ipw_prom_filter )tmp___0; } if ((ipw_debug_level & 4U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Setting rtap filter to %c%c%c%c-%c%c%c%c:%c%c%c%c-%c%c%c%c\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "store_rtap_filter", ((unsigned int )(priv->prom_priv)->filter & 32768U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 16384U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 8192U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 4096U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 2048U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 1024U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 512U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 256U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 128U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 64U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 32U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 16U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 8U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 4U) != 0U ? 49 : 48, ((unsigned int )(priv->prom_priv)->filter & 2U) != 0U ? 49 : 48, (int )(priv->prom_priv)->filter & 1 ? 49 : 48); } } else { } return ((ssize_t )count); } } static ssize_t show_rtap_filter(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)d); priv = (struct ipw_priv *)tmp; tmp___0 = sprintf(buf, "0x%04X", (unsigned long )priv->prom_priv != (unsigned long )((struct ipw_prom_priv *)0) ? (unsigned int )(priv->prom_priv)->filter : 0U); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_rtap_filter = {{"rtap_filter", 384U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_rtap_filter, & store_rtap_filter}; static ssize_t show_scan_age(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_82((struct device const *)d); priv = (struct ipw_priv *)tmp; tmp___0 = sprintf(buf, "%d\n", (priv->ieee)->scan_age); } return ((ssize_t )tmp___0); } } static ssize_t store_scan_age(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; struct net_device *dev ; char buffer[9U] ; unsigned long len ; unsigned long val ; char *p ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = ldv_dev_get_drvdata_83((struct device const *)d); priv = (struct ipw_priv *)tmp; dev = priv->net_dev; buffer[0] = '0'; buffer[1] = '0'; buffer[2] = '0'; buffer[3] = '0'; buffer[4] = '0'; buffer[5] = '0'; buffer[6] = '0'; buffer[7] = '0'; buffer[8] = '\000'; len = 8UL < count ? 8UL : count; p = (char *)(& buffer); } if ((ipw_debug_level & 4U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s enter\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "store_scan_age"); } } else { } { strncpy((char *)(& buffer), buf, len); buffer[len] = 0; } if ((((int )*(p + 1UL) == 120 || (int )*(p + 1UL) == 88) || (int )((signed char )*p) == 120) || (int )((signed char )*p) == 88) { p = p + 1; if ((int )*p == 120 || (int )*p == 88) { p = p + 1; } else { } { val = simple_strtoul((char const *)p, & p, 16U); } } else { { val = simple_strtoul((char const *)p, & p, 10U); } } if ((unsigned long )p == (unsigned long )((char *)(& buffer))) { if ((ipw_debug_level & 4U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s: user supplied invalid value.\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "store_scan_age", (char *)(& dev->name)); } } else { } } else { (priv->ieee)->scan_age = (int )val; if ((ipw_debug_level & 4U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s set scan_age = %u\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "store_scan_age", (priv->ieee)->scan_age); } } else { } } if ((ipw_debug_level & 4U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s exit\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "store_scan_age"); } } else { } return ((ssize_t )len); } } static struct device_attribute dev_attr_scan_age = {{"scan_age", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_scan_age, & store_scan_age}; static ssize_t show_led(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_84((struct device const *)d); priv = (struct ipw_priv *)tmp; tmp___0 = sprintf(buf, "%d\n", (priv->config & 512U) == 0U); } return ((ssize_t )tmp___0); } } static ssize_t store_led(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = ldv_dev_get_drvdata_85((struct device const *)d); priv = (struct ipw_priv *)tmp; } if ((ipw_debug_level & 4U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s enter\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "store_led"); } } else { } if (count == 0UL) { return (0L); } else { } if ((int )((signed char )*buf) == 0) { if ((ipw_debug_level & 524288U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Disabling LED control.\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "store_led"); } } else { } { priv->config = priv->config | 512U; ipw_led_shutdown(priv); } } else { if ((ipw_debug_level & 524288U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Enabling LED control.\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "store_led"); } } else { } { priv->config = priv->config & 4294966783U; ipw_led_init(priv); } } if ((ipw_debug_level & 4U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s exit\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "store_led"); } } else { } return ((ssize_t )count); } } static struct device_attribute dev_attr_led = {{"led", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_led, & store_led}; static ssize_t show_status(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *p ; void *tmp ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_86((struct device const *)d); p = (struct ipw_priv *)tmp; tmp___0 = sprintf(buf, "0x%08x\n", (int )p->status); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_status = {{"status", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_status, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_cfg(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *p ; void *tmp ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_87((struct device const *)d); p = (struct ipw_priv *)tmp; tmp___0 = sprintf(buf, "0x%08x\n", (int )p->config); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_cfg = {{"cfg", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_cfg, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_nic_type(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_88((struct device const *)d); priv = (struct ipw_priv *)tmp; tmp___0 = sprintf(buf, "TYPE: %d\n", (int )priv->nic_type); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_nic_type = {{"nic_type", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_nic_type, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_ucode_version(struct device *d , struct device_attribute *attr , char *buf ) { u32 len ; u32 tmp ; struct ipw_priv *p ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { { len = 4U; tmp = 0U; tmp___0 = ldv_dev_get_drvdata_89((struct device const *)d); p = (struct ipw_priv *)tmp___0; tmp___1 = ipw_get_ordinal(p, 61955U, (void *)(& tmp), & len); } if (tmp___1 != 0) { return (0L); } else { } { tmp___2 = sprintf(buf, "0x%08x\n", tmp); } return ((ssize_t )tmp___2); } } static struct device_attribute dev_attr_ucode_version = {{"ucode_version", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_ucode_version, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_rtc(struct device *d , struct device_attribute *attr , char *buf ) { u32 len ; u32 tmp ; struct ipw_priv *p ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { { len = 4U; tmp = 0U; tmp___0 = ldv_dev_get_drvdata_90((struct device const *)d); p = (struct ipw_priv *)tmp___0; tmp___1 = ipw_get_ordinal(p, 61958U, (void *)(& tmp), & len); } if (tmp___1 != 0) { return (0L); } else { } { tmp___2 = sprintf(buf, "0x%08x\n", tmp); } return ((ssize_t )tmp___2); } } static struct device_attribute dev_attr_rtc = {{"rtc", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_rtc, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_eeprom_delay(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *p ; void *tmp ; int n ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_91((struct device const *)d); p = (struct ipw_priv *)tmp; n = p->eeprom_delay; tmp___0 = sprintf(buf, "%i\n", n); } return ((ssize_t )tmp___0); } } static ssize_t store_eeprom_delay(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *p ; void *tmp ; __kernel_size_t tmp___0 ; { { tmp = ldv_dev_get_drvdata_92((struct device const *)d); p = (struct ipw_priv *)tmp; sscanf(buf, "%i", & p->eeprom_delay); tmp___0 = strnlen(buf, count); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_eeprom_delay = {{"eeprom_delay", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_eeprom_delay, & store_eeprom_delay}; static ssize_t show_command_event_reg(struct device *d , struct device_attribute *attr , char *buf ) { u32 reg ; struct ipw_priv *p ; void *tmp ; int tmp___0 ; { { reg = 0U; tmp = ldv_dev_get_drvdata_93((struct device const *)d); p = (struct ipw_priv *)tmp; reg = _ipw_read_reg32(p, 3145732U); tmp___0 = sprintf(buf, "0x%08x\n", reg); } return ((ssize_t )tmp___0); } } static ssize_t store_command_event_reg(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { u32 reg ; struct ipw_priv *p ; void *tmp ; __kernel_size_t tmp___0 ; { { tmp = ldv_dev_get_drvdata_94((struct device const *)d); p = (struct ipw_priv *)tmp; sscanf(buf, "%x", & reg); ipw_write_reg32(p, 3145732U, reg); tmp___0 = strnlen(buf, count); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_command_event_reg = {{"command_event_reg", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_command_event_reg, & store_command_event_reg}; static ssize_t show_mem_gpio_reg(struct device *d , struct device_attribute *attr , char *buf ) { u32 reg ; struct ipw_priv *p ; void *tmp ; int tmp___0 ; { { reg = 0U; tmp = ldv_dev_get_drvdata_95((struct device const *)d); p = (struct ipw_priv *)tmp; reg = _ipw_read_reg32(p, 3150080U); tmp___0 = sprintf(buf, "0x%08x\n", reg); } return ((ssize_t )tmp___0); } } static ssize_t store_mem_gpio_reg(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { u32 reg ; struct ipw_priv *p ; void *tmp ; __kernel_size_t tmp___0 ; { { tmp = ldv_dev_get_drvdata_96((struct device const *)d); p = (struct ipw_priv *)tmp; sscanf(buf, "%x", & reg); ipw_write_reg32(p, 3150080U, reg); tmp___0 = strnlen(buf, count); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_mem_gpio_reg = {{"mem_gpio_reg", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_mem_gpio_reg, & store_mem_gpio_reg}; static ssize_t show_indirect_dword(struct device *d , struct device_attribute *attr , char *buf ) { u32 reg ; struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { reg = 0U; tmp = ldv_dev_get_drvdata_97((struct device const *)d); priv = (struct ipw_priv *)tmp; } if ((priv->status & 536870912U) != 0U) { { reg = _ipw_read_reg32(priv, priv->indirect_dword); } } else { reg = 0U; } { tmp___0 = sprintf(buf, "0x%08x\n", reg); } return ((ssize_t )tmp___0); } } static ssize_t store_indirect_dword(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; __kernel_size_t tmp___0 ; { { tmp = ldv_dev_get_drvdata_98((struct device const *)d); priv = (struct ipw_priv *)tmp; sscanf(buf, "%x", & priv->indirect_dword); priv->status = priv->status | 536870912U; tmp___0 = strnlen(buf, count); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_indirect_dword = {{"indirect_dword", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_indirect_dword, & store_indirect_dword}; static ssize_t show_indirect_byte(struct device *d , struct device_attribute *attr , char *buf ) { u8 reg ; struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { reg = 0U; tmp = ldv_dev_get_drvdata_99((struct device const *)d); priv = (struct ipw_priv *)tmp; } if ((priv->status & 268435456U) != 0U) { { reg = _ipw_read_reg8(priv, priv->indirect_byte); } } else { reg = 0U; } { tmp___0 = sprintf(buf, "0x%02x\n", (int )reg); } return ((ssize_t )tmp___0); } } static ssize_t store_indirect_byte(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; __kernel_size_t tmp___0 ; { { tmp = ldv_dev_get_drvdata_100((struct device const *)d); priv = (struct ipw_priv *)tmp; sscanf(buf, "%x", & priv->indirect_byte); priv->status = priv->status | 268435456U; tmp___0 = strnlen(buf, count); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_indirect_byte = {{"indirect_byte", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_indirect_byte, & store_indirect_byte}; static ssize_t show_direct_dword(struct device *d , struct device_attribute *attr , char *buf ) { u32 reg ; struct ipw_priv *priv ; void *tmp ; int tmp___0 ; u32 tmp___1 ; int tmp___2 ; { { reg = 0U; tmp = ldv_dev_get_drvdata_101((struct device const *)d); priv = (struct ipw_priv *)tmp; } if ((priv->status & 1073741824U) != 0U) { if ((ipw_debug_level & 134217728U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "show_direct_dword", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 1747, priv->direct_dword); } } else { } { tmp___1 = _ipw_read32(priv, (unsigned long )priv->direct_dword); reg = tmp___1; } } else { reg = 0U; } { tmp___2 = sprintf(buf, "0x%08x\n", reg); } return ((ssize_t )tmp___2); } } static ssize_t store_direct_dword(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; __kernel_size_t tmp___0 ; { { tmp = ldv_dev_get_drvdata_102((struct device const *)d); priv = (struct ipw_priv *)tmp; sscanf(buf, "%x", & priv->direct_dword); priv->status = priv->status | 1073741824U; tmp___0 = strnlen(buf, count); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_direct_dword = {{"direct_dword", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_direct_dword, & store_direct_dword}; static int rf_kill_active(struct ipw_priv *priv ) { int tmp ; u32 tmp___0 ; { if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "rf_kill_active", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 1769, 48U); } } else { } { tmp___0 = _ipw_read32(priv, 48UL); } if ((tmp___0 & 65536U) == 0U) { { priv->status = priv->status | 4U; wiphy_rfkill_set_hw_state((priv->ieee)->wdev.wiphy, 1); } } else { { priv->status = priv->status & 4294967291U; wiphy_rfkill_set_hw_state((priv->ieee)->wdev.wiphy, 0); } } return ((priv->status & 4U) != 0U); } } static ssize_t show_rf_kill(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; int val ; int tmp___0 ; int tmp___1 ; { { tmp = ldv_dev_get_drvdata_103((struct device const *)d); priv = (struct ipw_priv *)tmp; tmp___0 = rf_kill_active(priv); val = ((priv->status & 8U) != 0U) | (tmp___0 != 0 ? 2 : 0); tmp___1 = sprintf(buf, "%i\n", val); } return ((ssize_t )tmp___1); } } static int ipw_radio_kill_sw(struct ipw_priv *priv , int disable_radio ) { int tmp ; int tmp___0 ; unsigned long tmp___1 ; int tmp___2 ; { if ((disable_radio == 0) ^ ((priv->status & 8U) != 0U)) { return (0); } else { } if ((ipw_debug_level & 131072U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Manual SW RF Kill set to: RADIO %s\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_radio_kill_sw", disable_radio != 0 ? (char *)"OFF" : (char *)"ON"); } } else { } if (disable_radio != 0) { { priv->status = priv->status | 8U; cancel_delayed_work(& priv->request_scan); cancel_delayed_work(& priv->request_direct_scan); cancel_delayed_work(& priv->request_passive_scan); cancel_delayed_work(& priv->scan_event); schedule_work(& priv->down); } } else { { priv->status = priv->status & 4294967287U; tmp___2 = rf_kill_active(priv); } if (tmp___2 != 0) { if ((ipw_debug_level & 131072U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Can not turn radio back on - disabled by HW switch\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_radio_kill_sw"); } } else { } { cancel_delayed_work(& priv->rf_kill); tmp___1 = round_jiffies_relative(500UL); schedule_delayed_work(& priv->rf_kill, tmp___1); } } else { { schedule_work(& priv->up); } } } return (1); } } static ssize_t store_rf_kill(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; { { tmp = ldv_dev_get_drvdata_104((struct device const *)d); priv = (struct ipw_priv *)tmp; ipw_radio_kill_sw(priv, (int )((signed char )*buf) == 49); } return ((ssize_t )count); } } static struct device_attribute dev_attr_rf_kill = {{"rf_kill", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_rf_kill, & store_rf_kill}; static ssize_t show_speed_scan(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; int pos ; int len ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = ldv_dev_get_drvdata_105((struct device const *)d); priv = (struct ipw_priv *)tmp; pos = 0; len = 0; } if ((priv->config & 2048U) != 0U) { goto ldv_49780; ldv_49779: { tmp___0 = pos; pos = pos + 1; tmp___1 = sprintf(buf + (unsigned long )len, "%d ", (int )priv->speed_scan[tmp___0]); len = len + tmp___1; } ldv_49780: ; if ((unsigned int )priv->speed_scan[pos] != 0U) { goto ldv_49779; } else { } { tmp___2 = sprintf(buf + (unsigned long )len, "\n"); } return ((ssize_t )(len + tmp___2)); } else { } { tmp___3 = sprintf(buf, "0\n"); } return ((ssize_t )tmp___3); } } static ssize_t store_speed_scan(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; int channel ; int pos ; char const *p ; int tmp___0 ; int tmp___1 ; char *tmp___2 ; long tmp___3 ; { { tmp = ldv_dev_get_drvdata_106((struct device const *)d); priv = (struct ipw_priv *)tmp; pos = 0; p = buf; } goto ldv_49797; ldv_49796: ; if (pos == 99) { priv->speed_scan[pos] = 0U; goto ldv_49792; } else { } { tmp___1 = libipw_is_valid_channel(priv->ieee, (int )((u8 )channel)); } if (tmp___1 != 0) { tmp___0 = pos; pos = pos + 1; priv->speed_scan[tmp___0] = (u8 )channel; } else { { printk("\fipw2200: Skipping invalid channel request: %d\n", channel); } } { tmp___2 = strchr(p, 32); p = (char const *)tmp___2; } if ((unsigned long )p == (unsigned long )((char const *)0)) { goto ldv_49792; } else { } goto ldv_49794; ldv_49793: p = p + 1; ldv_49794: ; if ((int const )*p == 32 || (int const )*p == 9) { goto ldv_49793; } else { } ldv_49797: { tmp___3 = simple_strtol(p, (char **)0, 0U); channel = (int )tmp___3; } if (channel != 0) { goto ldv_49796; } else { } ldv_49792: ; if (pos == 0) { priv->config = priv->config & 4294965247U; } else { priv->speed_scan_pos = 0U; priv->config = priv->config | 2048U; } return ((ssize_t )count); } } static struct device_attribute dev_attr_speed_scan = {{"speed_scan", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_speed_scan, & store_speed_scan}; static ssize_t show_net_stats(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_107((struct device const *)d); priv = (struct ipw_priv *)tmp; tmp___0 = sprintf(buf, "%c\n", (priv->config & 4096U) != 0U ? 49 : 48); } return ((ssize_t )tmp___0); } } static ssize_t store_net_stats(struct device *d , struct device_attribute *attr , char const *buf , size_t count ) { struct ipw_priv *priv ; void *tmp ; { { tmp = ldv_dev_get_drvdata_108((struct device const *)d); priv = (struct ipw_priv *)tmp; } if ((int )((signed char )*buf) == 49) { priv->config = priv->config | 4096U; } else { priv->config = priv->config & 4294963199U; } return ((ssize_t )count); } } static struct device_attribute dev_attr_net_stats = {{"net_stats", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_net_stats, & store_net_stats}; static ssize_t show_channels(struct device *d , struct device_attribute *attr , char *buf ) { struct ipw_priv *priv ; void *tmp ; struct libipw_geo const *geo ; struct libipw_geo const *tmp___0 ; int len ; int i ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = ldv_dev_get_drvdata_109((struct device const *)d); priv = (struct ipw_priv *)tmp; tmp___0 = libipw_get_geo(priv->ieee); geo = tmp___0; len = 0; len = sprintf(buf + (unsigned long )len, "Displaying %d channels in 2.4Ghz band (802.11bg):\n", (int )geo->bg_channels); i = 0; } goto ldv_49823; ldv_49822: { tmp___1 = sprintf(buf + (unsigned long )len, "%d: BSS%s%s, %s, Band %s.\n", (int )geo->bg[i].channel, ((int )geo->bg[i].flags & 32) != 0 ? (char *)" (radar spectrum)" : (char *)"", ((unsigned int )geo->bg[i].flags & 40U) != 0U ? (char *)"" : (char *)", IBSS", (int )geo->bg[i].flags & 1 ? (char *)"passive only" : (char *)"active/passive", ((int )geo->bg[i].flags & 4) != 0 ? (char *)"B" : (char *)"B/G"); len = len + tmp___1; i = i + 1; } ldv_49823: ; if (i < (int )geo->bg_channels) { goto ldv_49822; } else { } { tmp___2 = sprintf(buf + (unsigned long )len, "Displaying %d channels in 5.2Ghz band (802.11a):\n", (int )geo->a_channels); len = len + tmp___2; i = 0; } goto ldv_49826; ldv_49825: { tmp___3 = sprintf(buf + (unsigned long )len, "%d: BSS%s%s, %s.\n", (int )geo->a[i].channel, ((int )geo->a[i].flags & 32) != 0 ? (char *)" (radar spectrum)" : (char *)"", ((unsigned int )geo->a[i].flags & 40U) != 0U ? (char *)"" : (char *)", IBSS", (int )geo->a[i].flags & 1 ? (char *)"passive only" : (char *)"active/passive"); len = len + tmp___3; i = i + 1; } ldv_49826: ; if (i < (int )geo->a_channels) { goto ldv_49825; } else { } return ((ssize_t )len); } } static struct device_attribute dev_attr_channels = {{"channels", 256U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_channels, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static void notify_wx_assoc_event(struct ipw_priv *priv ) { union iwreq_data wrqu ; { wrqu.ap_addr.sa_family = 1U; if ((priv->status & 128U) != 0U) { { memcpy((void *)(& wrqu.ap_addr.sa_data), (void const *)(& priv->bssid), 6UL); } } else { { memset((void *)(& wrqu.ap_addr.sa_data), 0, 6UL); } } { wireless_send_event(priv->net_dev, 35605U, & wrqu, (char const *)0); } return; } } static void ipw_irq_tasklet(struct ipw_priv *priv ) { u32 inta ; u32 inta_mask ; u32 handled ; unsigned long flags ; int rc ; int tmp ; u32 tmp___0 ; int tmp___1 ; u32 tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; struct ipw_fw_error *error ; struct ipw_fw_error *tmp___10 ; int tmp___11 ; int tmp___12 ; { { handled = 0U; rc = 0; ldv___ldv_spin_lock_110(& priv->irq_lock); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 1979, 8U); } } else { } { tmp___0 = _ipw_read32(priv, 8UL); inta = tmp___0; } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 1980, 12U); } } else { } { tmp___2 = _ipw_read32(priv, 12UL); inta_mask = tmp___2; } if (inta == 4294967295U) { { printk("\fipw2200: TASKLET INTA == 0xFFFFFFFF\n"); inta = 0U; } } else { } { inta = (inta & inta_mask) & 3308386354U; inta = inta | priv->isr_inta; ldv_spin_unlock_irqrestore_61(& priv->irq_lock, flags); ldv___ldv_spin_lock_112(& priv->lock); } if ((inta & 2U) != 0U) { { ipw_rx(priv); handled = handled | 2U; } } else { } if ((inta & 2048U) != 0U) { if ((ipw_debug_level & 32U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s Command completed.\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet"); } } else { } { rc = ipw_queue_tx_reclaim(priv, & priv->txq_cmd, -1); priv->status = priv->status & 4294967294U; __wake_up(& priv->wait_command_queue, 1U, 1, (void *)0); handled = handled | 2048U; } } else { } if ((inta & 4096U) != 0U) { if ((ipw_debug_level & 8388608U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s TX_QUEUE_1\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet"); } } else { } { rc = ipw_queue_tx_reclaim(priv, (struct clx2_tx_queue *)(& priv->txq), 0); handled = handled | 4096U; } } else { } if ((inta & 8192U) != 0U) { if ((ipw_debug_level & 8388608U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s TX_QUEUE_2\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet"); } } else { } { rc = ipw_queue_tx_reclaim(priv, (struct clx2_tx_queue *)(& priv->txq) + 1UL, 1); handled = handled | 8192U; } } else { } if ((inta & 16384U) != 0U) { if ((ipw_debug_level & 8388608U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s TX_QUEUE_3\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet"); } } else { } { rc = ipw_queue_tx_reclaim(priv, (struct clx2_tx_queue *)(& priv->txq) + 2UL, 2); handled = handled | 16384U; } } else { } if ((inta & 32768U) != 0U) { if ((ipw_debug_level & 8388608U) != 0U) { { tmp___7 = preempt_count(); printk("\017ipw2200: %c %s TX_QUEUE_4\n", ((unsigned long )tmp___7 & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet"); } } else { } { rc = ipw_queue_tx_reclaim(priv, (struct clx2_tx_queue *)(& priv->txq) + 3UL, 3); handled = handled | 32768U; } } else { } if ((inta & 16U) != 0U) { { printk("\fipw2200: STATUS_CHANGE\n"); handled = handled | 16U; } } else { } if ((inta & 32U) != 0U) { { printk("\fipw2200: TX_PERIOD_EXPIRED\n"); handled = handled | 32U; } } else { } if ((inta & 65536U) != 0U) { { printk("\fipw2200: HOST_CMD_DONE\n"); handled = handled | 65536U; } } else { } if ((inta & 16777216U) != 0U) { { printk("\fipw2200: FW_INITIALIZATION_DONE\n"); handled = handled | 16777216U; } } else { } if ((inta & 33554432U) != 0U) { { printk("\fipw2200: PHY_OFF_DONE\n"); handled = handled | 33554432U; } } else { } if ((inta & 67108864U) != 0U) { if ((ipw_debug_level & 131072U) != 0U) { { tmp___8 = preempt_count(); printk("\017ipw2200: %c %s RF_KILL_DONE\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet"); } } else { } { priv->status = priv->status | 4U; wiphy_rfkill_set_hw_state((priv->ieee)->wdev.wiphy, 1); __wake_up(& priv->wait_command_queue, 1U, 1, (void *)0); priv->status = priv->status & 4294966911U; cancel_delayed_work(& priv->request_scan); cancel_delayed_work(& priv->request_direct_scan); cancel_delayed_work(& priv->request_passive_scan); cancel_delayed_work(& priv->scan_event); schedule_work(& priv->link_down); schedule_delayed_work(& priv->rf_kill, 500UL); handled = handled | 67108864U; } } else { } if ((inta & 1073741824U) != 0U) { { printk("\fipw2200: Firmware error detected. Restarting.\n"); } if ((unsigned long )priv->error != (unsigned long )((struct ipw_fw_error *)0)) { if ((ipw_debug_level & 65536U) != 0U) { { tmp___9 = preempt_count(); printk("\017ipw2200: %c %s Sysfs \'error\' log already exists.\n", ((unsigned long )tmp___9 & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet"); } } else { } if ((ipw_debug_level & 262144U) != 0U) { { tmp___10 = ipw_alloc_error_log(priv); error = tmp___10; ipw_dump_error_log(priv, error); kfree((void const *)error); } } else { } } else { { priv->error = ipw_alloc_error_log(priv); } if ((unsigned long )priv->error != (unsigned long )((struct ipw_fw_error *)0)) { if ((ipw_debug_level & 65536U) != 0U) { { tmp___11 = preempt_count(); printk("\017ipw2200: %c %s Sysfs \'error\' log captured.\n", ((unsigned long )tmp___11 & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet"); } } else { } } else if ((ipw_debug_level & 65536U) != 0U) { { tmp___12 = preempt_count(); printk("\017ipw2200: %c %s Error allocating sysfs \'error\' log.\n", ((unsigned long )tmp___12 & 2096896UL) != 0UL ? 73 : 85, "ipw_irq_tasklet"); } } else { } if ((ipw_debug_level & 262144U) != 0U) { { ipw_dump_error_log(priv, priv->error); } } else { } } if ((unsigned int )*((unsigned char *)priv->ieee + 952UL) != 0U) { { priv->status = priv->status & 4294967167U; notify_wx_assoc_event(priv); } } else { } { priv->status = priv->status & 4294967263U; priv->status = priv->status & 4294967294U; __wake_up(& priv->wait_command_queue, 1U, 1, (void *)0); schedule_work(& priv->adapter_restart); handled = handled | 1073741824U; } } else { } if ((int )inta < 0) { { printk("\vipw2200: Parity error\n"); handled = handled | 2147483648U; } } else { } if (handled != inta) { { printk("\vipw2200: Unhandled INTA bits 0x%08x\n", inta & ~ handled); } } else { } { ldv_spin_unlock_irqrestore_65(& priv->lock, flags); ipw_enable_interrupts(priv); } return; } } static char *get_cmd_string(u8 cmd ) { { { if ((int )cmd == 2) { goto case_2; } else { } if ((int )cmd == 4) { goto case_4; } else { } if ((int )cmd == 6) { goto case_6; } else { } if ((int )cmd == 7) { goto case_7; } else { } if ((int )cmd == 8) { goto case_8; } else { } if ((int )cmd == 11) { goto case_11; } else { } if ((int )cmd == 12) { goto case_12; } else { } if ((int )cmd == 15) { goto case_15; } else { } if ((int )cmd == 16) { goto case_16; } else { } if ((int )cmd == 17) { goto case_17; } else { } if ((int )cmd == 18) { goto case_18; } else { } if ((int )cmd == 19) { goto case_19; } else { } if ((int )cmd == 20) { goto case_20; } else { } if ((int )cmd == 26) { goto case_26; } else { } if ((int )cmd == 21) { goto case_21; } else { } if ((int )cmd == 22) { goto case_22; } else { } if ((int )cmd == 23) { goto case_23; } else { } if ((int )cmd == 24) { goto case_24; } else { } if ((int )cmd == 25) { goto case_25; } else { } if ((int )cmd == 30) { goto case_30; } else { } if ((int )cmd == 31) { goto case_31; } else { } if ((int )cmd == 32) { goto case_32; } else { } if ((int )cmd == 33) { goto case_33; } else { } if ((int )cmd == 34) { goto case_34; } else { } if ((int )cmd == 35) { goto case_35; } else { } if ((int )cmd == 36) { goto case_36; } else { } if ((int )cmd == 37) { goto case_37; } else { } if ((int )cmd == 38) { goto case_38; } else { } if ((int )cmd == 39) { goto case_39; } else { } if ((int )cmd == 40) { goto case_40; } else { } if ((int )cmd == 41) { goto case_41; } else { } if ((int )cmd == 42) { goto case_42; } else { } if ((int )cmd == 51) { goto case_51; } else { } if ((int )cmd == 58) { goto case_58; } else { } if ((int )cmd == 60) { goto case_60; } else { } if ((int )cmd == 61) { goto case_61; } else { } if ((int )cmd == 62) { goto case_62; } else { } if ((int )cmd == 63) { goto case_63; } else { } if ((int )cmd == 64) { goto case_64; } else { } if ((int )cmd == 65) { goto case_65; } else { } if ((int )cmd == 66) { goto case_66; } else { } if ((int )cmd == 67) { goto case_67; } else { } if ((int )cmd == 68) { goto case_68; } else { } if ((int )cmd == 69) { goto case_69; } else { } if ((int )cmd == 80) { goto case_80; } else { } if ((int )cmd == 81) { goto case_81; } else { } if ((int )cmd == 82) { goto case_82; } else { } if ((int )cmd == 83) { goto case_83; } else { } if ((int )cmd == 84) { goto case_84; } else { } if ((int )cmd == 85) { goto case_85; } else { } goto switch_default; case_2: /* CIL Label */ ; return ((char *)"HOST_COMPLETE"); case_4: /* CIL Label */ ; return ((char *)"POWER_DOWN"); case_6: /* CIL Label */ ; return ((char *)"SYSTEM_CONFIG"); case_7: /* CIL Label */ ; return ((char *)"MULTICAST_ADDRESS"); case_8: /* CIL Label */ ; return ((char *)"SSID"); case_11: /* CIL Label */ ; return ((char *)"ADAPTER_ADDRESS"); case_12: /* CIL Label */ ; return ((char *)"PORT_TYPE"); case_15: /* CIL Label */ ; return ((char *)"RTS_THRESHOLD"); case_16: /* CIL Label */ ; return ((char *)"FRAG_THRESHOLD"); case_17: /* CIL Label */ ; return ((char *)"POWER_MODE"); case_18: /* CIL Label */ ; return ((char *)"WEP_KEY"); case_19: /* CIL Label */ ; return ((char *)"TGI_TX_KEY"); case_20: /* CIL Label */ ; return ((char *)"SCAN_REQUEST"); case_26: /* CIL Label */ ; return ((char *)"SCAN_REQUEST_EXT"); case_21: /* CIL Label */ ; return ((char *)"ASSOCIATE"); case_22: /* CIL Label */ ; return ((char *)"SUPPORTED_RATES"); case_23: /* CIL Label */ ; return ((char *)"SCAN_ABORT"); case_24: /* CIL Label */ ; return ((char *)"TX_FLUSH"); case_25: /* CIL Label */ ; return ((char *)"QOS_PARAMETERS"); case_30: /* CIL Label */ ; return ((char *)"DINO_CONFIG"); case_31: /* CIL Label */ ; return ((char *)"RSN_CAPABILITIES"); case_32: /* CIL Label */ ; return ((char *)"RX_KEY"); case_33: /* CIL Label */ ; return ((char *)"CARD_DISABLE"); case_34: /* CIL Label */ ; return ((char *)"SEED_NUMBER"); case_35: /* CIL Label */ ; return ((char *)"TX_POWER"); case_36: /* CIL Label */ ; return ((char *)"COUNTRY_INFO"); case_37: /* CIL Label */ ; return ((char *)"AIRONET_INFO"); case_38: /* CIL Label */ ; return ((char *)"AP_TX_POWER"); case_39: /* CIL Label */ ; return ((char *)"CCKM_INFO"); case_40: /* CIL Label */ ; return ((char *)"CCX_VER_INFO"); case_41: /* CIL Label */ ; return ((char *)"SET_CALIBRATION"); case_42: /* CIL Label */ ; return ((char *)"SENSITIVITY_CALIB"); case_51: /* CIL Label */ ; return ((char *)"RETRY_LIMIT"); case_58: /* CIL Label */ ; return ((char *)"IPW_PRE_POWER_DOWN"); case_60: /* CIL Label */ ; return ((char *)"VAP_BEACON_TEMPLATE"); case_61: /* CIL Label */ ; return ((char *)"VAP_DTIM_PERIOD"); case_62: /* CIL Label */ ; return ((char *)"EXT_SUPPORTED_RATES"); case_63: /* CIL Label */ ; return ((char *)"VAP_LOCAL_TX_PWR_CONSTRAINT"); case_64: /* CIL Label */ ; return ((char *)"VAP_QUIET_INTERVALS"); case_65: /* CIL Label */ ; return ((char *)"VAP_CHANNEL_SWITCH"); case_66: /* CIL Label */ ; return ((char *)"VAP_MANDATORY_CHANNELS"); case_67: /* CIL Label */ ; return ((char *)"VAP_CELL_PWR_LIMIT"); case_68: /* CIL Label */ ; return ((char *)"VAP_CF_PARAM_SET"); case_69: /* CIL Label */ ; return ((char *)"VAP_SET_BEACONING_STATE"); case_80: /* CIL Label */ ; return ((char *)"MEASUREMENT"); case_81: /* CIL Label */ ; return ((char *)"POWER_CAPABILITY"); case_82: /* CIL Label */ ; return ((char *)"SUPPORTED_CHANNELS"); case_83: /* CIL Label */ ; return ((char *)"TPC_REPORT"); case_84: /* CIL Label */ ; return ((char *)"WME_INFO"); case_85: /* CIL Label */ ; return ((char *)"PRODUCTION_COMMAND"); switch_default: /* CIL Label */ ; return ((char *)"UNKNOWN"); switch_break: /* CIL Label */ ; } } } static int __ipw_send_cmd(struct ipw_priv *priv , struct host_cmd *cmd ) { int rc ; unsigned long flags ; unsigned long now ; unsigned long end ; char *tmp ; char *tmp___0 ; int tmp___1 ; int tmp___2 ; char *tmp___3 ; long __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___4 ; bool __cond ; bool __cond___0 ; char *tmp___5 ; char *tmp___6 ; int tmp___7 ; { { rc = 0; ldv___ldv_spin_lock_114(& priv->lock); } if ((int )priv->status & 1) { { tmp = get_cmd_string((int )cmd->cmd); printk("\vipw2200: Failed to send %s: Already sending a command.\n", tmp); ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } return (-11); } else { } priv->status = priv->status | 1U; if ((unsigned long )priv->cmdlog != (unsigned long )((struct ipw_cmd_log *)0)) { { (priv->cmdlog + (unsigned long )priv->cmdlog_pos)->jiffies = jiffies; (priv->cmdlog + (unsigned long )priv->cmdlog_pos)->cmd.cmd = cmd->cmd; (priv->cmdlog + (unsigned long )priv->cmdlog_pos)->cmd.len = cmd->len; memcpy((void *)(& (priv->cmdlog + (unsigned long )priv->cmdlog_pos)->cmd.param), (void const *)cmd->param, (size_t )cmd->len); (priv->cmdlog + (unsigned long )priv->cmdlog_pos)->retcode = -1; } } else { } if ((ipw_debug_level & 32U) != 0U) { { tmp___0 = get_cmd_string((int )cmd->cmd); tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s command (#%d) %d bytes: 0x%08X\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "__ipw_send_cmd", tmp___0, (int )cmd->cmd, (int )cmd->len, priv->status); } } else { } if ((unsigned int )cmd->cmd == 18U) { if ((ipw_debug_level & 32U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s WEP_KEY command masked out for secure.\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "__ipw_send_cmd"); } } else { } } else { { printk_buf(32, (u8 const *)cmd->param, (u32 )cmd->len); } } { rc = ipw_queue_tx_hcmd(priv, (int )cmd->cmd, (void *)cmd->param, (int )cmd->len, 0); } if (rc != 0) { { priv->status = priv->status & 4294967294U; tmp___3 = get_cmd_string((int )cmd->cmd); printk("\vipw2200: Failed to send %s: Reason %d\n", tmp___3, rc); ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } goto exit; } else { } { ldv_spin_unlock_irqrestore_65(& priv->lock, flags); now = jiffies; end = now + 250UL; } again: __ret = (long )(end - now); __cond___0 = (priv->status & 1U) == 0U; if ((int )__cond___0 && __ret == 0L) { __ret = 1L; } else { } if (((int )__cond___0 || __ret == 0L) == 0) { { __ret___0 = (long )(end - now); INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_49920: { tmp___4 = prepare_to_wait_event(& priv->wait_command_queue, & __wait, 1); __int = tmp___4; __cond = (priv->status & 1U) == 0U; } if ((int )__cond && __ret___0 == 0L) { __ret___0 = 1L; } else { } if (((int )__cond || __ret___0 == 0L) != 0) { goto ldv_49919; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_49919; } else { } { __ret___0 = schedule_timeout(__ret___0); } goto ldv_49920; ldv_49919: { finish_wait(& priv->wait_command_queue, & __wait); } __ret = __ret___0; } else { } rc = (int )__ret; if (rc < 0) { now = jiffies; if ((long )(now - end) < 0L) { goto again; } else { } rc = 0; } else { } if (rc == 0) { { ldv___ldv_spin_lock_118(& priv->lock); } if ((int )priv->status & 1) { { tmp___5 = get_cmd_string((int )cmd->cmd); printk("\vipw2200: Failed to send %s: Command timed out.\n", tmp___5); priv->status = priv->status & 4294967294U; ldv_spin_unlock_irqrestore_65(& priv->lock, flags); rc = -5; } goto exit; } else { } { ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } } else { rc = 0; } if ((priv->status & 4U) != 0U) { { tmp___6 = get_cmd_string((int )cmd->cmd); printk("\vipw2200: Failed to send %s: Aborted due to RF kill switch.\n", tmp___6); rc = -5; } goto exit; } else { } exit: ; if ((unsigned long )priv->cmdlog != (unsigned long )((struct ipw_cmd_log *)0)) { tmp___7 = priv->cmdlog_pos; priv->cmdlog_pos = priv->cmdlog_pos + 1; (priv->cmdlog + (unsigned long )tmp___7)->retcode = rc; priv->cmdlog_pos = priv->cmdlog_pos % priv->cmdlog_len; } else { } return (rc); } } static int ipw_send_cmd_simple(struct ipw_priv *priv , u8 command ) { struct host_cmd cmd ; int tmp ; { { cmd.cmd = command; cmd.len = (unsigned char)0; cmd.reserved = (unsigned short)0; cmd.param = 0; tmp = __ipw_send_cmd(priv, & cmd); } return (tmp); } } static int ipw_send_cmd_pdu(struct ipw_priv *priv , u8 command , u8 len , void *data ) { struct host_cmd cmd ; int tmp ; { { cmd.cmd = command; cmd.len = len; cmd.reserved = (unsigned short)0; cmd.param = (u32 *)data; tmp = __ipw_send_cmd(priv, & cmd); } return (tmp); } } static int ipw_send_host_complete(struct ipw_priv *priv ) { int tmp ; { if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { tmp = ipw_send_cmd_simple(priv, 2); } return (tmp); } } static int ipw_send_system_config(struct ipw_priv *priv ) { int tmp ; { { tmp = ipw_send_cmd_pdu(priv, 6, 20, (void *)(& priv->sys_config)); } return (tmp); } } static int ipw_send_ssid(struct ipw_priv *priv , u8 *ssid , int len ) { int _min1 ; int _min2 ; int tmp ; { if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0) || (unsigned long )ssid == (unsigned long )((u8 *)0U)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { _min1 = len; _min2 = 32; tmp = ipw_send_cmd_pdu(priv, 8, (int )((u8 )(_min1 < _min2 ? _min1 : _min2)), (void *)ssid); } return (tmp); } } static int ipw_send_adapter_address(struct ipw_priv *priv , u8 *mac ) { int tmp ; int tmp___0 ; { if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0) || (unsigned long )mac == (unsigned long )((u8 *)0U)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s: Setting MAC to %pM\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_send_adapter_address", (char *)(& (priv->net_dev)->name), mac); } } else { } { tmp___0 = ipw_send_cmd_pdu(priv, 11, 6, (void *)mac); } return (tmp___0); } } static void ipw_adapter_restart(void *adapter ) { struct ipw_priv *priv ; int tmp ; { priv = (struct ipw_priv *)adapter; if ((priv->status & 12U) != 0U) { return; } else { } { ipw_down(priv); } if ((unsigned long )priv->assoc_network != (unsigned long )((struct libipw_network *)0) && ((int )(priv->assoc_network)->capability & 2) != 0) { { ipw_remove_current_network(priv); } } else { } { tmp = ipw_up(priv); } if (tmp != 0) { { printk("\vipw2200: Failed to up device\n"); } return; } else { } return; } } static void ipw_bg_adapter_restart(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffeb68UL; mutex_lock_nested(& priv->mutex, 0U); ipw_adapter_restart((void *)priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_abort_scan(struct ipw_priv *priv ) ; static void ipw_scan_check(void *data ) { struct ipw_priv *priv ; unsigned int tmp ; int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; { priv = (struct ipw_priv *)data; if ((priv->status & 4194304U) != 0U) { if ((ipw_debug_level & 2048U) != 0U) { { tmp = jiffies_to_msecs(1250UL); tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Scan completion watchdog resetting adapter after (%dms).\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_scan_check", tmp); } } else { } { schedule_work(& priv->adapter_restart); } } else if ((priv->status & 2097152U) != 0U) { if ((ipw_debug_level & 2048U) != 0U) { { tmp___1 = jiffies_to_msecs(1250UL); tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Scan completion watchdog aborting scan after (%dms).\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_scan_check", tmp___1); } } else { } { ipw_abort_scan(priv); schedule_delayed_work(& priv->scan_check, 250UL); } } else { } return; } } static void ipw_bg_scan_check(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe818UL; mutex_lock_nested(& priv->mutex, 0U); ipw_scan_check((void *)priv); mutex_unlock(& priv->mutex); } return; } } static int ipw_send_scan_request_ext(struct ipw_priv *priv , struct ipw_scan_request_ext *request ) { int tmp ; { { tmp = ipw_send_cmd_pdu(priv, 26, 96, (void *)request); } return (tmp); } } static int ipw_send_scan_abort(struct ipw_priv *priv ) { int tmp ; { if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { tmp = ipw_send_cmd_simple(priv, 23); } return (tmp); } } static int ipw_set_sensitivity(struct ipw_priv *priv , u16 sens ) { struct ipw_sensitivity_calib calib ; int tmp ; { { calib.beacon_rssi_raw = sens; calib.reserved = (unsigned short)0; tmp = ipw_send_cmd_pdu(priv, 42, 4, (void *)(& calib)); } return (tmp); } } static int ipw_send_associate(struct ipw_priv *priv , struct ipw_associate *associate___0 ) { int tmp ; { if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0) || (unsigned long )associate___0 == (unsigned long )((struct ipw_associate *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { tmp = ipw_send_cmd_pdu(priv, 21, 40, (void *)associate___0); } return (tmp); } } static int ipw_send_supported_rates(struct ipw_priv *priv , struct ipw_supported_rates *rates ) { int tmp ; { if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0) || (unsigned long )rates == (unsigned long )((struct ipw_supported_rates *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { tmp = ipw_send_cmd_pdu(priv, 22, 16, (void *)rates); } return (tmp); } } static int ipw_set_random_seed(struct ipw_priv *priv ) { u32 val ; int tmp ; { if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { get_random_bytes((void *)(& val), 4); tmp = ipw_send_cmd_pdu(priv, 34, 4, (void *)(& val)); } return (tmp); } } static int ipw_send_card_disable(struct ipw_priv *priv , u32 phy_off ) { __le32 v ; int tmp ; { v = phy_off; if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { tmp = ipw_send_cmd_pdu(priv, 33, 4, (void *)(& v)); } return (tmp); } } static int ipw_send_tx_power(struct ipw_priv *priv , struct ipw_tx_power *power ) { int tmp ; { if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0) || (unsigned long )power == (unsigned long )((struct ipw_tx_power *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { tmp = ipw_send_cmd_pdu(priv, 35, 76, (void *)power); } return (tmp); } } static int ipw_set_tx_power(struct ipw_priv *priv ) { struct libipw_geo const *geo ; struct libipw_geo const *tmp ; struct ipw_tx_power tx_power ; s8 max_power ; int i ; s8 _min1 ; s8 _min2 ; int tmp___0 ; int tmp___1 ; s8 _min1___0 ; s8 _min2___0 ; int tmp___2 ; { { tmp = libipw_get_geo(priv->ieee); geo = tmp; memset((void *)(& tx_power), 0, 76UL); tx_power.ieee_mode = 2U; tx_power.num_channels = geo->bg_channels; i = 0; } goto ldv_50027; ldv_50026: max_power = (s8 )geo->bg[i].max_power; tx_power.channels_tx_power[i].channel_number = geo->bg[i].channel; if ((int )max_power != 0) { _min1 = max_power; _min2 = priv->tx_power; tx_power.channels_tx_power[i].tx_power = (s8 )((int )_min1 < (int )_min2 ? _min1 : _min2); } else { tx_power.channels_tx_power[i].tx_power = priv->tx_power; } i = i + 1; ldv_50027: ; if (i < (int )geo->bg_channels) { goto ldv_50026; } else { } { tmp___0 = ipw_send_tx_power(priv, & tx_power); } if (tmp___0 != 0) { return (-5); } else { } { tx_power.ieee_mode = 1U; tmp___1 = ipw_send_tx_power(priv, & tx_power); } if (tmp___1 != 0) { return (-5); } else { } if ((priv->ieee)->abg_true != 0) { tx_power.ieee_mode = 0U; tx_power.num_channels = geo->a_channels; i = 0; goto ldv_50033; ldv_50032: max_power = (s8 )geo->a[i].max_power; tx_power.channels_tx_power[i].channel_number = geo->a[i].channel; if ((int )max_power != 0) { _min1___0 = max_power; _min2___0 = priv->tx_power; tx_power.channels_tx_power[i].tx_power = (s8 )((int )_min1___0 < (int )_min2___0 ? _min1___0 : _min2___0); } else { tx_power.channels_tx_power[i].tx_power = priv->tx_power; } i = i + 1; ldv_50033: ; if (i < (int )tx_power.num_channels) { goto ldv_50032; } else { } { tmp___2 = ipw_send_tx_power(priv, & tx_power); } if (tmp___2 != 0) { return (-5); } else { } } else { } return (0); } } static int ipw_send_rts_threshold(struct ipw_priv *priv , u16 rts ) { struct ipw_rts_threshold rts_threshold ; int tmp ; { rts_threshold.rts_threshold = rts; rts_threshold.reserved = (unsigned short)0; if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { tmp = ipw_send_cmd_pdu(priv, 15, 4, (void *)(& rts_threshold)); } return (tmp); } } static int ipw_send_frag_threshold(struct ipw_priv *priv , u16 frag ) { struct ipw_frag_threshold frag_threshold ; int tmp ; { frag_threshold.frag_threshold = frag; frag_threshold.reserved = (unsigned short)0; if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { tmp = ipw_send_cmd_pdu(priv, 16, 4, (void *)(& frag_threshold)); } return (tmp); } } static int ipw_send_power_mode(struct ipw_priv *priv , u32 mode ) { __le32 param ; int tmp ; { if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { if (mode == 7U) { goto case_7; } else { } if (mode == 6U) { goto case_6; } else { } goto switch_default; case_7: /* CIL Label */ param = 3U; goto ldv_50051; case_6: /* CIL Label */ param = 0U; goto ldv_50051; switch_default: /* CIL Label */ param = mode; goto ldv_50051; switch_break: /* CIL Label */ ; } ldv_50051: { tmp = ipw_send_cmd_pdu(priv, 17, 4, (void *)(& param)); } return (tmp); } } static int ipw_send_retry_limit(struct ipw_priv *priv , u8 slimit , u8 llimit ) { struct ipw_retry_limit retry_limit ; int tmp ; { retry_limit.short_retry_limit = slimit; retry_limit.long_retry_limit = llimit; retry_limit.reserved = (unsigned short)0; if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { { printk("\vipw2200: Invalid args\n"); } return (-1); } else { } { tmp = ipw_send_cmd_pdu(priv, 51, 4, (void *)(& retry_limit)); } return (tmp); } } __inline static void eeprom_write_reg(struct ipw_priv *p , u32 data ) { { { ipw_write_reg32(p, 3145792U, data); __udelay((unsigned long )p->eeprom_delay); } return; } } static void eeprom_cs(struct ipw_priv *priv ) { { { eeprom_write_reg(priv, 0U); eeprom_write_reg(priv, 2U); eeprom_write_reg(priv, 3U); eeprom_write_reg(priv, 2U); } return; } } static void eeprom_disable_cs(struct ipw_priv *priv ) { { { eeprom_write_reg(priv, 2U); eeprom_write_reg(priv, 0U); eeprom_write_reg(priv, 1U); } return; } } __inline static void eeprom_write_bit(struct ipw_priv *p , u8 bit ) { int d ; { { d = (unsigned int )bit != 0U ? 