/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct mutex; struct ldv_thread; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct arch_spinlock; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_15 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_15 __annonCompField7 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_17 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_16 { s64 lock ; struct __anonstruct____missing_field_name_17 __annonCompField8 ; }; typedef union __anonunion_arch_rwlock_t_16 arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct file_operations; struct completion; struct pid; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct timespec; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_22 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_22 __annonCompField10 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_27 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_28 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_26 { struct __anonstruct____missing_field_name_27 __annonCompField14 ; struct __anonstruct____missing_field_name_28 __annonCompField15 ; }; union __anonunion____missing_field_name_29 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_26 __annonCompField16 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_29 __annonCompField17 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_33 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_32 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_33 __annonCompField19 ; }; struct spinlock { union __anonunion____missing_field_name_32 __annonCompField20 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_34 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_34 rwlock_t; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_36 { uid_t val ; }; typedef struct __anonstruct_kuid_t_36 kuid_t; struct __anonstruct_kgid_t_37 { gid_t val ; }; typedef struct __anonstruct_kgid_t_37 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_38 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_38 nodemask_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct __anonstruct_mm_context_t_103 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_103 mm_context_t; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct vm_area_struct; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct nsproxy; struct cred; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_137 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_138 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_137 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_138 __annonCompField34 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_139 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_139 __annonCompField35 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct mem_cgroup; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_141 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_142 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_140 { struct __anonstruct____missing_field_name_141 __annonCompField36 ; struct __anonstruct____missing_field_name_142 __annonCompField37 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_140 __annonCompField38 ; }; enum v4l2_priority { V4L2_PRIORITY_UNSET = 0, V4L2_PRIORITY_BACKGROUND = 1, V4L2_PRIORITY_INTERACTIVE = 2, V4L2_PRIORITY_RECORD = 3, V4L2_PRIORITY_DEFAULT = 2 } ; struct v4l2_rect { __s32 left ; __s32 top ; __u32 width ; __u32 height ; }; struct v4l2_fract { __u32 numerator ; __u32 denominator ; }; struct v4l2_frmsize_discrete { __u32 width ; __u32 height ; }; struct v4l2_frmsize_stepwise { __u32 min_width ; __u32 max_width ; __u32 step_width ; __u32 min_height ; __u32 max_height ; __u32 step_height ; }; union __anonunion____missing_field_name_143 { struct v4l2_frmsize_discrete discrete ; struct v4l2_frmsize_stepwise stepwise ; }; struct v4l2_frmsizeenum { __u32 index ; __u32 pixel_format ; __u32 type ; union __anonunion____missing_field_name_143 __annonCompField39 ; __u32 reserved[2U] ; }; struct v4l2_frmival_stepwise { struct v4l2_fract min ; struct v4l2_fract max ; struct v4l2_fract step ; }; union __anonunion____missing_field_name_144 { struct v4l2_fract discrete ; struct v4l2_frmival_stepwise stepwise ; }; struct v4l2_frmivalenum { __u32 index ; __u32 pixel_format ; __u32 width ; __u32 height ; __u32 type ; union __anonunion____missing_field_name_144 __annonCompField40 ; __u32 reserved[2U] ; }; struct v4l2_captureparm { __u32 capability ; __u32 capturemode ; struct v4l2_fract timeperframe ; __u32 extendedmode ; __u32 readbuffers ; __u32 reserved[4U] ; }; struct v4l2_outputparm { __u32 capability ; __u32 outputmode ; struct v4l2_fract timeperframe ; __u32 extendedmode ; __u32 writebuffers ; __u32 reserved[4U] ; }; struct v4l2_cropcap { __u32 type ; struct v4l2_rect bounds ; struct v4l2_rect defrect ; struct v4l2_fract pixelaspect ; }; struct v4l2_crop { __u32 type ; struct v4l2_rect c ; }; typedef __u64 v4l2_std_id; struct v4l2_bt_timings { __u32 width ; __u32 height ; __u32 interlaced ; __u32 polarities ; __u64 pixelclock ; __u32 hfrontporch ; __u32 hsync ; __u32 hbackporch ; __u32 vfrontporch ; __u32 vsync ; __u32 vbackporch ; __u32 il_vfrontporch ; __u32 il_vsync ; __u32 il_vbackporch ; __u32 standards ; __u32 flags ; __u32 reserved[14U] ; }; union __anonunion____missing_field_name_147 { struct v4l2_bt_timings bt ; __u32 reserved[32U] ; }; struct v4l2_dv_timings { __u32 type ; union __anonunion____missing_field_name_147 __annonCompField41 ; }; struct v4l2_enum_dv_timings { __u32 index ; __u32 reserved[3U] ; struct v4l2_dv_timings timings ; }; struct v4l2_bt_timings_cap { __u32 min_width ; __u32 max_width ; __u32 min_height ; __u32 max_height ; __u64 min_pixelclock ; __u64 max_pixelclock ; __u32 standards ; __u32 capabilities ; __u32 reserved[16U] ; }; union __anonunion____missing_field_name_148 { struct v4l2_bt_timings_cap bt ; __u32 raw_data[32U] ; }; struct v4l2_dv_timings_cap { __u32 type ; __u32 reserved[3U] ; union __anonunion____missing_field_name_148 __annonCompField42 ; }; struct v4l2_control { __u32 id ; __s32 value ; }; union __anonunion____missing_field_name_149 { __s32 value ; __s64 value64 ; char *string ; }; struct v4l2_ext_control { __u32 id ; __u32 size ; __u32 reserved2[1U] ; union __anonunion____missing_field_name_149 __annonCompField43 ; }; struct v4l2_ext_controls { __u32 ctrl_class ; __u32 count ; __u32 error_idx ; __u32 reserved[2U] ; struct v4l2_ext_control *controls ; }; enum v4l2_ctrl_type { V4L2_CTRL_TYPE_INTEGER = 1, V4L2_CTRL_TYPE_BOOLEAN = 2, V4L2_CTRL_TYPE_MENU = 3, V4L2_CTRL_TYPE_BUTTON = 4, V4L2_CTRL_TYPE_INTEGER64 = 5, V4L2_CTRL_TYPE_CTRL_CLASS = 6, V4L2_CTRL_TYPE_STRING = 7, V4L2_CTRL_TYPE_BITMASK = 8, V4L2_CTRL_TYPE_INTEGER_MENU = 9 } ; struct v4l2_queryctrl { __u32 id ; __u32 type ; __u8 name[32U] ; __s32 minimum ; __s32 maximum ; __s32 step ; __s32 default_value ; __u32 flags ; __u32 reserved[2U] ; }; union __anonunion____missing_field_name_150 { __u8 name[32U] ; __s64 value ; }; struct v4l2_querymenu { __u32 id ; __u32 index ; union __anonunion____missing_field_name_150 __annonCompField44 ; __u32 reserved ; }; struct v4l2_tuner { __u32 index ; __u8 name[32U] ; __u32 type ; __u32 capability ; __u32 rangelow ; __u32 rangehigh ; __u32 rxsubchans ; __u32 audmode ; __s32 signal ; __s32 afc ; __u32 reserved[4U] ; }; struct v4l2_modulator { __u32 index ; __u8 name[32U] ; __u32 capability ; __u32 rangelow ; __u32 rangehigh ; __u32 txsubchans ; __u32 reserved[4U] ; }; struct v4l2_frequency { __u32 tuner ; __u32 type ; __u32 frequency ; __u32 reserved[8U] ; }; struct v4l2_vbi_format { __u32 sampling_rate ; __u32 offset ; __u32 samples_per_line ; __u32 sample_format ; __s32 start[2U] ; __u32 count[2U] ; __u32 flags ; __u32 reserved[2U] ; }; struct v4l2_sliced_vbi_format { __u16 service_set ; __u16 service_lines[2U][24U] ; __u32 io_size ; __u32 reserved[2U] ; }; struct v4l2_sliced_vbi_cap { __u16 service_set ; __u16 service_lines[2U][24U] ; __u32 type ; __u32 reserved[3U] ; }; struct v4l2_sliced_vbi_data { __u32 id ; __u32 field ; __u32 line ; __u32 reserved ; __u8 data[48U] ; }; union __anonunion_parm_159 { struct v4l2_captureparm capture ; struct v4l2_outputparm output ; __u8 raw_data[200U] ; }; struct v4l2_streamparm { __u32 type ; union __anonunion_parm_159 parm ; }; struct v4l2_event_subscription { __u32 type ; __u32 id ; __u32 flags ; __u32 reserved[5U] ; }; union __anonunion____missing_field_name_162 { __u32 addr ; char name[32U] ; }; struct v4l2_dbg_match { __u32 type ; union __anonunion____missing_field_name_162 __annonCompField49 ; }; struct v4l2_dbg_register { struct v4l2_dbg_match match ; __u32 size ; __u64 reg ; __u64 val ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct i2c_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_169 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_170 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_168 { struct __anonstruct____missing_field_name_169 __annonCompField51 ; struct __anonstruct____missing_field_name_170 __annonCompField52 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_168 __annonCompField53 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_171 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_173 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_177 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_176 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_177 __annonCompField56 ; int units ; }; struct __anonstruct____missing_field_name_175 { union __anonunion____missing_field_name_176 __annonCompField57 ; atomic_t _count ; }; union __anonunion____missing_field_name_174 { unsigned long counters ; struct __anonstruct____missing_field_name_175 __annonCompField58 ; unsigned int active ; }; struct __anonstruct____missing_field_name_172 { union __anonunion____missing_field_name_173 __annonCompField55 ; union __anonunion____missing_field_name_174 __annonCompField59 ; }; struct __anonstruct____missing_field_name_179 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_178 { struct list_head lru ; struct __anonstruct____missing_field_name_179 __annonCompField61 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_180 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_171 __annonCompField54 ; struct __anonstruct____missing_field_name_172 __annonCompField60 ; union __anonunion____missing_field_name_178 __annonCompField62 ; union __anonunion____missing_field_name_180 __annonCompField63 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_182 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_181 { struct __anonstruct_linear_182 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_181 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_183 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_183 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_185 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_186 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_187 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_188 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_189 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_190 { long _band ; int _fd ; }; struct __anonstruct__sigsys_191 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_184 { int _pad[28U] ; struct __anonstruct__kill_185 _kill ; struct __anonstruct__timer_186 _timer ; struct __anonstruct__rt_187 _rt ; struct __anonstruct__sigchld_188 _sigchld ; struct __anonstruct__sigfault_189 _sigfault ; struct __anonstruct__sigpoll_190 _sigpoll ; struct __anonstruct__sigsys_191 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_184 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct rb_root waiters ; struct rb_node *waiters_leftmost ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_194 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_195 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_197 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_196 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_197 __annonCompField66 ; }; union __anonunion_type_data_198 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_200 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_199 { union __anonunion_payload_200 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_194 __annonCompField64 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_195 __annonCompField65 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_196 __annonCompField67 ; union __anonunion_type_data_198 type_data ; union __anonunion____missing_field_name_199 __annonCompField68 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; }; struct proc_dir_entry; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct device_node *next ; struct device_node *allnext ; struct proc_dir_entry *pde ; struct kref kref ; unsigned long _flags ; void *data ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_adapter; struct i2c_client; struct i2c_driver; struct i2c_board_info; struct i2c_driver { unsigned int class ; int (*attach_adapter)(struct i2c_adapter * ) ; int (*probe)(struct i2c_client * , struct i2c_device_id const * ) ; int (*remove)(struct i2c_client * ) ; void (*shutdown)(struct i2c_client * ) ; int (*suspend)(struct i2c_client * , pm_message_t ) ; int (*resume)(struct i2c_client * ) ; void (*alert)(struct i2c_client * , unsigned int ) ; int (*command)(struct i2c_client * , unsigned int , void * ) ; struct device_driver driver ; struct i2c_device_id const *id_table ; int (*detect)(struct i2c_client * , struct i2c_board_info * ) ; unsigned short const *address_list ; struct list_head clients ; }; struct i2c_client { unsigned short flags ; unsigned short addr ; char name[20U] ; struct i2c_adapter *adapter ; struct device dev ; int irq ; struct list_head detected ; }; struct i2c_board_info { char type[20U] ; unsigned short flags ; unsigned short addr ; void *platform_data ; struct dev_archdata *archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; int irq ; }; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; }; struct i2c_bus_recovery_info { int (*recover_bus)(struct i2c_adapter * ) ; int (*get_scl)(struct i2c_adapter * ) ; void (*set_scl)(struct i2c_adapter * , int ) ; int (*get_sda)(struct i2c_adapter * ) ; void (*prepare_recovery)(struct i2c_bus_recovery_info * ) ; void (*unprepare_recovery)(struct i2c_bus_recovery_info * ) ; int scl_gpio ; int sda_gpio ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; struct i2c_bus_recovery_info *bus_recovery_info ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_203 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_202 { struct __anonstruct____missing_field_name_203 __annonCompField70 ; }; struct lockref { union __anonunion____missing_field_name_202 __annonCompField71 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_205 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_204 { struct __anonstruct____missing_field_name_205 __annonCompField72 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_204 __annonCompField73 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_206 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_206 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct iovec; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_207 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_207 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_208 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_208 __annonCompField74 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct writeback_control; union __anonunion_arg_210 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_209 { size_t written ; size_t count ; union __anonunion_arg_210 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_209 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_211 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_212 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_213 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_211 __annonCompField75 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_212 __annonCompField76 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_213 __annonCompField77 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_214 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_214 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_216 { struct list_head link ; int state ; }; union __anonunion_fl_u_215 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_216 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_215 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct exception_table_entry { int insn ; int fixup ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct media_pipeline { }; struct media_pad; struct media_link { struct media_pad *source ; struct media_pad *sink ; struct media_link *reverse ; unsigned long flags ; }; struct media_entity; struct media_pad { struct media_entity *entity ; u16 index ; unsigned long flags ; }; struct media_entity_operations { int (*link_setup)(struct media_entity * , struct media_pad const * , struct media_pad const * , u32 ) ; int (*link_validate)(struct media_link * ) ; }; struct media_device; struct __anonstruct_v4l_223 { u32 major ; u32 minor ; }; struct __anonstruct_fb_224 { u32 major ; u32 minor ; }; struct __anonstruct_alsa_225 { u32 card ; u32 device ; u32 subdevice ; }; union __anonunion_info_222 { struct __anonstruct_v4l_223 v4l ; struct __anonstruct_fb_224 fb ; struct __anonstruct_alsa_225 alsa ; int dvb ; }; struct media_entity { struct list_head list ; struct media_device *parent ; u32 id ; char const *name ; u32 type ; u32 revision ; unsigned long flags ; u32 group_id ; u16 num_pads ; u16 num_links ; u16 num_backlinks ; u16 max_links ; struct media_pad *pads ; struct media_link *links ; struct media_entity_operations const *ops ; int stream_count ; int use_count ; struct media_pipeline *pipe ; union __anonunion_info_222 info ; }; struct video_device; struct v4l2_device; struct v4l2_ctrl_handler; struct v4l2_prio_state { atomic_t prios[4U] ; }; struct v4l2_file_operations { struct module *owner ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*ioctl)(struct file * , unsigned int , unsigned long ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl32)(struct file * , unsigned int , unsigned long ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct file * ) ; int (*release)(struct file * ) ; }; struct vb2_queue; struct v4l2_ioctl_ops; struct video_device { struct media_entity entity ; struct v4l2_file_operations const *fops ; struct device dev ; struct cdev *cdev ; struct v4l2_device *v4l2_dev ; struct device *dev_parent ; struct v4l2_ctrl_handler *ctrl_handler ; struct vb2_queue *queue ; struct v4l2_prio_state *prio ; char name[32U] ; int vfl_type ; int vfl_dir ; int minor ; u16 num ; unsigned long flags ; int index ; spinlock_t fh_lock ; struct list_head fh_list ; int debug ; v4l2_std_id tvnorms ; void (*release)(struct video_device * ) ; struct v4l2_ioctl_ops const *ioctl_ops ; unsigned long valid_ioctls[3U] ; unsigned long disable_locking[3U] ; struct mutex *lock ; }; struct v4l2_subdev; struct v4l2_subdev_ops; struct v4l2_priv_tun_config { int tuner ; void *priv ; }; enum cx25840_video_input { CX25840_COMPOSITE1 = 1, CX25840_COMPOSITE2 = 2, CX25840_COMPOSITE3 = 3, CX25840_COMPOSITE4 = 4, CX25840_COMPOSITE5 = 5, CX25840_COMPOSITE6 = 6, CX25840_COMPOSITE7 = 7, CX25840_COMPOSITE8 = 8, CX25840_SVIDEO_LUMA1 = 16, CX25840_SVIDEO_LUMA2 = 32, CX25840_SVIDEO_LUMA3 = 48, CX25840_SVIDEO_LUMA4 = 64, CX25840_SVIDEO_LUMA5 = 80, CX25840_SVIDEO_LUMA6 = 96, CX25840_SVIDEO_LUMA7 = 112, CX25840_SVIDEO_LUMA8 = 128, CX25840_SVIDEO_CHROMA4 = 1024, CX25840_SVIDEO_CHROMA5 = 1280, CX25840_SVIDEO_CHROMA6 = 1536, CX25840_SVIDEO_CHROMA7 = 1792, CX25840_SVIDEO_CHROMA8 = 2048, CX25840_SVIDEO1 = 1296, CX25840_SVIDEO2 = 1568, CX25840_SVIDEO3 = 1840, CX25840_SVIDEO4 = 2112, CX25840_VIN1_CH1 = 2147483648U, CX25840_VIN2_CH1 = 2147483649U, CX25840_VIN3_CH1 = 2147483650U, CX25840_VIN4_CH1 = 2147483651U, CX25840_VIN5_CH1 = 2147483652U, CX25840_VIN6_CH1 = 2147483653U, CX25840_VIN7_CH1 = 2147483654U, CX25840_VIN8_CH1 = 2147483655U, CX25840_VIN4_CH2 = 2147483648U, CX25840_VIN5_CH2 = 2147483664U, CX25840_VIN6_CH2 = 2147483680U, CX25840_NONE_CH2 = 2147483696U, CX25840_VIN7_CH3 = 2147483648U, CX25840_VIN8_CH3 = 2147483712U, CX25840_NONE0_CH3 = 2147483776U, CX25840_NONE1_CH3 = 2147483840U, CX25840_SVIDEO_ON = 2147483904U, CX25840_COMPONENT_ON = 2147484160U, CX25840_DIF_ON = 2147484672U } ; enum cx25840_audio_input { CX25840_AUDIO_SERIAL = 0, CX25840_AUDIO4 = 4, CX25840_AUDIO5 = 5, CX25840_AUDIO6 = 6, CX25840_AUDIO7 = 7, CX25840_AUDIO8 = 8 } ; struct cx25840_platform_data { int pvr150_workaround ; }; struct media_file_operations { struct module *owner ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*open)(struct file * ) ; int (*release)(struct file * ) ; }; struct media_devnode { struct media_file_operations const *fops ; struct device dev ; struct cdev cdev ; struct device *parent ; int minor ; unsigned long flags ; void (*release)(struct media_devnode * ) ; }; struct media_device { struct device *dev ; struct media_devnode devnode ; char model[32U] ; char serial[40U] ; char bus_info[32U] ; u32 hw_revision ; u32 driver_version ; u32 entity_id ; struct list_head entities ; spinlock_t lock ; struct mutex graph_mutex ; int (*link_notify)(struct media_link * , u32 , unsigned int ) ; }; enum v4l2_mbus_pixelcode { V4L2_MBUS_FMT_FIXED = 1, V4L2_MBUS_FMT_RGB444_2X8_PADHI_BE = 4097, V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE = 4098, V4L2_MBUS_FMT_RGB555_2X8_PADHI_BE = 4099, V4L2_MBUS_FMT_RGB555_2X8_PADHI_LE = 4100, V4L2_MBUS_FMT_BGR565_2X8_BE = 4101, V4L2_MBUS_FMT_BGR565_2X8_LE = 4102, V4L2_MBUS_FMT_RGB565_2X8_BE = 4103, V4L2_MBUS_FMT_RGB565_2X8_LE = 4104, V4L2_MBUS_FMT_RGB666_1X18 = 4105, V4L2_MBUS_FMT_RGB888_1X24 = 4106, V4L2_MBUS_FMT_RGB888_2X12_BE = 4107, V4L2_MBUS_FMT_RGB888_2X12_LE = 4108, V4L2_MBUS_FMT_ARGB8888_1X32 = 4109, V4L2_MBUS_FMT_Y8_1X8 = 8193, V4L2_MBUS_FMT_UV8_1X8 = 8213, V4L2_MBUS_FMT_UYVY8_1_5X8 = 8194, V4L2_MBUS_FMT_VYUY8_1_5X8 = 8195, V4L2_MBUS_FMT_YUYV8_1_5X8 = 8196, V4L2_MBUS_FMT_YVYU8_1_5X8 = 8197, V4L2_MBUS_FMT_UYVY8_2X8 = 8198, V4L2_MBUS_FMT_VYUY8_2X8 = 8199, V4L2_MBUS_FMT_YUYV8_2X8 = 8200, V4L2_MBUS_FMT_YVYU8_2X8 = 8201, V4L2_MBUS_FMT_Y10_1X10 = 8202, V4L2_MBUS_FMT_YUYV10_2X10 = 8203, V4L2_MBUS_FMT_YVYU10_2X10 = 8204, V4L2_MBUS_FMT_Y12_1X12 = 8211, V4L2_MBUS_FMT_UYVY8_1X16 = 8207, V4L2_MBUS_FMT_VYUY8_1X16 = 8208, V4L2_MBUS_FMT_YUYV8_1X16 = 8209, V4L2_MBUS_FMT_YVYU8_1X16 = 8210, V4L2_MBUS_FMT_YDYUYDYV8_1X16 = 8212, V4L2_MBUS_FMT_YUYV10_1X20 = 8205, V4L2_MBUS_FMT_YVYU10_1X20 = 8206, V4L2_MBUS_FMT_YUV10_1X30 = 8214, V4L2_MBUS_FMT_AYUV8_1X32 = 8215, V4L2_MBUS_FMT_SBGGR8_1X8 = 12289, V4L2_MBUS_FMT_SGBRG8_1X8 = 12307, V4L2_MBUS_FMT_SGRBG8_1X8 = 12290, V4L2_MBUS_FMT_SRGGB8_1X8 = 12308, V4L2_MBUS_FMT_SBGGR10_ALAW8_1X8 = 12309, V4L2_MBUS_FMT_SGBRG10_ALAW8_1X8 = 12310, V4L2_MBUS_FMT_SGRBG10_ALAW8_1X8 = 12311, V4L2_MBUS_FMT_SRGGB10_ALAW8_1X8 = 12312, V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8 = 12299, V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8 = 12300, V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8 = 12297, V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8 = 12301, V4L2_MBUS_FMT_SBGGR10_2X8_PADHI_BE = 12291, V4L2_MBUS_FMT_SBGGR10_2X8_PADHI_LE = 12292, V4L2_MBUS_FMT_SBGGR10_2X8_PADLO_BE = 12293, V4L2_MBUS_FMT_SBGGR10_2X8_PADLO_LE = 12294, V4L2_MBUS_FMT_SBGGR10_1X10 = 12295, V4L2_MBUS_FMT_SGBRG10_1X10 = 12302, V4L2_MBUS_FMT_SGRBG10_1X10 = 12298, V4L2_MBUS_FMT_SRGGB10_1X10 = 12303, V4L2_MBUS_FMT_SBGGR12_1X12 = 12296, V4L2_MBUS_FMT_SGBRG12_1X12 = 12304, V4L2_MBUS_FMT_SGRBG12_1X12 = 12305, V4L2_MBUS_FMT_SRGGB12_1X12 = 12306, V4L2_MBUS_FMT_JPEG_1X8 = 16385, V4L2_MBUS_FMT_S5C_UYVY_JPEG_1X8 = 20481, V4L2_MBUS_FMT_AHSV8888_1X32 = 24577 } ; struct v4l2_mbus_framefmt { __u32 width ; __u32 height ; __u32 code ; __u32 field ; __u32 colorspace ; __u32 reserved[7U] ; }; struct v4l2_subdev_format { __u32 which ; __u32 pad ; struct v4l2_mbus_framefmt format ; __u32 reserved[8U] ; }; struct v4l2_subdev_crop { __u32 which ; __u32 pad ; struct v4l2_rect rect ; __u32 reserved[8U] ; }; struct v4l2_subdev_mbus_code_enum { __u32 pad ; __u32 index ; __u32 code ; __u32 reserved[9U] ; }; struct v4l2_subdev_frame_size_enum { __u32 index ; __u32 pad ; __u32 code ; __u32 min_width ; __u32 max_width ; __u32 min_height ; __u32 max_height ; __u32 reserved[9U] ; }; struct v4l2_subdev_frame_interval { __u32 pad ; struct v4l2_fract interval ; __u32 reserved[9U] ; }; struct v4l2_subdev_frame_interval_enum { __u32 index ; __u32 pad ; __u32 code ; __u32 width ; __u32 height ; struct v4l2_fract interval ; __u32 reserved[9U] ; }; struct v4l2_subdev_selection { __u32 which ; __u32 pad ; __u32 target ; __u32 flags ; struct v4l2_rect r ; __u32 reserved[8U] ; }; struct v4l2_subdev_edid { __u32 pad ; __u32 start_block ; __u32 blocks ; __u32 reserved[5U] ; __u8 *edid ; }; struct v4l2_async_notifier; enum v4l2_async_match_type { V4L2_ASYNC_MATCH_CUSTOM = 0, V4L2_ASYNC_MATCH_DEVNAME = 1, V4L2_ASYNC_MATCH_I2C = 2, V4L2_ASYNC_MATCH_OF = 3 } ; struct __anonstruct_of_228 { struct device_node const *node ; }; struct __anonstruct_device_name_229 { char const *name ; }; struct __anonstruct_i2c_230 { int adapter_id ; unsigned short address ; }; struct __anonstruct_custom_231 { bool (*match)(struct device * , struct v4l2_async_subdev * ) ; void *priv ; }; union __anonunion_match_227 { struct __anonstruct_of_228 of ; struct __anonstruct_device_name_229 device_name ; struct __anonstruct_i2c_230 i2c ; struct __anonstruct_custom_231 custom ; }; struct v4l2_async_subdev { enum v4l2_async_match_type match_type ; union __anonunion_match_227 match ; struct list_head list ; }; struct v4l2_async_notifier { unsigned int num_subdevs ; struct v4l2_async_subdev **subdevs ; struct v4l2_device *v4l2_dev ; struct list_head waiting ; struct list_head done ; struct list_head list ; int (*bound)(struct v4l2_async_notifier * , struct v4l2_subdev * , struct v4l2_async_subdev * ) ; int (*complete)(struct v4l2_async_notifier * ) ; void (*unbind)(struct v4l2_async_notifier * , struct v4l2_subdev * , struct v4l2_async_subdev * ) ; }; struct v4l2_m2m_ctx; struct v4l2_fh { struct list_head list ; struct video_device *vdev ; struct v4l2_ctrl_handler *ctrl_handler ; enum v4l2_priority prio ; wait_queue_head_t wait ; struct list_head subscribed ; struct list_head available ; unsigned int navailable ; u32 sequence ; struct v4l2_m2m_ctx *m2m_ctx ; }; enum v4l2_mbus_type { V4L2_MBUS_PARALLEL = 0, V4L2_MBUS_BT656 = 1, V4L2_MBUS_CSI2 = 2 } ; struct v4l2_mbus_config { enum v4l2_mbus_type type ; unsigned int flags ; }; struct v4l2_subdev_fh; struct tuner_setup; struct v4l2_mbus_frame_desc; struct v4l2_decode_vbi_line { u32 is_second_field ; u8 *p ; u32 line ; u32 type ; }; struct v4l2_subdev_io_pin_config { u32 flags ; u8 pin ; u8 function ; u8 value ; u8 strength ; }; struct v4l2_subdev_core_ops { int (*log_status)(struct v4l2_subdev * ) ; int (*s_io_pin_config)(struct v4l2_subdev * , size_t , struct v4l2_subdev_io_pin_config * ) ; int (*init)(struct v4l2_subdev * , u32 ) ; int (*load_fw)(struct v4l2_subdev * ) ; int (*reset)(struct v4l2_subdev * , u32 ) ; int (*s_gpio)(struct v4l2_subdev * , u32 ) ; int (*queryctrl)(struct v4l2_subdev * , struct v4l2_queryctrl * ) ; int (*g_ctrl)(struct v4l2_subdev * , struct v4l2_control * ) ; int (*s_ctrl)(struct v4l2_subdev * , struct v4l2_control * ) ; int (*g_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*s_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*try_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*querymenu)(struct v4l2_subdev * , struct v4l2_querymenu * ) ; int (*g_std)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*s_std)(struct v4l2_subdev * , v4l2_std_id ) ; long (*ioctl)(struct v4l2_subdev * , unsigned int , void * ) ; int (*g_register)(struct v4l2_subdev * , struct v4l2_dbg_register * ) ; int (*s_register)(struct v4l2_subdev * , struct v4l2_dbg_register const * ) ; int (*s_power)(struct v4l2_subdev * , int ) ; int (*interrupt_service_routine)(struct v4l2_subdev * , u32 , bool * ) ; int (*subscribe_event)(struct v4l2_subdev * , struct v4l2_fh * , struct v4l2_event_subscription * ) ; int (*unsubscribe_event)(struct v4l2_subdev * , struct v4l2_fh * , struct v4l2_event_subscription * ) ; }; struct v4l2_subdev_tuner_ops { int (*s_radio)(struct v4l2_subdev * ) ; int (*s_frequency)(struct v4l2_subdev * , struct v4l2_frequency const * ) ; int (*g_frequency)(struct v4l2_subdev * , struct v4l2_frequency * ) ; int (*g_tuner)(struct v4l2_subdev * , struct v4l2_tuner * ) ; int (*s_tuner)(struct v4l2_subdev * , struct v4l2_tuner const * ) ; int (*g_modulator)(struct v4l2_subdev * , struct v4l2_modulator * ) ; int (*s_modulator)(struct v4l2_subdev * , struct v4l2_modulator const * ) ; int (*s_type_addr)(struct v4l2_subdev * , struct tuner_setup * ) ; int (*s_config)(struct v4l2_subdev * , struct v4l2_priv_tun_config const * ) ; }; struct v4l2_subdev_audio_ops { int (*s_clock_freq)(struct v4l2_subdev * , u32 ) ; int (*s_i2s_clock_freq)(struct v4l2_subdev * , u32 ) ; int (*s_routing)(struct v4l2_subdev * , u32 , u32 , u32 ) ; int (*s_stream)(struct v4l2_subdev * , int ) ; }; struct v4l2_mbus_frame_desc_entry { u16 flags ; u32 pixelcode ; u32 length ; }; struct v4l2_mbus_frame_desc { struct v4l2_mbus_frame_desc_entry entry[4U] ; unsigned short num_entries ; }; struct v4l2_subdev_video_ops { int (*s_routing)(struct v4l2_subdev * , u32 , u32 , u32 ) ; int (*s_crystal_freq)(struct v4l2_subdev * , u32 , u32 ) ; int (*s_std_output)(struct v4l2_subdev * , v4l2_std_id ) ; int (*g_std_output)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*querystd)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*g_tvnorms_output)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*g_input_status)(struct v4l2_subdev * , u32 * ) ; int (*s_stream)(struct v4l2_subdev * , int ) ; int (*cropcap)(struct v4l2_subdev * , struct v4l2_cropcap * ) ; int (*g_crop)(struct v4l2_subdev * , struct v4l2_crop * ) ; int (*s_crop)(struct v4l2_subdev * , struct v4l2_crop const * ) ; int (*g_parm)(struct v4l2_subdev * , struct v4l2_streamparm * ) ; int (*s_parm)(struct v4l2_subdev * , struct v4l2_streamparm * ) ; int (*g_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_frame_interval * ) ; int (*s_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_frame_interval * ) ; int (*enum_framesizes)(struct v4l2_subdev * , struct v4l2_frmsizeenum * ) ; int (*enum_frameintervals)(struct v4l2_subdev * , struct v4l2_frmivalenum * ) ; int (*s_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*g_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*enum_dv_timings)(struct v4l2_subdev * , struct v4l2_enum_dv_timings * ) ; int (*query_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*dv_timings_cap)(struct v4l2_subdev * , struct v4l2_dv_timings_cap * ) ; int (*enum_mbus_fmt)(struct v4l2_subdev * , unsigned int , enum v4l2_mbus_pixelcode * ) ; int (*enum_mbus_fsizes)(struct v4l2_subdev * , struct v4l2_frmsizeenum * ) ; int (*g_mbus_fmt)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) ; int (*try_mbus_fmt)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) ; int (*s_mbus_fmt)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) ; int (*g_mbus_config)(struct v4l2_subdev * , struct v4l2_mbus_config * ) ; int (*s_mbus_config)(struct v4l2_subdev * , struct v4l2_mbus_config const * ) ; int (*s_rx_buffer)(struct v4l2_subdev * , void * , unsigned int * ) ; }; struct v4l2_subdev_vbi_ops { int (*decode_vbi_line)(struct v4l2_subdev * , struct v4l2_decode_vbi_line * ) ; int (*s_vbi_data)(struct v4l2_subdev * , struct v4l2_sliced_vbi_data const * ) ; int (*g_vbi_data)(struct v4l2_subdev * , struct v4l2_sliced_vbi_data * ) ; int (*g_sliced_vbi_cap)(struct v4l2_subdev * , struct v4l2_sliced_vbi_cap * ) ; int (*s_raw_fmt)(struct v4l2_subdev * , struct v4l2_vbi_format * ) ; int (*g_sliced_fmt)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) ; int (*s_sliced_fmt)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) ; }; struct v4l2_subdev_sensor_ops { int (*g_skip_top_lines)(struct v4l2_subdev * , u32 * ) ; int (*g_skip_frames)(struct v4l2_subdev * , u32 * ) ; }; enum v4l2_subdev_ir_mode { V4L2_SUBDEV_IR_MODE_PULSE_WIDTH = 0 } ; struct v4l2_subdev_ir_parameters { unsigned int bytes_per_data_element ; enum v4l2_subdev_ir_mode mode ; bool enable ; bool interrupt_enable ; bool shutdown ; bool modulation ; u32 max_pulse_width ; unsigned int carrier_freq ; unsigned int duty_cycle ; bool invert_level ; bool invert_carrier_sense ; u32 noise_filter_min_width ; unsigned int carrier_range_lower ; unsigned int carrier_range_upper ; u32 resolution ; }; struct v4l2_subdev_ir_ops { int (*rx_read)(struct v4l2_subdev * , u8 * , size_t , ssize_t * ) ; int (*rx_g_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*rx_s_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*tx_write)(struct v4l2_subdev * , u8 * , size_t , ssize_t * ) ; int (*tx_g_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*tx_s_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; }; struct v4l2_subdev_pad_ops { int (*enum_mbus_code)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_mbus_code_enum * ) ; int (*enum_frame_size)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_frame_size_enum * ) ; int (*enum_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_frame_interval_enum * ) ; int (*get_fmt)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_format * ) ; int (*set_fmt)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_format * ) ; int (*set_crop)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_crop * ) ; int (*get_crop)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_crop * ) ; int (*get_selection)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_selection * ) ; int (*set_selection)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_selection * ) ; int (*get_edid)(struct v4l2_subdev * , struct v4l2_subdev_edid * ) ; int (*set_edid)(struct v4l2_subdev * , struct v4l2_subdev_edid * ) ; int (*link_validate)(struct v4l2_subdev * , struct media_link * , struct v4l2_subdev_format * , struct v4l2_subdev_format * ) ; int (*get_frame_desc)(struct v4l2_subdev * , unsigned int , struct v4l2_mbus_frame_desc * ) ; int (*set_frame_desc)(struct v4l2_subdev * , unsigned int , struct v4l2_mbus_frame_desc * ) ; }; struct v4l2_subdev_ops { struct v4l2_subdev_core_ops const *core ; struct v4l2_subdev_tuner_ops const *tuner ; struct v4l2_subdev_audio_ops const *audio ; struct v4l2_subdev_video_ops const *video ; struct v4l2_subdev_vbi_ops const *vbi ; struct v4l2_subdev_ir_ops const *ir ; struct v4l2_subdev_sensor_ops const *sensor ; struct v4l2_subdev_pad_ops const *pad ; }; struct v4l2_subdev_internal_ops { int (*registered)(struct v4l2_subdev * ) ; void (*unregistered)(struct v4l2_subdev * ) ; int (*open)(struct v4l2_subdev * , struct v4l2_subdev_fh * ) ; int (*close)(struct v4l2_subdev * , struct v4l2_subdev_fh * ) ; }; struct regulator_bulk_data; struct v4l2_subdev_platform_data { struct regulator_bulk_data *regulators ; int num_regulators ; void *host_priv ; }; struct v4l2_subdev { struct media_entity entity ; struct list_head list ; struct module *owner ; u32 flags ; struct v4l2_device *v4l2_dev ; struct v4l2_subdev_ops const *ops ; struct v4l2_subdev_internal_ops const *internal_ops ; struct v4l2_ctrl_handler *ctrl_handler ; char name[32U] ; u32 grp_id ; void *dev_priv ; void *host_priv ; struct video_device *devnode ; struct device *dev ; struct