4 : 0; eeprom_write_reg(p, (u32 )(d | 2)); eeprom_write_reg(p, (u32 )(d | 3)); } return; } } static void eeprom_op(struct ipw_priv *priv , u8 op , u8 addr ) { int i ; { { eeprom_cs(priv); eeprom_write_bit(priv, 1); eeprom_write_bit(priv, (int )op & 2); eeprom_write_bit(priv, (int )op & 1); i = 7; } goto ldv_50082; ldv_50081: { eeprom_write_bit(priv, (int )((u8 )((int )((signed char )addr) & (int )((signed char )(1 << i))))); i = i - 1; } ldv_50082: ; if (i >= 0) { goto ldv_50081; } else { } return; } } static u16 eeprom_read_u16(struct ipw_priv *priv , u8 addr ) { int i ; u16 r ; u32 data ; { { r = 0U; eeprom_op(priv, 2, (int )addr); eeprom_write_reg(priv, 2U); i = 0; } goto ldv_50092; ldv_50091: { data = 0U; eeprom_write_reg(priv, 3U); eeprom_write_reg(priv, 2U); data = _ipw_read_reg32(priv, 3145792U); r = (u16 )((int )((short )((int )r << 1)) | ((data & 16U) != 0U)); i = i + 1; } ldv_50092: ; if (i <= 15) { goto ldv_50091; } else { } { eeprom_write_reg(priv, 0U); eeprom_disable_cs(priv); } return (r); } } static void eeprom_parse_mac(struct ipw_priv *priv , u8 *mac ) { { { memcpy((void *)mac, (void const *)(& priv->eeprom) + 66U, 6UL); } return; } } static void ipw_read_eeprom(struct ipw_priv *priv ) { int i ; __le16 *eeprom ; int tmp ; int tmp___0 ; { eeprom = (__le16 *)(& priv->eeprom); if ((ipw_debug_level & 268435456U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >>\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_read_eeprom"); } } else { } i = 0; goto ldv_50105; ldv_50104: { *(eeprom + (unsigned long )i) = eeprom_read_u16(priv, (int )((unsigned char )i)); i = i + 1; } ldv_50105: ; if (i <= 127) { goto ldv_50104; } else { } if ((ipw_debug_level & 268435456U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s <<\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_read_eeprom"); } } else { } return; } } static void ipw_eeprom_init_sram(struct ipw_priv *priv ) { int i ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { if ((ipw_debug_level & 268435456U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >>\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_eeprom_init_sram"); } } else { } if ((unsigned int )priv->eeprom[73UL] != 0U) { if ((ipw_debug_level & 4U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Writing EEPROM data into SRAM\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_eeprom_init_sram"); } } else { } i = 0; goto ldv_50113; ldv_50112: ; if ((ipw_debug_level & 134217728U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct8(0x%08X, 0x%08X)\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_eeprom_init_sram", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 2742, (unsigned int )(i + 2592), (unsigned int )priv->eeprom[i]); } } else { } { _ipw_write8(priv, (unsigned long )(i + 2592), (int )priv->eeprom[i]); i = i + 1; } ldv_50113: ; if (i <= 255) { goto ldv_50112; } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_eeprom_init_sram", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 2745, 2588U, 0U); } } else { } { _ipw_write32(priv, 2588UL, 0U); } } else { if ((ipw_debug_level & 4U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s Enabling FW initializationg of SRAM\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_eeprom_init_sram"); } } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_eeprom_init_sram", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 2750, 2588U, 1U); } } else { } { _ipw_write32(priv, 2588UL, 1U); } } if ((ipw_debug_level & 268435456U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s <<\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_eeprom_init_sram"); } } else { } return; } } static void ipw_zero_memory(struct ipw_priv *priv , u32 start , u32 count ) { u32 tmp ; { count = count >> 2; if (count == 0U) { return; } else { } { _ipw_write32(priv, 24UL, start); } goto ldv_50121; ldv_50120: { _ipw_write32(priv, 28UL, 0U); } ldv_50121: tmp = count; count = count - 1U; if (tmp != 0U) { goto ldv_50120; } else { } return; } } __inline static void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv ) { { { ipw_zero_memory(priv, 159744U, 1024U); } return; } } static int ipw_fw_dma_enable(struct ipw_priv *priv ) { int tmp ; int tmp___0 ; { if ((ipw_debug_level & 65536U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >> :\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_enable"); } } else { } { ipw_fw_dma_reset_command_blocks(priv); ipw_write_reg32(priv, 3145888U, 159744U); } if ((ipw_debug_level & 65536U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s << :\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_enable"); } } else { } return (0); } } static void ipw_fw_dma_abort(struct ipw_priv *priv ) { u32 control ; int tmp ; int tmp___0 ; { control = 0U; if ((ipw_debug_level & 65536U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >> :\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_abort"); } } else { } { control = 5508096U; ipw_write_reg32(priv, 3145892U, control); priv->sram_desc.last_cb_index = 0UL; } if ((ipw_debug_level & 65536U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s <<\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_abort"); } } else { } return; } } static int ipw_fw_dma_write_command_block(struct ipw_priv *priv , int index , struct command_block *cb ) { u32 address ; int tmp ; int tmp___0 ; int tmp___1 ; { address = (u32 )((unsigned long )index + 9984UL) * 16U; if ((ipw_debug_level & 65536U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >> :\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_write_command_block"); } } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_indirect(0x%08X) %u bytes\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_write_command_block", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 2811, address, 16U); } } else { } { _ipw_write_indirect(priv, address, (u8 *)cb, 16); } if ((ipw_debug_level & 65536U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s << :\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_write_command_block"); } } else { } return (0); } } static int ipw_fw_dma_kick(struct ipw_priv *priv ) { u32 control ; u32 index ; int tmp ; int tmp___0 ; { control = 0U; index = 0U; if ((ipw_debug_level & 65536U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >> :\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_kick"); } } else { } index = 0U; goto ldv_50149; ldv_50148: { ipw_fw_dma_write_command_block(priv, (int )index, (struct command_block *)(& priv->sram_desc.cb_list) + (unsigned long )index); index = index + 1U; } ldv_50149: ; if ((unsigned long )index < priv->sram_desc.last_cb_index) { goto ldv_50148; } else { } { ipw_clear_bit(priv, 32U, 768U); control = 5505280U; ipw_write_reg32(priv, 3145892U, control); } if ((ipw_debug_level & 65536U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s << :\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_kick"); } } else { } return (0); } } static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv ) { u32 address ; u32 register_value ; u32 cb_fields_address ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { register_value = 0U; cb_fields_address = 0U; if ((ipw_debug_level & 65536U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >> :\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_dump_command_block"); } } else { } { address = _ipw_read_reg32(priv, 3145936U); } if ((ipw_debug_level & 67108864U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Current CB is 0x%x\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_dump_command_block", address); } } else { } { register_value = _ipw_read_reg32(priv, 3145892U); } if ((ipw_debug_level & 67108864U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s IPW_DMA_I_DMA_CONTROL is 0x%x\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_dump_command_block", register_value); } } else { } { cb_fields_address = address; register_value = _ipw_read_reg32(priv, cb_fields_address); } if ((ipw_debug_level & 67108864U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Current CB Control Field is 0x%x\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_dump_command_block", register_value); } } else { } { cb_fields_address = cb_fields_address + 4U; register_value = _ipw_read_reg32(priv, cb_fields_address); } if ((ipw_debug_level & 67108864U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s Current CB Source Field is 0x%x\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_dump_command_block", register_value); } } else { } { cb_fields_address = cb_fields_address + 4U; register_value = _ipw_read_reg32(priv, cb_fields_address); } if ((ipw_debug_level & 67108864U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s Current CB Destination Field is 0x%x\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_dump_command_block", register_value); } } else { } { cb_fields_address = cb_fields_address + 4U; register_value = _ipw_read_reg32(priv, cb_fields_address); } if ((ipw_debug_level & 67108864U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s Current CB Status Field is 0x%x\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_dump_command_block", register_value); } } else { } if ((ipw_debug_level & 65536U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s >> :\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_dump_command_block"); } } else { } return; } } static int ipw_fw_dma_command_block_index(struct ipw_priv *priv ) { u32 current_cb_address ; u32 current_cb_index ; int tmp ; int tmp___0 ; int tmp___1 ; { current_cb_address = 0U; current_cb_index = 0U; if ((ipw_debug_level & 65536U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s << :\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_command_block_index"); } } else { } { current_cb_address = _ipw_read_reg32(priv, 3145936U); current_cb_index = (current_cb_address - 159744U) / 16U; } if ((ipw_debug_level & 67108864U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Current CB index 0x%x address = 0x%X\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_command_block_index", current_cb_index, current_cb_address); } } else { } if ((ipw_debug_level & 65536U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s >> :\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_command_block_index"); } } else { } return ((int )current_cb_index); } } static int ipw_fw_dma_add_command_block(struct ipw_priv *priv , u32 src_address , u32 dest_address , u32 length , int interrupt_enabled , int is_last ) { u32 control ; struct command_block *cb ; u32 last_cb_element ; int tmp ; { control = 2364145664U; last_cb_element = 0U; if ((ipw_debug_level & 67108864U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s src_address=0x%x dest_address=0x%x length=0x%x\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_add_command_block", src_address, dest_address, length); } } else { } if (priv->sram_desc.last_cb_index > 63UL) { return (-1); } else { } last_cb_element = (u32 )priv->sram_desc.last_cb_index; cb = (struct command_block *)(& priv->sram_desc.cb_list) + (unsigned long )last_cb_element; priv->sram_desc.last_cb_index = priv->sram_desc.last_cb_index + 1UL; if (interrupt_enabled != 0) { control = control | 1073741824U; } else { } if (is_last != 0) { control = control | 536870912U; } else { } control = control | length; cb->status = (control ^ src_address) ^ dest_address; cb->dest_addr = dest_address; cb->source_addr = src_address; cb->control = control; return (0); } } static int ipw_fw_dma_add_buffer(struct ipw_priv *priv , dma_addr_t *src_address , int nr , u32 dest_address , u32 len ) { int ret ; int i ; u32 size ; int tmp ; int tmp___0 ; u32 __min1 ; u32 __min2 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { if ((ipw_debug_level & 65536U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >>\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_add_buffer"); } } else { } if ((ipw_debug_level & 67108864U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s nr=%d dest_address=0x%x len=0x%x\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_add_buffer", nr, dest_address, len); } } else { } i = 0; goto ldv_50191; ldv_50190: { __min1 = len + (u32 )(i * -8191); __min2 = 8191U; size = __min1 < __min2 ? __min1 : __min2; ret = ipw_fw_dma_add_command_block(priv, (u32 )*(src_address + (unsigned long )i), dest_address + (u32 )(i * 8191), size, 0, 0); } if (ret != 0) { if ((ipw_debug_level & 67108864U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s : Failed\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_add_buffer"); } } else { } return (-1); } else if ((ipw_debug_level & 67108864U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s : Added new cb\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_add_buffer"); } } else { } i = i + 1; ldv_50191: ; if (i < nr) { goto ldv_50190; } else { } if ((ipw_debug_level & 65536U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s <<\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_add_buffer"); } } else { } return (0); } } static int ipw_fw_dma_wait(struct ipw_priv *priv ) { u32 current_index ; u32 previous_index ; u32 watchdog ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { current_index = 0U; watchdog = 0U; if ((ipw_debug_level & 65536U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >> :\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_wait"); } } else { } { tmp___0 = ipw_fw_dma_command_block_index(priv); current_index = (u32 )tmp___0; } if ((ipw_debug_level & 67108864U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s sram_desc.last_cb_index:0x%08X\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_wait", (int )priv->sram_desc.last_cb_index); } } else { } goto ldv_50200; ldv_50201: { __const_udelay(214750UL); previous_index = current_index; tmp___2 = ipw_fw_dma_command_block_index(priv); current_index = (u32 )tmp___2; } if (previous_index < current_index) { watchdog = 0U; goto ldv_50200; } else { } watchdog = watchdog + 1U; if (watchdog > 400U) { if ((ipw_debug_level & 67108864U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s Timeout\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_wait"); } } else { } { ipw_fw_dma_dump_command_block(priv); ipw_fw_dma_abort(priv); } return (-1); } else { } ldv_50200: ; if ((unsigned long )current_index < priv->sram_desc.last_cb_index) { goto ldv_50201; } else { } { ipw_fw_dma_abort(priv); ipw_set_bit(priv, 32U, 768U); } if ((ipw_debug_level & 65536U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s << dmaWaitSync\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_fw_dma_wait"); } } else { } return (0); } } static void ipw_remove_current_network(struct ipw_priv *priv ) { struct list_head *element ; struct list_head *safe ; struct libipw_network *network ; unsigned long flags ; struct list_head const *__mptr ; bool tmp ; { { network = (struct libipw_network *)0; ldv___ldv_spin_lock_121(& (priv->ieee)->lock); element = (priv->ieee)->network_list.next; safe = element->next; } goto ldv_50213; ldv_50212: { __mptr = (struct list_head const *)element; network = (struct libipw_network *)__mptr + 0xfffffffffffffe98UL; tmp = ether_addr_equal((u8 const *)(& network->bssid), (u8 const *)(& priv->bssid)); } if ((int )tmp) { { list_del(element); list_add_tail(& network->list, & (priv->ieee)->network_free_list); } } else { } element = safe; safe = element->next; ldv_50213: ; if ((unsigned long )element != (unsigned long )(& (priv->ieee)->network_list)) { goto ldv_50212; } else { } { ldv_spin_unlock_irqrestore_122(& (priv->ieee)->lock, flags); } return; } } static int ipw_poll_bit(struct ipw_priv *priv , u32 addr , u32 mask , int timeout ) { int i ; int tmp ; u32 tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; { i = 0; ldv_50233: ; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_poll_bit", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3045, addr); } } else { } { tmp___0 = _ipw_read32(priv, (unsigned long )addr); } if ((tmp___0 & mask) == mask) { return (i); } else { } __ms = 10UL; goto ldv_50231; ldv_50230: { __const_udelay(4295000UL); } ldv_50231: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_50230; } else { } i = i + 10; if (i < timeout) { goto ldv_50233; } else { } return (-62); } } static int ipw_stop_master(struct ipw_priv *priv ) { int rc ; int tmp ; int tmp___0 ; { if ((ipw_debug_level & 268435456U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >>\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_stop_master"); } } else { } { ipw_set_bit(priv, 32U, 512U); rc = ipw_poll_bit(priv, 32U, 256U, 100); } if (rc < 0) { { printk("\vipw2200: wait for stop master failed after 100ms\n"); } return (-1); } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s stop master %dms\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_stop_master", rc); } } else { } return (rc); } } static void ipw_arc_release(struct ipw_priv *priv ) { int tmp ; unsigned long __ms ; unsigned long tmp___0 ; unsigned long __ms___0 ; unsigned long tmp___1 ; { if ((ipw_debug_level & 268435456U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >>\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_arc_release"); } } else { } if (1) { { __const_udelay(21475000UL); } } else { __ms = 5UL; goto ldv_50246; ldv_50245: { __const_udelay(4295000UL); } ldv_50246: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_50245; } else { } } { ipw_clear_bit(priv, 32U, 1U); } if (1) { { __const_udelay(21475000UL); } } else { __ms___0 = 5UL; goto ldv_50250; ldv_50249: { __const_udelay(4295000UL); } ldv_50250: tmp___1 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___1 != 0UL) { goto ldv_50249; } else { } } return; } } static int ipw_load_ucode(struct ipw_priv *priv , u8 *data , size_t len ) { int rc ; int i ; int addr ; u8 cr ; __le16 *image ; int tmp ; int tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; unsigned long __ms___0 ; unsigned long tmp___2 ; unsigned long __ms___1 ; unsigned long tmp___3 ; unsigned long __ms___2 ; unsigned long tmp___4 ; unsigned long __ms___3 ; unsigned long tmp___5 ; __le32 response_buffer[7U] ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { rc = 0; cr = 0U; image = (__le16 *)data; if ((ipw_debug_level & 268435456U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >>\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_load_ucode"); } } else { } { rc = ipw_stop_master(priv); } if (rc < 0) { return (rc); } else { } addr = 512; goto ldv_50267; ldv_50266: ; if ((ipw_debug_level & 134217728U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_load_ucode", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3113, (unsigned int )addr, 0U); } } else { } { _ipw_write32(priv, (unsigned long )addr, 0U); addr = addr + 4; } ldv_50267: ; if (addr <= 4095) { goto ldv_50266; } else { } { memset((void *)(& priv->dino_alive), 0, 26UL); ipw_write_reg32(priv, 3145952U, 2147483648U); ipw_arc_release(priv); ipw_write_reg32(priv, 3145952U, 0U); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_50271; ldv_50270: { __const_udelay(4295000UL); } ldv_50271: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_50270; } else { } } { ipw_write_reg32(priv, 3145732U, 1U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_50275; ldv_50274: { __const_udelay(4295000UL); } ldv_50275: tmp___2 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___2 != 0UL) { goto ldv_50274; } else { } } { ipw_write_reg32(priv, 3145732U, 0U); } if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_50279; ldv_50278: { __const_udelay(4295000UL); } ldv_50279: tmp___3 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___3 != 0UL) { goto ldv_50278; } else { } } { ipw_write_reg8(priv, 2097152U, 0); ipw_write_reg8(priv, 2097152U, 64); } if (1) { { __const_udelay(4295000UL); } } else { __ms___2 = 1UL; goto ldv_50283; ldv_50282: { __const_udelay(4295000UL); } ldv_50283: tmp___4 = __ms___2; __ms___2 = __ms___2 - 1UL; if (tmp___4 != 0UL) { goto ldv_50282; } else { } } i = 0; goto ldv_50286; ldv_50285: { ipw_write_reg16(priv, 2097168U, (int )*(image + (unsigned long )i)); i = i + 1; } ldv_50286: ; if ((size_t )i < len / 2UL) { goto ldv_50285; } else { } { ipw_write_reg8(priv, 2097152U, 0); ipw_write_reg8(priv, 2097152U, 128); i = 0; } goto ldv_50294; ldv_50293: { cr = _ipw_read_reg8(priv, 2097152U); } if ((int )cr & 1) { goto ldv_50288; } else { } if (1) { { __const_udelay(4295000UL); } } else { __ms___3 = 1UL; goto ldv_50291; ldv_50290: { __const_udelay(4295000UL); } ldv_50291: tmp___5 = __ms___3; __ms___3 = __ms___3 - 1UL; if (tmp___5 != 0UL) { goto ldv_50290; } else { } } i = i + 1; ldv_50294: ; if (i <= 99) { goto ldv_50293; } else { } ldv_50288: ; if ((int )cr & 1) { i = 0; goto ldv_50299; ldv_50298: { response_buffer[i] = _ipw_read_reg32(priv, 2097156U); i = i + 1; } ldv_50299: ; if ((unsigned int )i <= 6U) { goto ldv_50298; } else { } { memcpy((void *)(& priv->dino_alive), (void const *)(& response_buffer), 26UL); } if ((unsigned int )priv->dino_alive.alive_command == 1U && (unsigned int )priv->dino_alive.ucode_valid == 1U) { rc = 0; if ((ipw_debug_level & 4U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Microcode OK, rev. %d (0x%x) dev. %d (0x%x) of %02d/%02d/%02d %02d:%02d\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_load_ucode", (int )priv->dino_alive.software_revision, (int )priv->dino_alive.software_revision, (int )priv->dino_alive.device_identifier, (int )priv->dino_alive.device_identifier, (int )priv->dino_alive.time_stamp[0], (int )priv->dino_alive.time_stamp[1], (int )priv->dino_alive.time_stamp[2], (int )priv->dino_alive.time_stamp[3], (int )priv->dino_alive.time_stamp[4]); } } else { } } else { if ((ipw_debug_level & 4U) != 0U) { { tmp___7 = preempt_count(); printk("\017ipw2200: %c %s Microcode is not alive\n", ((unsigned long )tmp___7 & 2096896UL) != 0UL ? 73 : 85, "ipw_load_ucode"); } } else { } rc = -22; } } else { if ((ipw_debug_level & 4U) != 0U) { { tmp___8 = preempt_count(); printk("\017ipw2200: %c %s No alive response from DINO\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_load_ucode"); } } else { } rc = -62; } { ipw_write_reg8(priv, 2097152U, 0); } return (rc); } } static int ipw_load_firmware(struct ipw_priv *priv , u8 *data , size_t len ) { int ret ; int offset ; struct fw_chunk *chunk ; int total_nr ; int i ; struct dma_pool *pool ; void **virts ; dma_addr_t *phys ; int tmp ; void *tmp___0 ; void *tmp___1 ; long tmp___2 ; u32 chunk_len ; u8 *start ; int size ; int nr ; u32 __min1 ; u32 __min2 ; long tmp___3 ; int tmp___4 ; { ret = -1; offset = 0; total_nr = 0; if ((ipw_debug_level & 268435456U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s << :\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_load_firmware"); } } else { } { tmp___0 = kmalloc(512UL, 208U); virts = (void **)tmp___0; } if ((unsigned long )virts == (unsigned long )((void **)0)) { return (-12); } else { } { tmp___1 = kmalloc(512UL, 208U); phys = (dma_addr_t *)tmp___1; } if ((unsigned long )phys == (unsigned long )((dma_addr_t *)0ULL)) { { kfree((void const *)virts); } return (-12); } else { } { pool = dma_pool_create("ipw2200", & (priv->pci_dev)->dev, 8191UL, 0UL, 0UL); } if ((unsigned long )pool == (unsigned long )((struct dma_pool *)0)) { { printk("\vipw2200: pci_pool_create failed\n"); kfree((void const *)phys); kfree((void const *)virts); } return (-12); } else { } { ret = ipw_fw_dma_enable(priv); tmp___2 = ldv__builtin_expect(priv->sram_desc.last_cb_index != 0UL, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/ipw2x00/ipw2200.c"), "i" (3243), "i" (12UL)); __builtin_unreachable(); } } else { } ldv_50326: nr = 0; chunk = (struct fw_chunk *)data + (unsigned long )offset; offset = (int )((unsigned int )offset + 8U); chunk_len = chunk->length; start = data + (unsigned long )offset; nr = (int )((chunk_len + 8190U) / 8191U); i = 0; goto ldv_50324; ldv_50323: { *(virts + (unsigned long )total_nr) = dma_pool_alloc(pool, 208U, phys + (unsigned long )total_nr); } if ((unsigned long )*(virts + (unsigned long )total_nr) == (unsigned long )((void *)0)) { ret = -12; goto out; } else { } { __min1 = chunk_len + (u32 )(i * -8191); __min2 = 8191U; size = (int )(__min1 < __min2 ? __min1 : __min2); memcpy(*(virts + (unsigned long )total_nr), (void const *)start, (size_t )size); start = start + (unsigned long )size; total_nr = total_nr + 1; tmp___3 = ldv__builtin_expect(total_nr > 64, 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/ipw2x00/ipw2200.c"), "i" (3270), "i" (12UL)); __builtin_unreachable(); } } else { } i = i + 1; ldv_50324: ; if (i < nr) { goto ldv_50323; } else { } { ret = ipw_fw_dma_add_buffer(priv, phys + (unsigned long )(total_nr - nr), nr, chunk->address, chunk_len); } if (ret != 0) { if ((ipw_debug_level & 4U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s dmaAddBuffer Failed\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_load_firmware"); } } else { } goto out; } else { } offset = (int )((u32 )offset + chunk_len); if ((size_t )offset < len) { goto ldv_50326; } else { } { ret = ipw_fw_dma_kick(priv); } if (ret != 0) { { printk("\vipw2200: dmaKick Failed\n"); } goto out; } else { } { ret = ipw_fw_dma_wait(priv); } if (ret != 0) { { printk("\vipw2200: dmaWaitSync Failed\n"); } goto out; } else { } out: i = 0; goto ldv_50329; ldv_50328: { dma_pool_free(pool, *(virts + (unsigned long )i), *(phys + (unsigned long )i)); i = i + 1; } ldv_50329: ; if (i < total_nr) { goto ldv_50328; } else { } { dma_pool_destroy(pool); kfree((void const *)phys); kfree((void const *)virts); } return (ret); } } static int ipw_stop_nic(struct ipw_priv *priv ) { int rc ; int tmp ; { rc = 0; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_stop_nic", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3317, 32U, 512U); } } else { } { _ipw_write32(priv, 32UL, 512U); rc = ipw_poll_bit(priv, 32U, 256U, 500); } if (rc < 0) { { printk("\vipw2200: wait for reg master disabled failed after 500ms\n"); } return (rc); } else { } { ipw_set_bit(priv, 32U, 1U); } return (rc); } } static void ipw_start_nic(struct ipw_priv *priv ) { int tmp ; int tmp___0 ; { if ((ipw_debug_level & 268435456U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >>\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_start_nic"); } } else { } { ipw_clear_bit(priv, 32U, 769U); ipw_set_bit(priv, 36U, 2U); } if ((ipw_debug_level & 268435456U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s <<\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_start_nic"); } } else { } return; } } static int ipw_init_nic(struct ipw_priv *priv ) { int rc ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { if ((ipw_debug_level & 268435456U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >>\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_init_nic"); } } else { } { ipw_set_bit(priv, 36U, 4U); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_init_nic", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3360, 4084U, 536870912U); } } else { } { _ipw_write32(priv, 4084UL, 536870912U); rc = ipw_poll_bit(priv, 36U, 1U, 250); } if (rc < 0) { if ((ipw_debug_level & 4U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s FAILED wait for clock stablization\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_init_nic"); } } else { } } else { } { ipw_set_bit(priv, 32U, 128U); __const_udelay(42950UL); ipw_set_bit(priv, 36U, 4U); } if ((ipw_debug_level & 268435456U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s >>\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_init_nic"); } } else { } return (0); } } static int ipw_reset_nic(struct ipw_priv *priv ) { int rc ; unsigned long flags ; int tmp ; int tmp___0 ; { rc = 0; if ((ipw_debug_level & 268435456U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s >>\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_reset_nic"); } } else { } { rc = ipw_init_nic(priv); ldv___ldv_spin_lock_123(& priv->lock); priv->status = priv->status & 4294967294U; __wake_up(& priv->wait_command_queue, 1U, 1, (void *)0); priv->status = priv->status & 4288675839U; __wake_up(& priv->wait_state, 1U, 1, (void *)0); ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } if ((ipw_debug_level & 268435456U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s <<\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_reset_nic"); } } else { } return (rc); } } static int ipw_get_fw(struct ipw_priv *priv , struct firmware const **raw___0 , char const *name ) { struct ipw_fw *fw ; int rc ; int tmp ; { { rc = request_firmware(raw___0, name, & (priv->pci_dev)->dev); } if (rc < 0) { { printk("\vipw2200: %s request_firmware failed: Reason %d\n", name, rc); } return (rc); } else { } if ((unsigned long )(*raw___0)->size <= 15UL) { { printk("\vipw2200: %s is too small (%zd)\n", name, (*raw___0)->size); } return (-22); } else { } fw = (struct ipw_fw *)(*raw___0)->data; if ((unsigned long )(*raw___0)->size < (((unsigned long )fw->boot_size + (unsigned long )fw->ucode_size) + (unsigned long )fw->fw_size) + 16UL) { { printk("\vipw2200: %s is too small or corrupt (%zd)\n", name, (*raw___0)->size); } return (-22); } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Read firmware \'%s\' image v%d.%d (%zd bytes)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_get_fw", name, fw->ver >> 16, fw->ver & 255U, (unsigned long )(*raw___0)->size - 16UL); } } else { } return (0); } } static void ipw_rx_queue_reset(struct ipw_priv *priv , struct ipw_rx_queue *rxq ) { unsigned long flags ; int i ; u32 tmp ; { { ldv___ldv_spin_lock_125(& rxq->lock); INIT_LIST_HEAD(& rxq->rx_free); INIT_LIST_HEAD(& rxq->rx_used); i = 0; } goto ldv_50372; ldv_50371: ; if ((unsigned long )rxq->pool[i].skb != (unsigned long )((struct sk_buff *)0)) { { pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, 3000UL, 2); consume_skb(rxq->pool[i].skb); rxq->pool[i].skb = (struct sk_buff *)0; } } else { } { list_add_tail(& rxq->pool[i].list, & rxq->rx_used); i = i + 1; } ldv_50372: ; if (i <= 63) { goto ldv_50371; } else { } { tmp = 0U; rxq->write = tmp; rxq->read = tmp; rxq->free_count = 0U; ldv_spin_unlock_irqrestore_126(& rxq->lock, flags); } return; } } static int fw_loaded = 0; static struct firmware const *raw = (struct firmware const *)0; static void free_firmware(void) { { if (fw_loaded != 0) { { release_firmware(raw); raw = (struct firmware const *)0; fw_loaded = 0; } } else { } return; } } static int ipw_load(struct ipw_priv *priv ) { struct ipw_fw *fw ; u8 *boot_img ; u8 *ucode_img ; u8 *fw_img ; u8 *name ; int rc ; int retries ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; u32 tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; { name = (u8 *)0U; rc = 0; retries = 3; { if ((priv->ieee)->iw_mode == 1) { goto case_1; } else { } if ((priv->ieee)->iw_mode == 6) { goto case_6; } else { } if ((priv->ieee)->iw_mode == 2) { goto case_2; } else { } goto switch_break; case_1: /* CIL Label */ name = (u8 *)"ipw2200-ibss.fw"; goto ldv_50390; case_6: /* CIL Label */ name = (u8 *)"ipw2200-sniffer.fw"; goto ldv_50390; case_2: /* CIL Label */ name = (u8 *)"ipw2200-bss.fw"; goto ldv_50390; switch_break: /* CIL Label */ ; } ldv_50390: ; if ((unsigned long )name == (unsigned long )((u8 *)0U)) { rc = -22; goto error; } else { } if (fw_loaded == 0) { { rc = ipw_get_fw(priv, & raw, (char const *)name); } if (rc < 0) { goto error; } else { } } else { } fw = (struct ipw_fw *)raw->data; boot_img = (u8 *)(& fw->data); ucode_img = (u8 *)(& fw->data) + (unsigned long )fw->boot_size; fw_img = (u8 *)(& fw->data) + (unsigned long )(fw->boot_size + fw->ucode_size); if (rc < 0) { goto error; } else { } if ((unsigned long )priv->rxq == (unsigned long )((struct ipw_rx_queue *)0)) { { priv->rxq = ipw_rx_queue_alloc(priv); } } else { { ipw_rx_queue_reset(priv, priv->rxq); } } if ((unsigned long )priv->rxq == (unsigned long )((struct ipw_rx_queue *)0)) { { printk("\vipw2200: Unable to initialize Rx queue\n"); rc = -12; } goto error; } else { } retry: ; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_load", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3557, 12U, 986580941U); } } else { } { _ipw_write32(priv, 12UL, 986580941U); priv->status = priv->status & 4294967293U; } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3561, 8U, 3308386354U); } } else { } { _ipw_write32(priv, 8UL, 3308386354U); ipw_stop_nic(priv); rc = ipw_reset_nic(priv); } if (rc < 0) { { printk("\vipw2200: Unable to reset NIC\n"); } goto error; } else { } { ipw_zero_memory(priv, 0U, 196608U); rc = ipw_load_firmware(priv, boot_img, (size_t )fw->boot_size); } if (rc < 0) { { printk("\vipw2200: Unable to load boot firmware: %d\n", rc); } goto error; } else { } { ipw_start_nic(priv); rc = ipw_poll_bit(priv, 8U, 16777216U, 500); } if (rc < 0) { { printk("\vipw2200: device failed to boot initial fw image\n"); } goto error; } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s initial device response after %dms\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", rc); } } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3594, 8U, 16777216U); } } else { } { _ipw_write32(priv, 8UL, 16777216U); rc = ipw_load_ucode(priv, ucode_img, (size_t )fw->ucode_size); } if (rc < 0) { { printk("\vipw2200: Unable to load ucode: %d\n", rc); } goto error; } else { } { ipw_stop_nic(priv); rc = ipw_load_firmware(priv, fw_img, (size_t )fw->fw_size); } if (rc < 0) { { printk("\vipw2200: Unable to load firmware: %d\n", rc); } goto error; } else { } fw_loaded = 1; if ((ipw_debug_level & 134217728U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3616, 2588U, 0U); } } else { } { _ipw_write32(priv, 2588UL, 0U); rc = ipw_queue_reset(priv); } if (rc < 0) { { printk("\vipw2200: Unable to initialize queues\n"); } goto error; } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3625, 12U, 986580941U); } } else { } { _ipw_write32(priv, 12UL, 986580941U); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3627, 8U, 3308386354U); } } else { } { _ipw_write32(priv, 8UL, 3308386354U); ipw_start_nic(priv); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3632, 8U); } } else { } { tmp___7 = _ipw_read32(priv, 8UL); } if ((int )tmp___7 < 0) { if (retries > 0) { { printk("\fipw2200: Parity error. Retrying init.\n"); retries = retries - 1; } goto retry; } else { } { printk("\vipw2200: TODO: Handle parity error -- schedule restart?\n"); rc = -5; } goto error; } else { } { rc = ipw_poll_bit(priv, 8U, 16777216U, 500); } if (rc < 0) { { printk("\vipw2200: device failed to start within 500ms\n"); } goto error; } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp___8 = preempt_count(); printk("\017ipw2200: %c %s device response after %dms\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", rc); } } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___9 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___9 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3654, 8U, 16777216U); } } else { } { _ipw_write32(priv, 8UL, 16777216U); priv->eeprom_delay = 1; ipw_read_eeprom(priv); ipw_eeprom_init_sram(priv); ipw_enable_interrupts(priv); ipw_rx_queue_replenish((void *)priv); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___10 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___10 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3668, 672U, (priv->rxq)->read); } } else { } { _ipw_write32(priv, 672UL, (priv->rxq)->read); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___11 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___11 & 2096896UL) != 0UL ? 73 : 85, "ipw_load", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3671, 8U, 3308386354U); } } else { } { _ipw_write32(priv, 8UL, 3308386354U); } return (0); error: ; if ((unsigned long )priv->rxq != (unsigned long )((struct ipw_rx_queue *)0)) { { ipw_rx_queue_free(priv, priv->rxq); priv->rxq = (struct ipw_rx_queue *)0; } } else { } { ipw_tx_queue_free(priv); release_firmware(raw); fw_loaded = 0; raw = (struct firmware const *)0; } return (rc); } } static int ipw_rx_queue_space(struct ipw_rx_queue const *q ) { int s ; { s = (int )((unsigned int )q->read - (unsigned int )q->write); if (s <= 0) { s = s + 32; } else { } s = s + -2; if (s < 0) { s = 0; } else { } return (s); } } __inline static int ipw_tx_queue_space(struct clx2_queue const *q ) { int s ; { s = (int )q->last_used - (int )q->first_empty; if (s <= 0) { s = s + (int )q->n_bd; } else { } s = s + -2; if (s < 0) { s = 0; } else { } return (s); } } __inline static int ipw_queue_inc_wrap(int index , int n_bd ) { { index = index + 1; return (index != n_bd ? index : 0); } } static void ipw_queue_init(struct ipw_priv *priv , struct clx2_queue *q , int count , u32 read , u32 write , u32 base , u32 size ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { q->n_bd = count; q->low_mark = q->n_bd / 4; if (q->low_mark <= 3) { q->low_mark = 4; } else { } q->high_mark = q->n_bd / 8; if (q->high_mark <= 1) { q->high_mark = 2; } else { } tmp = 0; q->last_used = tmp; q->first_empty = tmp; q->reg_r = read; q->reg_w = write; if ((ipw_debug_level & 134217728U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_queue_init", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3782, base, (unsigned int )q->dma_addr); } } else { } { _ipw_write32(priv, (unsigned long )base, (u32 )q->dma_addr); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_queue_init", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3783, size, (unsigned int )count); } } else { } { _ipw_write32(priv, (unsigned long )size, (u32 )count); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_queue_init", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3784, read, 0U); } } else { } { _ipw_write32(priv, (unsigned long )read, 0U); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_queue_init", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 3785, write, 0U); } } else { } { _ipw_write32(priv, (unsigned long )write, 0U); _ipw_read32(priv, 144UL); } return; } } static int ipw_queue_tx_init(struct ipw_priv *priv , struct clx2_tx_queue *q , int count , u32 read , u32 write , u32 base , u32 size ) { struct pci_dev *dev ; void *tmp ; void *tmp___0 ; { { dev = priv->pci_dev; tmp = kmalloc((unsigned long )count * 8UL, 208U); q->txb = (struct libipw_txb **)tmp; } if ((unsigned long )q->txb == (unsigned long )((struct libipw_txb **)0)) { { printk("\vipw2200: vmalloc for auxiliary BD structures failed\n"); } return (-12); } else { } { tmp___0 = pci_alloc_consistent(dev, (unsigned long )count * 128UL, & q->q.dma_addr); q->bd = (struct tfd_frame *)tmp___0; } if ((unsigned long )q->bd == (unsigned long )((struct tfd_frame *)0)) { { printk("\vipw2200: pci_alloc_consistent(%zd) failed\n", (unsigned long )count * 128UL); kfree((void const *)q->txb); q->txb = (struct libipw_txb **)0; } return (-12); } else { } { ipw_queue_init(priv, & q->q, count, read, write, base, size); } return (0); } } static void ipw_queue_tx_free_tfd(struct ipw_priv *priv , struct clx2_tx_queue *txq ) { struct tfd_frame *bd ; struct pci_dev *dev ; int i ; { bd = txq->bd + (unsigned long )txq->q.last_used; dev = priv->pci_dev; if ((unsigned int )bd->control_flags.message_type == 1U) { return; } else { } if (bd->u.data.num_chunks > 6U) { { printk("\vipw2200: Too many chunks: %i\n", bd->u.data.num_chunks); } return; } else { } i = 0; goto ldv_50437; ldv_50436: { pci_unmap_single(dev, (dma_addr_t )bd->u.data.chunk_ptr[i], (size_t )bd->u.data.chunk_len[i], 1); } if ((unsigned long )*(txq->txb + (unsigned long )txq->q.last_used) != (unsigned long )((struct libipw_txb *)0)) { { libipw_txb_free(*(txq->txb + (unsigned long )txq->q.last_used)); *(txq->txb + (unsigned long )txq->q.last_used) = (struct libipw_txb *)0; } } else { } i = i + 1; ldv_50437: ; if ((__le32 )i < bd->u.data.num_chunks) { goto ldv_50436; } else { } return; } } static void ipw_queue_tx_free(struct ipw_priv *priv , struct clx2_tx_queue *txq ) { struct clx2_queue *q ; struct pci_dev *dev ; { q = & txq->q; dev = priv->pci_dev; if (q->n_bd == 0) { return; } else { } goto ldv_50446; ldv_50445: { ipw_queue_tx_free_tfd(priv, txq); q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd); } ldv_50446: ; if (q->first_empty != q->last_used) { goto ldv_50445; } else { } { pci_free_consistent(dev, (unsigned long )q->n_bd * 128UL, (void *)txq->bd, q->dma_addr); kfree((void const *)txq->txb); memset((void *)txq, 0, 56UL); } return; } } static void ipw_tx_queue_free(struct ipw_priv *priv ) { { { ipw_queue_tx_free(priv, & priv->txq_cmd); ipw_queue_tx_free(priv, (struct clx2_tx_queue *)(& priv->txq)); ipw_queue_tx_free(priv, (struct clx2_tx_queue *)(& priv->txq) + 1UL); ipw_queue_tx_free(priv, (struct clx2_tx_queue *)(& priv->txq) + 2UL); ipw_queue_tx_free(priv, (struct clx2_tx_queue *)(& priv->txq) + 3UL); } return; } } static void ipw_create_bssid(struct ipw_priv *priv , u8 *bssid ) { { { *bssid = priv->mac_addr[0]; *(bssid + 1UL) = priv->mac_addr[1]; *(bssid + 2UL) = priv->mac_addr[2]; get_random_bytes((void *)bssid + 3U, 3); *bssid = (unsigned int )*bssid & 254U; *bssid = (u8 )((unsigned int )*bssid | 2U); } return; } } static u8 ipw_add_station(struct ipw_priv *priv , u8 *bssid ) { struct ipw_station_entry entry ; int i ; bool tmp ; int tmp___0 ; { i = 0; goto ldv_50462; ldv_50461: { tmp = ether_addr_equal((u8 const *)(& priv->stations) + (unsigned long )i, (u8 const *)bssid); } if ((int )tmp) { priv->missed_adhoc_beacons = 0U; if ((priv->config & 1U) == 0U) { priv->config = priv->config & 4294967263U; } else { } return ((u8 )i); } else { } i = i + 1; ldv_50462: ; if (i < (int )priv->num_stations) { goto ldv_50461; } else { } if (i == 32) { return (255U); } else { } if ((ipw_debug_level & 2048U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Adding AdHoc station: %pM\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_add_station", bssid); } } else { } { entry.reserved = 0U; entry.support_mode = 0U; memcpy((void *)(& entry.mac_addr), (void const *)bssid, 6UL); memcpy((void *)(& priv->stations) + (unsigned long )i, (void const *)bssid, 6UL); ipw_write_direct(priv, (u32 )((unsigned long )i) * 8U + 3084U, (void *)(& entry), 8); priv->num_stations = (u8 )((int )priv->num_stations + 1); } return ((u8 )i); } } static u8 ipw_find_station(struct ipw_priv *priv , u8 *bssid ) { int i ; bool tmp ; { i = 0; goto ldv_50471; ldv_50470: { tmp = ether_addr_equal((u8 const *)(& priv->stations) + (unsigned long )i, (u8 const *)bssid); } if ((int )tmp) { return ((u8 )i); } else { } i = i + 1; ldv_50471: ; if (i < (int )priv->num_stations) { goto ldv_50470; } else { } return (255U); } } static void ipw_send_disassociate(struct ipw_priv *priv , int quiet ) { int err ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { if ((priv->status & 256U) != 0U) { if ((ipw_debug_level & 4100U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Disassociating while associating.\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_send_disassociate"); } } else { } { schedule_work(& priv->disassociate); } return; } else { } if ((priv->status & 128U) == 0U) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Disassociating while not associated.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_send_disassociate"); } } else { } return; } else { } if ((ipw_debug_level & 4100U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Disassocation attempt from %pM on channel %d.\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_send_disassociate", (u8 *)(& priv->assoc_request.bssid), (int )priv->assoc_request.channel); } } else { } priv->status = priv->status & 4294966911U; priv->status = priv->status | 512U; if (quiet != 0) { priv->assoc_request.assoc_type = 5U; } else { priv->assoc_request.assoc_type = 2U; } { err = ipw_send_associate(priv, & priv->assoc_request); } if (err != 0) { if ((ipw_debug_level & 32U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Attempt to send [dis]associate command failed.\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_send_disassociate"); } } else { } return; } else { } return; } } static int ipw_disassociate(void *data ) { struct ipw_priv *priv ; { priv = (struct ipw_priv *)data; if ((priv->status & 384U) == 0U) { return (0); } else { } { ipw_send_disassociate((struct ipw_priv *)data, 0); netif_carrier_off(priv->net_dev); } return (1); } } static void ipw_bg_disassociate(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffefd8UL; mutex_lock_nested(& priv->mutex, 0U); ipw_disassociate((void *)priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_system_config(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; bool tmp ; { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffef88UL; if ((unsigned long )priv->prom_net_dev != (unsigned long )((struct net_device *)0)) { { tmp = netif_running((struct net_device const *)priv->prom_net_dev); } if ((int )tmp) { priv->sys_config.accept_all_data_frames = 1U; priv->sys_config.accept_non_directed_frames = 1U; priv->sys_config.accept_all_mgmt_bcpr = 1U; priv->sys_config.accept_all_mgmt_frames = 1U; } else { } } else { } { ipw_send_system_config(priv); } return; } } static struct ipw_status_code const ipw_status_codes[23U] = { {0U, "Successful"}, {1U, "Unspecified failure"}, {10U, "Cannot support all requested capabilities in the Capability information field"}, {11U, "Reassociation denied due to inability to confirm that association exists"}, {12U, "Association denied due to reason outside the scope of this standard"}, {13U, "Responding station does not support the specified authentication algorithm"}, {14U, "Received an Authentication frame with authentication sequence transaction sequence number out of expected sequence"}, {15U, "Authentication rejected because of challenge failure"}, {16U, "Authentication rejected due to timeout waiting for next frame in sequence"}, {17U, "Association denied because AP is unable to handle additional associated stations"}, {18U, "Association denied due to requesting station not supporting all of the datarates in the BSSBasicServiceSet Parameter"}, {19U, "Association denied due to requesting station not supporting short preamble operation"}, {20U, "Association denied due to requesting station not supporting PBCC encoding"}, {21U, "Association denied due to requesting station not supporting channel agility"}, {25U, "Association denied due to requesting station not supporting short slot operation"}, {26U, "Association denied due to requesting station not supporting DSSS-OFDM operation"}, {40U, "Invalid Information Element"}, {41U, "Group Cipher is not valid"}, {42U, "Pairwise Cipher is not valid"}, {43U, "AKMP is not valid"}, {44U, "Unsupported RSN IE version"}, {45U, "Invalid RSN IE Capabilities"}, {46U, "Cipher suite is rejected per security policy"}}; static char const *ipw_get_status_code(u16 status ) { int i ; { i = 0; goto ldv_50506; ldv_50505: ; if ((int )ipw_status_codes[i].status == ((int )status & 255)) { return ((char const *)ipw_status_codes[i].reason); } else { } i = i + 1; ldv_50506: ; if ((unsigned int )i <= 22U) { goto ldv_50505; } else { } return ("Unknown status value."); } } __inline static void average_init(struct average *avg ) { { { memset((void *)avg, 0, 24UL); } return; } } static s16 exponential_average(s16 prev_avg , s16 val , u8 depth ) { { return ((s16 )((((int )depth + -1) * (int )prev_avg + (int )val) / (int )depth)); } } static void average_add(struct average *avg , s16 val ) { u8 tmp ; long tmp___0 ; { { avg->sum = avg->sum - (int )avg->entries[(int )avg->pos]; avg->sum = avg->sum + (int )val; tmp = avg->pos; avg->pos = (u8 )((int )avg->pos + 1); avg->entries[(int )tmp] = val; tmp___0 = ldv__builtin_expect((unsigned int )avg->pos == 8U, 0L); } if (tmp___0 != 0L) { avg->init = 1U; avg->pos = 0U; } else { } return; } } static s16 average_value(struct average *avg ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned int )avg->init != 0U, 0L); } if (tmp == 0L) { if ((unsigned int )avg->pos != 0U) { return ((s16 )(avg->sum / (int )avg->pos)); } else { } return (0); } else { } return ((s16 )(avg->sum / 8)); } } static void ipw_reset_stats(struct ipw_priv *priv ) { u32 len ; { { len = 4U; priv->quality = 0U; average_init(& priv->average_missed_beacons); priv->exp_avg_rssi = -60; priv->exp_avg_noise = 171; priv->last_rate = 0U; priv->last_missed_beacons = 0U; priv->last_rx_packets = 0U; priv->last_tx_packets = 0U; priv->last_tx_failures = 0U; ipw_get_ordinal(priv, 61498U, (void *)(& priv->last_rx_err), & len); ipw_get_ordinal(priv, 61497U, (void *)(& priv->last_tx_failures), & len); priv->missed_adhoc_beacons = 0U; priv->missed_beacons = 0U; priv->tx_packets = 0U; priv->rx_packets = 0U; } return; } } static u32 ipw_get_max_rate(struct ipw_priv *priv ) { u32 i ; u32 mask ; { i = 2147483648U; mask = (u32 )priv->rates_mask; if ((unsigned int )priv->assoc_request.ieee_mode == 1U) { mask = mask & 15U; } else { } goto ldv_50533; ldv_50532: i = i >> 1; ldv_50533: ; if (i != 0U && (mask & i) == 0U) { goto ldv_50532; } else { } { if (i == 1U) { goto case_1; } else { } if (i == 2U) { goto case_2; } else { } if (i == 4U) { goto case_4; } else { } if (i == 16U) { goto case_16; } else { } if (i == 32U) { goto case_32; } else { } if (i == 8U) { goto case_8; } else { } if (i == 64U) { goto case_64; } else { } if (i == 128U) { goto case_128; } else { } if (i == 256U) { goto case_256; } else { } if (i == 512U) { goto case_512; } else { } if (i == 1024U) { goto case_1024; } else { } if (i == 2048U) { goto case_2048; } else { } goto switch_break; case_1: /* CIL Label */ ; return (1000000U); case_2: /* CIL Label */ ; return (2000000U); case_4: /* CIL Label */ ; return (5500000U); case_16: /* CIL Label */ ; return (6000000U); case_32: /* CIL Label */ ; return (9000000U); case_8: /* CIL Label */ ; return (11000000U); case_64: /* CIL Label */ ; return (12000000U); case_128: /* CIL Label */ ; return (18000000U); case_256: /* CIL Label */ ; return (24000000U); case_512: /* CIL Label */ ; return (36000000U); case_1024: /* CIL Label */ ; return (48000000U); case_2048: /* CIL Label */ ; return (54000000U); switch_break: /* CIL Label */ ; } if ((priv->ieee)->mode == 2) { return (11000000U); } else { return (54000000U); } } } static u32 ipw_get_current_rate(struct ipw_priv *priv ) { u32 rate ; u32 len ; int err ; int tmp ; u32 tmp___0 ; { len = 4U; if ((priv->status & 128U) == 0U) { return (0U); } else { } if (priv->tx_packets > 300U) { { err = ipw_get_ordinal(priv, 61441U, (void *)(& rate), & len); } if (err != 0) { if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s failed querying ordinals.\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_get_current_rate"); } } else { } return (0U); } else { } } else { { tmp___0 = ipw_get_max_rate(priv); } return (tmp___0); } { if (rate == 10U) { goto case_10; } else { } if (rate == 20U) { goto case_20; } else { } if (rate == 55U) { goto case_55; } else { } if (rate == 13U) { goto case_13; } else { } if (rate == 15U) { goto case_15; } else { } if (rate == 110U) { goto case_110; } else { } if (rate == 5U) { goto case_5; } else { } if (rate == 7U) { goto case_7; } else { } if (rate == 9U) { goto case_9; } else { } if (rate == 11U) { goto case_11; } else { } if (rate == 1U) { goto case_1; } else { } if (rate == 3U) { goto case_3; } else { } goto switch_break; case_10: /* CIL Label */ ; return (1000000U); case_20: /* CIL Label */ ; return (2000000U); case_55: /* CIL Label */ ; return (5500000U); case_13: /* CIL Label */ ; return (6000000U); case_15: /* CIL Label */ ; return (9000000U); case_110: /* CIL Label */ ; return (11000000U); case_5: /* CIL Label */ ; return (12000000U); case_7: /* CIL Label */ ; return (18000000U); case_9: /* CIL Label */ ; return (24000000U); case_11: /* CIL Label */ ; return (36000000U); case_1: /* CIL Label */ ; return (48000000U); case_3: /* CIL Label */ ; return (54000000U); switch_break: /* CIL Label */ ; } return (0U); } } static void ipw_gather_stats(struct ipw_priv *priv ) { u32 rx_err ; u32 rx_err_delta ; u32 rx_packets_delta ; u32 tx_failures ; u32 tx_failures_delta ; u32 tx_packets_delta ; u32 missed_beacons_percent ; u32 missed_beacons_delta ; u32 quality ; u32 len ; s16 rssi ; u32 beacon_quality ; u32 signal_quality ; u32 tx_quality ; u32 rx_quality ; u32 rate_quality ; u32 max_rate ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; u32 _min1 ; u32 _min2 ; u32 _min1___0 ; u32 _min2___0 ; u32 _min1___1 ; u32 _min2___1 ; u32 _min1___2 ; u32 _min2___2 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { quality = 0U; len = 4U; if ((priv->status & 128U) == 0U) { priv->quality = 0U; return; } else { } { ipw_get_ordinal(priv, 61507U, (void *)(& priv->missed_beacons), & len); missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons; priv->last_missed_beacons = priv->missed_beacons; } if ((unsigned int )priv->assoc_request.beacon_interval != 0U) { missed_beacons_percent = ((missed_beacons_delta * (u32 )priv->assoc_request.beacon_interval) * 250U) / 5000U; } else { missed_beacons_percent = 0U; } { average_add(& priv->average_missed_beacons, (int )((s16 )missed_beacons_percent)); ipw_get_ordinal(priv, 61498U, (void *)(& rx_err), & len); rx_err_delta = rx_err - priv->last_rx_err; priv->last_rx_err = rx_err; ipw_get_ordinal(priv, 61497U, (void *)(& tx_failures), & len); tx_failures_delta = tx_failures - priv->last_tx_failures; priv->last_tx_failures = tx_failures; rx_packets_delta = priv->rx_packets - priv->last_rx_packets; priv->last_rx_packets = priv->rx_packets; tx_packets_delta = priv->tx_packets - priv->last_tx_packets; priv->last_tx_packets = priv->tx_packets; beacon_quality = 100U - missed_beacons_percent; } if (beacon_quality <= 4U) { beacon_quality = 0U; } else { beacon_quality = (beacon_quality * 100U + 4294966796U) / 95U; } if ((ipw_debug_level & 536870912U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Missed beacon: %3d%% (%d%%)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_gather_stats", beacon_quality, missed_beacons_percent); } } else { } { priv->last_rate = ipw_get_current_rate(priv); max_rate = ipw_get_max_rate(priv); rate_quality = (priv->last_rate * 40U) / max_rate + 60U; } if ((ipw_debug_level & 536870912U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Rate quality : %3d%% (%dMbs)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_gather_stats", rate_quality, priv->last_rate / 1000000U); } } else { } if (rx_packets_delta > 100U && rx_packets_delta + rx_err_delta != 0U) { rx_quality = 100U - (rx_err_delta * 100U) / (rx_packets_delta + rx_err_delta); } else { rx_quality = 100U; } if ((ipw_debug_level & 536870912U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Rx quality : %3d%% (%u errors, %u packets)\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_gather_stats", rx_quality, rx_err_delta, rx_packets_delta); } } else { } if (tx_packets_delta > 100U && tx_packets_delta + tx_failures_delta != 0U) { tx_quality = 100U - (tx_failures_delta * 100U) / (tx_packets_delta + tx_failures_delta); } else { tx_quality = 100U; } if ((ipw_debug_level & 536870912U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Tx quality : %3d%% (%u errors, %u packets)\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_gather_stats", tx_quality, tx_failures_delta, tx_packets_delta); } } else { } rssi = priv->exp_avg_rssi; signal_quality = (u32 )(((((priv->ieee)->perfect_rssi - (priv->ieee)->worst_rssi) * ((priv->ieee)->perfect_rssi - (priv->ieee)->worst_rssi)) * 100 + ((priv->ieee)->perfect_rssi - (int )rssi) * (((int )rssi - (priv->ieee)->perfect_rssi) * 62 + ((priv->ieee)->worst_rssi - (priv->ieee)->perfect_rssi) * 15)) / (((priv->ieee)->perfect_rssi - (priv->ieee)->worst_rssi) * ((priv->ieee)->perfect_rssi - (priv->ieee)->worst_rssi))); if (signal_quality > 100U) { signal_quality = 100U; } else if (signal_quality == 0U) { signal_quality = 0U; } else { } if ((ipw_debug_level & 536870912U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s Signal level : %3d%% (%d dBm)\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_gather_stats", signal_quality, (int )rssi); } } else { } _min1 = rx_quality; _min2 = signal_quality; quality = _min1 < _min2 ? _min1 : _min2; _min1___0 = tx_quality; _min2___0 = quality; quality = _min1___0 < _min2___0 ? _min1___0 : _min2___0; _min1___1 = rate_quality; _min2___1 = quality; quality = _min1___1 < _min2___1 ? _min1___1 : _min2___1; _min1___2 = beacon_quality; _min2___2 = quality; quality = _min1___2 < _min2___2 ? _min1___2 : _min2___2; if (quality == beacon_quality) { if ((ipw_debug_level & 536870912U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s Quality (%d%%): Clamped to missed beacons.\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_gather_stats", quality); } } else { } } else { } if (quality == rate_quality) { if ((ipw_debug_level & 536870912U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s Quality (%d%%): Clamped to rate quality.\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_gather_stats", quality); } } else { } } else { } if (quality == tx_quality) { if ((ipw_debug_level & 536870912U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Quality (%d%%): Clamped to Tx quality.\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_gather_stats", quality); } } else { } } else { } if (quality == rx_quality) { if ((ipw_debug_level & 536870912U) != 0U) { { tmp___7 = preempt_count(); printk("\017ipw2200: %c %s Quality (%d%%): Clamped to Rx quality.\n", ((unsigned long )tmp___7 & 2096896UL) != 0UL ? 73 : 85, "ipw_gather_stats", quality); } } else { } } else { } if (quality == signal_quality) { if ((ipw_debug_level & 536870912U) != 0U) { { tmp___8 = preempt_count(); printk("\017ipw2200: %c %s Quality (%d%%): Clamped to signal quality.\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_gather_stats", quality); } } else { } } else { } { priv->quality = quality; schedule_delayed_work(& priv->gather_stats, 500UL); } return; } } static void ipw_bg_gather_stats(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe998UL; mutex_lock_nested(& priv->mutex, 0U); ipw_gather_stats(priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_handle_missed_beacon(struct ipw_priv *priv , int missed_count ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { priv->notif_missed_beacons = (u32 )missed_count; if ((u32 )missed_count > priv->disassociate_threshold && (priv->status & 128U) != 0U) { if ((ipw_debug_level & 5188U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Missed beacon: %d - disassociate\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_missed_beacon", missed_count); } } else { } priv->status = priv->status & 4294966271U; if ((priv->status & 2097152U) != 0U) { if ((ipw_debug_level & 1092U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Aborting scan with missed beacon.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_missed_beacon"); } } else { } { schedule_work(& priv->abort_scan); } } else { } { schedule_work(& priv->disassociate); } return; } else { } if ((priv->status & 1024U) != 0U) { if ((ipw_debug_level & 1088U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Missed beacon: %d - roam in progress\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_missed_beacon", missed_count); } } else { } return; } else { } if (roaming != 0 && ((u32 )missed_count > priv->roaming_threshold && (u32 )missed_count <= priv->disassociate_threshold)) { if ((ipw_debug_level & 1088U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Missed beacon: %d - initiate roaming\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_missed_beacon", missed_count); } } else { } if ((priv->status & 1024U) == 0U) { priv->status = priv->status | 1024U; if ((priv->status & 2097152U) == 0U) { { schedule_delayed_work(& priv->request_scan, 0UL); } } else { } } else { } return; } else { } if ((priv->status & 2097152U) != 0U && missed_count > 3) { if ((ipw_debug_level & 1092U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s Aborting scan with missed beacon.\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_missed_beacon"); } } else { } { schedule_work(& priv->abort_scan); } } else { } if ((ipw_debug_level & 1024U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s Missed beacon: %d\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_missed_beacon", missed_count); } } else { } return; } } static void ipw_scan_event(struct work_struct *work ) { union iwreq_data wrqu ; struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffec48UL; wrqu.data.length = 0U; wrqu.data.flags = 0U; wireless_send_event(priv->net_dev, 35609U, & wrqu, (char const *)0); } return; } } static void handle_scan_event(struct ipw_priv *priv ) { unsigned long tmp ; unsigned long tmp___0 ; { if (priv->user_requested_scan == 0) { { tmp = msecs_to_jiffies(4000U); tmp___0 = round_jiffies_relative(tmp); schedule_delayed_work(& priv->scan_event, tmp___0); } } else { { priv->user_requested_scan = 0; mod_delayed_work(system_wq, & priv->scan_event, 0UL); } } return; } } static void ipw_rx_notification(struct ipw_priv *priv , struct ipw_rx_notification *notif ) { char ssid[129U] ; u16 size ; int tmp ; struct notif_association *assoc ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; struct libipw_rx_stats stats ; int tmp___3 ; struct notif_authenticate *auth ; char const *tmp___4 ; char const *tmp___5 ; int tmp___6 ; char const *tmp___7 ; int tmp___8 ; struct libipw_assoc_response *resp ; char const *tmp___9 ; int tmp___10 ; char const *tmp___11 ; int tmp___12 ; struct notif_authenticate *auth___0 ; char const *tmp___13 ; int tmp___14 ; char const *tmp___15 ; int tmp___16 ; char const *tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; int tmp___28 ; int tmp___29 ; int tmp___30 ; struct notif_channel_result *x ; int tmp___31 ; int tmp___32 ; struct notif_scan_complete *x___0 ; int tmp___33 ; unsigned long tmp___34 ; struct notif_frag_length *x___1 ; struct notif_link_deterioration *x___2 ; int tmp___35 ; struct notif_beacon_state *x___3 ; struct notif_tgi_tx_key *x___4 ; struct notif_calibration *x___5 ; int tmp___36 ; int tmp___37 ; { size = notif->size; if ((ipw_debug_level & 1024U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s type = %i (%d bytes)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", (int )notif->subtype, (int )size); } } else { } { if ((int )notif->subtype == 10) { goto case_10; } else { } if ((int )notif->subtype == 11) { goto case_11___0; } else { } if ((int )notif->subtype == 12) { goto case_12___1; } else { } if ((int )notif->subtype == 13) { goto case_13; } else { } if ((int )notif->subtype == 14) { goto case_14; } else { } if ((int )notif->subtype == 15) { goto case_15; } else { } if ((int )notif->subtype == 16) { goto case_16; } else { } if ((int )notif->subtype == 17) { goto case_17; } else { } if ((int )notif->subtype == 18) { goto case_18; } else { } if ((int )notif->subtype == 20) { goto case_20; } else { } if ((int )notif->subtype == 25) { goto case_25; } else { } goto switch_default___1; case_10: /* CIL Label */ assoc = & notif->u.assoc; { if ((int )assoc->state == 12) { goto case_12; } else { } if ((int )assoc->state == 9) { goto case_9; } else { } if ((int )assoc->state == 0) { goto case_0; } else { } if ((int )assoc->state == 11) { goto case_11; } else { } goto switch_default; case_12: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___0 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___1 = preempt_count(); printk("\017ipw2200: %c %s associated: \'%s\' %pM\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", tmp___0, (u8 *)(& priv->bssid)); } } else { } { if ((priv->ieee)->iw_mode == 2) { goto case_2; } else { } if ((priv->ieee)->iw_mode == 1) { goto case_1; } else { } goto switch_break___1; case_2: /* CIL Label */ { memcpy((void *)(& (priv->ieee)->bssid), (void const *)(& priv->bssid), 6UL); } goto ldv_50631; case_1: /* CIL Label */ { memcpy((void *)(& (priv->ieee)->bssid), (void const *)(& priv->bssid), 6UL); priv->num_stations = 0U; } if ((ipw_debug_level & 4100U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s queueing adhoc check\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } { schedule_delayed_work(& priv->adhoc_check, (unsigned long )priv->assoc_request.beacon_interval); } goto ldv_50631; switch_break___1: /* CIL Label */ ; } ldv_50631: { priv->status = priv->status & 4294967039U; priv->status = priv->status | 128U; schedule_work(& priv->system_config); } if ((priv->status & 64U) != 0U && ((int )((struct ieee80211_hdr *)(& notif->u.raw))->frame_control & 240) == 16) { if ((unsigned int )size - 30U <= 2284U) { stats.mac_time = 0U; stats.rssi = (signed char)0; stats.signal = (unsigned char)0; stats.noise = (unsigned char)0; stats.rate = (unsigned short)0; stats.received_channel = (unsigned char)0; stats.control = (unsigned char)0; stats.mask = (unsigned char)0; stats.freq = (unsigned char)0; stats.len = (unsigned int )size + 65535U; stats.tsf = 0ULL; stats.beacon_time = 0U; if ((int )ipw_debug_level < 0) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s QoS Associate size %d\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", (int )size); } } else { } { libipw_rx_mgt(priv->ieee, (struct libipw_hdr_4addr *)(& notif->u.raw), & stats); } } else { } } else { } { schedule_work(& priv->link_up); } goto ldv_50634; case_9: /* CIL Label */ ; if ((priv->status & 192U) != 0U) { auth = & notif->u.auth; if ((ipw_debug_level & 5184U) != 0U) { { tmp___4 = ipw_get_status_code((int )auth->status); tmp___5 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___6 = preempt_count(); printk("\017ipw2200: %c %s deauthenticated: \'%s\' %pM: (0x%04X) - %s\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", tmp___5, (u8 *)(& priv->bssid), (int )auth->status, tmp___4); } } else { } { priv->status = priv->status & 4294966847U; schedule_work(& priv->link_down); } goto ldv_50634; } else { } if ((ipw_debug_level & 5184U) != 0U) { { tmp___7 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___8 = preempt_count(); printk("\017ipw2200: %c %s authenticated: \'%s\' %pM\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", tmp___7, (u8 *)(& priv->bssid)); } } else { } goto ldv_50634; case_0: /* CIL Label */ ; if ((priv->status & 64U) != 0U) { resp = (struct libipw_assoc_response *)(& notif->u.raw); if ((ipw_debug_level & 5184U) != 0U) { { tmp___9 = ipw_get_status_code((int )resp->status); tmp___10 = preempt_count(); printk("\017ipw2200: %c %s association failed (0x%04X): %s\n", ((unsigned long )tmp___10 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", (int )resp->status, tmp___9); } } else { } } else { } if ((ipw_debug_level & 5184U) != 0U) { { tmp___11 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___12 = preempt_count(); printk("\017ipw2200: %c %s disassociated: \'%s\' %pM\n", ((unsigned long )tmp___12 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", tmp___11, (u8 *)(& priv->bssid)); } } else { } priv->status = priv->status & 4294966335U; if ((unsigned long )priv->assoc_network != (unsigned long )((struct libipw_network *)0) && ((int )(priv->assoc_network)->capability & 2) != 0) { { ipw_remove_current_network(priv); } } else { } { schedule_work(& priv->link_down); } goto ldv_50634; case_11: /* CIL Label */ ; goto ldv_50634; switch_default: /* CIL Label */ { printk("\vipw2200: assoc: unknown (%d)\n", (int )assoc->state); } goto ldv_50634; switch_break___0: /* CIL Label */ ; } ldv_50634: ; goto ldv_50641; case_11___0: /* CIL Label */ auth___0 = & notif->u.auth; { if ((int )auth___0->state == 9) { goto case_9___0; } else { } if ((int )auth___0->state == 0) { goto case_0___0; } else { } if ((int )auth___0->state == 1) { goto case_1___0; } else { } if ((int )auth___0->state == 2) { goto case_2___0; } else { } if ((int )auth___0->state == 3) { goto case_3; } else { } if ((int )auth___0->state == 4) { goto case_4; } else { } if ((int )auth___0->state == 5) { goto case_5; } else { } if ((int )auth___0->state == 6) { goto case_6; } else { } if ((int )auth___0->state == 7) { goto case_7; } else { } if ((int )auth___0->state == 8) { goto case_8; } else { } if ((int )auth___0->state == 10) { goto case_10___0; } else { } if ((int )auth___0->state == 11) { goto case_11___1; } else { } if ((int )auth___0->state == 12) { goto case_12___0; } else { } goto switch_default___0; case_9___0: /* CIL Label */ ; if ((ipw_debug_level & 1088U) != 0U) { { tmp___13 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___14 = preempt_count(); printk("\017ipw2200: %c %s authenticated: \'%s\' %pM\n", ((unsigned long )tmp___14 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", tmp___13, (u8 *)(& priv->bssid)); } } else { } priv->status = priv->status | 64U; goto ldv_50645; case_0___0: /* CIL Label */ ; if ((priv->status & 64U) != 0U) { if ((ipw_debug_level & 5184U) != 0U) { { tmp___15 = ipw_get_status_code((int )auth___0->status); tmp___16 = preempt_count(); printk("\017ipw2200: %c %s authentication failed (0x%04X): %s\n", ((unsigned long )tmp___16 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", (int )auth___0->status, tmp___15); } } else { } } else { } if ((ipw_debug_level & 5184U) != 0U) { { tmp___17 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___18 = preempt_count(); printk("\017ipw2200: %c %s deauthenticated: \'%s\' %pM\n", ((unsigned long )tmp___18 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", tmp___17, (u8 *)(& priv->bssid)); } } else { } { priv->status = priv->status & 4294966847U; schedule_work(& priv->link_down); } goto ldv_50645; case_1___0: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___19 = preempt_count(); printk("\017ipw2200: %c %s AUTH_SEQ_1\n", ((unsigned long )tmp___19 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; case_2___0: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___20 = preempt_count(); printk("\017ipw2200: %c %s AUTH_SEQ_2\n", ((unsigned long )tmp___20 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; case_3: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___21 = preempt_count(); printk("\017ipw2200: %c %s AUTH_SEQ_1_PASS\n", ((unsigned long )tmp___21 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; case_4: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___22 = preempt_count(); printk("\017ipw2200: %c %s AUTH_SEQ_1_FAIL\n", ((unsigned long )tmp___22 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; case_5: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___23 = preempt_count(); printk("\017ipw2200: %c %s AUTH_SEQ_3\n", ((unsigned long )tmp___23 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; case_6: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___24 = preempt_count(); printk("\017ipw2200: %c %s RX_AUTH_SEQ_4\n", ((unsigned long )tmp___24 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; case_7: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___25 = preempt_count(); printk("\017ipw2200: %c %s AUTH_SEQ_2_PASS\n", ((unsigned long )tmp___25 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; case_8: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___26 = preempt_count(); printk("\017ipw2200: %c %s AUT_SEQ_2_FAIL\n", ((unsigned long )tmp___26 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; case_10___0: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___27 = preempt_count(); printk("\017ipw2200: %c %s TX_ASSOC\n", ((unsigned long )tmp___27 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; case_11___1: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___28 = preempt_count(); printk("\017ipw2200: %c %s RX_ASSOC_RESP\n", ((unsigned long )tmp___28 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; case_12___0: /* CIL Label */ ; if ((ipw_debug_level & 5184U) != 0U) { { tmp___29 = preempt_count(); printk("\017ipw2200: %c %s ASSOCIATED\n", ((unsigned long )tmp___29 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50645; switch_default___0: /* CIL Label */ ; if ((ipw_debug_level & 1024U) != 0U) { { tmp___30 = preempt_count(); printk("\017ipw2200: %c %s auth: failure - %d\n", ((unsigned long )tmp___30 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", (int )auth___0->state); } } else { } goto ldv_50645; switch_break___2: /* CIL Label */ ; } ldv_50645: ; goto ldv_50641; case_12___1: /* CIL Label */ x = & notif->u.channel_result; if ((unsigned int )size == 46U) { if ((ipw_debug_level & 2048U) != 0U) { { tmp___31 = preempt_count(); printk("\017ipw2200: %c %s Scan result for channel %d\n", ((unsigned long )tmp___31 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", (int )x->channel_num); } } else { } } else if ((ipw_debug_level & 2048U) != 0U) { { tmp___32 = preempt_count(); printk("\017ipw2200: %c %s Scan result of wrong size %d (should be %zd)\n", ((unsigned long )tmp___32 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", (int )size, 46UL); } } else { } goto ldv_50641; case_13: /* CIL Label */ x___0 = & notif->u.scan_complete; if ((unsigned int )size == 4U) { if ((ipw_debug_level & 2048U) != 0U) { { tmp___33 = preempt_count(); printk("\017ipw2200: %c %s Scan completed: type %d, %d channels, %d status\n", ((unsigned long )tmp___33 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", (int )x___0->scan_type, (int )x___0->num_channels, (int )x___0->status); } } else { } } else { { printk("\vipw2200: Scan completed of wrong size %d (should be %zd)\n", (int )size, 4UL); } } { priv->status = priv->status & 4288675839U; __wake_up(& priv->wait_state, 1U, 1, (void *)0); cancel_delayed_work(& priv->scan_check); } if ((priv->status & 2048U) != 0U) { goto ldv_50641; } else { } (priv->ieee)->scans = (priv->ieee)->scans + 1; if ((priv->ieee)->iw_mode == 6) { { priv->status = priv->status | 8388608U; schedule_delayed_work(& priv->request_scan, 0UL); } goto ldv_50641; } else { } priv->status = priv->status & 4286578687U; if ((priv->status & 524288U) != 0U) { { schedule_delayed_work(& priv->request_direct_scan, 0UL); } } else { } if ((priv->status & 1920U) == 0U) { { schedule_work(& priv->associate); } } else if ((priv->status & 1024U) != 0U) { if ((unsigned int )x___0->status == 1U) { { schedule_work(& priv->roam); } } else { priv->status = priv->status & 4294966271U; } } else if ((priv->status & 1048576U) != 0U) { { schedule_delayed_work(& priv->request_scan, 0UL); } } else if (*((unsigned long *)priv + 241UL) == 4398046511232UL) { { tmp___34 = round_jiffies_relative(250UL); schedule_delayed_work(& priv->request_scan, tmp___34); } } else { } if ((unsigned int )x___0->status == 1U) { { handle_scan_event(priv); } } else { } goto ldv_50641; case_14: /* CIL Label */ x___1 = & notif->u.frag_len; if ((unsigned int )size == 4U) { { printk("\vipw2200: Frag length: %d\n", (int )x___1->frag_length); } } else { { printk("\vipw2200: Frag length of wrong size %d (should be %zd)\n", (int )size, 4UL); } } goto ldv_50641; case_15: /* CIL Label */ x___2 = & notif->u.link_deterioration; if ((unsigned int )size == 145U) { if ((ipw_debug_level & 1088U) != 0U) { { tmp___35 = preempt_count(); printk("\017ipw2200: %c %s link deterioration: type %d, cnt %d\n", ((unsigned long )tmp___35 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", (int )x___2->silence_notification_type, (int )x___2->silence_count); } } else { } { memcpy((void *)(& priv->last_link_deterioration), (void const *)x___2, 145UL); } } else { { printk("\vipw2200: Link Deterioration of wrong size %d (should be %zd)\n", (int )size, 145UL); } } goto ldv_50641; case_16: /* CIL Label */ { printk("\vipw2200: Dino config\n"); } if ((unsigned long )priv->hcmd != (unsigned long )((struct ipw_cmd *)0) && (priv->hcmd)->cmd != 30U) { { printk("\vipw2200: Unexpected DINO_CONFIG_RESPONSE\n"); } } else { } goto ldv_50641; case_17: /* CIL Label */ x___3 = & notif->u.beacon_state; if ((unsigned int )size != 8U) { { printk("\vipw2200: Beacon state of wrong size %d (should be %zd)\n", (int )size, 8UL); } goto ldv_50641; } else { } if (x___3->state == 1U) { { ipw_handle_missed_beacon(priv, (int )x___3->number); } } else { } goto ldv_50641; case_18: /* CIL Label */ x___4 = & notif->u.tgi_tx_key; if ((unsigned int )size == 4U) { { printk("\vipw2200: TGi Tx Key: state 0x%02x sec type 0x%02x station %d\n", (int )x___4->key_state, (int )x___4->security_type, (int )x___4->station_index); } goto ldv_50641; } else { } { printk("\vipw2200: TGi Tx Key of wrong size %d (should be %zd)\n", (int )size, 4UL); } goto ldv_50641; case_20: /* CIL Label */ x___5 = & notif->u.calibration; if ((unsigned int )size == 104U) { { memcpy((void *)(& priv->calib), (void const *)x___5, 104UL); } if ((ipw_debug_level & 4U) != 0U) { { tmp___36 = preempt_count(); printk("\017ipw2200: %c %s TODO: Calibration\n", ((unsigned long )tmp___36 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification"); } } else { } goto ldv_50641; } else { } { printk("\vipw2200: Calibration of wrong size %d (should be %zd)\n", (int )size, 104UL); } goto ldv_50641; case_25: /* CIL Label */ ; if ((unsigned int )size == 4U) { { priv->exp_avg_noise = exponential_average((int )priv->exp_avg_noise, (int )((unsigned char )notif->u.noise.value), 16); } goto ldv_50641; } else { } { printk("\vipw2200: Noise stat is wrong size %d (should be %zd)\n", (int )size, 4UL); } goto ldv_50641; switch_default___1: /* CIL Label */ ; if ((ipw_debug_level & 1024U) != 0U) { { tmp___37 = preempt_count(); printk("\017ipw2200: %c %s Unknown notification: subtype=%d,flags=0x%2x,size=%d\n", ((unsigned long )tmp___37 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_notification", (int )notif->subtype, (int )notif->flags, (int )size); } } else { } switch_break: /* CIL Label */ ; } ldv_50641: ; return; } } static int ipw_queue_reset(struct ipw_priv *priv ) { int rc ; int nTx ; int nTxCmd ; { { rc = 0; nTx = 64; nTxCmd = 8; ipw_tx_queue_free(priv); rc = ipw_queue_tx_init(priv, & priv->txq_cmd, nTxCmd, 640U, 3968U, 512U, 516U); } if (rc != 0) { { printk("\vipw2200: Tx Cmd queue init failed\n"); } goto error; } else { } { rc = ipw_queue_tx_init(priv, (struct clx2_tx_queue *)(& priv->txq), nTx, 644U, 3972U, 520U, 524U); } if (rc != 0) { { printk("\vipw2200: Tx 0 queue init failed\n"); } goto error; } else { } { rc = ipw_queue_tx_init(priv, (struct clx2_tx_queue *)(& priv->txq) + 1UL, nTx, 648U, 3976U, 528U, 532U); } if (rc != 0) { { printk("\vipw2200: Tx 1 queue init failed\n"); } goto error; } else { } { rc = ipw_queue_tx_init(priv, (struct clx2_tx_queue *)(& priv->txq) + 2UL, nTx, 652U, 3980U, 536U, 540U); } if (rc != 0) { { printk("\vipw2200: Tx 2 queue init failed\n"); } goto error; } else { } { rc = ipw_queue_tx_init(priv, (struct clx2_tx_queue *)(& priv->txq) + 3UL, nTx, 656U, 3984U, 544U, 548U); } if (rc != 0) { { printk("\vipw2200: Tx 3 queue init failed\n"); } goto error; } else { } priv->rx_bufs_min = 0; priv->rx_pend_max = 0; return (rc); error: { ipw_tx_queue_free(priv); } return (rc); } } static int ipw_queue_tx_reclaim(struct ipw_priv *priv , struct clx2_tx_queue *txq , int qindex ) { u32 hw_tail ; int used ; struct clx2_queue *q ; int tmp ; u32 tmp___0 ; int tmp___1 ; { q = & txq->q; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_queue_tx_reclaim", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 5048, q->reg_r); } } else { } { tmp___0 = _ipw_read32(priv, (unsigned long )q->reg_r); hw_tail = tmp___0; } if (hw_tail >= (u32 )q->n_bd) { { printk("\vipw2200: Read index for DMA queue (%d) is out of range [0-%d)\n", hw_tail, q->n_bd); } goto done; } else { } goto ldv_50695; ldv_50694: { ipw_queue_tx_free_tfd(priv, txq); priv->tx_packets = priv->tx_packets + 1U; q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd); } ldv_50695: ; if ((u32 )q->last_used != hw_tail) { goto ldv_50694; } else { } done: { tmp___1 = ipw_tx_queue_space((struct clx2_queue const *)q); } if (tmp___1 > q->low_mark && qindex >= 0) { { netif_wake_queue(priv->net_dev); } } else { } used = q->first_empty - q->last_used; if (used < 0) { used = used + q->n_bd; } else { } return (used); } } static int ipw_queue_tx_hcmd(struct ipw_priv *priv , int hcmd , void *buf , int len , int sync ) { struct clx2_tx_queue *txq ; struct clx2_queue *q ; struct tfd_frame *tfd ; int tmp ; int tmp___0 ; { { txq = & priv->txq_cmd; q = & txq->q; tmp = ipw_tx_queue_space((struct clx2_queue const *)q); } if (tmp < (sync != 0 ? 1 : 2)) { { printk("\vipw2200: No space for Tx\n"); } return (-16); } else { } { tfd = txq->bd + (unsigned long )q->first_empty; *(txq->txb + (unsigned long )q->first_empty) = (struct libipw_txb *)0; memset((void *)tfd, 0, 128UL); tfd->control_flags.message_type = 1U; tfd->control_flags.control_bits = 4U; priv->hcmd_seq = priv->hcmd_seq + 1U; tfd->u.cmd.index = (u8 )hcmd; tfd->u.cmd.length = (u8 )len; memcpy((void *)(& tfd->u.cmd.payload), (void const *)buf, (size_t )len); q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_queue_tx_hcmd", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 5094, q->reg_w, (unsigned int )q->first_empty); } } else { } { _ipw_write32(priv, (unsigned long )q->reg_w, (u32 )q->first_empty); _ipw_read32(priv, 144UL); } return (0); } } static void ipw_rx_queue_restock(struct ipw_priv *priv ) { struct ipw_rx_queue *rxq ; struct list_head *element ; struct ipw_rx_mem_buffer *rxb ; unsigned long flags ; int write ; struct list_head const *__mptr ; int tmp ; int tmp___0 ; int tmp___1 ; { { rxq = priv->rxq; ldv___ldv_spin_lock_127(& rxq->lock); write = (int )rxq->write; } goto ldv_50720; ldv_50719: { element = rxq->rx_free.next; __mptr = (struct list_head const *)element; rxb = (struct ipw_rx_mem_buffer *)__mptr + 0xfffffffffffffff0UL; list_del(element); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_queue_restock", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 5189, (rxq->write + 320U) * 4U, (unsigned int )rxb->dma_addr); } } else { } { _ipw_write32(priv, (unsigned long )((rxq->write + 320U) * 4U), (u32 )rxb->dma_addr); rxq->queue[rxq->write] = rxb; rxq->write = (rxq->write + 1U) & 31U; rxq->free_count = rxq->free_count - 1U; } ldv_50720: { tmp___0 = ipw_rx_queue_space((struct ipw_rx_queue const *)rxq); } if (tmp___0 > 0 && rxq->free_count != 0U) { goto ldv_50719; } else { } { ldv_spin_unlock_irqrestore_126(& rxq->lock, flags); } if (rxq->free_count <= 8U) { { schedule_work(& priv->rx_replenish); } } else { } if ((u32 )write != rxq->write) { if ((ipw_debug_level & 134217728U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx_queue_restock", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 5203, 4000U, rxq->write); } } else { } { _ipw_write32(priv, 4000UL, rxq->write); } } else { } return; } } static void ipw_rx_queue_replenish(void *data ) { struct ipw_priv *priv ; struct ipw_rx_queue *rxq ; struct list_head *element ; struct ipw_rx_mem_buffer *rxb ; unsigned long flags ; struct list_head const *__mptr ; int tmp ; { { priv = (struct ipw_priv *)data; rxq = priv->rxq; ldv___ldv_spin_lock_129(& rxq->lock); } goto ldv_50734; ldv_50733: { element = rxq->rx_used.next; __mptr = (struct list_head const *)element; rxb = (struct ipw_rx_mem_buffer *)__mptr + 0xfffffffffffffff0UL; rxb->skb = alloc_skb(3000U, 32U); } if ((unsigned long )rxb->skb == (unsigned long )((struct sk_buff *)0)) { { printk("\n%s: Can not allocate SKB buffers.\n", (char *)(& (priv->net_dev)->name)); } goto ldv_50732; } else { } { list_del(element); rxb->dma_addr = pci_map_single(priv->pci_dev, (void *)(rxb->skb)->data, 3000UL, 2); list_add_tail(& rxb->list, & rxq->rx_free); rxq->free_count = rxq->free_count + 1U; } ldv_50734: { tmp = list_empty((struct list_head const *)(& rxq->rx_used)); } if (tmp == 0) { goto ldv_50733; } else { } ldv_50732: { ldv_spin_unlock_irqrestore_126(& rxq->lock, flags); ipw_rx_queue_restock(priv); } return; } } static void ipw_bg_rx_queue_replenish(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffef38UL; mutex_lock_nested(& priv->mutex, 0U); ipw_rx_queue_replenish((void *)priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_rx_queue_free(struct ipw_priv *priv , struct ipw_rx_queue *rxq ) { int i ; { if ((unsigned long )rxq == (unsigned long )((struct ipw_rx_queue *)0)) { return; } else { } i = 0; goto ldv_50747; ldv_50746: ; if ((unsigned long )rxq->pool[i].skb != (unsigned long )((struct sk_buff *)0)) { { pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, 3000UL, 2); consume_skb(rxq->pool[i].skb); } } else { } i = i + 1; ldv_50747: ; if (i <= 63) { goto ldv_50746; } else { } { kfree((void const *)rxq); } return; } } static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv ) { struct ipw_rx_queue *rxq ; int i ; void *tmp ; long tmp___0 ; struct lock_class_key __key ; u32 tmp___1 ; { { tmp = kzalloc(2424UL, 208U); rxq = (struct ipw_rx_queue *)tmp; tmp___0 = ldv__builtin_expect((unsigned long )rxq == (unsigned long )((struct ipw_rx_queue *)0), 0L); } if (tmp___0 != 0L) { { printk("\vipw2200: memory allocation failed\n"); } return ((struct ipw_rx_queue *)0); } else { } { spinlock_check(& rxq->lock); __raw_spin_lock_init(& rxq->lock.__annonCompField19.rlock, "&(&rxq->lock)->rlock", & __key); INIT_LIST_HEAD(& rxq->rx_free); INIT_LIST_HEAD(& rxq->rx_used); i = 0; } goto ldv_50756; ldv_50755: { list_add_tail(& rxq->pool[i].list, & rxq->rx_used); i = i + 1; } ldv_50756: ; if (i <= 63) { goto ldv_50755; } else { } tmp___1 = 0U; rxq->write = tmp___1; rxq->read = tmp___1; rxq->free_count = 0U; return (rxq); } } static int ipw_is_rate_in_mask(struct ipw_priv *priv , int ieee_mode , u8 rate ) { { rate = (unsigned int )rate & 127U; if (ieee_mode == 1) { { if ((int )rate == 12) { goto case_12; } else { } if ((int )rate == 18) { goto case_18; } else { } if ((int )rate == 24) { goto case_24; } else { } if ((int )rate == 36) { goto case_36; } else { } if ((int )rate == 48) { goto case_48; } else { } if ((int )rate == 72) { goto case_72; } else { } if ((int )rate == 96) { goto case_96; } else { } if ((int )rate == 108) { goto case_108; } else { } goto switch_default; case_12: /* CIL Label */ ; return (((int )priv->rates_mask & 16) != 0); case_18: /* CIL Label */ ; return (((int )priv->rates_mask & 32) != 0); case_24: /* CIL Label */ ; return (((int )priv->rates_mask & 64) != 0); case_36: /* CIL Label */ ; return (((int )priv->rates_mask & 128) != 0); case_48: /* CIL Label */ ; return (((int )priv->rates_mask & 256) != 0); case_72: /* CIL Label */ ; return (((int )priv->rates_mask & 512) != 0); case_96: /* CIL Label */ ; return (((int )priv->rates_mask & 1024) != 0); case_108: /* CIL Label */ ; return (((int )priv->rates_mask & 2048) != 0); switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } } else { } { if ((int )rate == 2) { goto case_2; } else { } if ((int )rate == 4) { goto case_4; } else { } if ((int )rate == 11) { goto case_11; } else { } if ((int )rate == 22) { goto case_22; } else { } goto switch_break___0; case_2: /* CIL Label */ ; return ((int )priv->rates_mask & 1); case_4: /* CIL Label */ ; return (((int )priv->rates_mask & 2) != 0); case_11: /* CIL Label */ ; return (((int )priv->rates_mask & 4) != 0); case_22: /* CIL Label */ ; return (((int )priv->rates_mask & 8) != 0); switch_break___0: /* CIL Label */ ; } if (ieee_mode == 2) { return (0); } else { } { if ((int )rate == 12) { goto case_12___0; } else { } if ((int )rate == 18) { goto case_18___0; } else { } if ((int )rate == 24) { goto case_24___0; } else { } if ((int )rate == 36) { goto case_36___0; } else { } if ((int )rate == 48) { goto case_48___0; } else { } if ((int )rate == 72) { goto case_72___0; } else { } if ((int )rate == 96) { goto case_96___0; } else { } if ((int )rate == 108) { goto case_108___0; } else { } goto switch_break___1; case_12___0: /* CIL Label */ ; return (((int )priv->rates_mask & 16) != 0); case_18___0: /* CIL Label */ ; return (((int )priv->rates_mask & 32) != 0); case_24___0: /* CIL Label */ ; return (((int )priv->rates_mask & 64) != 0); case_36___0: /* CIL Label */ ; return (((int )priv->rates_mask & 128) != 0); case_48___0: /* CIL Label */ ; return (((int )priv->rates_mask & 256) != 0); case_72___0: /* CIL Label */ ; return (((int )priv->rates_mask & 512) != 0); case_96___0: /* CIL Label */ ; return (((int )priv->rates_mask & 1024) != 0); case_108___0: /* CIL Label */ ; return (((int )priv->rates_mask & 2048) != 0); switch_break___1: /* CIL Label */ ; } return (0); } } static int ipw_compatible_rates(struct ipw_priv *priv , struct libipw_network const *network , struct ipw_supported_rates *rates ) { int num_rates ; int i ; unsigned char _min1 ; unsigned char _min2 ; int tmp ; u8 tmp___0 ; int tmp___1 ; int tmp___2 ; u8 tmp___3 ; unsigned char _min1___0 ; unsigned char _min2___0 ; int tmp___4 ; u8 tmp___5 ; int tmp___6 ; int tmp___7 ; u8 tmp___8 ; { { memset((void *)rates, 0, 16UL); _min1 = network->rates_len; _min2 = 12U; num_rates = (int )_min1 < (int )_min2 ? (int )_min1 : (int )_min2; rates->num_rates = 0U; i = 0; } goto ldv_50797; ldv_50796: { tmp___2 = ipw_is_rate_in_mask(priv, (int )network->mode, (int )network->rates[i]); } if (tmp___2 == 0) { if ((int )((signed char )network->rates[i]) < 0) { if ((ipw_debug_level & 2048U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Adding masked mandatory rate %02X\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_compatible_rates", (int )network->rates[i]); } } else { } tmp___0 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___0] = network->rates[i]; goto ldv_50795; } else { } if ((ipw_debug_level & 2048U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Rate %02X masked : 0x%08X\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_compatible_rates", (int )network->rates[i], (int )priv->rates_mask); } } else { } goto ldv_50795; } else { } tmp___3 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___3] = network->rates[i]; ldv_50795: i = i + 1; ldv_50797: ; if (i < num_rates) { goto ldv_50796; } else { } _min1___0 = network->rates_ex_len; _min2___0 = 12U - (unsigned int )((unsigned char )num_rates); num_rates = (int )_min1___0 < (int )_min2___0 ? (int )_min1___0 : (int )_min2___0; i = 0; goto ldv_50804; ldv_50803: { tmp___7 = ipw_is_rate_in_mask(priv, (int )network->mode, (int )network->rates_ex[i]); } if (tmp___7 == 0) { if ((int )((signed char )network->rates_ex[i]) < 0) { if ((ipw_debug_level & 2048U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s Adding masked mandatory rate %02X\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_compatible_rates", (int )network->rates_ex[i]); } } else { } tmp___5 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___5] = network->rates[i]; goto ldv_50802; } else { } if ((ipw_debug_level & 2048U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Rate %02X masked : 0x%08X\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_compatible_rates", (int )network->rates_ex[i], (int )priv->rates_mask); } } else { } goto ldv_50802; } else { } tmp___8 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___8] = network->rates_ex[i]; ldv_50802: i = i + 1; ldv_50804: ; if (i < num_rates) { goto ldv_50803; } else { } return (1); } } static void ipw_copy_rates(struct ipw_supported_rates *dest , struct ipw_supported_rates const *src ) { u8 i ; { i = 0U; goto ldv_50812; ldv_50811: dest->supported_rates[(int )i] = src->supported_rates[(int )i]; i = (u8 )((int )i + 1); ldv_50812: ; if ((int )i < (int )((unsigned char )src->num_rates)) { goto ldv_50811; } else { } dest->num_rates = src->num_rates; return; } } static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates , u8 modulation , u32 rate_mask ) { u8 basic_mask ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; { basic_mask = (unsigned int )modulation == 2U ? 128U : 0U; if ((int )rate_mask & 1) { tmp = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp] = 130U; } else { } if ((rate_mask & 2U) != 0U) { tmp___0 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___0] = 132U; } else { } if ((rate_mask & 4U) != 0U) { tmp___1 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___1] = (u8 )((unsigned int )basic_mask | 11U); } else { } if ((rate_mask & 8U) != 0U) { tmp___2 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___2] = (u8 )((unsigned int )basic_mask | 22U); } else { } return; } } static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates , u8 modulation , u32 rate_mask ) { u8 basic_mask ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; u8 tmp___5 ; u8 tmp___6 ; { basic_mask = (unsigned int )modulation == 2U ? 128U : 0U; if ((rate_mask & 16U) != 0U) { tmp = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp] = (u8 )((unsigned int )basic_mask | 12U); } else { } if ((rate_mask & 32U) != 0U) { tmp___0 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___0] = 18U; } else { } if ((rate_mask & 64U) != 0U) { tmp___1 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___1] = (u8 )((unsigned int )basic_mask | 24U); } else { } if ((rate_mask & 128U) != 0U) { tmp___2 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___2] = 36U; } else { } if ((rate_mask & 256U) != 0U) { tmp___3 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___3] = (u8 )((unsigned int )basic_mask | 48U); } else { } if ((rate_mask & 512U) != 0U) { tmp___4 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___4] = 72U; } else { } if ((rate_mask & 1024U) != 0U) { tmp___5 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___5] = 96U; } else { } if ((rate_mask & 2048U) != 0U) { tmp___6 = rates->num_rates; rates->num_rates = (u8 )((int )rates->num_rates + 1); rates->supported_rates[(int )tmp___6] = 108U; } else { } return; } } static int ipw_find_adhoc_network(struct ipw_priv *priv , struct ipw_network_match *match , struct libipw_network *network , int roaming___0 ) { struct ipw_supported_rates rates ; char ssid[129U] ; char const *tmp ; int tmp___0 ; char const *tmp___1 ; int tmp___2 ; int tmp___3 ; char escaped[65U] ; char const *tmp___4 ; char const *tmp___5 ; int tmp___6 ; u8 _min1 ; u8 _min2 ; int tmp___7 ; long tmp___8 ; char const *tmp___9 ; int tmp___10 ; char const *tmp___11 ; int tmp___12 ; unsigned int tmp___13 ; char const *tmp___14 ; int tmp___15 ; char const *tmp___16 ; int tmp___17 ; char const *tmp___18 ; int tmp___19 ; char const *tmp___20 ; int tmp___21 ; bool tmp___22 ; char const *tmp___23 ; int tmp___24 ; int tmp___25 ; char const *tmp___26 ; int tmp___27 ; int tmp___28 ; char const *tmp___29 ; int tmp___30 ; char const *tmp___31 ; int tmp___32 ; { if ((priv->ieee)->iw_mode == 1 && ((int )network->capability & 2) == 0) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded due to capability mismatch.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp, (u8 *)(& network->bssid)); } } else { } return (0); } else { } { tmp___8 = ldv__builtin_expect(roaming___0 != 0, 0L); } if (tmp___8 != 0L) { if ((int )network->ssid_len != (int )(match->network)->ssid_len) { goto _L; } else { { tmp___3 = memcmp((void const *)(& network->ssid), (void const *)(& (match->network)->ssid), (size_t )network->ssid_len); } if (tmp___3 != 0) { _L: /* CIL Label */ if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___1 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of non-network ESSID.\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___1, (u8 *)(& network->bssid)); } } else { } return (0); } else { } } } else if ((priv->config & 2U) != 0U) { if ((int )network->ssid_len != (int )priv->essid_len) { goto _L___0; } else { { _min1 = network->ssid_len; _min2 = priv->essid_len; tmp___7 = memcmp((void const *)(& network->ssid), (void const *)(& priv->essid), (size_t )((int )_min1 < (int )_min2 ? _min1 : _min2)); } if (tmp___7 != 0) { _L___0: /* CIL Label */ { tmp___4 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); strncpy((char *)(& escaped), tmp___4, 65UL); } if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___5 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of ESSID mismatch: \'%s\'.\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", (char *)(& escaped), (u8 *)(& network->bssid), tmp___5); } } else { } return (0); } else { } } } else { } if (network->time_stamp[0] < (match->network)->time_stamp[0]) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___9 = print_ssid((char *)(& ssid), (char const *)(& (match->network)->ssid), (int )(match->network)->ssid_len); tmp___10 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s excluded because newer than current network.\n", ((unsigned long )tmp___10 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___9); } } else { } return (0); } else if (network->time_stamp[1] < (match->network)->time_stamp[1]) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___11 = print_ssid((char *)(& ssid), (char const *)(& (match->network)->ssid), (int )(match->network)->ssid_len); tmp___12 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s excluded because newer than current network.\n", ((unsigned long )tmp___12 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___11); } } else { } return (0); } else { } if ((priv->ieee)->scan_age != 0 && (long )((network->last_scanned + (unsigned long )(priv->ieee)->scan_age) - (unsigned long )jiffies) < 0L) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___13 = jiffies_to_msecs((unsigned long )jiffies - network->last_scanned); tmp___14 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___15 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of age: %ums.\n", ((unsigned long )tmp___15 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___14, (u8 *)(& network->bssid), tmp___13); } } else { } return (0); } else { } if ((int )priv->config & 1 && (int )network->channel != (int )priv->channel) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___16 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___17 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of channel mismatch: %d != %d.\n", ((unsigned long )tmp___17 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___16, (u8 *)(& network->bssid), (int )network->channel, (int )priv->channel); } } else { } return (0); } else { } if (((priv->capability & 2U) != 0U) ^ (((int )network->capability & 16) != 0)) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___18 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___19 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of privacy mismatch: %s != %s.\n", ((unsigned long )tmp___19 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___18, (u8 *)(& network->bssid), (priv->capability & 2U) != 0U ? (char *)"on" : (char *)"off", ((int )network->capability & 16) != 0 ? (char *)"on" : (char *)"off"); } } else { } return (0); } else { } { tmp___22 = ether_addr_equal((u8 const *)(& network->bssid), (u8 const *)(& priv->bssid)); } if ((int )tmp___22) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___20 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___21 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of the same BSSID match: %pM.\n", ((unsigned long )tmp___21 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___20, (u8 *)(& network->bssid), (u8 *)(& priv->bssid)); } } else { } return (0); } else { } { tmp___25 = libipw_is_valid_mode(priv->ieee, (int )network->mode); } if (tmp___25 == 0) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___23 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___24 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of invalid frequency/mode combination.\n", ((unsigned long )tmp___24 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___23, (u8 *)(& network->bssid)); } } else { } return (0); } else { } { tmp___28 = ipw_compatible_rates(priv, (struct libipw_network const *)network, & rates); } if (tmp___28 == 0) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___26 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___27 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because configured rate mask excludes AP mandatory rate.\n", ((unsigned long )tmp___27 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___26, (u8 *)(& network->bssid)); } } else { } return (0); } else { } if ((unsigned int )rates.num_rates == 0U) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___29 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___30 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of no compatible rates.\n", ((unsigned long )tmp___30 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___29, (u8 *)(& network->bssid)); } } else { } return (0); } else { } { ipw_copy_rates(& match->rates, (struct ipw_supported_rates const *)(& rates)); match->network = network; } if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___31 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___32 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' is a viable match.\n", ((unsigned long )tmp___32 & 2096896UL) != 0UL ? 73 : 85, "ipw_find_adhoc_network", tmp___31, (u8 *)(& network->bssid)); } } else { } return (1); } } static void ipw_merge_adhoc_network(struct work_struct *work ) { char ssid[129U] ; struct ipw_priv *priv ; struct work_struct const *__mptr ; struct libipw_network *network ; struct ipw_network_match match ; unsigned long flags ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp ; char const *tmp___0 ; int tmp___1 ; { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe3b0UL; network = (struct libipw_network *)0; match.network = priv->assoc_network; match.rates.ieee_mode = (unsigned char)0; match.rates.num_rates = (unsigned char)0; match.rates.purpose = (unsigned char)0; match.rates.reserved = (unsigned char)0; match.rates.supported_rates[0] = (unsigned char)0; match.rates.supported_rates[1] = (unsigned char)0; match.rates.supported_rates[2] = (unsigned char)0; match.rates.supported_rates[3] = (unsigned char)0; match.rates.supported_rates[4] = (unsigned char)0; match.rates.supported_rates[5] = (unsigned char)0; match.rates.supported_rates[6] = (unsigned char)0; match.rates.supported_rates[7] = (unsigned char)0; match.rates.supported_rates[8] = (unsigned char)0; match.rates.supported_rates[9] = (unsigned char)0; match.rates.supported_rates[10] = (unsigned char)0; match.rates.supported_rates[11] = (unsigned char)0; if ((priv->status & 128U) != 0U && (priv->ieee)->iw_mode == 1) { { ldv___ldv_spin_lock_131(& (priv->ieee)->lock); __mptr___0 = (struct list_head const *)(priv->ieee)->network_list.next; network = (struct libipw_network *)__mptr___0 + 0xfffffffffffffe98UL; } goto ldv_50863; ldv_50862: ; if ((unsigned long )network != (unsigned long )priv->assoc_network) { { ipw_find_adhoc_network(priv, & match, network, 1); } } else { } __mptr___1 = (struct list_head const *)network->list.next; network = (struct libipw_network *)__mptr___1 + 0xfffffffffffffe98UL; ldv_50863: ; if ((unsigned long )(& network->list) != (unsigned long )(& (priv->ieee)->network_list)) { goto ldv_50862; } else { } { ldv_spin_unlock_irqrestore_122(& (priv->ieee)->lock, flags); } if ((unsigned long )match.network == (unsigned long )priv->assoc_network) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s No better ADHOC in this network to merge to.\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_merge_adhoc_network"); } } else { } return; } else { } { mutex_lock_nested(& priv->mutex, 0U); } if ((priv->ieee)->iw_mode == 1) { if ((ipw_debug_level & 1073741824U) != 0U) { { tmp___0 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___1 = preempt_count(); printk("\017ipw2200: %c %s remove network %s\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_merge_adhoc_network", tmp___0); } } else { } { ipw_remove_current_network(priv); } } else { } { ipw_disassociate((void *)priv); priv->assoc_network = match.network; mutex_unlock(& priv->mutex); } return; } else { } return; } } static int ipw_best_network(struct ipw_priv *priv , struct ipw_network_match *match , struct libipw_network *network , int roaming___0 ) { struct ipw_supported_rates rates ; char ssid[129U] ; char const *tmp ; int tmp___0 ; char const *tmp___1 ; int tmp___2 ; int tmp___3 ; char escaped[65U] ; char const *tmp___4 ; char const *tmp___5 ; int tmp___6 ; u8 _min1 ; u8 _min2 ; int tmp___7 ; long tmp___8 ; char escaped___0[65U] ; char const *tmp___9 ; char const *tmp___10 ; int tmp___11 ; unsigned int tmp___12 ; char const *tmp___13 ; int tmp___14 ; unsigned int tmp___15 ; char const *tmp___16 ; int tmp___17 ; char const *tmp___18 ; int tmp___19 ; char const *tmp___20 ; int tmp___21 ; char const *tmp___22 ; int tmp___23 ; bool tmp___24 ; int tmp___25 ; char const *tmp___26 ; int tmp___27 ; int tmp___28 ; char const *tmp___29 ; int tmp___30 ; int tmp___31 ; char const *tmp___32 ; int tmp___33 ; int tmp___34 ; char const *tmp___35 ; int tmp___36 ; char const *tmp___37 ; int tmp___38 ; { if (((priv->ieee)->iw_mode == 2 && ((int )network->capability & 1) == 0) || ((priv->ieee)->iw_mode == 1 && ((int )network->capability & 2) == 0)) { if ((ipw_debug_level & 4100U) != 0U) { { tmp = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded due to capability mismatch.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp, (u8 *)(& network->bssid)); } } else { } return (0); } else { } { tmp___8 = ldv__builtin_expect(roaming___0 != 0, 0L); } if (tmp___8 != 0L) { if ((int )network->ssid_len != (int )(match->network)->ssid_len) { goto _L; } else { { tmp___3 = memcmp((void const *)(& network->ssid), (void const *)(& (match->network)->ssid), (size_t )network->ssid_len); } if (tmp___3 != 0) { _L: /* CIL Label */ if ((ipw_debug_level & 4100U) != 0U) { { tmp___1 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of non-network ESSID.\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___1, (u8 *)(& network->bssid)); } } else { } return (0); } else { } } } else if ((priv->config & 2U) != 0U) { if ((int )network->ssid_len != (int )priv->essid_len) { goto _L___0; } else { { _min1 = network->ssid_len; _min2 = priv->essid_len; tmp___7 = memcmp((void const *)(& network->ssid), (void const *)(& priv->essid), (size_t )((int )_min1 < (int )_min2 ? _min1 : _min2)); } if (tmp___7 != 0) { _L___0: /* CIL Label */ { tmp___4 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); strncpy((char *)(& escaped), tmp___4, 65UL); } if ((ipw_debug_level & 4100U) != 0U) { { tmp___5 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of ESSID mismatch: \'%s\'.\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", (char *)(& escaped), (u8 *)(& network->bssid), tmp___5); } } else { } return (0); } else { } } } else { } if ((unsigned long )match->network != (unsigned long )((struct libipw_network *)0) && (int )(match->network)->stats.rssi > (int )network->stats.rssi) { { tmp___9 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); strncpy((char *)(& escaped___0), tmp___9, 65UL); } if ((ipw_debug_level & 4100U) != 0U) { { tmp___10 = print_ssid((char *)(& ssid), (char const *)(& (match->network)->ssid), (int )(match->network)->ssid_len); tmp___11 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because \'%s (%pM)\' has a stronger signal.\n", ((unsigned long )tmp___11 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", (char *)(& escaped___0), (u8 *)(& network->bssid), tmp___10, (u8 *)(& (match->network)->bssid)); } } else { } return (0); } else { } if (network->last_associate != 0U && (long )(((unsigned long )jiffies - (unsigned long )network->last_associate) - 750UL) < 0L) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___12 = jiffies_to_msecs((unsigned long )jiffies - (unsigned long )network->last_associate); tmp___13 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___14 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of storming (%ums since last assoc attempt).\n", ((unsigned long )tmp___14 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___13, (u8 *)(& network->bssid), tmp___12); } } else { } return (0); } else { } if ((priv->ieee)->scan_age != 0 && (long )((network->last_scanned + (unsigned long )(priv->ieee)->scan_age) - (unsigned long )jiffies) < 0L) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___15 = jiffies_to_msecs((unsigned long )jiffies - network->last_scanned); tmp___16 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___17 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of age: %ums.\n", ((unsigned long )tmp___17 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___16, (u8 *)(& network->bssid), tmp___15); } } else { } return (0); } else { } if ((int )priv->config & 1 && (int )network->channel != (int )priv->channel) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___18 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___19 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of channel mismatch: %d != %d.