list_head async_list ; struct v4l2_async_subdev *asd ; struct v4l2_async_notifier *notifier ; struct v4l2_subdev_platform_data *pdata ; }; struct __anonstruct_pad_232 { struct v4l2_mbus_framefmt try_fmt ; struct v4l2_rect try_crop ; struct v4l2_rect try_compose ; }; struct v4l2_subdev_fh { struct v4l2_fh vfh ; struct __anonstruct_pad_232 *pad ; }; struct v4l2_device { struct device *dev ; struct media_device *mdev ; struct list_head subdevs ; spinlock_t lock ; char name[36U] ; void (*notify)(struct v4l2_subdev * , unsigned int , void * ) ; struct v4l2_ctrl_handler *ctrl_handler ; struct v4l2_prio_state prio ; struct mutex ioctl_lock ; struct kref ref ; void (*release)(struct v4l2_device * ) ; }; struct v4l2_ctrl_helper; struct v4l2_ctrl; struct v4l2_ctrl_ops { int (*g_volatile_ctrl)(struct v4l2_ctrl * ) ; int (*try_ctrl)(struct v4l2_ctrl * ) ; int (*s_ctrl)(struct v4l2_ctrl * ) ; }; union __anonunion____missing_field_name_233 { u32 step ; u32 menu_skip_mask ; }; union __anonunion____missing_field_name_234 { char const * const *qmenu ; s64 const *qmenu_int ; }; union __anonunion_cur_235 { s32 val ; s64 val64 ; char *string ; }; union __anonunion____missing_field_name_236 { s32 val ; s64 val64 ; char *string ; }; struct v4l2_ctrl { struct list_head node ; struct list_head ev_subs ; struct v4l2_ctrl_handler *handler ; struct v4l2_ctrl **cluster ; unsigned int ncontrols ; unsigned int done : 1 ; unsigned int is_new : 1 ; unsigned int is_private : 1 ; unsigned int is_auto : 1 ; unsigned int has_volatiles : 1 ; unsigned int call_notify : 1 ; unsigned int manual_mode_value : 8 ; struct v4l2_ctrl_ops const *ops ; u32 id ; char const *name ; enum v4l2_ctrl_type type ; s32 minimum ; s32 maximum ; s32 default_value ; union __anonunion____missing_field_name_233 __annonCompField79 ; union __anonunion____missing_field_name_234 __annonCompField80 ; unsigned long flags ; union __anonunion_cur_235 cur ; union __anonunion____missing_field_name_236 __annonCompField81 ; void *priv ; }; struct v4l2_ctrl_ref { struct list_head node ; struct v4l2_ctrl_ref *next ; struct v4l2_ctrl *ctrl ; struct v4l2_ctrl_helper *helper ; }; struct v4l2_ctrl_handler { struct mutex _lock ; struct mutex *lock ; struct list_head ctrls ; struct list_head ctrl_refs ; struct v4l2_ctrl_ref *cached ; struct v4l2_ctrl_ref **buckets ; void (*notify)(struct v4l2_ctrl * , void * ) ; void *notify_priv ; u16 nr_of_buckets ; int error ; }; struct cx25840_ir_state; enum cx25840_model { CX23885_AV = 0, CX23887_AV = 1, CX23888_AV = 2, CX2310X_AV = 3, CX25840 = 4, CX25841 = 5, CX25842 = 6, CX25843 = 7, CX25836 = 8, CX25837 = 9 } ; struct __anonstruct____missing_field_name_237 { struct v4l2_ctrl *volume ; struct v4l2_ctrl *mute ; }; struct cx25840_state { struct i2c_client *c ; struct v4l2_subdev sd ; struct v4l2_ctrl_handler hdl ; struct __anonstruct____missing_field_name_237 __annonCompField82 ; int pvr150_workaround ; int radio ; v4l2_std_id std ; enum cx25840_video_input vid_input ; enum cx25840_audio_input aud_input ; u32 audclk_freq ; int audmode ; int vbi_line_offset ; enum cx25840_model id ; u32 rev ; int is_initialized ; wait_queue_head_t fw_wait ; struct work_struct fw_work ; struct cx25840_ir_state *ir_state ; }; struct ldv_struct_EMGentry_6 { int signal_pending ; }; struct ldv_struct_io_instance_0 { struct i2c_driver *arg0 ; int signal_pending ; }; struct ldv_struct_v4l2_device_unregister_subdev_5 { struct v4l2_subdev *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type; enum hrtimer_restart; enum hrtimer_restart; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; enum hrtimer_restart; enum hrtimer_restart; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct __kfifo { unsigned int in ; unsigned int out ; unsigned int mask ; unsigned int esize ; void *data ; }; union __anonunion____missing_field_name_152 { struct __kfifo kfifo ; unsigned char *type ; unsigned char const *const_type ; char (*rectype)[0U] ; void *ptr ; void const *ptr_const ; }; struct kfifo { union __anonunion____missing_field_name_152 __annonCompField50 ; unsigned char buf[0U] ; }; struct __anonstruct____missing_field_name_183 { u32 carrier ; u8 duty_cycle ; }; union __anonunion____missing_field_name_182 { u32 duration ; struct __anonstruct____missing_field_name_183 __annonCompField64 ; }; struct ir_raw_event { union __anonunion____missing_field_name_182 __annonCompField65 ; unsigned int pulse : 1 ; unsigned int reset : 1 ; unsigned int timeout : 1 ; unsigned int carrier_report : 1 ; }; union cx25840_ir_fifo_rec { u32 hw_fifo_data ; struct ir_raw_event ir_core_data ; }; struct cx25840_ir_state { struct i2c_client *c ; struct v4l2_subdev_ir_parameters rx_params ; struct mutex rx_params_lock ; atomic_t rxclk_divider ; atomic_t rx_invert ; struct kfifo rx_kfifo ; spinlock_t rx_kfifo_lock ; struct v4l2_subdev_ir_parameters tx_params ; struct mutex tx_params_lock ; atomic_t txclk_divider ; }; enum tx_fifo_watermark { TX_FIFO_HALF_EMPTY = 0, TX_FIFO_EMPTY = 2048 } ; enum rx_fifo_watermark { RX_FIFO_HALF_FULL = 0, RX_FIFO_NOT_EMPTY = 1024 } ; struct device_private { void *driver_data ; }; typedef u64 dma_addr_t; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void *ldv_dev_get_drvdata(struct device const *dev ) ; void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern struct module __this_module ; extern int printk(char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __bad_percpu_size(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3273; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3273; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3273; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3273; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_3273: ; return (pfo_ret__); } } __inline static u64 div_u64_rem(u64 dividend , u32 divisor , u32 *remainder ) { { *remainder = (u32 )(dividend % (u64 )divisor); return (dividend / (u64 )divisor); } } __inline static u64 div_u64(u64 dividend , u32 divisor ) { u32 remainder ; u64 tmp ; { { tmp = div_u64_rem(dividend, divisor, & remainder); } return (tmp); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern void prepare_to_wait(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern int autoremove_wake_function(wait_queue_t * , unsigned int , int , void * ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } extern void *devm_kmalloc(struct device * , size_t , gfp_t ) ; __inline static void *devm_kzalloc(struct device *dev , size_t size , gfp_t gfp ) { void *tmp ; { { tmp = devm_kmalloc(dev, size, gfp | 32768U); } return (tmp); } } static void *ldv_dev_get_drvdata_11(struct device const *dev ) ; extern void schedule(void) ; extern int i2c_master_send(struct i2c_client const * , char const * , int ) ; extern int i2c_transfer(struct i2c_adapter * , struct i2c_msg * , int ) ; __inline static void *i2c_get_clientdata(struct i2c_client const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_11(& dev->dev); } return (tmp); } } extern int i2c_register_driver(struct module * , struct i2c_driver * ) ; static int ldv_i2c_register_driver_26(struct module *ldv_func_arg1 , struct i2c_driver *ldv_func_arg2 ) ; extern void i2c_del_driver(struct i2c_driver * ) ; __inline static u32 i2c_get_functionality(struct i2c_adapter *adap ) { u32 tmp ; { { tmp = (*((adap->algo)->functionality))(adap); } return (tmp); } } __inline static int i2c_check_functionality(struct i2c_adapter *adap , u32 func ) { u32 tmp ; { { tmp = i2c_get_functionality(adap); } return ((func & tmp) == func); } } __inline static int i2c_adapter_id(struct i2c_adapter *adap ) { { return (adap->nr); } } extern void __const_udelay(unsigned long ) ; extern void v4l2_i2c_subdev_init(struct v4l2_subdev * , struct i2c_client * , struct v4l2_subdev_ops const * ) ; __inline static void *v4l2_get_subdevdata(struct v4l2_subdev const *sd ) { { return ((void *)sd->dev_priv); } } extern void v4l2_device_unregister_subdev(struct v4l2_subdev * ) ; static void ldv_v4l2_device_unregister_subdev_25(struct v4l2_subdev *ldv_func_arg1 ) ; extern int v4l2_ctrl_handler_init_class(struct v4l2_ctrl_handler * , unsigned int , struct lock_class_key * , char const * ) ; extern void v4l2_ctrl_handler_free(struct v4l2_ctrl_handler * ) ; extern int v4l2_ctrl_handler_setup(struct v4l2_ctrl_handler * ) ; extern void v4l2_ctrl_handler_log_status(struct v4l2_ctrl_handler * , char const * ) ; extern struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler * , struct v4l2_ctrl_ops const * , u32 , s32 , s32 , u32 , s32 ) ; extern void v4l2_ctrl_cluster(unsigned int , struct v4l2_ctrl ** ) ; extern int v4l2_subdev_queryctrl(struct v4l2_subdev * , struct v4l2_queryctrl * ) ; extern int v4l2_subdev_querymenu(struct v4l2_subdev * , struct v4l2_querymenu * ) ; extern int v4l2_subdev_g_ext_ctrls(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; extern int v4l2_subdev_try_ext_ctrls(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; extern int v4l2_subdev_s_ext_ctrls(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; extern int v4l2_subdev_g_ctrl(struct v4l2_subdev * , struct v4l2_control * ) ; extern int v4l2_subdev_s_ctrl(struct v4l2_subdev * , struct v4l2_control * ) ; __inline static struct cx25840_state *to_state(struct v4l2_subdev *sd ) { struct v4l2_subdev const *__mptr ; { __mptr = (struct v4l2_subdev const *)sd; return ((struct cx25840_state *)__mptr + 0xfffffffffffffff8UL); } } __inline static struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl ) { struct v4l2_ctrl_handler const *__mptr ; { __mptr = (struct v4l2_ctrl_handler const *)ctrl->handler; return (& ((struct cx25840_state *)__mptr + 0xfffffffffffffec8UL)->sd); } } __inline static bool is_cx2583x(struct cx25840_state *state ) { { return ((unsigned int )state->id - 8U <= 1U); } } __inline static bool is_cx231xx(struct cx25840_state *state ) { { return ((unsigned int )state->id == 3U); } } __inline static bool is_cx2388x(struct cx25840_state *state ) { { return ((unsigned int )state->id <= 2U); } } __inline static bool is_cx23885(struct cx25840_state *state ) { { return ((unsigned int )state->id == 0U); } } __inline static bool is_cx23887(struct cx25840_state *state ) { { return ((unsigned int )state->id == 1U); } } __inline static bool is_cx23888(struct cx25840_state *state ) { { return ((unsigned int )state->id == 2U); } } int cx25840_write(struct i2c_client *client , u16 addr , u8 value ) ; int cx25840_write4(struct i2c_client *client , u16 addr , u32 value ) ; u8 cx25840_read(struct i2c_client *client , u16 addr ) ; u32 cx25840_read4(struct i2c_client *client , u16 addr ) ; int cx25840_and_or(struct i2c_client *client , u16 addr , unsigned int and_mask , u8 or_value ) ; int cx25840_and_or4(struct i2c_client *client , u16 addr , u32 and_mask , u32 or_value ) ; void cx25840_std_setup(struct i2c_client *client ) ; int cx25840_loadfw(struct i2c_client *client ) ; void cx25840_audio_set_path(struct i2c_client *client ) ; int cx25840_s_clock_freq(struct v4l2_subdev *sd , u32 freq ) ; struct v4l2_ctrl_ops const cx25840_audio_ctrl_ops ; int cx25840_s_raw_fmt(struct v4l2_subdev *sd , struct v4l2_vbi_format *fmt ) ; int cx25840_s_sliced_fmt(struct v4l2_subdev *sd , struct v4l2_sliced_vbi_format *svbi ) ; int cx25840_g_sliced_fmt(struct v4l2_subdev *sd , struct v4l2_sliced_vbi_format *svbi ) ; int cx25840_decode_vbi_line(struct v4l2_subdev *sd , struct v4l2_decode_vbi_line *vbi ) ; struct v4l2_subdev_ir_ops const cx25840_ir_ops ; int cx25840_ir_log_status(struct v4l2_subdev *sd ) ; int cx25840_ir_irq_handler(struct v4l2_subdev *sd , u32 status , bool *handled ) ; int cx25840_ir_probe(struct v4l2_subdev *sd ) ; int cx25840_ir_remove(struct v4l2_subdev *sd ) ; static int cx25840_debug ; static void cx23888_std_setup(struct i2c_client *client ) ; int cx25840_write(struct i2c_client *client , u16 addr , u8 value ) { u8 buffer[3U] ; int tmp ; { { buffer[0] = (u8 )((int )addr >> 8); buffer[1] = (u8 )addr; buffer[2] = value; tmp = i2c_master_send((struct i2c_client const *)client, (char const *)(& buffer), 3); } return (tmp); } } int cx25840_write4(struct i2c_client *client , u16 addr , u32 value ) { u8 buffer[6U] ; int tmp ; { { buffer[0] = (u8 )((int )addr >> 8); buffer[1] = (u8 )addr; buffer[2] = (u8 )value; buffer[3] = (u8 )(value >> 8); buffer[4] = (u8 )(value >> 16); buffer[5] = (u8 )(value >> 24); tmp = i2c_master_send((struct i2c_client const *)client, (char const *)(& buffer), 6); } return (tmp); } } u8 cx25840_read(struct i2c_client *client , u16 addr ) { struct i2c_msg msgs[2U] ; u8 tx_buf[2U] ; u8 rx_buf[1U] ; int tmp ; { { tx_buf[0] = (u8 )((int )addr >> 8); tx_buf[1] = (u8 )addr; msgs[0].addr = client->addr; msgs[0].flags = 0U; msgs[0].len = 2U; msgs[0].buf = (__u8 *)(& tx_buf); msgs[1].addr = client->addr; msgs[1].flags = 1U; msgs[1].len = 1U; msgs[1].buf = (__u8 *)(& rx_buf); tmp = i2c_transfer(client->adapter, (struct i2c_msg *)(& msgs), 2); } if (tmp <= 1) { return (0U); } else { } return (rx_buf[0]); } } u32 cx25840_read4(struct i2c_client *client , u16 addr ) { struct i2c_msg msgs[2U] ; u8 tx_buf[2U] ; u8 rx_buf[4U] ; int tmp ; { { tx_buf[0] = (u8 )((int )addr >> 8); tx_buf[1] = (u8 )addr; msgs[0].addr = client->addr; msgs[0].flags = 0U; msgs[0].len = 2U; msgs[0].buf = (__u8 *)(& tx_buf); msgs[1].addr = client->addr; msgs[1].flags = 1U; msgs[1].len = 4U; msgs[1].buf = (__u8 *)(& rx_buf); tmp = i2c_transfer(client->adapter, (struct i2c_msg *)(& msgs), 2); } if (tmp <= 1) { return (0U); } else { } return ((u32 )(((((int )rx_buf[3] << 24) | ((int )rx_buf[2] << 16)) | ((int )rx_buf[1] << 8)) | (int )rx_buf[0])); } } int cx25840_and_or(struct i2c_client *client , u16 addr , unsigned int and_mask , u8 or_value ) { u8 tmp ; int tmp___0 ; { { tmp = cx25840_read(client, (int )addr); tmp___0 = cx25840_write(client, (int )addr, ((int )tmp & (int )((u8 )and_mask)) | (int )or_value); } return (tmp___0); } } int cx25840_and_or4(struct i2c_client *client , u16 addr , u32 and_mask , u32 or_value ) { u32 tmp ; int tmp___0 ; { { tmp = cx25840_read4(client, (int )addr); tmp___0 = cx25840_write4(client, (int )addr, (tmp & and_mask) | or_value); } return (tmp___0); } } static int set_input(struct i2c_client *client , enum cx25840_video_input vid_input , enum cx25840_audio_input aud_input ) ; static int cx23885_s_io_pin_config(struct v4l2_subdev *sd , size_t n , struct v4l2_subdev_io_pin_config *p ) { struct i2c_client *client ; void *tmp ; int i ; u32 pin_ctrl ; u8 gpio_oe ; u8 gpio_data ; u8 strength ; { { tmp = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp; pin_ctrl = cx25840_read4(client, 288); gpio_oe = cx25840_read(client, 352); gpio_data = cx25840_read(client, 356); i = 0; } goto ldv_27836; ldv_27835: strength = (p + (unsigned long )i)->strength; if ((unsigned int )strength > 2U) { strength = 2U; } else { } { if ((int )(p + (unsigned long )i)->pin == 5) { goto case_5; } else { } if ((int )(p + (unsigned long )i)->pin == 0) { goto case_0; } else { } if ((int )(p + (unsigned long )i)->pin == 1) { goto case_1; } else { } if ((int )(p + (unsigned long )i)->pin == 2) { goto case_2; } else { } if ((int )(p + (unsigned long )i)->pin == 3) { goto case_3; } else { } if ((int )(p + (unsigned long )i)->pin == 4) { goto case_4; } else { } goto switch_break; case_5: /* CIL Label */ ; if ((unsigned int )(p + (unsigned long )i)->function != 10U) { pin_ctrl = pin_ctrl & 4261412863U; } else { if (((p + (unsigned long )i)->flags & 5U) != 0U) { pin_ctrl = pin_ctrl & 4261412863U; } else { pin_ctrl = pin_ctrl | 33554432U; } if (((p + (unsigned long )i)->flags & 16U) != 0U) { pin_ctrl = pin_ctrl & 4278190079U; } else { pin_ctrl = pin_ctrl | 16777216U; } } goto ldv_27829; case_0: /* CIL Label */ ; if ((unsigned int )(p + (unsigned long )i)->function != 1U) { gpio_oe = (u8 )((unsigned int )gpio_oe | 1U); pin_ctrl = pin_ctrl & 4294180863U; pin_ctrl = pin_ctrl | (u32 )((int )strength << 18); } else { gpio_oe = (unsigned int )gpio_oe & 254U; if (((p + (unsigned long )i)->flags & 8U) != 0U) { gpio_data = (unsigned int )gpio_data & 254U; gpio_data = (u8 )((int )((signed char )gpio_data) | ((int )((signed char )(p + (unsigned long )i)->value) & 1)); } else { } pin_ctrl = pin_ctrl & 4294955007U; pin_ctrl = pin_ctrl | (u32 )((int )strength << 12); } goto ldv_27829; case_1: /* CIL Label */ ; if ((unsigned int )(p + (unsigned long )i)->function != 3U) { gpio_oe = (u8 )((unsigned int )gpio_oe | 2U); if ((int )(p + (unsigned long )i)->flags & 1) { pin_ctrl = pin_ctrl & 4294966271U; } else { pin_ctrl = pin_ctrl | 1024U; } pin_ctrl = pin_ctrl & 4294180863U; pin_ctrl = pin_ctrl | (u32 )((int )strength << 18); } else { gpio_oe = (unsigned int )gpio_oe & 253U; if (((p + (unsigned long )i)->flags & 8U) != 0U) { gpio_data = (unsigned int )gpio_data & 253U; gpio_data = (u8 )((int )((signed char )gpio_data) | (int )((signed char )(((int )(p + (unsigned long )i)->value & 1) << 1))); } else { } pin_ctrl = pin_ctrl & 4294955007U; pin_ctrl = pin_ctrl | (u32 )((int )strength << 12); } goto ldv_27829; case_2: /* CIL Label */ ; if ((unsigned int )(p + (unsigned long )i)->function != 5U) { gpio_oe = (u8 )((unsigned int )gpio_oe | 4U); pin_ctrl = pin_ctrl & 4282384383U; pin_ctrl = pin_ctrl | (u32 )((int )strength << 22); } else { gpio_oe = (unsigned int )gpio_oe & 251U; if (((p + (unsigned long )i)->flags & 8U) != 0U) { gpio_data = (unsigned int )gpio_data & 251U; gpio_data = (u8 )((int )((signed char )gpio_data) | (int )((signed char )(((int )(p + (unsigned long )i)->value & 1) << 2))); } else { } pin_ctrl = pin_ctrl & 4294955007U; pin_ctrl = pin_ctrl | (u32 )((int )strength << 12); } goto ldv_27829; case_3: /* CIL Label */ ; if ((unsigned int )(p + (unsigned long )i)->function != 7U) { gpio_oe = (u8 )((unsigned int )gpio_oe | 8U); pin_ctrl = pin_ctrl & 4282384383U; pin_ctrl = pin_ctrl | (u32 )((int )strength << 22); } else { gpio_oe = (unsigned int )gpio_oe & 247U; if (((p + (unsigned long )i)->flags & 8U) != 0U) { gpio_data = (unsigned int )gpio_data & 247U; gpio_data = (u8 )((int )((signed char )gpio_data) | (int )((signed char )(((int )(p + (unsigned long )i)->value & 1) << 3))); } else { } pin_ctrl = pin_ctrl & 4294955007U; pin_ctrl = pin_ctrl | (u32 )((int )strength << 12); } goto ldv_27829; case_4: /* CIL Label */ ; if ((unsigned int )(p + (unsigned long )i)->function != 9U) { gpio_oe = (u8 )((unsigned int )gpio_oe | 16U); pin_ctrl = pin_ctrl & 4282384383U; pin_ctrl = pin_ctrl | (u32 )((int )strength << 22); } else { gpio_oe = (unsigned int )gpio_oe & 239U; if (((p + (unsigned long )i)->flags & 8U) != 0U) { gpio_data = (unsigned int )gpio_data & 239U; gpio_data = (u8 )((int )((signed char )gpio_data) | (int )((signed char )(((int )(p + (unsigned long )i)->value & 1) << 4))); } else { } pin_ctrl = pin_ctrl & 4294955007U; pin_ctrl = pin_ctrl | (u32 )((int )strength << 12); } goto ldv_27829; switch_break: /* CIL Label */ ; } ldv_27829: i = i + 1; ldv_27836: ; if ((size_t )i < n) { goto ldv_27835; } else { } { cx25840_write(client, 356, (int )gpio_data); cx25840_write(client, 352, (int )gpio_oe); cx25840_write4(client, 288, pin_ctrl); } return (0); } } static int common_s_io_pin_config(struct v4l2_subdev *sd , size_t n , struct v4l2_subdev_io_pin_config *pincfg ) { struct cx25840_state *state ; struct cx25840_state *tmp ; int tmp___0 ; bool tmp___1 ; { { tmp = to_state(sd); state = tmp; tmp___1 = is_cx2388x(state); } if ((int )tmp___1) { { tmp___0 = cx23885_s_io_pin_config(sd, n, pincfg); } return (tmp___0); } else { } return (0); } } static void init_dll1(struct i2c_client *client ) { { { cx25840_write(client, 345, 35); cx25840_write(client, 346, 135); cx25840_write(client, 347, 6); __const_udelay(42950UL); cx25840_write(client, 345, 225); __const_udelay(42950UL); cx25840_write(client, 346, 134); cx25840_write(client, 345, 224); cx25840_write(client, 345, 225); cx25840_write(client, 347, 16); } return; } } static void init_dll2(struct i2c_client *client ) { { { cx25840_write(client, 349, 227); cx25840_write(client, 350, 134); cx25840_write(client, 351, 6); __const_udelay(42950UL); cx25840_write(client, 349, 225); cx25840_write(client, 349, 224); cx25840_write(client, 349, 225); } return; } } static void cx25836_initialize(struct i2c_client *client ) { { { cx25840_and_or(client, 0, 4294967294U, 1); cx25840_and_or(client, 0, 4294967294U, 0); cx25840_and_or(client, 346, 4294967183U, 0); cx25840_and_or(client, 347, 4294967265U, 6); cx25840_and_or(client, 345, 4294967293U, 2); __const_udelay(42950UL); cx25840_and_or(client, 345, 4294967293U, 0); cx25840_and_or(client, 345, 4294967103U, 192); cx25840_and_or(client, 345, 4294967294U, 0); cx25840_and_or(client, 345, 4294967294U, 1); cx25840_and_or(client, 347, 4294967265U, 16); } return; } } static void cx25840_work_handler(struct work_struct *work ) { struct cx25840_state *state ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; state = (struct cx25840_state *)__mptr + 0xfffffffffffffd38UL; cx25840_loadfw(state->c); __wake_up(& state->fw_wait, 3U, 1, (void *)0); } return; } } static void cx25840_initialize(struct i2c_client *client ) { wait_queue_t wait ; struct task_struct *tmp ; struct cx25840_state *state ; void *tmp___0 ; struct cx25840_state *tmp___1 ; struct workqueue_struct *q ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; char const *__lock_name ; struct workqueue_struct *tmp___2 ; { { tmp = get_current(); wait.flags = 0U; wait.private = (void *)tmp; wait.func = & autoremove_wake_function; wait.task_list.next = & wait.task_list; wait.task_list.prev = & wait.task_list; tmp___0 = i2c_get_clientdata((struct i2c_client const *)client); tmp___1 = to_state((struct v4l2_subdev *)tmp___0); state = tmp___1; cx25840_and_or(client, 2051, 4294967279U, 0); cx25840_write(client, 0, 4); init_dll1(client); init_dll2(client); cx25840_write(client, 310, 10); cx25840_write(client, 316, 1); cx25840_write(client, 316, 0); __init_work(& state->fw_work, 0); __constr_expr_0.counter = 137438953408L; state->fw_work.data = __constr_expr_0; lockdep_init_map(& state->fw_work.lockdep_map, "(&state->fw_work)", & __key, 0); INIT_LIST_HEAD(& state->fw_work.entry); state->fw_work.func = & cx25840_work_handler; __init_waitqueue_head(& state->fw_wait, "&state->fw_wait", & __key___0); __lock_name = "\"%s\"(\"cx25840_fw\")"; tmp___2 = __alloc_workqueue_key("%s", 10U, 1, & __key___1, __lock_name, (char *)"cx25840_fw"); q = tmp___2; prepare_to_wait(& state->fw_wait, & wait, 2); queue_work(q, & state->fw_work); schedule(); finish_wait(& state->fw_wait, & wait); destroy_workqueue(q); cx25840_write(client, 277, 140); cx25840_write(client, 278, 7); cx25840_write(client, 280, 2); cx25840_write(client, 1189, 128); cx25840_write(client, 1189, 0); cx25840_write(client, 1026, 0); cx25840_and_or(client, 1025, 4294967271U, 0); cx25840_and_or(client, 1186, 4294967279U, 16); cx25840_write(client, 2259, 31); cx25840_write(client, 2275, 3); cx25840_std_setup(client); cx25840_write(client, 2324, 160); cx25840_write(client, 2328, 160); cx25840_write(client, 2329, 1); cx25840_write(client, 2057, 4); cx25840_write(client, 2255, 15); set_input(client, state->vid_input, state->aud_input); cx25840_and_or(client, 2051, 4294967279U, 16); } return; } } static void cx23885_initialize(struct i2c_client *client ) { wait_queue_t wait ; struct task_struct *tmp ; struct cx25840_state *state ; void *tmp___0 ; struct cx25840_state *tmp___1 ; struct workqueue_struct *q ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; char const *__lock_name ; struct workqueue_struct *tmp___2 ; bool tmp___3 ; { { tmp = get_current(); wait.flags = 0U; wait.private = (void *)tmp; wait.func = & autoremove_wake_function; wait.task_list.next = & wait.task_list; wait.task_list.prev = & wait.task_list; tmp___0 = i2c_get_clientdata((struct i2c_client const *)client); tmp___1 = to_state((struct v4l2_subdev *)tmp___0); state = tmp___1; cx25840_write(client, 0, 0); cx25840_and_or(client, 258, 4294967294U, 1); cx25840_and_or(client, 258, 4294967294U, 0); cx25840_and_or(client, 2051, 4294967279U, 0); cx25840_write(client, 920, 0); cx25840_write(client, 2, 118); cx25840_write(client, 1, 64); } { if ((unsigned int )state->id == 2U) { goto case_2; } else { } if ((unsigned int )state->id == 1U) { goto case_1; } else { } if ((unsigned int )state->id == 0U) { goto case_0; } else { } goto switch_default; case_2: /* CIL Label */ { cx25840_write(client, 2, 113); cx25840_write4(client, 284, 30504012U); cx25840_write4(client, 280, 1046U); cx25840_write4(client, 1028, 1058110U); cx25840_write4(client, 1068, 1113587712U); cx25840_write4(client, 1100, 371134464U); } goto ldv_27878; case_1: /* CIL Label */ { cx25840_write4(client, 284, 30504012U); cx25840_write4(client, 280, 1046U); } goto ldv_27878; case_0: /* CIL Label */ ; switch_default: /* CIL Label */ { cx25840_write4(client, 284, 0U); cx25840_write4(client, 280, 1044U); } goto ldv_27878; switch_break: /* CIL Label */ ; } ldv_27878: { cx25840_write4(client, 828, 1U); cx25840_write4(client, 832, 234348419U); } { if ((unsigned int )state->id == 2U) { goto case_2___0; } else { } goto switch_default___0; case_2___0: /* CIL Label */ { cx25840_write4(client, 268, 322122547U); cx25840_write4(client, 264, 1301U); } goto ldv_27883; switch_default___0: /* CIL Label */ { cx25840_write4(client, 268, 2876105U); cx25840_write4(client, 264, 1039U); } switch_break___0: /* CIL Label */ ; } ldv_27883: { cx25840_write4(client, 1044, 1080594U); cx25840_write4(client, 1056, 1023443586U); } { if ((unsigned int )state->id == 2U) { goto case_2___1; } else { } if ((unsigned int )state->id == 1U) { goto case_1___0; } else { } if ((unsigned int )state->id == 0U) { goto case_0___0; } else { } goto switch_default___1; case_2___1: /* CIL Label */ { cx25840_write4(client, 276, 25018184U); cx25840_write4(client, 272, 656142U); } goto ldv_27886; case_1___0: /* CIL Label */ { cx25840_write4(client, 276, 25018184U); cx25840_write4(client, 272, 656142U); } goto ldv_27886; case_0___0: /* CIL Label */ ; switch_default___1: /* CIL Label */ { cx25840_write4(client, 276, 29297822U); cx25840_write4(client, 272, 656140U); } goto ldv_27886; switch_break___1: /* CIL Label */ ; } ldv_27886: { cx25840_write(client, 258, 16); cx25840_write(client, 259, 17); cx25840_write(client, 1024, 0); cx25840_write(client, 1025, 232); cx25840_write(client, 324, 5); cx25840_write(client, 352, 29); cx25840_write(client, 356, 0); __init_work(& state->fw_work, 0); __constr_expr_0.counter = 137438953408L; state->fw_work.data = __constr_expr_0; lockdep_init_map(& state->fw_work.lockdep_map, "(&state->fw_work)", & __key, 0); INIT_LIST_HEAD(& state->fw_work.entry); state->fw_work.func = & cx25840_work_handler; __init_waitqueue_head(& state->fw_wait, "&state->fw_wait", & __key___0); __lock_name = "\"%s\"(\"cx25840_fw\")"; tmp___2 = __alloc_workqueue_key("%s", 10U, 1, & __key___1, __lock_name, (char *)"cx25840_fw"); q = tmp___2; prepare_to_wait(& state->fw_wait, & wait, 2); queue_work(q, & state->fw_work); schedule(); finish_wait(& state->fw_wait, & wait); destroy_workqueue(q); tmp___3 = is_cx23888(state); } if ((int )tmp___3) { { cx23888_std_setup(client); } } else { { cx25840_std_setup(client); } } { set_input(client, state->vid_input, state->aud_input); cx25840_and_or(client, 2051, 4294967279U, 16); cx25840_write4(client, 1040, 4294967295U); cx25840_write(client, 2066, 255); cx25840_write(client, 2067, 255); cx25840_write4(client, 1028, 1058110U); cx25840_write(client, 1071, 102); cx25840_write4(client, 304, 0U); cx25840_write4(client, 1144, 1713898015U); cx25840_write4(client, 324, 5U); cx25840_write4(client, 2328, 416U); cx25840_write4(client, 308, 661504U); cx25840_write4(client, 316, 3211264U); } return; } } static void cx231xx_initialize(struct i2c_client *client ) { wait_queue_t wait ; struct task_struct *tmp ; struct cx25840_state *state ; void *tmp___0 ; struct cx25840_state *tmp___1 ; struct workqueue_struct *q ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; char const *__lock_name ; struct workqueue_struct *tmp___2 ; { { tmp = get_current(); wait.flags = 0U; wait.private = (void *)tmp; wait.func = & autoremove_wake_function; wait.task_list.next = & wait.task_list; wait.task_list.prev = & wait.task_list; tmp___0 = i2c_get_clientdata((struct i2c_client const *)client); tmp___1 = to_state((struct v4l2_subdev *)tmp___0); state = tmp___1; cx25840_and_or(client, 258, 4294967294U, 1); cx25840_and_or(client, 258, 4294967294U, 0); cx25840_and_or(client, 2051, 4294967279U, 0); cx25840_write(client, 920, 0); cx25840_write(client, 2, 118); cx25840_write(client, 1, 64); cx25840_write4(client, 828, 1U); cx25840_write4(client, 832, 234348419U); cx25840_write4(client, 1044, 1080594U); cx25840_write4(client, 1056, 1023443586U); cx25840_write(client, 258, 16); cx25840_write(client, 259, 17); cx25840_write(client, 1024, 0); cx25840_write(client, 1025, 232); __init_work(& state->fw_work, 0); __constr_expr_0.counter = 137438953408L; state->fw_work.data = __constr_expr_0; lockdep_init_map(& state->fw_work.lockdep_map, "(&state->fw_work)", & __key, 0); INIT_LIST_HEAD(& state->fw_work.entry); state->fw_work.func = & cx25840_work_handler; __init_waitqueue_head(& state->fw_wait, "&state->fw_wait", & __key___0); __lock_name = "\"%s\"(\"cx25840_fw\")"; tmp___2 = __alloc_workqueue_key("%s", 10U, 1, & __key___1, __lock_name, (char *)"cx25840_fw"); q = tmp___2; prepare_to_wait(& state->fw_wait, & wait, 2); queue_work(q, & state->fw_work); schedule(); finish_wait(& state->fw_wait, & wait); destroy_workqueue(q); cx25840_std_setup(client); set_input(client, state->vid_input, state->aud_input); cx25840_and_or(client, 2051, 4294967279U, 16); cx25840_write(client, 1028, 11); cx25840_write(client, 1071, 102); cx25840_write4(client, 1140, 505307162U); } return; } } void cx25840_std_setup(struct i2c_client *client ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; v4l2_std_id std ; int hblank ; int hactive ; int burst ; int vblank ; int vactive ; int sc ; int vblank656 ; int src_decimation ; int luma_lpf ; int uv_lpf ; int comb ; u32 pll_int ; u32 pll_frac ; u32 pll_post ; u8 tmp___1 ; u32 tmp___2 ; u8 tmp___3 ; int tmp___4 ; int fin ; int fsc ; int pll ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; bool tmp___10 ; int tmp___11 ; { { tmp = i2c_get_clientdata((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; std = state->std; } if ((std & 0xffffffffffff4fffULL) != 0ULL) { { cx25840_write(client, 1183, 17); } } else { { cx25840_write(client, 1183, 20); } } if ((std & 16713471ULL) != 0ULL) { hblank = 132; hactive = 720; burst = 93; vblank = 36; vactive = 580; vblank656 = 40; src_decimation = 543; luma_lpf = 2; if ((std & 16711680ULL) != 0ULL) { uv_lpf = 0; comb = 0; sc = 672351; } else if (std == 1024ULL) { uv_lpf = 1; comb = 32; sc = 556453; } else { uv_lpf = 1; comb = 32; sc = 688739; } } else { hactive = 720; hblank = 122; vactive = 487; luma_lpf = 1; uv_lpf = 1; src_decimation = 543; if (std == 2048ULL) { vblank = 26; vblank656 = 26; burst = 91; luma_lpf = 2; comb = 32; sc = 688739; } else if (std == 256ULL) { vblank = 20; vblank656 = 24; burst = 97; comb = 32; sc = 555452; } else { vblank = 26; vblank656 = 26; burst = 91; comb = 102; sc = 556063; } } { tmp___10 = is_cx231xx(state); } if (tmp___10) { tmp___11 = 0; } else { tmp___11 = 1; } if (tmp___11) { { tmp___1 = cx25840_read(client, 264); pll_int = (u32 )tmp___1; tmp___2 = cx25840_read4(client, 268); pll_frac = tmp___2 & 33554431U; tmp___3 = cx25840_read(client, 265); pll_post = (u32 )tmp___3; } if (cx25840_debug > 0) { { tmp___4 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: PLL regs = int: %u, frac: %u, post: %u\n", (client->dev.driver)->name, tmp___4, (int )client->addr, pll_int, pll_frac, pll_post); } } else { } if (pll_post != 0U) { pll = (int )((((unsigned long long )pll_int << 25) + (unsigned long long )pll_frac) * 28636363ULL >> 25); pll = (int )((u32 )pll / pll_post); if (cx25840_debug > 0) { { tmp___5 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: PLL = %d.%06d MHz\n", (client->dev.driver)->name, tmp___5, (int )client->addr, pll / 1000000, pll % 1000000); } } else { } if (cx25840_debug > 0) { { tmp___6 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: PLL/8 = %d.%06d MHz\n", (client->dev.driver)->name, tmp___6, (int )client->addr, pll / 8000000, (pll / 8) % 1000000); } } else { } fin = (int )((unsigned long long )src_decimation * (unsigned long long )pll >> 12); if (cx25840_debug > 0) { { tmp___7 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: ADC Sampling freq = %d.%06d MHz\n", (client->dev.driver)->name, tmp___7, (int )client->addr, fin / 1000000, fin % 1000000); } } else { } fsc = (int )((unsigned long long )sc * (unsigned long long )pll >> 24); if (cx25840_debug > 0) { { tmp___8 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: Chroma sub-carrier freq = %d.%06d MHz\n", (client->dev.driver)->name, tmp___8, (int )client->addr, fsc / 1000000, fsc % 1000000); } } else { } if (cx25840_debug > 0) { { tmp___9 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: hblank %i, hactive %i, vblank %i, vactive %i, vblank656 %i, src_dec %i, burst 0x%02x, luma_lpf %i, uv_lpf %i, comb 0x%02x, sc 0x%06x\n", (client->dev.driver)->name, tmp___9, (int )client->addr, hblank, hactive, vblank, vactive, vblank656, src_decimation, burst, luma_lpf, uv_lpf, comb, sc); } } else { } } else { } } else { } { cx25840_write(client, 1136, (int )((u8 )hblank)); cx25840_write(client, 1137, (int )((u8 )(((int )((signed char )(hblank >> 8)) & 3) | (int )((signed char )(hactive << 4))))); cx25840_write(client, 1138, (int )((u8 )(hactive >> 4))); cx25840_write(client, 1139, (int )((u8 )burst)); cx25840_write(client, 1140, (int )((u8 )vblank)); cx25840_write(client, 1141, (int )((u8 )(((int )((signed char )(vblank >> 8)) & 3) | (int )((signed char )(vactive << 4))))); cx25840_write(client, 1142, (int )((u8 )(vactive >> 4))); cx25840_write(client, 1143, (int )((u8 )vblank656)); cx25840_write(client, 1144, (int )((u8 )src_decimation)); cx25840_write(client, 1145, (int )((u8 )(src_decimation >> 8))); cx25840_write(client, 1146, (int )((u8 )((int )((signed char )(luma_lpf << 6)) | ((int )((signed char )(uv_lpf << 4)) & 48)))); cx25840_write(client, 1147, (int )((u8 )comb)); cx25840_write(client, 1148, (int )((u8 )sc)); cx25840_write(client, 1149, (int )((u8 )(sc >> 8))); cx25840_write(client, 1150, (int )((u8 )(sc >> 16))); } if ((std & 16713471ULL) != 0ULL) { { cx25840_write(client, 1151, 1); state->vbi_line_offset = 5; } } else { { cx25840_write(client, 1151, 0); state->vbi_line_offset = 8; } } return; } } static void input_change(struct i2c_client *client ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; v4l2_std_id std ; bool tmp___1 ; int hw_fix ; { { tmp = i2c_get_clientdata((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; std = state->std; } if ((std & 16711680ULL) != 0ULL) { { cx25840_write(client, 1026, 0); } } else { { cx25840_write(client, 1026, 4); cx25840_write(client, 1183, (std & 45056ULL) != 0ULL ? 20 : 17); } } { cx25840_and_or(client, 1025, 4294967199U, 0); cx25840_and_or(client, 1025, 4294967199U, 96); tmp___1 = is_cx2583x(state); } if ((int )tmp___1) { return; } else { } { cx25840_and_or(client, 2064, 4294967294U, 1); } if (state->radio != 0) { { cx25840_write(client, 2056, 249); cx25840_write(client, 2059, 0); } } else if ((std & 63744ULL) != 0ULL) { hw_fix = state->pvr150_workaround; if (std == 8192ULL) { { cx25840_write(client, 2056, hw_fix != 0 ? 47 : 247); } } else if (std == 32768ULL) { { cx25840_write(client, 2056, hw_fix != 0 ? 63 : 248); } } else { { cx25840_write(client, 2056, hw_fix != 0 ? 31 : 246); } } { cx25840_write(client, 2059, 0); } } else if ((std & 255ULL) != 0ULL) { { cx25840_write(client, 2056, 255); cx25840_write(client, 2059, 0); } } else if ((std & 16711680ULL) != 0ULL) { { cx25840_write(client, 2056, 255); } if ((std & 3276800ULL) != 0ULL && (std & 12582912ULL) == 0ULL) { { cx25840_write(client, 2059, 0); } } else if ((std & 3276800ULL) == 0ULL && (std & 12582912ULL) != 0ULL) { { cx25840_write(client, 2059, 8); } } else { { cx25840_write(client, 2059, 16); } } } else { } { cx25840_and_or(client, 2064, 4294967294U, 0); } return; } } static int set_input(struct i2c_client *client , enum cx25840_video_input vid_input , enum cx25840_audio_input aud_input ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; u8 is_composite ; u8 is_component ; u8 is_dif ; u8 is_svideo ; int luma ; int chroma ; u8 reg ; u32 val ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; bool tmp___8 ; int tmp___9 ; bool tmp___10 ; bool tmp___11 ; bool tmp___12 ; bool tmp___13 ; bool tmp___14 ; int tmp___15 ; bool tmp___16 ; int tmp___17 ; bool tmp___18 ; bool tmp___19 ; bool tmp___20 ; bool tmp___21 ; bool tmp___22 ; { { tmp = i2c_get_clientdata((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; is_composite = (unsigned int )vid_input - 1U <= 7U; is_component = ((unsigned int )vid_input & 2147484160U) == 2147484160U; is_dif = ((unsigned int )vid_input & 2147484672U) == 2147484672U; is_svideo = ((unsigned int )vid_input & 2147483904U) == 2147483904U; luma = (int )vid_input & 240; chroma = (int )vid_input & 3840; } if (cx25840_debug > 0) { { tmp___1 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: decoder set video input %d, audio input %d\n", (client->dev.driver)->name, tmp___1, (int )client->addr, (unsigned int )vid_input, (unsigned int )aud_input); } } else { } if ((int )vid_input < 0) { if (cx25840_debug > 0) { { tmp___2 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: vid_input 0x%x\n", (client->dev.driver)->name, tmp___2, (int )client->addr, (unsigned int )vid_input); } } else { } reg = (u8 )vid_input; is_composite = (u8 )((unsigned int )is_component == 0U && ((unsigned int )vid_input & 2147483904U) != 2147483904U); if (cx25840_debug > 0) { { tmp___3 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: mux cfg 0x%x comp=%d\n", (client->dev.driver)->name, tmp___3, (int )client->addr, (int )reg, (int )is_composite); } } else { } } else if ((unsigned int )is_composite != 0U) { reg = (unsigned int )((u8 )vid_input) + 239U; } else { if (((((unsigned int )vid_input & 4294963215U) != 0U || luma <= 15) || (luma > 128 || chroma <= 1023)) || chroma > 2048) { { tmp___4 = i2c_adapter_id(client->adapter); printk("\v%s %d-%04x: 0x%04x is not a valid video input!\n", (client->dev.driver)->name, tmp___4, (int )client->addr, (unsigned int )vid_input); } return (-22); } else { } reg = (unsigned int )((u8 )((luma + -16) >> 4)) + 240U; if (chroma > 1791) { reg = (unsigned int )reg & 63U; reg = (u8 )((int )((signed char )reg) | (int )((signed char )((chroma + -1792) >> 2))); } else { reg = (unsigned int )reg & 207U; reg = (u8 )((int )((signed char )reg) | (int )((signed char )((chroma + -1024) >> 4))); } } { tmp___6 = is_cx2388x(state); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { { tmp___8 = is_cx231xx(state); } if (tmp___8) { tmp___9 = 0; } else { tmp___9 = 1; } if (tmp___9) { { if ((unsigned int )aud_input == 0U) { goto case_0; } else { } if ((unsigned int )aud_input == 4U) { goto case_4; } else { } if ((unsigned int )aud_input == 5U) { goto case_5; } else { } if ((unsigned int )aud_input == 6U) { goto case_6; } else { } if ((unsigned int )aud_input == 7U) { goto case_7; } else { } if ((unsigned int )aud_input == 8U) { goto case_8; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_27951; case_4: /* CIL Label */ reg = (unsigned int )reg & 207U; goto ldv_27951; case_5: /* CIL Label */ reg = (unsigned int )reg & 207U; reg = (u8 )((unsigned int )reg | 16U); goto ldv_27951; case_6: /* CIL Label */ reg = (unsigned int )reg & 207U; reg = (u8 )((unsigned int )reg | 32U); goto ldv_27951; case_7: /* CIL Label */ reg = (unsigned int )reg & 63U; goto ldv_27951; case_8: /* CIL Label */ reg = (unsigned int )reg & 63U; reg = (u8 )((unsigned int )reg | 64U); goto ldv_27951; switch_default: /* CIL Label */ { tmp___5 = i2c_adapter_id(client->adapter); printk("\v%s %d-%04x: 0x%04x is not a valid audio input!\n", (client->dev.driver)->name, tmp___5, (int )client->addr, (unsigned int )aud_input); } return (-22); switch_break: /* CIL Label */ ; } ldv_27951: ; } else { } } else { } { cx25840_write(client, 259, (int )reg); } if ((unsigned int )is_component != 0U) { { cx25840_and_or(client, 1025, 4294967289U, 6); } } else { { cx25840_and_or(client, 1025, 4294967289U, (unsigned int )is_composite != 0U ? 0 : 2); } } { tmp___12 = is_cx2388x(state); } if ((int )tmp___12) { if ((unsigned int )is_dif != 0U) { { cx25840_and_or(client, 258, 4294967167U, 128); cx25840_write4(client, 796, 3257280000U); cx25840_write4(client, 800, 3257280000U); cx25840_write4(client, 792, 3659933184U); cx25840_write4(client, 828, 707053568U); cx25840_write4(client, 260, 117759232U); } } else { { cx25840_write4(client, 768, 22817013U); cx25840_and_or(client, 258, 4294967167U, 0); cx25840_write4(client, 832, 234348419U); cx25840_write4(client, 260, 117759360U); cx25840_write4(client, 788, 574621184U); cx25840_write4(client, 792, 1073751552U); cx25840_write4(client, 804, 1073751552U); cx25840_write4(client, 812, 38856224U); cx25840_write4(client, 924, 33491712U); cx25840_write4(client, 1040, 4294905279U); cx25840_write4(client, 1044, 1277187U); tmp___10 = is_cx23888(state); } if ((int )tmp___10) { { cx25840_write4(client, 1048, 16810112U); } } else { { cx25840_write4(client, 1048, 16777216U); } } { cx25840_write4(client, 1052, 0U); tmp___11 = is_cx23888(state); } if ((int )tmp___11) { { cx25840_write4(client, 1056, 1850895U); } } else { { cx25840_write4(client, 1056, 1868418U); } } { cx25840_write4(client, 1068, 1113587712U); cx25840_write4(client, 1072, 923U); cx25840_write4(client, 1080, 0U); cx25840_write4(client, 1088, 4175685668U); cx25840_write4(client, 1092, 1074807004U); cx25840_write4(client, 1096, 3443458720U); cx25840_write4(client, 1100, 371134464U); cx25840_write4(client, 1104, 2050U); cx25840_write4(client, 2332, 16777216U); cx25840_write4(client, 2272, 50739312U); cx25840_write4(client, 2260, 2147418148U); cx25840_write4(client, 2256, 405619U); cx25840_write4(client, 2248, 65536U); cx25840_write4(client, 2252, 524323U); cx25840_write4(client, 828, 704956416U); } } { cx25840_write4(client, 920, 0U); } } else { } { tmp___14 = is_cx2388x(state); } if (tmp___14) { tmp___15 = 0; } else { tmp___15 = 1; } if (tmp___15) { { tmp___16 = is_cx231xx(state); } if (tmp___16) { tmp___17 = 0; } else { tmp___17 = 1; } if (tmp___17) { { cx25840_and_or(client, 258, 4294967293U, (int )((signed char )reg) >= 0 ? 2 : 0); } if (((int )reg & 192) != 192 && ((int )reg & 48) != 48) { { cx25840_and_or(client, 258, 4294967291U, 4); } } else { { cx25840_and_or(client, 258, 4294967291U, 0); } } } else { goto _L; } } else { _L: /* CIL Label */ { cx25840_and_or(client, 258, 4294967291U, (unsigned int )is_component != 0U ? 4 : 0); } if ((unsigned int )is_composite != 0U) { { cx25840_and_or(client, 258, 4294967293U, 0); } } else if ((unsigned int )is_component == 0U) { if (chroma > 1791) { { cx25840_and_or(client, 258, 4294967293U, 2); } } else { { cx25840_and_or(client, 258, 4294967293U, 0); } } } else { } { tmp___13 = is_cx2388x(state); } if ((int )tmp___13 && (unsigned int )is_svideo != 0U) { { cx25840_and_or(client, 258, 4294967293U, 2); val = cx25840_read4(client, 1024); val = val & 4294965759U; val = val | 512U; val = val & 4294959103U; cx25840_write4(client, 1024, val); val = cx25840_read4(client, 260); val = val | 4096U; val = val & 4294966911U; cx25840_write4(client, 260, val); } } else { { cx25840_and_or(client, 258, 4294967293U, 0); } } } { state->vid_input = vid_input; state->aud_input = aud_input; cx25840_audio_set_path(client); input_change(client); tmp___19 = is_cx2388x(state); } if ((int )tmp___19) { { cx25840_write(client, 292, 3); cx25840_write(client, 324, 5); cx25840_write(client, 2324, 160); cx25840_write(client, 2328, 160); cx25840_write(client, 2329, 1); } } else { { tmp___18 = is_cx231xx(state); } if ((int )tmp___18) { { cx25840_write(client, 292, 3); cx25840_write(client, 2324, 160); cx25840_write(client, 2328, 160); cx25840_write(client, 2329, 1); } } else { } } { tmp___21 = is_cx2388x(state); } if ((int )tmp___21 && (unsigned int )aud_input - 6U <= 1U) { { cx25840_write4(client, 2320, 0U); cx25840_write4(client, 2256, 405619U); } } else { { tmp___20 = is_cx2388x(state); } if ((int )tmp___20 && (unsigned int )aud_input == 8U) { { cx25840_write4(client, 2320, 313524425U); cx25840_write4(client, 2256, 520501360U); } } else { } } { tmp___22 = is_cx23888(state); } if ((int )tmp___22) { { cx25840_write4(client, 292, 256U); } if ((unsigned int )is_dif == 0U) { { cx25840_and_or(client, 2051, 4294967279U, 0); } } else { } } else { } return (0); } } static int set_v4lstd(struct i2c_client *client ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; u8 fmt ; u8 pal_m ; int tmp___1 ; bool tmp___2 ; bool tmp___3 ; int tmp___4 ; { { tmp = i2c_get_clientdata((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; fmt = 0U; pal_m = 0U; } if (state->std == 8192ULL) { fmt = 2U; } else if (state->std == 16384ULL) { fmt = 3U; } else if (state->std == 256ULL) { pal_m = 1U; fmt = 5U; } else if (state->std == 512ULL) { fmt = 6U; } else if (state->std == 1024ULL) { fmt = 7U; } else if (state->std == 2048ULL) { fmt = 8U; } else if ((state->std & 45056ULL) != 0ULL) { fmt = 1U; } else if ((state->std & 255ULL) != 0ULL) { fmt = 4U; } else if ((state->std & 16711680ULL) != 0ULL) { fmt = 12U; } else { } if (cx25840_debug > 0) { { tmp___1 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: changing video std to fmt %i\n", (client->dev.driver)->name, tmp___1, (int )client->addr, (int )fmt); } } else { } if ((unsigned int )fmt - 4U <= 3U) { { cx25840_and_or(client, 1024, 4294967280U, 1); cx25840_and_or(client, 1147, 4294967289U, 0); } } else { } { cx25840_and_or(client, 1024, 4294967280U, (int )fmt); cx25840_and_or(client, 1027, 4294967292U, (int )pal_m); tmp___2 = is_cx23888(state); } if ((int )tmp___2) { { cx23888_std_setup(client); } } else { { cx25840_std_setup(client); } } { tmp___3 = is_cx2583x(state); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { input_change(client); } } else { } return (0); } } static int cx25840_s_ctrl(struct v4l2_ctrl *ctrl ) { struct v4l2_subdev *sd ; struct v4l2_subdev *tmp ; struct cx25840_state *state ; struct cx25840_state *tmp___0 ; struct i2c_client *client ; void *tmp___1 ; bool tmp___2 ; bool tmp___3 ; { { tmp = to_sd(ctrl); sd = tmp; tmp___0 = to_state(sd); state = tmp___0; tmp___1 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___1; } { if (ctrl->id == 9963776U) { goto case_9963776; } else { } if (ctrl->id == 9963777U) { goto case_9963777; } else { } if (ctrl->id == 9963778U) { goto case_9963778; } else { } if (ctrl->id == 9963779U) { goto case_9963779; } else { } goto switch_default; case_9963776: /* CIL Label */ { cx25840_write(client, 1044, (int )((unsigned int )((u8 )ctrl->__annonCompField81.val) + 128U)); } goto ldv_27971; case_9963777: /* CIL Label */ { cx25840_write(client, 1045, (int )((u8 )ctrl->__annonCompField81.val) << 1U); } goto ldv_27971; case_9963778: /* CIL Label */ { tmp___2 = is_cx23888(state); } if ((int )tmp___2) { { cx25840_write(client, 1048, (int )((u8 )ctrl->__annonCompField81.val) << 1U); cx25840_write(client, 1049, (int )((u8 )ctrl->__annonCompField81.val) << 1U); } } else { { cx25840_write(client, 1056, (int )((u8 )ctrl->__annonCompField81.val) << 1U); cx25840_write(client, 1057, (int )((u8 )ctrl->__annonCompField81.val) << 1U); } } goto ldv_27971; case_9963779: /* CIL Label */ { tmp___3 = is_cx23888(state); } if ((int )tmp___3) { { cx25840_write(client, 1050, (int )((u8 )ctrl->__annonCompField81.val)); } } else { { cx25840_write(client, 1058, (int )((u8 )ctrl->__annonCompField81.val)); } } goto ldv_27971; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_27971: ; return (0); } } static int cx25840_s_mbus_fmt(struct v4l2_subdev *sd , struct v4l2_mbus_framefmt *fmt ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; int HSC ; int VSC ; int Vsrc ; int Hsrc ; int filter ; int Vlines ; int is_50Hz ; u8 tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; bool tmp___5 ; u8 tmp___6 ; u8 tmp___7 ; u8 tmp___8 ; u8 tmp___9 ; bool tmp___10 ; int tmp___11 ; int tmp___12 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; is_50Hz = (state->std & 63744ULL) == 0ULL; } if (fmt->code != 1U) { return (-22); } else { } { fmt->field = 4U; fmt->colorspace = 1U; tmp___5 = is_cx23888(state); } if ((int )tmp___5) { { tmp___1 = cx25840_read(client, 1066); Vsrc = ((int )tmp___1 & 63) << 4; tmp___2 = cx25840_read(client, 1065); Vsrc = Vsrc | ((int )tmp___2 >> 4); } } else { { tmp___3 = cx25840_read(client, 1142); Vsrc = ((int )tmp___3 & 63) << 4; tmp___4 = cx25840_read(client, 1141); Vsrc = Vsrc | ((int )tmp___4 >> 4); } } { tmp___10 = is_cx23888(state); } if ((int )tmp___10) { { tmp___6 = cx25840_read(client, 1062); Hsrc = ((int )tmp___6 & 63) << 4; tmp___7 = cx25840_read(client, 1061); Hsrc = Hsrc | ((int )tmp___7 >> 4); } } else { { tmp___8 = cx25840_read(client, 1138); Hsrc = ((int )tmp___8 & 63) << 4; tmp___9 = cx25840_read(client, 1137); Hsrc = Hsrc | ((int )tmp___9 >> 4); } } Vlines = (int )(fmt->height + (is_50Hz != 0 ? 4U : 7U)); if ((fmt->width * 16U < (__u32 )Hsrc || (__u32 )Hsrc < fmt->width) || (Vlines * 8 < Vsrc || Vsrc < Vlines)) { { tmp___11 = i2c_adapter_id(client->adapter); printk("\v%s %d-%04x: %dx%d is not a valid size!\n", (client->dev.driver)->name, tmp___11, (int )client->addr, fmt->width, fmt->height); } return (-34); } else { } HSC = (int )((__u32 )(Hsrc * 1048576) / fmt->width - 1048576U); VSC = 66048 - (Vsrc * 512) / Vlines; VSC = VSC & 8191; if (fmt->width > 384U) { filter = 0; } else if (fmt->width > 192U) { filter = 1; } else if (fmt->width > 96U) { filter = 2; } else { filter = 3; } if (cx25840_debug > 0) { { tmp___12 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: decoder set size %dx%d -> scale %ux%u\n", (client->dev.driver)->name, tmp___12, (int )client->addr, fmt->width, fmt->height, HSC, VSC); } } else { } { cx25840_write(client, 1048, (int )((u8 )HSC)); cx25840_write(client, 1049, (int )((u8 )(HSC >> 8))); cx25840_write(client, 1050, (int )((u8 )(HSC >> 16))); cx25840_write(client, 1052, (int )((u8 )VSC)); cx25840_write(client, 1053, (int )((u8 )(VSC >> 8))); cx25840_write(client, 1054, (int )((u8 )((int )((signed char )filter) | 8))); } return (0); } } static void log_video_status(struct i2c_client *client ) { char const *fmt_strs[16U] ; struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; u8 vidfmt_sel ; u8 tmp___1 ; u8 gen_stat1 ; u8 tmp___2 ; u8 gen_stat2 ; u8 tmp___3 ; int vid_input ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; { { fmt_strs[0] = "0x0"; fmt_strs[1] = "NTSC-M"; fmt_strs[2] = "NTSC-J"; fmt_strs[3] = "NTSC-4.43"; fmt_strs[4] = "PAL-BDGHI"; fmt_strs[5] = "PAL-M"; fmt_strs[6] = "PAL-N"; fmt_strs[7] = "PAL-Nc"; fmt_strs[8] = "PAL-60"; fmt_strs[9] = "0x9"; fmt_strs[10] = "0xA"; fmt_strs[11] = "0xB"; fmt_strs[12] = "SECAM"; fmt_strs[13] = "0xD"; fmt_strs[14] = "0xE"; fmt_strs[15] = "0xF"; tmp = i2c_get_clientdata((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; tmp___1 = cx25840_read(client, 1024); vidfmt_sel = (unsigned int )tmp___1 & 15U; tmp___2 = cx25840_read(client, 1037); gen_stat1 = tmp___2; tmp___3 = cx25840_read(client, 1038); gen_stat2 = tmp___3; vid_input = (int )state->vid_input; tmp___4 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Video signal: %spresent\n", (client->dev.driver)->name, tmp___4, (int )client->addr, ((int )gen_stat2 & 32) != 0 ? (char *)"" : (char *)"not "); tmp___5 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Detected format: %s\n", (client->dev.driver)->name, tmp___5, (int )client->addr, fmt_strs[(int )gen_stat1 & 15]); tmp___6 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Specified standard: %s\n", (client->dev.driver)->name, tmp___6, (int )client->addr, (unsigned int )vidfmt_sel != 0U ? fmt_strs[(int )vidfmt_sel] : (char const */* const */)"automatic detection"); } if ((unsigned int )vid_input - 1U <= 7U) { { tmp___7 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Specified video input: Composite %d\n", (client->dev.driver)->name, tmp___7, (int )client->addr, vid_input); } } else { { tmp___8 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Specified video input: S-Video (Luma In%d, Chroma In%d)\n", (client->dev.driver)->name, tmp___8, (int )client->addr, (vid_input & 240) >> 4, (vid_input & 3840) >> 8); } } { tmp___9 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Specified audioclock freq: %d Hz\n", (client->dev.driver)->name, tmp___9, (int )client->addr, state->audclk_freq); } return; } } static void log_audio_status(struct i2c_client *client ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; u8 download_ctl ; u8 tmp___1 ; u8 mod_det_stat0 ; u8 tmp___2 ; u8 mod_det_stat1 ; u8 tmp___3 ; u8 audio_config ; u8 tmp___4 ; u8 pref_mode ; u8 tmp___5 ; u8 afc0 ; u8 tmp___6 ; u8 mute_ctl ; u8 tmp___7 ; int aud_input ; char *p ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; { { tmp = i2c_get_clientdata((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; tmp___1 = cx25840_read(client, 2051); download_ctl = tmp___1; tmp___2 = cx25840_read(client, 2052); mod_det_stat0 = tmp___2; tmp___3 = cx25840_read(client, 2053); mod_det_stat1 = tmp___3; tmp___4 = cx25840_read(client, 2056); audio_config = tmp___4; tmp___5 = cx25840_read(client, 2057); pref_mode = tmp___5; tmp___6 = cx25840_read(client, 2059); afc0 = tmp___6; tmp___7 = cx25840_read(client, 2259); mute_ctl = tmp___7; aud_input = (int )state->aud_input; } { if ((int )mod_det_stat0 == 0) { goto case_0; } else { } if ((int )mod_det_stat0 == 1) { goto case_1; } else { } if ((int )mod_det_stat0 == 2) { goto case_2; } else { } if ((int )mod_det_stat0 == 4) { goto case_4; } else { } if ((int )mod_det_stat0 == 16) { goto case_16; } else { } if ((int )mod_det_stat0 == 17) { goto case_17; } else { } if ((int )mod_det_stat0 == 18) { goto case_18; } else { } if ((int )mod_det_stat0 == 20) { goto case_20; } else { } if ((int )mod_det_stat0 == 254) { goto case_254; } else { } goto switch_default; case_0: /* CIL Label */ p = (char *)"mono"; goto ldv_28012; case_1: /* CIL Label */ p = (char *)"stereo"; goto ldv_28012; case_2: /* CIL Label */ p = (char *)"dual"; goto ldv_28012; case_4: /* CIL Label */ p = (char *)"tri"; goto ldv_28012; case_16: /* CIL Label */ p = (char *)"mono with SAP"; goto ldv_28012; case_17: /* CIL Label */ p = (char *)"stereo with SAP"; goto ldv_28012; case_18: /* CIL Label */ p = (char *)"dual with SAP"; goto ldv_28012; case_20: /* CIL Label */ p = (char *)"tri with SAP"; goto ldv_28012; case_254: /* CIL Label */ p = (char *)"forced mode"; goto ldv_28012; switch_default: /* CIL Label */ p = (char *)"not defined"; switch_break: /* CIL Label */ ; } ldv_28012: { tmp___8 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Detected audio mode: %s\n", (client->dev.driver)->name, tmp___8, (int )client->addr, p); } { if ((int )mod_det_stat1 == 0) { goto case_0___0; } else { } if ((int )mod_det_stat1 == 1) { goto case_1___0; } else { } if ((int )mod_det_stat1 == 2) { goto case_2___0; } else { } if ((int )mod_det_stat1 == 3) { goto case_3; } else { } if ((int )mod_det_stat1 == 4) { goto case_4___0; } else { } if ((int )mod_det_stat1 == 5) { goto case_5; } else { } if ((int )mod_det_stat1 == 6) { goto case_6; } else { } if ((int )mod_det_stat1 == 7) { goto case_7; } else { } if ((int )mod_det_stat1 == 8) { goto case_8; } else { } if ((int )mod_det_stat1 == 9) { goto case_9; } else { } if ((int )mod_det_stat1 == 10) { goto case_10; } else { } if ((int )mod_det_stat1 == 11) { goto case_11; } else { } if ((int )mod_det_stat1 == 12) { goto case_12; } else { } if ((int )mod_det_stat1 == 13) { goto case_13; } else { } if ((int )mod_det_stat1 == 14) { goto case_14; } else { } if ((int )mod_det_stat1 == 15) { goto case_15; } else { } if ((int )mod_det_stat1 == 16) { goto case_16___0; } else { } if ((int )mod_det_stat1 == 17) { goto case_17___0; } else { } if ((int )mod_det_stat1 == 253) { goto case_253; } else { } if ((int )mod_det_stat1 == 254) { goto case_254___0; } else { } if ((int )mod_det_stat1 == 255) { goto case_255; } else { } goto switch_default___0; case_0___0: /* CIL Label */ p = (char *)"not defined"; goto ldv_28023; case_1___0: /* CIL Label */ p = (char *)"EIAJ"; goto ldv_28023; case_2___0: /* CIL Label */ p = (char *)"A2-M"; goto ldv_28023; case_3: /* CIL Label */ p = (char *)"A2-BG"; goto ldv_28023; case_4___0: /* CIL Label */ p = (char *)"A2-DK1"; goto ldv_28023; case_5: /* CIL Label */ p = (char *)"A2-DK2"; goto ldv_28023; case_6: /* CIL Label */ p = (char *)"A2-DK3"; goto ldv_28023; case_7: /* CIL Label */ p = (char *)"A1 (6.0 MHz FM Mono)"; goto ldv_28023; case_8: /* CIL Label */ p = (char *)"AM-L"; goto ldv_28023; case_9: /* CIL Label */ p = (char *)"NICAM-BG"; goto ldv_28023; case_10: /* CIL Label */ p = (char *)"NICAM-DK"; goto ldv_28023; case_11: /* CIL Label */ p = (char *)"NICAM-I"; goto ldv_28023; case_12: /* CIL Label */ p = (char *)"NICAM-L"; goto ldv_28023; case_13: /* CIL Label */ p = (char *)"BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)"; goto ldv_28023; case_14: /* CIL Label */ p = (char *)"IF FM Radio"; goto ldv_28023; case_15: /* CIL Label */ p = (char *)"BTSC"; goto ldv_28023; case_16___0: /* CIL Label */ p = (char *)"high-deviation FM"; goto ldv_28023; case_17___0: /* CIL Label */ p = (char *)"very high-deviation FM"; goto ldv_28023; case_253: /* CIL Label */ p = (char *)"unknown audio standard"; goto ldv_28023; case_254___0: /* CIL Label */ p = (char *)"forced audio standard"; goto ldv_28023; case_255: /* CIL Label */ p = (char *)"no detected audio standard"; goto ldv_28023; switch_default___0: /* CIL Label */ p = (char *)"not defined"; switch_break___0: /* CIL Label */ ; } ldv_28023: { tmp___9 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Detected audio standard: %s\n", (client->dev.driver)->name, tmp___9, (int )client->addr, p); tmp___10 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Audio microcontroller: %s\n", (client->dev.driver)->name, tmp___10, (int )client->addr, ((int )download_ctl & 16) != 0 ? (((int )mute_ctl & 2) != 0 ? (char *)"detecting" : (char *)"running") : (char *)"stopped"); } { if ((int )audio_config >> 4 == 0) { goto case_0___1; } else { } if ((int )audio_config >> 4 == 1) { goto case_1___1; } else { } if ((int )audio_config >> 4 == 2) { goto case_2___1; } else { } if ((int )audio_config >> 4 == 3) { goto case_3___0; } else { } if ((int )audio_config >> 4 == 4) { goto case_4___1; } else { } if ((int )audio_config >> 4 == 5) { goto case_5___0; } else { } if ((int )audio_config >> 4 == 6) { goto case_6___0; } else { } if ((int )audio_config >> 4 == 7) { goto case_7___0; } else { } if ((int )audio_config >> 4 == 8) { goto case_8___0; } else { } if ((int )audio_config >> 4 == 9) { goto case_9___0; } else { } if ((int )audio_config >> 4 == 10) { goto case_10___0; } else { } if ((int )audio_config >> 4 == 11) { goto case_11___0; } else { } if ((int )audio_config >> 4 == 12) { goto case_12___0; } else { } if ((int )audio_config >> 4 == 13) { goto case_13___0; } else { } if ((int )audio_config >> 4 == 14) { goto case_14___0; } else { } if ((int )audio_config >> 4 == 15) { goto case_15___0; } else { } goto switch_default___1; case_0___1: /* CIL Label */ p = (char *)"undefined"; goto ldv_28046; case_1___1: /* CIL Label */ p = (char *)"BTSC"; goto ldv_28046; case_2___1: /* CIL Label */ p = (char *)"EIAJ"; goto ldv_28046; case_3___0: /* CIL Label */ p = (char *)"A2-M"; goto ldv_28046; case_4___1: /* CIL Label */ p = (char *)"A2-BG"; goto ldv_28046; case_5___0: /* CIL Label */ p = (char *)"A2-DK1"; goto ldv_28046; case_6___0: /* CIL Label */ p = (char *)"A2-DK2"; goto ldv_28046; case_7___0: /* CIL Label */ p = (char *)"A2-DK3"; goto ldv_28046; case_8___0: /* CIL Label */ p = (char *)"A1 (6.0 MHz FM Mono)"; goto ldv_28046; case_9___0: /* CIL Label */ p = (char *)"AM-L"; goto ldv_28046; case_10___0: /* CIL Label */ p = (char *)"NICAM-BG"; goto ldv_28046; case_11___0: /* CIL Label */ p = (char *)"NICAM-DK"; goto ldv_28046; case_12___0: /* CIL Label */ p = (char *)"NICAM-I"; goto ldv_28046; case_13___0: /* CIL Label */ p = (char *)"NICAM-L"; goto ldv_28046; case_14___0: /* CIL Label */ p = (char *)"FM radio"; goto ldv_28046; case_15___0: /* CIL Label */ p = (char *)"automatic detection"; goto ldv_28046; switch_default___1: /* CIL Label */ p = (char *)"undefined"; switch_break___1: /* CIL Label */ ; } ldv_28046: { tmp___11 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Configured audio standard: %s\n", (client->dev.driver)->name, tmp___11, (int )client->addr, p); } if ((unsigned int )((int )audio_config >> 4) <= 14U) { { if (((int )audio_config & 15) == 0) { goto case_0___2; } else { } if (((int )audio_config & 15) == 1) { goto case_1___2; } else { } if (((int )audio_config & 15) == 2) { goto case_2___2; } else { } if (((int )audio_config & 15) == 3) { goto case_3___1; } else { } if (((int )audio_config & 15) == 4) { goto case_4___2; } else { } if (((int )audio_config & 15) == 5) { goto case_5___1; } else { } if (((int )audio_config & 15) == 6) { goto case_6___1; } else { } if (((int )audio_config & 15) == 7) { goto case_7___1; } else { } if (((int )audio_config & 15) == 8) { goto case_8___1; } else { } if (((int )audio_config & 15) == 9) { goto case_9___1; } else { } if (((int )audio_config & 15) == 10) { goto case_10___1; } else { } goto switch_default___2; case_0___2: /* CIL Label */ p = (char *)"MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)"; goto ldv_28064; case_1___2: /* CIL Label */ p = (char *)"MONO2 (LANGUAGE B)"; goto ldv_28064; case_2___2: /* CIL Label */ p = (char *)"MONO3 (STEREO forced MONO)"; goto ldv_28064; case_3___1: /* CIL Label */ p = (char *)"MONO4 (NICAM ANALOG-Language C/Analog Fallback)"; goto ldv_28064; case_4___2: /* CIL Label */ p = (char *)"STEREO"; goto ldv_28064; case_5___1: /* CIL Label */ p = (char *)"DUAL1 (AB)"; goto ldv_28064; case_6___1: /* CIL Label */ p = (char *)"DUAL2 (AC) (FM)"; goto ldv_28064; case_7___1: /* CIL Label */ p = (char *)"DUAL3 (BC) (FM)"; goto ldv_28064; case_8___1: /* CIL Label */ p = (char *)"DUAL4 (AC) (AM)"; goto ldv_28064; case_9___1: /* CIL Label */ p = (char *)"DUAL5 (BC) (AM)"; goto ldv_28064; case_10___1: /* CIL Label */ p = (char *)"SAP"; goto ldv_28064; switch_default___2: /* CIL Label */ p = (char *)"undefined"; switch_break___2: /* CIL Label */ ; } ldv_28064: { tmp___12 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Configured audio mode: %s\n", (client->dev.driver)->name, tmp___12, (int )client->addr, p); } } else { { if (((int )audio_config & 15) == 0) { goto case_0___3; } else { } if (((int )audio_config & 15) == 1) { goto case_1___3; } else { } if (((int )audio_config & 15) == 2) { goto case_2___3; } else { } if (((int )audio_config & 15) == 3) { goto case_3___2; } else { } if (((int )audio_config & 15) == 4) { goto case_4___3; } else { } if (((int )audio_config & 15) == 5) { goto case_5___2; } else { } if (((int )audio_config & 15) == 6) { goto case_6___2; } else { } if (((int )audio_config & 15) == 7) { goto case_7___2; } else { } if (((int )audio_config & 15) == 8) { goto case_8___2; } else { } if (((int )audio_config & 15) == 9) { goto case_9___2; } else { } if (((int )audio_config & 15) == 15) { goto case_15___1; } else { } goto switch_default___3; case_0___3: /* CIL Label */ p = (char *)"BG"; goto ldv_28077; case_1___3: /* CIL Label */ p = (char *)"DK1"; goto ldv_28077; case_2___3: /* CIL Label */ p = (char *)"DK2"; goto ldv_28077; case_3___2: /* CIL Label */ p = (char *)"DK3"; goto ldv_28077; case_4___3: /* CIL Label */ p = (char *)"I"; goto ldv_28077; case_5___2: /* CIL Label */ p = (char *)"L"; goto ldv_28077; case_6___2: /* CIL Label */ p = (char *)"BTSC"; goto ldv_28077; case_7___2: /* CIL Label */ p = (char *)"EIAJ"; goto ldv_28077; case_8___2: /* CIL Label */ p = (char *)"A2-M"; goto ldv_28077; case_9___2: /* CIL Label */ p = (char *)"FM Radio"; goto ldv_28077; case_15___1: /* CIL Label */ p = (char *)"automatic standard and mode detection"; goto ldv_28077; switch_default___3: /* CIL Label */ p = (char *)"undefined"; switch_break___3: /* CIL Label */ ; } ldv_28077: { tmp___13 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Configured audio system: %s\n", (client->dev.driver)->name, tmp___13, (int )client->addr, p); } } if (aud_input != 0) { { tmp___14 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Specified audio input: Tuner (In%d)\n", (client->dev.driver)->name, tmp___14, (int )client->addr, aud_input); } } else { { tmp___15 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Specified audio input: External\n", (client->dev.driver)->name, tmp___15, (int )client->addr); } } { if (((int )pref_mode & 15) == 0) { goto case_0___4; } else { } if (((int )pref_mode & 15) == 1) { goto case_1___4; } else { } if (((int )pref_mode & 15) == 2) { goto case_2___4; } else { } if (((int )pref_mode & 15) == 3) { goto case_3___3; } else { } if (((int )pref_mode & 15) == 4) { goto case_4___4; } else { } if (((int )pref_mode & 15) == 5) { goto case_5___3; } else { } if (((int )pref_mode & 15) == 6) { goto case_6___3; } else { } if (((int )pref_mode & 15) == 7) { goto case_7___3; } else { } goto switch_default___4; case_0___4: /* CIL Label */ p = (char *)"mono/language A"; goto ldv_28090; case_1___4: /* CIL Label */ p = (char *)"language B"; goto ldv_28090; case_2___4: /* CIL Label */ p = (char *)"language C"; goto ldv_28090; case_3___3: /* CIL Label */ p = (char *)"analog fallback"; goto ldv_28090; case_4___4: /* CIL Label */ p = (char *)"stereo"; goto ldv_28090; case_5___3: /* CIL Label */ p = (char *)"language AC"; goto ldv_28090; case_6___3: /* CIL Label */ p = (char *)"language BC"; goto ldv_28090; case_7___3: /* CIL Label */ p = (char *)"language AB"; goto ldv_28090; switch_default___4: /* CIL Label */ p = (char *)"undefined"; switch_break___4: /* CIL Label */ ; } ldv_28090: { tmp___16 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Preferred audio mode: %s\n", (client->dev.driver)->name, tmp___16, (int )client->addr, p); } if (((int )audio_config & 15) == 15) { { if ((((int )afc0 >> 3) & 3) == 0) { goto case_0___5; } else { } if ((((int )afc0 >> 3) & 3) == 1) { goto case_1___5; } else { } if ((((int )afc0 >> 3) & 3) == 2) { goto case_2___5; } else { } goto switch_default___5; case_0___5: /* CIL Label */ p = (char *)"system DK"; goto ldv_28100; case_1___5: /* CIL Label */ p = (char *)"system L"; goto ldv_28100; case_2___5: /* CIL Label */ p = (char *)"autodetect"; goto ldv_28100; switch_default___5: /* CIL Label */ p = (char *)"undefined"; switch_break___5: /* CIL Label */ ; } ldv_28100: { tmp___17 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Selected 65 MHz format: %s\n", (client->dev.driver)->name, tmp___17, (int )client->addr, p); } { if (((int )afc0 & 7) == 0) { goto case_0___6; } else { } if (((int )afc0 & 7) == 1) { goto case_1___6; } else { } if (((int )afc0 & 7) == 2) { goto case_2___6; } else { } if (((int )afc0 & 7) == 3) { goto case_3___4; } else { } if (((int )afc0 & 7) == 4) { goto case_4___5; } else { } goto switch_default___6; case_0___6: /* CIL Label */ p = (char *)"chroma"; goto ldv_28105; case_1___6: /* CIL Label */ p = (char *)"BTSC"; goto ldv_28105; case_2___6: /* CIL Label */ p = (char *)"EIAJ"; goto ldv_28105; case_3___4: /* CIL Label */ p = (char *)"A2-M"; goto ldv_28105; case_4___5: /* CIL Label */ p = (char *)"autodetect"; goto ldv_28105; switch_default___6: /* CIL Label */ p = (char *)"undefined"; switch_break___6: /* CIL Label */ ; } ldv_28105: { tmp___18 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: Selected 45 MHz format: %s\n", (client->dev.driver)->name, tmp___18, (int )client->addr, p); } } else { } return; } } static int cx25840_load_fw(struct v4l2_subdev *sd ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; } if (state->is_initialized == 0) { { state->is_initialized = 1; tmp___3 = is_cx2583x(state); } if ((int )tmp___3) { { cx25836_initialize(client); } } else { { tmp___2 = is_cx2388x(state); } if ((int )tmp___2) { { cx23885_initialize(client); } } else { { tmp___1 = is_cx231xx(state); } if ((int )tmp___1) { { cx231xx_initialize(client); } } else { { cx25840_initialize(client); } } } } } else { } return (0); } } static int cx25840_g_register(struct v4l2_subdev *sd , struct v4l2_dbg_register *reg ) { struct i2c_client *client ; void *tmp ; u8 tmp___0 ; { { tmp = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp; reg->size = 1U; tmp___0 = cx25840_read(client, (int )((u16 )reg->reg) & 4095); reg->val = (__u64 )tmp___0; } return (0); } } static int cx25840_s_register(struct v4l2_subdev *sd , struct v4l2_dbg_register const *reg ) { struct i2c_client *client ; void *tmp ; { { tmp = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp; cx25840_write(client, (int )((u16 )reg->reg) & 4095, (int )((u8 )reg->val)); } return (0); } } static int cx25840_s_audio_stream(struct v4l2_subdev *sd , int enable ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; u8 v ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; int tmp___4 ; u8 tmp___5 ; u8 tmp___6 ; u8 tmp___7 ; u8 tmp___8 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; tmp___1 = is_cx2583x(state); } if ((int )tmp___1) { return (0); } else { { tmp___2 = is_cx2388x(state); } if ((int )tmp___2) { return (0); } else { { tmp___3 = is_cx231xx(state); } if ((int )tmp___3) { return (0); } else { } } } if (cx25840_debug > 0) { { tmp___4 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: %s audio output\n", (client->dev.driver)->name, tmp___4, (int )client->addr, enable != 0 ? (char *)"enable" : (char *)"disable"); } } else { } if (enable != 0) { { tmp___5 = cx25840_read(client, 277); v = (u8 )((unsigned int )tmp___5 | 128U); cx25840_write(client, 277, (int )v); tmp___6 = cx25840_read(client, 278); v = (u8 )((unsigned int )tmp___6 | 3U); cx25840_write(client, 278, (int )v); } } else { { tmp___7 = cx25840_read(client, 277); v = (unsigned int )tmp___7 & 127U; cx25840_write(client, 277, (int )v); tmp___8 = cx25840_read(client, 278); v = (unsigned int )tmp___8 & 252U; cx25840_write(client, 278, (int )v); } } return (0); } } static int cx25840_s_stream(struct v4l2_subdev *sd , int enable ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; u8 v ; int tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; bool tmp___5 ; bool tmp___6 ; u8 tmp___7 ; u8 tmp___8 ; u8 tmp___9 ; bool tmp___10 ; bool tmp___11 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; } if (cx25840_debug > 0) { { tmp___1 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: %s video output\n", (client->dev.driver)->name, tmp___1, (int )client->addr, enable != 0 ? (char *)"enable" : (char *)"disable"); } } else { } if (enable != 0) { { tmp___5 = is_cx2388x(state); } if ((int )tmp___5) { { tmp___2 = cx25840_read(client, 1057); v = (u8 )((unsigned int )tmp___2 | 11U); cx25840_write(client, 1057, (int )v); } } else { { tmp___6 = is_cx231xx(state); } if ((int )tmp___6) { { tmp___2 = cx25840_read(client, 1057); v = (u8 )((unsigned int )tmp___2 | 11U); cx25840_write(client, 1057, (int )v); } } else { { tmp___3 = cx25840_read(client, 277); v = (u8 )((unsigned int )tmp___3 | 12U); cx25840_write(client, 277, (int )v); tmp___4 = cx25840_read(client, 278); v = (u8 )((unsigned int )tmp___4 | 4U); cx25840_write(client, 278, (int )v); } } } } else { { tmp___10 = is_cx2388x(state); } if ((int )tmp___10) { { tmp___7 = cx25840_read(client, 1057); v = (unsigned int )tmp___7 & 244U; cx25840_write(client, 1057, (int )v); } } else { { tmp___11 = is_cx231xx(state); } if ((int )tmp___11) { { tmp___7 = cx25840_read(client, 1057); v = (unsigned int )tmp___7 & 244U; cx25840_write(client, 1057, (int )v); } } else { { tmp___8 = cx25840_read(client, 277); v = (unsigned int )tmp___8 & 243U; cx25840_write(client, 277, (int )v); tmp___9 = cx25840_read(client, 278); v = (unsigned int )tmp___9 & 251U; cx25840_write(client, 278, (int )v); } } } } return (0); } } static int cx25840_g_std(struct v4l2_subdev *sd , v4l2_std_id *std ) { struct i2c_client *client ; void *tmp ; v4l2_std_id stds[16U] ; u32 fmt ; u32 tmp___0 ; int tmp___1 ; { { tmp = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp; stds[0] = 0ULL; stds[1] = 4096ULL; stds[2] = 8192ULL; stds[3] = 16384ULL; stds[4] = 255ULL; stds[5] = 256ULL; stds[6] = 512ULL; stds[7] = 1024ULL; stds[8] = 2048ULL; stds[9] = 0ULL; stds[10] = 0ULL; stds[11] = 0ULL; stds[12] = 0ULL; stds[13] = 0ULL; stds[14] = 0ULL; stds[15] = 0ULL; tmp___0 = cx25840_read4(client, 1036); fmt = (tmp___0 >> 8) & 15U; *std = stds[fmt]; } if (cx25840_debug > 0) { { tmp___1 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: g_std fmt = %x, v4l2_std_id = 0x%x\n", (client->dev.driver)->name, tmp___1, (int )client->addr, fmt, (unsigned int )stds[fmt]); } } else { } return (0); } } static int cx25840_g_input_status(struct v4l2_subdev *sd , u32 *status ) { struct i2c_client *client ; void *tmp ; u32 tmp___0 ; { { tmp = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp; tmp___0 = cx25840_read4(client, 1036); } if ((tmp___0 & 65536U) == 0U) { *status = *status | 2U; } else { } return (0); } } static int cx25840_s_std(struct v4l2_subdev *sd , v4l2_std_id std ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; int tmp___1 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; } if (state->radio == 0 && state->std == std) { return (0); } else { } { state->radio = 0; state->std = std; tmp___1 = set_v4lstd(client); } return (tmp___1); } } static int cx25840_s_radio(struct v4l2_subdev *sd ) { struct cx25840_state *state ; struct cx25840_state *tmp ; { { tmp = to_state(sd); state = tmp; state->radio = 1; } return (0); } } static int cx25840_s_video_routing(struct v4l2_subdev *sd , u32 input , u32 output , u32 config ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; tmp___1 = is_cx23888(state); } if ((int )tmp___1) { { cx23888_std_setup(client); } } else { } { tmp___2 = set_input(client, (enum cx25840_video_input )input, state->aud_input); } return (tmp___2); } } static int cx25840_s_audio_routing(struct v4l2_subdev *sd , u32 input , u32 output , u32 config ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; tmp___1 = is_cx23888(state); } if ((int )tmp___1) { { cx23888_std_setup(client); } } else { } { tmp___2 = set_input(client, state->vid_input, (enum cx25840_audio_input )input); } return (tmp___2); } } static int cx25840_s_frequency(struct v4l2_subdev *sd , struct v4l2_frequency const *freq ) { struct i2c_client *client ; void *tmp ; { { tmp = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp; input_change(client); } return (0); } } static int cx25840_g_tuner(struct v4l2_subdev *sd , struct v4l2_tuner *vt ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; u8 vpres ; u8 tmp___1 ; u8 mode ; int val ; bool tmp___2 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; tmp___1 = cx25840_read(client, 1038); vpres = (unsigned int )tmp___1 & 32U; val = 0; } if (state->radio != 0) { return (0); } else { } { vt->signal = (unsigned int )vpres != 0U ? 