\n", ((unsigned long )tmp___19 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___18, (u8 *)(& network->bssid), (int )network->channel, (int )priv->channel); } } else { } return (0); } else { } if (((priv->capability & 2U) != 0U) ^ (((int )network->capability & 16) != 0)) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___20 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___21 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of privacy mismatch: %s != %s.\n", ((unsigned long )tmp___21 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___20, (u8 *)(& network->bssid), (priv->capability & 2U) != 0U ? (char *)"on" : (char *)"off", ((int )network->capability & 16) != 0 ? (char *)"on" : (char *)"off"); } } else { } return (0); } else { } if ((priv->config & 4U) != 0U) { { tmp___24 = ether_addr_equal((u8 const *)(& network->bssid), (u8 const *)(& priv->bssid)); } if (tmp___24) { tmp___25 = 0; } else { tmp___25 = 1; } if (tmp___25) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___22 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___23 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of BSSID mismatch: %pM.\n", ((unsigned long )tmp___23 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___22, (u8 *)(& network->bssid), (u8 *)(& priv->bssid)); } } else { } return (0); } else { } } else { } { tmp___28 = libipw_is_valid_mode(priv->ieee, (int )network->mode); } if (tmp___28 == 0) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___26 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___27 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of invalid frequency/mode combination.\n", ((unsigned long )tmp___27 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___26, (u8 *)(& network->bssid)); } } else { } return (0); } else { } { tmp___31 = libipw_is_valid_channel(priv->ieee, (int )network->channel); } if (tmp___31 == 0) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___29 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___30 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of invalid channel in current GEO\n", ((unsigned long )tmp___30 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___29, (u8 *)(& network->bssid)); } } else { } return (0); } else { } { tmp___34 = ipw_compatible_rates(priv, (struct libipw_network const *)network, & rates); } if (tmp___34 == 0) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___32 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___33 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because configured rate mask excludes AP mandatory rate.\n", ((unsigned long )tmp___33 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___32, (u8 *)(& network->bssid)); } } else { } return (0); } else { } if ((unsigned int )rates.num_rates == 0U) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___35 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___36 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' excluded because of no compatible rates.\n", ((unsigned long )tmp___36 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___35, (u8 *)(& network->bssid)); } } else { } return (0); } else { } { ipw_copy_rates(& match->rates, (struct ipw_supported_rates const *)(& rates)); match->network = network; } if ((ipw_debug_level & 4100U) != 0U) { { tmp___37 = print_ssid((char *)(& ssid), (char const *)(& network->ssid), (int )network->ssid_len); tmp___38 = preempt_count(); printk("\017ipw2200: %c %s Network \'%s (%pM)\' is a viable match.\n", ((unsigned long )tmp___38 & 2096896UL) != 0UL ? 73 : 85, "ipw_best_network", tmp___37, (u8 *)(& network->bssid)); } } else { } return (1); } } static void ipw_adhoc_create(struct ipw_priv *priv , struct libipw_network *network ) { struct libipw_geo const *geo ; struct libipw_geo const *tmp ; int i ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u8 _min1 ; unsigned char _min2 ; { { tmp = libipw_get_geo(priv->ieee); geo = tmp; tmp___0 = libipw_is_valid_channel(priv->ieee, (int )priv->channel); } { if (tmp___0 == 2) { goto case_2; } else { } if (tmp___0 == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ { network->mode = 1U; i = libipw_channel_to_index(priv->ieee, (int )priv->channel); tmp___1 = ldv__builtin_expect(i == -1, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/ipw2x00/ipw2200.c"), "i" (5940), "i" (12UL)); __builtin_unreachable(); } } else { } if ((int )geo->a[i].flags & 1) { { printk("\fipw2200: Overriding invalid channel\n"); priv->channel = geo->a[0].channel; } } else { } goto ldv_50899; case_1: /* CIL Label */ ; if (((priv->ieee)->mode & 4) != 0) { network->mode = 4U; } else { network->mode = 2U; } { i = libipw_channel_to_index(priv->ieee, (int )priv->channel); tmp___2 = ldv__builtin_expect(i == -1, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/ipw2x00/ipw2200.c"), "i" (5953), "i" (12UL)); __builtin_unreachable(); } } else { } if ((int )geo->bg[i].flags & 1) { { printk("\fipw2200: Overriding invalid channel\n"); priv->channel = geo->bg[0].channel; } } else { } goto ldv_50899; switch_default: /* CIL Label */ { printk("\fipw2200: Overriding invalid channel\n"); } if ((priv->ieee)->mode & 1) { network->mode = 1U; priv->channel = geo->a[0].channel; } else if (((priv->ieee)->mode & 4) != 0) { network->mode = 4U; priv->channel = geo->bg[0].channel; } else { network->mode = 2U; priv->channel = geo->bg[0].channel; } goto ldv_50899; switch_break: /* CIL Label */ ; } ldv_50899: { network->channel = priv->channel; priv->config = priv->config | 32U; ipw_create_bssid(priv, (u8 *)(& network->bssid)); network->ssid_len = priv->essid_len; memcpy((void *)(& network->ssid), (void const *)(& priv->essid), (size_t )priv->essid_len); memset((void *)(& network->stats), 0, 32UL); network->capability = 2U; } if ((priv->config & 16U) == 0U) { network->capability = (u16 )((unsigned int )network->capability | 32U); } else { } if ((priv->capability & 2U) != 0U) { network->capability = (u16 )((unsigned int )network->capability | 16U); } else { } { _min1 = priv->rates.num_rates; _min2 = 12U; network->rates_len = (u8 )((int )_min1 < (int )_min2 ? (int )_min1 : (int )_min2); memcpy((void *)(& network->rates), (void const *)(& priv->rates.supported_rates), (size_t )network->rates_len); network->rates_ex_len = (int )priv->rates.num_rates - (int )network->rates_len; memcpy((void *)(& network->rates_ex), (void const *)(& priv->rates.supported_rates) + (unsigned long )network->rates_len, (size_t )network->rates_ex_len); network->last_scanned = 0UL; network->flags = 0U; network->last_associate = 0U; network->time_stamp[0] = 0U; network->time_stamp[1] = 0U; network->beacon_interval = 100U; network->listen_interval = 10U; network->atim_window = 0U; network->wpa_ie_len = 0UL; network->rsn_ie_len = 0UL; } return; } } static void ipw_send_tgi_tx_key(struct ipw_priv *priv , int type , int index ) { struct ipw_tgi_tx_key key ; { if ((((int )(priv->ieee)->sec.flags >> index) & 1) == 0) { return; } else { } { key.key_id = (u8 )index; memcpy((void *)(& key.key), (void const *)(& (priv->ieee)->sec.keys) + (unsigned long )index, 16UL); key.security_type = (u8 )type; key.station_index = 0U; key.flags = 0U; key.tx_counter[0] = 0U; key.tx_counter[1] = 0U; ipw_send_cmd_pdu(priv, 19, 28, (void *)(& key)); } return; } } static void ipw_send_wep_keys(struct ipw_priv *priv , int type ) { struct ipw_wep_key key ; int i ; { key.cmd_id = 8U; key.seq_num = 0U; i = 0; goto ldv_50919; ldv_50918: key.key_index = (u8 )((int )((signed char )i) | (int )((signed char )type)); if ((((int )(priv->ieee)->sec.flags >> i) & 1) == 0) { key.key_size = 0U; goto ldv_50917; } else { } { key.key_size = (priv->ieee)->sec.key_sizes[i]; memcpy((void *)(& key.key), (void const *)(& (priv->ieee)->sec.keys) + (unsigned long )i, (size_t )key.key_size); ipw_send_cmd_pdu(priv, 18, 20, (void *)(& key)); } ldv_50917: i = i + 1; ldv_50919: ; if (i <= 3) { goto ldv_50918; } else { } return; } } static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv , int level ) { { if ((priv->ieee)->host_encrypt != 0) { return; } else { } { if (level == 4) { goto case_4; } else { } if (level == 2) { goto case_2; } else { } if (level == 1) { goto case_1; } else { } if (level == 0) { goto case_0; } else { } goto switch_default; case_4: /* CIL Label */ priv->sys_config.disable_unicast_decryption = 0U; (priv->ieee)->host_decrypt = 0; goto ldv_50926; case_2: /* CIL Label */ priv->sys_config.disable_unicast_decryption = 1U; (priv->ieee)->host_decrypt = 1; goto ldv_50926; case_1: /* CIL Label */ priv->sys_config.disable_unicast_decryption = 0U; (priv->ieee)->host_decrypt = 0; goto ldv_50926; case_0: /* CIL Label */ priv->sys_config.disable_unicast_decryption = 1U; goto ldv_50926; switch_default: /* CIL Label */ ; goto ldv_50926; switch_break: /* CIL Label */ ; } ldv_50926: ; return; } } static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv , int level ) { { if ((priv->ieee)->host_encrypt != 0) { return; } else { } { if (level == 4) { goto case_4; } else { } if (level == 2) { goto case_2; } else { } if (level == 1) { goto case_1; } else { } if (level == 0) { goto case_0; } else { } goto switch_default; case_4: /* CIL Label */ priv->sys_config.disable_multicast_decryption = 0U; goto ldv_50936; case_2: /* CIL Label */ priv->sys_config.disable_multicast_decryption = 1U; goto ldv_50936; case_1: /* CIL Label */ priv->sys_config.disable_multicast_decryption = 0U; goto ldv_50936; case_0: /* CIL Label */ priv->sys_config.disable_multicast_decryption = 1U; goto ldv_50936; switch_default: /* CIL Label */ ; goto ldv_50936; switch_break: /* CIL Label */ ; } ldv_50936: ; return; } } static void ipw_set_hwcrypto_keys(struct ipw_priv *priv ) { { { if ((int )(priv->ieee)->sec.level == 4) { goto case_4; } else { } if ((int )(priv->ieee)->sec.level == 2) { goto case_2; } else { } if ((int )(priv->ieee)->sec.level == 1) { goto case_1; } else { } if ((int )(priv->ieee)->sec.level == 0) { goto case_0; } else { } goto switch_default; case_4: /* CIL Label */ ; if (((int )(priv->ieee)->sec.flags & 16) != 0) { { ipw_send_tgi_tx_key(priv, 8, (int )(priv->ieee)->sec.active_key); } } else { } if ((priv->ieee)->host_mc_decrypt == 0) { { ipw_send_wep_keys(priv, 32); } } else { } goto ldv_50945; case_2: /* CIL Label */ ; if (((int )(priv->ieee)->sec.flags & 16) != 0) { { ipw_send_tgi_tx_key(priv, 12, (int )(priv->ieee)->sec.active_key); } } else { } goto ldv_50945; case_1: /* CIL Label */ { ipw_send_wep_keys(priv, 0); ipw_set_hw_decrypt_unicast(priv, (int )(priv->ieee)->sec.level); ipw_set_hw_decrypt_multicast(priv, (int )(priv->ieee)->sec.level); } goto ldv_50945; case_0: /* CIL Label */ ; switch_default: /* CIL Label */ ; goto ldv_50945; switch_break: /* CIL Label */ ; } ldv_50945: ; return; } } static void ipw_adhoc_check(void *data ) { struct ipw_priv *priv ; int tmp ; u32 tmp___0 ; { priv = (struct ipw_priv *)data; tmp___0 = priv->missed_adhoc_beacons; priv->missed_adhoc_beacons = priv->missed_adhoc_beacons + 1U; if (tmp___0 > priv->disassociate_threshold && (priv->config & 32U) == 0U) { if ((ipw_debug_level & 5188U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Missed beacon: %d - disassociate\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_adhoc_check", priv->missed_adhoc_beacons); } } else { } { ipw_remove_current_network(priv); ipw_disassociate((void *)priv); } return; } else { } { schedule_delayed_work(& priv->adhoc_check, (unsigned long )priv->assoc_request.beacon_interval); } return; } } static void ipw_bg_adhoc_check(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xfffffffffffff108UL; mutex_lock_nested(& priv->mutex, 0U); ipw_adhoc_check((void *)priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_debug_config(struct ipw_priv *priv ) { char ssid[129U] ; int tmp ; int tmp___0 ; int tmp___1 ; char const *tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; { if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Scan completed, no valid APs matched [CFG 0x%08X]\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_debug_config", priv->config); } } else { } if ((int )priv->config & 1) { if ((ipw_debug_level & 4U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Channel locked to %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_debug_config", (int )priv->channel); } } else { } } else if ((ipw_debug_level & 4U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Channel unlocked.\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_debug_config"); } } else { } if ((priv->config & 2U) != 0U) { if ((ipw_debug_level & 4U) != 0U) { { tmp___2 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___3 = preempt_count(); printk("\017ipw2200: %c %s ESSID locked to \'%s\'\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_debug_config", tmp___2); } } else { } } else if ((ipw_debug_level & 4U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s ESSID unlocked.\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_debug_config"); } } else { } if ((priv->config & 4U) != 0U) { if ((ipw_debug_level & 4U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s BSSID locked to %pM\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_debug_config", (u8 *)(& priv->bssid)); } } else { } } else if ((ipw_debug_level & 4U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s BSSID unlocked.\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_debug_config"); } } else { } if ((priv->capability & 2U) != 0U) { if ((ipw_debug_level & 4U) != 0U) { { tmp___7 = preempt_count(); printk("\017ipw2200: %c %s PRIVACY on\n", ((unsigned long )tmp___7 & 2096896UL) != 0UL ? 73 : 85, "ipw_debug_config"); } } else { } } else if ((ipw_debug_level & 4U) != 0U) { { tmp___8 = preempt_count(); printk("\017ipw2200: %c %s PRIVACY off\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_debug_config"); } } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp___9 = preempt_count(); printk("\017ipw2200: %c %s RATE MASK: 0x%08X\n", ((unsigned long )tmp___9 & 2096896UL) != 0UL ? 73 : 85, "ipw_debug_config", (int )priv->rates_mask); } } else { } return; } } static void ipw_set_fixed_rate(struct ipw_priv *priv , int mode ) { struct ipw_fixed_rate fr ; u32 reg ; u16 mask ; u16 new_tx_rates ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; u32 tmp___3 ; { mask = 0U; new_tx_rates = priv->rates_mask; { if ((priv->ieee)->freq_band == 2) { goto case_2; } else { } goto switch_default; case_2: /* CIL Label */ ; if (((int )priv->rates_mask & -4081) != 0) { if ((ipw_debug_level & 8U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s invalid fixed rate mask in ipw_set_fixed_rate\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_set_fixed_rate"); } } else { } new_tx_rates = 0U; goto ldv_50976; } else { } new_tx_rates = (u16 )((int )new_tx_rates >> 4); goto ldv_50976; switch_default: /* CIL Label */ ; if (mode == 2) { if (((int )new_tx_rates & -16) != 0) { if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s invalid fixed rate mask in ipw_set_fixed_rate\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_fixed_rate"); } } else { } new_tx_rates = 0U; } else { } goto ldv_50976; } else { } if (((int )new_tx_rates & -4096) != 0) { if ((ipw_debug_level & 8U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s invalid fixed rate mask in ipw_set_fixed_rate\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_fixed_rate"); } } else { } new_tx_rates = 0U; goto ldv_50976; } else { } if (((unsigned int )new_tx_rates & 16U) != 0U) { mask = (u16 )((unsigned int )mask | 8U); new_tx_rates = (unsigned int )new_tx_rates & 65519U; } else { } if (((unsigned int )new_tx_rates & 32U) != 0U) { mask = (u16 )((unsigned int )mask | 16U); new_tx_rates = (unsigned int )new_tx_rates & 65503U; } else { } if (((unsigned int )new_tx_rates & 64U) != 0U) { mask = (u16 )((unsigned int )mask | 32U); new_tx_rates = (unsigned int )new_tx_rates & 65471U; } else { } new_tx_rates = (u16 )((int )new_tx_rates | (int )mask); goto ldv_50976; switch_break: /* CIL Label */ ; } ldv_50976: fr.tx_rates = new_tx_rates; if ((ipw_debug_level & 134217728U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_fixed_rate", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 6246, 1564U); } } else { } { tmp___3 = _ipw_read32(priv, 1564UL); reg = tmp___3; ipw_write_reg32(priv, reg, *((u32 *)(& fr))); } return; } } static void ipw_abort_scan(struct ipw_priv *priv ) { int err ; int tmp ; int tmp___0 ; { if ((priv->status & 4194304U) != 0U) { if ((ipw_debug_level & 32U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Ignoring concurrent scan abort request.\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_abort_scan"); } } else { } return; } else { } { priv->status = priv->status | 4194304U; err = ipw_send_scan_abort(priv); } if (err != 0) { if ((ipw_debug_level & 32U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Request to abort scan failed.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_abort_scan"); } } else { } } else { } return; } } static void ipw_add_scan_channels(struct ipw_priv *priv , struct ipw_scan_request_ext *scan , int scan_type ) { int channel_index ; struct libipw_geo const *geo ; int i ; int start ; int start___0 ; int index ; u8 channels[14U] ; unsigned int tmp ; u8 channel ; { { channel_index = 0; geo = libipw_get_geo(priv->ieee); } if (((priv->ieee)->freq_band & 2) != 0) { start = channel_index; i = 0; goto ldv_50995; ldv_50994: ; if ((priv->status & 128U) != 0U && (int )((unsigned char )geo->a[i].channel) == (int )priv->channel) { goto ldv_50993; } else { } { channel_index = channel_index + 1; scan->channels_list[channel_index] = geo->a[i].channel; ipw_set_scan_type(scan, (int )((u8 )channel_index), (int )geo->a[i].flags & 1 ? 1 : (int )((u8 )scan_type)); } ldv_50993: i = i + 1; ldv_50995: ; if (i < (int )geo->a_channels) { goto ldv_50994; } else { } if (start != channel_index) { scan->channels_list[start] = (int )((u8 )channel_index) - (int )((u8 )start); channel_index = channel_index + 1; } else { } } else { } if ((priv->ieee)->freq_band & 1) { start___0 = channel_index; if ((priv->config & 2048U) != 0U) { channels[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 14U) { goto while_break; } else { } channels[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } goto ldv_51001; ldv_51003: channel = priv->speed_scan[(int )priv->speed_scan_pos]; if ((unsigned int )channel == 0U) { priv->speed_scan_pos = 0U; channel = priv->speed_scan[0]; } else { } if ((priv->status & 128U) != 0U && (int )channel == (int )priv->channel) { priv->speed_scan_pos = (u8 )((int )priv->speed_scan_pos + 1); goto ldv_51001; } else { } if ((unsigned int )channels[(int )channel + -1] != 0U) { goto ldv_51002; } else { } { channels[(int )channel + -1] = 1U; priv->speed_scan_pos = (u8 )((int )priv->speed_scan_pos + 1); channel_index = channel_index + 1; scan->channels_list[channel_index] = channel; index = libipw_channel_to_index(priv->ieee, (int )channel); ipw_set_scan_type(scan, (int )((u8 )channel_index), (int )geo->bg[index].flags & 1 ? 1 : (int )((u8 )scan_type)); } ldv_51001: ; if (channel_index <= 52) { goto ldv_51003; } else { } ldv_51002: ; } else { i = 0; goto ldv_51006; ldv_51005: ; if ((priv->status & 128U) != 0U && (int )((unsigned char )geo->bg[i].channel) == (int )priv->channel) { goto ldv_51004; } else { } { channel_index = channel_index + 1; scan->channels_list[channel_index] = geo->bg[i].channel; ipw_set_scan_type(scan, (int )((u8 )channel_index), (int )geo->bg[i].flags & 1 ? 1 : (int )((u8 )scan_type)); } ldv_51004: i = i + 1; ldv_51006: ; if (i < (int )geo->bg_channels) { goto ldv_51005; } else { } } if (start___0 != channel_index) { scan->channels_list[start___0] = (u8 )((int )((signed char )((int )((unsigned char )channel_index) - (int )((unsigned char )start___0))) | 64); } else { } } else { } return; } } static int ipw_passive_dwell_time(struct ipw_priv *priv ) { { if ((priv->status & 128U) != 0U && (unsigned int )(priv->assoc_network)->beacon_interval > 10U) { return ((int )(priv->assoc_network)->beacon_interval + -10); } else { return (120); } } } static int ipw_request_scan_helper(struct ipw_priv *priv , int type , int direct ) { struct ipw_scan_request_ext scan ; int err ; int scan_type ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; u8 channel ; u8 band ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; { err = 0; if (*((unsigned int *)priv + 482UL) != 32U) { return (0); } else { } { mutex_lock_nested(& priv->mutex, 0U); } if (direct != 0 && (unsigned int )priv->direct_scan_ssid_len == 0U) { if ((ipw_debug_level & 32U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Direct scan requested but no SSID to scan for\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_request_scan_helper"); } } else { } priv->status = priv->status & 4294443007U; goto done; } else { } if ((priv->status & 2097152U) != 0U) { if ((ipw_debug_level & 32U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Concurrent scan requested. Queuing.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_request_scan_helper"); } } else { } priv->status = priv->status | (direct != 0 ? 524288U : 1048576U); goto done; } else { } if (*((unsigned int *)priv + 482UL) == 4194304U) { if ((ipw_debug_level & 32U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Scan request while abort pending. Queuing.\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_request_scan_helper"); } } else { } priv->status = priv->status | (direct != 0 ? 524288U : 1048576U); goto done; } else { } if ((priv->status & 12U) != 0U) { if ((ipw_debug_level & 32U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Queuing scan due to RF Kill activation\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_request_scan_helper"); } } else { } priv->status = priv->status | (direct != 0 ? 524288U : 1048576U); goto done; } else { } { memset((void *)(& scan), 0, 96UL); tmp___3 = libipw_get_scans(priv->ieee); scan.full_scan_index = (unsigned int )tmp___3; } if (type == 1) { if ((ipw_debug_level & 8U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s use passive scanning\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_request_scan_helper"); } } else { } { scan_type = 1; tmp___5 = ipw_passive_dwell_time(priv); scan.dwell_time[1] = (unsigned short )tmp___5; ipw_add_scan_channels(priv, & scan, scan_type); } goto send_request; } else { } if ((priv->config & 2048U) != 0U) { scan.dwell_time[3] = 30U; } else { scan.dwell_time[3] = 20U; } { scan.dwell_time[4] = 20U; tmp___6 = ipw_passive_dwell_time(priv); scan.dwell_time[1] = (unsigned short )tmp___6; scan.dwell_time[2] = 20U; } if ((priv->ieee)->iw_mode == 6) { { band = 0U; tmp___7 = libipw_is_valid_channel(priv->ieee, (int )priv->channel); } { if (tmp___7 == 2) { goto case_2; } else { } if (tmp___7 == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ band = 1U; channel = priv->channel; goto ldv_51025; case_1: /* CIL Label */ band = 65U; channel = priv->channel; goto ldv_51025; switch_default: /* CIL Label */ band = 65U; channel = 9U; goto ldv_51025; switch_break: /* CIL Label */ ; } ldv_51025: { scan.channels_list[0] = band; scan.channels_list[1] = channel; ipw_set_scan_type(& scan, 1, 1); scan.dwell_time[1] = 2000U; } } else { if (direct != 0) { { err = ipw_send_ssid(priv, (u8 *)(& priv->direct_scan_ssid), (int )priv->direct_scan_ssid_len); } if (err != 0) { if ((ipw_debug_level & 32U) != 0U) { { tmp___8 = preempt_count(); printk("\017ipw2200: %c %s Attempt to send SSID command failed\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_request_scan_helper"); } } else { } goto done; } else { } scan_type = 4; } else if ((priv->status & 1024U) != 0U || (*((unsigned long *)priv + 241UL) == 8589934592UL && (int )scan.full_scan_index & 1)) { { err = ipw_send_ssid(priv, (u8 *)(& priv->essid), (int )priv->essid_len); } if (err != 0) { if ((ipw_debug_level & 32U) != 0U) { { tmp___9 = preempt_count(); printk("\017ipw2200: %c %s Attempt to send SSID command failed.\n", ((unsigned long )tmp___9 & 2096896UL) != 0UL ? 73 : 85, "ipw_request_scan_helper"); } } else { } goto done; } else { } scan_type = 4; } else { scan_type = 3; } { ipw_add_scan_channels(priv, & scan, scan_type); } } send_request: { err = ipw_send_scan_request_ext(priv, & scan); } if (err != 0) { if ((ipw_debug_level & 32U) != 0U) { { tmp___10 = preempt_count(); printk("\017ipw2200: %c %s Sending scan command failed: %08X\n", ((unsigned long )tmp___10 & 2096896UL) != 0UL ? 73 : 85, "ipw_request_scan_helper", err); } } else { } goto done; } else { } priv->status = priv->status | 2097152U; if (direct != 0) { priv->status = priv->status & 4294443007U; priv->direct_scan_ssid_len = 0U; } else { priv->status = priv->status & 4293918719U; } { schedule_delayed_work(& priv->scan_check, 1250UL); } done: { mutex_unlock(& priv->mutex); } return (err); } } static void ipw_request_passive_scan(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffed28UL; ipw_request_scan_helper(priv, 1, 0); } return; } } static void ipw_request_scan(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffeee8UL; ipw_request_scan_helper(priv, 0, 0); } return; } } static void ipw_request_direct_scan(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffee08UL; ipw_request_scan_helper(priv, 0, 1); } return; } } static void ipw_bg_abort_scan(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe8b8UL; mutex_lock_nested(& priv->mutex, 0U); ipw_abort_scan(priv); mutex_unlock(& priv->mutex); } return; } } static int ipw_wpa_enable(struct ipw_priv *priv , int value ) { { (priv->ieee)->wpa_enabled = value; return (0); } } static int ipw_wpa_set_auth_algs(struct ipw_priv *priv , int value ) { struct libipw_device *ieee ; struct libipw_security sec ; int ret ; { ieee = priv->ieee; sec.active_key = (unsigned short)0; sec.enabled = (unsigned short)0; sec.unicast_uses_group = (unsigned short)0; sec.encrypt = (unsigned short)0; sec.auth_mode = (unsigned char)0; sec.encode_alg[0] = (unsigned char)0; sec.encode_alg[1] = (unsigned char)0; sec.encode_alg[2] = (unsigned char)0; sec.encode_alg[3] = (unsigned char)0; sec.key_sizes[0] = (unsigned char)0; sec.key_sizes[1] = (unsigned char)0; sec.key_sizes[2] = (unsigned char)0; sec.key_sizes[3] = (unsigned char)0; sec.keys[0][0] = (unsigned char)0; sec.keys[0][1] = (unsigned char)0; sec.keys[0][2] = (unsigned char)0; sec.keys[0][3] = (unsigned char)0; sec.keys[0][4] = (unsigned char)0; sec.keys[0][5] = (unsigned char)0; sec.keys[0][6] = (unsigned char)0; sec.keys[0][7] = (unsigned char)0; sec.keys[0][8] = (unsigned char)0; sec.keys[0][9] = (unsigned char)0; sec.keys[0][10] = (unsigned char)0; sec.keys[0][11] = (unsigned char)0; sec.keys[0][12] = (unsigned char)0; sec.keys[0][13] = (unsigned char)0; sec.keys[0][14] = (unsigned char)0; sec.keys[0][15] = (unsigned char)0; sec.keys[0][16] = (unsigned char)0; sec.keys[0][17] = (unsigned char)0; sec.keys[0][18] = (unsigned char)0; sec.keys[0][19] = (unsigned char)0; sec.keys[0][20] = (unsigned char)0; sec.keys[0][21] = (unsigned char)0; sec.keys[0][22] = (unsigned char)0; sec.keys[0][23] = (unsigned char)0; sec.keys[0][24] = (unsigned char)0; sec.keys[0][25] = (unsigned char)0; sec.keys[0][26] = (unsigned char)0; sec.keys[0][27] = (unsigned char)0; sec.keys[0][28] = (unsigned char)0; sec.keys[0][29] = (unsigned char)0; sec.keys[0][30] = (unsigned char)0; sec.keys[0][31] = (unsigned char)0; sec.keys[1][0] = (unsigned char)0; sec.keys[1][1] = (unsigned char)0; sec.keys[1][2] = (unsigned char)0; sec.keys[1][3] = (unsigned char)0; sec.keys[1][4] = (unsigned char)0; sec.keys[1][5] = (unsigned char)0; sec.keys[1][6] = (unsigned char)0; sec.keys[1][7] = (unsigned char)0; sec.keys[1][8] = (unsigned char)0; sec.keys[1][9] = (unsigned char)0; sec.keys[1][10] = (unsigned char)0; sec.keys[1][11] = (unsigned char)0; sec.keys[1][12] = (unsigned char)0; sec.keys[1][13] = (unsigned char)0; sec.keys[1][14] = (unsigned char)0; sec.keys[1][15] = (unsigned char)0; sec.keys[1][16] = (unsigned char)0; sec.keys[1][17] = (unsigned char)0; sec.keys[1][18] = (unsigned char)0; sec.keys[1][19] = (unsigned char)0; sec.keys[1][20] = (unsigned char)0; sec.keys[1][21] = (unsigned char)0; sec.keys[1][22] = (unsigned char)0; sec.keys[1][23] = (unsigned char)0; sec.keys[1][24] = (unsigned char)0; sec.keys[1][25] = (unsigned char)0; sec.keys[1][26] = (unsigned char)0; sec.keys[1][27] = (unsigned char)0; sec.keys[1][28] = (unsigned char)0; sec.keys[1][29] = (unsigned char)0; sec.keys[1][30] = (unsigned char)0; sec.keys[1][31] = (unsigned char)0; sec.keys[2][0] = (unsigned char)0; sec.keys[2][1] = (unsigned char)0; sec.keys[2][2] = (unsigned char)0; sec.keys[2][3] = (unsigned char)0; sec.keys[2][4] = (unsigned char)0; sec.keys[2][5] = (unsigned char)0; sec.keys[2][6] = (unsigned char)0; sec.keys[2][7] = (unsigned char)0; sec.keys[2][8] = (unsigned char)0; sec.keys[2][9] = (unsigned char)0; sec.keys[2][10] = (unsigned char)0; sec.keys[2][11] = (unsigned char)0; sec.keys[2][12] = (unsigned char)0; sec.keys[2][13] = (unsigned char)0; sec.keys[2][14] = (unsigned char)0; sec.keys[2][15] = (unsigned char)0; sec.keys[2][16] = (unsigned char)0; sec.keys[2][17] = (unsigned char)0; sec.keys[2][18] = (unsigned char)0; sec.keys[2][19] = (unsigned char)0; sec.keys[2][20] = (unsigned char)0; sec.keys[2][21] = (unsigned char)0; sec.keys[2][22] = (unsigned char)0; sec.keys[2][23] = (unsigned char)0; sec.keys[2][24] = (unsigned char)0; sec.keys[2][25] = (unsigned char)0; sec.keys[2][26] = (unsigned char)0; sec.keys[2][27] = (unsigned char)0; sec.keys[2][28] = (unsigned char)0; sec.keys[2][29] = (unsigned char)0; sec.keys[2][30] = (unsigned char)0; sec.keys[2][31] = (unsigned char)0; sec.keys[3][0] = (unsigned char)0; sec.keys[3][1] = (unsigned char)0; sec.keys[3][2] = (unsigned char)0; sec.keys[3][3] = (unsigned char)0; sec.keys[3][4] = (unsigned char)0; sec.keys[3][5] = (unsigned char)0; sec.keys[3][6] = (unsigned char)0; sec.keys[3][7] = (unsigned char)0; sec.keys[3][8] = (unsigned char)0; sec.keys[3][9] = (unsigned char)0; sec.keys[3][10] = (unsigned char)0; sec.keys[3][11] = (unsigned char)0; sec.keys[3][12] = (unsigned char)0; sec.keys[3][13] = (unsigned char)0; sec.keys[3][14] = (unsigned char)0; sec.keys[3][15] = (unsigned char)0; sec.keys[3][16] = (unsigned char)0; sec.keys[3][17] = (unsigned char)0; sec.keys[3][18] = (unsigned char)0; sec.keys[3][19] = (unsigned char)0; sec.keys[3][20] = (unsigned char)0; sec.keys[3][21] = (unsigned char)0; sec.keys[3][22] = (unsigned char)0; sec.keys[3][23] = (unsigned char)0; sec.keys[3][24] = (unsigned char)0; sec.keys[3][25] = (unsigned char)0; sec.keys[3][26] = (unsigned char)0; sec.keys[3][27] = (unsigned char)0; sec.keys[3][28] = (unsigned char)0; sec.keys[3][29] = (unsigned char)0; sec.keys[3][30] = (unsigned char)0; sec.keys[3][31] = (unsigned char)0; sec.level = (unsigned char)0; sec.flags = 32U; ret = 0; if ((value & 2) != 0) { sec.auth_mode = 1U; ieee->open_wep = 0; } else if (value & 1) { sec.auth_mode = 0U; ieee->open_wep = 1; } else if ((value & 4) != 0) { sec.auth_mode = 128U; ieee->open_wep = 1; } else { return (-22); } if ((unsigned long )ieee->set_security != (unsigned long )((void (*)(struct net_device * , struct libipw_security * ))0)) { { (*(ieee->set_security))(ieee->dev, & sec); } } else { ret = -95; } return (ret); } } static void ipw_wpa_assoc_frame(struct ipw_priv *priv , char *wpa_ie , int wpa_ie_len ) { { { ipw_wpa_enable(priv, 1); } return; } } static int ipw_set_rsn_capa(struct ipw_priv *priv , char *capabilities , int length ) { int tmp ; int tmp___0 ; { if ((ipw_debug_level & 32U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s HOST_CMD_RSN_CAPABILITIES\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_set_rsn_capa"); } } else { } { tmp___0 = ipw_send_cmd_pdu(priv, 31, (int )((u8 )length), (void *)capabilities); } return (tmp___0); } } static int ipw_wx_set_genie(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; struct libipw_device *ieee ; u8 *buf ; int err ; void *tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; ieee = priv->ieee; err = 0; } if ((unsigned int )wrqu->data.length > 64U || ((unsigned int )wrqu->data.length != 0U && (unsigned long )extra == (unsigned long )((char *)0))) { return (-22); } else { } if ((unsigned int )wrqu->data.length != 0U) { { tmp___0 = kmemdup((void const *)extra, (size_t )wrqu->data.length, 208U); buf = (u8 *)tmp___0; } if ((unsigned long )buf == (unsigned long )((u8 *)0U)) { err = -12; goto out; } else { } { kfree((void const *)ieee->wpa_ie); ieee->wpa_ie = buf; ieee->wpa_ie_len = (size_t )wrqu->data.length; } } else { { kfree((void const *)ieee->wpa_ie); ieee->wpa_ie = (u8 *)0U; ieee->wpa_ie_len = 0UL; } } { ipw_wpa_assoc_frame(priv, (char *)ieee->wpa_ie, (int )ieee->wpa_ie_len); } out: ; return (err); } } static int ipw_wx_get_genie(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; struct libipw_device *ieee ; int err ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; ieee = priv->ieee; err = 0; } if (ieee->wpa_ie_len == 0UL || (unsigned long )ieee->wpa_ie == (unsigned long )((u8 *)0U)) { wrqu->data.length = 0U; goto out; } else { } if ((size_t )wrqu->data.length < ieee->wpa_ie_len) { err = -7; goto out; } else { } { wrqu->data.length = (__u16 )ieee->wpa_ie_len; memcpy((void *)extra, (void const *)ieee->wpa_ie, ieee->wpa_ie_len); } out: ; return (err); } } static int wext_cipher2level(int cipher ) { { { if (cipher == 1) { goto case_1; } else { } if (cipher == 2) { goto case_2; } else { } if (cipher == 16) { goto case_16; } else { } if (cipher == 4) { goto case_4; } else { } if (cipher == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; return (0); case_2: /* CIL Label */ ; case_16: /* CIL Label */ ; return (1); case_4: /* CIL Label */ ; return (2); case_8: /* CIL Label */ ; return (4); switch_default: /* CIL Label */ ; return (-1); switch_break: /* CIL Label */ ; } } } static int ipw_wx_set_auth(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; struct libipw_device *ieee ; struct iw_param *param ; struct lib80211_crypt_data *crypt ; unsigned long flags ; int ret ; int tmp___0 ; int tmp___1 ; struct libipw_security sec ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; ieee = priv->ieee; param = & wrqu->param; ret = 0; } { if (((int )param->flags & 4095) == 0) { goto case_0; } else { } if (((int )param->flags & 4095) == 1) { goto case_1; } else { } if (((int )param->flags & 4095) == 2) { goto case_2; } else { } if (((int )param->flags & 4095) == 3) { goto case_3; } else { } if (((int )param->flags & 4095) == 4) { goto case_4; } else { } if (((int )param->flags & 4095) == 5) { goto case_5; } else { } if (((int )param->flags & 4095) == 6) { goto case_6; } else { } if (((int )param->flags & 4095) == 7) { goto case_7; } else { } if (((int )param->flags & 4095) == 8) { goto case_8; } else { } if (((int )param->flags & 4095) == 10) { goto case_10; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_51117; case_1: /* CIL Label */ { tmp___0 = wext_cipher2level(param->value); ipw_set_hw_decrypt_unicast(priv, tmp___0); } goto ldv_51117; case_2: /* CIL Label */ { tmp___1 = wext_cipher2level(param->value); ipw_set_hw_decrypt_multicast(priv, tmp___1); } goto ldv_51117; case_3: /* CIL Label */ ; goto ldv_51117; case_4: /* CIL Label */ crypt = (priv->ieee)->crypt_info.crypt[(priv->ieee)->crypt_info.tx_keyidx]; if (((unsigned long )crypt == (unsigned long )((struct lib80211_crypt_data *)0) || (unsigned long )(crypt->ops)->set_flags == (unsigned long )((unsigned long (*)(unsigned long , void * ))0)) || (unsigned long )(crypt->ops)->get_flags == (unsigned long )((unsigned long (*)(void * ))0)) { goto ldv_51117; } else { } { flags = (*((crypt->ops)->get_flags))(crypt->priv); } if (param->value != 0) { flags = flags | 1UL; } else { flags = flags & 0xfffffffffffffffeUL; } { (*((crypt->ops)->set_flags))(flags, crypt->priv); } goto ldv_51117; case_5: /* CIL Label */ sec.active_key = (unsigned short)0; sec.enabled = (unsigned char )param->value; sec.unicast_uses_group = (unsigned short)0; sec.encrypt = (unsigned short)0; sec.auth_mode = (unsigned char)0; sec.encode_alg[0] = (unsigned char)0; sec.encode_alg[1] = (unsigned char)0; sec.encode_alg[2] = (unsigned char)0; sec.encode_alg[3] = (unsigned char)0; sec.key_sizes[0] = (unsigned char)0; sec.key_sizes[1] = (unsigned char)0; sec.key_sizes[2] = (unsigned char)0; sec.key_sizes[3] = (unsigned char)0; sec.keys[0][0] = (unsigned char)0; sec.keys[0][1] = (unsigned char)0; sec.keys[0][2] = (unsigned char)0; sec.keys[0][3] = (unsigned char)0; sec.keys[0][4] = (unsigned char)0; sec.keys[0][5] = (unsigned char)0; sec.keys[0][6] = (unsigned char)0; sec.keys[0][7] = (unsigned char)0; sec.keys[0][8] = (unsigned char)0; sec.keys[0][9] = (unsigned char)0; sec.keys[0][10] = (unsigned char)0; sec.keys[0][11] = (unsigned char)0; sec.keys[0][12] = (unsigned char)0; sec.keys[0][13] = (unsigned char)0; sec.keys[0][14] = (unsigned char)0; sec.keys[0][15] = (unsigned char)0; sec.keys[0][16] = (unsigned char)0; sec.keys[0][17] = (unsigned char)0; sec.keys[0][18] = (unsigned char)0; sec.keys[0][19] = (unsigned char)0; sec.keys[0][20] = (unsigned char)0; sec.keys[0][21] = (unsigned char)0; sec.keys[0][22] = (unsigned char)0; sec.keys[0][23] = (unsigned char)0; sec.keys[0][24] = (unsigned char)0; sec.keys[0][25] = (unsigned char)0; sec.keys[0][26] = (unsigned char)0; sec.keys[0][27] = (unsigned char)0; sec.keys[0][28] = (unsigned char)0; sec.keys[0][29] = (unsigned char)0; sec.keys[0][30] = (unsigned char)0; sec.keys[0][31] = (unsigned char)0; sec.keys[1][0] = (unsigned char)0; sec.keys[1][1] = (unsigned char)0; sec.keys[1][2] = (unsigned char)0; sec.keys[1][3] = (unsigned char)0; sec.keys[1][4] = (unsigned char)0; sec.keys[1][5] = (unsigned char)0; sec.keys[1][6] = (unsigned char)0; sec.keys[1][7] = (unsigned char)0; sec.keys[1][8] = (unsigned char)0; sec.keys[1][9] = (unsigned char)0; sec.keys[1][10] = (unsigned char)0; sec.keys[1][11] = (unsigned char)0; sec.keys[1][12] = (unsigned char)0; sec.keys[1][13] = (unsigned char)0; sec.keys[1][14] = (unsigned char)0; sec.keys[1][15] = (unsigned char)0; sec.keys[1][16] = (unsigned char)0; sec.keys[1][17] = (unsigned char)0; sec.keys[1][18] = (unsigned char)0; sec.keys[1][19] = (unsigned char)0; sec.keys[1][20] = (unsigned char)0; sec.keys[1][21] = (unsigned char)0; sec.keys[1][22] = (unsigned char)0; sec.keys[1][23] = (unsigned char)0; sec.keys[1][24] = (unsigned char)0; sec.keys[1][25] = (unsigned char)0; sec.keys[1][26] = (unsigned char)0; sec.keys[1][27] = (unsigned char)0; sec.keys[1][28] = (unsigned char)0; sec.keys[1][29] = (unsigned char)0; sec.keys[1][30] = (unsigned char)0; sec.keys[1][31] = (unsigned char)0; sec.keys[2][0] = (unsigned char)0; sec.keys[2][1] = (unsigned char)0; sec.keys[2][2] = (unsigned char)0; sec.keys[2][3] = (unsigned char)0; sec.keys[2][4] = (unsigned char)0; sec.keys[2][5] = (unsigned char)0; sec.keys[2][6] = (unsigned char)0; sec.keys[2][7] = (unsigned char)0; sec.keys[2][8] = (unsigned char)0; sec.keys[2][9] = (unsigned char)0; sec.keys[2][10] = (unsigned char)0; sec.keys[2][11] = (unsigned char)0; sec.keys[2][12] = (unsigned char)0; sec.keys[2][13] = (unsigned char)0; sec.keys[2][14] = (unsigned char)0; sec.keys[2][15] = (unsigned char)0; sec.keys[2][16] = (unsigned char)0; sec.keys[2][17] = (unsigned char)0; sec.keys[2][18] = (unsigned char)0; sec.keys[2][19] = (unsigned char)0; sec.keys[2][20] = (unsigned char)0; sec.keys[2][21] = (unsigned char)0; sec.keys[2][22] = (unsigned char)0; sec.keys[2][23] = (unsigned char)0; sec.keys[2][24] = (unsigned char)0; sec.keys[2][25] = (unsigned char)0; sec.keys[2][26] = (unsigned char)0; sec.keys[2][27] = (unsigned char)0; sec.keys[2][28] = (unsigned char)0; sec.keys[2][29] = (unsigned char)0; sec.keys[2][30] = (unsigned char)0; sec.keys[2][31] = (unsigned char)0; sec.keys[3][0] = (unsigned char)0; sec.keys[3][1] = (unsigned char)0; sec.keys[3][2] = (unsigned char)0; sec.keys[3][3] = (unsigned char)0; sec.keys[3][4] = (unsigned char)0; sec.keys[3][5] = (unsigned char)0; sec.keys[3][6] = (unsigned char)0; sec.keys[3][7] = (unsigned char)0; sec.keys[3][8] = (unsigned char)0; sec.keys[3][9] = (unsigned char)0; sec.keys[3][10] = (unsigned char)0; sec.keys[3][11] = (unsigned char)0; sec.keys[3][12] = (unsigned char)0; sec.keys[3][13] = (unsigned char)0; sec.keys[3][14] = (unsigned char)0; sec.keys[3][15] = (unsigned char)0; sec.keys[3][16] = (unsigned char)0; sec.keys[3][17] = (unsigned char)0; sec.keys[3][18] = (unsigned char)0; sec.keys[3][19] = (unsigned char)0; sec.keys[3][20] = (unsigned char)0; sec.keys[3][21] = (unsigned char)0; sec.keys[3][22] = (unsigned char)0; sec.keys[3][23] = (unsigned char)0; sec.keys[3][24] = (unsigned char)0; sec.keys[3][25] = (unsigned char)0; sec.keys[3][26] = (unsigned char)0; sec.keys[3][27] = (unsigned char)0; sec.keys[3][28] = (unsigned char)0; sec.keys[3][29] = (unsigned char)0; sec.keys[3][30] = (unsigned char)0; sec.keys[3][31] = (unsigned char)0; sec.level = (unsigned char)0; sec.flags = 256U; (priv->ieee)->drop_unencrypted = param->value; if (param->value == 0) { sec.flags = (u16 )((unsigned int )sec.flags | 128U); sec.level = 0U; } else { sec.flags = (u16 )((unsigned int )sec.flags | 128U); sec.level = 1U; } if ((unsigned long )(priv->ieee)->set_security != (unsigned long )((void (*)(struct net_device * , struct libipw_security * ))0)) { { (*((priv->ieee)->set_security))((priv->ieee)->dev, & sec); } } else { } goto ldv_51117; case_6: /* CIL Label */ { ret = ipw_wpa_set_auth_algs(priv, param->value); } goto ldv_51117; case_7: /* CIL Label */ { ret = ipw_wpa_enable(priv, param->value); ipw_disassociate((void *)priv); } goto ldv_51117; case_8: /* CIL Label */ ieee->ieee802_1x = param->value; goto ldv_51117; case_10: /* CIL Label */ ieee->privacy_invoked = param->value; goto ldv_51117; switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } ldv_51117: ; return (ret); } } static int ipw_wx_get_auth(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; struct libipw_device *ieee ; struct lib80211_crypt_data *crypt ; struct iw_param *param ; unsigned long tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; ieee = priv->ieee; param = & wrqu->param; } { if (((int )param->flags & 4095) == 0) { goto case_0; } else { } if (((int )param->flags & 4095) == 1) { goto case_1; } else { } if (((int )param->flags & 4095) == 2) { goto case_2; } else { } if (((int )param->flags & 4095) == 3) { goto case_3; } else { } if (((int )param->flags & 4095) == 4) { goto case_4; } else { } if (((int )param->flags & 4095) == 5) { goto case_5; } else { } if (((int )param->flags & 4095) == 6) { goto case_6; } else { } if (((int )param->flags & 4095) == 7) { goto case_7; } else { } if (((int )param->flags & 4095) == 8) { goto case_8; } else { } if (((int )param->flags & 4095) == 9) { goto case_9; } else { } if (((int )param->flags & 4095) == 10) { goto case_10; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; return (-95); case_4: /* CIL Label */ crypt = (priv->ieee)->crypt_info.crypt[(priv->ieee)->crypt_info.tx_keyidx]; if ((unsigned long )crypt == (unsigned long )((struct lib80211_crypt_data *)0) || (unsigned long )(crypt->ops)->get_flags == (unsigned long )((unsigned long (*)(void * ))0)) { goto ldv_51144; } else { } { tmp___0 = (*((crypt->ops)->get_flags))(crypt->priv); param->value = (int )tmp___0 & 1; } goto ldv_51144; case_5: /* CIL Label */ param->value = ieee->drop_unencrypted; goto ldv_51144; case_6: /* CIL Label */ param->value = (__s32 )ieee->sec.auth_mode; goto ldv_51144; case_7: /* CIL Label */ param->value = ieee->wpa_enabled; goto ldv_51144; case_8: /* CIL Label */ param->value = ieee->ieee802_1x; goto ldv_51144; case_9: /* CIL Label */ ; case_10: /* CIL Label */ param->value = ieee->privacy_invoked; goto ldv_51144; switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } ldv_51144: ; return (0); } } static int ipw_wx_set_encodeext(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; struct iw_encode_ext *ext ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; ext = (struct iw_encode_ext *)extra; } if (hwcrypto != 0) { if ((unsigned int )ext->alg == 2U) { if ((ext->ext_flags & 4U) != 0U) { (priv->ieee)->host_mc_decrypt = 1; } else { (priv->ieee)->host_encrypt = 0; (priv->ieee)->host_encrypt_msdu = 1; (priv->ieee)->host_decrypt = 1; } } else { (priv->ieee)->host_encrypt = 0; (priv->ieee)->host_encrypt_msdu = 0; (priv->ieee)->host_decrypt = 0; (priv->ieee)->host_mc_decrypt = 0; } } else { } { tmp___0 = libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); } return (tmp___0); } } static int ipw_wx_get_encodeext(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; tmp___0 = libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); } return (tmp___0); } } static int ipw_wx_set_mlme(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; struct iw_mlme *mlme ; __le16 reason ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mlme = (struct iw_mlme *)extra; reason = mlme->reason_code; } { if ((int )mlme->cmd == 0) { goto case_0; } else { } if ((int )mlme->cmd == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_51177; case_1: /* CIL Label */ { ipw_disassociate((void *)priv); } goto ldv_51177; switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } ldv_51177: ; return (0); } } static u8 ipw_qos_current_mode(struct ipw_priv *priv ) { u8 mode ; unsigned long flags ; int tmp ; { mode = 0U; if ((priv->status & 128U) != 0U) { { ldv___ldv_spin_lock_133(& (priv->ieee)->lock); mode = (priv->assoc_network)->mode; ldv_spin_unlock_irqrestore_122(& (priv->ieee)->lock, flags); } } else { mode = (u8 )(priv->ieee)->mode; } if ((int )ipw_debug_level < 0) { { tmp = preempt_count(); printk("\017ipw2200: %c %s QoS network/card mode %d\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_current_mode", (int )mode); } } else { } return (mode); } } static int ipw_qos_handle_probe_response(struct ipw_priv *priv , int active_network , struct libipw_network *network ) { u32 size ; int tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { size = 32U; if (((int )network->capability & 2) != 0) { network->qos_data.active = network->qos_data.supported; } else { } if ((network->flags & 24U) != 0U) { if (active_network != 0 && (network->flags & 8U) != 0U) { network->qos_data.active = network->qos_data.supported; } else { } if (((network->qos_data.active == 1 && active_network == 1) && (network->flags & 8U) != 0U) && (int )network->qos_data.old_param_count != (int )network->qos_data.param_count) { { network->qos_data.old_param_count = network->qos_data.param_count; schedule_work(& priv->qos_activate); } if ((int )ipw_debug_level < 0) { { tmp = preempt_count(); printk("\017ipw2200: %c %s QoS parameters change call qos_activate\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_handle_probe_response"); } } else { } } else { } } else { if ((priv->ieee)->mode == 2 || (unsigned int )network->mode == 2U) { { memcpy((void *)(& network->qos_data.parameters), (void const *)(& def_parameters_CCK), (size_t )size); } } else { { memcpy((void *)(& network->qos_data.parameters), (void const *)(& def_parameters_OFDM), (size_t )size); } } if (network->qos_data.active == 1 && active_network == 1) { if ((int )ipw_debug_level < 0) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s QoS was disabled call qos_activate\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_handle_probe_response"); } } else { } { schedule_work(& priv->qos_activate); } } else { } network->qos_data.active = 0; network->qos_data.supported = 0; } if ((priv->status & 128U) != 0U && ((priv->ieee)->iw_mode == 1 && active_network == 0)) { { tmp___2 = ether_addr_equal((u8 const *)(& network->bssid), (u8 const *)(& priv->bssid)); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { if (((int )network->capability & 2) != 0) { if ((int )network->ssid_len == (int )(priv->assoc_network)->ssid_len) { { tmp___1 = memcmp((void const *)(& network->ssid), (void const *)(& (priv->assoc_network)->ssid), (size_t )network->ssid_len); } if (tmp___1 == 0) { { schedule_work(& priv->merge_networks); } } else { } } else { } } else { } } else { } } else { } return (0); } } static int ipw_qos_activate(struct ipw_priv *priv , struct libipw_qos_data *qos_network_data ) { int err ; struct libipw_qos_parameters qos_parameters[3U] ; struct libipw_qos_parameters *active_one ; u32 size ; u32 burst_duration ; int i ; u8 type ; int tmp ; int tmp___0 ; unsigned long flags ; int active ; int tmp___1 ; int tmp___2 ; { { active_one = (struct libipw_qos_parameters *)0; size = 32U; type = ipw_qos_current_mode(priv); active_one = (struct libipw_qos_parameters *)(& qos_parameters) + 1UL; memcpy((void *)active_one, (void const *)priv->qos_data.def_qos_parm_CCK, (size_t )size); active_one = (struct libipw_qos_parameters *)(& qos_parameters) + 2UL; memcpy((void *)active_one, (void const *)priv->qos_data.def_qos_parm_OFDM, (size_t )size); } if ((unsigned long )qos_network_data == (unsigned long )((struct libipw_qos_data *)0)) { if ((unsigned int )type == 2U) { if ((int )ipw_debug_level < 0) { { tmp = preempt_count(); printk("\017ipw2200: %c %s QoS activate network mode %d\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_activate", (int )type); } } else { } active_one = & def_parameters_CCK; } else { active_one = & def_parameters_OFDM; } { memcpy((void *)(& qos_parameters), (void const *)active_one, (size_t )size); burst_duration = ipw_qos_get_burst_duration(priv); i = 0; } goto ldv_51206; ldv_51205: qos_parameters[0].tx_op_limit[i] = (unsigned short )burst_duration; i = i + 1; ldv_51206: ; if (i <= 3) { goto ldv_51205; } else { } } else if ((priv->ieee)->iw_mode == 1) { if ((unsigned int )type == 2U) { if ((int )ipw_debug_level < 0) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s QoS activate IBSS network mode %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_activate", (int )type); } } else { } if (priv->qos_data.qos_enable == 0) { active_one = & def_parameters_CCK; } else { active_one = priv->qos_data.def_qos_parm_CCK; } } else if (priv->qos_data.qos_enable == 0) { active_one = & def_parameters_OFDM; } else { active_one = priv->qos_data.def_qos_parm_OFDM; } { memcpy((void *)(& qos_parameters), (void const *)active_one, (size_t )size); } } else { { ldv___ldv_spin_lock_135(& (priv->ieee)->lock); active_one = & qos_network_data->parameters; qos_network_data->old_param_count = qos_network_data->param_count; memcpy((void *)(& qos_parameters), (void const *)active_one, (size_t )size); active = qos_network_data->supported; ldv_spin_unlock_irqrestore_122(& (priv->ieee)->lock, flags); } if (active == 0) { { burst_duration = ipw_qos_get_burst_duration(priv); i = 0; } goto ldv_51211; ldv_51210: qos_parameters[0].tx_op_limit[i] = (unsigned short )burst_duration; i = i + 1; ldv_51211: ; if (i <= 3) { goto ldv_51210; } else { } } else { } } if ((int )ipw_debug_level < 0) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s QoS sending IPW_CMD_QOS_PARAMETERS\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_activate"); } } else { } { err = ipw_send_qos_params_command(priv, (struct libipw_qos_parameters *)(& qos_parameters)); } if (err != 0) { if ((int )ipw_debug_level < 0) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s QoS IPW_CMD_QOS_PARAMETERS failed\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_activate"); } } else { } } else { } return (err); } } static int ipw_qos_set_info_element(struct ipw_priv *priv ) { int ret ; struct libipw_qos_information_element qos_info ; int tmp ; { ret = 0; if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { return (-1); } else { } { qos_info.elementID = 221U; qos_info.length = 7U; qos_info.version = 1U; qos_info.ac_info = 0U; memcpy((void *)(& qos_info.qui), (void