65535 : 0; tmp___2 = is_cx2583x(state); } if ((int )tmp___2) { return (0); } else { } { vt->capability = vt->capability | 112U; mode = cx25840_read(client, 2052); } if (((int )mode & 15) == 1) { val = val | 2; } else { val = val | 1; } if ((unsigned int )mode == 2U || (unsigned int )mode == 4U) { val = 12; } else { } if (((int )mode & 16) != 0) { val = val | 4; } else { } vt->rxsubchans = (__u32 )val; vt->audmode = (__u32 )state->audmode; return (0); } } static int cx25840_s_tuner(struct v4l2_subdev *sd , struct v4l2_tuner const *vt ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; bool tmp___1 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; } if (state->radio != 0) { return (0); } else { { tmp___1 = is_cx2583x(state); } if ((int )tmp___1) { return (0); } else { } } { if (vt->audmode == 0U) { goto case_0; } else { } if (vt->audmode == 1U) { goto case_1; } else { } if (vt->audmode == 3U) { goto case_3; } else { } if (vt->audmode == 4U) { goto case_4; } else { } if (vt->audmode == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ { cx25840_and_or(client, 2057, 4294967280U, 0); } goto ldv_28199; case_1: /* CIL Label */ ; case_3: /* CIL Label */ { cx25840_and_or(client, 2057, 4294967280U, 4); } goto ldv_28199; case_4: /* CIL Label */ { cx25840_and_or(client, 2057, 4294967280U, 7); } goto ldv_28199; case_2: /* CIL Label */ { cx25840_and_or(client, 2057, 4294967280U, 1); } goto ldv_28199; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_28199: state->audmode = (int )vt->audmode; return (0); } } static int cx25840_reset(struct v4l2_subdev *sd , u32 val ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; tmp___3 = is_cx2583x(state); } if ((int )tmp___3) { { cx25836_initialize(client); } } else { { tmp___2 = is_cx2388x(state); } if ((int )tmp___2) { { cx23885_initialize(client); } } else { { tmp___1 = is_cx231xx(state); } if ((int )tmp___1) { { cx231xx_initialize(client); } } else { { cx25840_initialize(client); } } } } return (0); } } static int cx25840_log_status(struct v4l2_subdev *sd ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *client ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___0; log_video_status(client); tmp___1 = is_cx2583x(state); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { log_audio_status(client); } } else { } { cx25840_ir_log_status(sd); v4l2_ctrl_handler_log_status(& state->hdl, (char const *)(& sd->name)); } return (0); } } static int cx23885_irq_handler(struct v4l2_subdev *sd , u32 status , bool *handled ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *c ; void *tmp___0 ; u8 irq_stat ; u8 aud_stat ; u8 aud_en ; u8 ir_stat ; u8 ir_en ; u32 vid_stat ; u32 aud_mc_stat ; bool block_handled ; int ret ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { { tmp = to_state(sd); state = tmp; tmp___0 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); c = (struct i2c_client *)tmp___0; ret = 0; irq_stat = cx25840_read(c, 291); } if (cx25840_debug > 1) { { tmp___1 = i2c_adapter_id(c->adapter); printk("\017%s %d-%04x: AV Core IRQ status (entry): %s %s %s\n", (c->dev.driver)->name, tmp___1, (int )c->addr, ((int )irq_stat & 64) != 0 ? (char *)"ir" : (char *)" ", ((int )irq_stat & 32) != 0 ? (char *)"aud" : (char *)" ", ((int )irq_stat & 16) != 0 ? (char *)"vid" : (char *)" "); } } else { } { tmp___3 = is_cx23885(state); } if ((int )tmp___3) { goto _L; } else { { tmp___4 = is_cx23887(state); } if ((int )tmp___4) { _L: /* CIL Label */ { ir_stat = cx25840_read(c, 528); ir_en = cx25840_read(c, 532); } if (cx25840_debug > 1) { { tmp___2 = i2c_adapter_id(c->adapter); printk("\017%s %d-%04x: AV Core ir IRQ status: %#04x disables: %#04x\n", (c->dev.driver)->name, tmp___2, (int )c->addr, (int )ir_stat, (int )ir_en); } } else { } if (((int )irq_stat & 64) != 0) { { block_handled = 0; ret = cx25840_ir_irq_handler(sd, status, & block_handled); } if ((int )block_handled) { *handled = 1; } else { } } else { } } else { } } { aud_stat = cx25840_read(c, 2067); aud_en = cx25840_read(c, 2066); } if (cx25840_debug > 1) { { tmp___5 = i2c_adapter_id(c->adapter); printk("\017%s %d-%04x: AV Core audio IRQ status: %#04x disables: %#04x\n", (c->dev.driver)->name, tmp___5, (int )c->addr, (int )aud_stat, (int )aud_en); } } else { } { aud_mc_stat = cx25840_read4(c, 2060); } if (cx25840_debug > 1) { { tmp___6 = i2c_adapter_id(c->adapter); printk("\017%s %d-%04x: AV Core audio MC IRQ status: %#06x enables: %#06x\n", (c->dev.driver)->name, tmp___6, (int )c->addr, aud_mc_stat >> 16, aud_mc_stat & 65535U); } } else { } if (((int )irq_stat & 32) != 0) { if ((unsigned int )aud_stat != 0U) { { cx25840_write(c, 2067, (int )aud_stat); *handled = 1; } } else { } } else { } { vid_stat = cx25840_read4(c, 1040); } if (cx25840_debug > 1) { { tmp___7 = i2c_adapter_id(c->adapter); printk("\017%s %d-%04x: AV Core video IRQ status: %#06x disables: %#06x\n", (c->dev.driver)->name, tmp___7, (int )c->addr, vid_stat & 65535U, vid_stat >> 16); } } else { } if (((int )irq_stat & 16) != 0) { if ((vid_stat & 65535U) != 0U) { { cx25840_write4(c, 1040, vid_stat); *handled = 1; } } else { } } else { } { irq_stat = cx25840_read(c, 291); } if (cx25840_debug > 1) { { tmp___8 = i2c_adapter_id(c->adapter); printk("\017%s %d-%04x: AV Core IRQ status (exit): %s %s %s\n", (c->dev.driver)->name, tmp___8, (int )c->addr, ((int )irq_stat & 64) != 0 ? (char *)"ir" : (char *)" ", ((int )irq_stat & 32) != 0 ? (char *)"aud" : (char *)" ", ((int )irq_stat & 16) != 0 ? (char *)"vid" : (char *)" "); } } else { } return (ret); } } static int cx25840_irq_handler(struct v4l2_subdev *sd , u32 status , bool *handled ) { struct cx25840_state *state ; struct cx25840_state *tmp ; int tmp___0 ; bool tmp___1 ; { { tmp = to_state(sd); state = tmp; *handled = 0; tmp___1 = is_cx2388x(state); } if ((int )tmp___1) { { tmp___0 = cx23885_irq_handler(sd, status, handled); } return (tmp___0); } else { } return (-19); } } static void cx23885_dif_setup(struct i2c_client *client , u32 ifHz ) { u64 pll_freq ; u32 pll_freq_word ; int tmp ; int tmp___0 ; { if (cx25840_debug > 0) { { tmp = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: %s(%d)\n", (client->dev.driver)->name, tmp, (int )client->addr, "cx23885_dif_setup", ifHz); } } else { } { pll_freq = div_u64((unsigned long long )ifHz * 268435456ULL, 50000000U); pll_freq_word = (unsigned int )pll_freq; cx25840_write4(client, 768, pll_freq_word); ifHz = (ifHz / 100000U) * 100000U; } if (ifHz <= 2999999U) { ifHz = 3000000U; } else { } if (ifHz > 16000000U) { ifHz = 16000000U; } else { } if (cx25840_debug > 0) { { tmp___0 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: %s(%d) again\n", (client->dev.driver)->name, tmp___0, (int )client->addr, "cx23885_dif_setup", ifHz); } } else { } { if (ifHz == 3000000U) { goto case_3000000; } else { } if (ifHz == 3100000U) { goto case_3100000; } else { } if (ifHz == 3200000U) { goto case_3200000; } else { } if (ifHz == 3300000U) { goto case_3300000; } else { } if (ifHz == 3400000U) { goto case_3400000; } else { } if (ifHz == 3500000U) { goto case_3500000; } else { } if (ifHz == 3600000U) { goto case_3600000; } else { } if (ifHz == 3700000U) { goto case_3700000; } else { } if (ifHz == 3800000U) { goto case_3800000; } else { } if (ifHz == 3900000U) { goto case_3900000; } else { } if (ifHz == 4000000U) { goto case_4000000; } else { } if (ifHz == 4100000U) { goto case_4100000; } else { } if (ifHz == 4200000U) { goto case_4200000; } else { } if (ifHz == 4300000U) { goto case_4300000; } else { } if (ifHz == 4400000U) { goto case_4400000; } else { } if (ifHz == 4500000U) { goto case_4500000; } else { } if (ifHz == 4600000U) { goto case_4600000; } else { } if (ifHz == 4700000U) { goto case_4700000; } else { } if (ifHz == 4800000U) { goto case_4800000; } else { } if (ifHz == 4900000U) { goto case_4900000; } else { } if (ifHz == 5000000U) { goto case_5000000; } else { } if (ifHz == 5100000U) { goto case_5100000; } else { } if (ifHz == 5200000U) { goto case_5200000; } else { } if (ifHz == 5300000U) { goto case_5300000; } else { } if (ifHz == 5400000U) { goto case_5400000; } else { } if (ifHz == 5500000U) { goto case_5500000; } else { } if (ifHz == 5600000U) { goto case_5600000; } else { } if (ifHz == 5700000U) { goto case_5700000; } else { } if (ifHz == 5800000U) { goto case_5800000; } else { } if (ifHz == 5900000U) { goto case_5900000; } else { } if (ifHz == 6000000U) { goto case_6000000; } else { } if (ifHz == 6100000U) { goto case_6100000; } else { } if (ifHz == 6200000U) { goto case_6200000; } else { } if (ifHz == 6300000U) { goto case_6300000; } else { } if (ifHz == 6400000U) { goto case_6400000; } else { } if (ifHz == 6500000U) { goto case_6500000; } else { } if (ifHz == 6600000U) { goto case_6600000; } else { } if (ifHz == 6700000U) { goto case_6700000; } else { } if (ifHz == 6800000U) { goto case_6800000; } else { } if (ifHz == 6900000U) { goto case_6900000; } else { } if (ifHz == 7000000U) { goto case_7000000; } else { } if (ifHz == 7100000U) { goto case_7100000; } else { } if (ifHz == 7200000U) { goto case_7200000; } else { } if (ifHz == 7300000U) { goto case_7300000; } else { } if (ifHz == 7400000U) { goto case_7400000; } else { } if (ifHz == 7500000U) { goto case_7500000; } else { } if (ifHz == 7600000U) { goto case_7600000; } else { } if (ifHz == 7700000U) { goto case_7700000; } else { } if (ifHz == 7800000U) { goto case_7800000; } else { } if (ifHz == 7900000U) { goto case_7900000; } else { } if (ifHz == 8000000U) { goto case_8000000; } else { } if (ifHz == 8100000U) { goto case_8100000; } else { } if (ifHz == 8200000U) { goto case_8200000; } else { } if (ifHz == 8300000U) { goto case_8300000; } else { } if (ifHz == 8400000U) { goto case_8400000; } else { } if (ifHz == 8500000U) { goto case_8500000; } else { } if (ifHz == 8600000U) { goto case_8600000; } else { } if (ifHz == 8700000U) { goto case_8700000; } else { } if (ifHz == 8800000U) { goto case_8800000; } else { } if (ifHz == 8900000U) { goto case_8900000; } else { } if (ifHz == 9000000U) { goto case_9000000; } else { } if (ifHz == 9100000U) { goto case_9100000; } else { } if (ifHz == 9200000U) { goto case_9200000; } else { } if (ifHz == 9300000U) { goto case_9300000; } else { } if (ifHz == 9400000U) { goto case_9400000; } else { } if (ifHz == 9500000U) { goto case_9500000; } else { } if (ifHz == 9600000U) { goto case_9600000; } else { } if (ifHz == 9700000U) { goto case_9700000; } else { } if (ifHz == 9800000U) { goto case_9800000; } else { } if (ifHz == 9900000U) { goto case_9900000; } else { } if (ifHz == 10000000U) { goto case_10000000; } else { } if (ifHz == 10100000U) { goto case_10100000; } else { } if (ifHz == 10200000U) { goto case_10200000; } else { } if (ifHz == 10300000U) { goto case_10300000; } else { } if (ifHz == 10400000U) { goto case_10400000; } else { } if (ifHz == 10500000U) { goto case_10500000; } else { } if (ifHz == 10600000U) { goto case_10600000; } else { } if (ifHz == 10700000U) { goto case_10700000; } else { } if (ifHz == 10800000U) { goto case_10800000; } else { } if (ifHz == 10900000U) { goto case_10900000; } else { } if (ifHz == 11000000U) { goto case_11000000; } else { } if (ifHz == 11100000U) { goto case_11100000; } else { } if (ifHz == 11200000U) { goto case_11200000; } else { } if (ifHz == 11300000U) { goto case_11300000; } else { } if (ifHz == 11400000U) { goto case_11400000; } else { } if (ifHz == 11500000U) { goto case_11500000; } else { } if (ifHz == 11600000U) { goto case_11600000; } else { } if (ifHz == 11700000U) { goto case_11700000; } else { } if (ifHz == 11800000U) { goto case_11800000; } else { } if (ifHz == 11900000U) { goto case_11900000; } else { } if (ifHz == 12000000U) { goto case_12000000; } else { } if (ifHz == 12100000U) { goto case_12100000; } else { } if (ifHz == 12200000U) { goto case_12200000; } else { } if (ifHz == 12300000U) { goto case_12300000; } else { } if (ifHz == 12400000U) { goto case_12400000; } else { } if (ifHz == 12500000U) { goto case_12500000; } else { } if (ifHz == 12600000U) { goto case_12600000; } else { } if (ifHz == 12700000U) { goto case_12700000; } else { } if (ifHz == 12800000U) { goto case_12800000; } else { } if (ifHz == 12900000U) { goto case_12900000; } else { } if (ifHz == 13000000U) { goto case_13000000; } else { } if (ifHz == 13100000U) { goto case_13100000; } else { } if (ifHz == 13200000U) { goto case_13200000; } else { } if (ifHz == 13300000U) { goto case_13300000; } else { } if (ifHz == 13400000U) { goto case_13400000; } else { } if (ifHz == 13500000U) { goto case_13500000; } else { } if (ifHz == 13600000U) { goto case_13600000; } else { } if (ifHz == 13700000U) { goto case_13700000; } else { } if (ifHz == 13800000U) { goto case_13800000; } else { } if (ifHz == 13900000U) { goto case_13900000; } else { } if (ifHz == 14000000U) { goto case_14000000; } else { } if (ifHz == 14100000U) { goto case_14100000; } else { } if (ifHz == 14200000U) { goto case_14200000; } else { } if (ifHz == 14300000U) { goto case_14300000; } else { } if (ifHz == 14400000U) { goto case_14400000; } else { } if (ifHz == 14500000U) { goto case_14500000; } else { } if (ifHz == 14600000U) { goto case_14600000; } else { } if (ifHz == 14700000U) { goto case_14700000; } else { } if (ifHz == 14800000U) { goto case_14800000; } else { } if (ifHz == 14900000U) { goto case_14900000; } else { } if (ifHz == 15000000U) { goto case_15000000; } else { } if (ifHz == 15100000U) { goto case_15100000; } else { } if (ifHz == 15200000U) { goto case_15200000; } else { } if (ifHz == 15300000U) { goto case_15300000; } else { } if (ifHz == 15400000U) { goto case_15400000; } else { } if (ifHz == 15500000U) { goto case_15500000; } else { } if (ifHz == 15600000U) { goto case_15600000; } else { } if (ifHz == 15700000U) { goto case_15700000; } else { } if (ifHz == 15800000U) { goto case_15800000; } else { } if (ifHz == 15900000U) { goto case_15900000; } else { } if (ifHz == 16000000U) { goto case_16000000; } else { } goto switch_break; case_3000000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 524306U); cx25840_write4(client, 848, 1966116U); cx25840_write4(client, 852, 1835000U); cx25840_write4(client, 856, 4290051920U); cx25840_write4(client, 860, 4275633768U); cx25840_write4(client, 864, 4263837236U); cx25840_write4(client, 868, 4273668039U); cx25840_write4(client, 872, 21824287U); cx25840_write4(client, 876, 82839133U); cx25840_write4(client, 880, 117507720U); cx25840_write4(client, 884, 80282070U); cx25840_write4(client, 888, 4261476819U); cx25840_write4(client, 892, 4127257410U); cx25840_write4(client, 896, 4063621943U); cx25840_write4(client, 900, 4132371234U); cx25840_write4(client, 904, 17106703U); cx25840_write4(client, 908, 205918158U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_3100000: /* CIL Label */ { cx25840_write4(client, 840, 1U); cx25840_write4(client, 844, 458770U); cx25840_write4(client, 848, 2228274U); cx25840_write4(client, 852, 3604518U); cx25840_write4(client, 856, 4293984145U); cx25840_write4(client, 860, 4279172732U); cx25840_write4(client, 864, 4261543372U); cx25840_write4(client, 868, 4262133467U); cx25840_write4(client, 872, 4456996U); cx25840_write4(client, 876, 70518284U); cx25840_write4(client, 880, 121112398U); cx25840_write4(client, 884, 101253985U); cx25840_write4(client, 888, 4288281401U); cx25840_write4(client, 892, 4143903670U); cx25840_write4(client, 896, 4061852325U); cx25840_write4(client, 900, 4118018611U); cx25840_write4(client, 904, 3409533U); cx25840_write4(client, 908, 201002937U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_3200000: /* CIL Label */ { cx25840_write4(client, 840, 0U); cx25840_write4(client, 844, 262158U); cx25840_write4(client, 848, 2097208U); cx25840_write4(client, 852, 4980815U); cx25840_write4(client, 856, 3145695U); cx25840_write4(client, 860, 4284284598U); cx25840_write4(client, 864, 4262329746U); cx25840_write4(client, 868, 4253023747U); cx25840_write4(client, 872, 4281729290U); cx25840_write4(client, 876, 54592885U); cx25840_write4(client, 880, 119932882U); cx25840_write4(client, 884, 119014613U); cx25840_write4(client, 888, 20249783U); cx25840_write4(client, 892, 4162843729U); cx25840_write4(client, 896, 4062442030U); cx25840_write4(client, 900, 4104649035U); cx25840_write4(client, 904, 4284745192U); cx25840_write4(client, 908, 195956644U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_3300000: /* CIL Label */ { cx25840_write4(client, 840, 65535U); cx25840_write4(client, 844, 8U); cx25840_write4(client, 848, 1703990U); cx25840_write4(client, 852, 5636205U); cx25840_write4(client, 856, 6750256U); cx25840_write4(client, 860, 4290641680U); cx25840_write4(client, 864, 4266065293U); cx25840_write4(client, 868, 4247125327U); cx25840_write4(client, 872, 4264951776U); cx25840_write4(client, 876, 35914911U); cx25840_write4(client, 880, 113838094U); cx25840_write4(client, 884, 133105191U); cx25840_write4(client, 888, 46792261U); cx25840_write4(client, 892, 4183946515U); cx25840_write4(client, 896, 4065391058U); cx25840_write4(client, 900, 4092393577U); cx25840_write4(client, 904, 4271048018U); cx25840_write4(client, 908, 190779279U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_3400000: /* CIL Label */ { cx25840_write4(client, 840, 4294967294U); cx25840_write4(client, 844, 4294770689U); cx25840_write4(client, 848, 983084U); cx25840_write4(client, 852, 5505149U); cx25840_write4(client, 856, 9633916U); cx25840_write4(client, 860, 2424706U); cx25840_write4(client, 864, 4272356795U); cx25840_write4(client, 868, 4244896970U); cx25840_write4(client, 872, 4250009273U); cx25840_write4(client, 876, 15401874U); cx25840_write4(client, 880, 103221250U); cx25840_write4(client, 884, 143132496U); cx25840_write4(client, 888, 72220635U); cx25840_write4(client, 892, 4206753272U); cx25840_write4(client, 896, 4070633875U); cx25840_write4(client, 900, 4081252239U); cx25840_write4(client, 904, 4257481913U); cx25840_write4(client, 908, 185470840U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_3500000: /* CIL Label */ { cx25840_write4(client, 840, 4294967293U); cx25840_write4(client, 844, 4294639609U); cx25840_write4(client, 848, 131099U); cx25840_write4(client, 852, 4587645U); cx25840_write4(client, 856, 11337914U); cx25840_write4(client, 860, 8847360U); cx25840_write4(client, 864, 4280745498U); cx25840_write4(client, 868, 4246469758U); cx25840_write4(client, 872, 4237950372U); cx25840_write4(client, 876, 4289004124U); cx25840_write4(client, 880, 88410029U); cx25840_write4(client, 884, 148703303U); cx25840_write4(client, 888, 95945074U); cx25840_write4(client, 892, 4230936319U); cx25840_write4(client, 896, 4078170480U); cx25840_write4(client, 900, 4071356093U); cx25840_write4(client, 904, 4243981343U); cx25840_write4(client, 908, 180096865U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_3600000: /* CIL Label */ { cx25840_write4(client, 840, 4294967293U); cx25840_write4(client, 844, 4294508531U); cx25840_write4(client, 848, 4294246406U); cx25840_write4(client, 852, 3080300U); cx25840_write4(client, 856, 11665635U); cx25840_write4(client, 860, 14418046U); cx25840_write4(client, 864, 4290379424U); cx25840_write4(client, 868, 4251712625U); cx25840_write4(client, 872, 4229430449U); cx25840_write4(client, 876, 4268032267U); cx25840_write4(client, 880, 70059795U); cx25840_write4(client, 884, 149686534U); cx25840_write4(client, 888, 117572354U); cx25840_write4(client, 892, 4256167971U); cx25840_write4(client, 896, 4087869802U); cx25840_write4(client, 900, 4062770677U); cx25840_write4(client, 904, 4230611844U); cx25840_write4(client, 908, 174526282U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_3700000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294442991U); cx25840_write4(client, 848, 4293525489U); cx25840_write4(client, 852, 1048653U); cx25840_write4(client, 856, 10551538U); cx25840_write4(client, 860, 18481392U); cx25840_write4(client, 864, 5504836U); cx25840_write4(client, 868, 4260232354U); cx25840_write4(client, 872, 4224973807U); cx25840_write4(client, 876, 4248436654U); cx25840_write4(client, 880, 48891448U); cx25840_write4(client, 884, 146082183U); cx25840_write4(client, 888, 136512643U); cx25840_write4(client, 892, 4281989472U); cx25840_write4(client, 896, 4099666304U); cx25840_write4(client, 900, 4055430455U); cx25840_write4(client, 904, 4217438951U); cx25840_write4(client, 908, 168890162U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_3800000: /* CIL Label */ { cx25840_write4(client, 840, 65534U); cx25840_write4(client, 844, 4294574062U); cx25840_write4(client, 848, 4293001181U); cx25840_write4(client, 852, 4293918756U); cx25840_write4(client, 856, 8126693U); cx25840_write4(client, 860, 20578634U); cx25840_write4(client, 864, 15138808U); cx25840_write4(client, 868, 4271439119U); cx25840_write4(client, 872, 4224973671U); cx25840_write4(client, 876, 4231200340U); cx25840_write4(client, 880, 25691429U); cx25840_write4(client, 884, 137955783U); cx25840_write4(client, 888, 152372718U); cx25840_write4(client, 892, 13105843U); cx25840_write4(client, 896, 4113428916U); cx25840_write4(client, 900, 4049466500U); cx25840_write4(client, 904, 4204462665U); cx25840_write4(client, 908, 163188505U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_3900000: /* CIL Label */ { cx25840_write4(client, 840, 0U); cx25840_write4(client, 844, 4294705136U); cx25840_write4(client, 848, 4292804559U); cx25840_write4(client, 852, 4291952630U); cx25840_write4(client, 856, 4718782U); cx25840_write4(client, 860, 20513156U); cx25840_write4(client, 864, 23265452U); cx25840_write4(client, 868, 4284415409U); cx25840_write4(client, 872, 4229430051U); cx25840_write4(client, 876, 4217175309U); cx25840_write4(client, 880, 1508324U); cx25840_write4(client, 884, 125503940U); cx25840_write4(client, 888, 164759356U); cx25840_write4(client, 892, 38927384U); cx25840_write4(client, 896, 4129092099U); cx25840_write4(client, 900, 4044944348U); cx25840_write4(client, 904, 4191682986U); cx25840_write4(client, 908, 157290239U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_4000000: /* CIL Label */ { cx25840_write4(client, 840, 1U); cx25840_write4(client, 844, 4294901748U); cx25840_write4(client, 848, 4293001160U); cx25840_write4(client, 852, 4290445258U); cx25840_write4(client, 856, 721026U); cx25840_write4(client, 860, 18284952U); cx25840_write4(client, 864, 29426002U); cx25840_write4(client, 868, 3210875U); cx25840_write4(client, 872, 4237949732U); cx25840_write4(client, 876, 4207148009U); cx25840_write4(client, 880, 4272226943U); cx25840_write4(client, 884, 109250943U); cx25840_write4(client, 888, 173410407U); cx25840_write4(client, 892, 64159113U); cx25840_write4(client, 896, 4146328175U); cx25840_write4(client, 900, 4041798465U); cx25840_write4(client, 904, 4179165450U); cx25840_write4(client, 908, 151391973U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_4100000: /* CIL Label */ { cx25840_write4(client, 840, 65538U); cx25840_write4(client, 844, 196603U); cx25840_write4(client, 848, 4293459914U); cx25840_write4(client, 852, 4289527716U); cx25840_write4(client, 856, 4291625014U); cx25840_write4(client, 860, 14090628U); cx25840_write4(client, 864, 32899548U); cx25840_write4(client, 868, 16777056U); cx25840_write4(client, 872, 4250008429U); cx25840_write4(client, 876, 4201577205U); cx25840_write4(client, 880, 4248895747U); cx25840_write4(client, 884, 89590009U); cx25840_write4(client, 888, 178129257U); cx25840_write4(client, 892, 88342274U); cx25840_write4(client, 896, 4165137141U); cx25840_write4(client, 900, 4040094386U); cx25840_write4(client, 904, 4166910059U); cx25840_write4(client, 908, 145362635U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_4200000: /* CIL Label */ { cx25840_write4(client, 840, 65539U); cx25840_write4(client, 844, 327683U); cx25840_write4(client, 848, 4294180819U); cx25840_write4(client, 852, 4289396619U); cx25840_write4(client, 856, 4288020453U); cx25840_write4(client, 860, 8388938U); cx25840_write4(client, 864, 33423935U); cx25840_write4(client, 868, 28966992U); cx25840_write4(client, 872, 4264950776U); cx25840_write4(client, 876, 4200790587U); cx25840_write4(client, 880, 4227465086U); cx25840_write4(client, 884, 67176502U); cx25840_write4(client, 888, 178850365U); cx25840_write4(client, 892, 111083647U); cx25840_write4(client, 896, 4185256853U); cx25840_write4(client, 900, 4039897649U); cx25840_write4(client, 904, 4155113419U); cx25840_write4(client, 908, 139202223U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_4300000: /* CIL Label */ { cx25840_write4(client, 840, 65539U); cx25840_write4(client, 844, 524298U); cx25840_write4(client, 848, 65508U); cx25840_write4(client, 852, 4290051969U); cx25840_write4(client, 856, 4285202326U); cx25840_write4(client, 860, 1835248U); cx25840_write4(client, 864, 30868081U); cx25840_write4(client, 868, 39059771U); cx25840_write4(client, 872, 4281793725U); cx25840_write4(client, 876, 4204788165U); cx25840_write4(client, 880, 4208721406U); cx25840_write4(client, 884, 42731323U); cx25840_write4(client, 888, 175442655U); cx25840_write4(client, 892, 132186618U); cx25840_write4(client, 896, 4206425166U); cx25840_write4(client, 900, 4041077182U); cx25840_write4(client, 904, 4143578923U); cx25840_write4(client, 908, 132976276U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_4400000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 589839U); cx25840_write4(client, 848, 983032U); cx25840_write4(client, 852, 4291428231U); cx25840_write4(client, 856, 4283629396U); cx25840_write4(client, 860, 4290052222U); cx25840_write4(client, 864, 25559664U); cx25840_write4(client, 868, 46137872U); cx25840_write4(client, 872, 4521394U); cx25840_write4(client, 876, 4213373335U); cx25840_write4(client, 880, 4193451152U); cx25840_write4(client, 884, 16909839U); cx25840_write4(client, 888, 168102732U); cx25840_write4(client, 892, 151126894U); cx25840_write4(client, 896, 4228576542U); cx25840_write4(client, 900, 4043764058U); cx25840_write4(client, 904, 4132372107U); cx25840_write4(client, 908, 126684791U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_4500000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 524306U); cx25840_write4(client, 848, 1638414U); cx25840_write4(client, 852, 4293263262U); cx25840_write4(client, 856, 4283432741U); cx25840_write4(client, 860, 4283826176U); cx25840_write4(client, 864, 17957435U); cx25840_write4(client, 868, 49742528U); cx25840_write4(client, 872, 21888712U); cx25840_write4(client, 876, 4226152883U); cx25840_write4(client, 880, 4182244161U); cx25840_write4(client, 884, 4285531321U); cx25840_write4(client, 888, 156896129U); cx25840_write4(client, 892, 167773400U); cx25840_write4(client, 896, 4251317763U); cx25840_write4(client, 900, 4047827204U); cx25840_write4(client, 904, 4121624044U); cx25840_write4(client, 908, 120262234U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_4600000: /* CIL Label */ { cx25840_write4(client, 840, 1U); cx25840_write4(client, 844, 393234U); cx25840_write4(client, 848, 2097186U); cx25840_write4(client, 852, 393153U); cx25840_write4(client, 856, 4284612368U); cx25840_write4(client, 860, 4278845314U); cx25840_write4(client, 864, 8782295U); cx25840_write4(client, 868, 49611584U); cx25840_write4(client, 872, 37879792U); cx25840_write4(client, 876, 4242405913U); cx25840_write4(client, 880, 4175624734U); cx25840_write4(client, 884, 4259513155U); cx25840_write4(client, 888, 142150527U); cx25840_write4(client, 892, 181732913U); cx25840_write4(client, 896, 4274517756U); cx25840_write4(client, 900, 4053332157U); cx25840_write4(client, 904, 4111334734U); cx25840_write4(client, 908, 113839677U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_4700000: /* CIL Label */ { cx25840_write4(client, 840, 65535U); cx25840_write4(client, 844, 196623U); cx25840_write4(client, 848, 2228272U); cx25840_write4(client, 852, 2490349U); cx25840_write4(client, 856, 4287102741U); cx25840_write4(client, 860, 4275502864U); cx25840_write4(client, 864, 4293722444U); cx25840_write4(client, 868, 45679494U); cx25840_write4(client, 872, 51446041U); cx25840_write4(client, 876, 4261345988U); cx25840_write4(client, 880, 4173789487U); cx25840_write4(client, 884, 4234609079U); cx25840_write4(client, 888, 124193604U); cx25840_write4(client, 892, 192808822U); cx25840_write4(client, 896, 3012615U); cx25840_write4(client, 900, 4060147846U); cx25840_write4(client, 904, 4101504177U); cx25840_write4(client, 908, 107286046U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_4800000: /* CIL Label */ { cx25840_write4(client, 840, 4294967294U); cx25840_write4(client, 844, 4294901769U); cx25840_write4(client, 848, 1966136U); cx25840_write4(client, 852, 4128795U); cx25840_write4(client, 856, 4290576182U); cx25840_write4(client, 860, 4274192054U); cx25840_write4(client, 864, 4283826341U); cx25840_write4(client, 868, 38273933U); cx25840_write4(client, 872, 61866546U); cx25840_write4(client, 876, 4281990059U); cx25840_write4(client, 880, 4176803967U); cx25840_write4(client, 884, 4211474464U); cx25840_write4(client, 888, 103418578U); cx25840_write4(client, 892, 200870051U); cx25840_write4(client, 896, 26409250U); cx25840_write4(client, 900, 4068339806U); cx25840_write4(client, 904, 4092132372U); cx25840_write4(client, 908, 100666880U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_4900000: /* CIL Label */ { cx25840_write4(client, 840, 4294967293U); cx25840_write4(client, 844, 4294705154U); cx25840_write4(client, 848, 1441847U); cx25840_write4(client, 852, 5308486U); cx25840_write4(client, 856, 4294573933U); cx25840_write4(client, 860, 4275109500U); cx25840_write4(client, 864, 4274978800U); cx25840_write4(client, 868, 27919190U); cx25840_write4(client, 872, 68354859U); cx25840_write4(client, 876, 8387781U); cx25840_write4(client, 880, 4184668178U); cx25840_write4(client, 884, 4191092359U); cx25840_write4(client, 888, 80284204U); cx25840_write4(client, 892, 205719988U); cx25840_write4(client, 896, 49543754U); cx25840_write4(client, 900, 4077842502U); cx25840_write4(client, 904, 4083284858U); cx25840_write4(client, 908, 94047712U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_5000000: /* CIL Label */ { cx25840_write4(client, 840, 4294967293U); cx25840_write4(client, 844, 4294574074U); cx25840_write4(client, 848, 655405U); cx25840_write4(client, 852, 5701735U); cx25840_write4(client, 856, 3669941U); cx25840_write4(client, 860, 4278189672U); cx25840_write4(client, 864, 4267900733U); cx25840_write4(client, 868, 15467235U); cx25840_write4(client, 872, 70583286U); cx25840_write4(client, 876, 29294085U); cx25840_write4(client, 880, 4196923374U); cx25840_write4(client, 884, 4173790456U); cx25840_write4(client, 888, 55314772U); cx25840_write4(client, 892, 207358628U); cx25840_write4(client, 896, 72153982U); cx25840_write4(client, 900, 4088524863U); cx25840_write4(client, 904, 4074961633U); cx25840_write4(client, 908, 87297472U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_5100000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294508532U); cx25840_write4(client, 848, 4294770718U); cx25840_write4(client, 852, 5308539U); cx25840_write4(client, 856, 7208966U); cx25840_write4(client, 860, 4282973820U); cx25840_write4(client, 864, 4263247514U); cx25840_write4(client, 868, 1901118U); cx25840_write4(client, 872, 68355208U); cx25840_write4(client, 876, 48693083U); cx25840_write4(client, 880, 4213110802U); cx25840_write4(client, 884, 4160224127U); cx25840_write4(client, 888, 29100110U); cx25840_write4(client, 892, 205720434U); cx25840_write4(client, 896, 94043322U); cx25840_write4(client, 900, 4100452422U); cx25840_write4(client, 904, 4067228234U); cx25840_write4(client, 908, 80547232U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_5200000: /* CIL Label */ { cx25840_write4(client, 840, 65534U); cx25840_write4(client, 844, 4294508527U); cx25840_write4(client, 848, 4293918729U); cx25840_write4(client, 852, 4128895U); cx25840_write4(client, 856, 9961558U); cx25840_write4(client, 860, 4289068726U); cx25840_write4(client, 864, 4261477909U); cx25840_write4(client, 868, 4283105648U); cx25840_write4(client, 872, 61867223U); cx25840_write4(client, 876, 65536185U); cx25840_write4(client, 880, 4232640639U); cx25840_write4(client, 884, 4150852131U); cx25840_write4(client, 888, 2230047U); cx25840_write4(client, 892, 200870939U); cx25840_write4(client, 896, 115015165U); cx25840_write4(client, 900, 4113428574U); cx25840_write4(client, 904, 4060019125U); cx25840_write4(client, 908, 73665919U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_5300000: /* CIL Label */ { cx25840_write4(client, 840, 65535U); cx25840_write4(client, 844, 4294574062U); cx25840_write4(client, 848, 4293328883U); cx25840_write4(client, 852, 2424946U); cx25840_write4(client, 856, 11468956U); cx25840_write4(client, 860, 851728U); cx25840_write4(client, 864, 4262723000U); cx25840_write4(client, 868, 4270260361U); cx25840_write4(client, 872, 51447009U); cx25840_write4(client, 876, 79168015U); cx25840_write4(client, 880, 4254660911U); cx25840_write4(client, 884, 4145936624U); cx25840_write4(client, 888, 4270327246U); cx25840_write4(client, 892, 192810140U); cx25840_write4(client, 896, 134807364U); cx25840_write4(client, 900, 4127453318U); cx25840_write4(client, 904, 4053465378U); cx25840_write4(client, 908, 66784606U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_5400000: /* CIL Label */ { cx25840_write4(client, 840, 1U); cx25840_write4(client, 844, 4294770671U); cx25840_write4(client, 848, 4292935648U); cx25840_write4(client, 852, 327766U); cx25840_write4(client, 856, 11534545U); cx25840_write4(client, 860, 7470978U); cx25840_write4(client, 864, 4266917260U); cx25840_write4(client, 868, 4259315609U); cx25840_write4(client, 872, 37815459U); cx25840_write4(client, 876, 88736589U); cx25840_write4(client, 880, 4278319646U); cx25840_write4(client, 884, 4145543149U); cx25840_write4(client, 888, 4243915873U); cx25840_write4(client, 892, 181734644U); cx25840_write4(client, 896, 153157773U); cx25840_write4(client, 900, 4142395581U); cx25840_write4(client, 904, 4047501457U); cx25840_write4(client, 908, 59903291U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_5500000: /* CIL Label */ { cx25840_write4(client, 840, 65538U); cx25840_write4(client, 844, 4294967283U); cx25840_write4(client, 848, 4292804561U); cx25840_write4(client, 852, 4293197871U); cx25840_write4(client, 856, 10223853U); cx25840_write4(client, 860, 13303808U); cx25840_write4(client, 864, 4273667476U); cx25840_write4(client, 868, 4251057840U); cx25840_write4(client, 872, 21824546U); cx25840_write4(client, 876, 93783140U); cx25840_write4(client, 880, 7666497U); cx25840_write4(client, 884, 4149868321U); cx25840_write4(client, 888, 4218749662U); cx25840_write4(client, 892, 167775521U); cx25840_write4(client, 896, 170000852U); cx25840_write4(client, 900, 4158255364U); cx25840_write4(client, 904, 4042127364U); cx25840_write4(client, 908, 52956441U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_5600000: /* CIL Label */ { cx25840_write4(client, 840, 65539U); cx25840_write4(client, 844, 262138U); cx25840_write4(client, 848, 4293132233U); cx25840_write4(client, 852, 4291362818U); cx25840_write4(client, 856, 7667951U); cx25840_write4(client, 860, 17694846U); cx25840_write4(client, 864, 4282252751U); cx25840_write4(client, 868, 4246142429U); cx25840_write4(client, 872, 4457317U); cx25840_write4(client, 876, 94045512U); cx25840_write4(client, 880, 31718544U); cx25840_write4(client, 884, 4158650001U); cx25840_write4(client, 888, 4195287373U); cx25840_write4(client, 892, 151129379U); cx25840_write4(client, 896, 185205528U); cx25840_write4(client, 900, 4174901594U); cx25840_write4(client, 904, 4037408633U); cx25840_write4(client, 908, 45944054U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_5700000: /* CIL Label */ { cx25840_write4(client, 840, 65539U); cx25840_write4(client, 844, 393217U); cx25840_write4(client, 848, 4293722057U); cx25840_write4(client, 852, 4290052052U); cx25840_write4(client, 856, 4194517U); cx25840_write4(client, 860, 20316400U); cx25840_write4(client, 864, 4292083257U); cx25840_write4(client, 868, 4244962609U); cx25840_write4(client, 872, 4281729655U); cx25840_write4(client, 876, 89523695U); cx25840_write4(client, 880, 54459902U); cx25840_write4(client, 884, 4171626050U); cx25840_write4(client, 888, 4174118838U); cx25840_write4(client, 892, 132189435U); cx25840_write4(client, 896, 198509654U); cx25840_write4(client, 900, 4192203198U); cx25840_write4(client, 904, 4033345266U); cx25840_write4(client, 908, 38931666U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_5800000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 524297U); cx25840_write4(client, 848, 4294508498U); cx25840_write4(client, 852, 4289396652U); cx25840_write4(client, 856, 131235U); cx25840_write4(client, 860, 20709706U); cx25840_write4(client, 864, 7208649U); cx25840_write4(client, 868, 4247518391U); cx25840_write4(client, 872, 4264886629U); cx25840_write4(client, 876, 80414289U); cx25840_write4(client, 880, 74973054U); cx25840_write4(client, 884, 4188403253U); cx25840_write4(client, 888, 4155637280U); cx25840_write4(client, 892, 111086760U); cx25840_write4(client, 896, 209782155U); cx25840_write4(client, 900, 4210094641U); cx25840_write4(client, 904, 4029937261U); cx25840_write4(client, 908, 31853742U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_5900000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 589838U); cx25840_write4(client, 848, 393185U); cx25840_write4(client, 852, 4289527696U); cx25840_write4(client, 856, 4291100767U); cx25840_write4(client, 860, 18940292U); cx25840_write4(client, 864, 16580466U); cx25840_write4(client, 868, 4253744247U); cx25840_write4(client, 872, 4249944127U); cx25840_write4(client, 876, 67241577U); cx25840_write4(client, 880, 92471555U); cx25840_write4(client, 884, 4208457323U); cx25840_write4(client, 888, 4140366995U); cx25840_write4(client, 892, 88280107U); cx25840_write4(client, 896, 218957493U); cx25840_write4(client, 900, 4228444850U); cx25840_write4(client, 904, 4027250156U); cx25840_write4(client, 908, 24841353U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_6000000: /* CIL Label */ { cx25840_write4(client, 840, 1U); cx25840_write4(client, 844, 458770U); cx25840_write4(client, 848, 1245173U); cx25840_write4(client, 852, 4290445186U); cx25840_write4(client, 856, 4287496207U); cx25840_write4(client, 860, 15204760U); cx25840_write4(client, 864, 24444968U); cx25840_write4(client, 868, 4263050357U); cx25840_write4(client, 872, 4237950741U); cx25840_write4(client, 876, 50660918U); cx25840_write4(client, 880, 106300031U); cx25840_write4(client, 884, 4231198434U); cx25840_write4(client, 888, 4128570135U); cx25840_write4(client, 892, 64097159U); cx25840_write4(client, 896, 225904594U); cx25840_write4(client, 900, 4247188289U); cx25840_write4(client, 904, 4025152879U); cx25840_write4(client, 908, 17763428U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_6100000: /* CIL Label */ { cx25840_write4(client, 840, 4294901760U); cx25840_write4(client, 844, 327698U); cx25840_write4(client, 848, 1835019U); cx25840_write4(client, 852, 4291952516U); cx25840_write4(client, 856, 4284940222U); cx25840_write4(client, 860, 9830788U); cx25840_write4(client, 864, 30212314U); cx25840_write4(client, 868, 4274846898U); cx25840_write4(client, 872, 4229430777U); cx25840_write4(client, 876, 31458748U); cx25840_write4(client, 880, 115803108U); cx25840_write4(client, 884, 4255905688U); cx25840_write4(client, 888, 4120508851U); cx25840_write4(client, 892, 38865597U); cx25840_write4(client, 896, 230623455U); cx25840_write4(client, 900, 4266193884U); cx25840_write4(client, 904, 4023776502U); cx25840_write4(client, 908, 10619966U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_6200000: /* CIL Label */ { cx25840_write4(client, 840, 4294967294U); cx25840_write4(client, 844, 131087U); cx25840_write4(client, 848, 2162719U); cx25840_write4(client, 852, 4293984151U); cx25840_write4(client, 856, 4283498356U); cx25840_write4(client, 860, 3408202U); cx25840_write4(client, 864, 33161593U); cx25840_write4(client, 868, 4288150826U); cx25840_write4(client, 872, 4224974074U); cx25840_write4(client, 876, 10683646U); cx25840_write4(client, 880, 120653093U); cx25840_write4(client, 884, 4281858182U); cx25840_write4(client, 888, 4116510830U); cx25840_write4(client, 892, 13044176U); cx25840_write4(client, 896, 232917467U); cx25840_write4(client, 900, 4285396100U); cx25840_write4(client, 904, 4023121025U); cx25840_write4(client, 908, 3542040U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_6300000: /* CIL Label */ { cx25840_write4(client, 840, 4294967293U); cx25840_write4(client, 844, 4294836234U); cx25840_write4(client, 848, 2162735U); cx25840_write4(client, 852, 1114040U); cx25840_write4(client, 856, 4283498299U); cx25840_write4(client, 860, 4291559664U); cx25840_write4(client, 864, 33161722U); cx25840_write4(client, 868, 6946260U); cx25840_write4(client, 872, 4224973862U); cx25840_write4(client, 876, 4284285959U); cx25840_write4(client, 880, 120653368U); cx25840_write4(client, 884, 13236648U); cx25840_write4(client, 888, 4116510542U); cx25840_write4(client, 892, 4281927875U); cx25840_write4(client, 896, 232917699U); cx25840_write4(client, 900, 9696567U); cx25840_write4(client, 904, 4023120912U); cx25840_write4(client, 908, 4291431410U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_6400000: /* CIL Label */ { cx25840_write4(client, 840, 4294967293U); cx25840_write4(client, 844, 4294639619U); cx25840_write4(client, 848, 1835063U); cx25840_write4(client, 852, 3145698U); cx25840_write4(client, 856, 4284940055U); cx25840_write4(client, 860, 4285137022U); cx25840_write4(client, 864, 30212689U); cx25840_write4(client, 868, 20250277U); cx25840_write4(client, 872, 4229430155U); cx25840_write4(client, 876, 4263510752U); cx25840_write4(client, 880, 115803923U); cx25840_write4(client, 884, 39189237U); cx25840_write4(client, 888, 4120507992U); cx25840_write4(client, 892, 4256106393U); cx25840_write4(client, 896, 230624150U); cx25840_write4(client, 900, 28898805U); cx25840_write4(client, 904, 4023776163U); cx25840_write4(client, 908, 4284353482U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_6500000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294574075U); cx25840_write4(client, 848, 1179703U); cx25840_write4(client, 852, 4587536U); cx25840_write4(client, 856, 4287561487U); cx25840_write4(client, 860, 4279762944U); cx25840_write4(client, 864, 24445558U); cx25840_write4(client, 868, 32046989U); cx25840_write4(client, 872, 4237949745U); cx25840_write4(client, 876, 4244308376U); cx25840_write4(client, 880, 106301357U); cx25840_write4(client, 884, 63896676U); cx25840_write4(client, 888, 4128568722U); cx25840_write4(client, 892, 4230874710U); cx25840_write4(client, 896, 225905746U); cx25840_write4(client, 900, 47904445U); cx25840_write4(client, 904, 4025152315U); cx25840_write4(client, 908, 4277210019U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_6600000: /* CIL Label */ { cx25840_write4(client, 840, 65534U); cx25840_write4(client, 844, 4294442997U); cx25840_write4(client, 848, 327727U); cx25840_write4(client, 852, 5505084U); cx25840_write4(client, 856, 4291165986U); cx25840_write4(client, 860, 4276092802U); cx25840_write4(client, 864, 16515687U); cx25840_write4(client, 868, 41287806U); cx25840_write4(client, 872, 4250008348U); cx25840_write4(client, 876, 4227727422U); cx25840_write4(client, 880, 92473346U); cx25840_write4(client, 884, 86638060U); cx25840_write4(client, 888, 4140365054U); cx25840_write4(client, 892, 4206691583U); cx25840_write4(client, 896, 218959094U); cx25840_write4(client, 900, 66647951U); cx25840_write4(client, 904, 4027249367U); cx25840_write4(client, 908, 4270132091U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_6700000: /* CIL Label */ { cx25840_write4(client, 840, 65535U); cx25840_write4(client, 844, 4294508528U); cx25840_write4(client, 848, 4294443040U); cx25840_write4(client, 852, 5636192U); cx25840_write4(client, 856, 196430U); cx25840_write4(client, 860, 4274323216U); cx25840_write4(client, 864, 7143973U); cx25840_write4(client, 868, 47513958U); cx25840_write4(client, 872, 4264950606U); cx25840_write4(client, 876, 4214619873U); cx25840_write4(client, 880, 74909710U); cx25840_write4(client, 884, 106692482U); cx25840_write4(client, 888, 4155634848U); cx25840_write4(client, 892, 4183884695U); cx25840_write4(client, 896, 209784192U); cx25840_write4(client, 900, 84998249U); cx25840_write4(client, 904, 4029936248U); cx25840_write4(client, 908, 4263119698U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_6800000: /* CIL Label */ { cx25840_write4(client, 840, 65536U); cx25840_write4(client, 844, 4294639598U); cx25840_write4(client, 848, 4293656588U); cx25840_write4(client, 852, 4980856U); cx25840_write4(client, 856, 4259726U); cx25840_write4(client, 860, 4274716342U); cx25840_write4(client, 864, 4292018614U); cx25840_write4(client, 868, 50070069U); cx25840_write4(client, 872, 4281793477U); cx25840_write4(client, 876, 4205510032U); cx25840_write4(client, 880, 54396882U); cx25840_write4(client, 884, 123404571U); cx25840_write4(client, 888, 4174115962U); cx25840_write4(client, 892, 4162781732U); cx25840_write4(client, 896, 198512111U); cx25840_write4(client, 900, 102889803U); cx25840_write4(client, 904, 4033344030U); cx25840_write4(client, 908, 4256041769U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_6900000: /* CIL Label */ { cx25840_write4(client, 840, 65537U); cx25840_write4(client, 844, 4294836207U); cx25840_write4(client, 848, 4293132278U); cx25840_write4(client, 852, 3604607U); cx25840_write4(client, 856, 7733212U); cx25840_write4(client, 860, 4277337724U); cx25840_write4(client, 864, 4282188066U); cx25840_write4(client, 868, 48890589U); cx25840_write4(client, 872, 4521081U); cx25840_write4(client, 876, 4200987741U); cx25840_write4(client, 880, 31655758U); cx25840_write4(client, 884, 136381101U); cx25840_write4(client, 888, 4195349644U); cx25840_write4(client, 892, 4143841449U); cx25840_write4(client, 896, 185208387U); cx25840_write4(client, 900, 120191539U); cx25840_write4(client, 904, 4037407177U); cx25840_write4(client, 908, 4249029376U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_7000000: /* CIL Label */ { cx25840_write4(client, 840, 65538U); cx25840_write4(client, 844, 131059U); cx25840_write4(client, 848, 4292804578U); cx25840_write4(client, 852, 1769590U); cx25840_write4(client, 856, 10223661U); cx25840_write4(client, 860, 4281728616U); cx25840_write4(client, 864, 4273602678U); cx25840_write4(client, 868, 43975506U); cx25840_write4(client, 872, 21888352U); cx25840_write4(client, 876, 4201249619U); cx25840_write4(client, 880, 7603848U); cx25840_write4(client, 884, 145163309U); cx25840_write4(client, 888, 4218811606U); cx25840_write4(client, 892, 4127260461U); cx25840_write4(client, 896, 170004090U); cx25840_write4(client, 900, 136837922U); cx25840_write4(client, 904, 4042125690U); cx25840_write4(client, 908, 4242016982U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_7100000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 327673U); cx25840_write4(client, 848, 4292935634U); cx25840_write4(client, 852, 4294639710U); cx25840_write4(client, 856, 11534458U); cx25840_write4(client, 860, 4287626876U); cx25840_write4(client, 864, 4266917825U); cx25840_write4(client, 868, 35718028U); cx25840_write4(client, 872, 37879406U); cx25840_write4(client, 876, 4206295680U); cx25840_write4(client, 880, 4278257031U); cx25840_write4(client, 884, 149489040U); cx25840_write4(client, 888, 4243977558U); cx25840_write4(client, 892, 4113300915U); cx25840_write4(client, 896, 153161365U); cx25840_write4(client, 900, 152697877U); cx25840_write4(client, 904, 4047499567U); cx25840_write4(client, 908, 4235070123U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_7200000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 458752U); cx25840_write4(client, 848, 4293328841U); cx25840_write4(client, 852, 4292542521U); cx25840_write4(client, 856, 11468984U); cx25840_write4(client, 860, 4294246070U); cx25840_write4(client, 864, 4262723344U); cx25840_write4(client, 868, 24707976U); cx25840_write4(client, 872, 51511186U); cx25840_write4(client, 876, 4215863789U); cx25840_write4(client, 880, 4254598227U); cx25840_write4(client, 884, 149096141U); cx25840_write4(client, 888, 4270388746U); cx25840_write4(client, 892, 4102224960U); cx25840_write4(client, 896, 134745747U); cx25840_write4(client, 900, 167640332U); cx25840_write4(client, 904, 4053463274U); cx25840_write4(client, 908, 4228188801U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_7300000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 524296U); cx25840_write4(client, 848, 4293984201U); cx25840_write4(client, 852, 4290838541U); cx25840_write4(client, 856, 9961698U); cx25840_write4(client, 860, 6029072U); cx25840_write4(client, 864, 4261478004U); cx25840_write4(client, 868, 11862853U); cx25840_write4(client, 872, 61866172U); cx25840_write4(client, 876, 4229495201U); cx25840_write4(client, 880, 4232577785U); cx25840_write4(client, 884, 144181212U); cx25840_write4(client, 888, 2291440U); cx25840_write4(client, 892, 4094163674U); cx25840_write4(client, 896, 114953844U); cx25840_write4(client, 900, 181665286U); cx25840_write4(client, 904, 4060016811U); cx25840_write4(client, 908, 4221307477U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_7400000: /* CIL Label */ { cx25840_write4(client, 840, 1U); cx25840_write4(client, 844, 524302U); cx25840_write4(client, 848, 4294836176U); cx25840_write4(client, 852, 4289724383U); cx25840_write4(client, 856, 7209202U); cx25840_write4(client, 860, 12124034U); cx25840_write4(client, 864, 4263247352U); cx25840_write4(client, 868, 4293067464U); cx25840_write4(client, 872, 68354524U); cx25840_write4(client, 876, 4246403486U); cx25840_write4(client, 880, 4213047683U); cx25840_write4(client, 884, 134809781U); cx25840_write4(client, 888, 29161473U); cx25840_write4(client, 892, 4089313669U); cx25840_write4(client, 896, 93982264U); cx25840_write4(client, 900, 194641667U); cx25840_write4(client, 904, 4067225713U); cx25840_write4(client, 908, 4214426154U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_7500000: /* CIL Label */ { cx25840_write4(client, 840, 4294901760U); cx25840_write4(client, 844, 458769U); cx25840_write4(client, 848, 720863U); cx25840_write4(client, 852, 4289331125U); cx25840_write4(client, 856, 3604710U); cx25840_write4(client, 860, 16842752U); cx25840_write4(client, 864, 4267900328U); cx25840_write4(client, 868, 4279501337U); cx25840_write4(client, 872, 70583009U); cx25840_write4(client, 876, 4265802214U); cx25840_write4(client, 880, 4196859904U); cx25840_write4(client, 884, 121243987U); cx25840_write4(client, 888, 55376185U); cx25840_write4(client, 892, 4087674949U); cx25840_write4(client, 896, 72093153U); cx25840_write4(client, 900, 206503936U); cx25840_write4(client, 904, 4074958908U); cx25840_write4(client, 908, 4207675902U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_7600000: /* CIL Label */ { cx25840_write4(client, 840, 4294967295U); cx25840_write4(client, 844, 262162U); cx25840_write4(client, 848, 1507315U); cx25840_write4(client, 852, 4289724309U); cx25840_write4(client, 856, 4294508736U); cx25840_write4(client, 860, 19923070U); cx25840_write4(client, 864, 4274978185U); cx25840_write4(client, 868, 4267049286U); cx25840_write4(client, 872, 68355004U); cx25840_write4(client, 876, 4286708342U); cx25840_write4(client, 880, 4184669821U); cx25840_write4(client, 884, 103942577U); cx25840_write4(client, 888, 80345747U); cx25840_write4(client, 892, 4089313054U); cx25840_write4(client, 896, 49483118U); cx25840_write4(client, 900, 217186557U); cx25840_write4(client, 904, 4083281934U); cx25840_write4(client, 908, 4200925649U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_7700000: /* CIL Label */ { cx25840_write4(client, 840, 4294967294U); cx25840_write4(client, 844, 65552U); cx25840_write4(client, 848, 1966088U); cx25840_write4(client, 852, 4290903940U); cx25840_write4(client, 856, 4290510980U); cx25840_write4(client, 860, 20840688U); cx25840_write4(client, 864, 4283891103U); cx25840_write4(client, 868, 4256694364U); cx25840_write4(client, 872, 61867104U); cx25840_write4(client, 876, 13105989U); cx25840_write4(client, 880, 4176805127U); cx25840_write4(client, 884, 83495374U); cx25840_write4(client, 888, 103480327U); cx25840_write4(client, 892, 4094162452U); cx25840_write4(client, 896, 26348768U); cx25840_write4(client, 900, 226689530U); cx25840_write4(client, 904, 4092129253U); cx25840_write4(client, 908, 4194306468U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_7800000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294770699U); cx25840_write4(client, 848, 2228253U); cx25840_write4(client, 852, 4292607874U); cx25840_write4(client, 856, 4287037497U); cx25840_write4(client, 860, 19530058U); cx25840_write4(client, 864, 4293787111U); cx25840_write4(client, 868, 4249354091U); cx25840_write4(client, 872, 51446982U); cx25840_write4(client, 876, 33750092U); cx25840_write4(client, 880, 4173790125U); cx25840_write4(client, 884, 60361127U); cx25840_write4(client, 888, 124255630U); cx25840_write4(client, 892, 4102223147U); cx25840_write4(client, 896, 2952249U); cx25840_write4(client, 900, 234881780U); cx25840_write4(client, 904, 4101500866U); cx25840_write4(client, 908, 4187687287U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_7900000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294574084U); cx25840_write4(client, 848, 2097197U); cx25840_write4(client, 852, 4294705041U); cx25840_write4(client, 856, 4284612584U); cx25840_write4(client, 860, 16187780U); cx25840_write4(client, 864, 8846940U); cx25840_write4(client, 868, 4245421701U); cx25840_write4(client, 872, 37815525U); cx25840_write4(client, 876, 52690301U); cx25840_write4(client, 880, 4175624825U); cx25840_write4(client, 884, 35457343U); cx25840_write4(client, 888, 142212898U); cx25840_write4(client, 892, 4113298533U); cx25840_write4(client, 896, 4274457465U); cx25840_write4(client, 900, 241697771U); cx25840_write4(client, 904, 4111331237U); cx25840_write4(client, 908, 4181133642U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_8000000: /* CIL Label */ { cx25840_write4(client, 840, 65534U); cx25840_write4(client, 844, 4294508541U); cx25840_write4(client, 848, 1638454U); cx25840_write4(client, 852, 1834927U); cx25840_write4(client, 856, 4283432857U); cx25840_write4(client, 860, 11141528U); cx25840_write4(client, 864, 18022131U); cx25840_write4(client, 868, 4245290425U); cx25840_write4(client, 872, 21824702U); cx25840_write4(client, 876, 68943564U); cx25840_write4(client, 880, 4182243704U); cx25840_write4(client, 884, 9439383U); cx25840_write4(client, 888, 156893369U); cx25840_write4(client, 892, 4127257541U); cx25840_write4(client, 896, 4251257507U); cx25840_write4(client, 900, 247203038U); cx25840_write4(client, 904, 4121620366U); cx25840_write4(client, 908, 4174711068U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_8100000: /* CIL Label */ { cx25840_write4(client, 840, 65535U); cx25840_write4(client, 844, 4294442998U); cx25840_write4(client, 848, 917560U); cx25840_write4(client, 852, 3669975U); cx25840_write4(client, 856, 4283629398U); cx25840_write4(client, 860, 4915588U); cx25840_write4(client, 864, 25624481U); cx25840_write4(client, 868, 4248894742U); cx25840_write4(client, 872, 4457554U); cx25840_write4(client, 876, 81657897U); cx25840_write4(client, 880, 4193450162U); cx25840_write4(client, 884, 4278060981U); cx25840_write4(client, 888, 168100429U); cx25840_write4(client, 892, 4143903565U); cx25840_write4(client, 896, 4228516280U); cx25840_write4(client, 900, 251266509U); cx25840_write4(client, 904, 4132368253U); cx25840_write4(client, 908, 4168288493U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_8200000: /* CIL Label */ { cx25840_write4(client, 840, 65536U); cx25840_write4(client, 844, 4294508528U); cx25840_write4(client, 848, 49U); cx25840_write4(client, 852, 4980741U); cx25840_write4(client, 856, 4285202215U); cx25840_write4(client, 860, 4293132618U); cx25840_write4(client, 864, 30867543U); cx25840_write4(client, 868, 4255972518U); cx25840_write4(client, 872, 4281729959U); cx25840_write4(client, 876, 90243460U); cx25840_write4(client, 880, 4208719918U); cx25840_write4(client, 884, 4252239519U); cx25840_write4(client, 888, 175440854U); cx25840_write4(client, 892, 4162843391U); cx25840_write4(client, 896, 4206364857U); cx25840_write4(client, 900, 253953717U); cx25840_write4(client, 904, 4143574898U); cx25840_write4(client, 908, 4161996991U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_8300000: /* CIL Label */ { cx25840_write4(client, 840, 65537U); cx25840_write4(client, 844, 4294705134U); cx25840_write4(client, 848, 4294115362U); cx25840_write4(client, 852, 5636146U); cx25840_write4(client, 856, 4288020240U); cx25840_write4(client, 860, 4286578928U); cx25840_write4(client, 864, 33423622U); cx25840_write4(client, 868, 4266065009U); cx25840_write4(client, 872, 4264886983U); cx25840_write4(client, 876, 94241486U); cx25840_write4(client, 880, 4227463154U); cx25840_write4(client, 884, 4227794267U); cx25840_write4(client, 888, 178849100U); cx25840_write4(client, 892, 4183945947U); cx25840_write4(client, 896, 4185196458U); cx25840_write4(client, 900, 255133591U); cx25840_write4(client, 904, 4155109229U); cx25840_write4(client, 908, 4155771024U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_8400000: /* CIL Label */ { cx25840_write4(client, 840, 65538U); cx25840_write4(client, 844, 4294901742U); cx25840_write4(client, 848, 4293394447U); cx25840_write4(client, 852, 5505112U); cx25840_write4(client, 856, 4291690260U); cx25840_write4(client, 860, 4280877182U); cx25840_write4(client, 864, 32899486U); cx25840_write4(client, 868, 4278320252U); cx25840_write4(client, 872, 4249944511U); cx25840_write4(client, 876, 93455350U); cx25840_write4(client, 880, 4248958974U); cx25840_write4(client, 884, 4205380595U); cx25840_write4(client, 888, 178128553U); cx25840_write4(client, 892, 4206752482U); cx25840_write4(client, 896, 4165076619U); cx25840_write4(client, 900, 254937201U); cx25840_write4(client, 904, 4166971246U); cx25840_write4(client, 908, 4149610592U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_8500000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 196594U); cx25840_write4(client, 848, 4293001209U); cx25840_write4(client, 852, 4587635U); cx25840_write4(client, 856, 786228U); cx25840_write4(client, 860, 4276682752U); cx25840_write4(client, 864, 29426197U); cx25840_write4(client, 868, 4291886277U); cx25840_write4(client, 872, 4237885597U); cx25840_write4(client, 876, 87885041U); cx25840_write4(client, 880, 4272289875U); cx25840_write4(client, 884, 4185719408U); cx25840_write4(client, 888, 173410276U); cx25840_write4(client, 892, 4230935316U); cx25840_write4(client, 896, 4146267487U); cx25840_write4(client, 900, 253233475U); cx25840_write4(client, 904, 4179226485U); cx25840_write4(client, 908, 4143581232U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_8600000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 393208U); cx25840_write4(client, 848, 4292804580U); cx25840_write4(client, 852, 3080319U); cx25840_write4(client, 856, 4783979U); cx25840_write4(client, 860, 4274519938U); cx25840_write4(client, 864, 23265887U); cx25840_write4(client, 868, 10681671U); cx25840_write4(client, 872, 4229431155U); cx25840_write4(client, 876, 77858226U); cx25840_write4(client, 880, 1571053U); cx25840_write4(client, 884, 4169466076U); cx25840_write4(client, 888, 164759801U); cx25840_write4(client, 892, 4256166768U); cx25840_write4(client, 896, 4129031209U); cx25840_write4(client, 900, 250087947U); cx25840_write4(client, 904, 4191743874U); cx25840_write4(client, 908, 4137682944U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_8700000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 524287U); cx25840_write4(client, 848, 4293001172U); cx25840_write4(client, 852, 1048698U); cx25840_write4(client, 856, 8191922U); cx25840_write4(client, 860, 4274454288U); cx25840_write4(client, 864, 15073911U); cx25840_write4(client, 868, 23657977U); cx25840_write4(client, 872, 4224974416U); cx25840_write4(client, 876, 63833649U); cx25840_write4(client, 880, 25754056U); cx25840_write4(client, 884, 4157079363U); cx25840_write4(client, 888, 152373731U); cx25840_write4(client, 892, 4281988086U); cx25840_write4(client, 896, 4113367786U); cx25840_write4(client, 900, 245566153U); cx25840_write4(client, 904, 4204523413U); cx25840_write4(client, 908, 4131784656U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_8800000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 589831U); cx25840_write4(client, 848, 4293525450U); cx25840_write4(client, 852, 4293918821U); cx25840_write4(client, 856, 10551299U); cx25840_write4(client, 860, 4276551350U); cx25840_write4(client, 864, 5440091U); cx25840_write4(client, 868, 34864848U); cx25840_write4(client, 872, 4224974150U); cx25840_write4(client, 876, 46597736U); cx25840_write4(client, 880, 48954075U); cx25840_write4(client, 884, 4148952494U); cx25840_write4(client, 888, 136514204U); cx25840_write4(client, 892, 13104291U); cx25840_write4(client, 896, 4099604902U); cx25840_write4(client, 900, 239602556U); cx25840_write4(client, 904, 4217499566U); cx25840_write4(client, 908, 4126082975U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_8900000: /* CIL Label */ { cx25840_write4(client, 840, 4294901760U); cx25840_write4(client, 844, 524301U); cx25840_write4(client, 848, 4294311880U); cx25840_write4(client, 852, 4291887171U); cx25840_write4(client, 856, 11665491U); cx25840_write4(client, 860, 4280614524U); cx25840_write4(client, 864, 4290314764U); cx25840_write4(client, 868, 43384763U); cx25840_write4(client, 872, 4229430372U); cx25840_write4(client, 876, 26936916U); cx25840_write4(client, 880, 70122524U); cx25840_write4(client, 884, 4145347626U); cx25840_write4(client, 888, 117574433U); cx25840_write4(client, 892, 38925685U); cx25840_write4(client, 896, 4087808094U); cx25840_write4(client, 900, 232262692U); cx25840_write4(client, 904, 4230672333U); cx25840_write4(client, 908, 4120446830U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_9000000: /* CIL Label */ { cx25840_write4(client, 840, 4294967295U); cx25840_write4(client, 844, 393233U); cx25840_write4(client, 848, 196559U); cx25840_write4(client, 852, 4290379800U); cx25840_write4(client, 856, 11337882U); cx25840_write4(client, 860, 4286185064U); cx25840_write4(client, 864, 4280680850U); cx25840_write4(client, 868, 48562347U); cx25840_write4(client, 872, 4237949878U); cx25840_write4(client, 876, 5965303U); cx25840_write4(client, 880, 88472961U); cx25840_write4(client, 884, 4146330303U); cx25840_write4(client, 888, 95947632U); cx25840_write4(client, 892, 64157289U); cx25840_write4(client, 896, 4078173973U); cx25840_write4(client, 900, 223677631U); cx25840_write4(client, 904, 4244041714U); cx25840_write4(client, 908, 4114876221U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_9100000: /* CIL Label */ { cx25840_write4(client, 840, 4294967294U); cx25840_write4(client, 844, 196626U); cx25840_write4(client, 848, 1048541U); cx25840_write4(client, 852, 4289527786U); cx25840_write4(client, 856, 9633999U); cx25840_write4(client, 860, 4292673148U); cx25840_write4(client, 864, 4272292087U); cx25840_write4(client, 868, 50135440U); cx25840_write4(client, 872, 4250008390U); cx25840_write4(client, 876, 4279567700U); cx25840_write4(client, 880, 103284477U); cx25840_write4(client, 884, 4151900536U); cx25840_write4(client, 888, 72158087U); cx25840_write4(client, 892, 88340349U); cx25840_write4(client, 896, 4070637007U); cx25840_write4(client, 900, 213781838U); cx25840_write4(client, 904, 4257542173U); cx25840_write4(client, 908, 4109502219U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_9200000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 16U); cx25840_write4(client, 848, 1769456U); cx25840_write4(client, 852, 4289396671U); cx25840_write4(client, 856, 6750445U); cx25840_write4(client, 860, 4456118U); cx25840_write4(client, 864, 4266000455U); cx25840_write4(client, 868, 47907416U); cx25840_write4(client, 872, 4264950555U); cx25840_write4(client, 876, 4259054707U); cx25840_write4(client, 880, 113836162U); cx25840_write4(client, 884, 4161927262U); cx25840_write4(client, 888, 46730086U); cx25840_write4(client, 892, 111147181U); cx25840_write4(client, 896, 4065393805U); cx25840_write4(client, 900, 202640847U); cx25840_write4(client, 904, 4271108173U); cx25840_write4(client, 908, 4104193753U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_9300000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294705164U); cx25840_write4(client, 848, 2097158U); cx25840_write4(client, 852, 4290051996U); cx25840_write4(client, 856, 3080431U); cx25840_write4(client, 860, 10813200U); cx25840_write4(client, 864, 4262330258U); cx25840_write4(client, 868, 42009335U); cx25840_write4(client, 872, 4281793335U); cx25840_write4(client, 876, 4240376670U); cx25840_write4(client, 880, 119931394U); cx25840_write4(client, 884, 4176017272U); cx25840_write4(client, 888, 20187917U); cx25840_write4(client, 892, 132250100U); cx25840_write4(client, 896, 4062444369U); cx25840_write4(client, 900, 190385730U); cx25840_write4(client, 904, 4284805251U); cx25840_write4(client, 908, 4099016359U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_9400000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294508549U); cx25840_write4(client, 848, 2228250U); cx25840_write4(client, 852, 4291428230U); cx25840_write4(client, 856, 4293918935U); cx25840_write4(client, 860, 15925122U); cx25840_write4(client, 864, 4261543653U); cx25840_write4(client, 868, 32899938U); cx25840_write4(client, 872, 4520857U); cx25840_write4(client, 876, 4224451106U); cx25840_write4(client, 880, 121111408U); cx25840_write4(client, 884, 4193777356U); cx25840_write4(client, 888, 4288219774U); cx25840_write4(client, 892, 151190352U); cx25840_write4(client, 896, 4061854239U); cx25840_write4(client, 900, 177016486U); cx25840_write4(client, 904, 3469503U); cx25840_write4(client, 908, 4093970037U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_9500000: /* CIL Label */ { cx25840_write4(client, 840, 65534U); cx25840_write4(client, 844, 4294508542U); cx25840_write4(client, 848, 1966123U); cx25840_write4(client, 852, 4293263233U); cx25840_write4(client, 856, 4289986725U); cx25840_write4(client, 860, 19398656U); cx25840_write4(client, 864, 4263837264U); cx25840_write4(client, 868, 21365648U); cx25840_write4(client, 872, 21888058U); cx25840_write4(client, 876, 4212129998U); cx25840_write4(client, 880, 117507263U); cx25840_write4(client, 884, 4214748767U); cx25840_write4(client, 888, 4261415356U); cx25840_write4(client, 892, 167836859U); cx25840_write4(client, 896, 4063623416U); cx25840_write4(client, 900, 162664188U); cx25840_write4(client, 904, 17166593U); cx25840_write4(client, 908, 4089054786U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_9600000: /* CIL Label */ { cx25840_write4(client, 840, 131071U); cx25840_write4(client, 844, 4294508535U); cx25840_write4(client, 848, 1376310U); cx25840_write4(client, 852, 