const *)(& qos_oui), 3UL); qos_info.qui_type = 2U; qos_info.qui_subtype = 0U; ret = ipw_send_qos_info_command(priv, & qos_info); } if (ret != 0) { if ((int )ipw_debug_level < 0) { { tmp = preempt_count(); printk("\017ipw2200: %c %s QoS error calling ipw_send_qos_info_command\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_set_info_element"); } } else { } } else { } return (ret); } } static int ipw_qos_association(struct ipw_priv *priv , struct libipw_network *network ) { int err ; struct libipw_qos_data *qos_data ; struct libipw_qos_data ibss_data ; long tmp ; int tmp___0 ; int tmp___1 ; { err = 0; qos_data = (struct libipw_qos_data *)0; ibss_data.parameters.cw_min[0] = (unsigned short)0; ibss_data.parameters.cw_min[1] = (unsigned short)0; ibss_data.parameters.cw_min[2] = (unsigned short)0; ibss_data.parameters.cw_min[3] = (unsigned short)0; ibss_data.parameters.cw_max[0] = (unsigned short)0; ibss_data.parameters.cw_max[1] = (unsigned short)0; ibss_data.parameters.cw_max[2] = (unsigned short)0; ibss_data.parameters.cw_max[3] = (unsigned short)0; ibss_data.parameters.aifs[0] = (unsigned char)0; ibss_data.parameters.aifs[1] = (unsigned char)0; ibss_data.parameters.aifs[2] = (unsigned char)0; ibss_data.parameters.aifs[3] = (unsigned char)0; ibss_data.parameters.flag[0] = (unsigned char)0; ibss_data.parameters.flag[1] = (unsigned char)0; ibss_data.parameters.flag[2] = (unsigned char)0; ibss_data.parameters.flag[3] = (unsigned char)0; ibss_data.parameters.tx_op_limit[0] = (unsigned short)0; ibss_data.parameters.tx_op_limit[1] = (unsigned short)0; ibss_data.parameters.tx_op_limit[2] = (unsigned short)0; ibss_data.parameters.tx_op_limit[3] = (unsigned short)0; ibss_data.active = 1; ibss_data.supported = 1; ibss_data.param_count = (unsigned char)0; ibss_data.old_param_count = (unsigned char)0; { if ((priv->ieee)->iw_mode == 1) { goto case_1; } else { } if ((priv->ieee)->iw_mode == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv__builtin_expect(((int )network->capability & 2) == 0, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/ipw2x00/ipw2200.c"), "i" (7125), "i" (12UL)); __builtin_unreachable(); } } else { } qos_data = & ibss_data; goto ldv_51227; case_2: /* CIL Label */ qos_data = & network->qos_data; goto ldv_51227; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/ipw2x00/ipw2200.c"), "i" (7135), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51227: { err = ipw_qos_activate(priv, qos_data); } if (err != 0) { priv->assoc_request.policy_support = (unsigned int )priv->assoc_request.policy_support & 65534U; return (err); } else { } if (priv->qos_data.qos_enable != 0 && qos_data->supported != 0) { if ((int )ipw_debug_level < 0) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s QoS will be enabled for this association\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_association"); } } else { } { priv->assoc_request.policy_support = (__le16 )((unsigned int )priv->assoc_request.policy_support | 1U); tmp___1 = ipw_qos_set_info_element(priv); } return (tmp___1); } else { } return (0); } } static int ipw_qos_association_resp(struct ipw_priv *priv , struct libipw_network *network ) { int ret ; unsigned long flags ; u32 size ; int set_qos_param ; { ret = 0; size = 32U; set_qos_param = 0; if (((unsigned long )priv == (unsigned long )((struct ipw_priv *)0) || (unsigned long )network == (unsigned long )((struct libipw_network *)0)) || (unsigned long )priv->assoc_network == (unsigned long )((struct libipw_network *)0)) { return (ret); } else { } if ((priv->status & 128U) == 0U) { return (ret); } else { } if ((priv->ieee)->iw_mode != 2) { return (ret); } else { } { ldv___ldv_spin_lock_137(& (priv->ieee)->lock); } if ((network->flags & 8U) != 0U) { { memcpy((void *)(& (priv->assoc_network)->qos_data), (void const *)(& network->qos_data), 44UL); (priv->assoc_network)->qos_data.active = 1; } if ((int )network->qos_data.old_param_count != (int )network->qos_data.param_count) { set_qos_param = 1; network->qos_data.old_param_count = network->qos_data.param_count; } else { } } else { if ((unsigned int )network->mode == 2U || (priv->ieee)->mode == 2) { { memcpy((void *)(& (priv->assoc_network)->qos_data.parameters), (void const *)(& def_parameters_CCK), (size_t )size); } } else { { memcpy((void *)(& (priv->assoc_network)->qos_data.parameters), (void const *)(& def_parameters_OFDM), (size_t )size); } } (priv->assoc_network)->qos_data.active = 0; (priv->assoc_network)->qos_data.supported = 0; set_qos_param = 1; } { ldv_spin_unlock_irqrestore_122(& (priv->ieee)->lock, flags); } if (set_qos_param == 1) { { schedule_work(& priv->qos_activate); } } else { } return (ret); } } static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv ) { u32 ret ; { ret = 0U; if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { return (0U); } else { } if (((priv->ieee)->modulation & 2) == 0) { ret = priv->qos_data.burst_duration_CCK; } else { ret = priv->qos_data.burst_duration_OFDM; } return (ret); } } static void ipw_qos_init(struct ipw_priv *priv , int enable , int burst_enable , u32 burst_duration_CCK___0 , u32 burst_duration_OFDM___0 ) { int tmp ; int tmp___0 ; { priv->qos_data.qos_enable = enable; if (priv->qos_data.qos_enable != 0) { priv->qos_data.def_qos_parm_CCK = & def_qos_parameters_CCK; priv->qos_data.def_qos_parm_OFDM = & def_qos_parameters_OFDM; if ((int )ipw_debug_level < 0) { { tmp = preempt_count(); printk("\017ipw2200: %c %s QoS is enabled\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_init"); } } else { } } else { priv->qos_data.def_qos_parm_CCK = & def_parameters_CCK; priv->qos_data.def_qos_parm_OFDM = & def_parameters_OFDM; if ((int )ipw_debug_level < 0) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s QoS is not enabled\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_qos_init"); } } else { } } priv->qos_data.burst_enable = burst_enable; if (burst_enable != 0) { priv->qos_data.burst_duration_CCK = burst_duration_CCK___0; priv->qos_data.burst_duration_OFDM = burst_duration_OFDM___0; } else { priv->qos_data.burst_duration_CCK = 0U; priv->qos_data.burst_duration_OFDM = 0U; } return; } } static int ipw_get_tx_queue_number(struct ipw_priv *priv , u16 priority ) { { if ((unsigned int )priority > 7U || priv->qos_data.qos_enable == 0) { priority = 0U; } else { } return (from_priority_to_tx_queue[(int )priority] + -1); } } static int ipw_is_qos_active(struct net_device *dev , struct sk_buff *skb ) { struct ipw_priv *priv ; void *tmp ; struct libipw_qos_data *qos_data ; int active ; int supported ; u8 *daddr ; int unicast ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; qos_data = (struct libipw_qos_data *)0; daddr = skb->data + 6U; tmp___0 = is_multicast_ether_addr((u8 const *)daddr); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } unicast = tmp___1; if ((priv->status & 128U) == 0U) { return (0); } else { } qos_data = & (priv->assoc_network)->qos_data; if ((priv->ieee)->iw_mode == 1) { if (unicast == 0) { qos_data->active = 0; } else { qos_data->active = qos_data->supported; } } else { } active = qos_data->active; supported = qos_data->supported; if ((int )ipw_debug_level < 0) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s QoS %d network is QoS active %d supported %d unicast %d\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_is_qos_active", priv->qos_data.qos_enable, active, supported, unicast); } } else { } if (active != 0 && priv->qos_data.qos_enable != 0) { return (1); } else { } return (0); } } static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv , u16 priority , struct tfd_data *tfd ) { int tx_queue_id ; { tx_queue_id = 0; tx_queue_id = from_priority_to_tx_queue[(int )priority] + -1; tfd->tx_flags_ext = (u8 )((unsigned int )tfd->tx_flags_ext | 16U); if ((int )((unsigned long )priv->qos_data.qos_no_ack_mask >> tx_queue_id) & 1) { tfd->tx_flags = (unsigned int )tfd->tx_flags & 127U; tfd->tfd.tfd_26.mchdr.qos_ctrl = (__le16 )((unsigned int )tfd->tfd.tfd_26.mchdr.qos_ctrl | 32U); } else { } return (0); } } static void ipw_bg_qos_activate(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe2c0UL; mutex_lock_nested(& priv->mutex, 0U); } if ((priv->status & 128U) != 0U) { { ipw_qos_activate(priv, & (priv->assoc_network)->qos_data); } } else { } { mutex_unlock(& priv->mutex); } return; } } static int ipw_handle_probe_response(struct net_device *dev , struct libipw_probe_response *resp , struct libipw_network *network ) { struct ipw_priv *priv ; void *tmp ; int active_network ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; active_network = (priv->status & 128U) != 0U && (unsigned long )network == (unsigned long )priv->assoc_network; ipw_qos_handle_probe_response(priv, active_network, network); } return (0); } } static int ipw_handle_beacon(struct net_device *dev , struct libipw_probe_response *resp , struct libipw_network *network ) { struct ipw_priv *priv ; void *tmp ; int active_network ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; active_network = (priv->status & 128U) != 0U && (unsigned long )network == (unsigned long )priv->assoc_network; ipw_qos_handle_probe_response(priv, active_network, network); } return (0); } } static int ipw_handle_assoc_response(struct net_device *dev , struct libipw_assoc_response *resp , struct libipw_network *network ) { struct ipw_priv *priv ; void *tmp ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; ipw_qos_association_resp(priv, network); } return (0); } } static int ipw_send_qos_params_command(struct ipw_priv *priv , struct libipw_qos_parameters *qos_param ) { int tmp ; { { tmp = ipw_send_cmd_pdu(priv, 25, 96, (void *)qos_param); } return (tmp); } } static int ipw_send_qos_info_command(struct ipw_priv *priv , struct libipw_qos_information_element *qos_param ) { int tmp ; { { tmp = ipw_send_cmd_pdu(priv, 84, 9, (void *)qos_param); } return (tmp); } } static int ipw_associate_network(struct ipw_priv *priv , struct libipw_network *network , struct ipw_supported_rates *rates , int roaming___0 ) { int err ; char ssid[129U] ; u8 _min1 ; unsigned char _min2 ; char const *tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; char const *tmp___7 ; int tmp___8 ; { if ((priv->config & 128U) != 0U) { { ipw_set_fixed_rate(priv, (int )network->mode); } } else { } if ((priv->config & 2U) == 0U) { { _min1 = network->ssid_len; _min2 = 32U; priv->essid_len = (u8 )((int )_min1 < (int )_min2 ? (int )_min1 : (int )_min2); memcpy((void *)(& priv->essid), (void const *)(& network->ssid), (size_t )priv->essid_len); } } else { } { network->last_associate = (u32 )jiffies; memset((void *)(& priv->assoc_request), 0, 40UL); priv->assoc_request.channel = network->channel; priv->assoc_request.auth_key = 0U; } if ((priv->capability & 2U) != 0U && (unsigned int )(priv->ieee)->sec.auth_mode == 1U) { priv->assoc_request.auth_type = 1U; priv->assoc_request.auth_key = (priv->ieee)->sec.active_key; if ((unsigned int )(priv->ieee)->sec.level == 1U) { { ipw_send_wep_keys(priv, 0); } } else { } } else if ((priv->capability & 2U) != 0U && (unsigned int )(priv->ieee)->sec.auth_mode == 128U) { priv->assoc_request.auth_type = 2U; } else { priv->assoc_request.auth_type = 0U; } if ((priv->ieee)->wpa_ie_len != 0UL) { { priv->assoc_request.policy_support = 2U; ipw_set_rsn_capa(priv, (char *)(priv->ieee)->wpa_ie, (int )(priv->ieee)->wpa_ie_len); } } else { } if (((int )network->mode & (priv->ieee)->mode) & 1) { priv->assoc_request.ieee_mode = 0U; } else if ((((int )network->mode & (priv->ieee)->mode) & 4) != 0) { priv->assoc_request.ieee_mode = 2U; } else if ((((int )network->mode & (priv->ieee)->mode) & 2) != 0) { priv->assoc_request.ieee_mode = 1U; } else { } priv->assoc_request.capability = network->capability; if (((int )network->capability & 32) != 0 && (priv->config & 16U) == 0U) { priv->assoc_request.preamble_length = 4U; } else { priv->assoc_request.preamble_length = 0U; priv->assoc_request.capability = (unsigned int )priv->assoc_request.capability & 65503U; } if ((priv->ieee)->iw_mode == 1) { priv->assoc_request.capability = (unsigned int )priv->assoc_request.capability & 64511U; } else { } if ((ipw_debug_level & 4100U) != 0U) { { tmp = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___0 = preempt_count(); printk("\017ipw2200: %c %s %ssociation attempt: \'%s\', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate_network", roaming___0 != 0 ? (char *)"Rea" : (char *)"A", tmp, (int )network->channel, (int )ipw_modes[(int )priv->assoc_request.ieee_mode], (int )rates->num_rates, (unsigned int )priv->assoc_request.preamble_length == 0U ? (char *)"long" : (char *)"short", ((int )network->capability & 32) != 0 ? (char *)"short" : (char *)"long", (priv->capability & 2U) != 0U ? (char *)"on " : (char *)"off", (priv->capability & 2U) != 0U ? ((int )priv->capability & 1 ? (char *)"(shared)" : (char *)"(open)") : (char *)"", (priv->capability & 2U) != 0U ? (char *)" key=" : (char *)"", (priv->capability & 2U) != 0U ? (int )(priv->ieee)->sec.active_key + 49 : 46, (priv->capability & 2U) != 0U ? 46 : 32); } } else { } priv->assoc_request.beacon_interval = network->beacon_interval; if (((priv->ieee)->iw_mode == 1 && network->time_stamp[0] == 0U) && network->time_stamp[1] == 0U) { priv->assoc_request.assoc_type = 3U; priv->assoc_request.assoc_tsf_msw = 0U; priv->assoc_request.assoc_tsf_lsw = 0U; } else { { tmp___1 = ldv__builtin_expect(roaming___0 != 0, 0L); } if (tmp___1 != 0L) { priv->assoc_request.assoc_type = 1U; } else { priv->assoc_request.assoc_type = 0U; } priv->assoc_request.assoc_tsf_msw = network->time_stamp[1]; priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0]; } { memcpy((void *)(& priv->assoc_request.bssid), (void const *)(& network->bssid), 6UL); } if ((priv->ieee)->iw_mode == 1) { { memset((void *)(& priv->assoc_request.dest), 255, 6UL); priv->assoc_request.atim_window = network->atim_window; } } else { { memcpy((void *)(& priv->assoc_request.dest), (void const *)(& network->bssid), 6UL); priv->assoc_request.atim_window = 0U; } } { priv->assoc_request.listen_interval = network->listen_interval; err = ipw_send_ssid(priv, (u8 *)(& priv->essid), (int )priv->essid_len); } if (err != 0) { if ((ipw_debug_level & 32U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Attempt to send SSID command failed.\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate_network"); } } else { } return (err); } else { } { rates->ieee_mode = priv->assoc_request.ieee_mode; rates->purpose = 0U; ipw_send_supported_rates(priv, rates); } if ((unsigned int )priv->assoc_request.ieee_mode == 2U) { priv->sys_config.dot11g_auto_detection = 1U; } else { priv->sys_config.dot11g_auto_detection = 0U; } if ((priv->ieee)->iw_mode == 1) { priv->sys_config.answer_broadcast_ssid_probe = 1U; } else { priv->sys_config.answer_broadcast_ssid_probe = 0U; } { err = ipw_send_system_config(priv); } if (err != 0) { if ((ipw_debug_level & 32U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s Attempt to send sys config command failed.\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate_network"); } } else { } return (err); } else { } if ((ipw_debug_level & 4100U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s Association sensitivity: %d\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate_network", (int )network->stats.rssi); } } else { } { err = ipw_set_sensitivity(priv, (int )((unsigned int )((u16 )network->stats.rssi) + 112U)); } if (err != 0) { if ((ipw_debug_level & 32U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s Attempt to send associate command failed.\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate_network"); } } else { } return (err); } else { } { priv->channel = network->channel; memcpy((void *)(& priv->bssid), (void const *)(& network->bssid), 6UL); priv->status = priv->status | 256U; priv->status = priv->status & 2147483647U; priv->assoc_network = network; ipw_qos_association(priv, network); err = ipw_send_associate(priv, & priv->assoc_request); } if (err != 0) { if ((ipw_debug_level & 32U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Attempt to send associate command failed.\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate_network"); } } else { } return (err); } else { } if ((ipw_debug_level & 64U) != 0U) { { tmp___7 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___8 = preempt_count(); printk("\017ipw2200: %c %s associating: \'%s\' %pM\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate_network", tmp___7, (u8 *)(& priv->bssid)); } } else { } return (0); } } static void ipw_roam(void *data ) { struct ipw_priv *priv ; struct libipw_network *network ; struct ipw_network_match match ; unsigned long flags ; u8 rssi ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp ; { priv = (struct ipw_priv *)data; network = (struct libipw_network *)0; match.network = priv->assoc_network; match.rates.ieee_mode = (unsigned char)0; match.rates.num_rates = (unsigned char)0; match.rates.purpose = (unsigned char)0; match.rates.reserved = (unsigned char)0; match.rates.supported_rates[0] = (unsigned char)0; match.rates.supported_rates[1] = (unsigned char)0; match.rates.supported_rates[2] = (unsigned char)0; match.rates.supported_rates[3] = (unsigned char)0; match.rates.supported_rates[4] = (unsigned char)0; match.rates.supported_rates[5] = (unsigned char)0; match.rates.supported_rates[6] = (unsigned char)0; match.rates.supported_rates[7] = (unsigned char)0; match.rates.supported_rates[8] = (unsigned char)0; match.rates.supported_rates[9] = (unsigned char)0; match.rates.supported_rates[10] = (unsigned char)0; match.rates.supported_rates[11] = (unsigned char)0; if ((priv->status & 1152U) == 0U) { return; } else { } if ((priv->status & 128U) != 0U) { { rssi = (u8 )(priv->assoc_network)->stats.rssi; (priv->assoc_network)->stats.rssi = -128; ldv___ldv_spin_lock_139(& (priv->ieee)->lock); __mptr = (struct list_head const *)(priv->ieee)->network_list.next; network = (struct libipw_network *)__mptr + 0xfffffffffffffe98UL; } goto ldv_51331; ldv_51330: ; if ((unsigned long )network != (unsigned long )priv->assoc_network) { { ipw_best_network(priv, & match, network, 1); } } else { } __mptr___0 = (struct list_head const *)network->list.next; network = (struct libipw_network *)__mptr___0 + 0xfffffffffffffe98UL; ldv_51331: ; if ((unsigned long )(& network->list) != (unsigned long )(& (priv->ieee)->network_list)) { goto ldv_51330; } else { } { ldv_spin_unlock_irqrestore_122(& (priv->ieee)->lock, flags); (priv->assoc_network)->stats.rssi = (s8 )rssi; } if ((unsigned long )match.network == (unsigned long )priv->assoc_network) { if ((ipw_debug_level & 4100U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s No better APs in this network to roam to.\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_roam"); } } else { } { priv->status = priv->status & 4294966271U; ipw_debug_config(priv); } return; } else { } { ipw_send_disassociate(priv, 1); priv->assoc_network = match.network; } return; } else { } { ipw_compatible_rates(priv, (struct libipw_network const *)priv->assoc_network, & match.rates); ipw_associate_network(priv, priv->assoc_network, & match.rates, 1); priv->status = priv->status & 4294966271U; } return; } } static void ipw_bg_roam(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe868UL; mutex_lock_nested(& priv->mutex, 0U); ipw_roam((void *)priv); mutex_unlock(& priv->mutex); } return; } } static int ipw_associate(void *data ) { struct ipw_priv *priv ; struct libipw_network *network ; struct ipw_network_match match ; struct ipw_supported_rates *rates ; struct list_head *element ; unsigned long flags ; char ssid[129U] ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct libipw_network *oldest ; struct libipw_network *target ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; char const *tmp___5 ; int tmp___6 ; int tmp___7 ; struct list_head const *__mptr___3 ; { priv = (struct ipw_priv *)data; network = (struct libipw_network *)0; match.network = (struct libipw_network *)0; match.rates.ieee_mode = (unsigned char)0; match.rates.num_rates = (unsigned char)0; match.rates.purpose = (unsigned char)0; match.rates.reserved = (unsigned char)0; match.rates.supported_rates[0] = (unsigned char)0; match.rates.supported_rates[1] = (unsigned char)0; match.rates.supported_rates[2] = (unsigned char)0; match.rates.supported_rates[3] = (unsigned char)0; match.rates.supported_rates[4] = (unsigned char)0; match.rates.supported_rates[5] = (unsigned char)0; match.rates.supported_rates[6] = (unsigned char)0; match.rates.supported_rates[7] = (unsigned char)0; match.rates.supported_rates[8] = (unsigned char)0; match.rates.supported_rates[9] = (unsigned char)0; match.rates.supported_rates[10] = (unsigned char)0; match.rates.supported_rates[11] = (unsigned char)0; if ((priv->ieee)->iw_mode == 6) { if ((ipw_debug_level & 4100U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Not attempting association (monitor mode)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_associate"); } } else { } return (0); } else { } if ((priv->status & 384U) != 0U) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Not attempting association (already in progress)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate"); } } else { } return (0); } else { } if ((priv->status & 512U) != 0U) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Not attempting association (in disassociating)\n ", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate"); } } else { } { schedule_work(& priv->associate); } return (0); } else { } { tmp___3 = ipw_is_init(priv); } if (tmp___3 == 0 || (priv->status & 2097152U) != 0U) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Not attempting association (scanning or not initialized)\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate"); } } else { } return (0); } else { } if (*((unsigned int *)priv + 483UL) == 0U) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s Not attempting association (associate=0)\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate"); } } else { } return (0); } else { } { ldv___ldv_spin_lock_141(& (priv->ieee)->lock); __mptr = (struct list_head const *)(priv->ieee)->network_list.next; network = (struct libipw_network *)__mptr + 0xfffffffffffffe98UL; } goto ldv_51356; ldv_51355: { ipw_best_network(priv, & match, network, 0); __mptr___0 = (struct list_head const *)network->list.next; network = (struct libipw_network *)__mptr___0 + 0xfffffffffffffe98UL; } ldv_51356: ; if ((unsigned long )(& network->list) != (unsigned long )(& (priv->ieee)->network_list)) { goto ldv_51355; } else { } network = match.network; rates = & match.rates; if (((unsigned long )network == (unsigned long )((struct libipw_network *)0) && (priv->ieee)->iw_mode == 1) && *((unsigned int *)priv + 483UL) == 259U) { { tmp___7 = list_empty((struct list_head const *)(& (priv->ieee)->network_free_list)); } if (tmp___7 != 0) { oldest = (struct libipw_network *)0; __mptr___1 = (struct list_head const *)(priv->ieee)->network_list.next; target = (struct libipw_network *)__mptr___1 + 0xfffffffffffffe98UL; goto ldv_51365; ldv_51364: ; if ((unsigned long )oldest == (unsigned long )((struct libipw_network *)0) || target->last_scanned < oldest->last_scanned) { oldest = target; } else { } __mptr___2 = (struct list_head const *)target->list.next; target = (struct libipw_network *)__mptr___2 + 0xfffffffffffffe98UL; ldv_51365: ; if ((unsigned long )(& target->list) != (unsigned long )(& (priv->ieee)->network_list)) { goto ldv_51364; } else { } { list_del(& oldest->list); target = oldest; } if ((ipw_debug_level & 4100U) != 0U) { { tmp___5 = print_ssid((char *)(& ssid), (char const *)(& target->ssid), (int )target->ssid_len); tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Expired \'%s\' (%pM) from network list.\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_associate", tmp___5, (u8 *)(& target->bssid)); } } else { } { list_add_tail(& target->list, & (priv->ieee)->network_free_list); } } else { } { element = (priv->ieee)->network_free_list.next; __mptr___3 = (struct list_head const *)element; network = (struct libipw_network *)__mptr___3 + 0xfffffffffffffe98UL; ipw_adhoc_create(priv, network); rates = & priv->rates; list_del(element); list_add_tail(& network->list, & (priv->ieee)->network_list); } } else { } { ldv_spin_unlock_irqrestore_122(& (priv->ieee)->lock, flags); } if ((unsigned long )network == (unsigned long )((struct libipw_network *)0)) { { ipw_debug_config(priv); } if ((priv->status & 2097152U) == 0U) { if ((priv->config & 2048U) == 0U) { { schedule_delayed_work(& priv->request_scan, 25UL); } } else { { schedule_delayed_work(& priv->request_scan, 0UL); } } } else { } return (0); } else { } { ipw_associate_network(priv, network, rates, 0); } return (1); } } static void ipw_bg_associate(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xfffffffffffff028UL; mutex_lock_nested(& priv->mutex, 0U); ipw_associate((void *)priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv , struct sk_buff *skb ) { struct ieee80211_hdr *hdr ; u16 fc ; { hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; if (((int )fc & 16384) == 0) { return; } else { } fc = (unsigned int )fc & 49151U; hdr->frame_control = fc; { if ((int )(priv->ieee)->sec.level == 4) { goto case_4; } else { } if ((int )(priv->ieee)->sec.level == 2) { goto case_2; } else { } if ((int )(priv->ieee)->sec.level == 1) { goto case_1; } else { } if ((int )(priv->ieee)->sec.level == 0) { goto case_0; } else { } goto switch_default; case_4: /* CIL Label */ { memmove((void *)skb->data + 24U, (void const *)skb->data + 32U, (size_t )(skb->len - 32U)); skb_trim(skb, skb->len - 16U); } goto ldv_51382; case_2: /* CIL Label */ ; goto ldv_51382; case_1: /* CIL Label */ { memmove((void *)skb->data + 24U, (void const *)skb->data + 28U, (size_t )(skb->len - 28U)); skb_trim(skb, skb->len - 8U); } goto ldv_51382; case_0: /* CIL Label */ ; goto ldv_51382; switch_default: /* CIL Label */ { printk("\vUnknown security level %d\n", (int )(priv->ieee)->sec.level); } goto ldv_51382; switch_break: /* CIL Label */ ; } ldv_51382: ; return; } } static void ipw_handle_data_packet(struct ipw_priv *priv , struct ipw_rx_mem_buffer *rxb , struct libipw_rx_stats *stats ) { struct net_device *dev ; struct libipw_hdr_4addr *hdr ; struct ipw_rx_packet *pkt ; int tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; long tmp___5 ; int tmp___6 ; bool tmp___7 ; int tmp___8 ; { { dev = priv->net_dev; pkt = (struct ipw_rx_packet *)(rxb->skb)->data; dev->trans_start = jiffies; tmp___4 = skb_tailroom((struct sk_buff const *)rxb->skb); tmp___5 = ldv__builtin_expect((unsigned int )pkt->u.frame.length + 28U > (unsigned int )tmp___4, 0L); } if (tmp___5 != 0L) { dev->stats.rx_errors = dev->stats.rx_errors + 1UL; priv->wstats.discard.misc = priv->wstats.discard.misc + 1U; if ((ipw_debug_level & 8192U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Corruption detected! Oh no!\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_data_packet"); } } else { } return; } else { { tmp___1 = netif_running((struct net_device const *)priv->net_dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } { tmp___3 = ldv__builtin_expect((long )tmp___2, 0L); } if (tmp___3 != 0L) { dev->stats.rx_dropped = dev->stats.rx_dropped + 1UL; priv->wstats.discard.misc = priv->wstats.discard.misc + 1U; if ((ipw_debug_level & 8192U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Dropping packet while interface is not up.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_data_packet"); } } else { } return; } else { } } { skb_reserve(rxb->skb, 28); skb_put(rxb->skb, (unsigned int )pkt->u.frame.length); } if ((ipw_debug_level & 16777216U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Rx packet of %d bytes.\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_data_packet", (rxb->skb)->len); } } else { } hdr = (struct libipw_hdr_4addr *)(rxb->skb)->data; if ((priv->ieee)->iw_mode != 6) { { tmp___7 = is_multicast_ether_addr((u8 const *)(& hdr->addr1)); } if ((int )tmp___7 ? (priv->ieee)->host_mc_decrypt == 0 : (priv->ieee)->host_decrypt == 0) { { ipw_rebuild_decrypted_skb(priv, rxb->skb); } } else { } } else { } { tmp___8 = libipw_rx(priv->ieee, rxb->skb, stats); } if (tmp___8 == 0) { dev->stats.rx_errors = dev->stats.rx_errors + 1UL; } else { { rxb->skb = (struct sk_buff *)0; __ipw_led_activity_on(priv); } } return; } } static void ipw_handle_data_packet_monitor(struct ipw_priv *priv , struct ipw_rx_mem_buffer *rxb , struct libipw_rx_stats *stats ) { struct net_device *dev ; struct ipw_rx_packet *pkt ; struct ipw_rx_frame *frame ; u16 received_channel ; u8 antennaAndPhy ; s8 antsignal ; u16 pktrate ; struct ipw_rt_hdr *ipw_rt ; unsigned short len ; int tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; long tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { { dev = priv->net_dev; pkt = (struct ipw_rx_packet *)(rxb->skb)->data; frame = & pkt->u.frame; received_channel = (u16 )frame->received_channel; antennaAndPhy = frame->antennaAndPhy; antsignal = (s8 )((unsigned int )frame->rssi_dbm + 144U); pktrate = (u16 )frame->rate; len = pkt->u.frame.length; dev->trans_start = jiffies; tmp___4 = skb_tailroom((struct sk_buff const *)rxb->skb); tmp___5 = ldv__builtin_expect((unsigned int )pkt->u.frame.length + 28U > (unsigned int )tmp___4, 0L); } if (tmp___5 != 0L) { dev->stats.rx_errors = dev->stats.rx_errors + 1UL; priv->wstats.discard.misc = priv->wstats.discard.misc + 1U; if ((ipw_debug_level & 8192U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Corruption detected! Oh no!\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_data_packet_monitor"); } } else { } return; } else { { tmp___1 = netif_running((struct net_device const *)priv->net_dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } { tmp___3 = ldv__builtin_expect((long )tmp___2, 0L); } if (tmp___3 != 0L) { dev->stats.rx_dropped = dev->stats.rx_dropped + 1UL; priv->wstats.discard.misc = priv->wstats.discard.misc + 1U; if ((ipw_debug_level & 8192U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Dropping packet while interface is not up.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_data_packet_monitor"); } } else { } return; } else { } } if ((unsigned int )len > 2975U) { dev->stats.rx_dropped = dev->stats.rx_dropped + 1UL; priv->wstats.discard.misc = priv->wstats.discard.misc + 1U; if ((ipw_debug_level & 8192U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Dropping too large packet in monitor\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_data_packet_monitor"); } } else { } return; } else { } { memmove((void *)(rxb->skb)->data + 25U, (void const *)(rxb->skb)->data + 28U, (size_t )len); ipw_rt = (struct ipw_rt_hdr *)(rxb->skb)->data; ipw_rt->rt_hdr.it_version = 0U; ipw_rt->rt_hdr.it_pad = 0U; ipw_rt->rt_hdr.it_len = 25U; ipw_rt->rt_hdr.it_present = 2159U; ipw_rt->rt_flags = 0U; ipw_rt->rt_tsf = (unsigned long long )(((((int )frame->parent_tsf[3] << 24) | ((int )frame->parent_tsf[2] << 16)) | ((int )frame->parent_tsf[1] << 8)) | (int )frame->parent_tsf[0]); ipw_rt->rt_dbmsignal = antsignal; ipw_rt->rt_dbmnoise = (signed char )frame->noise; ipw_rt->rt_channel = (unsigned int )received_channel <= 14U ? ((unsigned int )received_channel != 14U ? (unsigned int )received_channel * 5U + 2407U : 2484U) : (unsigned int )((unsigned short )((int )received_channel + 1000)) * 5U; } if ((unsigned int )received_channel > 14U) { ipw_rt->rt_chbitmask = 320U; } else if (((int )antennaAndPhy & 32) != 0) { ipw_rt->rt_chbitmask = 160U; } else { ipw_rt->rt_chbitmask = 192U; } { if ((int )pktrate == 10) { goto case_10; } else { } if ((int )pktrate == 20) { goto case_20; } else { } if ((int )pktrate == 55) { goto case_55; } else { } if ((int )pktrate == 13) { goto case_13; } else { } if ((int )pktrate == 15) { goto case_15; } else { } if ((int )pktrate == 110) { goto case_110; } else { } if ((int )pktrate == 5) { goto case_5; } else { } if ((int )pktrate == 7) { goto case_7; } else { } if ((int )pktrate == 9) { goto case_9; } else { } if ((int )pktrate == 11) { goto case_11; } else { } if ((int )pktrate == 1) { goto case_1; } else { } if ((int )pktrate == 3) { goto case_3; } else { } goto switch_default; case_10: /* CIL Label */ ipw_rt->rt_rate = 2U; goto ldv_51412; case_20: /* CIL Label */ ipw_rt->rt_rate = 4U; goto ldv_51412; case_55: /* CIL Label */ ipw_rt->rt_rate = 10U; goto ldv_51412; case_13: /* CIL Label */ ipw_rt->rt_rate = 12U; goto ldv_51412; case_15: /* CIL Label */ ipw_rt->rt_rate = 18U; goto ldv_51412; case_110: /* CIL Label */ ipw_rt->rt_rate = 22U; goto ldv_51412; case_5: /* CIL Label */ ipw_rt->rt_rate = 24U; goto ldv_51412; case_7: /* CIL Label */ ipw_rt->rt_rate = 36U; goto ldv_51412; case_9: /* CIL Label */ ipw_rt->rt_rate = 48U; goto ldv_51412; case_11: /* CIL Label */ ipw_rt->rt_rate = 72U; goto ldv_51412; case_1: /* CIL Label */ ipw_rt->rt_rate = 96U; goto ldv_51412; case_3: /* CIL Label */ ipw_rt->rt_rate = 108U; goto ldv_51412; switch_default: /* CIL Label */ ipw_rt->rt_rate = 0U; goto ldv_51412; switch_break: /* CIL Label */ ; } ldv_51412: ipw_rt->rt_antenna = (unsigned int )antennaAndPhy & 3U; if (((int )antennaAndPhy & 64) != 0) { ipw_rt->rt_flags = (u8 )((unsigned int )ipw_rt->rt_flags | 2U); } else { } { skb_put(rxb->skb, (unsigned int )len + 25U); } if ((ipw_debug_level & 16777216U) != 0U) { { tmp___7 = preempt_count(); printk("\017ipw2200: %c %s Rx packet of %d bytes.\n", ((unsigned long )tmp___7 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_data_packet_monitor", (rxb->skb)->len); } } else { } { tmp___8 = libipw_rx(priv->ieee, rxb->skb, stats); } if (tmp___8 == 0) { dev->stats.rx_errors = dev->stats.rx_errors + 1UL; } else { rxb->skb = (struct sk_buff *)0; } return; } } static void ipw_handle_promiscuous_rx(struct ipw_priv *priv , struct ipw_rx_mem_buffer *rxb , struct libipw_rx_stats *stats ) { struct net_device *dev ; struct ipw_rx_packet *pkt ; struct ipw_rx_frame *frame ; struct ipw_rt_hdr *ipw_rt ; struct ieee80211_hdr *hdr ; u16 channel ; u8 phy_flags ; s8 signal ; s8 noise ; u8 rate ; unsigned short len ; struct sk_buff *skb ; int hdr_only ; u16 filter ; int tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; long tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; { dev = priv->prom_net_dev; pkt = (struct ipw_rx_packet *)(rxb->skb)->data; frame = & pkt->u.frame; channel = (u16 )frame->received_channel; phy_flags = frame->antennaAndPhy; signal = (s8 )((unsigned int )frame->rssi_dbm + 144U); noise = (signed char )frame->noise; rate = frame->rate; len = pkt->u.frame.length; hdr_only = 0; filter = (u16 )(priv->prom_priv)->filter; if (((int )filter & 32) != 0) { return; } else { } { dev->trans_start = jiffies; tmp___0 = skb_tailroom((struct sk_buff const *)rxb->skb); tmp___1 = ldv__builtin_expect((unsigned int )len + 28U > (unsigned int )tmp___0, 0L); } if (tmp___1 != 0L) { dev->stats.rx_errors = dev->stats.rx_errors + 1UL; if ((ipw_debug_level & 8192U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Corruption detected! Oh no!\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_promiscuous_rx"); } } else { } return; } else { } { tmp___3 = netif_running((struct net_device const *)dev); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } { tmp___5 = ldv__builtin_expect((long )tmp___4, 0L); } if (tmp___5 != 0L) { dev->stats.rx_dropped = dev->stats.rx_dropped + 1UL; if ((ipw_debug_level & 8192U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Dropping packet while interface is not up.\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_promiscuous_rx"); } } else { } return; } else { } if ((unsigned int )len > 2975U) { dev->stats.rx_dropped = dev->stats.rx_dropped + 1UL; if ((ipw_debug_level & 8192U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Dropping too large packet in monitor\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_promiscuous_rx"); } } else { } return; } else { } hdr = (struct ieee80211_hdr *)(rxb->skb)->data + 28U; if (((int )hdr->frame_control & 12) == 0) { if (((int )filter & 128) != 0) { return; } else { } if (((int )filter & 2) != 0) { hdr_only = 1; } else { } } else if (((int )hdr->frame_control & 12) == 4) { if (((int )filter & 64) != 0) { return; } else { } if ((int )filter & 1) { hdr_only = 1; } else { } } else if (((int )hdr->frame_control & 12) == 8) { if (((int )filter & 256) != 0) { return; } else { } if (((int )filter & 4) != 0) { hdr_only = 1; } else { } } else { } { skb = skb_copy((struct sk_buff const *)rxb->skb, 32U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { printk("\vipw2200: skb_clone failed for promiscuous copy.\n"); } return; } else { } ipw_rt = (struct ipw_rt_hdr *)skb->data; if (hdr_only != 0) { { tmp___7 = libipw_get_hdrlen((int )hdr->frame_control); len = (unsigned short )tmp___7; } } else { } { memcpy((void *)(& ipw_rt->payload), (void const *)hdr, (size_t )len); ipw_rt->rt_hdr.it_version = 0U; ipw_rt->rt_hdr.it_pad = 0U; ipw_rt->rt_hdr.it_len = 25U; skb_put(skb, (unsigned int )len + 25U); ipw_rt->rt_hdr.it_present = 2159U; ipw_rt->rt_flags = 0U; ipw_rt->rt_tsf = (unsigned long long )(((((int )frame->parent_tsf[3] << 24) | ((int )frame->parent_tsf[2] << 16)) | ((int )frame->parent_tsf[1] << 8)) | (int )frame->parent_tsf[0]); ipw_rt->rt_dbmsignal = signal; ipw_rt->rt_dbmnoise = noise; ipw_rt->rt_channel = (unsigned int )channel <= 14U ? ((unsigned int )channel != 14U ? (unsigned int )channel * 5U + 2407U : 2484U) : (unsigned int )((unsigned short )((int )channel + 1000)) * 5U; } if ((unsigned int )channel > 14U) { ipw_rt->rt_chbitmask = 320U; } else if (((int )phy_flags & 32) != 0) { ipw_rt->rt_chbitmask = 160U; } else { ipw_rt->rt_chbitmask = 192U; } { if ((int )rate == 10) { goto case_10; } else { } if ((int )rate == 20) { goto case_20; } else { } if ((int )rate == 55) { goto case_55; } else { } if ((int )rate == 13) { goto case_13; } else { } if ((int )rate == 15) { goto case_15; } else { } if ((int )rate == 110) { goto case_110; } else { } if ((int )rate == 5) { goto case_5; } else { } if ((int )rate == 7) { goto case_7; } else { } if ((int )rate == 9) { goto case_9; } else { } if ((int )rate == 11) { goto case_11; } else { } if ((int )rate == 1) { goto case_1; } else { } if ((int )rate == 3) { goto case_3; } else { } goto switch_default; case_10: /* CIL Label */ ipw_rt->rt_rate = 2U; goto ldv_51446; case_20: /* CIL Label */ ipw_rt->rt_rate = 4U; goto ldv_51446; case_55: /* CIL Label */ ipw_rt->rt_rate = 10U; goto ldv_51446; case_13: /* CIL Label */ ipw_rt->rt_rate = 12U; goto ldv_51446; case_15: /* CIL Label */ ipw_rt->rt_rate = 18U; goto ldv_51446; case_110: /* CIL Label */ ipw_rt->rt_rate = 22U; goto ldv_51446; case_5: /* CIL Label */ ipw_rt->rt_rate = 24U; goto ldv_51446; case_7: /* CIL Label */ ipw_rt->rt_rate = 36U; goto ldv_51446; case_9: /* CIL Label */ ipw_rt->rt_rate = 48U; goto ldv_51446; case_11: /* CIL Label */ ipw_rt->rt_rate = 72U; goto ldv_51446; case_1: /* CIL Label */ ipw_rt->rt_rate = 96U; goto ldv_51446; case_3: /* CIL Label */ ipw_rt->rt_rate = 108U; goto ldv_51446; switch_default: /* CIL Label */ ipw_rt->rt_rate = 0U; goto ldv_51446; switch_break: /* CIL Label */ ; } ldv_51446: ipw_rt->rt_antenna = (unsigned int )phy_flags & 3U; if (((int )phy_flags & 64) != 0) { ipw_rt->rt_flags = (u8 )((unsigned int )ipw_rt->rt_flags | 2U); } else { } if ((ipw_debug_level & 16777216U) != 0U) { { tmp___8 = preempt_count(); printk("\017ipw2200: %c %s Rx packet of %d bytes.\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_promiscuous_rx", skb->len); } } else { } { tmp___9 = libipw_rx((priv->prom_priv)->ieee, skb, stats); } if (tmp___9 == 0) { { dev->stats.rx_errors = dev->stats.rx_errors + 1UL; dev_kfree_skb_any(skb); } } else { } return; } } static int is_network_packet(struct ipw_priv *priv , struct libipw_hdr_4addr *header ) { bool tmp ; bool tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; bool tmp___4 ; bool tmp___5 ; bool tmp___6 ; { { if ((priv->ieee)->iw_mode == 1) { goto case_1; } else { } if ((priv->ieee)->iw_mode == 2) { goto case_2; } else { } goto switch_break; case_1: /* CIL Label */ { tmp = ether_addr_equal((u8 const *)(& header->addr2), (u8 const *)(priv->net_dev)->dev_addr); } if ((int )tmp) { return (0); } else { } { tmp___1 = is_multicast_ether_addr((u8 const *)(& header->addr1)); } if ((int )tmp___1) { { tmp___0 = ether_addr_equal((u8 const *)(& header->addr3), (u8 const *)(& priv->bssid)); } return ((int )tmp___0); } else { } { tmp___2 = ether_addr_equal((u8 const *)(& header->addr1), (u8 const *)(priv->net_dev)->dev_addr); } return ((int )tmp___2); case_2: /* CIL Label */ { tmp___3 = ether_addr_equal((u8 const *)(& header->addr3), (u8 const *)(priv->net_dev)->dev_addr); } if ((int )tmp___3) { return (0); } else { } { tmp___5 = is_multicast_ether_addr((u8 const *)(& header->addr1)); } if ((int )tmp___5) { { tmp___4 = ether_addr_equal((u8 const *)(& header->addr2), (u8 const *)(& priv->bssid)); } return ((int )tmp___4); } else { } { tmp___6 = ether_addr_equal((u8 const *)(& header->addr1), (u8 const *)(priv->net_dev)->dev_addr); } return ((int )tmp___6); switch_break: /* CIL Label */ ; } return (1); } } static int is_duplicate_packet(struct ipw_priv *priv , struct libipw_hdr_4addr *header ) { u16 sc ; u16 seq ; u16 frag ; u16 *last_seq ; u16 *last_frag ; unsigned long *last_time ; struct list_head *p ; struct ipw_ibss_seq *entry ; u8 *mac ; int index ; struct list_head const *__mptr ; bool tmp ; void *tmp___0 ; { sc = header->seq_ctl; seq = (int )sc >> 4; frag = (unsigned int )sc & 15U; { if ((priv->ieee)->iw_mode == 1) { goto case_1; } else { } if ((priv->ieee)->iw_mode == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ entry = (struct ipw_ibss_seq *)0; mac = (u8 *)(& header->addr2); index = (int )((unsigned int )*(mac + 5UL) % 31U); p = ((struct list_head *)(& priv->ibss_mac_hash) + (unsigned long )index)->next; goto ldv_51484; ldv_51483: { __mptr = (struct list_head const *)p; entry = (struct ipw_ibss_seq *)__mptr + 0xffffffffffffffe8UL; tmp = ether_addr_equal((u8 const *)(& entry->mac), (u8 const *)mac); } if ((int )tmp) { goto ldv_51482; } else { } p = p->next; ldv_51484: ; if ((unsigned long )p != (unsigned long )((struct list_head *)(& priv->ibss_mac_hash) + (unsigned long )index)) { goto ldv_51483; } else { } ldv_51482: ; if ((unsigned long )p == (unsigned long )((struct list_head *)(& priv->ibss_mac_hash) + (unsigned long )index)) { { tmp___0 = kmalloc(40UL, 32U); entry = (struct ipw_ibss_seq *)tmp___0; } if ((unsigned long )entry == (unsigned long )((struct ipw_ibss_seq *)0)) { { printk("\vipw2200: Cannot malloc new mac entry\n"); } return (0); } else { } { memcpy((void *)(& entry->mac), (void const *)mac, 6UL); entry->seq_num = seq; entry->frag_num = frag; entry->packet_time = jiffies; list_add(& entry->list, (struct list_head *)(& priv->ibss_mac_hash) + (unsigned long )index); } return (0); } else { } last_seq = & entry->seq_num; last_frag = & entry->frag_num; last_time = & entry->packet_time; goto ldv_51485; case_2: /* CIL Label */ last_seq = & priv->last_seq_num; last_frag = & priv->last_frag_num; last_time = & priv->last_packet_time; goto ldv_51485; switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } ldv_51485: ; if ((int )*last_seq == (int )seq && (long )(((unsigned long )jiffies - *last_time) - 250UL) < 0L) { if ((int )*last_frag == (int )frag) { goto drop; } else { } if ((int )*last_frag + 1 != (int )frag) { goto drop; } else { } } else { *last_seq = seq; } *last_frag = frag; *last_time = jiffies; return (0); drop: ; return (1); } } static void ipw_handle_mgmt_packet(struct ipw_priv *priv , struct ipw_rx_mem_buffer *rxb , struct libipw_rx_stats *stats ) { struct sk_buff *skb ; struct ipw_rx_packet *pkt ; struct libipw_hdr_4addr *header ; bool tmp ; int tmp___0 ; unsigned char *tmp___1 ; { { skb = rxb->skb; pkt = (struct ipw_rx_packet *)skb->data; header = (struct libipw_hdr_4addr *)skb->data + 28U; libipw_rx_mgt(priv->ieee, header, stats); } if ((priv->ieee)->iw_mode == 1 && (((int )header->frame_ctl & 240) == 80 || ((int )header->frame_ctl & 240) == 128)) { { tmp = ether_addr_equal((u8 const *)(& header->addr3), (u8 const *)(& priv->bssid)); } if ((int )tmp) { { ipw_add_station(priv, (u8 *)(& header->addr2)); } } else { } } else { } if ((priv->config & 4096U) != 0U) { if ((ipw_debug_level & 32U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s sending stat packet\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_handle_mgmt_packet"); } } else { } { skb_put(skb, (unsigned int )pkt->u.frame.length + 28U); skb_pull(skb, 28U); tmp___1 = skb_push(skb, 32U); memcpy((void *)tmp___1, (void const *)stats, 32UL); skb->dev = (priv->ieee)->dev; skb_reset_mac_header(skb); skb->pkt_type = 3U; skb->protocol = 6656U; memset((void *)(& skb->cb), 0, 48UL); netif_rx(skb); rxb->skb = (struct sk_buff *)0; } } else { } return; } } static void ipw_rx(struct ipw_priv *priv ) { struct ipw_rx_mem_buffer *rxb ; struct ipw_rx_packet *pkt ; struct libipw_hdr_4addr *header ; u32 r ; u32 w ; u32 i ; u8 network_packet ; u8 fill_rx ; int tmp ; u32 tmp___0 ; int tmp___1 ; u32 tmp___2 ; int tmp___3 ; long tmp___4 ; int tmp___5 ; struct libipw_rx_stats stats ; bool tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; long tmp___12 ; int tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; { fill_rx = 0U; if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_rx", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 8377, 672U); } } else { } { tmp___0 = _ipw_read32(priv, 672UL); r = tmp___0; } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 8378, 4000U); } } else { } { tmp___2 = _ipw_read32(priv, 4000UL); w = tmp___2; i = (priv->rxq)->read; tmp___3 = ipw_rx_queue_space((struct ipw_rx_queue const *)priv->rxq); } if (tmp___3 > 16) { fill_rx = 1U; } else { } goto ldv_51529; ldv_51528: { rxb = (priv->rxq)->queue[i]; tmp___4 = ldv__builtin_expect((unsigned long )rxb == (unsigned long )((struct ipw_rx_mem_buffer *)0), 0L); } if (tmp___4 != 0L) { { printk("\nQueue not allocated!\n"); } goto ldv_51518; } else { } { (priv->rxq)->queue[i] = (struct ipw_rx_mem_buffer *)0; pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr, 3000UL, 2); pkt = (struct ipw_rx_packet *)(rxb->skb)->data; } if ((ipw_debug_level & 16777216U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s Packet: type=%02X seq=%02X bits=%02X\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx", (int )pkt->header.message_type, (int )pkt->header.rx_seq_num, (int )pkt->header.control_bits); } } else { } { if ((int )pkt->header.message_type == 9) { goto case_9; } else { } if ((int )pkt->header.message_type == 3) { goto case_3; } else { } goto switch_default; case_9: /* CIL Label */ stats.mac_time = (unsigned int )jiffies; stats.rssi = (signed char )((unsigned int )pkt->u.frame.rssi_dbm + 144U); stats.signal = (unsigned int )pkt->u.frame.rssi_dbm + 144U; stats.noise = (unsigned char )pkt->u.frame.noise; stats.rate = (unsigned short )pkt->u.frame.rate; stats.received_channel = pkt->u.frame.received_channel; stats.control = (unsigned char)0; stats.mask = (unsigned char)0; stats.freq = (int )pkt->u.frame.control & 1 ? 1U : 2U; stats.len = pkt->u.frame.length; stats.tsf = 0ULL; stats.beacon_time = 0U; if ((int )stats.rssi != 0) { stats.mask = (u8 )((unsigned int )stats.mask | 2U); } else { } if ((unsigned int )stats.signal != 0U) { stats.mask = (u8 )((unsigned int )stats.mask | 1U); } else { } if ((unsigned int )stats.noise != 0U) { stats.mask = (u8 )((unsigned int )stats.mask | 4U); } else { } if ((unsigned int )stats.rate != 0U) { stats.mask = (u8 )((unsigned int )stats.mask | 8U); } else { } priv->rx_packets = priv->rx_packets + 1U; if ((unsigned long )priv->prom_net_dev != (unsigned long )((struct net_device *)0)) { { tmp___6 = netif_running((struct net_device const *)priv->prom_net_dev); } if ((int )tmp___6) { { ipw_handle_promiscuous_rx(priv, rxb, & stats); } } else { } } else { } if ((priv->ieee)->iw_mode == 6) { { ipw_handle_data_packet_monitor(priv, rxb, & stats); } goto ldv_51521; } else { } { header = (struct libipw_hdr_4addr *)(rxb->skb)->data + 28U; tmp___7 = is_network_packet(priv, header); network_packet = (u8 )tmp___7; } if ((unsigned int )network_packet != 0U && (unsigned long )priv->assoc_network != (unsigned long )((struct libipw_network *)0)) { { (priv->assoc_network)->stats.rssi = stats.rssi; priv->exp_avg_rssi = exponential_average((int )priv->exp_avg_rssi, (int )stats.rssi, 8); } } else { } if ((ipw_debug_level & 16777216U) != 0U) { { tmp___8 = preempt_count(); printk("\017ipw2200: %c %s Frame: len=%u\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx", (int )pkt->u.frame.length); } } else { } { tmp___10 = libipw_get_hdrlen((int )header->frame_ctl); } if ((int )pkt->u.frame.length < tmp___10) { if ((ipw_debug_level & 8192U) != 0U) { { tmp___9 = preempt_count(); printk("\017ipw2200: %c %s Received packet is too small. Dropping.\n", ((unsigned long )tmp___9 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx"); } } else { } (priv->net_dev)->stats.rx_errors = (priv->net_dev)->stats.rx_errors + 1UL; priv->wstats.discard.misc = priv->wstats.discard.misc + 1U; goto ldv_51521; } else { } { if (((int )header->frame_ctl & 12) == 0) { goto case_0; } else { } if (((int )header->frame_ctl & 12) == 4) { goto case_4; } else { } if (((int )header->frame_ctl & 12) == 8) { goto case_8; } else { } goto switch_break___0; case_0: /* CIL Label */ { ipw_handle_mgmt_packet(priv, rxb, & stats); } goto ldv_51523; case_4: /* CIL Label */ ; goto ldv_51523; case_8: /* CIL Label */ { tmp___12 = ldv__builtin_expect((unsigned int )network_packet == 0U, 0L); } if (tmp___12 != 0L) { goto _L; } else { { tmp___13 = is_duplicate_packet(priv, header); tmp___14 = ldv__builtin_expect(tmp___13 != 0, 0L); } if (tmp___14 != 0L) { _L: /* CIL Label */ if ((ipw_debug_level & 8192U) != 0U) { { tmp___11 = preempt_count(); printk("\017ipw2200: %c %s Dropping: %pM, %pM, %pM\n", ((unsigned long )tmp___11 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx", (u8 *)(& header->addr1), (u8 *)(& header->addr2), (u8 *)(& header->addr3)); } } else { } goto ldv_51523; } else { } } { ipw_handle_data_packet(priv, rxb, & stats); } goto ldv_51523; switch_break___0: /* CIL Label */ ; } ldv_51523: ; goto ldv_51521; case_3: /* CIL Label */ ; if ((ipw_debug_level & 16777216U) != 0U) { { tmp___15 = preempt_count(); printk("\017ipw2200: %c %s Notification: subtype=%02X flags=%02X size=%d\n", ((unsigned long )tmp___15 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx", (int )pkt->u.notification.subtype, (int )pkt->u.notification.flags, (int )pkt->u.notification.size); } } else { } { ipw_rx_notification(priv, & pkt->u.notification); } goto ldv_51521; switch_default: /* CIL Label */ ; if ((ipw_debug_level & 16777216U) != 0U) { { tmp___16 = preempt_count(); printk("\017ipw2200: %c %s Bad Rx packet of type %d\n", ((unsigned long )tmp___16 & 2096896UL) != 0UL ? 73 : 85, "ipw_rx", (int )pkt->header.message_type); } } else { } goto ldv_51521; switch_break: /* CIL Label */ ; } ldv_51521: ; if ((unsigned long )rxb->skb != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_any(rxb->skb); rxb->skb = (struct sk_buff *)0; } } else { } { pci_unmap_single(priv->pci_dev, rxb->dma_addr, 3000UL, 2); list_add_tail(& rxb->list, & (priv->rxq)->rx_used); i = (i + 1U) & 31U; } if ((unsigned int )fill_rx != 0U) { { (priv->rxq)->read = i; ipw_rx_queue_replenish((void *)priv); } } else { } ldv_51529: ; if (i != r) { goto ldv_51528; } else { } ldv_51518: { (priv->rxq)->read = i; ipw_rx_queue_restock(priv); } return; } } static int ipw_sw_reset(struct ipw_priv *priv , int option ) { int band ; int modulation ; int old_mode ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { old_mode = (priv->ieee)->iw_mode; priv->config = 0U; if (led_support == 0) { priv->config = priv->config | 512U; } else { } if (associate != 0) { priv->config = priv->config | 64U; } else if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Auto associate disabled.