393100U); cx25840_write4(client, 856, 4286644321U); cx25840_write4(client, 860, 20775038U); cx25840_write4(client, 864, 4268883423U); cx25840_write4(client, 868, 8127360U); cx25840_write4(client, 872, 37879059U); cx25840_write4(client, 876, 4204068720U); cx25840_write4(client, 880, 109053410U); cx25840_write4(client, 884, 4238079539U); cx25840_write4(client, 888, 4235397322U); cx25840_write4(client, 892, 181796400U); cx25840_write4(client, 896, 4067751904U); cx25840_write4(client, 900, 147394371U); cx25840_write4(client, 904, 30732615U); cx25840_write4(client, 908, 4084270607U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_9700000: /* CIL Label */ { cx25840_write4(client, 840, 65537U); cx25840_write4(client, 844, 4294574065U); cx25840_write4(client, 848, 589880U); cx25840_write4(client, 852, 2490279U); cx25840_write4(client, 856, 4284350482U); cx25840_write4(client, 860, 20054256U); cx25840_write4(client, 864, 4276354459U); cx25840_write4(client, 868, 4289332017U); cx25840_write4(client, 872, 51510805U); cx25840_write4(client, 876, 4200660504U); cx25840_write4(client, 880, 96274129U); cx25840_write4(client, 884, 4263245386U); cx25840_write4(client, 888, 4210689966U); cx25840_write4(client, 892, 192872363U); cx25840_write4(client, 896, 4074108631U); cx25840_write4(client, 900, 131272570U); cx25840_write4(client, 904, 44298644U); cx25840_write4(client, 908, 4079551964U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_9800000: /* CIL Label */ { cx25840_write4(client, 840, 65538U); cx25840_write4(client, 844, 4294770670U); cx25840_write4(client, 848, 4294639666U); cx25840_write4(client, 852, 4194253U); cx25840_write4(client, 856, 4283367361U); cx25840_write4(client, 860, 17170762U); cx25840_write4(client, 864, 4285463946U); cx25840_write4(client, 868, 4275897002U); cx25840_write4(client, 872, 61931316U); cx25840_write4(client, 876, 4201970903U); cx25840_write4(client, 880, 79628161U); cx25840_write4(client, 884, 4289394339U); cx25840_write4(client, 888, 4187883115U); cx25840_write4(client, 892, 200868136U); cx25840_write4(client, 896, 4082759137U); cx25840_write4(client, 900, 114429858U); cx25840_write4(client, 904, 57733605U); cx25840_write4(client, 908, 4075029928U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_9900000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 4294967278U); cx25840_write4(client, 848, 4293853220U); cx25840_write4(client, 852, 5373946U); cx25840_write4(client, 856, 4283760503U); cx25840_write4(client, 860, 12452228U); cx25840_write4(client, 864, 458157U); cx25840_write4(client, 868, 4263969267U); cx25840_write4(client, 872, 68354142U); cx25840_write4(client, 876, 4208065466U); cx25840_write4(client, 880, 59770862U); cx25840_write4(client, 884, 20707133U); cx25840_write4(client, 888, 4167566602U); cx25840_write4(client, 892, 205718177U); cx25840_write4(client, 896, 4093506814U); cx25840_write4(client, 900, 96931770U); cx25840_write4(client, 904, 71037500U); cx25840_write4(client, 908, 4070638965U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_10000000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 262129U); cx25840_write4(client, 848, 4293197841U); cx25840_write4(client, 852, 5701671U); cx25840_write4(client, 856, 4285595452U); cx25840_write4(client, 860, 6422936U); cx25840_write4(client, 864, 10419713U); cx25840_write4(client, 868, 4254400794U); cx25840_write4(client, 872, 70582659U); cx25840_write4(client, 876, 4218550992U); cx25840_write4(client, 880, 37488658U); cx25840_write4(client, 884, 46397457U); cx25840_write4(client, 888, 4150133648U); cx25840_write4(client, 892, 207356945U); cx25840_write4(client, 896, 4106351666U); cx25840_write4(client, 900, 78843841U); cx25840_write4(client, 904, 84144791U); cx25840_write4(client, 908, 4066444609U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_10100000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 458743U); cx25840_write4(client, 848, 4292870140U); cx25840_write4(client, 852, 5308496U); cx25840_write4(client, 856, 4288544536U); cx25840_write4(client, 860, 4294705540U); cx25840_write4(client, 864, 19463808U); cx25840_write4(client, 868, 4247912494U); cx25840_write4(client, 872, 68354706U); cx25840_write4(client, 876, 4232968737U); cx25840_write4(client, 880, 13699054U); cx25840_write4(client, 884, 70646044U); cx25840_write4(client, 888, 4135911941U); cx25840_write4(client, 892, 205718899U); cx25840_write4(client, 896, 4121031549U); cx25840_write4(client, 900, 60362682U); cx25840_write4(client, 904, 96989944U); cx25840_write4(client, 908, 4062315789U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_10200000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 589822U); cx25840_write4(client, 848, 4292870119U); cx25840_write4(client, 852, 4128878U); cx25840_write4(client, 856, 4292280079U); cx25840_write4(client, 860, 4288020810U); cx25840_write4(client, 864, 26738463U); cx25840_write4(client, 868, 4245028670U); cx25840_write4(client, 872, 61866876U); cx25840_write4(client, 876, 4250532279U); cx25840_write4(client, 880, 4284286849U); cx25840_write4(client, 884, 92666454U); cx25840_write4(client, 888, 4125360239U); cx25840_write4(client, 892, 200869572U); cx25840_write4(client, 896, 4137546464U); cx25840_write4(client, 900, 41488290U); cx25840_write4(client, 904, 109638493U); cx25840_write4(client, 908, 4058383576U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_10300000: /* CIL Label */ { cx25840_write4(client, 840, 4294901761U); cx25840_write4(client, 844, 589829U); cx25840_write4(client, 848, 4293197782U); cx25840_write4(client, 852, 2424958U); cx25840_write4(client, 856, 1376032U); cx25840_write4(client, 860, 4282122480U); cx25840_write4(client, 864, 31588304U); cx25840_write4(client, 868, 4245880412U); cx25840_write4(client, 872, 51446835U); cx25840_write4(client, 876, 4270389654U); cx25840_write4(client, 880, 4260431569U); cx25840_write4(client, 884, 111868855U); cx25840_write4(client, 888, 4118740696U); cx25840_write4(client, 892, 192808959U); cx25840_write4(client, 896, 4155568734U); cx25840_write4(client, 900, 22417274U); cx25840_write4(client, 904, 122024903U); cx25840_write4(client, 908, 4054582436U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_10400000: /* CIL Label */ { cx25840_write4(client, 840, 4294967295U); cx25840_write4(client, 844, 524300U); cx25840_write4(client, 848, 4293787595U); cx25840_write4(client, 852, 327805U); cx25840_write4(client, 856, 5308236U); cx25840_write4(client, 860, 4277534846U); cx25840_write4(client, 864, 33489030U); cx25840_write4(client, 868, 4250467735U); cx25840_write4(client, 872, 37815469U); cx25840_write4(client, 876, 4291492288U); cx25840_write4(client, 880, 4237886946U); cx25840_write4(client, 884, 127597877U); cx25840_write4(client, 888, 4116053318U); cx25840_write4(client, 892, 181733664U); cx25840_write4(client, 896, 4175032822U); cx25840_write4(client, 900, 3215171U); cx25840_write4(client, 904, 134083637U); cx25840_write4(client, 908, 4050912367U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_10500000: /* CIL Label */ { cx25840_write4(client, 840, 4294967294U); cx25840_write4(client, 844, 327697U); cx25840_write4(client, 848, 4294639560U); cx25840_write4(client, 852, 4293197931U); cx25840_write4(client, 856, 8585100U); cx25840_write4(client, 860, 4274782208U); cx25840_write4(client, 864, 32506160U); cx25840_write4(client, 868, 4258462972U); cx25840_write4(client, 872, 21824739U); cx25840_write4(client, 876, 17758770U); cx25840_write4(client, 880, 4217636031U); cx25840_write4(client, 884, 139394757U); cx25840_write4(client, 888, 4117363650U); cx25840_write4(client, 892, 167774755U); cx25840_write4(client, 896, 4195742123U); cx25840_write4(client, 900, 4278914812U); cx25840_write4(client, 904, 145814695U); cx25840_write4(client, 908, 4047438906U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_10600000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 131090U); cx25840_write4(client, 848, 524237U); cx25840_write4(client, 852, 4291362892U); cx25840_write4(client, 856, 10813401U); cx25840_write4(client, 860, 4274257794U); cx25840_write4(client, 864, 28574145U); cx25840_write4(client, 868, 4269210775U); cx25840_write4(client, 872, 4457682U); cx25840_write4(client, 876, 38140648U); cx25840_write4(client, 880, 4200530800U); cx25840_write4(client, 884, 146866271U); cx25840_write4(client, 888, 4122802770U); cx25840_write4(client, 892, 151128836U); cx25840_write4(client, 896, 4217434491U); cx25840_write4(client, 900, 4259778214U); cx25840_write4(client, 904, 157152542U); cx25840_write4(client, 908, 4044096517U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_10700000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294901777U); cx25840_write4(client, 848, 1376219U); cx25840_write4(client, 852, 4289986595U); cx25840_write4(client, 856, 11665450U); cx25840_write4(client, 860, 4275830544U); cx25840_write4(client, 864, 22020653U); cx25840_write4(client, 868, 4281924719U); cx25840_write4(client, 872, 4281730171U); cx25840_write4(client, 876, 56556506U); cx25840_write4(client, 880, 4187226626U); cx25840_write4(client, 884, 149815797U); cx25840_write4(client, 888, 4132043006U); cx25840_write4(client, 892, 132189122U); cx25840_write4(client, 896, 4239847785U); cx25840_write4(client, 900, 4240838210U); cx25840_write4(client, 904, 168097177U); cx25840_write4(client, 908, 4040885200U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_10800000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294639629U); cx25840_write4(client, 848, 1966061U); cx25840_write4(client, 852, 4289396725U); cx25840_write4(client, 856, 11141239U); cx25840_write4(client, 860, 4279500470U); cx25840_write4(client, 864, 13501035U); cx25840_write4(client, 868, 720005U); cx25840_write4(client, 872, 4264887267U); cx25840_write4(client, 876, 72154363U); cx25840_write4(client, 880, 4178313346U); cx25840_write4(client, 884, 148177791U); cx25840_write4(client, 888, 4145084364U); cx25840_write4(client, 892, 111086681U); cx25840_write4(client, 896, 4262916467U); cx25840_write4(client, 900, 4222225871U); cx25840_write4(client, 904, 178648599U); cx25840_write4(client, 908, 4037870491U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_10900000: /* CIL Label */ { cx25840_write4(client, 840, 65534U); cx25840_write4(client, 844, 4294508550U); cx25840_write4(client, 848, 2162691U); cx25840_write4(client, 852, 4289527752U); cx25840_write4(client, 856, 9306294U); cx25840_write4(client, 860, 4284743292U); cx25840_write4(client, 864, 3801717U); cx25840_write4(client, 868, 14351578U); cx25840_write4(client, 872, 4249944851U); cx25840_write4(client, 876, 84016704U); cx25840_write4(client, 880, 4174118653U); cx25840_write4(client, 884, 141952240U); cx25840_write4(client, 888, 4161468098U); cx25840_write4(client, 892, 88280264U); cx25840_write4(client, 896, 4286247322U); cx25840_write4(client, 900, 4204006734U); cx25840_write4(client, 904, 188741273U); cx25840_write4(client, 908, 4034986853U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_11000000: /* CIL Label */ { cx25840_write4(client, 840, 131071U); cx25840_write4(client, 844, 4294508543U); cx25840_write4(client, 848, 2162712U); cx25840_write4(client, 852, 4290445219U); cx25840_write4(client, 856, 6291681U); cx25840_write4(client, 860, 4291100264U); cx25840_write4(client, 864, 4288676427U); cx25840_write4(client, 868, 26934630U); cx25840_write4(client, 872, 4237885974U); cx25840_write4(client, 876, 91619225U); cx25840_write4(client, 880, 4174708097U); cx25840_write4(client, 884, 131335744U); cx25840_write4(client, 888, 4180866534U); cx25840_write4(client, 892, 64097549U); cx25840_write4(client, 896, 14676446U); cx25840_write4(client, 900, 4186311871U); cx25840_write4(client, 904, 198309662U); cx25840_write4(client, 908, 4032299823U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_11100000: /* CIL Label */ { cx25840_write4(client, 840, 65536U); cx25840_write4(client, 844, 4294508536U); cx25840_write4(client, 848, 1769513U); cx25840_write4(client, 852, 4291952522U); cx25840_write4(client, 856, 2490610U); cx25840_write4(client, 860, 2948732U); cx25840_write4(client, 864, 4279173616U); cx25840_write4(client, 868, 37486112U); cx25840_write4(client, 872, 4229366010U); cx25840_write4(client, 876, 94503159U); cx25840_write4(client, 880, 4180147228U); cx25840_write4(client, 884, 116655973U); cx25840_write4(client, 888, 4202886459U); cx25840_write4(client, 892, 38866215U); cx25840_write4(client, 896, 38007357U); cx25840_write4(client, 900, 4169206820U); cx25840_write4(client, 904, 207419303U); cx25840_write4(client, 908, 4029743866U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_11200000: /* CIL Label */ { cx25840_write4(client, 840, 65538U); cx25840_write4(client, 844, 4294639602U); cx25840_write4(client, 848, 1114165U); cx25840_write4(client, 852, 4293984129U); cx25840_write4(client, 856, 4293329127U); cx25840_write4(client, 860, 9436854U); cx25840_write4(client, 864, 4271112557U); cx25840_write4(client, 868, 45154043U); cx25840_write4(client, 872, 4224974801U); cx25840_write4(client, 876, 92602953U); cx25840_write4(client, 880, 4190239451U); cx25840_write4(client, 884, 98437208U); cx25840_write4(client, 888, 4227003588U); cx25840_write4(client, 892, 13045015U); cx25840_write4(client, 896, 60879544U); cx25840_write4(client, 900, 4152822652U); cx25840_write4(client, 904, 216004659U); cx25840_write4(client, 908, 4027384516U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_11300000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 4294836206U); cx25840_write4(client, 848, 262200U); cx25840_write4(client, 852, 1113992U); cx25840_write4(client, 856, 4289462466U); cx25840_write4(client, 860, 14876432U); cx25840_write4(client, 864, 4265148619U); cx25840_write4(client, 868, 49414121U); cx25840_write4(client, 872, 4224974506U); cx25840_write4(client, 876, 86049665U); cx25840_write4(client, 880, 4204591560U); cx25840_write4(client, 884, 77138194U); cx25840_write4(client, 888, 4252693636U); cx25840_write4(client, 892, 4281928923U); cx25840_write4(client, 896, 83161933U); cx25840_write4(client, 900, 4137290441U); cx25840_write4(client, 904, 224065729U); cx25840_write4(client, 908, 4025221774U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_11400000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 65518U); cx25840_write4(client, 848, 4294311987U); cx25840_write4(client, 852, 3145631U); cx25840_write4(client, 856, 4286251143U); cx25840_write4(client, 860, 18808706U); cx25840_write4(client, 864, 4261937176U); cx25840_write4(client, 868, 49873112U); cx25840_write4(client, 872, 4229430678U); cx25840_write4(client, 876, 75039888U); cx25840_write4(client, 880, 4222482669U); cx25840_write4(client, 884, 53414286U); cx25840_write4(client, 888, 4279301245U); cx25840_write4(client, 892, 4256107637U); cx25840_write4(client, 896, 104657916U); cx25840_write4(client, 900, 4122610187U); cx25840_write4(client, 904, 231536978U); cx25840_write4(client, 908, 4023190104U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_11500000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 327665U); cx25840_write4(client, 848, 4293525542U); cx25840_write4(client, 852, 4652995U); cx25840_write4(client, 856, 4284088380U); cx25840_write4(client, 860, 20643840U); cx25840_write4(client, 864, 4261740387U); cx25840_write4(client, 868, 46662072U); cx25840_write4(client, 872, 4237950118U); cx25840_write4(client, 876, 60228970U); cx25840_write4(client, 880, 4243388499U); cx25840_write4(client, 884, 28117449U); cx25840_write4(client, 888, 11334829U); cx25840_write4(client, 892, 4230876135U); cx25840_write4(client, 896, 125039810U); cx25840_write4(client, 900, 4108912963U); cx25840_write4(client, 904, 238418406U); cx25840_write4(client, 908, 4021355041U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_11600000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 524278U); cx25840_write4(client, 848, 4293001236U); cx25840_write4(client, 852, 5570542U); cx25840_write4(client, 856, 4283367403U); cx25840_write4(client, 860, 20381822U); cx25840_write4(client, 864, 4264492731U); cx25840_write4(client, 868, 39846522U); cx25840_write4(client, 872, 4250008550U); cx25840_write4(client, 876, 42403333U); cx25840_write4(client, 880, 4266326014U); cx25840_write4(client, 884, 1903041U); cx25840_write4(client, 888, 38008085U); cx25840_write4(client, 892, 4206693170U); cx25840_write4(client, 896, 144176542U); cx25840_write4(client, 900, 4096264305U); cx25840_write4(client, 904, 244710012U); cx25840_write4(client, 908, 4019651051U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_11700000: /* CIL Label */ { cx25840_write4(client, 840, 4294901761U); cx25840_write4(client, 844, 589821U); cx25840_write4(client, 848, 4292804607U); cx25840_write4(client, 852, 5636125U); cx25840_write4(client, 856, 4283957148U); cx25840_write4(client, 860, 18022640U); cx25840_write4(client, 864, 4269997614U); cx25840_write4(client, 868, 30016272U); cx25840_write4(client, 872, 4264950626U); cx25840_write4(client, 876, 22349402U); cx25840_write4(client, 880, 4290443250U); cx25840_write4(client, 884, 4270590327U); cx25840_write4(client, 888, 63894962U); cx25840_write4(client, 892, 4183886424U); cx25840_write4(client, 896, 161871503U); cx25840_write4(client, 900, 4084795287U); cx25840_write4(client, 904, 250346260U); cx25840_write4(client, 908, 4018143669U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_11800000: /* CIL Label */ { cx25840_write4(client, 840, 4294901760U); cx25840_write4(client, 844, 524292U); cx25840_write4(client, 848, 4292935657U); cx25840_write4(client, 852, 4980807U); cx25840_write4(client, 856, 4285923160U); cx25840_write4(client, 860, 13697354U); cx25840_write4(client, 864, 4277796296U); cx25840_write4(client, 868, 17892207U); cx25840_write4(client, 872, 4281793313U); cx25840_write4(client, 876, 1181285U); cx25840_write4(client, 880, 19789870U); cx25840_write4(client, 884, 4245096684U); cx25840_write4(client, 888, 88274562U); cx25840_write4(client, 892, 4162783580U); cx25840_write4(client, 896, 177928082U); cx25840_write4(client, 900, 4074440373U); cx25840_write4(client, 904, 255392685U); cx25840_write4(client, 908, 4016832894U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_11900000: /* CIL Label */ { cx25840_write4(client, 840, 4294967295U); cx25840_write4(client, 844, 458763U); cx25840_write4(client, 848, 4293394392U); cx25840_write4(client, 852, 3604584U); cx25840_write4(client, 856, 4289003304U); cx25840_write4(client, 860, 7930244U); cx25840_write4(client, 864, 4287102353U); cx25840_write4(client, 868, 4391826U); cx25840_write4(client, 872, 4520742U); cx25840_write4(client, 876, 4274914854U); cx25840_write4(client, 880, 43317426U); cx25840_write4(client, 884, 4221110309U); cx25840_write4(client, 888, 110688127U); cx25840_write4(client, 892, 4143843394U); cx25840_write4(client, 896, 192149671U); cx25840_write4(client, 900, 4065396173U); cx25840_write4(client, 904, 259783752U); cx25840_write4(client, 908, 4015653192U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_12000000: /* CIL Label */ { cx25840_write4(client, 840, 65534U); cx25840_write4(client, 844, 327696U); cx25840_write4(client, 848, 4294115276U); cx25840_write4(client, 852, 1769595U); cx25840_write4(client, 856, 4292869904U); cx25840_write4(client, 860, 1311128U); cx25840_write4(client, 864, 2162062U); cx25840_write4(client, 868, 4285596533U); cx25840_write4(client, 872, 21887859U); cx25840_write4(client, 876, 4254729631U); cx25840_write4(client, 880, 65075576U); cx25840_write4(client, 884, 4199417638U); cx25840_write4(client, 888, 130611367U); cx25840_write4(client, 892, 4127196940U); cx25840_write4(client, 896, 204470729U); cx25840_write4(client, 900, 4057662686U); cx25840_write4(client, 904, 263519461U); cx25840_write4(client, 908, 4014670097U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_12100000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 65554U); cx25840_write4(client, 848, 4294967240U); cx25840_write4(client, 852, 4294639742U); cx25840_write4(client, 856, 1965844U); cx25840_write4(client, 860, 4289528196U); cx25840_write4(client, 864, 12058046U); cx25840_write4(client, 868, 4272489243U); cx25840_write4(client, 872, 37878785U); cx25840_write4(client, 876, 4236575958U); cx25840_write4(client, 880, 84212345U); cx25840_write4(client, 884, 4180674038U); cx25840_write4(client, 888, 147519986U); cx25840_write4(client, 892, 4113237440U); cx25840_write4(client, 896, 214694649U); cx25840_write4(client, 900, 4051239915U); cx25840_write4(client, 904, 266599811U); cx25840_write4(client, 908, 4013883611U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_12200000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294836241U); cx25840_write4(client, 848, 851916U); cx25840_write4(client, 852, 4292542577U); cx25840_write4(client, 856, 5832498U); cx25840_write4(client, 860, 4283367754U); cx25840_write4(client, 864, 20774431U); cx25840_write4(client, 868, 4261085834U); cx25840_write4(client, 872, 51510473U); cx25840_write4(client, 876, 4221371350U); cx25840_write4(client, 880, 99941293U); cx25840_write4(client, 884, 4165469341U); cx25840_write4(client, 888, 161086299U); cx25840_write4(client, 892, 4102161505U); cx25840_write4(client, 896, 222755890U); cx25840_write4(client, 900, 4046258932U); cx25840_write4(client, 904, 268959265U); cx25840_write4(client, 908, 4013293732U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_12300000: /* CIL Label */ { cx25840_write4(client, 840, 65534U); cx25840_write4(client, 844, 4294574094U); cx25840_write4(client, 848, 1572825U); cx25840_write4(client, 852, 4290838613U); cx25840_write4(client, 856, 8978280U); cx25840_write4(client, 860, 4278452464U); cx25840_write4(client, 864, 27721383U); cx25840_write4(client, 868, 4252303820U); cx25840_write4(client, 872, 61930944U); cx25840_write4(client, 876, 4209967784U); cx25840_write4(client, 880, 111672583U); cx25840_write4(client, 884, 4154262310U); cx25840_write4(client, 888, 171048154U); cx25840_write4(client, 892, 4094100211U); cx25840_write4(client, 896, 228588914U); cx25840_write4(client, 900, 4042654202U); cx25840_write4(client, 904, 270663360U); cx25840_write4(client, 908, 4012834925U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_12400000: /* CIL Label */ { cx25840_write4(client, 840, 131071U); cx25840_write4(client, 844, 4294443015U); cx25840_write4(client, 848, 2097131U); cx25840_write4(client, 852, 4289658925U); cx25840_write4(client, 856, 11075504U); cx25840_write4(client, 860, 4275241086U); cx25840_write4(client, 864, 32112460U); cx25840_write4(client, 868, 4246733038U); cx25840_write4(client, 872, 68419288U); cx25840_write4(client, 876, 4202824028U); cx25840_write4(client, 880, 118881917U); cx25840_write4(client, 884, 4147380632U); cx25840_write4(client, 888, 177077865U); cx25840_write4(client, 892, 4089250172U); cx25840_write4(client, 896, 232128184U); cx25840_write4(client, 900, 4040491261U); cx25840_write4(client, 904, 271712096U); cx25840_write4(client, 908, 4012572727U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_12500000: /* CIL Label */ { cx25840_write4(client, 840, 65536U); cx25840_write4(client, 844, 4294377472U); cx25840_write4(client, 848, 2228224U); cx25840_write4(client, 852, 4289265664U); cx25840_write4(client, 856, 11730944U); cx25840_write4(client, 860, 4274126848U); cx25840_write4(client, 864, 33554432U); cx25840_write4(client, 868, 4244832256U); cx25840_write4(client, 872, 70582272U); cx25840_write4(client, 876, 4200464384U); cx25840_write4(client, 880, 121307136U); cx25840_write4(client, 884, 4145086464U); cx25840_write4(client, 888, 179044352U); cx25840_write4(client, 892, 4087611392U); cx25840_write4(client, 896, 233242624U); cx25840_write4(client, 900, 4039704576U); cx25840_write4(client, 904, 271974400U); cx25840_write4(client, 908, 4012441600U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_12600000: /* CIL Label */ { cx25840_write4(client, 840, 65537U); cx25840_write4(client, 844, 4294508537U); cx25840_write4(client, 848, 2031637U); cx25840_write4(client, 852, 4289724371U); cx25840_write4(client, 856, 11010128U); cx25840_write4(client, 860, 4275306370U); cx25840_write4(client, 864, 32047284U); cx25840_write4(client, 868, 4246798098U); cx25840_write4(client, 872, 68354344U); cx25840_write4(client, 876, 4202888868U); cx25840_write4(client, 880, 118817155U); cx25840_write4(client, 884, 4147445352U); cx25840_write4(client, 888, 177013143U); cx25840_write4(client, 892, 4089314948U); cx25840_write4(client, 896, 232063304U); cx25840_write4(client, 900, 4040556291U); cx25840_write4(client, 904, 271646880U); cx25840_write4(client, 908, 4012638153U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_12700000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 4294639602U); cx25840_write4(client, 848, 1507367U); cx25840_write4(client, 852, 4290903979U); cx25840_write4(client, 856, 8913048U); cx25840_write4(client, 860, 4278517520U); cx25840_write4(client, 864, 27656537U); cx25840_write4(client, 868, 4252368436U); cx25840_write4(client, 872, 61866560U); cx25840_write4(client, 876, 4210031960U); cx25840_write4(client, 880, 111608569U); cx25840_write4(client, 884, 4154326234U); cx25840_write4(client, 888, 170984230U); cx25840_write4(client, 892, 4094164237U); cx25840_write4(client, 896, 228524686U); cx25840_write4(client, 900, 4042718726U); cx25840_write4(client, 904, 270598464U); cx25840_write4(client, 908, 4012900243U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_12800000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 4294901743U); cx25840_write4(client, 848, 786484U); cx25840_write4(client, 852, 4292607887U); cx25840_write4(client, 856, 5767374U); cx25840_write4(client, 860, 4283432630U); cx25840_write4(client, 864, 20709857U); cx25840_write4(client, 868, 4261150070U); cx25840_write4(client, 872, 51446583U); cx25840_write4(client, 876, 4221434922U); cx25840_write4(client, 880, 99877971U); cx25840_write4(client, 884, 4165532515U); cx25840_write4(client, 888, 161023141U); cx25840_write4(client, 892, 4102224799U); cx25840_write4(client, 896, 222692302U); cx25840_write4(client, 900, 4046322956U); cx25840_write4(client, 904, 268894687U); cx25840_write4(client, 908, 4013358940U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_12900000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 131054U); cx25840_write4(client, 848, 4294901816U); cx25840_write4(client, 852, 4294705026U); cx25840_write4(client, 856, 1900780U); cx25840_write4(client, 860, 4289592956U); cx25840_write4(client, 864, 11993666U); cx25840_write4(client, 868, 4272553189U); cx25840_write4(client, 872, 37815295U); cx25840_write4(client, 876, 4236639018U); cx25840_write4(client, 880, 84149639U); cx25840_write4(client, 884, 4180736522U); cx25840_write4(client, 888, 147457550U); cx25840_write4(client, 892, 4113300032U); cx25840_write4(client, 896, 214631687U); cx25840_write4(client, 900, 4051303445U); cx25840_write4(client, 904, 266535549U); cx25840_write4(client, 908, 4013948709U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_13000000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 393200U); cx25840_write4(client, 848, 4294049844U); cx25840_write4(client, 852, 1834885U); cx25840_write4(client, 856, 4292804848U); cx25840_write4(client, 860, 1375848U); cx25840_write4(client, 864, 2097778U); cx25840_write4(client, 868, 4285660299U); cx25840_write4(client, 872, 21824653U); cx25840_write4(client, 876, 4254792289U); cx25840_write4(client, 880, 65013384U); cx25840_write4(client, 884, 4199479514U); cx25840_write4(client, 888, 130549593U); cx25840_write4(client, 892, 4127258868U); cx25840_write4(client, 896, 204408375U); cx25840_write4(client, 900, 4057725730U); cx25840_write4(client, 904, 263455515U); cx25840_write4(client, 908, 4014735087U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_13100000: /* CIL Label */ { cx25840_write4(client, 840, 4294901761U); cx25840_write4(client, 844, 524277U); cx25840_write4(client, 848, 4293328936U); cx25840_write4(client, 852, 3669912U); cx25840_write4(client, 856, 4288938200U); cx25840_write4(client, 860, 7995004U); cx25840_write4(client, 864, 4287038063U); cx25840_write4(client, 868, 4455534U); cx25840_write4(client, 872, 4457690U); cx25840_write4(client, 876, 4274977242U); cx25840_write4(client, 880, 43255630U); cx25840_write4(client, 884, 4221171675U); cx25840_write4(client, 888, 110626945U); cx25840_write4(client, 892, 4143904702U); cx25840_write4(client, 896, 192087897U); cx25840_write4(client, 900, 4065458739U); cx25840_write4(client, 904, 259720120U); cx25840_write4(client, 908, 4015718072U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_13200000: /* CIL Label */ { cx25840_write4(client, 840, 4294901760U); cx25840_write4(client, 844, 589820U); cx25840_write4(client, 848, 4292870167U); cx25840_write4(client, 852, 5046201U); cx25840_write4(client, 856, 4285857960U); cx25840_write4(client, 860, 13762230U); cx25840_write4(client, 864, 4277731896U); cx25840_write4(client, 868, 17955985U); cx25840_write4(client, 872, 4281730271U); cx25840_write4(client, 876, 1243547U); cx25840_write4(client, 880, 19728338U); cx25840_write4(client, 884, 4245157652U); cx25840_write4(client, 888, 88213886U); cx25840_write4(client, 892, 4162844324U); cx25840_write4(client, 896, 177866862U); cx25840_write4(client, 900, 4074502475U); cx25840_write4(client, 904, 255329363U); cx25840_write4(client, 908, 4016897666U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_13300000: /* CIL Label */ { cx25840_write4(client, 840, 4294967295U); cx25840_write4(client, 844, 524291U); cx25840_write4(client, 848, 4292739073U); cx25840_write4(client, 852, 5701603U); cx25840_write4(client, 856, 4283891812U); cx25840_write4(client, 860, 18087696U); cx25840_write4(client, 864, 4269933010U); cx25840_write4(client, 868, 30080240U); cx25840_write4(client, 872, 4264887454U); cx25840_write4(client, 876, 22411686U); cx25840_write4(client, 880, 4290381838U); cx25840_write4(client, 884, 4270651017U); cx25840_write4(client, 888, 63834702U); cx25840_write4(client, 892, 4183946664U); cx25840_write4(client, 896, 161810801U); cx25840_write4(client, 900, 4084856937U); cx25840_write4(client, 904, 250283244U); cx25840_write4(client, 908, 4018208331U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_13400000: /* CIL Label */ { cx25840_write4(client, 840, 65534U); cx25840_write4(client, 844, 458762U); cx25840_write4(client, 848, 4293066732U); cx25840_write4(client, 852, 5505042U); cx25840_write4(client, 856, 4283301909U); cx25840_write4(client, 860, 20447106U); cx25840_write4(client, 864, 4264427845U); cx25840_write4(client, 868, 39910790U); cx25840_write4(client, 872, 4249945114U); cx25840_write4(client, 876, 42465787U); cx25840_write4(client, 880, 4266264578U); cx25840_write4(client, 884, 1963583U); cx25840_write4(client, 888, 37948139U); cx25840_write4(client, 892, 4206752974U); cx25840_write4(client, 896, 144116322U); cx25840_write4(client, 900, 4096325519U); cx25840_write4(client, 904, 244647300U); cx25840_write4(client, 908, 4019715605U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_13500000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 262159U); cx25840_write4(client, 848, 4293591002U); cx25840_write4(client, 852, 4587581U); cx25840_write4(client, 856, 4284153796U); cx25840_write4(client, 860, 20643840U); cx25840_write4(client, 864, 4261675165U); cx25840_write4(client, 868, 46726728U); cx25840_write4(client, 872, 4237886298U); cx25840_write4(client, 876, 60291734U); cx25840_write4(client, 880, 4243326893U); cx25840_write4(client, 884, 28177975U); cx25840_write4(client, 888, 11275091U); cx25840_write4(client, 892, 4230935577U); cx25840_write4(client, 896, 124980030U); cx25840_write4(client, 900, 4108973757U); cx25840_write4(client, 904, 238355994U); cx25840_write4(client, 908, 4021419487U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_13600000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 18U); cx25840_write4(client, 848, 4294377421U); cx25840_write4(client, 852, 3080289U); cx25840_write4(client, 856, 4286316409U); cx25840_write4(client, 860, 18743422U); cx25840_write4(client, 864, 4262002664U); cx25840_write4(client, 868, 49938216U); cx25840_write4(client, 872, 4229366378U); cx25840_write4(client, 876, 75103088U); cx25840_write4(client, 880, 4222420755U); cx25840_write4(client, 884, 53474930U); cx25840_write4(client, 888, 4279241603U); cx25840_write4(client, 892, 4256166795U); cx25840_write4(client, 896, 104598532U); cx25840_write4(client, 900, 4122670581U); cx25840_write4(client, 904, 231474862U); cx25840_write4(client, 908, 4023254440U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_13700000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294770706U); cx25840_write4(client, 848, 327624U); cx25840_write4(client, 852, 1048696U); cx25840_write4(client, 856, 4289527614U); cx25840_write4(client, 860, 14811376U); cx25840_write4(client, 864, 4265213749U); cx25840_write4(client, 868, 49348631U); cx25840_write4(client, 872, 4224909654U); cx25840_write4(client, 876, 86113407U); cx25840_write4(client, 880, 4204529208U); cx25840_write4(client, 884, 77199086U); cx25840_write4(client, 888, 4252633980U); cx25840_write4(client, 892, 4281987877U); cx25840_write4(client, 896, 83102899U); cx25840_write4(client, 900, 4137350455U); cx25840_write4(client, 904, 224003903U); cx25840_write4(client, 908, 4025286002U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_13800000: /* CIL Label */ { cx25840_write4(client, 840, 131070U); cx25840_write4(client, 844, 4294574094U); cx25840_write4(client, 848, 1179595U); cx25840_write4(client, 852, 4293918847U); cx25840_write4(client, 856, 4293394201U); cx25840_write4(client, 860, 9371978U); cx25840_write4(client, 864, 4271177363U); cx25840_write4(client, 868, 45089029U); cx25840_write4(client, 872, 4224909359U); cx25840_write4(client, 876, 92667319U); cx25840_write4(client, 880, 4190176549U); cx25840_write4(client, 884, 98498472U); cx25840_write4(client, 888, 4226943804U); cx25840_write4(client, 892, 13103849U); cx25840_write4(client, 896, 60820808U); cx25840_write4(client, 900, 4152882308U); cx25840_write4(client, 904, 215943117U); cx25840_write4(client, 908, 4027448636U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_13900000: /* CIL Label */ { cx25840_write4(client, 840, 65536U); cx25840_write4(client, 844, 4294443016U); cx25840_write4(client, 848, 1834967U); cx25840_write4(client, 852, 4291887222U); cx25840_write4(client, 856, 2555662U); cx25840_write4(client, 860, 2883972U); cx25840_write4(client, 864, 4279238160U); cx25840_write4(client, 868, 37421536U); cx25840_write4(client, 872, 4229431046U); cx25840_write4(client, 876, 94568201U); cx25840_write4(client, 880, 4180083684U); cx25840_write4(client, 884, 116717723U); cx25840_write4(client, 888, 4202826437U); cx25840_write4(client, 892, 38925017U); cx25840_write4(client, 896, 37948867U); cx25840_write4(client, 900, 4169266140U); cx25840_write4(client, 904, 207358041U); cx25840_write4(client, 908, 4029807878U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_14000000: /* CIL Label */ { cx25840_write4(client, 840, 65537U); cx25840_write4(client, 844, 4294443009U); cx25840_write4(client, 848, 2228200U); cx25840_write4(client, 852, 4290379869U); cx25840_write4(client, 856, 6356767U); cx25840_write4(client, 860, 4291035544U); cx25840_write4(client, 864, 4288740789U); cx25840_write4(client, 868, 26870426U); cx25840_write4(client, 872, 4237950442U); cx25840_write4(client, 876, 91553895U); cx25840_write4(client, 880, 4174643839U); cx25840_write4(client, 884, 131398080U); cx25840_write4(client, 888, 4180806170U); cx25840_write4(client, 