\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_sw_reset"); } } else { } if (auto_create != 0) { priv->config = priv->config | 256U; } else if ((ipw_debug_level & 4U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Auto adhoc creation disabled.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_sw_reset"); } } else { } { priv->config = priv->config & 4294967293U; priv->essid_len = 0U; memset((void *)(& priv->essid), 0, 32UL); } if (disable != 0 && option != 0) { priv->status = priv->status | 8U; if ((ipw_debug_level & 4U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Radio disabled.\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_sw_reset"); } } else { } } else { } if (default_channel != 0) { priv->config = priv->config | 1U; priv->channel = (u8 )default_channel; if ((ipw_debug_level & 4U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Bind to static channel %d\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_sw_reset", default_channel); } } else { } } else { } { ipw_qos_init(priv, qos_enable, qos_burst_enable, (u32 )burst_duration_CCK, (u32 )burst_duration_OFDM); } { if (network_mode == 1) { goto case_1; } else { } if (network_mode == 2) { goto case_2; } else { } if (network_mode == 0) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ (priv->ieee)->iw_mode = 1; (priv->net_dev)->type = 1U; goto ldv_51539; case_2: /* CIL Label */ (priv->ieee)->iw_mode = 6; (priv->net_dev)->type = 803U; goto ldv_51539; switch_default: /* CIL Label */ ; case_0: /* CIL Label */ (priv->net_dev)->type = 1U; (priv->ieee)->iw_mode = 2; goto ldv_51539; switch_break: /* CIL Label */ ; } ldv_51539: ; if (hwcrypto != 0) { (priv->ieee)->host_encrypt = 0; (priv->ieee)->host_encrypt_msdu = 0; (priv->ieee)->host_decrypt = 0; (priv->ieee)->host_mc_decrypt = 0; } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s Hardware crypto [%s]\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_sw_reset", hwcrypto != 0 ? (char *)"on" : (char *)"off"); } } else { } (priv->ieee)->host_open_frag = 0; if ((unsigned int )(priv->pci_dev)->device - 16931U <= 1U) { if (option == 1) { { printk("\016ipw2200: Detected Intel PRO/Wireless 2915ABG Network Connection\n"); } } else { } (priv->ieee)->abg_true = 1; band = 3; modulation = 3; priv->adapter = 2U; (priv->ieee)->mode = 7; } else { if (option == 1) { { printk("\016ipw2200: Detected Intel PRO/Wireless 2200BG Network Connection\n"); } } else { } (priv->ieee)->abg_true = 0; band = 1; modulation = 3; priv->adapter = 1U; (priv->ieee)->mode = 6; } (priv->ieee)->freq_band = band; (priv->ieee)->modulation = modulation; priv->rates_mask = 4095U; priv->disassociate_threshold = 24U; priv->roaming_threshold = 8U; priv->rts_threshold = 2304U; priv->short_retry_limit = 7U; priv->long_retry_limit = 4U; priv->power_mode = 6U; priv->tx_power = 20; return (old_mode == (priv->ieee)->iw_mode); } } static int ipw_set_channel(struct ipw_priv *priv , u8 channel ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int i ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { if ((unsigned int )channel == 0U) { if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Setting channel to ANY (0)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_set_channel"); } } else { } priv->config = priv->config & 4294967294U; if ((ipw_debug_level & 4100U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Attempting to associate with new parameters.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_channel"); } } else { } { ipw_associate((void *)priv); } return (0); } else { } priv->config = priv->config | 1U; if ((int )priv->channel == (int )channel) { if ((ipw_debug_level & 4U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Request to set channel to current value (%d)\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_channel", (int )channel); } } else { } return (0); } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Setting channel to %i\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_channel", (int )channel); } } else { } priv->channel = channel; if ((priv->ieee)->iw_mode == 6) { if ((priv->status & 2097152U) != 0U) { if ((ipw_debug_level & 2048U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s Scan abort triggered due to channel change.\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_channel"); } } else { } { ipw_abort_scan(priv); } } else { } i = 1000; goto ldv_51550; ldv_51549: { __const_udelay(42950UL); i = i - 1; } ldv_51550: ; if (i != 0 && (priv->status & 2097152U) != 0U) { goto ldv_51549; } else { } if ((priv->status & 2097152U) != 0U) { if ((ipw_debug_level & 2048U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s Still scanning...\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_channel"); } } else { } } else if ((ipw_debug_level & 2048U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s Took %dms to abort current scan\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_channel", 1000 - i); } } else { } return (0); } else { } if ((ipw_debug_level & 4100U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s [re]association triggered due to channel change.\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_set_channel"); } } else { } { tmp___7 = ipw_disassociate((void *)priv); } if (tmp___7 == 0) { { ipw_associate((void *)priv); } } else { } return (0); } } static int ipw_wx_set_freq(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; struct libipw_geo const *geo ; struct libipw_geo const *tmp___0 ; struct iw_freq *fwrq ; int ret ; int i ; u8 channel ; u8 flags ; int band ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; tmp___0 = libipw_get_geo(priv->ieee); geo = tmp___0; fwrq = & wrqu->freq; ret = 0; } if (fwrq->m == 0) { if ((ipw_debug_level & 8U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s SET Freq/Channel -> any\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_freq"); } } else { } { mutex_lock_nested(& priv->mutex, 0U); ret = ipw_set_channel(priv, 0); mutex_unlock(& priv->mutex); } return (ret); } else { } if ((int )fwrq->e == 1) { { channel = libipw_freq_to_channel(priv->ieee, (u32 )fwrq->m); } if ((unsigned int )channel == 0U) { return (-22); } else { } } else { channel = (u8 )fwrq->m; } { band = libipw_is_valid_channel(priv->ieee, (int )channel); } if (band == 0) { return (-22); } else { } if ((priv->ieee)->iw_mode == 1) { { i = libipw_channel_to_index(priv->ieee, (int )channel); } if (i == -1) { return (-22); } else { } flags = band == 1 ? (u8 )geo->bg[i].flags : (u8 )geo->a[i].flags; if ((int )flags & 1) { if ((ipw_debug_level & 8U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Invalid Ad-Hoc channel for 802.11a\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_freq"); } } else { } return (-22); } else { } } else { } if ((ipw_debug_level & 8U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s SET Freq/Channel -> %d\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_freq", fwrq->m); } } else { } { mutex_lock_nested(& priv->mutex, 0U); ret = ipw_set_channel(priv, (int )channel); mutex_unlock(& priv->mutex); } return (ret); } } static int ipw_wx_get_freq(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int i ; long tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; wrqu->freq.e = 0; mutex_lock_nested(& priv->mutex, 0U); } if (*((unsigned long *)priv + 241UL) != 0UL) { { i = libipw_channel_to_index(priv->ieee, (int )priv->channel); tmp___0 = ldv__builtin_expect(i == -1, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/ipw2x00/ipw2200.c"), "i" (8828), "i" (12UL)); __builtin_unreachable(); } } else { } { wrqu->freq.e = 1; tmp___1 = libipw_is_valid_channel(priv->ieee, (int )priv->channel); } { if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ wrqu->freq.m = (__s32 )((priv->ieee)->geo.a[i].freq * 100000U); goto ldv_51576; case_1: /* CIL Label */ wrqu->freq.m = (__s32 )((priv->ieee)->geo.bg[i].freq * 100000U); goto ldv_51576; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/ipw2x00/ipw2200.c"), "i" (8841), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51576: ; } else { wrqu->freq.m = 0; } { mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s GET Freq/Channel -> %d\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_freq", (int )priv->channel); } } else { } return (0); } } static int ipw_wx_set_mode(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int err ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; err = 0; } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Set MODE: %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_mode", wrqu->mode); } } else { } { if (wrqu->mode == 6U) { goto case_6; } else { } if (wrqu->mode == 1U) { goto case_1; } else { } if (wrqu->mode == 2U) { goto case_2; } else { } if (wrqu->mode == 0U) { goto case_0; } else { } goto switch_default; case_6: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; goto ldv_51592; case_0: /* CIL Label */ wrqu->mode = 2U; goto ldv_51592; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_51592: ; if (wrqu->mode == (__u32 )(priv->ieee)->iw_mode) { return (0); } else { } { mutex_lock_nested(& priv->mutex, 0U); ipw_sw_reset(priv, 0); } if ((priv->ieee)->iw_mode == 6) { (priv->net_dev)->type = 1U; } else { } if (wrqu->mode == 6U) { (priv->net_dev)->type = 803U; } else { } { free_firmware(); (priv->ieee)->iw_mode = (int )wrqu->mode; schedule_work(& priv->adapter_restart); mutex_unlock(& priv->mutex); } return (err); } } static int ipw_wx_get_mode(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); wrqu->mode = (__u32 )(priv->ieee)->iw_mode; } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Get MODE -> %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_mode", wrqu->mode); } } else { } { mutex_unlock(& priv->mutex); } return (0); } } static s32 const timeout_duration[5U] = { 350000, 250000, 75000, 37000, 25000}; static s32 const period_duration[5U] = { 400000, 700000, 1000000, 1000000, 1000000}; static int ipw_wx_get_range(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; struct iw_range *range ; struct libipw_geo const *geo ; struct libipw_geo const *tmp___0 ; int i ; int j ; u8 _min1 ; unsigned char _min2 ; int tmp___1 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; range = (struct iw_range *)extra; tmp___0 = libipw_get_geo(priv->ieee); geo = tmp___0; i = 0; wrqu->data.length = 568U; memset((void *)range, 0, 568UL); range->throughput = 27000000U; range->max_qual.qual = 100U; range->max_qual.level = 0U; range->max_qual.noise = 0U; range->max_qual.updated = 7U; range->avg_qual.qual = 70U; range->avg_qual.level = 0U; range->avg_qual.noise = 0U; range->avg_qual.updated = 7U; mutex_lock_nested(& priv->mutex, 0U); _min1 = priv->rates.num_rates; _min2 = 32U; range->num_bitrates = (__u8 )((int )_min1 < (int )_min2 ? (int )_min1 : (int )_min2); i = 0; } goto ldv_51620; ldv_51619: range->bitrate[i] = ((int )priv->rates.supported_rates[i] & 127) * 500000; i = i + 1; ldv_51620: ; if (i < (int )range->num_bitrates) { goto ldv_51619; } else { } range->max_rts = 2304; range->min_frag = 256; range->max_frag = 2346; range->encoding_size[0] = 5U; range->encoding_size[1] = 13U; range->num_encoding_sizes = 2U; range->max_encoding_tokens = 4U; range->we_version_compiled = 22U; range->we_version_source = 18U; i = 0; if (((priv->ieee)->mode & 6) != 0) { j = 0; goto ldv_51624; ldv_51623: ; if ((priv->ieee)->iw_mode == 1 && (int )geo->bg[j].flags & 1) { goto ldv_51622; } else { } range->freq[i].i = geo->bg[j].channel; range->freq[i].m = (__s32 )((unsigned int )geo->bg[j].freq * 100000U); range->freq[i].e = 1; i = i + 1; ldv_51622: j = j + 1; ldv_51624: ; if (j < (int )geo->bg_channels && i <= 31) { goto ldv_51623; } else { } } else { } if ((priv->ieee)->mode & 1) { j = 0; goto ldv_51628; ldv_51627: ; if ((priv->ieee)->iw_mode == 1 && (int )geo->a[j].flags & 1) { goto ldv_51626; } else { } range->freq[i].i = geo->a[j].channel; range->freq[i].m = (__s32 )((unsigned int )geo->a[j].freq * 100000U); range->freq[i].e = 1; i = i + 1; ldv_51626: j = j + 1; ldv_51628: ; if (j < (int )geo->a_channels && i <= 31) { goto ldv_51627; } else { } } else { } { range->num_channels = (__u16 )i; range->num_frequency = (__u8 )i; mutex_unlock(& priv->mutex); range->event_capa[0] = 103284816U; range->event_capa[1] = 1024U; range->enc_capa = 15U; range->scan_capa = 33U; } if ((ipw_debug_level & 8U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s GET Range\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_range"); } } else { } return (0); } } static int ipw_wx_set_wap(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; bool tmp___3 ; int tmp___4 ; bool tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; } if ((unsigned int )wrqu->ap_addr.sa_family != 1U) { return (-22); } else { } { mutex_lock_nested(& priv->mutex, 0U); tmp___2 = is_broadcast_ether_addr((u8 const *)(& wrqu->ap_addr.sa_data)); } if ((int )tmp___2) { goto _L; } else { { tmp___3 = is_zero_ether_addr((u8 const *)(& wrqu->ap_addr.sa_data)); } if ((int )tmp___3) { _L: /* CIL Label */ if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Setting AP BSSID to ANY\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_wap"); } } else { } priv->config = priv->config & 4294967291U; if ((ipw_debug_level & 4100U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Attempting to associate with new parameters.\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_wap"); } } else { } { ipw_associate((void *)priv); mutex_unlock(& priv->mutex); } return (0); } else { } } { priv->config = priv->config | 4U; tmp___5 = ether_addr_equal((u8 const *)(& priv->bssid), (u8 const *)(& wrqu->ap_addr.sa_data)); } if ((int )tmp___5) { if ((ipw_debug_level & 8U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s BSSID set to current BSSID.\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_wap"); } } else { } { mutex_unlock(& priv->mutex); } return (0); } else { } if ((ipw_debug_level & 8U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s Setting mandatory BSSID to %pM\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_wap", (char *)(& wrqu->ap_addr.sa_data)); } } else { } { memcpy((void *)(& priv->bssid), (void const *)(& wrqu->ap_addr.sa_data), 6UL); } if ((ipw_debug_level & 4100U) != 0U) { { tmp___7 = preempt_count(); printk("\017ipw2200: %c %s [re]association triggered due to BSSID change.\n", ((unsigned long )tmp___7 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_wap"); } } else { } { tmp___8 = ipw_disassociate((void *)priv); } if (tmp___8 == 0) { { ipw_associate((void *)priv); } } else { } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_get_wap(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); } if (*((unsigned long *)priv + 241UL) != 0UL) { { wrqu->ap_addr.sa_family = 1U; memcpy((void *)(& wrqu->ap_addr.sa_data), (void const *)(& priv->bssid), 6UL); } } else { { memset((void *)(& wrqu->ap_addr.sa_data), 0, 6UL); } } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Getting WAP BSSID: %pM\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_wap", (char *)(& wrqu->ap_addr.sa_data)); } } else { } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_set_essid(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int length ; char ssid[129U] ; int tmp___0 ; int _min1 ; int _min2 ; int tmp___1 ; int tmp___2 ; char const *tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); } if ((unsigned int )wrqu->essid.flags == 0U) { if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Setting ESSID to ANY\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_essid"); } } else { } { ipw_disassociate((void *)priv); priv->config = priv->config & 4294967293U; ipw_associate((void *)priv); mutex_unlock(& priv->mutex); } return (0); } else { } _min1 = (int )wrqu->essid.length; _min2 = 32; length = _min1 < _min2 ? _min1 : _min2; priv->config = priv->config | 2U; if ((int )priv->essid_len == length) { { tmp___2 = memcmp((void const *)(& priv->essid), (void const *)extra, (size_t )length); } if (tmp___2 == 0) { if ((priv->status & 384U) != 0U) { if ((ipw_debug_level & 8U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s ESSID set to current ESSID.\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_essid"); } } else { } { mutex_unlock(& priv->mutex); } return (0); } else { } } else { } } else { } if ((ipw_debug_level & 8U) != 0U) { { tmp___3 = print_ssid((char *)(& ssid), (char const *)extra, (int )((u8 )length)); tmp___4 = preempt_count(); printk("\017ipw2200: %c %s Setting ESSID: \'%s\' (%d)\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_essid", tmp___3, length); } } else { } { priv->essid_len = (u8 )length; memcpy((void *)(& priv->essid), (void const *)extra, (size_t )priv->essid_len); } if ((ipw_debug_level & 4100U) != 0U) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s [re]association triggered due to ESSID change.\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_essid"); } } else { } { tmp___6 = ipw_disassociate((void *)priv); } if (tmp___6 == 0) { { ipw_associate((void *)priv); } } else { } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_get_essid(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; char ssid[129U] ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); } if (*((unsigned long *)priv + 241UL) != 0UL) { if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = print_ssid((char *)(& ssid), (char const *)(& priv->essid), (int )priv->essid_len); tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Getting essid: \'%s\'\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_essid", tmp___0); } } else { } { memcpy((void *)extra, (void const *)(& priv->essid), (size_t )priv->essid_len); wrqu->essid.length = (__u16 )priv->essid_len; wrqu->essid.flags = 1U; } } else { if ((ipw_debug_level & 8U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Getting essid: ANY\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_essid"); } } else { } wrqu->essid.length = 0U; wrqu->essid.flags = 0U; } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_set_nick(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; unsigned long _min1 ; unsigned long _min2 ; int tmp___1 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Setting nick to \'%s\'\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_nick", extra); } } else { } if ((unsigned int )wrqu->data.length > 32U) { return (-7); } else { } { mutex_lock_nested(& priv->mutex, 0U); _min1 = (unsigned long )wrqu->data.length; _min2 = 32UL; wrqu->data.length = (__u16 )(_min1 < _min2 ? _min1 : _min2); memset((void *)(& priv->nick), 0, 32UL); memcpy((void *)(& priv->nick), (void const *)extra, (size_t )wrqu->data.length); } if ((ipw_debug_level & 268435456U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s <<\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_nick"); } } else { } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_get_nick(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; size_t tmp___1 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Getting nick\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_nick"); } } else { } { mutex_lock_nested(& priv->mutex, 0U); tmp___1 = strlen((char const *)(& priv->nick)); wrqu->data.length = (__u16 )tmp___1; memcpy((void *)extra, (void const *)(& priv->nick), (size_t )wrqu->data.length); wrqu->data.flags = 1U; mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_set_sens(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int err ; int tmp___0 ; int tmp___1 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; err = 0; } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Setting roaming threshold to %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_sens", wrqu->sens.value); } } else { } if ((ipw_debug_level & 8U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Setting disassociate threshold to %d\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_sens", wrqu->sens.value * 3); } } else { } { mutex_lock_nested(& priv->mutex, 0U); } if ((unsigned int )wrqu->sens.fixed == 0U) { priv->roaming_threshold = 8U; priv->disassociate_threshold = 24U; goto out; } else { } if ((unsigned int )wrqu->sens.value - 1U > 29U) { err = -22; goto out; } else { } priv->roaming_threshold = (u32 )wrqu->sens.value; priv->disassociate_threshold = (u32 )(wrqu->sens.value * 3); out: { mutex_unlock(& priv->mutex); } return (err); } } static int ipw_wx_get_sens(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); wrqu->sens.fixed = 1U; wrqu->sens.value = (__s32 )priv->roaming_threshold; mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s GET roaming threshold -> %s %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_sens", (unsigned int )wrqu->power.disabled != 0U ? (char *)"OFF" : (char *)"ON", wrqu->power.value); } } else { } return (0); } } static int ipw_wx_set_rate(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; u32 target_rate ; u32 fixed ; u32 mask ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; target_rate = (u32 )wrqu->bitrate.value; } if (target_rate == 4294967295U) { fixed = 0U; mask = 4095U; goto apply; } else { } mask = 0U; fixed = (u32 )wrqu->bitrate.fixed; if (target_rate == 1000000U || fixed == 0U) { mask = mask | 1U; } else { } if (target_rate == 1000000U) { goto apply; } else { } if (target_rate == 2000000U || fixed == 0U) { mask = mask | 2U; } else { } if (target_rate == 2000000U) { goto apply; } else { } if (target_rate == 5500000U || fixed == 0U) { mask = mask | 4U; } else { } if (target_rate == 5500000U) { goto apply; } else { } if (target_rate == 6000000U || fixed == 0U) { mask = mask | 16U; } else { } if (target_rate == 6000000U) { goto apply; } else { } if (target_rate == 9000000U || fixed == 0U) { mask = mask | 32U; } else { } if (target_rate == 9000000U) { goto apply; } else { } if (target_rate == 11000000U || fixed == 0U) { mask = mask | 8U; } else { } if (target_rate == 11000000U) { goto apply; } else { } if (target_rate == 12000000U || fixed == 0U) { mask = mask | 64U; } else { } if (target_rate == 12000000U) { goto apply; } else { } if (target_rate == 18000000U || fixed == 0U) { mask = mask | 128U; } else { } if (target_rate == 18000000U) { goto apply; } else { } if (target_rate == 24000000U || fixed == 0U) { mask = mask | 256U; } else { } if (target_rate == 24000000U) { goto apply; } else { } if (target_rate == 36000000U || fixed == 0U) { mask = mask | 512U; } else { } if (target_rate == 36000000U) { goto apply; } else { } if (target_rate == 48000000U || fixed == 0U) { mask = mask | 1024U; } else { } if (target_rate == 48000000U) { goto apply; } else { } if (target_rate == 54000000U || fixed == 0U) { mask = mask | 2048U; } else { } if (target_rate == 54000000U) { goto apply; } else { } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s invalid rate specified, returning error\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_rate"); } } else { } return (-22); apply: ; if ((ipw_debug_level & 8U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Setting rate mask to 0x%08X [%s]\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_rate", mask, fixed != 0U ? (char *)"fixed" : (char *)"sub-rates"); } } else { } { mutex_lock_nested(& priv->mutex, 0U); } if (mask == 4095U) { { priv->config = priv->config & 4294967167U; ipw_set_fixed_rate(priv, (priv->ieee)->mode); } } else { priv->config = priv->config | 128U; } if ((u32 )priv->rates_mask == mask) { if ((ipw_debug_level & 8U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Mask set to current mask.\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_rate"); } } else { } { mutex_unlock(& priv->mutex); } return (0); } else { } priv->rates_mask = (u16 )mask; if ((ipw_debug_level & 4100U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s [re]association triggered due to rates change.\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_rate"); } } else { } { tmp___4 = ipw_disassociate((void *)priv); } if (tmp___4 == 0) { { ipw_associate((void *)priv); } } else { } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_get_rate(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); wrqu->bitrate.value = (__s32 )priv->last_rate; wrqu->bitrate.fixed = (priv->config & 128U) != 0U; mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s GET Rate -> %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_rate", wrqu->bitrate.value); } } else { } return (0); } } static int ipw_wx_set_rts(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); } if ((unsigned int )wrqu->rts.disabled != 0U || (unsigned int )wrqu->rts.fixed == 0U) { priv->rts_threshold = 2304U; } else { if ((unsigned int )wrqu->rts.value - 1U > 2303U) { { mutex_unlock(& priv->mutex); } return (-22); } else { } priv->rts_threshold = (u16 )wrqu->rts.value; } { ipw_send_rts_threshold(priv, (int )priv->rts_threshold); mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s SET RTS Threshold -> %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_rts", (int )priv->rts_threshold); } } else { } return (0); } } static int ipw_wx_get_rts(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); wrqu->rts.value = (__s32 )priv->rts_threshold; wrqu->rts.fixed = 0U; wrqu->rts.disabled = wrqu->rts.value == 2304; mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s GET RTS Threshold -> %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_rts", wrqu->rts.value); } } else { } return (0); } } static int ipw_wx_set_txpow(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int err ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; err = 0; mutex_lock_nested(& priv->mutex, 0U); tmp___0 = ipw_radio_kill_sw(priv, (int )wrqu->power.disabled); } if (tmp___0 != 0) { err = -115; goto out; } else { } if ((unsigned int )wrqu->power.fixed == 0U) { wrqu->power.value = 20; } else { } if ((unsigned int )wrqu->power.flags != 0U) { err = -22; goto out; } else { } if ((unsigned int )wrqu->power.value - 4294967284U > 32U) { err = -22; goto out; } else { } { priv->tx_power = (s8 )wrqu->power.value; err = ipw_set_tx_power(priv); } out: { mutex_unlock(& priv->mutex); } return (err); } } static int ipw_wx_get_txpow(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); wrqu->power.value = (__s32 )priv->tx_power; wrqu->power.fixed = 1U; wrqu->power.flags = 0U; wrqu->power.disabled = (priv->status & 12U) != 0U; mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s GET TX Power -> %s %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_txpow", (unsigned int )wrqu->power.disabled != 0U ? (char *)"OFF" : (char *)"ON", wrqu->power.value); } } else { } return (0); } } static int ipw_wx_set_frag(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); } if ((unsigned int )wrqu->frag.disabled != 0U || (unsigned int )wrqu->frag.fixed == 0U) { (priv->ieee)->fts = 2346U; } else { if ((unsigned int )wrqu->frag.value - 256U > 2090U) { { mutex_unlock(& priv->mutex); } return (-22); } else { } (priv->ieee)->fts = (unsigned int )((u16 )wrqu->frag.value) & 65534U; } { ipw_send_frag_threshold(priv, (int )((u16 )wrqu->frag.value)); mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s SET Frag Threshold -> %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_frag", wrqu->frag.value); } } else { } return (0); } } static int ipw_wx_get_frag(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); wrqu->frag.value = (__s32 )(priv->ieee)->fts; wrqu->frag.fixed = 0U; wrqu->frag.disabled = wrqu->frag.value == 2346; mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s GET Frag Threshold -> %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_frag", wrqu->frag.value); } } else { } return (0); } } static int ipw_wx_set_retry(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; } if (((int )wrqu->retry.flags & 8192) != 0 || (unsigned int )wrqu->retry.disabled != 0U) { return (-22); } else { } if (((int )wrqu->retry.flags & 4096) == 0) { return (0); } else { } if ((unsigned int )wrqu->retry.value > 254U) { return (-22); } else { } { mutex_lock_nested(& priv->mutex, 0U); } if (((int )wrqu->retry.flags & 16) != 0) { priv->short_retry_limit = (unsigned char )wrqu->retry.value; } else if (((int )wrqu->retry.flags & 32) != 0) { priv->long_retry_limit = (unsigned char )wrqu->retry.value; } else { priv->short_retry_limit = (unsigned char )wrqu->retry.value; priv->long_retry_limit = (unsigned char )wrqu->retry.value; } { ipw_send_retry_limit(priv, (int )priv->short_retry_limit, (int )priv->long_retry_limit); mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s SET retry limit -> short:%d long:%d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_retry", (int )priv->short_retry_limit, (int )priv->long_retry_limit); } } else { } return (0); } } static int ipw_wx_get_retry(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); wrqu->retry.disabled = 0U; } if (((int )wrqu->retry.flags & 61440) == 8192) { { mutex_unlock(& priv->mutex); } return (-22); } else { } if (((int )wrqu->retry.flags & 32) != 0) { wrqu->retry.flags = 4128U; wrqu->retry.value = (__s32 )priv->long_retry_limit; } else if (((int )wrqu->retry.flags & 16) != 0) { wrqu->retry.flags = 4112U; wrqu->retry.value = (__s32 )priv->short_retry_limit; } else { wrqu->retry.flags = 4096U; wrqu->retry.value = (__s32 )priv->short_retry_limit; } { mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s GET retry -> %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_retry", wrqu->retry.value); } } else { } return (0); } } static int ipw_wx_set_scan(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; struct iw_scan_req *req ; struct delayed_work *work ; int len ; int _min1 ; int _min2 ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; req = (struct iw_scan_req *)extra; work = (struct delayed_work *)0; mutex_lock_nested(& priv->mutex, 0U); priv->user_requested_scan = 1; } if ((unsigned int )wrqu->data.length == 316U) { if (((int )wrqu->data.flags & 2) != 0) { { _min1 = (int )req->essid_len; _min2 = 32; len = _min1 < _min2 ? _min1 : _min2; memcpy((void *)(& priv->direct_scan_ssid), (void const *)(& req->essid), (size_t )len); priv->direct_scan_ssid_len = (u8 )len; work = & priv->request_direct_scan; } } else if ((unsigned int )req->scan_type == 1U) { work = & priv->request_passive_scan; } else { } } else { work = & priv->request_scan; } { mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Start scan\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_scan"); } } else { } { schedule_delayed_work(work, 0UL); } return (0); } } static int ipw_wx_get_scan(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; tmp___0 = libipw_wx_get_scan(priv->ieee, info, wrqu, extra); } return (tmp___0); } } static int ipw_wx_set_encode(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *key ) { struct ipw_priv *priv ; void *tmp ; int ret ; u32 cap ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; cap = priv->capability; mutex_lock_nested(& priv->mutex, 0U); ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key); } if ((cap != priv->capability && (priv->ieee)->iw_mode == 1) && (priv->status & 128U) != 0U) { { ipw_disassociate((void *)priv); } } else { } { mutex_unlock(& priv->mutex); } return (ret); } } static int ipw_wx_get_encode(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *key ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; tmp___0 = libipw_wx_get_encode(priv->ieee, info, wrqu, key); } return (tmp___0); } } static int ipw_wx_set_power(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int err ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); } if ((unsigned int )wrqu->power.disabled != 0U) { { priv->power_mode = priv->power_mode & 15U; err = ipw_send_power_mode(priv, 0U); } if (err != 0) { if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s failed setting power mode.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_power"); } } else { } { mutex_unlock(& priv->mutex); } return (err); } else { } if ((ipw_debug_level & 8U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s SET Power Management Mode -> off\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_power"); } } else { } { mutex_unlock(& priv->mutex); } return (0); } else { } { if (((int )wrqu->power.flags & 3840) == 0) { goto case_0; } else { } if (((int )wrqu->power.flags & 3840) == 3840) { goto case_3840; } else { } if (((int )wrqu->power.flags & 3840) == 768) { goto case_768; } else { } goto switch_default; case_0: /* CIL Label */ ; case_3840: /* CIL Label */ ; case_768: /* CIL Label */ ; goto ldv_51840; switch_default: /* CIL Label */ ; if ((ipw_debug_level & 8U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s SET PM Mode: %X not supported.\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_power", (int )wrqu->power.flags); } } else { } { mutex_unlock(& priv->mutex); } return (-95); switch_break: /* CIL Label */ ; } ldv_51840: ; if ((priv->power_mode & 15U) == 6U) { priv->power_mode = 23U; } else { priv->power_mode = priv->power_mode | 16U; } { err = ipw_send_power_mode(priv, priv->power_mode & 15U); } if (err != 0) { if ((ipw_debug_level & 8U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s failed setting power mode.\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_power"); } } else { } { mutex_unlock(& priv->mutex); } return (err); } else { } if ((ipw_debug_level & 8U) != 0U) { { tmp___4 = preempt_count(); printk("\017ipw2200: %c %s SET Power Management Mode -> 0x%02X\n", ((unsigned long )tmp___4 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_power", priv->power_mode); } } else { } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_get_power(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); } if ((priv->power_mode & 16U) == 0U) { wrqu->power.disabled = 1U; } else { wrqu->power.disabled = 0U; } { mutex_unlock(& priv->mutex); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s GET Power Management Mode -> %02X\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_power", priv->power_mode); } } else { } return (0); } } static int ipw_wx_set_powermode(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int mode ; int err ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mode = *((int *)extra); mutex_lock_nested(& priv->mutex, 0U); } if ((unsigned int )mode - 1U > 6U) { mode = 6; } else { } if ((priv->power_mode & 15U) != (u32 )mode) { { err = ipw_send_power_mode(priv, (u32 )mode); } if (err != 0) { if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s failed setting power mode.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_powermode"); } } else { } { mutex_unlock(& priv->mutex); } return (err); } else { } priv->power_mode = (u32 )(mode | 16); } else { } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_get_powermode(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int level ; char *p ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; level = (int )priv->power_mode & 15; p = extra; tmp___0 = snprintf(p, 80UL, "Power save level: %d ", level); p = p + (unsigned long )tmp___0; } { if (level == 6) { goto case_6; } else { } if (level == 7) { goto case_7; } else { } goto switch_default; case_6: /* CIL Label */ { tmp___1 = snprintf(p, (size_t )(((long )extra - (long )p) + 80L), "(AC)"); p = p + (unsigned long )tmp___1; } goto ldv_51870; case_7: /* CIL Label */ { tmp___2 = snprintf(p, (size_t )(((long )extra - (long )p) + 80L), "(BATTERY)"); p = p + (unsigned long )tmp___2; } goto ldv_51870; switch_default: /* CIL Label */ { tmp___3 = snprintf(p, (size_t )(((long )extra - (long )p) + 80L), "(Timeout %dms, Period %dms)", (int )timeout_duration[level + -1] / 1000, (int )period_duration[level + -1] / 1000); p = p + (unsigned long )tmp___3; } switch_break: /* CIL Label */ ; } ldv_51870: ; if ((priv->power_mode & 16U) == 0U) { { tmp___4 = snprintf(p, (size_t )(((long )extra - (long )p) + 80L), " OFF"); p = p + (unsigned long )tmp___4; } } else { } wrqu->data.length = (unsigned int )((int )((__u16 )((long )p)) - (int )((__u16 )((long )extra))) + 1U; return (0); } } static int ipw_wx_set_wireless_mode(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int mode ; u8 band ; u8 modulation ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mode = *((int *)extra); band = 0U; modulation = 0U; } if (mode == 0 || (mode & -8) != 0) { { printk("\fipw2200: Attempt to set invalid wireless mode: %d\n", mode); } return (-22); } else { } { mutex_lock_nested(& priv->mutex, 0U); } if ((unsigned int )priv->adapter == 2U) { (priv->ieee)->abg_true = 1; if (mode & 1) { band = (u8 )((unsigned int )band | 2U); modulation = (u8 )((unsigned int )modulation | 2U); } else { (priv->ieee)->abg_true = 0; } } else { if (mode & 1) { { printk("\fipw2200: Attempt to set 2200BG into 802.11a mode\n"); mutex_unlock(& priv->mutex); } return (-22); } else { } (priv->ieee)->abg_true = 0; } if ((mode & 2) != 0) { band = (u8 )((unsigned int )band | 1U); modulation = (u8 )((unsigned int )modulation | 1U); } else { (priv->ieee)->abg_true = 0; } if ((mode & 4) != 0) { band = (u8 )((unsigned int )band | 1U); modulation = (u8 )((unsigned int )modulation | 2U); } else { (priv->ieee)->abg_true = 0; } { (priv->ieee)->mode = mode; (priv->ieee)->freq_band = (int )band; (priv->ieee)->modulation = (int )modulation; init_supported_rates(priv, & priv->rates); } if ((ipw_debug_level & 4100U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s [re]association triggered due to mode change.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_wireless_mode"); } } else { } { tmp___1 = ipw_disassociate((void *)priv); } if (tmp___1 == 0) { { ipw_send_supported_rates(priv, & priv->rates); ipw_associate((void *)priv); } } else { } { ipw_led_band_on(priv); } if ((ipw_debug_level & 8U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s PRIV SET MODE: %c%c%c\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_wireless_mode", mode & 1 ? 97 : 46, (mode & 2) != 0 ? 98 : 46, (mode & 4) != 0 ? 103 : 46); } } else { } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_get_wireless_mode(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; size_t tmp___1 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); } { if ((priv->ieee)->mode == 1) { goto case_1; } else { } if ((priv->ieee)->mode == 2) { goto case_2; } else { } if ((priv->ieee)->mode == 3) { goto case_3; } else { } if ((priv->ieee)->mode == 4) { goto case_4; } else { } if ((priv->ieee)->mode == 5) { goto case_5; } else { } if ((priv->ieee)->mode == 6) { goto case_6; } else { } if ((priv->ieee)->mode == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ { strncpy(extra, "802.11a (1)", 80UL); } goto ldv_51892; case_2: /* CIL Label */ { strncpy(extra, "802.11b (2)", 80UL); } goto ldv_51892; case_3: /* CIL Label */ { strncpy(extra, "802.11ab (3)", 80UL); } goto ldv_51892; case_4: /* CIL Label */ { strncpy(extra, "802.11g (4)", 80UL); } goto ldv_51892; case_5: /* CIL Label */ { strncpy(extra, "802.11ag (5)", 80UL); } goto ldv_51892; case_6: /* CIL Label */ { strncpy(extra, "802.11bg (6)", 80UL); } goto ldv_51892; case_7: /* CIL Label */ { strncpy(extra, "802.11abg (7)", 80UL); } goto ldv_51892; switch_default: /* CIL Label */ { strncpy(extra, "unknown", 80UL); } goto ldv_51892; switch_break: /* CIL Label */ ; } ldv_51892: ; if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s PRIV GET MODE: %s\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_get_wireless_mode", extra); } } else { } { tmp___1 = strlen((char const *)extra); wrqu->data.length = (unsigned int )((__u16 )tmp___1) + 1U; mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_set_preamble(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int mode ; int tmp___0 ; int tmp___1 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mode = *((int *)extra); mutex_lock_nested(& priv->mutex, 0U); } if (mode == 1) { if ((priv->config & 16U) == 0U) { priv->config = priv->config | 16U; if ((ipw_debug_level & 4100U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s [re]association triggered due to preamble change.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_preamble"); } } else { } { tmp___1 = ipw_disassociate((void *)priv); } if (tmp___1 == 0) { { ipw_associate((void *)priv); } } else { } } else { } goto done; } else { } if (mode == 0) { priv->config = priv->config & 4294967279U; goto done; } else { } { mutex_unlock(& priv->mutex); } return (-22); done: { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_get_preamble(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; mutex_lock_nested(& priv->mutex, 0U); } if ((priv->config & 16U) != 0U) { { snprintf((char *)(& wrqu->name), 16UL, "long (1)"); } } else { { snprintf((char *)(& wrqu->name), 16UL, "auto (0)"); } } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_set_monitor(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int *parms ; int enable ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; parms = (int *)extra; enable = *parms > 0; mutex_lock_nested(& priv->mutex, 0U); } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s SET MONITOR: %d %d\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_set_monitor", enable, *(parms + 1UL)); } } else { } if (enable != 0) { if ((priv->ieee)->iw_mode != 6) { { (priv->net_dev)->type = 803U; schedule_work(& priv->adapter_restart); } } else { } { ipw_set_channel(priv, (int )((u8 )*(parms + 1UL))); } } else { if ((priv->ieee)->iw_mode != 6) { { mutex_unlock(& priv->mutex); } return (0); } else { } { (priv->net_dev)->type = 1U; schedule_work(& priv->adapter_restart); } } { mutex_unlock(& priv->mutex); } return (0); } } static int ipw_wx_reset(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s RESET\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_reset"); } } else { } { schedule_work(& priv->adapter_restart); } return (0); } } static int ipw_wx_sw_reset(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct ipw_priv *priv ; void *tmp ; union iwreq_data wrqu_sec ; int ret ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; wrqu_sec.encoding.pointer = 0; wrqu_sec.encoding.length = (unsigned short)0; wrqu_sec.encoding.flags = 32768U; } if ((ipw_debug_level & 8U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s SW_RESET\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_sw_reset"); } } else { } { mutex_lock_nested(& priv->mutex, 0U); ret = ipw_sw_reset(priv, 2); } if (ret == 0) { { free_firmware(); ipw_adapter_restart((void *)priv); } } else { } { ipw_radio_kill_sw(priv, (int )priv->status & 8); mutex_unlock(& priv->mutex); libipw_wx_set_encode(priv->ieee, info, & wrqu_sec, (char *)0); mutex_lock_nested(& priv->mutex, 0U); } if ((priv->status & 12U) == 0U) { if ((ipw_debug_level & 4100U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s [re]association triggered due to sw reset.\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_wx_sw_reset"); } } else { } { tmp___2 = ipw_disassociate((void *)priv); } if (tmp___2 == 0) { { ipw_associate((void *)priv); } } else { } } else { } { mutex_unlock(& priv->mutex); } return (0); } } static iw_handler ipw_wx_handlers[54U] = { 0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& cfg80211_wext_giwname), 0, 0, & ipw_wx_set_freq, & ipw_wx_get_freq, & ipw_wx_set_mode, & ipw_wx_get_mode, & ipw_wx_set_sens, & ipw_wx_get_sens, 0, & ipw_wx_get_range, 0, 0, 0, 0, & iw_handler_set_spy, & iw_handler_get_spy, & iw_handler_set_thrspy, & iw_handler_get_thrspy, & ipw_wx_set_wap, & ipw_wx_get_wap, & ipw_wx_set_mlme, 0, & ipw_wx_set_scan, & ipw_wx_get_scan, & ipw_wx_set_essid, & ipw_wx_get_essid, & ipw_wx_set_nick, & ipw_wx_get_nick, 0, 0, & ipw_wx_set_rate, & ipw_wx_get_rate, & ipw_wx_set_rts, & ipw_wx_get_rts, & ipw_wx_set_frag, & ipw_wx_get_frag, & ipw_wx_set_txpow, & ipw_wx_get_txpow, & ipw_wx_set_retry, & ipw_wx_get_retry, & ipw_wx_set_encode, & ipw_wx_get_encode, & ipw_wx_set_power, & ipw_wx_get_power, 0, 0, & ipw_wx_set_genie, & ipw_wx_get_genie, & ipw_wx_set_auth, & ipw_wx_get_auth, & ipw_wx_set_encodeext, & ipw_wx_get_encodeext}; static struct iw_priv_args ipw_priv_args[9U] = { {35808U, 18433U, (unsigned short)0, {'s', 'e', 't', '_', 'p', 'o', 'w', 'e', 'r', '\000'}}, {35809U, (unsigned short)0, 10320U, {'g', 'e', 't', '_', 'p', 'o', 'w', 'e', 'r', '\000'}}, {35810U, 18433U, (unsigned short)0, {'s', 'e', 't', '_', 'm', 'o', 'd', 'e', '\000'}}, {35811U, (unsigned short)0, 10320U, {'g', 'e', 't', '_', 'm', 'o', 'd', 'e', '\000'}}, {35812U, 18433U, (unsigned short)0, {'s', 'e', 't', '_', 'p', 'r', 'e', 'a', 'm', 'b', 'l', 'e', '\000'}}, {35813U, (unsigned short)0, 10256U, {'g', 'e', 't', '_', 'p', 'r', 'e', 'a', 'm', 'b', 'l', 'e', '\000'}}, {35814U, 18432U, 0U, {'r', 'e', 's', 'e', 't', '\000'}}, {35815U, 18432U, 0U, {'s', 'w', '_', 'r', 'e', 's', 'e', 't', '\000'}}, {35816U, 18434U, 0U, {'m', 'o', 'n', 'i', 't', 'o', 'r', '\000'}}}; static iw_handler ipw_priv_handler[9U] = { & ipw_wx_set_powermode, & ipw_wx_get_powermode, & ipw_wx_set_wireless_mode, & ipw_wx_get_wireless_mode, & ipw_wx_set_preamble, & ipw_wx_get_preamble, & ipw_wx_reset, & ipw_wx_sw_reset, & ipw_wx_set_monitor}; static struct iw_handler_def ipw_wx_handler_def = {(iw_handler (* const *)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& ipw_wx_handlers), 54U, 9U, 9U, (iw_handler (* const *)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& ipw_priv_handler), (struct iw_priv_args const *)(& ipw_priv_args), & ipw_get_wireless_stats}; static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev ) { struct ipw_priv *priv ; void *tmp ; struct iw_statistics *wstats ; s16 tmp___0 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; wstats = & priv->wstats; } if ((priv->status & 128U) == 0U) { wstats->miss.beacon = 0U; wstats->discard.retries = 0U; wstats->qual.qual = 0U; wstats->qual.level = 0U; wstats->qual.noise = 0U; wstats->qual.updated = 7U; wstats->qual.updated = (__u8 )((unsigned int )wstats->qual.updated | 112U); return (wstats); } else { } { wstats->qual.qual = (__u8 )priv->quality; wstats->qual.level = (__u8 )priv->exp_avg_rssi; wstats->qual.noise = (__u8 )priv->exp_avg_noise; wstats->qual.updated = 15U; tmp___0 = average_value(& priv->average_missed_beacons); wstats->miss.beacon = (__u32 )tmp___0; wstats->discard.retries = priv->last_tx_failures; wstats->discard.code = (priv->ieee)->ieee_stats.rx_discards_undecryptable; } return (wstats); } } static void init_sys_config(struct ipw_sys_config *sys_config ) { { { memset((void *)sys_config, 0, 20UL); sys_config->bt_coexistence = 0U; sys_config->answer_broadcast_ssid_probe = 0U; sys_config->accept_all_data_frames = 0U; sys_config->accept_non_directed_frames = 1U; sys_config->exclude_unicast_unencrypted = 0U; sys_config->disable_unicast_decryption = 1U; sys_config->exclude_multicast_unencrypted = 0U; sys_config->disable_multicast_decryption = 1U; } if ((unsigned int )antenna > 3U) { antenna = 0; } else { } sys_config->antenna_diversity = (u8 )antenna; sys_config->pass_crc_to_host = 0U; sys_config->dot11g_auto_detection = 0U; sys_config->enable_cts_to_self = 0U; sys_config->bt_coexist_collision_thr = 0U; sys_config->pass_noise_stats_to_host = 1U; sys_config->silence_threshold = 30U; return; } } static int ipw_net_open(struct net_device *dev ) { int tmp ; { if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s dev->open\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_net_open"); } } else { } { netif_start_queue(dev); } return (0); } } static int ipw_net_stop(struct net_device *dev ) { int tmp ; { if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s dev->close\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_net_stop"); } } else { } { netif_stop_queue(dev); } return (0); } } static int ipw_tx_skb(struct ipw_priv *priv , struct libipw_txb *txb , int pri ) { struct libipw_hdr_3addrqos *hdr ; int i ; struct tfd_frame *tfd ; int tx_id ; int tmp ; struct clx2_tx_queue *txq ; struct clx2_queue *q ; u8 id ; u8 hdr_len ; u8 unicast ; int fc ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; long tmp___5 ; unsigned char _min1 ; u8 _min2 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; dma_addr_t tmp___9 ; struct sk_buff *skb ; u16 remaining_bytes ; int j ; int size ; unsigned char *tmp___10 ; dma_addr_t tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; { { hdr = (struct libipw_hdr_3addrqos *)(txb->fragments[0])->data; i = 0; tmp = ipw_get_tx_queue_number(priv, (int )((u16 )pri)); tx_id = tmp; txq = (struct clx2_tx_queue *)(& priv->txq) + (unsigned long )tx_id; q = & txq->q; } if ((priv->status & 128U) == 0U) { goto drop; } else { } { tmp___0 = libipw_get_hdrlen((int )hdr->frame_ctl); hdr_len = (u8 )tmp___0; } { if ((priv->ieee)->iw_mode == 1) { goto case_1; } else { } if ((priv->ieee)->iw_mode == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___1 = is_multicast_ether_addr((u8 const *)(& hdr->addr1)); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } { unicast = (u8 )tmp___2; id = ipw_find_station(priv, (u8 *)(& hdr->addr1)); } if ((unsigned int )id == 255U) { { id = ipw_add_station(priv, (u8 *)(& hdr->addr1)); } if ((unsigned int )id == 255U) { { printk("\fipw2200: Attempt to send data to invalid cell: %pM\n", (u8 *)(& hdr->addr1)); } goto drop; } else { } } else { } goto ldv_51999; case_2: /* CIL Label */ ; switch_default: /* CIL Label */ { tmp___3 = is_multicast_ether_addr((u8 const *)(& hdr->addr3)); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } unicast = (u8 )tmp___4; id = 0U; goto ldv_51999; switch_break: /* CIL Label */ ; } ldv_51999: { tfd = txq->bd + (unsigned long )q->first_empty; *(txq->txb + (unsigned long )q->first_empty) = txb; memset((void *)tfd, 0, 128UL); tfd->u.data.station_number = id; tfd->control_flags.message_type = 0U; tfd->control_flags.control_bits = 4U; tfd->u.data.cmd_id = 11U; tfd->u.data.len = txb->payload_size; } if ((unsigned int )priv->assoc_request.ieee_mode == 1U) { tfd->u.data.tx_flags_ext = (u8 )((unsigned int )tfd->u.data.tx_flags_ext | 1U); } else { tfd->u.data.tx_flags_ext = tfd->u.data.tx_flags_ext; } if ((unsigned int )priv->assoc_request.preamble_length == 4U) { tfd->u.data.tx_flags = (u8 )((unsigned int )tfd->u.data.tx_flags | 4U); } else { } { fc = (int )hdr->frame_ctl; hdr->frame_ctl = (unsigned int )((unsigned short )fc) & 64511U; memcpy((void *)(& tfd->u.data.tfd.tfd_24.mchdr), (void const *)hdr, (size_t )hdr_len); tmp___5 = ldv__builtin_expect((unsigned int )unicast != 0U, 1L); } if (tmp___5 != 0L) { tfd->u.data.tx_flags = (u8 )((unsigned int )tfd->u.data.tx_flags | 128U); } else { } if ((unsigned int )txb->encrypted != 0U && (priv->ieee)->host_encrypt == 0) { { if ((int )(priv->ieee)->sec.level == 4) { goto case_4; } else { } if ((int )(priv->ieee)->sec.level == 2) { goto case_2___0; } else { } if ((int )(priv->ieee)->sec.level == 1) { goto case_1___0; } else { } if ((int )(priv->ieee)->sec.level == 0) { goto case_0; } else { } goto switch_default___0; case_4: /* CIL Label */ tfd->u.data.tfd.tfd_24.mchdr.frame_ctl = (__le16 )((unsigned int )tfd->u.data.tfd.tfd_24.mchdr.frame_ctl | 16384U); if ((unsigned int )unicast == 0U) { tfd->u.data.tx_flags = (u8 )((unsigned int )tfd->u.data.tx_flags | 128U); } else { } tfd->u.data.tx_flags = (unsigned int )tfd->u.data.tx_flags & 223U; tfd->u.data.tx_flags_ext = (u8 )((unsigned int )tfd->u.data.tx_flags_ext | 8U); tfd->u.data.key_index = 0U; tfd->u.data.key_index = (u8 )((unsigned int )tfd->u.data.key_index | 32U); goto ldv_52003; case_2___0: /* CIL Label */ tfd->u.data.tfd.tfd_24.mchdr.frame_ctl = (__le16 )((unsigned int )tfd->u.data.tfd.tfd_24.mchdr.frame_ctl | 16384U); tfd->u.data.tx_flags = (unsigned int )tfd->u.data.tx_flags & 223U; tfd->u.data.tx_flags_ext = (u8 )((unsigned int )tfd->u.data.tx_flags_ext | 12U); tfd->u.data.key_index = 32U; goto ldv_52003; case_1___0: /* CIL Label */ tfd->u.data.tfd.tfd_24.mchdr.frame_ctl = (__le16 )((unsigned int )tfd->u.data.tfd.tfd_24.mchdr.frame_ctl | 16384U); tfd->u.data.key_index = (u8 )(priv->ieee)->crypt_info.tx_keyidx; if ((unsigned int )(priv->ieee)->sec.key_sizes[(priv->ieee)->crypt_info.tx_keyidx] <= 40U) { tfd->u.data.key_index = (u8 )((unsigned int )tfd->u.data.key_index | 64U); } else { tfd->u.data.key_index = (u8 )((unsigned int )tfd->u.data.key_index | 128U); } goto ldv_52003; case_0: /* CIL Label */ ; goto ldv_52003; switch_default___0: /* CIL Label */ { printk("\vUnknown security level %d\n", (int )(priv->ieee)->sec.level); } goto ldv_52003; switch_break___0: /* CIL Label */ ; } ldv_52003: ; } else { tfd->u.data.tx_flags = (u8 )((unsigned int )tfd->u.data.tx_flags | 32U); } if ((fc & 128) != 0) { { ipw_qos_set_tx_queue_command(priv, (int )((u16 )pri), & tfd->u.data); } } else { } _min1 = 4U; _min2 = txb->nr_frags; tfd->u.data.num_chunks = (unsigned int )((int )_min1 < (int )_min2 ? (int )_min1 : (int )_min2); if ((ipw_debug_level & 2097152U) != 0U) { { tmp___6 = preempt_count(); printk("\017ipw2200: %c %s %i fragments being sent as %i chunks.\n", ((unsigned long )tmp___6 & 2096896UL) != 0UL ? 73 : 85, "ipw_tx_skb", (int )txb->nr_frags, tfd->u.data.num_chunks); } } else { } i = 0; goto ldv_52013; ldv_52012: ; if ((ipw_debug_level & 2097152U) != 0U) { { tmp___7 = preempt_count(); printk("\017ipw2200: %c %s Adding fragment %i of %i (%d bytes).\n", ((unsigned long )tmp___7 & 2096896UL) != 0UL ? 73 : 85, "ipw_tx_skb", i, tfd->u.data.num_chunks, (txb->fragments[i])->len - (unsigned int )hdr_len); } } else { } if ((ipw_debug_level & 8388608U) != 0U) { { tmp___8 = preempt_count(); printk("\017ipw2200: %c %s Dumping TX packet frag %i of %i (%d bytes):\n", ((unsigned long )tmp___8 & 2096896UL) != 0UL ? 73 : 85, "ipw_tx_skb", i, tfd->u.data.num_chunks, (txb->fragments[i])->len - (unsigned int )hdr_len); } } else { } { printk_buf(8388608, (u8 const *)(txb->fragments[i])->data + (unsigned long )hdr_len, (txb->fragments[i])->len - (unsigned int )hdr_len); tmp___9 = pci_map_single(priv->pci_dev, (void *)(txb->fragments[i])->data + (unsigned long )hdr_len, (size_t )((txb->fragments[i])->len - (unsigned int )hdr_len), 1); tfd->u.data.chunk_ptr[i] = (unsigned int )tmp___9; tfd->u.data.chunk_len[i] = (int )((unsigned short )(txb->fragments[i])->len) - (int )((unsigned short )hdr_len); i = i + 1; } ldv_52013: ; if ((__le32 )i < tfd->u.data.num_chunks) { goto ldv_52012; } else { } if (i != (int )txb->nr_frags) { remaining_bytes = 0U; j = i; goto ldv_52019; ldv_52018: remaining_bytes = (int )remaining_bytes + ((int )((u16 )(txb->fragments[j])->len) - (int )((u16 )hdr_len)); j = j + 1; ldv_52019: ; if (j < (int )txb->nr_frags) { goto ldv_52018; } else { } { printk("\016Trying to reallocate for %d bytes\n", (int )remaining_bytes); skb = alloc_skb((unsigned int )remaining_bytes, 32U); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { tfd->u.data.chunk_len[i] = remaining_bytes; j = i; goto ldv_52023; ldv_52022: { size = (int )((txb->fragments[j])->len - (unsigned int )hdr_len); printk("\016Adding frag %d %d...\n", j, size); tmp___10 = skb_put(skb, (unsigned int )size); memcpy((void *)tmp___10, (void const *)(txb->fragments[j])->data + (unsigned long )hdr_len, (size_t )size); j = j + 1; } ldv_52023: ; if (j < (int )txb->nr_frags) { goto ldv_52022; } else { } { dev_kfree_skb_any(txb->fragments[i]); txb->fragments[i] = skb; tmp___11 = pci_map_single(priv->pci_dev, (void *)skb->data, (size_t )remaining_bytes, 1); tfd->u.data.chunk_ptr[i] = (unsigned int )tmp___11; le32_add_cpu(& tfd->u.data.num_chunks, 1U); } } else { } } else { } { q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___12 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___12 & 2096896UL) != 0UL ? 73 : 85, "ipw_tx_skb", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 10392, q->reg_w, (unsigned int )q->first_empty); } } else { } { _ipw_write32(priv, (unsigned long )q->reg_w, (u32 )q->first_empty); tmp___13 = ipw_tx_queue_space((struct clx2_queue const *)q); } if (tmp___13 < q->high_mark) { { netif_stop_queue(priv->net_dev); } } else { } return (0); drop: ; if ((ipw_debug_level & 8192U) != 0U) { { tmp___14 = preempt_count(); printk("\017ipw2200: %c %s Silently dropping Tx packet.\n", ((unsigned long )tmp___14 & 2096896UL) != 0UL ? 73 : 85, "ipw_tx_skb"); } } else { } { libipw_txb_free(txb); } return (0); } } static int ipw_net_is_queue_full(struct net_device *dev , int pri ) { struct ipw_priv *priv ; void *tmp ; int tx_id ; int tmp___0 ; struct clx2_tx_queue *txq ; int tmp___1 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; tmp___0 = ipw_get_tx_queue_number(priv, (int )((u16 )pri)); tx_id = tmp___0; txq = (struct clx2_tx_queue *)(& priv->txq) + (unsigned long )tx_id; tmp___1 = ipw_tx_queue_space((struct clx2_queue const *)(& txq->q)); } if (tmp___1 < txq->q.high_mark) { return (1); } else { } return (0); } } static void ipw_handle_promiscuous_tx(struct ipw_priv *priv , struct libipw_txb *txb ) { struct libipw_rx_stats dummystats ; struct ieee80211_hdr *hdr ; u8 n ; u16 filter ; int hdr_only ; struct sk_buff *src ; struct sk_buff *dst ; struct ieee80211_radiotap_header *rt_hdr ; int len ; unsigned char *tmp ; unsigned char *tmp___0 ; unsigned char *tmp___1 ; unsigned char *tmp___2 ; unsigned char *tmp___3 ; unsigned char *tmp___4 ; int tmp___5 ; { filter = (u16 )(priv->prom_priv)->filter; hdr_only = 0; if (((int )filter & 16) != 0) { return; } else { } { memset((void *)(& dummystats), 0, 32UL); hdr = (struct ieee80211_hdr *)(txb->fragments[0])->data; } if (((int )hdr->frame_control & 12) == 0) { if (((int )filter & 128) != 0) { return; } else { } if (((int )filter & 2) != 0) { hdr_only = 1; } else { } } else if (((int )hdr->frame_control & 12) == 4) { if (((int )filter & 64) != 0) { return; } else { } if ((int )filter & 1) { hdr_only = 1; } else { } } else if (((int )hdr->frame_control & 12) == 8) { if (((int )filter & 256) != 0) { return; } else { } if (((int )filter & 4) != 0) { hdr_only = 1; } else { } } else { } n = 0U; goto ldv_52047; ldv_52046: src = txb->fragments[(int )n]; if (hdr_only != 0) { { hdr = (struct ieee80211_hdr *)src->data; len = libipw_get_hdrlen((int )hdr->frame_control); } } else { len = (int )src->len; } { dst = alloc_skb((unsigned int )len + 12U, 32U); } if ((unsigned long )dst == (unsigned long )((struct sk_buff *)0)) { goto ldv_52045; } else { } { tmp = skb_put(dst, 8U); rt_hdr = (struct ieee80211_radiotap_header *)tmp; rt_hdr->it_version = 0U; rt_hdr->it_pad = 0U; rt_hdr->it_present = 0U; rt_hdr->it_present = rt_hdr->it_present | 8U; tmp___0 = skb_put(dst, 2U); *((__le16 *)tmp___0) = (unsigned int )priv->channel <= 14U ? ((unsigned int )priv->channel != 14U ? (unsigned int )((unsigned short )priv->channel) * 5U + 2407U : 2484U) : (unsigned int )((unsigned short )((int )priv->channel + 1000)) * 5U; } if ((unsigned int )priv->channel > 14U) { { tmp___1 = skb_put(dst, 2U); *((__le16 *)tmp___1) = 320U; } } else if ((priv->ieee)->mode == 2) { { tmp___2 = skb_put(dst, 2U); *((__le16 *)tmp___2) = 160U; } } else { { tmp___3 = skb_put(dst, 2U); *((__le16 *)tmp___3) = 192U; } } { rt_hdr->it_len = (unsigned short )dst->len; tmp___4 = skb_put(dst, (unsigned int )len); skb_copy_from_linear_data((struct sk_buff const *)src, (void *)tmp___4, (unsigned int const )len); tmp___5 = libipw_rx((priv->prom_priv)->ieee, dst, & dummystats); } if (tmp___5 == 0) { { dev_kfree_skb_any(dst); } } else { } ldv_52045: n = (u8 )((int )n + 1); ldv_52047: ; if ((int )n < (int )txb->nr_frags) { goto ldv_52046; } else { } return; } } static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb , struct net_device *dev , int pri ) { struct ipw_priv *priv ; void *tmp ; unsigned long flags ; netdev_tx_t ret ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; } if ((ipw_debug_level & 8388608U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s dev->xmit(%d bytes)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_net_hard_start_xmit", (int )txb->payload_size); } } else { } { ldv___ldv_spin_lock_143(& priv->lock); } if (rtap_iface != 0) { { tmp___1 = netif_running((struct net_device const *)priv->prom_net_dev); } if ((int )tmp___1) { { ipw_handle_promiscuous_tx(priv, txb); } } else { } } else { } { tmp___2 = ipw_tx_skb(priv, txb, pri); ret = (netdev_tx_t )tmp___2; } if ((int )ret == 0) { { __ipw_led_activity_on(priv); } } else { } { ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } return (ret); } } static void ipw_net_set_multicast_list(struct net_device *dev ) { { return; } } static int ipw_net_set_mac_address(struct net_device *dev , void *p ) { struct ipw_priv *priv ; void *tmp ; struct sockaddr *addr ; bool tmp___0 ; int tmp___1 ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { mutex_lock_nested(& priv->mutex, 0U); priv->config = priv->config | 8U; memcpy((void *)(& priv->mac_addr), (void const *)(& addr->sa_data), 6UL); printk("\016%s: Setting MAC to %pM\n", (char *)(& (priv->net_dev)->name), (u8 *)(& priv->mac_addr)); schedule_work(& priv->adapter_restart); mutex_unlock(& priv->mutex); } return (0); } } static void ipw_ethtool_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct ipw_priv *p ; void *tmp ; char vers[64U] ; char date[32U] ; u32 len ; char const *tmp___0 ; { { tmp = libipw_priv(dev); p = (struct ipw_priv *)tmp; strlcpy((char *)(& info->driver), "ipw2200", 32UL); strlcpy((char *)(& info->version), "1.2.2kdmprq", 32UL); len = 64U; ipw_get_ordinal(p, 61953U, (void *)(& vers), & len); len = 32U; ipw_get_ordinal(p, 61954U, (void *)(& date), & len); snprintf((char *)(& info->fw_version), 32UL, "%s (%s)", (char *)(& vers), (char *)(& date)); tmp___0 = pci_name((struct pci_dev const *)p->pci_dev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); info->eedump_len = 256U; } return; } } static u32 ipw_ethtool_get_link(struct net_device *dev ) { struct ipw_priv *priv ; void *tmp ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; } return ((priv->status & 128U) != 0U); } } static int ipw_ethtool_get_eeprom_len(struct net_device *dev ) { { return (256); } } static int ipw_ethtool_get_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct ipw_priv *p ; void *tmp ; { { tmp = libipw_priv(dev); p = (struct ipw_priv *)tmp; } if (eeprom->offset + eeprom->len > 256U) { return (-22); } else { } { mutex_lock_nested(& p->mutex, 0U); memcpy((void *)bytes, (void const *)(& p->eeprom) + (unsigned long )eeprom->offset, (size_t )eeprom->len); mutex_unlock(& p->mutex); } return (0); } } static int ipw_ethtool_set_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct ipw_priv *p ; void *tmp ; int i ; int tmp___0 ; { { tmp = libipw_priv(dev); p = (struct ipw_priv *)tmp; } if (eeprom->offset + eeprom->len > 256U) { return (-22); } else { } { mutex_lock_nested(& p->mutex, 0U); memcpy((void *)(& p->eeprom) + (unsigned long )eeprom->offset, (void const *)bytes, (size_t )eeprom->len); i = 0; } goto ldv_52097; ldv_52096: ; if ((ipw_debug_level & 134217728U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct8(0x%08X, 0x%08X)\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_ethtool_set_eeprom", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 10606, (unsigned int )(i + 2592), (unsigned int )p->eeprom[i]); } } else { } { _ipw_write8(p, (unsigned long )(i + 2592), (int )p->eeprom[i]); i = i + 1; } ldv_52097: ; if (i <= 255) { goto ldv_52096; } else { } { mutex_unlock(& p->mutex); } return (0); } } static struct ethtool_ops const ipw_ethtool_ops = {0, 0, & ipw_ethtool_get_drvinfo, 0, 0, 0, 0, 0, 0, 0, & ipw_ethtool_get_link, & ipw_ethtool_get_eeprom_len, & ipw_ethtool_get_eeprom, & ipw_ethtool_set_eeprom, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static irqreturn_t ipw_isr(int irq , void *data ) { struct ipw_priv *priv ; u32 inta ; u32 inta_mask ; int tmp ; u32 tmp___0 ; int tmp___1 ; u32 tmp___2 ; int tmp___3 ; { priv = (struct ipw_priv *)data; if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { return (0); } else { } { ldv_spin_lock_145(& priv->irq_lock); } if ((priv->status & 2U) == 0U) { goto none; } else { } if ((ipw_debug_level & 134217728U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_isr", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 10634, 8U); } } else { } { tmp___0 = _ipw_read32(priv, 8UL); inta = tmp___0; } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s %s %d: read_direct32(0x%08X)\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_isr", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 10635, 12U); } } else { } { tmp___2 = _ipw_read32(priv, 12UL); inta_mask = tmp___2; } if (inta == 4294967295U) { { printk("\fipw2200: IRQ INTA == 0xFFFFFFFF\n"); } goto none; } else { } if (((inta & inta_mask) & 3308386354U) == 0U) { goto none; } else { } { __ipw_disable_interrupts(priv); inta = (inta & inta_mask) & 3308386354U; } if ((ipw_debug_level & 134217728U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s %s %d: write_direct32(0x%08X, 0x%08X)\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_isr", (char *)"drivers/net/wireless/ipw2x00/ipw2200.c", 10653, 8U, inta); } } else { } { _ipw_write32(priv, 8UL, inta); priv->isr_inta = inta; tasklet_schedule(& priv->irq_tasklet); ldv_spin_unlock_146(& priv->irq_lock); } return (1); none: { ldv_spin_unlock_146(& priv->irq_lock); } return (0); } } static void ipw_rf_kill(void *adapter ) { struct ipw_priv *priv ; unsigned long flags ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { priv = (struct ipw_priv *)adapter; ldv___ldv_spin_lock_148(& priv->lock); tmp___0 = rf_kill_active(priv); } if (tmp___0 != 0) { if ((ipw_debug_level & 131072U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s RF Kill active, rescheduling GPIO check\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_rf_kill"); } } else { } { schedule_delayed_work(& priv->rf_kill, 500UL); } goto exit_unlock; } else { } if ((priv->status & 12U) == 0U) { if ((ipw_debug_level & 131072U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s HW RF Kill no longer active, restarting device\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_rf_kill"); } } else { } { schedule_work(& priv->adapter_restart); } } else if ((ipw_debug_level & 131072U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s HW RF Kill deactivated. SW RF Kill still enabled\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_rf_kill"); } } else { } exit_unlock: { ldv_spin_unlock_irqrestore_65(& priv->lock, flags); } return; } } static void ipw_bg_rf_kill(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffeb18UL; mutex_lock_nested(& priv->mutex, 0U); ipw_rf_kill((void *)priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_link_up(struct ipw_priv *priv ) { { { priv->last_seq_num = 65535U; priv->last_frag_num = 65535U; priv->last_packet_time = 0UL; netif_carrier_on(priv->net_dev); cancel_delayed_work(& priv->request_scan); cancel_delayed_work(& priv->request_direct_scan); cancel_delayed_work(& priv->request_passive_scan); cancel_delayed_work(& priv->scan_event); ipw_reset_stats(priv); priv->last_rate = ipw_get_current_rate(priv); ipw_gather_stats(priv); ipw_led_link_up(priv); notify_wx_assoc_event(priv); } if ((priv->config & 1024U) != 0U) { { schedule_delayed_work(& priv->request_scan, 250UL); } } else { } return; } } static void ipw_bg_link_up(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe738UL; mutex_lock_nested(& priv->mutex, 0U); ipw_link_up(priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_link_down(struct ipw_priv *priv ) { { { ipw_led_link_down(priv); netif_carrier_off(priv->net_dev); notify_wx_assoc_event(priv); cancel_delayed_work(& priv->request_scan); cancel_delayed_work(& priv->request_direct_scan); cancel_delayed_work(& priv->request_passive_scan); cancel_delayed_work(& priv->adhoc_check); cancel_delayed_work(& priv->gather_stats); ipw_reset_stats(priv); } if ((priv->status & 2048U) == 0U) { { schedule_delayed_work(& priv->request_scan, 0UL); } } else { { cancel_delayed_work(& priv->scan_event); } } return; } } static void ipw_bg_link_down(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe6e8UL; mutex_lock_nested(& priv->mutex, 0U); ipw_link_down(priv); mutex_unlock(& priv->mutex); } return; } } static int ipw_setup_deferred_work(struct ipw_priv *priv ) { int ret ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___4 ; atomic_long_t __constr_expr_2 ; struct lock_class_key __key___5 ; atomic_long_t __constr_expr_3 ; struct lock_class_key __key___6 ; atomic_long_t __constr_expr_4 ; struct lock_class_key __key___7 ; atomic_long_t __constr_expr_5 ; struct lock_class_key __key___8 ; atomic_long_t __constr_expr_6 ; struct lock_class_key __key___9 ; struct lock_class_key __key___10 ; atomic_long_t __constr_expr_7 ; struct lock_class_key __key___11 ; atomic_long_t __constr_expr_8 ; struct lock_class_key __key___12 ; atomic_long_t __constr_expr_9 ; struct lock_class_key __key___13 ; struct lock_class_key __key___14 ; atomic_long_t __constr_expr_10 ; struct lock_class_key __key___15 ; struct lock_class_key __key___16 ; atomic_long_t __constr_expr_11 ; struct lock_class_key __key___17 ; struct lock_class_key __key___18 ; atomic_long_t __constr_expr_12 ; struct lock_class_key __key___19 ; struct lock_class_key __key___20 ; atomic_long_t __constr_expr_13 ; struct lock_class_key __key___21 ; struct lock_class_key __key___22 ; atomic_long_t __constr_expr_14 ; struct lock_class_key __key___23 ; atomic_long_t __constr_expr_15 ; struct lock_class_key __key___24 ; atomic_long_t __constr_expr_16 ; struct lock_class_key __key___25 ; struct lock_class_key __key___26 ; atomic_long_t __constr_expr_17 ; struct lock_class_key __key___27 ; atomic_long_t __constr_expr_18 ; struct lock_class_key __key___28 ; atomic_long_t __constr_expr_19 ; struct lock_class_key __key___29 ; struct lock_class_key __key___30 ; atomic_long_t __constr_expr_20 ; struct lock_class_key __key___31 ; struct lock_class_key __key___32 ; atomic_long_t __constr_expr_21 ; struct lock_class_key __key___33 ; struct lock_class_key __key___34 ; atomic_long_t __constr_expr_22 ; struct lock_class_key __key___35 ; atomic_long_t __constr_expr_23 ; { { ret = 0; __init_waitqueue_head(& priv->wait_command_queue, "&priv->wait_command_queue", & __key); __init_waitqueue_head(& priv->wait_state, "&priv->wait_state", & __key___0); __init_work(& priv->adhoc_check.work, 0); __constr_expr_0.counter = 137438953408L; priv->adhoc_check.work.data = __constr_expr_0; lockdep_init_map(& priv->adhoc_check.work.lockdep_map, "(&(&priv->adhoc_check)->work)", & __key___1, 0); INIT_LIST_HEAD(& priv->adhoc_check.work.entry); priv->adhoc_check.work.func = & ipw_bg_adhoc_check; init_timer_key(& priv->adhoc_check.timer, 2U, "(&(&priv->adhoc_check)->timer)", & __key___2); priv->adhoc_check.timer.function = & delayed_work_timer_fn; priv->adhoc_check.timer.data = (unsigned long )(& priv->adhoc_check); __init_work(& priv->associate, 0); __constr_expr_1.counter = 137438953408L; priv->associate.data = __constr_expr_1; lockdep_init_map(& priv->associate.lockdep_map, "(&priv->associate)", & __key___3, 0); INIT_LIST_HEAD(& priv->associate.entry); priv->associate.func = & ipw_bg_associate; __init_work(& priv->disassociate, 0); __constr_expr_2.counter = 137438953408L; priv->disassociate.data = __constr_expr_2; lockdep_init_map(& priv->disassociate.lockdep_map, "(&priv->disassociate)", & __key___4, 0); INIT_LIST_HEAD(& priv->disassociate.entry); priv->disassociate.func = & ipw_bg_disassociate; __init_work(& priv->system_config, 0); __constr_expr_3.counter = 137438953408L; priv->system_config.data = __constr_expr_3; lockdep_init_map(& priv->system_config.lockdep_map, "(&priv->system_config)", & __key___5, 0); INIT_LIST_HEAD(& priv->system_config.entry); priv->system_config.func = & ipw_system_config; __init_work(& priv->rx_replenish, 0); __constr_expr_4.counter = 137438953408L; priv->rx_replenish.data = __constr_expr_4; lockdep_init_map(& priv->rx_replenish.lockdep_map, "(&priv->rx_replenish)", & __key___6, 0); INIT_LIST_HEAD(& priv->rx_replenish.entry); priv->rx_replenish.func = & ipw_bg_rx_queue_replenish; __init_work(& priv->adapter_restart, 0); __constr_expr_5.counter = 137438953408L; priv->adapter_restart.data = __constr_expr_5; lockdep_init_map(& priv->adapter_restart.lockdep_map, "(&priv->adapter_restart)", & __key___7, 0); INIT_LIST_HEAD(& priv->adapter_restart.entry); priv->adapter_restart.func = & ipw_bg_adapter_restart; __init_work(& priv->rf_kill.work, 0); __constr_expr_6.counter = 137438953408L; priv->rf_kill.work.data = __constr_expr_6; lockdep_init_map(& priv->rf_kill.work.lockdep_map, "(&(&priv->rf_kill)->work)", & __key___8, 0); INIT_LIST_HEAD(& priv->rf_kill.work.entry); priv->rf_kill.work.func = & ipw_bg_rf_kill; init_timer_key(& priv->rf_kill.timer, 2U, "(&(&priv->rf_kill)->timer)", & __key___9); priv->rf_kill.timer.function = & delayed_work_timer_fn; priv->rf_kill.timer.data = (unsigned long )(& priv->rf_kill); __init_work(& priv->up, 0); __constr_expr_7.counter = 137438953408L; priv->up.data = __constr_expr_7; lockdep_init_map(& priv->up.lockdep_map, "(&priv->up)", & __key___10, 0); INIT_LIST_HEAD(& priv->up.entry); priv->up.func = & ipw_bg_up; __init_work(& priv->down, 0); __constr_expr_8.counter = 137438953408L; priv->down.data = __constr_expr_8; lockdep_init_map(& priv->down.lockdep_map, "(&priv->down)", & __key___11, 0); INIT_LIST_HEAD(& priv->down.entry); priv->down.func = & ipw_bg_down; __init_work(& priv->request_scan.work, 0); __constr_expr_9.counter = 137438953408L; priv->request_scan.work.data = __constr_expr_9; lockdep_init_map(& priv->request_scan.work.lockdep_map, "(&(&priv->request_scan)->work)", & __key___12, 0); INIT_LIST_HEAD(& priv->request_scan.work.entry); priv->request_scan.work.func = & ipw_request_scan; init_timer_key(& priv->request_scan.timer, 2U, "(&(&priv->request_scan)->timer)", & __key___13); priv->request_scan.timer.function = & delayed_work_timer_fn; priv->request_scan.timer.data = (unsigned long )(& priv->request_scan); __init_work(& priv->request_direct_scan.work, 0); __constr_expr_10.counter = 137438953408L; priv->request_direct_scan.work.data = __constr_expr_10; lockdep_init_map(& priv->request_direct_scan.work.lockdep_map, "(&(&priv->request_direct_scan)->work)", & __key___14, 0); INIT_LIST_HEAD(& priv->request_direct_scan.work.entry); priv->request_direct_scan.work.func = & ipw_request_direct_scan; init_timer_key(& priv->request_direct_scan.timer, 2U, "(&(&priv->request_direct_scan)->timer)", & __key___15); priv->request_direct_scan.timer.function = & delayed_work_timer_fn; priv->request_direct_scan.timer.data = (unsigned long )(& priv->request_direct_scan); __init_work(& priv->request_passive_scan.work, 0); __constr_expr_11.counter = 137438953408L; priv->request_passive_scan.work.data = __constr_expr_11; lockdep_init_map(& priv->request_passive_scan.work.lockdep_map, "(&(&priv->request_passive_scan)->work)", & __key___16, 0); INIT_LIST_HEAD(& priv->request_passive_scan.work.entry); priv->request_passive_scan.work.func = & ipw_request_passive_scan; init_timer_key(& priv->request_passive_scan.timer, 2U, "(&(&priv->request_passive_scan)->timer)", & __key___17); priv->request_passive_scan.timer.function = & delayed_work_timer_fn; priv->request_passive_scan.timer.data = (unsigned long )(& priv->request_passive_scan); __init_work(& priv->scan_event.work, 0); __constr_expr_12.counter = 137438953408L; priv->scan_event.work.data = __constr_expr_12; lockdep_init_map(& priv->scan_event.work.lockdep_map, "(&(&priv->scan_event)->work)", & __key___18, 0); INIT_LIST_HEAD(& priv->scan_event.work.entry); priv->scan_event.work.func = & ipw_scan_event; init_timer_key(& priv->scan_event.timer, 2U, "(&(&priv->scan_event)->timer)", & __key___19); priv->scan_event.timer.function = & delayed_work_timer_fn; priv->scan_event.timer.data = (unsigned long )(& priv->scan_event); __init_work(& priv->gather_stats.work, 0); __constr_expr_13.counter = 137438953408L; priv->gather_stats.work.data = __constr_expr_13; lockdep_init_map(& priv->gather_stats.work.lockdep_map, "(&(&priv->gather_stats)->work)", & __key___20, 0); INIT_LIST_HEAD(& priv->gather_stats.work.entry); priv->gather_stats.work.func = & ipw_bg_gather_stats; init_timer_key(& priv->gather_stats.timer, 2U, "(&(&priv->gather_stats)->timer)", & __key___21); priv->gather_stats.timer.function = & delayed_work_timer_fn; priv->gather_stats.timer.data = (unsigned long )(& priv->gather_stats); __init_work(& priv->abort_scan, 0); __constr_expr_14.counter = 137438953408L; priv->abort_scan.data = __constr_expr_14; lockdep_init_map(& priv->abort_scan.lockdep_map, "(&priv->abort_scan)", & __key___22, 0); INIT_LIST_HEAD(& priv->abort_scan.entry); priv->abort_scan.func = & ipw_bg_abort_scan; __init_work(& priv->roam, 0); __constr_expr_15.counter = 137438953408L; priv->roam.data = __constr_expr_15; lockdep_init_map(& priv->roam.lockdep_map, "(&priv->roam)", & __key___23, 0); INIT_LIST_HEAD(& priv->roam.entry); priv->roam.func = & ipw_bg_roam; __init_work(& priv->scan_check.work, 0); __constr_expr_16.counter = 137438953408L; priv->scan_check.work.data = __constr_expr_16; lockdep_init_map(& priv->scan_check.work.lockdep_map, "(&(&priv->scan_check)->work)", & __key___24, 0); INIT_LIST_HEAD(& priv->scan_check.work.entry); priv->scan_check.work.func = & ipw_bg_scan_check; init_timer_key(& priv->scan_check.timer, 2U, "(&(&priv->scan_check)->timer)", & __key___25); priv->scan_check.timer.function = & delayed_work_timer_fn; priv->scan_check.timer.data = (unsigned long )(& priv->scan_check); __init_work(& priv->link_up, 0); __constr_expr_17.counter = 137438953408L; priv->link_up.data = __constr_expr_17; lockdep_init_map(& priv->link_up.lockdep_map, "(&priv->link_up)", & __key___26, 0); INIT_LIST_HEAD(& priv->link_up.entry); priv->link_up.func = & ipw_bg_link_up; __init_work(& priv->link_down, 0); __constr_expr_18.counter = 137438953408L; priv->link_down.data = __constr_expr_18; lockdep_init_map(& priv->link_down.lockdep_map, "(&priv->link_down)", & __key___27, 0); INIT_LIST_HEAD(& priv->link_down.entry); priv->link_down.func = & ipw_bg_link_down; __init_work(& priv->led_link_on.work, 0); __constr_expr_19.counter = 137438953408L; priv->led_link_on.work.data = __constr_expr_19; lockdep_init_map(& priv->led_link_on.work.lockdep_map, "(&(&priv->led_link_on)->work)", & __key___28, 0); INIT_LIST_HEAD(& priv->led_link_on.work.entry); priv->led_link_on.work.func = & ipw_bg_led_link_on; init_timer_key(& priv->led_link_on.timer, 2U, "(&(&priv->led_link_on)->timer)", & __key___29); priv->led_link_on.timer.function = & delayed_work_timer_fn; priv->led_link_on.timer.data = (unsigned long )(& priv->led_link_on); __init_work(& priv->led_link_off.work, 0); __constr_expr_20.counter = 137438953408L; priv->led_link_off.work.data = __constr_expr_20; lockdep_init_map(& priv->led_link_off.work.lockdep_map, "(&(&priv->led_link_off)->work)", & __key___30, 0); INIT_LIST_HEAD(& priv->led_link_off.work.entry); priv->led_link_off.work.func = & ipw_bg_led_link_off; init_timer_key(& priv->led_link_off.timer, 2U, "(&(&priv->led_link_off)->timer)", & __key___31); priv->led_link_off.timer.function = & delayed_work_timer_fn; priv->led_link_off.timer.data = (unsigned long )(& priv->led_link_off); __init_work(& priv->led_act_off.work, 0); __constr_expr_21.counter = 137438953408L; priv->led_act_off.work.data = __constr_expr_21; lockdep_init_map(& priv->led_act_off.work.lockdep_map, "(&(&priv->led_act_off)->work)", & __key___32, 0); INIT_LIST_HEAD(& priv->led_act_off.work.entry); priv->led_act_off.work.func = & ipw_bg_led_activity_off; init_timer_key(& priv->led_act_off.timer, 2U, "(&(&priv->led_act_off)->timer)", & __key___33); priv->led_act_off.timer.function = & delayed_work_timer_fn; priv->led_act_off.timer.data = (unsigned long )(& priv->led_act_off); __init_work(& priv->merge_networks, 0); __constr_expr_22.counter = 137438953408L; priv->merge_networks.data = __constr_expr_22; lockdep_init_map(& priv->merge_networks.lockdep_map, "(&priv->merge_networks)", & __key___34, 0); INIT_LIST_HEAD(& priv->merge_networks.entry); priv->merge_networks.func = & ipw_merge_adhoc_network; __init_work(& priv->qos_activate, 0); __constr_expr_23.counter = 137438953408L; priv->qos_activate.data = __constr_expr_23; lockdep_init_map(& priv->qos_activate.lockdep_map, "(&priv->qos_activate)", & __key___35, 0); INIT_LIST_HEAD(& priv->qos_activate.entry); priv->qos_activate.func = & ipw_bg_qos_activate; tasklet_init(& priv->irq_tasklet, (void (*)(unsigned long ))(& ipw_irq_tasklet), (unsigned long )priv); } return (ret); } } static void shim__set_security(struct net_device *dev , struct libipw_security *sec ) { struct ipw_priv *priv ; void *tmp ; int i ; { { tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; i = 0; } goto ldv_52215; ldv_52214: ; if (((int )sec->flags >> i) & 1) { (priv->ieee)->sec.encode_alg[i] = sec->encode_alg[i]; (priv->ieee)->sec.key_sizes[i] = sec->key_sizes[i]; if ((unsigned int )sec->key_sizes[i] == 0U) { (priv->ieee)->sec.flags = (u16 )((int )((short )(priv->ieee)->sec.flags) & ~ ((int )((short )(1 << i)))); } else { { memcpy((void *)(& (priv->ieee)->sec.keys) + (unsigned long )i, (void const *)(& sec->keys) + (unsigned long )i, (size_t )sec->key_sizes[i]); (priv->ieee)->sec.flags = (u16 )((int )((short )(priv->ieee)->sec.flags) | (int )((short )(1 << i))); } } priv->status = priv->status | 2147483648U; } else if ((unsigned int )sec->level != 1U) { (priv->ieee)->sec.flags = (u16 )((int )((short )(priv->ieee)->sec.flags) & ~ ((int )((short )(1 << i)))); } else { } i = i + 1; ldv_52215: ; if (i <= 3) { goto ldv_52214; } else { } if (((int )sec->flags & 16) != 0) { if ((int )sec->active_key <= 3) { (priv->ieee)->sec.active_key = sec->active_key; (priv->ieee)->sec.flags = (u16 )((unsigned int )(priv->ieee)->sec.flags | 16U); } else { (priv->ieee)->sec.flags = (unsigned int )(priv->ieee)->sec.flags & 65519U; } priv->status = priv->status | 2147483648U; } else { (priv->ieee)->sec.flags = (unsigned int )(priv->ieee)->sec.flags & 65519U; } if (((int )sec->flags & 32) != 0 && (int )(priv->ieee)->sec.auth_mode != (int )sec->auth_mode) { (priv->ieee)->sec.auth_mode = sec->auth_mode; (priv->ieee)->sec.flags = (u16 )((unsigned int )(priv->ieee)->sec.flags | 32U); if ((unsigned int )sec->auth_mode == 1U) { priv->capability = priv->capability | 1U; } else { priv->capability = priv->capability & 4294967294U; } priv->status = priv->status | 2147483648U; } else { } if (((int )sec->flags & 256) != 0 && (int )(priv->ieee)->sec.enabled != (int )sec->enabled) { (priv->ieee)->sec.flags = (u16 )((unsigned int )(priv->ieee)->sec.flags | 256U); (priv->ieee)->sec.enabled = sec->enabled; priv->status = priv->status | 2147483648U; if ((unsigned int )*((unsigned char *)sec + 0UL) != 0U) { priv->capability = priv->capability | 2U; } else { priv->capability = priv->capability & 4294967293U; } } else { } if (((int )sec->flags & 512) != 0) { (priv->ieee)->sec.encrypt = sec->encrypt; } else { } if (((int )sec->flags & 128) != 0 && (int )(priv->ieee)->sec.level != (int )sec->level) { (priv->ieee)->sec.level = sec->level; (priv->ieee)->sec.flags = (u16 )((unsigned int )(priv->ieee)->sec.flags | 128U); priv->status = priv->status | 2147483648U; } else { } if ((priv->ieee)->host_encrypt == 0 && ((int )sec->flags & 512) != 0) { { ipw_set_hwcrypto_keys(priv); } } else { } return; } } static int init_supported_rates(struct ipw_priv *priv , struct ipw_supported_rates *rates ) { { { memset((void *)rates, 0, 16UL); } { if ((priv->ieee)->freq_band == 2) { goto case_2; } else { } goto switch_default; case_2: /* CIL Label */ { rates->ieee_mode = 0U; rates->purpose = 1U; ipw_add_ofdm_scan_rates(rates, 1, 4080U); } goto ldv_52222; switch_default: /* CIL Label */ { rates->ieee_mode = 2U; rates->purpose = 1U; ipw_add_cck_scan_rates(rates, 1, 15U); } if (((priv->ieee)->modulation & 2) != 0) { { ipw_add_ofdm_scan_rates(rates, 1, 4080U); } } else { } goto ldv_52222; switch_break: /* CIL Label */ ; } ldv_52222: ; return (0); } } static int ipw_config(struct ipw_priv *priv ) { int tmp ; int tmp___0 ; unsigned char bt_caps ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { { tmp = ipw_set_tx_power(priv); } if (tmp != 0) { goto error; } else { } { tmp___0 = ipw_send_adapter_address(priv, (priv->net_dev)->dev_addr); } if (tmp___0 != 0) { goto error; } else { } { init_sys_config(& priv->sys_config); } if (bt_coexist != 0) { bt_caps = priv->eeprom[75UL]; if ((int )bt_caps & 1) { priv->sys_config.bt_coexistence = (u8 )((unsigned int )priv->sys_config.bt_coexistence | 1U); } else { } if (((int )bt_caps & 4) != 0) { priv->sys_config.bt_coexistence = (u8 )((unsigned int )priv->sys_config.bt_coexistence | 16U); } else { } } else { } if ((unsigned long )priv->prom_net_dev != (unsigned long )((struct net_device *)0)) { { tmp___1 = netif_running((struct net_device const *)priv->prom_net_dev); } if ((int )tmp___1) { priv->sys_config.accept_all_data_frames = 1U; priv->sys_config.accept_non_directed_frames = 1U; priv->sys_config.accept_all_mgmt_bcpr = 1U; priv->sys_config.accept_all_mgmt_frames = 1U; } else { } } else { } if ((priv->ieee)->iw_mode == 1) { priv->sys_config.answer_broadcast_ssid_probe = 1U; } else { priv->sys_config.answer_broadcast_ssid_probe = 0U; } { tmp___2 = ipw_send_system_config(priv); } if (tmp___2 != 0) { goto error; } else { } { init_supported_rates(priv, & priv->rates); tmp___3 = ipw_send_supported_rates(priv, & priv->rates); } if (tmp___3 != 0) { goto error; } else { } if ((unsigned int )priv->rts_threshold != 0U) { { tmp___4 = ipw_send_rts_threshold(priv, (int )priv->rts_threshold); } if (tmp___4 != 0) { goto error; } else { } } else { } if ((int )ipw_debug_level < 0) { { tmp___5 = preempt_count(); printk("\017ipw2200: %c %s QoS: call ipw_qos_activate\n", ((unsigned long )tmp___5 & 2096896UL) != 0UL ? 73 : 85, "ipw_config"); } } else { } { ipw_qos_activate(priv, (struct libipw_qos_data *)0); tmp___6 = ipw_set_random_seed(priv); } if (tmp___6 != 0) { goto error; } else { } { tmp___7 = ipw_send_host_complete(priv); } if (tmp___7 != 0) { goto error; } else { } { priv->status = priv->status | 32U; ipw_led_init(priv); ipw_led_radio_on(priv); priv->notif_missed_beacons = 0U; } if (((priv->capability & 2U) != 0U && (unsigned int )(priv->ieee)->sec.level == 1U) && ((priv->ieee)->host_encrypt == 0 && (priv->ieee)->host_decrypt == 0)) { { ipw_set_hwcrypto_keys(priv); } } else { } return (0); error: ; return (-5); } } static struct libipw_geo const ipw_geos[14U] = { {{'-', '-', '-', '\000'}, 11U, (unsigned char)0, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}}, {{0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}}}, {{'Z', 'Z', 'F', '\000'}, 11U, 8U, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}}, {{5180U, 36U, (unsigned char)0, (unsigned char)0}, {5200U, 40U, (unsigned char)0, (unsigned char)0}, {5220U, 44U, (unsigned char)0, (unsigned char)0}, {5240U, 48U, (unsigned char)0, (unsigned char)0}, {5260U, 52U, 1U, (unsigned char)0}, {5280U, 56U, 1U, (unsigned char)0}, {5300U, 60U, 1U, (unsigned char)0}, {5320U, 64U, 1U, (unsigned char)0}}}, {{'Z', 'Z', 'D', '\000'}, 13U, (unsigned char)0, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}, {2467U, 12U, (unsigned char)0, (unsigned char)0}, {2472U, 13U, (unsigned char)0, (unsigned char)0}}, {{0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}}}, {{'Z', 'Z', 'A', '\000'}, 11U, 13U, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}}, {{5180U, 36U, (unsigned char)0, (unsigned char)0}, {5200U, 40U, (unsigned char)0, (unsigned char)0}, {5220U, 44U, (unsigned char)0, (unsigned char)0}, {5240U, 48U, (unsigned char)0, (unsigned char)0}, {5260U, 52U, 1U, (unsigned char)0}, {5280U, 56U, 1U, (unsigned char)0}, {5300U, 60U, 1U, (unsigned char)0}, {5320U, 64U, 1U, (unsigned char)0}, {5745U, 149U, (unsigned char)0, (unsigned char)0}, {5765U, 153U, (unsigned char)0, (unsigned char)0}, {5785U, 157U, (unsigned char)0, (unsigned char)0}, {5805U, 161U, (unsigned char)0, (unsigned char)0}, {5825U, 165U, (unsigned char)0, (unsigned char)0}}}, {{'Z', 'Z', 'B', '\000'}, 11U, 13U, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}}, {{5180U, 36U, (unsigned char)0, (unsigned char)0}, {5200U, 40U, (unsigned char)0, (unsigned char)0}, {5220U, 44U, (unsigned char)0, (unsigned char)0}, {5240U, 48U, (unsigned char)0, (unsigned char)0}, {5260U, 52U, 1U, (unsigned char)0}, {5280U, 56U, 1U, (unsigned char)0}, {5300U, 60U, 1U, (unsigned char)0}, {5320U, 64U, 1U, (unsigned char)0}, {5745U, 149U, 1U, (unsigned char)0}, {5765U, 153U, 1U, (unsigned char)0}, {5785U, 157U, 1U, (unsigned char)0}, {5805U, 161U, 1U, (unsigned char)0}, {5825U, 165U, 1U, (unsigned char)0}}}, {{'Z', 'Z', 'C', '\000'}, 11U, 4U, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}}, {{5170U, 34U, (unsigned char)0, (unsigned char)0}, {5190U, 38U, (unsigned char)0, (unsigned char)0}, {5210U, 42U, (unsigned char)0, (unsigned char)0}, {5230U, 46U, (unsigned char)0, (unsigned char)0}}}, {{'Z', 'Z', 'M', '\000'}, 11U, (unsigned char)0, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}}, {{0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}}}, {{'Z', 'Z', 'E', '\000'}, 13U, 19U, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}, {2467U, 12U, (unsigned char)0, (unsigned char)0}, {2472U, 13U, (unsigned char)0, (unsigned char)0}}, {{5180U, 36U, (unsigned char)0, (unsigned char)0}, {5200U, 40U, (unsigned char)0, (unsigned char)0}, {5220U, 44U, (unsigned char)0, (unsigned char)0}, {5240U, 48U, (unsigned char)0, (unsigned char)0}, {5260U, 52U, 1U, (unsigned char)0}, {5280U, 56U, 1U, (unsigned char)0}, {5300U, 60U, 1U, (unsigned char)0}, {5320U, 64U, 1U, (unsigned char)0}, {5500U, 100U, 1U, (unsigned char)0}, {5520U, 104U, 1U, (unsigned char)0}, {5540U, 108U, 1U, (unsigned char)0}, {5560U, 112U, 1U, (unsigned char)0}, {5580U, 116U, 1U, (unsigned char)0}, {5600U, 120U, 1U, (unsigned char)0}, {5620U, 124U, 1U, (unsigned char)0}, {5640U, 128U, 1U, (unsigned char)0}, {5660U, 132U, 1U, (unsigned char)0}, {5680U, 136U, 1U, (unsigned char)0}, {5700U, 140U, 1U, (unsigned char)0}}}, {{'Z', 'Z', 'J', '\000'}, 14U, 4U, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}, {2467U, 12U, (unsigned char)0, (unsigned char)0}, {2472U, 13U, (unsigned char)0, (unsigned char)0}, {2484U, 14U, 4U, (unsigned char)0}}, {{5170U, 34U, (unsigned char)0, (unsigned char)0}, {5190U, 38U, (unsigned char)0, (unsigned char)0}, {5210U, 42U, (unsigned char)0, (unsigned char)0}, {5230U, 46U, (unsigned char)0, (unsigned char)0}}}, {{'Z', 'Z', 'R', '\000'}, 14U, (unsigned char)0, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}, {2467U, 12U, (unsigned char)0, (unsigned char)0}, {2472U, 13U, (unsigned char)0, (unsigned char)0}, {2484U, 14U, 5U, (unsigned char)0}}, {{0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {0U, (unsigned char)0, (unsigned char)0, (unsigned char)0}}}, {{'Z', 'Z', 'H', '\000'}, 13U, 4U, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}, {2467U, 12U, 1U, (unsigned char)0}, {2472U, 13U, 1U, (unsigned char)0}}, {{5745U, 149U, (unsigned char)0, (unsigned char)0}, {5765U, 153U, (unsigned char)0, (unsigned char)0}, {5785U, 157U, (unsigned char)0, (unsigned char)0}, {5805U, 161U, (unsigned char)0, (unsigned char)0}}}, {{'Z', 'Z', 'G', '\000'}, 13U, 4U, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}, {2467U, 12U, (unsigned char)0, (unsigned char)0}, {2472U, 13U, (unsigned char)0, (unsigned char)0}}, {{5180U, 36U, (unsigned char)0, (unsigned char)0}, {5200U, 40U, (unsigned char)0, (unsigned char)0}, {5220U, 44U, (unsigned char)0, (unsigned char)0}, {5240U, 48U, (unsigned char)0, (unsigned char)0}}}, {{'Z', 'Z', 'K', '\000'}, 13U, 24U, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}, {2467U, 12U, 1U, (unsigned char)0}, {2472U, 13U, 1U, (unsigned char)0}}, {{5180U, 36U, 1U, (unsigned char)0}, {5200U, 40U, 1U, (unsigned char)0}, {5220U, 44U, 1U, (unsigned char)0}, {5240U, 48U, 1U, (unsigned char)0}, {5260U, 52U, 1U, (unsigned char)0}, {5280U, 56U, 1U, (unsigned char)0}, {5300U, 60U, 1U, (unsigned char)0}, {5320U, 64U, 1U, (unsigned char)0}, {5500U, 100U, 1U, (unsigned char)0}, {5520U, 104U, 1U, (unsigned char)0}, {5540U, 108U, 1U, (unsigned char)0}, {5560U, 112U, 1U, (unsigned char)0}, {5580U, 116U, 1U, (unsigned char)0}, {5600U, 120U, 1U, (unsigned char)0}, {5620U, 124U, 1U, (unsigned char)0}, {5640U, 128U, 1U, (unsigned char)0}, {5660U, 132U, 1U, (unsigned char)0}, {5680U, 136U, 1U, (unsigned char)0}, {5700U, 140U, 1U, (unsigned char)0}, {5745U, 149U, 1U, (unsigned char)0}, {5765U, 153U, 1U, (unsigned char)0}, {5785U, 157U, 1U, (unsigned char)0}, {5805U, 161U, 1U, (unsigned char)0}, {5825U, 165U, 1U, (unsigned char)0}}}, {{'Z', 'Z', 'L', '\000'}, 11U, 13U, {{2412U, 1U, (unsigned char)0, (unsigned char)0}, {2417U, 2U, (unsigned char)0, (unsigned char)0}, {2422U, 3U, (unsigned char)0, (unsigned char)0}, {2427U, 4U, (unsigned char)0, (unsigned char)0}, {2432U, 5U, (unsigned char)0, (unsigned char)0}, {2437U, 6U, (unsigned char)0, (unsigned char)0}, {2442U, 7U, (unsigned char)0, (unsigned char)0}, {2447U, 8U, (unsigned char)0, (unsigned char)0}, {2452U, 9U, (unsigned char)0, (unsigned char)0}, {2457U, 10U, (unsigned char)0, (unsigned char)0}, {2462U, 11U, (unsigned char)0, (unsigned char)0}}, {{5180U, 36U, 1U, (unsigned char)0}, {5200U, 40U, 1U, (unsigned char)0}, {5220U, 44U, 1U, (unsigned char)0}, {5240U, 48U, 1U, (unsigned char)0}, {5260U, 52U, 1U, (unsigned char)0}, {5280U, 56U, 1U, (unsigned char)0}, {5300U, 60U, 1U, (unsigned char)0}, {5320U, 64U, 1U, (unsigned char)0}, {5745U, 149U, 1U, (unsigned char)0}, {5765U, 153U, 1U, (unsigned char)0}, {5785U, 157U, 1U, (unsigned char)0}, {5805U, 161U, 1U, (unsigned char)0}, {5825U, 165U, 1U, (unsigned char)0}}}}; static void ipw_set_geo(struct ipw_priv *priv ) { int j ; int tmp ; { j = 0; goto ldv_52239; ldv_52238: { tmp = memcmp((void const *)(& priv->eeprom) + 76U, (void const *)(& ipw_geos[j].name), 3UL); } if (tmp == 0) { goto ldv_52237; } else { } j = j + 1; ldv_52239: ; if ((unsigned int )j <= 13U) { goto ldv_52238; } else { } ldv_52237: ; if (j == 14) { { printk("\fipw2200: SKU [%c%c%c] not recognized.\n", (int )priv->eeprom[76UL], (int )priv->eeprom[77UL], (int )priv->eeprom[78UL]); j = 0; } } else { } { libipw_set_geo(priv->ieee, (struct libipw_geo const *)(& ipw_geos) + (unsigned long )j); } return; } } static int ipw_up(struct ipw_priv *priv ) { int rc ; int i ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { if (priv->suspend_time != 0UL) { { libipw_networks_age(priv->ieee, priv->suspend_time); priv->suspend_time = 0UL; } } else { } if ((priv->status & 2048U) != 0U) { return (-5); } else { } if (cmdlog != 0 && (unsigned long )priv->cmdlog == (unsigned long )((struct ipw_cmd_log *)0)) { { tmp = kcalloc((size_t )cmdlog, 144UL, 208U); priv->cmdlog = (struct ipw_cmd_log *)tmp; } if ((unsigned long )priv->cmdlog == (unsigned long )((struct ipw_cmd_log *)0)) { { printk("\vipw2200: Error allocating %d command log entries.\n", cmdlog); } return (-12); } else { priv->cmdlog_len = cmdlog; } } else { } i = 0; goto ldv_52249; ldv_52248: { rc = ipw_load(priv); } if (rc != 0) { { printk("\vipw2200: Unable to load firmware: %d\n", rc); } return (rc); } else { } { ipw_init_ordinals(priv); } if ((priv->config & 8U) == 0U) { { eeprom_parse_mac(priv, (u8 *)(& priv->mac_addr)); } } else { } { memcpy((void *)(priv->net_dev)->dev_addr, (void const *)(& priv->mac_addr), 6UL); ipw_set_geo(priv); } if ((priv->status & 8U) != 0U) { { printk("\fipw2200: Radio disabled by module parameter.\n"); } return (0); } else { { tmp___0 = rf_kill_active(priv); } if (tmp___0 != 0) { { printk("\fipw2200: Radio Frequency Kill Switch is On:\nKill switch must be turned off for wireless networking to work.\n"); schedule_delayed_work(& priv->rf_kill, 500UL); } return (0); } else { } } { rc = ipw_config(priv); } if (rc == 0) { if ((ipw_debug_level & 4U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Configured device on count %i\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_up", i); } } else { } { schedule_delayed_work(& priv->request_scan, 0UL); } return (0); } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Device configuration failed: 0x%08X\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_up", rc); } } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s Failed to config device on retry %d of %d\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_up", i, 5); } } else { } { ipw_down(priv); i = i + 1; } ldv_52249: ; if (i <= 4) { goto ldv_52248; } else { } { printk("\vipw2200: Unable to initialize device after %d attempts.\n", i); } return (-5); } } static void ipw_bg_up(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffea38UL; mutex_lock_nested(& priv->mutex, 0U); ipw_up(priv); mutex_unlock(& priv->mutex); } return; } } static void ipw_deinit(struct ipw_priv *priv ) { int i ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { if ((priv->status & 2097152U) != 0U) { if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s Aborting scan during shutdown.\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_deinit"); } } else { } { ipw_abort_scan(priv); } } else { } if ((priv->status & 128U) != 0U) { if ((ipw_debug_level & 4U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s Disassociating during shutdown.\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_deinit"); } } else { } { ipw_disassociate((void *)priv); } } else { } { ipw_led_shutdown(priv); i = 1000; } goto ldv_52263; ldv_52262: { __const_udelay(42950UL); i = i - 1; } ldv_52263: ; if (i != 0 && (priv->status & 2097792U) != 0U) { goto ldv_52262; } else { } if ((priv->status & 2097792U) != 0U) { if ((ipw_debug_level & 4U) != 0U) { { tmp___1 = preempt_count(); printk("\017ipw2200: %c %s Still associated or scanning...\n", ((unsigned long )tmp___1 & 2096896UL) != 0UL ? 73 : 85, "ipw_deinit"); } } else { } } else if ((ipw_debug_level & 4U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s Took %dms to de-init\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_deinit", 1000 - i); } } else { } { ipw_send_card_disable(priv, 0U); priv->status = priv->status & 4294967263U; } return; } } static void ipw_down(struct ipw_priv *priv ) { int exit_pending ; int tmp ; { { exit_pending = (int )priv->status & 2048; priv->status = priv->status | 2048U; tmp = ipw_is_init(priv); } if (tmp != 0) { { ipw_deinit(priv); } } else { } if (exit_pending == 0) { priv->status = priv->status & 4294965247U; } else { } { ipw_disable_interrupts(priv); priv->status = priv->status & 2060U; netif_carrier_off(priv->net_dev); ipw_stop_nic(priv); ipw_led_radio_off(priv); } return; } } static void ipw_bg_down(struct work_struct *work ) { struct ipw_priv *priv ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; priv = (struct ipw_priv *)__mptr + 0xffffffffffffe9e8UL; mutex_lock_nested(& priv->mutex, 0U); ipw_down(priv); mutex_unlock(& priv->mutex); } return; } } static int ipw_wdev_init(struct net_device *dev ) { int i ; int rc ; struct ipw_priv *priv ; void *tmp ; struct libipw_geo const *geo ; struct libipw_geo const *tmp___0 ; struct wireless_dev *wdev ; struct ieee80211_supported_band *bg_band ; void *tmp___1 ; struct ieee80211_supported_band *a_band ; void *tmp___2 ; int tmp___3 ; { { rc = 0; tmp = libipw_priv(dev); priv = (struct ipw_priv *)tmp; tmp___0 = libipw_get_geo(priv->ieee); geo = tmp___0; wdev = & (priv->ieee)->wdev; memcpy((void *)(& (wdev->wiphy)->perm_addr), (void const *)(& priv->mac_addr), 6UL); } if ((unsigned int )((unsigned char )geo->bg_channels) != 0U) { { bg_band = & (priv->ieee)->bg_band; bg_band->band = 0; bg_band->n_channels = (int )geo->bg_channels; tmp___1 = kcalloc((size_t )geo->bg_channels, 56UL, 208U); bg_band->channels = (struct ieee80211_channel *)tmp___1; } if ((unsigned long )bg_band->channels == (unsigned long )((struct ieee80211_channel *)0)) { rc = -12; goto out; } else { } i = 0; goto ldv_52286; ldv_52285: (bg_band->channels + (unsigned long )i)->band = 0; (bg_band->channels + (unsigned long )i)->center_freq = (u16 )geo->bg[i].freq; (bg_band->channels + (unsigned long )i)->hw_value = (u16 )geo->bg[i].channel; (bg_band->channels + (unsigned long )i)->max_power = (int )geo->bg[i].max_power; if ((int )geo->bg[i].flags & 1) { (bg_band->channels + (unsigned long )i)->flags = (bg_band->channels + (unsigned long )i)->flags | 2U; } else { } if (((int )geo->bg[i].flags & 8) != 0) { (bg_band->channels + (unsigned long )i)->flags = (bg_band->channels + (unsigned long )i)->flags | 2U; } else { } if (((int )geo->bg[i].flags & 32) != 0) { (bg_band->channels + (unsigned long )i)->flags = (bg_band->channels + (unsigned long )i)->flags | 8U; } else { } i = i + 1; ldv_52286: ; if (i < (int )geo->bg_channels) { goto ldv_52285; } else { } bg_band->bitrates = (struct ieee80211_rate *)(& ipw2200_rates); bg_band->n_bitrates = 12; (wdev->wiphy)->bands[0] = bg_band; } else { } if ((unsigned int )((unsigned char )geo->a_channels) != 0U) { { a_band = & (priv->ieee)->a_band; a_band->band = 1; a_band->n_channels = (int )geo->a_channels; tmp___2 = kcalloc((size_t )geo->a_channels, 56UL, 208U); a_band->channels = (struct ieee80211_channel *)tmp___2; } if ((unsigned long )a_band->channels == (unsigned long )((struct ieee80211_channel *)0)) { rc = -12; goto out; } else { } i = 0; goto ldv_52290; ldv_52289: (a_band->channels + (unsigned long )i)->band = 1; (a_band->channels + (unsigned long )i)->center_freq = (u16 )geo->a[i].freq; (a_band->channels + (unsigned long )i)->hw_value = (u16 )geo->a[i].channel; (a_band->channels + (unsigned long )i)->max_power = (int )geo->a[i].max_power; if ((int )geo->a[i].flags & 1) { (a_band->channels + (unsigned long )i)->flags = (a_band->channels + (unsigned long )i)->flags | 2U; } else { } if (((int )geo->a[i].flags & 8) != 0) { (a_band->channels + (unsigned long )i)->flags = (a_band->channels + (unsigned long )i)->flags | 2U; } else { } if (((int )geo->a[i].flags & 32) != 0) { (a_band->channels + (unsigned long )i)->flags = (a_band->channels + (unsigned long )i)->flags | 8U; } else { } i = i + 1; ldv_52290: ; if (i < (int )geo->a_channels) { goto ldv_52289; } else { } a_band->bitrates = (struct ieee80211_rate *)(& ipw2200_rates) + 4UL; a_band->n_bitrates = 8; (wdev->wiphy)->bands[1] = a_band; } else { } { (wdev->wiphy)->cipher_suites = (u32 const *)(& ipw_cipher_suites); (wdev->wiphy)->n_cipher_suites = 4; set_wiphy_dev(wdev->wiphy, & (priv->pci_dev)->dev); tmp___3 = wiphy_register(wdev->wiphy); } if (tmp___3 != 0) { rc = -5; } else { } out: ; return (rc); } } static struct pci_device_id const card_ids[23U] = { {32902U, 4163U, 32902U, 9985U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 9986U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10001U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10002U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10017U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10018U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10033U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10034U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10049U, 0U, 0U, 0UL}, {32902U, 4163U, 4156U, 10049U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10050U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10065U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10066U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10067U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10068U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10081U, 0U, 0U, 0UL}, {32902U, 4163U, 32902U, 10082U, 0U, 0U, 0UL}, {32902U, 4175U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 16928U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 16929U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 16931U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 16932U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static struct attribute *ipw_sysfs_entries[23U] = { & dev_attr_rf_kill.attr, & dev_attr_direct_dword.attr, & dev_attr_indirect_byte.attr, & dev_attr_indirect_dword.attr, & dev_attr_mem_gpio_reg.attr, & dev_attr_command_event_reg.attr, & dev_attr_nic_type.attr, & dev_attr_status.attr, & dev_attr_cfg.attr, & dev_attr_error.attr, & dev_attr_event_log.attr, & dev_attr_cmd_log.attr, & dev_attr_eeprom_delay.attr, & dev_attr_ucode_version.attr, & dev_attr_rtc.attr, & dev_attr_scan_age.attr, & dev_attr_led.attr, & dev_attr_speed_scan.attr, & dev_attr_net_stats.attr, & dev_attr_channels.attr, & dev_attr_rtap_iface.attr, & dev_attr_rtap_filter.attr, (struct attribute *)0}; static struct attribute_group ipw_attribute_group = {(char const *)0, 0, (struct attribute **)(& ipw_sysfs_entries), 0}; static int ipw_prom_open(struct net_device *dev ) { struct ipw_prom_priv *prom_priv ; void *tmp ; struct ipw_priv *priv ; int tmp___0 ; { { tmp = libipw_priv(dev); prom_priv = (struct ipw_prom_priv *)tmp; priv = prom_priv->priv; } if ((ipw_debug_level & 4U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s prom dev->open\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_prom_open"); } } else { } { netif_carrier_off(dev); } if ((priv->ieee)->iw_mode != 6) { { priv->sys_config.accept_all_data_frames = 1U; priv->sys_config.accept_non_directed_frames = 1U; priv->sys_config.accept_all_mgmt_bcpr = 1U; priv->sys_config.accept_all_mgmt_frames = 1U; ipw_send_system_config(priv); } } else { } return (0); } } static int ipw_prom_stop(struct net_device *dev ) { struct ipw_prom_priv *prom_priv ; void *tmp ; struct ipw_priv *priv ; int tmp___0 ; { { tmp = libipw_priv(dev); prom_priv = (struct ipw_prom_priv *)tmp; priv = prom_priv->priv; } if ((ipw_debug_level & 4U) != 0U) { { tmp___0 = preempt_count(); printk("\017ipw2200: %c %s prom dev->stop\n", ((unsigned long )tmp___0 & 2096896UL) != 0UL ? 73 : 85, "ipw_prom_stop"); } } else { } if ((priv->ieee)->iw_mode != 6) { { priv->sys_config.accept_all_data_frames = 0U; priv->sys_config.accept_non_directed_frames = 0U; priv->sys_config.accept_all_mgmt_bcpr = 0U; priv->sys_config.accept_all_mgmt_frames = 0U; ipw_send_system_config(priv); } } else { } return (0); } } static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb , struct net_device *dev ) { int tmp ; { if ((ipw_debug_level & 4U) != 0U) { { tmp = preempt_count(); printk("\017ipw2200: %c %s prom dev->xmit\n", ((unsigned long )tmp & 2096896UL) != 0UL ? 73 : 85, "ipw_prom_hard_start_xmit"); } } else { } { consume_skb(skb); } return (0); } } static struct net_device_ops const ipw_prom_netdev_ops = {0, 0, & ipw_prom_open, & ipw_prom_stop, & ipw_prom_hard_start_xmit, 0, 0, 0, & eth_mac_addr, & eth_validate_addr, 0, 0, & libipw_change_mtu, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int ipw_prom_alloc(struct ipw_priv *priv ) { int rc ; void *tmp ; void *tmp___0 ; { rc = 0; if ((unsigned long )priv->prom_net_dev != (unsigned long )((struct net_device *)0)) { return (-1); } else { } { priv->prom_net_dev = alloc_libipw(32, 1); } if ((unsigned long )priv->prom_net_dev == (unsigned long )((struct net_device *)0)) { return (-12); } else { } { tmp = libipw_priv(priv->prom_net_dev); priv->prom_priv = (struct ipw_prom_priv *)tmp; tmp___0 = netdev_priv((struct net_device const *)priv->prom_net_dev); (priv->prom_priv)->ieee = (struct libipw_device *)tmp___0; (priv->prom_priv)->priv = priv; strcpy((char *)(& (priv->prom_net_dev)->name), "rtap%d"); memcpy((void *)(priv->prom_net_dev)->dev_addr, (void const *)(& priv->mac_addr), 6UL); (priv->prom_net_dev)->type = 803U; (priv->prom_net_dev)->netdev_ops = & ipw_prom_netdev_ops; ((priv->prom_priv)->ieee)->iw_mode = 6; (priv->prom_net_dev)->dev.parent = & (priv->pci_dev)->dev; rc = ldv_register_netdev_150(priv->prom_net_dev); } if (rc != 0) { { free_libipw(priv->prom_net_dev, 1); priv->prom_net_dev = (struct net_device *)0; } return (rc); } else { } return (0); } } static void ipw_prom_free(struct ipw_priv *priv ) { { if ((unsigned long )priv->prom_net_dev == (unsigned long )((struct net_device *)0)) { return; } else { } { ldv_unregister_netdev_151(priv->prom_net_dev); free_libipw(priv->prom_net_dev, 1); priv->prom_net_dev = (struct net_device *)0; } return; } } static struct net_device_ops const ipw_netdev_ops = {0, 0, & ipw_net_open, & ipw_net_stop, & libipw_xmit, 0, 0, & ipw_net_set_multicast_list, & ipw_net_set_mac_address, & eth_validate_addr, 0, 0, & libipw_change_mtu, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int ipw_pci_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { int err ; struct net_device *net_dev ; void *base ; u32 length ; u32 val ; struct ipw_priv *priv ; int i ; void *tmp ; void *tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { err = 0; net_dev = alloc_libipw(7584, 0); } if ((unsigned long )net_dev == (unsigned long )((struct net_device *)0)) { err = -12; goto out; } else { } { tmp = libipw_priv(net_dev); priv = (struct ipw_priv *)tmp; tmp___0 = netdev_priv((struct net_device const *)net_dev); priv->ieee = (struct libipw_device *)tmp___0; priv->net_dev = net_dev; priv->pci_dev = pdev; ipw_debug_level = (u32 )debug; spinlock_check(& priv->irq_lock); __raw_spin_lock_init(& priv->irq_lock.__annonCompField19.rlock, "&(&priv->irq_lock)->rlock", & __key); spinlock_check(& priv->lock); __raw_spin_lock_init(& priv->lock.__annonCompField19.rlock, "&(&priv->lock)->rlock", & __key___0); i = 0; } goto ldv_52339; ldv_52338: { INIT_LIST_HEAD((struct list_head *)(& priv->ibss_mac_hash) + (unsigned long )i); i = i + 1; } ldv_52339: ; if (i <= 30) { goto ldv_52338; } else { } { __mutex_init(& priv->mutex, "&priv->mutex", & __key___1); tmp___1 = pci_enable_device(pdev); } if (tmp___1 != 0) { err = -19; goto out_free_libipw; } else { } { pci_set_master(pdev); err = pci_set_dma_mask(pdev, 4294967295ULL); } if (err == 0) { { err = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } } else { } if (err != 0) { { printk("\fipw2200: No suitable DMA available.\n"); } goto out_pci_disable_device; } else { } { pci_set_drvdata(pdev, (void *)priv); err = pci_request_regions(pdev, "ipw2200"); } if (err != 0) { goto out_pci_disable_device; } else { } { pci_read_config_dword((struct pci_dev const *)pdev, 64, & val); } if ((val & 65280U) != 0U) { { pci_write_config_dword((struct pci_dev const *)pdev, 64, val & 4294902015U); } } else { } { length = pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? ((u32 )pdev->resource[0].end - (u32 )pdev->resource[0].start) + 1U : 0U; priv->hw_len = (unsigned long )length; base = pci_ioremap_bar(pdev, 0); } if ((unsigned long )base == (unsigned long )((void *)0)) { err = -19; goto out_pci_release_regions; } else { } priv->hw_base = base; if ((ipw_debug_level & 4U) != 0U) { { tmp___2 = preempt_count(); printk("\017ipw2200: %c %s pci_resource_len = 0x%08x\n", ((unsigned long )tmp___2 & 2096896UL) != 0UL ? 73 : 85, "ipw_pci_probe", length); } } else { } if ((ipw_debug_level & 4U) != 0U) { { tmp___3 = preempt_count(); printk("\017ipw2200: %c %s pci_resource_base = %p\n", ((unsigned long )tmp___3 & 2096896UL) != 0UL ? 73 : 85, "ipw_pci_probe", base); } } else { } { err = ipw_setup_deferred_work(priv); } if (err != 0) { { printk("\vipw2200: Unable to setup deferred work\n"); } goto out_iounmap; } else { } { ipw_sw_reset(priv, 1); err = ldv_request_irq_152(pdev->irq, & ipw_isr, 128UL, "ipw2200", (void *)priv); } if (err != 0) { { printk("\vipw2200: Error allocating IRQ %d\n", pdev->irq); } goto out_iounmap; } else { } { net_dev->dev.parent = & pdev->dev; mutex_lock_nested(& priv->mutex, 0U); (priv->ieee)->hard_start_xmit = & ipw_net_hard_start_xmit; (priv->ieee)->set_security = & shim__set_security; (priv->ieee)->is_queue_full = & ipw_net_is_queue_full; (priv->ieee)->is_qos_active = & ipw_is_qos_active; (priv->ieee)->handle_probe_response = & ipw_handle_beacon; (priv->ieee)->handle_beacon = & ipw_handle_probe_response; (priv->ieee)->handle_assoc_response = & ipw_handle_assoc_response; (priv->ieee)->perfect_rssi = -20; (priv->ieee)->worst_rssi = -85; net_dev->netdev_ops = & ipw_netdev_ops; priv->wireless_data.spy_data = & (priv->ieee)->spy_data; net_dev->wireless_data = & priv->wireless_data; net_dev->wireless_handlers = (struct iw_handler_def const *)(& ipw_wx_handler_def); net_dev->ethtool_ops = & ipw_ethtool_ops; err = sysfs_create_group(& pdev->dev.kobj, (struct attribute_group const *)(& ipw_attribute_group)); } if (err != 0) { { printk("\vipw2200: failed to create sysfs device attributes\n"); mutex_unlock(& priv->mutex); } goto out_release_irq; } else { } { tmp___4 = ipw_up(priv); } if (tmp___4 != 0) { { mutex_unlock(& priv->mutex); err = -5; } goto out_remove_sysfs; } else { } { mutex_unlock(& priv->mutex); err = ipw_wdev_init(net_dev); } if (err != 0) { { printk("\vipw2200: failed to register wireless device\n"); } goto out_remove_sysfs; } else { } { err = ldv_register_netdev_153(net_dev); } if (err != 0) { { printk("\vipw2200: failed to register network device\n"); } goto out_unregister_wiphy; } else { } if (rtap_iface != 0) { { err = ipw_prom_alloc(priv); } if (err != 0) { { printk("\vipw2200: Failed to register promiscuous network device (error %d).\n", err); ldv_unregister_netdev_154(priv->net_dev); } goto out_unregister_wiphy; } else { } } else { } { printk("\016ipw2200: Detected geography %s (%d 802.11bg channels, %d 802.11a channels)\n", (u8 *)(& (priv->ieee)->geo.name), (int )(priv->ieee)->geo.bg_channels, (int )(priv->ieee)->geo.a_channels); } return (0); out_unregister_wiphy: { wiphy_unregister((priv->ieee)->wdev.wiphy); kfree((void const *)(priv->ieee)->a_band.channels); kfree((void const *)(priv->ieee)->bg_band.channels); } out_remove_sysfs: { sysfs_remove_group(& pdev->dev.kobj, (struct attribute_group const *)(& ipw_attribute_group)); } out_release_irq: { ldv_free_irq_155(pdev->irq, (void *)priv); } out_iounmap: { iounmap((void volatile *)priv->hw_base); } out_pci_release_regions: { pci_release_regions(pdev); } out_pci_disable_device: { pci_disable_device(pdev); } out_free_libipw: { free_libipw(priv->net_dev, 0); } out: ; return (err); } } static void ipw_pci_remove(struct pci_dev *pdev ) { struct ipw_priv *priv ; void *tmp ; struct list_head *p ; struct list_head *q ; int i ; struct list_head const *__mptr ; { { tmp = pci_get_drvdata(pdev); priv = (struct ipw_priv *)tmp; } if ((unsigned long )priv == (unsigned long )((struct ipw_priv *)0)) { return; } else { } { mutex_lock_nested(& priv->mutex, 0U); priv->status = priv->status | 2048U; ipw_down(priv); sysfs_remove_group(& pdev->dev.kobj, (struct attribute_group const *)(& ipw_attribute_group)); mutex_unlock(& priv->mutex); ldv_unregister_netdev_156(priv->net_dev); } if ((unsigned long )priv->rxq != (unsigned long )((struct ipw_rx_queue *)0)) { { ipw_rx_queue_free(priv, priv->rxq); priv->rxq = (struct ipw_rx_queue *)0; } } else { } { ipw_tx_queue_free(priv); } if ((unsigned long )priv->cmdlog != (unsigned long )((struct ipw_cmd_log *)0)) { { kfree((void const *)priv->cmdlog); priv->cmdlog = (struct ipw_cmd_log *)0; } } else { } { cancel_delayed_work_sync(& priv->adhoc_check); cancel_work_sync(& priv->associate); cancel_work_sync(& priv->disassociate); cancel_work_sync(& priv->system_config); cancel_work_sync(& priv->rx_replenish); cancel_work_sync(& priv->adapter_restart); cancel_delayed_work_sync(& priv->rf_kill); cancel_work_sync(& priv->up); cancel_work_sync(& priv->down); cancel_delayed_work_sync(& priv->request_scan); cancel_delayed_work_sync(& priv->request_direct_scan); cancel_delayed_work_sync(& priv->request_passive_scan); cancel_delayed_work_sync(& priv->scan_event); cancel_delayed_work_sync(& priv->gather_stats); cancel_work_sync(& priv->abort_scan); cancel_work_sync(& priv->roam); cancel_delayed_work_sync(& priv->scan_check); cancel_work_sync(& priv->link_up); cancel_work_sync(& priv->link_down); cancel_delayed_work_sync(& priv->led_link_on); cancel_delayed_work_sync(& priv->led_link_off); cancel_delayed_work_sync(& priv->led_act_off); cancel_work_sync(& priv->merge_networks); i = 0; } goto ldv_52363; ldv_52362: p = ((struct list_head *)(& priv->ibss_mac_hash) + (unsigned long )i)->next; q = p->next; goto ldv_52360; ldv_52359: { list_del(p); __mptr = (struct list_head const *)p; kfree((void const *)((struct ipw_ibss_seq *)__mptr + 0xffffffffffffffe8UL)); p = q; q = p->next; } ldv_52360: ; if ((unsigned long )p != (unsigned long )((struct list_head *)(& priv->ibss_mac_hash) + (unsigned long )i)) { goto ldv_52359; } else { } i = i + 1; ldv_52363: ; if (i <= 30) { goto ldv_52362; } else { } { kfree((void const *)priv->error); priv->error = (struct ipw_fw_error *)0; ipw_prom_free(priv); ldv_free_irq_157(pdev->irq, (void *)priv); iounmap((void volatile *)priv->hw_base); pci_release_regions(pdev); pci_disable_device(pdev); wiphy_unregister((priv->ieee)->wdev.wiphy); kfree((void const *)(priv->ieee)->a_band.channels); kfree((void const *)(priv->ieee)->bg_band.channels); free_libipw(priv->net_dev, 0); free_firmware(); } return; } } static int ipw_pci_suspend(struct pci_dev *pdev , pm_message_t state ) { struct ipw_priv *priv ; void *tmp ; struct net_device *dev ; pci_power_t tmp___0 ; { { tmp = pci_get_drvdata(pdev); priv = (struct ipw_priv *)tmp; dev = priv->net_dev; printk("\016%s: Going into suspend...\n", (char *)(& dev->name)); ipw_down(priv); netif_device_detach(dev); pci_save_state(pdev); pci_disable_device(pdev); tmp___0 = pci_choose_state(pdev, state); pci_set_power_state(pdev, tmp___0); priv->suspend_at = get_seconds(); } return (0); } } static int ipw_pci_resume(struct pci_dev *pdev ) { struct ipw_priv *priv ; void *tmp ; struct net_device *dev ; int err ; u32 val ; unsigned long tmp___0 ; { { tmp = pci_get_drvdata(pdev); priv = (struct ipw_priv *)tmp; dev = priv->net_dev; printk("\016%s: Coming out of suspend...\n", (char *)(& dev->name)); pci_set_power_state(pdev, 0); err = pci_enable_device(pdev); } if (err != 0) { { printk("\v%s: pci_enable_device failed on resume\n", (char *)(& dev->name)); } return (err); } else { } { pci_restore_state(pdev); pci_read_config_dword((struct pci_dev const *)pdev, 64, & val); } if ((val & 65280U) != 0U) { { pci_write_config_dword((struct pci_dev const *)pdev, 64, val & 4294902015U); } } else { } { netif_device_attach(dev); tmp___0 = get_seconds(); priv->suspend_time = tmp___0 - priv->suspend_at; schedule_work(& priv->up); } return (0); } } static void ipw_pci_shutdown(struct pci_dev *pdev ) { struct ipw_priv *priv ; void *tmp ; { { tmp = pci_get_drvdata(pdev); priv = (struct ipw_priv *)tmp; ipw_down(priv); pci_disable_device(pdev); } return; } } static struct pci_driver ipw_driver = {{0, 0}, "ipw2200", (struct pci_device_id const *)(& card_ids), & ipw_pci_probe, & ipw_pci_remove, & ipw_pci_suspend, 0, 0, & ipw_pci_resume, & ipw_pci_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int ipw_init(void) { int ret ; { { printk("\016ipw2200: Intel(R) PRO/Wireless 2200/2915 Network Driver, 1.2.2kdmprq\n"); printk("\016ipw2200: Copyright(c) 2003-2006 Intel Corporation\n"); ret = ldv___pci_register_driver_158(& ipw_driver, & __this_module, "ipw2200"); } if (ret != 0) { { printk("\vipw2200: Unable to initialize PCI module\n"); } return (ret); } else { } { ret = driver_create_file(& ipw_driver.driver, (struct driver_attribute const *)(& driver_attr_debug_level)); } if (ret != 0) { { printk("\vipw2200: Unable to create driver sysfs file\n"); ldv_pci_unregister_driver_159(& ipw_driver); } return (ret); } else { } return (ret); } } static void ipw_exit(void) { { { driver_remove_file(& ipw_driver.driver, (struct driver_attribute const *)(& driver_attr_debug_level)); ldv_pci_unregister_driver_160(& ipw_driver); } return; } } void ldv_EMGentry_exit_ipw_exit_15_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_ipw_init_15_13(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_allocate_external_0(void) ; void ldv_dispatch_deregister_11_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_12_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_13_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_13_15_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_10_15_5(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_11_15_6(void) ; void ldv_dispatch_instance_deregister_6_2(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_6_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_7_1(int arg0 ) ; void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_14_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_8_4(struct net_device *arg0 ) ; void ldv_dispatch_register_9_4(struct net_device *arg0 ) ; void ldv_dispatch_register_dummy_factory_13_15_7(void) ; void ldv_dispatch_register_dummy_resourceless_instance_10_15_8(void) ; void ldv_dispatch_register_dummy_resourceless_instance_11_15_9(void) ; void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_12(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_16(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_17(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_18(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_19(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device_driver * , char * ) , struct device_driver *arg1 , char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device_driver * , char * , unsigned long ) , struct device_driver *arg1 , char *arg2 , unsigned long arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_3(struct iw_statistics *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_entry_EMGentry_15(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_8_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_register_netdev_open_9_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_driver_attribute_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_iw_priv_args_dummy_resourceless_instance_4(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_5(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_5(void) ; void ldv_switch_automaton_state_5_1(void) ; void ldv_switch_automaton_state_5_3(void) ; void ldv_switch_automaton_state_6_1(void) ; void ldv_switch_automaton_state_6_4(void) ; void ldv_timer_dummy_factory_6(void *arg0 ) ; void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_5(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_11_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_12_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_15_exit_ipw_exit_default)(void) ; int (*ldv_15_init_ipw_init_default)(void) ; int ldv_15_ret_default ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_1_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; struct net_device *ldv_1_container_net_device ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_eeprom *ldv_1_container_struct_ethtool_eeprom_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; int ldv_1_ldv_param_12_1_default ; unsigned char *ldv_1_ldv_param_19_2_default ; unsigned char *ldv_1_ldv_param_7_2_default ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; long (*ldv_3_callback_show)(struct device_driver * , char * ) ; long (*ldv_3_callback_store)(struct device_driver * , char * , unsigned long ) ; struct device_driver *ldv_3_container_struct_device_driver_ptr ; char *ldv_3_ldv_param_3_1_default ; char *ldv_3_ldv_param_9_1_default ; unsigned long ldv_3_ldv_param_9_2_default ; struct iw_statistics *(*ldv_4_callback_get_wireless_stats)(struct net_device * ) ; struct net_device *ldv_4_container_struct_net_device_ptr ; struct timer_list *ldv_5_container_timer_list ; struct timer_list *ldv_6_container_timer_list ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_15 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; int ldv_statevar_6 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & ipw_isr; void (*ldv_15_exit_ipw_exit_default)(void) = & ipw_exit; int (*ldv_15_init_ipw_init_default)(void) = & ipw_init; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & ipw_ethtool_get_drvinfo; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & ipw_ethtool_get_eeprom; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) = & ipw_ethtool_get_eeprom_len; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) = & ipw_ethtool_get_link; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) = & libipw_change_mtu; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) = & ipw_net_set_mac_address; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) = & ipw_net_set_multicast_list; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & libipw_xmit; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; int (*ldv_1_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & ipw_ethtool_set_eeprom; long (*ldv_3_callback_show)(struct device_driver * , char * ) = & show_debug_level; long (*ldv_3_callback_store)(struct device_driver * , char * , unsigned long ) = (long (*)(struct device_driver * , char * , unsigned long ))(& store_debug_level); struct iw_statistics *(*ldv_4_callback_get_wireless_stats)(struct net_device * ) = & ipw_get_wireless_stats; void ldv_EMGentry_exit_ipw_exit_15_2(void (*arg0)(void) ) { { { ipw_exit(); } return; } } int ldv_EMGentry_init_ipw_init_15_13(int (*arg0)(void) ) { int tmp ; { { tmp = ipw_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_14_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_14_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_14_2(ldv_14_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { { { ldv_0_data_data = ldv_malloc(0UL); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_1_container_net_device = ldv_malloc(sizeof(struct net_device)); ldv_1_container_struct_ethtool_drvinfo_ptr = ldv_malloc(sizeof(struct ethtool_drvinfo)); ldv_1_container_struct_ethtool_eeprom_ptr = ldv_malloc(sizeof(struct ethtool_eeprom)); ldv_1_container_struct_sk_buff_ptr = ldv_malloc(sizeof(struct sk_buff)); ldv_1_ldv_param_19_2_default = ldv_malloc(sizeof(unsigned char)); ldv_1_ldv_param_7_2_default = ldv_malloc(sizeof(unsigned char)); ldv_2_resource_dev = ldv_malloc(sizeof(struct pci_dev)); ldv_3_container_struct_device_driver_ptr = ldv_malloc(sizeof(struct device_driver)); ldv_3_ldv_param_3_1_default = ldv_malloc(sizeof(char)); ldv_3_ldv_param_9_1_default = ldv_malloc(sizeof(char)); ldv_4_container_struct_net_device_ptr = ldv_malloc(sizeof(struct net_device)); ldv_5_container_timer_list = ldv_malloc(sizeof(struct timer_list)); ldv_6_container_timer_list = ldv_malloc(sizeof(struct timer_list)); } return; } } void ldv_dispatch_deregister_11_1(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_12_1(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_13_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_deregister_dummy_factory_13_15_4(void) { { { ldv_switch_automaton_state_6_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_10_15_5(void) { { { ldv_switch_automaton_state_3_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_11_15_6(void) { { { ldv_switch_automaton_state_4_1(); } return; } } void ldv_dispatch_instance_deregister_6_2(struct timer_list *arg0 ) { { { ldv_5_container_timer_list = arg0; ldv_switch_automaton_state_5_1(); } return; } } void ldv_dispatch_instance_register_6_3(struct timer_list *arg0 ) { { { ldv_5_container_timer_list = arg0; ldv_switch_automaton_state_5_3(); } return; } } void ldv_dispatch_irq_deregister_7_1(int arg0 ) { { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_register_14_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_dispatch_register_8_4(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } return; } } void ldv_dispatch_register_9_4(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } return; } } void ldv_dispatch_register_dummy_factory_13_15_7(void) { { { ldv_switch_automaton_state_6_4(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_10_15_8(void) { { { ldv_switch_automaton_state_3_5(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_11_15_9(void) { { { ldv_switch_automaton_state_4_5(); } return; } } void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ipw_ethtool_get_eeprom_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ipw_ethtool_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { libipw_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { ipw_net_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_16(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ipw_net_set_multicast_list(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_17(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { libipw_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_18(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_19(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { ipw_ethtool_set_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { ipw_ethtool_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { ipw_ethtool_get_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device_driver * , char * ) , struct device_driver *arg1 , char *arg2 ) { { { show_debug_level(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device_driver * , char * , unsigned long ) , struct device_driver *arg1 , char *arg2 , unsigned long arg3 ) { { { store_debug_level(arg1, (char const *)arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(struct iw_statistics *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ipw_get_wireless_stats(arg1); } return; } } void ldv_entry_EMGentry_15(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_15 == 2) { goto case_2; } else { } if (ldv_statevar_15 == 3) { goto case_3; } else { } if (ldv_statevar_15 == 4) { goto case_4; } else { } if (ldv_statevar_15 == 5) { goto case_5; } else { } if (ldv_statevar_15 == 6) { goto case_6; } else { } if (ldv_statevar_15 == 7) { goto case_7; } else { } if (ldv_statevar_15 == 8) { goto case_8; } else { } if (ldv_statevar_15 == 9) { goto case_9; } else { } if (ldv_statevar_15 == 10) { goto case_10; } else { } if (ldv_statevar_15 == 12) { goto case_12; } else { } if (ldv_statevar_15 == 13) { goto case_13; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_ipw_exit_15_2(ldv_15_exit_ipw_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_15 = 13; } goto ldv_53177; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_ipw_exit_15_2(ldv_15_exit_ipw_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_15 = 13; } goto ldv_53177; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_6 == 2); ldv_dispatch_deregister_dummy_factory_13_15_4(); ldv_statevar_15 = 2; } goto ldv_53177; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_10_15_5(); ldv_statevar_15 = 4; } goto ldv_53177; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_11_15_6(); ldv_statevar_15 = 5; } goto ldv_53177; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_6 == 4); ldv_dispatch_register_dummy_factory_13_15_7(); ldv_statevar_15 = 6; } goto ldv_53177; case_8: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 5); ldv_dispatch_register_dummy_resourceless_instance_10_15_8(); ldv_statevar_15 = 7; } goto ldv_53177; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 5); ldv_dispatch_register_dummy_resourceless_instance_11_15_9(); ldv_statevar_15 = 8; } goto ldv_53177; case_10: /* CIL Label */ { ldv_assume(ldv_15_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_15 = 3; } else { ldv_statevar_15 = 9; } goto ldv_53177; case_12: /* CIL Label */ { ldv_assume(ldv_15_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_15 = 13; } goto ldv_53177; case_13: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 20 || ldv_statevar_2 == 12); ldv_15_ret_default = ldv_EMGentry_init_ipw_init_15_13(ldv_15_init_ipw_init_default); ldv_15_ret_default = ldv_post_init(ldv_15_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_15 = 10; } else { ldv_statevar_15 = 12; } goto ldv_53177; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53177: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_15 = 13; ldv_statevar_0 = 6; ldv_statevar_1 = 5; ldv_2_ret_default = 1; ldv_statevar_2 = 20; ldv_statevar_3 = 5; ldv_statevar_4 = 5; ldv_statevar_5 = 3; ldv_statevar_6 = 4; } ldv_53201: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_15((void *)0); } goto ldv_53192; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_53192; case_2: /* CIL Label */ { ldv_net_dummy_resourceless_instance_1((void *)0); } goto ldv_53192; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_53192; case_4: /* CIL Label */ { ldv_struct_driver_attribute_dummy_resourceless_instance_3((void *)0); } goto ldv_53192; case_5: /* CIL Label */ { ldv_struct_iw_priv_args_dummy_resourceless_instance_4((void *)0); } goto ldv_53192; case_6: /* CIL Label */ { ldv_timer_timer_instance_5((void *)0); } goto ldv_53192; case_7: /* CIL Label */ { ldv_timer_dummy_factory_6((void *)0); } goto ldv_53192; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_53192: ; goto ldv_53201; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_7_line_line ; { { ldv_7_line_line = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_dispatch_irq_deregister_7_1(ldv_7_line_line); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = ipw_isr(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_53228; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_53228; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_53228; case_6: /* CIL Label */ ; goto ldv_53228; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53228: ; return; } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { void *tmp ; void *tmp___0 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 8) { goto case_8; } else { } if (ldv_statevar_1 == 10) { goto case_10; } else { } if (ldv_statevar_1 == 11) { goto case_11; } else { } if (ldv_statevar_1 == 13) { goto case_13; } else { } if (ldv_statevar_1 == 15) { goto case_15; } else { } if (ldv_statevar_1 == 16) { goto case_16; } else { } if (ldv_statevar_1 == 17) { goto case_17; } else { } if (ldv_statevar_1 == 18) { goto case_18; } else { } if (ldv_statevar_1 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53237; case_2: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_53237; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); ldv_statevar_1 = 2; } goto ldv_53237; case_4: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_53237; case_5: /* CIL Label */ ; goto ldv_53237; case_8: /* CIL Label */ { tmp = ldv_xmalloc(1UL); ldv_1_ldv_param_7_2_default = (unsigned char *)tmp; ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_7_2_default); ldv_free((void *)ldv_1_ldv_param_7_2_default); ldv_statevar_1 = 2; } goto ldv_53237; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_10(ldv_1_callback_get_eeprom_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53237; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_get_link, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53237; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_12_1_default); ldv_statevar_1 = 2; } goto ldv_53237; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_drvinfo_ptr); ldv_statevar_1 = 2; } goto ldv_53237; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_16(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53237; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_17(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53237; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_18(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53237; case_20: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_1_ldv_param_19_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_1_19(ldv_1_callback_set_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_19_2_default); ldv_free((void *)ldv_1_ldv_param_19_2_default); ldv_statevar_1 = 2; } goto ldv_53237; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53237: ; return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = ipw_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ipw_pci_remove(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ipw_pci_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ipw_pci_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = ipw_pci_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_53297; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 1); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_53297; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); ldv_statevar_2 = 2; } goto ldv_53297; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_53297; case_5: /* CIL Label */ { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); ldv_statevar_2 = 4; } goto ldv_53297; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_53297; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_53297; case_8: /* CIL Label */ { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_53297; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_53297; case_10: /* CIL Label */ ldv_statevar_2 = 9; goto ldv_53297; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_53297; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_53297; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_53297; case_17: /* CIL Label */ { ldv_assume(((ldv_statevar_0 == 2 || ldv_statevar_0 == 6) || ldv_statevar_1 == 1) || ldv_statevar_1 == 5); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_53297; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_53297; case_20: /* CIL Label */ ; goto ldv_53297; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53297: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_13_pci_driver_pci_driver ; { { ldv_13_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_13_1(ldv_13_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_9_netdev_net_device ; int ldv_9_ret_default ; int tmp ; int tmp___0 ; { { ldv_9_ret_default = 1; ldv_9_ret_default = ldv_pre_register_netdev(); ldv_9_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_9_ret_default == 0); ldv_9_ret_default = ldv_register_netdev_open_9_6((ldv_9_netdev_net_device->netdev_ops)->ndo_open, ldv_9_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_9_ret_default == 0); ldv_assume(ldv_statevar_1 == 5); ldv_dispatch_register_9_4(ldv_9_netdev_net_device); } } else { { ldv_assume(ldv_9_ret_default != 0); } } } else { { ldv_assume(ldv_9_ret_default != 0); } } return (ldv_9_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_8_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = ipw_net_open(arg1); } return (tmp); } } int ldv_register_netdev_open_9_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = ipw_prom_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_10_callback_handler)(int , void * ) ; void *ldv_10_data_data ; int ldv_10_line_line ; enum irqreturn (*ldv_10_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_10_line_line = (int )arg1; ldv_10_callback_handler = arg2; ldv_10_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_10_data_data = arg5; ldv_assume(ldv_statevar_0 == 6); ldv_dispatch_irq_register_10_2(ldv_10_line_line, ldv_10_callback_handler, ldv_10_thread_thread, ldv_10_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_driver_attribute_dummy_resourceless_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; int tmp___2 ; void *tmp___3 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 7) { goto case_7; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53357; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 1; } else { ldv_statevar_3 = 7; } goto ldv_53357; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_show, ldv_3_container_struct_device_driver_ptr, ldv_3_ldv_param_3_1_default); ldv_free((void *)ldv_3_ldv_param_3_1_default); ldv_statevar_3 = 2; } goto ldv_53357; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 1; } else { ldv_statevar_3 = 7; } goto ldv_53357; case_5: /* CIL Label */ ; goto ldv_53357; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_3_ldv_param_3_1_default = (char *)tmp___1; tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_3 = 3; } else { ldv_statevar_3 = 10; } goto ldv_53357; case_10: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_3_ldv_param_9_1_default = (char *)tmp___3; ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_store, ldv_3_container_struct_device_driver_ptr, ldv_3_ldv_param_9_1_default, ldv_3_ldv_param_9_2_default); ldv_free((void *)ldv_3_ldv_param_9_1_default); ldv_free((void *)ldv_3_ldv_param_3_1_default); ldv_statevar_3 = 2; } goto ldv_53357; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53357: ; return; } } void ldv_struct_iw_priv_args_dummy_resourceless_instance_4(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53369; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_4 = 1; } else { ldv_statevar_4 = 3; } goto ldv_53369; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_get_wireless_stats, ldv_4_container_struct_net_device_ptr); ldv_statevar_4 = 2; } goto ldv_53369; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_4 = 1; } else { ldv_statevar_4 = 3; } goto ldv_53369; case_5: /* CIL Label */ ; goto ldv_53369; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53369: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (8); case_3: /* CIL Label */ ; return (10); case_4: /* CIL Label */ ; return (11); case_5: /* CIL Label */ ; return (13); case_6: /* CIL Label */ ; return (15); case_7: /* CIL Label */ ; return (16); case_8: /* CIL Label */ ; return (17); case_9: /* CIL Label */ ; return (18); case_10: /* CIL Label */ ; return (20); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 5; return; } } void ldv_switch_automaton_state_3_5(void) { { ldv_statevar_3 = 4; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 5; return; } } void ldv_switch_automaton_state_4_5(void) { { ldv_statevar_4 = 4; return; } } void ldv_switch_automaton_state_5_1(void) { { ldv_statevar_5 = 3; return; } } void ldv_switch_automaton_state_5_3(void) { { ldv_statevar_5 = 2; return; } } void ldv_switch_automaton_state_6_1(void) { { ldv_statevar_6 = 4; return; } } void ldv_switch_automaton_state_6_4(void) { { ldv_statevar_6 = 3; return; } } void ldv_timer_dummy_factory_6(void *arg0 ) { { { if (ldv_statevar_6 == 2) { goto case_2; } else { } if (ldv_statevar_6 == 3) { goto case_3; } else { } if (ldv_statevar_6 == 4) { goto case_4; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 2); ldv_dispatch_instance_deregister_6_2(ldv_6_container_timer_list); ldv_statevar_6 = 4; } goto ldv_53427; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 3); ldv_dispatch_instance_register_6_3(ldv_6_container_timer_list); ldv_statevar_6 = 2; } goto ldv_53427; case_4: /* CIL Label */ ; goto ldv_53427; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53427: ; return; } } void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_5(void *arg0 ) { { { if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_5_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_5_2(ldv_5_container_timer_list->function, ldv_5_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_5 = 3; } goto ldv_53440; case_3: /* CIL Label */ ; goto ldv_53440; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53440: ; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_12_netdev_net_device ; { { ldv_12_netdev_net_device = arg1; ldv_unregister_netdev_stop_12_2((ldv_12_netdev_net_device->netdev_ops)->ndo_stop, ldv_12_netdev_net_device); ldv_assume(ldv_statevar_1 == 1); ldv_dispatch_deregister_12_1(ldv_12_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_11_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ipw_net_stop(arg1); } return; } } void ldv_unregister_netdev_stop_12_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ipw_prom_stop(arg1); } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static void ldv___ldv_spin_lock_60(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_61(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_irq_lock_of_ipw_priv(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_62(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_64(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lock_of_ipw_priv(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_66(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_68(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_70(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_72(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void *ldv_dev_get_drvdata_74(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_75(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_76(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_77(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_78(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_79(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_80(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_82(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_83(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_84(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_85(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_86(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_87(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_88(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_89(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_90(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_91(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_92(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_93(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_94(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_95(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_96(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_97(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_98(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_99(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_100(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_101(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_102(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_103(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_104(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_105(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_106(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_107(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_108(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_109(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void ldv___ldv_spin_lock_110(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_112(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_114(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_118(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_121(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_libipw_device(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lock_of_libipw_device(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_123(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_125(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_rx_queue(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_126(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lock_of_ipw_rx_queue(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_127(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_rx_queue(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_129(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_rx_queue(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_131(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_libipw_device(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_133(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_libipw_device(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_135(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_libipw_device(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_137(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_libipw_device(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_139(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_libipw_device(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_141(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_libipw_device(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_143(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_145(spinlock_t *lock ) { { { ldv_spin_lock_irq_lock_of_ipw_priv(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_146(spinlock_t *lock ) { { { ldv_spin_unlock_irq_lock_of_ipw_priv(); spin_unlock(lock); } return; } } static void ldv___ldv_spin_lock_148(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_ipw_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv_register_netdev_150(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_unregister_netdev_151(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } __inline static int ldv_request_irq_152(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_153(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_unregister_netdev_154(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_irq_155(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_unregister_netdev_156(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_irq_157(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static int ldv___pci_register_driver_158(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_159(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static void ldv_pci_unregister_driver_160(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_irq_lock_of_ipw_priv = 1; void ldv_spin_lock_irq_lock_of_ipw_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_irq_lock_of_ipw_priv == 1); ldv_assume(ldv_spin_irq_lock_of_ipw_priv == 1); ldv_spin_irq_lock_of_ipw_priv = 2; } return; } } void ldv_spin_unlock_irq_lock_of_ipw_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_irq_lock_of_ipw_priv == 2); ldv_assume(ldv_spin_irq_lock_of_ipw_priv == 2); ldv_spin_irq_lock_of_ipw_priv = 1; } return; } } int ldv_spin_trylock_irq_lock_of_ipw_priv(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_irq_lock_of_ipw_priv == 1); ldv_assume(ldv_spin_irq_lock_of_ipw_priv == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_irq_lock_of_ipw_priv = 2; return (1); } } } void ldv_spin_unlock_wait_irq_lock_of_ipw_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_irq_lock_of_ipw_priv == 1); ldv_assume(ldv_spin_irq_lock_of_ipw_priv == 1); } return; } } int ldv_spin_is_locked_irq_lock_of_ipw_priv(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_irq_lock_of_ipw_priv == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_irq_lock_of_ipw_priv(void) { int tmp ; { { tmp = ldv_spin_is_locked_irq_lock_of_ipw_priv(); } return (tmp == 0); } } int ldv_spin_is_contended_irq_lock_of_ipw_priv(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_irq_lock_of_ipw_priv(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_irq_lock_of_ipw_priv == 1); ldv_assume(ldv_spin_irq_lock_of_ipw_priv == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_irq_lock_of_ipw_priv = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_ipw_priv = 1; void ldv_spin_lock_lock_of_ipw_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_ipw_priv == 1); ldv_assume(ldv_spin_lock_of_ipw_priv == 1); ldv_spin_lock_of_ipw_priv = 2; } return; } } void ldv_spin_unlock_lock_of_ipw_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_ipw_priv == 2); ldv_assume(ldv_spin_lock_of_ipw_priv == 2); ldv_spin_lock_of_ipw_priv = 1; } return; } } int ldv_spin_trylock_lock_of_ipw_priv(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_ipw_priv == 1); ldv_assume(ldv_spin_lock_of_ipw_priv == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_ipw_priv = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_ipw_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_ipw_priv == 1); ldv_assume(ldv_spin_lock_of_ipw_priv == 1); } return; } } int ldv_spin_is_locked_lock_of_ipw_priv(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_ipw_priv == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_ipw_priv(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_ipw_priv(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_ipw_priv(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_ipw_priv(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_ipw_priv == 1); ldv_assume(ldv_spin_lock_of_ipw_priv == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_ipw_priv = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_ipw_rx_queue = 1; void ldv_spin_lock_lock_of_ipw_rx_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_ipw_rx_queue == 1); ldv_assume(ldv_spin_lock_of_ipw_rx_queue == 1); ldv_spin_lock_of_ipw_rx_queue = 2; } return; } } void ldv_spin_unlock_lock_of_ipw_rx_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_ipw_rx_queue == 2); ldv_assume(ldv_spin_lock_of_ipw_rx_queue == 2); ldv_spin_lock_of_ipw_rx_queue = 1; } return; } } int ldv_spin_trylock_lock_of_ipw_rx_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_ipw_rx_queue == 1); ldv_assume(ldv_spin_lock_of_ipw_rx_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_ipw_rx_queue = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_ipw_rx_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_ipw_rx_queue == 1); ldv_assume(ldv_spin_lock_of_ipw_rx_queue == 1); } return; } } int ldv_spin_is_locked_lock_of_ipw_rx_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_ipw_rx_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_ipw_rx_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_ipw_rx_queue(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_ipw_rx_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_ipw_rx_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_ipw_rx_queue == 1); ldv_assume(ldv_spin_lock_of_ipw_rx_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_ipw_rx_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_libipw_device = 1; void ldv_spin_lock_lock_of_libipw_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_libipw_device == 1); ldv_assume(ldv_spin_lock_of_libipw_device == 1); ldv_spin_lock_of_libipw_device = 2; } return; } } void ldv_spin_unlock_lock_of_libipw_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_libipw_device == 2); ldv_assume(ldv_spin_lock_of_libipw_device == 2); ldv_spin_lock_of_libipw_device = 1; } return; } } int ldv_spin_trylock_lock_of_libipw_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_libipw_device == 1); ldv_assume(ldv_spin_lock_of_libipw_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_libipw_device = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_libipw_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_libipw_device == 1); ldv_assume(ldv_spin_lock_of_libipw_device == 1); } return; } } int ldv_spin_is_locked_lock_of_libipw_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_libipw_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_libipw_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_libipw_device(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_libipw_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_libipw_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_libipw_device == 1); ldv_assume(ldv_spin_lock_of_libipw_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_libipw_device = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_irq_lock_of_ipw_priv == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_ipw_priv == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_ipw_rx_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_libipw_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_irq_lock_of_ipw_priv == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_ipw_priv == 2) { return (1); } else { } if (ldv_spin_lock_of_ipw_rx_queue == 2) { return (1); } else { } if (ldv_spin_lock_of_libipw_device == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__complex_emg__linux-kernel-locking-spinlock__drivers-net-wireless-ipw2x00-ipw2200_true-unreach-call.cil.env.c" #include "model/common.env.c"