892, 64156403U); cx25840_write4(client, 896, 14618146U); cx25840_write4(client, 900, 4186370881U); cx25840_write4(client, 904, 198248674U); cx25840_write4(client, 908, 4032363729U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_14100000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 4294574074U); cx25840_write4(client, 848, 2228221U); cx25840_write4(client, 852, 4289462328U); cx25840_write4(client, 856, 9371466U); cx25840_write4(client, 860, 4284678532U); cx25840_write4(client, 864, 3865995U); cx25840_write4(client, 868, 14287654U); cx25840_write4(client, 872, 4250008813U); cx25840_write4(client, 876, 83952064U); cx25840_write4(client, 880, 4174053635U); cx25840_write4(client, 884, 142015248U); cx25840_write4(client, 888, 4161407294U); cx25840_write4(client, 892, 88339256U); cx25840_write4(client, 896, 4286189158U); cx25840_write4(client, 900, 4204065458U); cx25840_write4(client, 904, 188680551U); cx25840_write4(client, 908, 4035050651U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_14200000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 4294705139U); cx25840_write4(client, 848, 1900563U); cx25840_write4(client, 852, 4289331211U); cx25840_write4(client, 856, 11206537U); cx25840_write4(client, 860, 4279435594U); cx25840_write4(client, 864, 13565333U); cx25840_write4(client, 868, 656251U); cx25840_write4(client, 872, 4264950813U); cx25840_write4(client, 876, 72090373U); cx25840_write4(client, 880, 4178378622U); cx25840_write4(client, 884, 148241537U); cx25840_write4(client, 888, 4145023028U); cx25840_write4(client, 892, 111145895U); cx25840_write4(client, 896, 4262858381U); cx25840_write4(client, 900, 4222284337U); cx25840_write4(client, 904, 178588137U); cx25840_write4(client, 908, 4037934181U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_14300000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 4294967279U); cx25840_write4(client, 848, 1310757U); cx25840_write4(client, 852, 4290052061U); cx25840_write4(client, 856, 11730902U); cx25840_write4(client, 860, 4275765488U); cx25840_write4(client, 864, 22085075U); cx25840_write4(client, 868, 4281861009U); cx25840_write4(client, 872, 4281793413U); cx25840_write4(client, 876, 56493094U); cx25840_write4(client, 880, 4187291134U); cx25840_write4(client, 884, 149880331U); cx25840_write4(client, 888, 4131981058U); cx25840_write4(client, 892, 132248638U); cx25840_write4(client, 896, 4239789719U); cx25840_write4(client, 900, 4240896446U); cx25840_write4(client, 904, 168036967U); cx25840_write4(client, 908, 4040948784U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_14400000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 196590U); cx25840_write4(client, 848, 458803U); cx25840_write4(client, 852, 4291428276U); cx25840_write4(client, 856, 10747943U); cx25840_write4(client, 860, 4274192510U); cx25840_write4(client, 864, 28638783U); cx25840_write4(client, 868, 4269146985U); cx25840_write4(client, 872, 4520750U); cx25840_write4(client, 876, 38077720U); cx25840_write4(client, 880, 4200594576U); cx25840_write4(client, 884, 146931617U); cx25840_write4(client, 888, 4122740142U); cx25840_write4(client, 892, 151188732U); cx25840_write4(client, 896, 4217376389U); cx25840_write4(client, 900, 4259836250U); cx25840_write4(client, 904, 157092578U); cx25840_write4(client, 908, 4044159995U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_14500000: /* CIL Label */ { cx25840_write4(client, 840, 4294901762U); cx25840_write4(client, 844, 393199U); cx25840_write4(client, 848, 4294574136U); cx25840_write4(client, 852, 4293263253U); cx25840_write4(client, 856, 8519796U); cx25840_write4(client, 860, 4274782208U); cx25840_write4(client, 864, 32571088U); cx25840_write4(client, 868, 4258398980U); cx25840_write4(client, 872, 21887773U); cx25840_write4(client, 876, 17696206U); cx25840_write4(client, 880, 4217699137U); cx25840_write4(client, 884, 139329851U); cx25840_write4(client, 888, 4117300286U); cx25840_write4(client, 892, 167835101U); cx25840_write4(client, 896, 4195683925U); cx25840_write4(client, 900, 4278972676U); cx25840_write4(client, 904, 145754969U); cx25840_write4(client, 908, 4047502278U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_14600000: /* CIL Label */ { cx25840_write4(client, 840, 4294901761U); cx25840_write4(client, 844, 589812U); cx25840_write4(client, 848, 4293722165U); cx25840_write4(client, 852, 393091U); cx25840_write4(client, 856, 5243060U); cx25840_write4(client, 860, 4277600130U); cx25840_write4(client, 864, 33554298U); cx25840_write4(client, 868, 4250403433U); cx25840_write4(client, 872, 37878611U); cx25840_write4(client, 876, 4291429952U); cx25840_write4(client, 880, 4237949470U); cx25840_write4(client, 884, 127533771U); cx25840_write4(client, 888, 4115989178U); cx25840_write4(client, 892, 181794528U); cx25840_write4(client, 896, 4174974474U); cx25840_write4(client, 900, 3272893U); cx25840_write4(client, 904, 134024139U); cx25840_write4(client, 908, 4050975633U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_14700000: /* CIL Label */ { cx25840_write4(client, 840, 4294967295U); cx25840_write4(client, 844, 655355U); cx25840_write4(client, 848, 4293132330U); cx25840_write4(client, 852, 2490242U); cx25840_write4(client, 856, 1310944U); cx25840_write4(client, 860, 4282187536U); cx25840_write4(client, 864, 31522864U); cx25840_write4(client, 868, 4245815716U); cx25840_write4(client, 872, 51510221U); cx25840_write4(client, 876, 4270327402U); cx25840_write4(client, 880, 4260493615U); cx25840_write4(client, 884, 111805513U); cx25840_write4(client, 888, 4118675752U); cx25840_write4(client, 892, 192870401U); cx25840_write4(client, 896, 4155510178U); cx25840_write4(client, 900, 22474886U); cx25840_write4(client, 904, 121965625U); cx25840_write4(client, 908, 4054645596U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_14800000: /* CIL Label */ { cx25840_write4(client, 840, 65534U); cx25840_write4(client, 844, 524290U); cx25840_write4(client, 848, 4292804633U); cx25840_write4(client, 852, 4194194U); cx25840_write4(client, 856, 4292215025U); cx25840_write4(client, 860, 4288085686U); cx25840_write4(client, 864, 26673377U); cx25840_write4(client, 868, 4244963522U); cx25840_write4(client, 872, 61930628U); cx25840_write4(client, 876, 4250469961U); cx25840_write4(client, 880, 4284348543U); cx25840_write4(client, 884, 92603818U); cx25840_write4(client, 888, 4125425553U); cx25840_write4(client, 892, 200931644U); cx25840_write4(client, 896, 4137487648U); cx25840_write4(client, 900, 41545822U); cx25840_write4(client, 904, 109579427U); cx25840_write4(client, 908, 4058446632U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_14900000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 393225U); cx25840_write4(client, 848, 4292804612U); cx25840_write4(client, 852, 5373872U); cx25840_write4(client, 856, 4288479464U); cx25840_write4(client, 860, 4294770300U); cx25840_write4(client, 864, 19399040U); cx25840_write4(client, 868, 4247977938U); cx25840_write4(client, 872, 68418926U); cx25840_write4(client, 876, 4232906207U); cx25840_write4(client, 880, 13760530U); cx25840_write4(client, 884, 70584036U); cx25840_write4(client, 888, 4135976443U); cx25840_write4(client, 892, 205781645U); cx25840_write4(client, 896, 4120972419U); cx25840_write4(client, 900, 60420166U); cx25840_write4(client, 904, 96931080U); cx25840_write4(client, 908, 4062378739U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_15000000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 196623U); cx25840_write4(client, 848, 4293263343U); cx25840_write4(client, 852, 5767129U); cx25840_write4(client, 856, 4285530308U); cx25840_write4(client, 860, 6487656U); cx25840_write4(client, 864, 10355199U); cx25840_write4(client, 868, 4254465766U); cx25840_write4(client, 872, 70647421U); cx25840_write4(client, 876, 4218488112U); cx25840_write4(client, 880, 37550062U); cx25840_write4(client, 884, 46335983U); cx25840_write4(client, 888, 4150197360U); cx25840_write4(client, 892, 207420399U); cx25840_write4(client, 896, 4106292174U); cx25840_write4(client, 900, 78901311U); cx25840_write4(client, 904, 84086121U); cx25840_write4(client, 908, 4066507455U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_15100000: /* CIL Label */ { cx25840_write4(client, 840, 65533U); cx25840_write4(client, 844, 4294901778U); cx25840_write4(client, 848, 4293918684U); cx25840_write4(client, 852, 5308422U); cx25840_write4(client, 856, 4283695241U); cx25840_write4(client, 860, 12516988U); cx25840_write4(client, 864, 393811U); cx25840_write4(client, 868, 4264033805U); cx25840_write4(client, 872, 68419490U); cx25840_write4(client, 876, 4208002118U); cx25840_write4(client, 880, 59832338U); cx25840_write4(client, 884, 20646083U); cx25840_write4(client, 888, 4167629558U); cx25840_write4(client, 892, 205782367U); cx25840_write4(client, 896, 4093446914U); cx25840_write4(client, 900, 96989254U); cx25840_write4(client, 904, 70979012U); cx25840_write4(client, 908, 4070701707U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_15200000: /* CIL Label */ { cx25840_write4(client, 840, 131070U); cx25840_write4(client, 844, 4294705170U); cx25840_write4(client, 848, 4294705102U); cx25840_write4(client, 852, 4128819U); cx25840_write4(client, 856, 4283301951U); cx25840_write4(client, 860, 17235638U); cx25840_write4(client, 864, 4285399670U); cx25840_write4(client, 868, 4275961174U); cx25840_write4(client, 872, 61866188U); cx25840_write4(client, 876, 4201906985U); cx25840_write4(client, 880, 79689855U); cx25840_write4(client, 884, 4289333597U); cx25840_write4(client, 888, 4187945365U); cx25840_write4(client, 892, 200933080U); cx25840_write4(client, 896, 4082698783U); cx25840_write4(client, 900, 114487390U); cx25840_write4(client, 904, 57675291U); cx25840_write4(client, 908, 4075092568U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_15300000: /* CIL Label */ { cx25840_write4(client, 840, 131071U); cx25840_write4(client, 844, 4294508559U); cx25840_write4(client, 848, 655304U); cx25840_write4(client, 852, 2424921U); cx25840_write4(client, 856, 4284415982U); cx25840_write4(client, 860, 20119312U); cx25840_write4(client, 864, 4276290149U); cx25840_write4(client, 868, 4289395919U); cx25840_write4(client, 872, 51446251U); cx25840_write4(client, 876, 4200595944U); cx25840_write4(client, 880, 96336175U); cx25840_write4(client, 884, 4263184822U); cx25840_write4(client, 888, 4210751570U); cx25840_write4(client, 892, 192806997U); cx25840_write4(client, 896, 4074047785U); cx25840_write4(client, 900, 131330182U); cx25840_write4(client, 904, 44240492U); cx25840_write4(client, 908, 4079614500U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_15400000: /* CIL Label */ { cx25840_write4(client, 840, 65537U); cx25840_write4(client, 844, 4294443017U); cx25840_write4(client, 848, 1441738U); cx25840_write4(client, 852, 327796U); cx25840_write4(client, 856, 4286709663U); cx25840_write4(client, 860, 20840322U); cx25840_write4(client, 864, 4268818977U); cx25840_write4(client, 868, 8191104U); cx25840_write4(client, 872, 37815021U); cx25840_write4(client, 876, 4204003472U); cx25840_write4(client, 880, 109115934U); cx25840_write4(client, 884, 4238019021U); cx25840_write4(client, 888, 4235458358U); cx25840_write4(client, 892, 181731792U); cx25840_write4(client, 896, 4067690528U); cx25840_write4(client, 900, 147452093U); cx25840_write4(client, 904, 30674617U); cx25840_write4(client, 908, 4084333041U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_15500000: /* CIL Label */ { cx25840_write4(client, 840, 2U); cx25840_write4(client, 844, 4294443010U); cx25840_write4(client, 848, 2031573U); cx25840_write4(client, 852, 4293197951U); cx25840_write4(client, 856, 4290051931U); cx25840_write4(client, 860, 19398656U); cx25840_write4(client, 864, 4263772592U); cx25840_write4(client, 868, 21429360U); cx25840_write4(client, 872, 21824454U); cx25840_write4(client, 876, 4212195122U); cx25840_write4(client, 880, 117570369U); cx25840_write4(client, 884, 4214688161U); cx25840_write4(client, 888, 4261475908U); cx25840_write4(client, 892, 167772997U); cx25840_write4(client, 896, 4063561480U); cx25840_write4(client, 900, 162722052U); cx25840_write4(client, 904, 17108735U); cx25840_write4(client, 908, 4089117118U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_15600000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 4294574075U); cx25840_write4(client, 848, 2293734U); cx25840_write4(client, 852, 4291362938U); cx25840_write4(client, 856, 4293984041U); cx25840_write4(client, 860, 15859838U); cx25840_write4(client, 864, 4261478683U); cx25840_write4(client, 868, 32963742U); cx25840_write4(client, 872, 4457575U); cx25840_write4(client, 876, 4224515550U); cx25840_write4(client, 880, 121175184U); cx25840_write4(client, 884, 4193716532U); cx25840_write4(client, 888, 4288279938U); cx25840_write4(client, 892, 151127216U); cx25840_write4(client, 896, 4061791713U); cx25840_write4(client, 900, 177074522U); cx25840_write4(client, 904, 3411777U); cx25840_write4(client, 908, 4094032267U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_15700000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 4294770676U); cx25840_write4(client, 848, 2162682U); cx25840_write4(client, 852, 4289986660U); cx25840_write4(client, 856, 3145489U); cx25840_write4(client, 860, 10748144U); cx25840_write4(client, 864, 4262264942U); cx25840_write4(client, 868, 42073353U); cx25840_write4(client, 872, 4281730249U); cx25840_write4(client, 876, 4240440482U); cx25840_write4(client, 880, 119995902U); cx25840_write4(client, 884, 4175956104U); cx25840_write4(client, 888, 20247795U); cx25840_write4(client, 892, 132187660U); cx25840_write4(client, 896, 4062381231U); cx25840_write4(client, 900, 190443966U); cx25840_write4(client, 904, 4284747645U); cx25840_write4(client, 908, 4099078489U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_15800000: /* CIL Label */ { cx25840_write4(client, 840, 3U); cx25840_write4(client, 844, 65520U); cx25840_write4(client, 848, 1703952U); cx25840_write4(client, 852, 4289331265U); cx25840_write4(client, 856, 6815507U); cx25840_write4(client, 860, 4391242U); cx25840_write4(client, 864, 4266065849U); cx25840_write4(client, 868, 47971752U); cx25840_write4(client, 872, 4264887525U); cx25840_write4(client, 876, 4259117965U); cx25840_write4(client, 880, 113901438U); cx25840_write4(client, 884, 4161865634U); cx25840_write4(client, 888, 46789786U); cx25840_write4(client, 892, 111085395U); cx25840_write4(client, 896, 4065330035U); cx25840_write4(client, 900, 202699313U); cx25840_write4(client, 904, 4271050675U); cx25840_write4(client, 908, 4104255783U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_15900000: /* CIL Label */ { cx25840_write4(client, 840, 4294901762U); cx25840_write4(client, 844, 262126U); cx25840_write4(client, 848, 983075U); cx25840_write4(client, 852, 4289462294U); cx25840_write4(client, 856, 9699121U); cx25840_write4(client, 860, 4292608388U); cx25840_write4(client, 864, 4272357129U); cx25840_write4(client, 868, 50200176U); cx25840_write4(client, 872, 4249945274U); cx25840_write4(client, 876, 4279630508U); cx25840_write4(client, 880, 103219459U); cx25840_write4(client, 884, 4151838344U); cx25840_write4(client, 888, 72217721U); cx25840_write4(client, 892, 88279171U); cx25840_write4(client, 896, 4070572593U); cx25840_write4(client, 900, 213840562U); cx25840_write4(client, 904, 4257484771U); cx25840_write4(client, 908, 4109564149U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; case_16000000: /* CIL Label */ { cx25840_write4(client, 840, 4294901761U); cx25840_write4(client, 844, 458735U); cx25840_write4(client, 848, 131121U); cx25840_write4(client, 852, 4290445288U); cx25840_write4(client, 856, 11403110U); cx25840_write4(client, 860, 4286120344U); cx25840_write4(client, 864, 4280745582U); cx25840_write4(client, 868, 48627541U); cx25840_write4(client, 872, 4237886538U); cx25840_write4(client, 876, 6027785U); cx25840_write4(client, 880, 88408703U); cx25840_write4(client, 884, 4146267457U); cx25840_write4(client, 888, 96007312U); cx25840_write4(client, 892, 64096663U); cx25840_write4(client, 896, 4078108907U); cx25840_write4(client, 900, 223736641U); cx25840_write4(client, 904, 4243984398U); cx25840_write4(client, 908, 4114938051U); cx25840_write4(client, 912, 286064640U); } goto ldv_28246; switch_break: /* CIL Label */ ; } ldv_28246: ; return; } } static void cx23888_std_setup(struct i2c_client *client ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; v4l2_std_id std ; u32 ifHz ; int tmp___1 ; int tmp___2 ; { { tmp = i2c_get_clientdata((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; std = state->std; cx25840_write4(client, 1144, 1713898015U); cx25840_write4(client, 1024, 0U); cx25840_write4(client, 1204, 542261296U); cx25840_write4(client, 1148, 17465955U); } if ((std & 45056ULL) != 0ULL) { if (cx25840_debug > 0) { { tmp___1 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: %s() Selecting NTSC", (client->dev.driver)->name, tmp___1, (int )client->addr, "cx23888_std_setup"); } } else { } { cx25840_write4(client, 1064, 505307162U); cx25840_write4(client, 1060, 1529675898U); cx25840_write4(client, 772, 1694743564U); cx25840_write4(client, 776, 3171126405U); cx25840_write4(client, 780, 498361354U); cx25840_write4(client, 784, 34816U); cx25840_write4(client, 788, 1145046016U); cx25840_write4(client, 812, 209717248U); cx25840_write4(client, 816, 654311680U); cx25840_write4(client, 820, 522808863U); cx25840_write4(client, 824, 10440897U); cx25840_write4(client, 832, 468696838U); cx25840_write4(client, 836, 13800U); ifHz = 5400000U; } } else { if (cx25840_debug > 0) { { tmp___2 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: %s() Selecting PAL-BG", (client->dev.driver)->name, tmp___2, (int )client->addr, "cx23888_std_setup"); } } else { } { cx25840_write4(client, 1064, 673464356U); cx25840_write4(client, 1060, 1563230340U); cx25840_write4(client, 772, 1694743564U); cx25840_write4(client, 776, 3171126405U); cx25840_write4(client, 780, 498361354U); cx25840_write4(client, 784, 34816U); cx25840_write4(client, 788, 1145046528U); cx25840_write4(client, 812, 209717248U); cx25840_write4(client, 816, 654311680U); cx25840_write4(client, 820, 557134060U); cx25840_write4(client, 824, 10902440U); cx25840_write4(client, 832, 468696838U); cx25840_write4(client, 836, 13800U); ifHz = 6000000U; } } { cx23885_dif_setup(client, ifHz); set_input(client, state->vid_input, state->aud_input); } return; } } static struct v4l2_ctrl_ops const cx25840_ctrl_ops = {0, 0, & cx25840_s_ctrl}; static struct v4l2_subdev_core_ops const cx25840_core_ops = {& cx25840_log_status, & common_s_io_pin_config, 0, & cx25840_load_fw, & cx25840_reset, 0, & v4l2_subdev_queryctrl, & v4l2_subdev_g_ctrl, & v4l2_subdev_s_ctrl, & v4l2_subdev_g_ext_ctrls, & v4l2_subdev_s_ext_ctrls, & v4l2_subdev_try_ext_ctrls, & v4l2_subdev_querymenu, & cx25840_g_std, & cx25840_s_std, 0, & cx25840_g_register, & cx25840_s_register, 0, & cx25840_irq_handler, 0, 0}; static struct v4l2_subdev_tuner_ops const cx25840_tuner_ops = {& cx25840_s_radio, & cx25840_s_frequency, 0, & cx25840_g_tuner, & cx25840_s_tuner, 0, 0, 0, 0}; static struct v4l2_subdev_audio_ops const cx25840_audio_ops = {& cx25840_s_clock_freq, 0, & cx25840_s_audio_routing, & cx25840_s_audio_stream}; static struct v4l2_subdev_video_ops const cx25840_video_ops = {& cx25840_s_video_routing, 0, 0, 0, 0, 0, & cx25840_g_input_status, & cx25840_s_stream, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & cx25840_s_mbus_fmt, 0, 0, 0}; static struct v4l2_subdev_vbi_ops const cx25840_vbi_ops = {& cx25840_decode_vbi_line, 0, 0, 0, & cx25840_s_raw_fmt, & cx25840_g_sliced_fmt, & cx25840_s_sliced_fmt}; static struct v4l2_subdev_ops const cx25840_ops = {& cx25840_core_ops, & cx25840_tuner_ops, & cx25840_audio_ops, & cx25840_video_ops, & cx25840_vbi_ops, & cx25840_ir_ops, 0, 0}; static u32 get_cx2388x_ident(struct i2c_client *client ) { u32 ret ; int tmp ; u32 tmp___0 ; u32 tmp___1 ; { { cx25840_write(client, 0, 0); tmp___1 = cx25840_read4(client, 516); } if ((tmp___1 & 65535U) != 0U) { { ret = cx25840_read4(client, 768); } if (ret >> 16 == (ret & 65535U)) { ret = 0U; } else { ret = 1U; } } else { { tmp___0 = cx25840_read4(client, 768); } if ((tmp___0 & 268435455U) != 0U) { ret = 2U; } else { { tmp = i2c_adapter_id(client->adapter); printk("\v%s %d-%04x: Unable to detect h/w, assuming cx23887\n", (client->dev.driver)->name, tmp, (int )client->addr); ret = 1U; } } } { cx25840_write(client, 0, 2); } return (ret); } } static int cx25840_probe(struct i2c_client *client , struct i2c_device_id const *did ) { struct cx25840_state *state ; struct v4l2_subdev *sd ; int default_volume ; u32 id ; u16 device_id ; int tmp ; int tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; void *tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; struct lock_class_key _key ; u8 tmp___14 ; bool tmp___15 ; int tmp___16 ; int err ; bool tmp___17 ; int tmp___18 ; struct cx25840_platform_data *pdata ; { { tmp = i2c_check_functionality(client->adapter, 1572864U); } if (tmp == 0) { return (-5); } else { } if (cx25840_debug > 0) { { tmp___0 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: detecting cx25840 client on address 0x%x\n", (client->dev.driver)->name, tmp___0, (int )client->addr, (int )client->addr << 1); } } else { } { tmp___1 = cx25840_read(client, 257); device_id = (int )((u16 )tmp___1) << 8U; tmp___2 = cx25840_read(client, 256); device_id = (int )device_id | (int )((u16 )tmp___2); } if (cx25840_debug > 0) { { tmp___3 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: device_id = 0x%04x\n", (client->dev.driver)->name, tmp___3, (int )client->addr, (int )device_id); } } else { } if (((int )device_id & 65280) == 33536) { id = (u32 )((((int )device_id >> 4) & 15) + 2); } else if (((int )device_id & 65280) == 33792) { id = (u32 )((((int )device_id >> 4) & 15) + 4); } else if ((unsigned int )device_id == 0U) { { id = get_cx2388x_ident(client); } } else if (((int )device_id & 65520) == 23088) { id = 3U; } else if (((int )device_id & 255) == (int )device_id >> 8) { { tmp___4 = i2c_adapter_id(client->adapter); printk("\v%s %d-%04x: likely a confused/unresponsive cx2388[578] A/V decoder found @ 0x%x (%s)\n", (client->dev.driver)->name, tmp___4, (int )client->addr, (int )client->addr << 1, (char *)(& (client->adapter)->name)); tmp___5 = i2c_adapter_id(client->adapter); printk("\v%s %d-%04x: A method to reset it from the cx25840 driver software is not known at this time\n", (client->dev.driver)->name, tmp___5, (int )client->addr); } return (-19); } else { if (cx25840_debug > 0) { { tmp___6 = i2c_adapter_id(client->adapter); printk("\017%s %d-%04x: cx25840 not found\n", (client->dev.driver)->name, tmp___6, (int )client->addr); } } else { } return (-19); } { tmp___7 = devm_kzalloc(& client->dev, 800UL, 208U); state = (struct cx25840_state *)tmp___7; } if ((unsigned long )state == (unsigned long )((struct cx25840_state *)0)) { return (-12); } else { } { sd = & state->sd; v4l2_i2c_subdev_init(sd, client, & cx25840_ops); } { if (id == 0U) { goto case_0; } else { } if (id == 1U) { goto case_1; } else { } if (id == 2U) { goto case_2; } else { } if (id == 3U) { goto case_3; } else { } if (id == 4U) { goto case_4; } else { } if (id == 5U) { goto case_5; } else { } if (id == 6U) { goto case_6; } else { } if (id == 7U) { goto case_7; } else { } if (id == 8U) { goto case_8; } else { } if (id == 9U) { goto case_9; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___8 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: cx23885 A/V decoder found @ 0x%x (%s)\n", (client->dev.driver)->name, tmp___8, (int )client->addr, (int )client->addr << 1, (char *)(& (client->adapter)->name)); } goto ldv_28405; case_1: /* CIL Label */ { tmp___9 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: cx23887 A/V decoder found @ 0x%x (%s)\n", (client->dev.driver)->name, tmp___9, (int )client->addr, (int )client->addr << 1, (char *)(& (client->adapter)->name)); } goto ldv_28405; case_2: /* CIL Label */ { tmp___10 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: cx23888 A/V decoder found @ 0x%x (%s)\n", (client->dev.driver)->name, tmp___10, (int )client->addr, (int )client->addr << 1, (char *)(& (client->adapter)->name)); } goto ldv_28405; case_3: /* CIL Label */ { tmp___11 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: cx%d A/V decoder found @ 0x%x (%s)\n", (client->dev.driver)->name, tmp___11, (int )client->addr, (int )device_id, (int )client->addr << 1, (char *)(& (client->adapter)->name)); } goto ldv_28405; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ { tmp___12 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: cx25%3x-2%x found @ 0x%x (%s)\n", (client->dev.driver)->name, tmp___12, (int )client->addr, (int )device_id >> 4, ((int )device_id & 15) <= 2 ? ((int )device_id & 15) + 1 : (int )device_id & 15, (int )client->addr << 1, (char *)(& (client->adapter)->name)); } goto ldv_28405; case_8: /* CIL Label */ ; case_9: /* CIL Label */ ; switch_default: /* CIL Label */ { tmp___13 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: cx25%3x-%x found @ 0x%x (%s)\n", (client->dev.driver)->name, tmp___13, (int )client->addr, (int )device_id >> 4, (int )device_id & 15, (int )client->addr << 1, (char *)(& (client->adapter)->name)); } goto ldv_28405; switch_break: /* CIL Label */ ; } ldv_28405: { state->c = client; state->vid_input = 7; state->aud_input = 8; state->audclk_freq = 48000U; state->audmode = 3; state->vbi_line_offset = 8; state->id = (enum cx25840_model )id; state->rev = (u32 )device_id; v4l2_ctrl_handler_init_class(& state->hdl, 9U, & _key, "cx25840_core:5228:(&state->hdl)->_lock"); v4l2_ctrl_new_std(& state->hdl, & cx25840_ctrl_ops, 9963776U, 0, 255, 1U, 128); v4l2_ctrl_new_std(& state->hdl, & cx25840_ctrl_ops, 9963777U, 0, 127, 1U, 64); v4l2_ctrl_new_std(& state->hdl, & cx25840_ctrl_ops, 9963778U, 0, 127, 1U, 64); v4l2_ctrl_new_std(& state->hdl, & cx25840_ctrl_ops, 9963779U, -128, 127, 1U, 0); tmp___15 = is_cx2583x(state); } if (tmp___15) { tmp___16 = 0; } else { tmp___16 = 1; } if (tmp___16) { { tmp___14 = cx25840_read(client, 2260); default_volume = (int )tmp___14; } if (default_volume > 228) { { default_volume = 228; cx25840_write(client, 2260, 228); } } else if (default_volume <= 19) { { default_volume = 20; cx25840_write(client, 2260, 20); } } else { } { default_volume = (((228 - default_volume) >> 1) + 23) << 9; state->__annonCompField82.volume = v4l2_ctrl_new_std(& state->hdl, & cx25840_audio_ctrl_ops, 9963781U, 0, 65535, 655U, default_volume); state->__annonCompField82.mute = v4l2_ctrl_new_std(& state->hdl, & cx25840_audio_ctrl_ops, 9963785U, 0, 1, 1U, 0); v4l2_ctrl_new_std(& state->hdl, & cx25840_audio_ctrl_ops, 9963782U, 0, 65535, 655U, 32768); v4l2_ctrl_new_std(& state->hdl, & cx25840_audio_ctrl_ops, 9963783U, 0, 65535, 655U, 32768); v4l2_ctrl_new_std(& state->hdl, & cx25840_audio_ctrl_ops, 9963784U, 0, 65535, 655U, 32768); } } else { } sd->ctrl_handler = & state->hdl; if (state->hdl.error != 0) { { err = state->hdl.error; v4l2_ctrl_handler_free(& state->hdl); } return (err); } else { } { tmp___17 = is_cx2583x(state); } if (tmp___17) { tmp___18 = 0; } else { tmp___18 = 1; } if (tmp___18) { { v4l2_ctrl_cluster(2U, & state->__annonCompField82.volume); } } else { } { v4l2_ctrl_handler_setup(& state->hdl); } if ((unsigned long )client->dev.platform_data != (unsigned long )((void *)0)) { pdata = (struct cx25840_platform_data *)client->dev.platform_data; state->pvr150_workaround = pdata->pvr150_workaround; } else { } { cx25840_ir_probe(sd); } return (0); } } static int cx25840_remove(struct i2c_client *client ) { struct v4l2_subdev *sd ; void *tmp ; struct cx25840_state *state ; struct cx25840_state *tmp___0 ; { { tmp = i2c_get_clientdata((struct i2c_client const *)client); sd = (struct v4l2_subdev *)tmp; tmp___0 = to_state(sd); state = tmp___0; cx25840_ir_remove(sd); ldv_v4l2_device_unregister_subdev_25(sd); v4l2_ctrl_handler_free(& state->hdl); } return (0); } } static struct i2c_device_id const cx25840_id[2U] = { {{'c', 'x', '2', '5', '8', '4', '0', '\000'}, 0UL}}; struct i2c_device_id const __mod_i2c_device_table ; static struct i2c_driver cx25840_driver = {0U, 0, & cx25840_probe, & cx25840_remove, 0, 0, 0, 0, 0, {"cx25840", 0, & __this_module, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, (struct i2c_device_id const *)(& cx25840_id), 0, 0, {0, 0}}; static int cx25840_driver_init(void) { int tmp ; { { tmp = ldv_i2c_register_driver_26(& __this_module, & cx25840_driver); } return (tmp); } } static void cx25840_driver_exit(void) { { { i2c_del_driver(& cx25840_driver); } return; } } void ldv_EMGentry_exit_cx25840_driver_exit_6_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_cx25840_driver_init_6_11(int (*arg0)(void) ) ; void ldv_dispatch_deregister_5_1(struct v4l2_subdev *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_3_6_4(void) ; void ldv_dispatch_deregister_io_instance_1_6_5(void) ; void ldv_dispatch_register_4_2(struct i2c_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_3_6_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_4_6_7(void) ; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_12(int (*arg0)(struct v4l2_subdev * , struct v4l2_dbg_register * ) , struct v4l2_subdev *arg1 , struct v4l2_dbg_register *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_13(int (*arg0)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) , struct v4l2_subdev *arg1 , struct v4l2_sliced_vbi_format *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_14(int (*arg0)(struct v4l2_subdev * , unsigned long long * ) , struct v4l2_subdev *arg1 , unsigned long long *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_17(int (*arg0)(struct v4l2_subdev * , struct v4l2_tuner * ) , struct v4l2_subdev *arg1 , struct v4l2_tuner *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_18(int (*arg0)(struct v4l2_subdev * , unsigned int , _Bool * ) , struct v4l2_subdev *arg1 , unsigned int arg2 , _Bool *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_21(int (*arg0)(struct v4l2_subdev * ) , struct v4l2_subdev *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_22(int (*arg0)(struct v4l2_subdev * ) , struct v4l2_subdev *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_23(int (*arg0)(struct v4l2_subdev * , struct v4l2_queryctrl * ) , struct v4l2_subdev *arg1 , struct v4l2_queryctrl *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_24(int (*arg0)(struct v4l2_subdev * , struct v4l2_querymenu * ) , struct v4l2_subdev *arg1 , struct v4l2_querymenu *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_25(int (*arg0)(struct v4l2_subdev * , unsigned int ) , struct v4l2_subdev *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_3(int (*arg0)(struct v4l2_subdev * , struct v4l2_decode_vbi_line * ) , struct v4l2_subdev *arg1 , struct v4l2_decode_vbi_line *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_33(int (*arg0)(struct v4l2_subdev * , unsigned int ) , struct v4l2_subdev *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_36(int (*arg0)(struct v4l2_subdev * , struct v4l2_control * ) , struct v4l2_subdev *arg1 , struct v4l2_control *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_37(int (*arg0)(struct v4l2_subdev * , struct v4l2_ext_controls * ) , struct v4l2_subdev *arg1 , struct v4l2_ext_controls *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_38(int (*arg0)(struct v4l2_subdev * , struct v4l2_frequency * ) , struct v4l2_subdev *arg1 , struct v4l2_frequency *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_39(int (*arg0)(struct v4l2_subdev * , unsigned long , struct v4l2_subdev_io_pin_config * ) , struct v4l2_subdev *arg1 , unsigned long arg2 , struct v4l2_subdev_io_pin_config *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_42(int (*arg0)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) , struct v4l2_subdev *arg1 , struct v4l2_mbus_framefmt *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_43(int (*arg0)(struct v4l2_subdev * ) , struct v4l2_subdev *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_44(int (*arg0)(struct v4l2_subdev * , struct v4l2_vbi_format * ) , struct v4l2_subdev *arg1 , struct v4l2_vbi_format *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_45(int (*arg0)(struct v4l2_subdev * , struct v4l2_dbg_register * ) , struct v4l2_subdev *arg1 , struct v4l2_dbg_register *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_46(int (*arg0)(struct v4l2_subdev * , unsigned int , unsigned int , unsigned int ) , struct v4l2_subdev *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 ) ; void ldv_dummy_resourceless_instance_callback_3_49(int (*arg0)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) , struct v4l2_subdev *arg1 , struct v4l2_sliced_vbi_format *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_50(int (*arg0)(struct v4l2_subdev * , unsigned long long ) , struct v4l2_subdev *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_53(int (*arg0)(struct v4l2_subdev * , int ) , struct v4l2_subdev *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_56(int (*arg0)(struct v4l2_subdev * , struct v4l2_tuner * ) , struct v4l2_subdev *arg1 , struct v4l2_tuner *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_57(int (*arg0)(struct v4l2_subdev * , struct v4l2_ext_controls * ) , struct v4l2_subdev *arg1 , struct v4l2_ext_controls *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_7(int (*arg0)(struct v4l2_subdev * , struct v4l2_control * ) , struct v4l2_subdev *arg1 , struct v4l2_control *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_8(int (*arg0)(struct v4l2_subdev * , struct v4l2_ext_controls * ) , struct v4l2_subdev *arg1 , struct v4l2_ext_controls *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_9(int (*arg0)(struct v4l2_subdev * , unsigned int * ) , struct v4l2_subdev *arg1 , unsigned int *arg2 ) ; void ldv_entry_EMGentry_6(void *arg0 ) ; int main(void) ; void ldv_i2c_io_instance_0(void *arg0 ) ; int ldv_i2c_register_driver(int arg0 , struct module *arg1 , struct i2c_driver *arg2 ) ; int ldv_io_instance_probe_0_11(int (*arg0)(struct i2c_client * , struct i2c_device_id * ) , struct i2c_client *arg1 , struct i2c_device_id *arg2 ) ; void ldv_io_instance_release_0_2(int (*arg0)(struct i2c_client * ) , struct i2c_client *arg1 ) ; void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_1(void *arg0 ) ; void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_2(void *arg0 ) ; void ldv_struct_v4l2_subdev_video_ops_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_v4l2_device_unregister_subdev(void *arg0 , struct v4l2_subdev *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_6 ; void ldv_EMGentry_exit_cx25840_driver_exit_6_2(void (*arg0)(void) ) { { { cx25840_driver_exit(); } return; } } int ldv_EMGentry_init_cx25840_driver_init_6_11(int (*arg0)(void) ) { int tmp ; { { tmp = cx25840_driver_init(); } return (tmp); } } void ldv_dispatch_deregister_5_1(struct v4l2_subdev *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_3_6_4(void) { { return; } } void ldv_dispatch_deregister_io_instance_1_6_5(void) { { return; } } void ldv_dispatch_register_4_2(struct i2c_driver *arg0 ) { struct ldv_struct_io_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_io_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_i2c_io_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_3_6_6(void) { struct ldv_struct_EMGentry_6 *cf_arg_1 ; struct ldv_struct_EMGentry_6 *cf_arg_2 ; void *tmp ; void *tmp___0 ; { { tmp = ldv_xmalloc(4UL); cf_arg_1 = (struct ldv_struct_EMGentry_6 *)tmp; ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_1((void *)cf_arg_1); tmp___0 = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_EMGentry_6 *)tmp___0; ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_4_6_7(void) { struct ldv_struct_EMGentry_6 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_EMGentry_6 *)tmp; ldv_struct_v4l2_subdev_video_ops_dummy_resourceless_instance_3((void *)cf_arg_3); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) { { { cx25840_s_ctrl(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_12(int (*arg0)(struct v4l2_subdev * , struct v4l2_dbg_register * ) , struct v4l2_subdev *arg1 , struct v4l2_dbg_register *arg2 ) { { { cx25840_g_register(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_13(int (*arg0)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) , struct v4l2_subdev *arg1 , struct v4l2_sliced_vbi_format *arg2 ) { { { cx25840_g_sliced_fmt(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_14(int (*arg0)(struct v4l2_subdev * , unsigned long long * ) , struct v4l2_subdev *arg1 , unsigned long long *arg2 ) { { { cx25840_g_std(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_17(int (*arg0)(struct v4l2_subdev * , struct v4l2_tuner * ) , struct v4l2_subdev *arg1 , struct v4l2_tuner *arg2 ) { { { cx25840_g_tuner(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_18(int (*arg0)(struct v4l2_subdev * , unsigned int , _Bool * ) , struct v4l2_subdev *arg1 , unsigned int arg2 , _Bool *arg3 ) { { { cx25840_irq_handler(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_21(int (*arg0)(struct v4l2_subdev * ) , struct v4l2_subdev *arg1 ) { { { cx25840_load_fw(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_22(int (*arg0)(struct v4l2_subdev * ) , struct v4l2_subdev *arg1 ) { { { cx25840_log_status(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_23(int (*arg0)(struct v4l2_subdev * , struct v4l2_queryctrl * ) , struct v4l2_subdev *arg1 , struct v4l2_queryctrl *arg2 ) { { { v4l2_subdev_queryctrl(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_24(int (*arg0)(struct v4l2_subdev * , struct v4l2_querymenu * ) , struct v4l2_subdev *arg1 , struct v4l2_querymenu *arg2 ) { { { v4l2_subdev_querymenu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_25(int (*arg0)(struct v4l2_subdev * , unsigned int ) , struct v4l2_subdev *arg1 , unsigned int arg2 ) { { { cx25840_reset(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(int (*arg0)(struct v4l2_subdev * , struct v4l2_decode_vbi_line * ) , struct v4l2_subdev *arg1 , struct v4l2_decode_vbi_line *arg2 ) { { { cx25840_decode_vbi_line(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_33(int (*arg0)(struct v4l2_subdev * , unsigned int ) , struct v4l2_subdev *arg1 , unsigned int arg2 ) { { { cx25840_s_clock_freq(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_36(int (*arg0)(struct v4l2_subdev * , struct v4l2_control * ) , struct v4l2_subdev *arg1 , struct v4l2_control *arg2 ) { { { v4l2_subdev_s_ctrl(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_37(int (*arg0)(struct v4l2_subdev * , struct v4l2_ext_controls * ) , struct v4l2_subdev *arg1 , struct v4l2_ext_controls *arg2 ) { { { v4l2_subdev_s_ext_ctrls(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_38(int (*arg0)(struct v4l2_subdev * , struct v4l2_frequency * ) , struct v4l2_subdev *arg1 , struct v4l2_frequency *arg2 ) { { { cx25840_s_frequency(arg1, (struct v4l2_frequency const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_39(int (*arg0)(struct v4l2_subdev * , unsigned long , struct v4l2_subdev_io_pin_config * ) , struct v4l2_subdev *arg1 , unsigned long arg2 , struct v4l2_subdev_io_pin_config *arg3 ) { { { common_s_io_pin_config(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_42(int (*arg0)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) , struct v4l2_subdev *arg1 , struct v4l2_mbus_framefmt *arg2 ) { { { cx25840_s_mbus_fmt(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_43(int (*arg0)(struct v4l2_subdev * ) , struct v4l2_subdev *arg1 ) { { { cx25840_s_radio(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_44(int (*arg0)(struct v4l2_subdev * , struct v4l2_vbi_format * ) , struct v4l2_subdev *arg1 , struct v4l2_vbi_format *arg2 ) { { { cx25840_s_raw_fmt(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_45(int (*arg0)(struct v4l2_subdev * , struct v4l2_dbg_register * ) , struct v4l2_subdev *arg1 , struct v4l2_dbg_register *arg2 ) { { { cx25840_s_register(arg1, (struct v4l2_dbg_register const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_46(int (*arg0)(struct v4l2_subdev * , unsigned int , unsigned int , unsigned int ) , struct v4l2_subdev *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 ) { { { cx25840_s_video_routing(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_3_49(int (*arg0)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) , struct v4l2_subdev *arg1 , struct v4l2_sliced_vbi_format *arg2 ) { { { cx25840_s_sliced_fmt(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_50(int (*arg0)(struct v4l2_subdev * , unsigned long long ) , struct v4l2_subdev *arg1 , unsigned long long arg2 ) { { { cx25840_s_std(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_53(int (*arg0)(struct v4l2_subdev * , int ) , struct v4l2_subdev *arg1 , int arg2 ) { { { cx25840_s_stream(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_56(int (*arg0)(struct v4l2_subdev * , struct v4l2_tuner * ) , struct v4l2_subdev *arg1 , struct v4l2_tuner *arg2 ) { { { cx25840_s_tuner(arg1, (struct v4l2_tuner const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_57(int (*arg0)(struct v4l2_subdev * , struct v4l2_ext_controls * ) , struct v4l2_subdev *arg1 , struct v4l2_ext_controls *arg2 ) { { { v4l2_subdev_try_ext_ctrls(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_7(int (*arg0)(struct v4l2_subdev * , struct v4l2_control * ) , struct v4l2_subdev *arg1 , struct v4l2_control *arg2 ) { { { v4l2_subdev_g_ctrl(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_8(int (*arg0)(struct v4l2_subdev * , struct v4l2_ext_controls * ) , struct v4l2_subdev *arg1 , struct v4l2_ext_controls *arg2 ) { { { v4l2_subdev_g_ext_ctrls(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(int (*arg0)(struct v4l2_subdev * , unsigned int * ) , struct v4l2_subdev *arg1 , unsigned int *arg2 ) { { { cx25840_g_input_status(arg1, arg2); } return; } } void ldv_entry_EMGentry_6(void *arg0 ) { void (*ldv_6_exit_cx25840_driver_exit_default)(void) ; int (*ldv_6_init_cx25840_driver_init_default)(void) ; int ldv_6_ret_default ; int tmp ; int tmp___0 ; { { ldv_6_ret_default = ldv_EMGentry_init_cx25840_driver_init_6_11(ldv_6_init_cx25840_driver_init_default); ldv_6_ret_default = ldv_post_init(ldv_6_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_6_ret_default != 0); ldv_check_final_state(); ldv_stop(); } return; } else { { ldv_assume(ldv_6_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_4_6_7(); ldv_dispatch_register_dummy_resourceless_instance_3_6_6(); ldv_dispatch_deregister_io_instance_1_6_5(); ldv_dispatch_deregister_dummy_resourceless_instance_3_6_4(); } } else { } { ldv_EMGentry_exit_cx25840_driver_exit_6_2(ldv_6_exit_cx25840_driver_exit_default); ldv_check_final_state(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_initialize(); ldv_entry_EMGentry_6((void *)0); } return 0; } } void ldv_i2c_io_instance_0(void *arg0 ) { struct i2c_driver *ldv_0_container_i2c_driver ; struct i2c_client *ldv_0_resource_client ; struct i2c_device_id *ldv_0_resource_struct_i2c_device_id ; int ldv_0_ret_default ; struct ldv_struct_io_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_io_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_io_instance_0 *)0)) { { ldv_0_container_i2c_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(1440UL); ldv_0_resource_client = (struct i2c_client *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_0_resource_struct_i2c_device_id = (struct i2c_device_id *)tmp___0; } goto ldv_main_0; return; ldv_main_0: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_0_ret_default = ldv_io_instance_probe_0_11((int (*)(struct i2c_client * , struct i2c_device_id * ))ldv_0_container_i2c_driver->probe, ldv_0_resource_client, ldv_0_resource_struct_i2c_device_id); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_client); ldv_free((void *)ldv_0_resource_struct_i2c_device_id); } return; } return; ldv_call_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { goto ldv_call_0; } else { { ldv_io_instance_release_0_2(ldv_0_container_i2c_driver->remove, ldv_0_resource_client); } goto ldv_main_0; } return; } } int ldv_i2c_register_driver(int arg0 , struct module *arg1 , struct i2c_driver *arg2 ) { struct i2c_driver *ldv_4_i2c_driver_i2c_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_4_i2c_driver_i2c_driver = arg2; ldv_dispatch_register_4_2(ldv_4_i2c_driver_i2c_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_io_instance_probe_0_11(int (*arg0)(struct i2c_client * , struct i2c_device_id * ) , struct i2c_client *arg1 , struct i2c_device_id *arg2 ) { int tmp ; { { tmp = cx25840_probe(arg1, (struct i2c_device_id const *)arg2); } return (tmp); } } void ldv_io_instance_release_0_2(int (*arg0)(struct i2c_client * ) , struct i2c_client *arg1 ) { { { cx25840_remove(arg1); } return; } } void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_1(void *arg0 ) { int (*ldv_1_callback_s_ctrl)(struct v4l2_ctrl * ) ; struct v4l2_ctrl *ldv_1_container_struct_v4l2_ctrl_ptr ; int tmp ; { goto ldv_call_1; return; ldv_call_1: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_s_ctrl, ldv_1_container_struct_v4l2_ctrl_ptr); } goto ldv_call_1; } else { return; } return; } } void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_2(void *arg0 ) { int (*ldv_2_callback_s_ctrl)(struct v4l2_ctrl * ) ; struct v4l2_ctrl *ldv_2_container_struct_v4l2_ctrl_ptr ; int tmp ; { goto ldv_call_2; return; ldv_call_2: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_s_ctrl, ldv_2_container_struct_v4l2_ctrl_ptr); } goto ldv_call_2; } else { return; } return; } } void ldv_v4l2_device_unregister_subdev(void *arg0 , struct v4l2_subdev *arg1 ) { struct v4l2_subdev *ldv_5_struct_v4l2_subdev_ptr_struct_v4l2_subdev_ptr ; { { ldv_5_struct_v4l2_subdev_ptr_struct_v4l2_subdev_ptr = arg1; ldv_dispatch_deregister_5_1(ldv_5_struct_v4l2_subdev_ptr_struct_v4l2_subdev_ptr); } return; return; } } static void *ldv_dev_get_drvdata_11(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void ldv_v4l2_device_unregister_subdev_25(struct v4l2_subdev *ldv_func_arg1 ) { { { v4l2_device_unregister_subdev(ldv_func_arg1); ldv_v4l2_device_unregister_subdev((void *)0, ldv_func_arg1); } return; } } static int ldv_i2c_register_driver_26(struct module *ldv_func_arg1 , struct i2c_driver *ldv_func_arg2 ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = i2c_register_driver(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_i2c_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void *ldv_dev_get_drvdata_10(struct device const *dev ) ; __inline static void *i2c_get_clientdata___0(struct i2c_client const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_10(& dev->dev); } return (tmp); } } static int cx25840_set_audclk_freq(struct i2c_client *client , u32 freq ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; bool tmp___4 ; bool tmp___5 ; bool tmp___6 ; { { tmp = i2c_get_clientdata___0((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; } if ((unsigned int )state->aud_input != 0U) { { if (freq == 32000U) { goto case_32000; } else { } if (freq == 44100U) { goto case_44100; } else { } if (freq == 48000U) { goto case_48000; } else { } goto switch_break; case_32000: /* CIL Label */ { cx25840_write4(client, 264, 268829711U); cx25840_write4(client, 272, 29047278U); cx25840_write(client, 295, 80); tmp___1 = is_cx2583x(state); } if ((int )tmp___1) { goto ldv_26925; } else { } { cx25840_write4(client, 2304, 134346623U); cx25840_write4(client, 2308, 134346623U); cx25840_write4(client, 2316, 134346623U); } goto ldv_26925; case_44100: /* CIL Label */ { cx25840_write4(client, 264, 269026319U); cx25840_write4(client, 272, 15494102U); cx25840_write(client, 295, 80); tmp___2 = is_cx2583x(state); } if ((int )tmp___2) { goto ldv_26925; } else { } { cx25840_write4(client, 2304, 134311257U); cx25840_write4(client, 2308, 134311257U); cx25840_write4(client, 2316, 134311257U); } goto ldv_26925; case_48000: /* CIL Label */ { cx25840_write4(client, 264, 269091855U); cx25840_write4(client, 272, 10016485U); cx25840_write(client, 295, 80); tmp___3 = is_cx2583x(state); } if ((int )tmp___3) { goto ldv_26925; } else { } { cx25840_write4(client, 2304, 134303658U); cx25840_write4(client, 2308, 134303658U); cx25840_write4(client, 2316, 134303658U); } goto ldv_26925; switch_break: /* CIL Label */ ; } ldv_26925: ; } else { { if (freq == 32000U) { goto case_32000___0; } else { } if (freq == 44100U) { goto case_44100___0; } else { } if (freq == 48000U) { goto case_48000___0; } else { } goto switch_break___0; case_32000___0: /* CIL Label */ { cx25840_write4(client, 264, 503841807U); cx25840_write4(client, 272, 19531881U); cx25840_write(client, 295, 84); tmp___4 = is_cx2583x(state); } if ((int )tmp___4) { goto ldv_26929; } else { } { cx25840_write4(client, 2296, 134283264U); cx25840_write4(client, 2304, 134348800U); cx25840_write4(client, 2308, 134348800U); cx25840_write4(client, 2316, 134348800U); } goto ldv_26929; case_44100___0: /* CIL Label */ { cx25840_write4(client, 264, 403244047U); cx25840_write4(client, 272, 15494102U); cx25840_write(client, 295, 80); tmp___5 = is_cx2583x(state); } if ((int )tmp___5) { goto ldv_26929; } else { } { cx25840_write4(client, 2296, 134308045U); cx25840_write4(client, 2304, 134312837U); cx25840_write4(client, 2308, 134312837U); cx25840_write4(client, 2316, 134312837U); } goto ldv_26929; case_48000___0: /* CIL Label */ { cx25840_write4(client, 264, 403309583U); cx25840_write4(client, 272, 10016485U); cx25840_write(client, 295, 80); tmp___6 = is_cx2583x(state); } if ((int )tmp___6) { goto ldv_26929; } else { } { cx25840_write4(client, 2296, 134316032U); cx25840_write4(client, 2304, 134305109U); cx25840_write4(client, 2308, 134305109U); cx25840_write4(client, 2316, 134305109U); } goto ldv_26929; switch_break___0: /* CIL Label */ ; } ldv_26929: ; } state->audclk_freq = freq; return (0); } } __inline static int cx25836_set_audclk_freq(struct i2c_client *client , u32 freq ) { int tmp ; { { tmp = cx25840_set_audclk_freq(client, freq); } return (tmp); } } static int cx23885_set_audclk_freq(struct i2c_client *client , u32 freq ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; { { tmp = i2c_get_clientdata___0((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; } if ((unsigned int )state->aud_input != 0U) { { if (freq == 32000U) { goto case_32000; } else { } if (freq == 44100U) { goto case_44100; } else { } if (freq == 48000U) { goto case_48000; } else { } goto switch_break; case_32000: /* CIL Label */ ; case_44100: /* CIL Label */ ; case_48000: /* CIL Label */ ; goto ldv_26944; switch_break: /* CIL Label */ ; } ldv_26944: ; } else { { if (freq == 32000U) { goto case_32000___0; } else { } if (freq == 44100U) { goto case_44100___0; } else { } if (freq == 48000U) { goto case_48000___0; } else { } goto switch_break___0; case_32000___0: /* CIL Label */ ; case_44100___0: /* CIL Label */ ; goto ldv_26947; case_48000___0: /* CIL Label */ { cx25840_write4(client, 2296, 134317692U); cx25840_write4(client, 2304, 134303658U); cx25840_write4(client, 2308, 134303658U); cx25840_write4(client, 2316, 134303658U); } goto ldv_26947; switch_break___0: /* CIL Label */ ; } ldv_26947: ; } state->audclk_freq = freq; return (0); } } static int cx231xx_set_audclk_freq(struct i2c_client *client , u32 freq ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; { { tmp = i2c_get_clientdata___0((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; } if ((unsigned int )state->aud_input != 0U) { { if (freq == 32000U) { goto case_32000; } else { } if (freq == 44100U) { goto case_44100; } else { } if (freq == 48000U) { goto case_48000; } else { } goto switch_break; case_32000: /* CIL Label */ { cx25840_write4(client, 2304, 134346623U); cx25840_write4(client, 2308, 134346623U); cx25840_write4(client, 2316, 134346623U); } goto ldv_26955; case_44100: /* CIL Label */ { cx25840_write4(client, 2304, 134311257U); cx25840_write4(client, 2308, 134311257U); cx25840_write4(client, 2316, 134311257U); } goto ldv_26955; case_48000: /* CIL Label */ { cx25840_write4(client, 2304, 134303658U); cx25840_write4(client, 2308, 134303658U); cx25840_write4(client, 2316, 134303658U); } goto ldv_26955; switch_break: /* CIL Label */ ; } ldv_26955: ; } else { { if (freq == 32000U) { goto case_32000___0; } else { } if (freq == 44100U) { goto case_44100___0; } else { } if (freq == 48000U) { goto case_48000___0; } else { } goto switch_break___0; case_32000___0: /* CIL Label */ { cx25840_write4(client, 2296, 134283264U); cx25840_write4(client, 2304, 134348800U); cx25840_write4(client, 2308, 134348800U); cx25840_write4(client, 2316, 134348800U); } goto ldv_26959; case_44100___0: /* CIL Label */ { cx25840_write4(client, 2296, 134308045U); cx25840_write4(client, 2304, 134312837U); cx25840_write4(client, 2308, 134312837U); cx25840_write4(client, 2316, 134312837U); } goto ldv_26959; case_48000___0: /* CIL Label */ { cx25840_write4(client, 2296, 134317692U); cx25840_write4(client, 2304, 134303658U); cx25840_write4(client, 2308, 134303658U); cx25840_write4(client, 2316, 134303658U); } goto ldv_26959; switch_break___0: /* CIL Label */ ; } ldv_26959: ; } state->audclk_freq = freq; return (0); } } static int set_audclk_freq(struct i2c_client *client , u32 freq ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; { { tmp = i2c_get_clientdata___0((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; } if ((freq != 32000U && freq != 44100U) && freq != 48000U) { return (-22); } else { } { tmp___2 = is_cx231xx(state); } if ((int )tmp___2) { { tmp___1 = cx231xx_set_audclk_freq(client, freq); } return (tmp___1); } else { } { tmp___4 = is_cx2388x(state); } if ((int )tmp___4) { { tmp___3 = cx23885_set_audclk_freq(client, freq); } return (tmp___3); } else { } { tmp___6 = is_cx2583x(state); } if ((int )tmp___6) { { tmp___5 = cx25836_set_audclk_freq(client, freq); } return (tmp___5); } else { } { tmp___7 = cx25840_set_audclk_freq(client, freq); } return (tmp___7); } } void cx25840_audio_set_path(struct i2c_client *client ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; bool tmp___4 ; bool tmp___5 ; int tmp___6 ; { { tmp = i2c_get_clientdata___0((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; tmp___1 = is_cx2583x(state); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { cx25840_and_or(client, 2064, 4294967294U, 1); cx25840_and_or(client, 2051, 4294967279U, 0); cx25840_write(client, 2259, 31); } if ((unsigned int )state->aud_input == 0U) { { cx25840_write4(client, 2256, 16846866U); } } else { { cx25840_write4(client, 2256, 520501360U); } } } else { } { set_audclk_freq(client, state->audclk_freq); tmp___5 = is_cx2583x(state); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { if ((unsigned int )state->aud_input != 0U) { { cx25840_and_or(client, 2051, 4294967279U, 16); } } else { } { cx25840_and_or(client, 2064, 4294967294U, 0); tmp___3 = is_cx2388x(state); } if ((int )tmp___3) { { cx25840_and_or(client, 2051, 4294967279U, 16); } } else { { tmp___4 = is_cx231xx(state); } if ((int )tmp___4) { { cx25840_and_or(client, 2051, 4294967279U, 16); } } else { } } } else { } return; } } static void set_volume(struct i2c_client *client , int volume ) { int vol ; { vol = volume >> 9; if (vol <= 23) { vol = 0; } else { vol = vol + -23; } { cx25840_write(client, 2260, (int )((unsigned int )((u8 )(114 - vol)) * 2U)); } return; } } static void set_balance(struct i2c_client *client , int balance ) { int bal ; { bal = balance >> 8; if (bal > 128) { { cx25840_and_or(client, 2261, 127U, 128); cx25840_and_or(client, 2261, 4294967168U, (int )((u8 )bal) & 127); } } else { { cx25840_and_or(client, 2261, 127U, 0); cx25840_and_or(client, 2261, 4294967168U, (int )(128U - (unsigned int )((u8 )bal))); } } return; } } int cx25840_s_clock_freq(struct v4l2_subdev *sd , u32 freq ) { struct i2c_client *client ; void *tmp ; struct cx25840_state *state ; struct cx25840_state *tmp___0 ; int retval ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; { { tmp = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp; tmp___0 = to_state(sd); state = tmp___0; tmp___1 = is_cx2583x(state); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { cx25840_and_or(client, 2064, 4294967294U, 1); } } else { } if ((unsigned int )state->aud_input != 0U) { { cx25840_and_or(client, 2051, 4294967279U, 0); cx25840_write(client, 2259, 31); } } else { } { retval = set_audclk_freq(client, freq); } if ((unsigned int )state->aud_input != 0U) { { cx25840_and_or(client, 2051, 4294967279U, 16); } } else { } { tmp___3 = is_cx2583x(state); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { cx25840_and_or(client, 2064, 4294967294U, 0); } } else { } return (retval); } } static int cx25840_audio_s_ctrl(struct v4l2_ctrl *ctrl ) { struct v4l2_subdev *sd ; struct v4l2_subdev *tmp ; struct cx25840_state *state ; struct cx25840_state *tmp___0 ; struct i2c_client *client ; void *tmp___1 ; { { tmp = to_sd(ctrl); sd = tmp; tmp___0 = to_state(sd); state = tmp___0; tmp___1 = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp___1; } { if (ctrl->id == 9963781U) { goto case_9963781; } else { } if (ctrl->id == 9963783U) { goto case_9963783; } else { } if (ctrl->id == 9963784U) { goto case_9963784; } else { } if (ctrl->id == 9963782U) { goto case_9963782; } else { } goto switch_default; case_9963781: /* CIL Label */ ; if ((state->__annonCompField82.mute)->__annonCompField81.val != 0) { { set_volume(client, 0); } } else { { set_volume(client, (state->__annonCompField82.volume)->__annonCompField81.val); } } goto ldv_26995; case_9963783: /* CIL Label */ { cx25840_and_or(client, 2265, 4294967232U, (int )(48U - (unsigned int )((u8 )((ctrl->__annonCompField81.val * 48) / 65535)))); } goto ldv_26995; case_9963784: /* CIL Label */ { cx25840_and_or(client, 2267, 4294967232U, (int )(48U - (unsigned int )((u8 )((ctrl->__annonCompField81.val * 48) / 65535)))); } goto ldv_26995; case_9963782: /* CIL Label */ { set_balance(client, ctrl->__annonCompField81.val); } goto ldv_26995; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_26995: ; return (0); } } struct v4l2_ctrl_ops const cx25840_audio_ctrl_ops = {0, 0, & cx25840_audio_s_ctrl}; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) { { { cx25840_audio_s_ctrl(arg1); } return; } } static void *ldv_dev_get_drvdata_10(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } extern void *memcpy(void * , void const * , size_t ) ; static void *ldv_dev_get_drvdata_10___0(struct device const *dev ) ; __inline static void *i2c_get_clientdata___1(struct i2c_client const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_10___0(& dev->dev); } return (tmp); } } extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; static char *firmware = (char *)""; static void start_fw_load(struct i2c_client *client ) { { { cx25840_write(client, 2048, 0); cx25840_write(client, 2049, 0); cx25840_write(client, 2051, 11); cx25840_write(client, 0, 32); } return; } } static void end_fw_load(struct i2c_client *client ) { { { cx25840_write(client, 0, 0); cx25840_write(client, 2051, 3); } return; } } static char const *get_fw_name(struct i2c_client *client ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; bool tmp___1 ; bool tmp___2 ; { { tmp = i2c_get_clientdata___1((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; } if ((int )((signed char )*firmware) != 0) { return ((char const *)firmware); } else { } { tmp___1 = is_cx2388x(state); } if ((int )tmp___1) { return ("v4l-cx23885-avcore-01.fw"); } else { } { tmp___2 = is_cx231xx(state); } if ((int )tmp___2) { return ("v4l-cx231xx-avcore-01.fw"); } else { } return ("v4l-cx25840.fw"); } } static int check_fw_load(struct i2c_client *client , int size ) { int s ; u8 tmp ; u8 tmp___0 ; char const *tmp___1 ; int tmp___2 ; char const *tmp___3 ; int tmp___4 ; { { tmp = cx25840_read(client, 2049); s = (int )tmp << 8; tmp___0 = cx25840_read(client, 2048); s = s | (int )tmp___0; } if (size != s) { { tmp___1 = get_fw_name(client); tmp___2 = i2c_adapter_id(client->adapter); printk("\v%s %d-%04x: firmware %s load failed\n", (client->dev.driver)->name, tmp___2, (int )client->addr, tmp___1); } return (-22); } else { } { tmp___3 = get_fw_name(client); tmp___4 = i2c_adapter_id(client->adapter); printk("\016%s %d-%04x: loaded %s firmware (%d bytes)\n", (client->dev.driver)->name, tmp___4, (int )client->addr, tmp___3, size); } return (0); } } static int fw_write(struct i2c_client *client , u8 const *data , int size ) { int tmp ; int tmp___0 ; { { tmp___0 = i2c_master_send((struct i2c_client const *)client, (char const *)data, size); } if (tmp___0 < size) { { tmp = i2c_adapter_id(client->adapter); printk("\v%s %d-%04x: firmware load i2c failure\n", (client->dev.driver)->name, tmp, (int )client->addr); } return (-38); } else { } return (0); } } int cx25840_loadfw(struct i2c_client *client ) { struct cx25840_state *state ; void *tmp ; struct cx25840_state *tmp___0 ; struct firmware const *fw ; u8 buffer[48U] ; u8 const *ptr ; char const *fwname ; char const *tmp___1 ; int size ; int retval ; int MAX_BUF_SIZE ; u32 gpio_oe ; u32 gpio_da ; u8 tmp___2 ; u8 tmp___3 ; bool tmp___4 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; int tmp___8 ; int len ; int _min1 ; int _min2 ; bool tmp___9 ; int tmp___10 ; { { tmp = i2c_get_clientdata___1((struct i2c_client const *)client); tmp___0 = to_state((struct v4l2_subdev *)tmp); state = tmp___0; fw = (struct firmware const *)0; tmp___1 = get_fw_name(client); fwname = tmp___1; MAX_BUF_SIZE = 48; gpio_oe = 0U; gpio_da = 0U; tmp___4 = is_cx2388x(state); } if ((int )tmp___4) { { tmp___2 = cx25840_read(client, 352); gpio_oe = (u32 )tmp___2; tmp___3 = cx25840_read(client, 356); gpio_da = (u32 )tmp___3; } } else { } { tmp___6 = is_cx231xx(state); } if ((int )tmp___6 && MAX_BUF_SIZE > 16) { { tmp___5 = i2c_adapter_id(client->adapter); printk("\v%s %d-%04x: Firmware download size changed to 16 bytes max length\n", (client->dev.driver)->name, tmp___5, (int )client->addr); MAX_BUF_SIZE = 16; } } else { } { tmp___8 = request_firmware(& fw, fwname, & client->dev); } if (tmp___8 != 0) { { tmp___7 = i2c_adapter_id(client->adapter); printk("\v%s %d-%04x: unable to open firmware %s\n", (client->dev.driver)->name, tmp___7, (int )client->addr, fwname); } return (-22); } else { } { start_fw_load(client); buffer[0] = 8U; buffer[1] = 2U; size = (int )fw->size; ptr = fw->data; } goto ldv_27799; ldv_27798: { _min1 = MAX_BUF_SIZE + -2; _min2 = size; len = _min1 < _min2 ? _min1 : _min2; memcpy((void *)(& buffer) + 2U, (void const *)ptr, (size_t )len); retval = fw_write(client, (u8 const *)(& buffer), len + 2); } if (retval < 0) { { release_firmware(fw); } return (retval); } else { } size = size - len; ptr = ptr + (unsigned long )len; ldv_27799: ; if (size > 0) { goto ldv_27798; } else { } { end_fw_load(client); size = (int )fw->size; release_firmware(fw); tmp___9 = is_cx2388x(state); } if ((int )tmp___9) { { cx25840_write(client, 352, (int )((u8 )gpio_oe)); cx25840_write(client, 356, (int )((u8 )gpio_da)); } } else { } { tmp___10 = check_fw_load(client, size); } return (tmp___10); } } static void *ldv_dev_get_drvdata_10___0(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } extern void *memset(void * , int , size_t ) ; static int odd_parity(u8 c ) { { c = (u8 )((int )c ^ ((int )c >> 4)); c = (u8 )((int )c ^ ((int )c >> 2)); c = (u8 )((int )c ^ ((int )c >> 1)); return ((int )c & 1); } } static int decode_vps(u8 *dst , u8 *p ) { u8 biphase_tbl[256U] ; u8 c ; u8 err ; int i ; { biphase_tbl[0] = 240U; biphase_tbl[1] = 120U; biphase_tbl[2] = 112U; biphase_tbl[3] = 240U; biphase_tbl[4] = 180U; biphase_tbl[5] = 60U; biphase_tbl[6] = 52U; biphase_tbl[7] = 180U; biphase_tbl[8] = 176U; biphase_tbl[9] = 56U; biphase_tbl[10] = 48U; biphase_tbl[11] = 176U; biphase_tbl[12] = 240U; biphase_tbl[13] = 120U; biphase_tbl[14] = 112U; biphase_tbl[15] = 240U; biphase_tbl[16] = 210U; biphase_tbl[17] = 90U; biphase_tbl[18] = 82U; biphase_tbl[19] = 210U; biphase_tbl[20] = 150U; biphase_tbl[21] = 30U; biphase_tbl[22] = 22U; biphase_tbl[23] = 150U; biphase_tbl[24] = 146U; biphase_tbl[25] = 26U; biphase_tbl[26] = 18U; biphase_tbl[27] = 146U; biphase_tbl[28] = 210U; biphase_tbl[29] = 90U; biphase_tbl[30] = 82U; biphase_tbl[31] = 210U; biphase_tbl[32] = 208U; biphase_tbl[33] = 88U; biphase_tbl[34] = 80U; biphase_tbl[35] = 208U; biphase_tbl[36] = 148U; biphase_tbl[37] = 28U; biphase_tbl[38] = 20U; biphase_tbl[39] = 148U; biphase_tbl[40] = 144U; biphase_tbl[41] = 24U; biphase_tbl[42] = 16U; biphase_tbl[43] = 144U; biphase_tbl[44] = 208U; biphase_tbl[45] = 88U; biphase_tbl[46] = 80U; biphase_tbl[47] = 208U; biphase_tbl[48] = 240U; biphase_tbl[49] = 120U; biphase_tbl[50] = 112U; biphase_tbl[51] = 240U; biphase_tbl[52] = 180U; biphase_tbl[53] = 60U; biphase_tbl[54] = 52U; biphase_tbl[55] = 180U; biphase_tbl[56] = 176U; biphase_tbl[57] = 56U; biphase_tbl[58] = 48U; biphase_tbl[59] = 176U; biphase_tbl[60] = 240U; biphase_tbl[61] = 120U; biphase_tbl[62] = 112U; biphase_tbl[63] = 240U; biphase_tbl[64] = 225U; biphase_tbl[65] = 105U; biphase_tbl[66] = 97U; biphase_tbl[67] = 225U; biphase_tbl[68] = 165U; biphase_tbl[69] = 45U; biphase_tbl[70] = 37U; biphase_tbl[71] = 165U; biphase_tbl[72] = 161U; biphase_tbl[73] = 41U; biphase_tbl[74] = 33U; biphase_tbl[75] = 161U; biphase_tbl[76] = 225U; biphase_tbl[77] = 105U; biphase_tbl[78] = 97U; biphase_tbl[79] = 225U; biphase_tbl[80] = 195U; biphase_tbl[81] = 75U; biphase_tbl[82] = 67U; biphase_tbl[83] = 195U; biphase_tbl[84] = 135U; biphase_tbl[85] = 15U; biphase_tbl[86] = 7U; biphase_tbl[87] = 135U; biphase_tbl[88] = 131U; biphase_tbl[89] = 11U; biphase_tbl[90] = 3U; biphase_tbl[91] = 131U; biphase_tbl[92] = 195U; biphase_tbl[93] = 75U; biphase_tbl[94] = 67U; biphase_tbl[95] = 195U; biphase_tbl[96] = 193U; biphase_tbl[97] = 73U; biphase_tbl[98] = 65U; biphase_tbl[99] = 193U; biphase_tbl[100] = 133U; biphase_tbl[101] = 13U; biphase_tbl[102] = 5U; biphase_tbl[103] = 133U; biphase_tbl[104] = 129U; biphase_tbl[105] = 9U; biphase_tbl[106] = 1U; biphase_tbl[107] = 129U; biphase_tbl[108] = 193U; biphase_tbl[109] = 73U; biphase_tbl[110] = 65U; biphase_tbl[111] = 193U; biphase_tbl[112] = 225U; biphase_tbl[113] = 105U; biphase_tbl[114] = 97U; biphase_tbl[115] = 225U; biphase_tbl[116] = 165U; biphase_tbl[117] = 45U; biphase_tbl[118] = 37U; biphase_tbl[119] = 165U; biphase_tbl[120] = 161U; biphase_tbl[121] = 41U; biphase_tbl[122] = 33U; biphase_tbl[123] = 161U; biphase_tbl[124] = 225U; biphase_tbl[125] = 105U; biphase_tbl[126] = 97U; biphase_tbl[127] = 225U; biphase_tbl[128] = 224U; biphase_tbl[129] = 104U; biphase_tbl[130] = 96U; biphase_tbl[131] = 224U; biphase_tbl[132] = 164U; biphase_tbl[133] = 44U; biphase_tbl[134] = 36U; biphase_tbl[135] = 164U; biphase_tbl[136] = 160U; biphase_tbl[137] = 40U; biphase_tbl[138] = 32U; biphase_tbl[139] = 160U; biphase_tbl[140] = 224U; biphase_tbl[141] = 104U; biphase_tbl[142] = 96U; biphase_tbl[143] = 224U; biphase_tbl[144] = 194U; biphase_tbl[145] = 74U; biphase_tbl[146] = 66U; biphase_tbl[147] = 194U; biphase_tbl[148] = 134U; biphase_tbl[149] = 14U; biphase_tbl[150] = 6U; biphase_tbl[151] = 134U; biphase_tbl[152] = 130U; biphase_tbl[153] = 10U; biphase_tbl[154] = 2U; biphase_tbl[155] = 130U; biphase_tbl[156] = 194U; biphase_tbl[157] = 74U; biphase_tbl[158] = 66U; biphase_tbl[159] = 194U; biphase_tbl[160] = 192U; biphase_tbl[161] = 72U; biphase_tbl[162] = 64U; biphase_tbl[163] = 192U; biphase_tbl[164] = 132U; biphase_tbl[165] = 12U; biphase_tbl[166] = 4U; biphase_tbl[167] = 132U; biphase_tbl[168] = 128U; biphase_tbl[169] = 8U; biphase_tbl[170] = 0U; biphase_tbl[171] = 128U; biphase_tbl[172] = 192U; biphase_tbl[173] = 72U; biphase_tbl[174] = 64U; biphase_tbl[175] = 192U; biphase_tbl[176] = 224U; biphase_tbl[177] = 104U; biphase_tbl[178] = 96U; biphase_tbl[179] = 224U; biphase_tbl[180] = 164U; biphase_tbl[181] = 44U; biphase_tbl[182] = 36U; biphase_tbl[183] = 164U; biphase_tbl[184] = 160U; biphase_tbl[185] = 40U; biphase_tbl[186] = 32U; biphase_tbl[187] = 160U; biphase_tbl[188] = 224U; biphase_tbl[189] = 104U; biphase_tbl[190] = 96U; biphase_tbl[191] = 224U; biphase_tbl[192] = 240U; biphase_tbl[193] = 120U; biphase_tbl[194] = 112U; biphase_tbl[195] = 240U; biphase_tbl[196] = 180U; biphase_tbl[197] = 60U; biphase_tbl[198] = 52U; biphase_tbl[199] = 180U; biphase_tbl[200] = 176U; biphase_tbl[201] = 56U; biphase_tbl[202] = 48U; biphase_tbl[203] = 176U; biphase_tbl[204] = 240U; biphase_tbl[205] = 120U; biphase_tbl[206] = 112U; biphase_tbl[207] = 240U; biphase_tbl[208] = 210U; biphase_tbl[209] = 90U; biphase_tbl[210] = 82U; biphase_tbl[211] = 210U; biphase_tbl[212] = 150U; biphase_tbl[213] = 30U; biphase_tbl[214] = 22U; biphase_tbl[215] = 150U; biphase_tbl[216] = 146U; biphase_tbl[217] = 26U; biphase_tbl[218] = 18U; biphase_tbl[219] = 146U; biphase_tbl[220] = 210U; biphase_tbl[221] = 90U; biphase_tbl[222] = 82U; biphase_tbl[223] = 210U; biphase_tbl[224] = 208U; biphase_tbl[225] = 88U; biphase_tbl[226] = 80U; biphase_tbl[227] = 208U; biphase_tbl[228] = 148U; biphase_tbl[229] = 28U; biphase_tbl[230] = 20U; biphase_tbl[231] = 148U; biphase_tbl[232] = 144U; biphase_tbl[233] = 24U; biphase_tbl[234] = 16U; biphase_tbl[235] = 144U; biphase_tbl[236] = 208U; biphase_tbl[237] = 88U; biphase_tbl[238] = 80U; biphase_tbl[239] = 208U; biphase_tbl[240] = 240U; biphase_tbl[241] = 120U; biphase_tbl[242] = 112U; biphase_tbl[243] = 240U; biphase_tbl[244] = 180U; biphase_tbl[245] = 60U; biphase_tbl[246] = 52U; biphase_tbl[247] = 180U; biphase_tbl[248] = 176U; biphase_tbl[249] = 56U; biphase_tbl[250] = 48U; biphase_tbl[251] = 176U; biphase_tbl[252] = 240U; biphase_tbl[253] = 120U; biphase_tbl[254] = 112U; biphase_tbl[255] = 240U; err = 0U; i = 0; goto ldv_26931; ldv_26930: err = (u8 )((int )err | ((int )biphase_tbl[(int )*(p + (unsigned long )i)] | (int )biphase_tbl[(int )*(p + ((unsigned long )i + 1UL))])); c = (u8 )(((int )((signed char )biphase_tbl[(int )*(p + ((unsigned long )i + 1UL))]) & 15) | (int )((signed char )((int )biphase_tbl[(int )*(p + (unsigned long )i)] << 4))); *(dst + (unsigned long )(i / 2)) = c; i = i + 2; ldv_26931: ; if (i <= 25) { goto ldv_26930; } else { } return ((int )err & 240); } } int cx25840_g_sliced_fmt(struct v4l2_subdev *sd , struct v4l2_sliced_vbi_format *svbi ) { struct i2c_client *client ; void *tmp ; struct cx25840_state *state ; struct cx25840_state *tmp___0 ; u16 lcr2vbi[16U] ; int is_pal ; int i ; u8 tmp___1 ; u8 v ; u8 tmp___2 ; u8 v___0 ; u8 tmp___3 ; { { tmp = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp; tmp___0 = to_state(sd); state = tmp___0; lcr2vbi[0] = 0U; lcr2vbi[1] = 1U; lcr2vbi[2] = 0U; lcr2vbi[3] = 0U; lcr2vbi[4] = 16384U; lcr2vbi[5] = 0U; lcr2vbi[6] = 4096U; lcr2vbi[7] = 0U; lcr2vbi[8] = 0U; lcr2vbi[9] = 1024U; lcr2vbi[10] = 0U; lcr2vbi[11] = 0U; lcr2vbi[12] = 0U; lcr2vbi[13] = 0U; lcr2vbi[14] = 0U; lcr2vbi[15] = 0U; is_pal = (state->std & 63744ULL) == 0ULL; memset((void *)(& svbi->service_lines), 0, 96UL); svbi->service_set = 0U; tmp___1 = cx25840_read(client, 1028); } if (((int )tmp___1 & 16) == 0) { return (0); } else { } if (is_pal != 0) { i = 7; goto ldv_26944; ldv_26943: { tmp___2 = cx25840_read(client, (int )((unsigned int )((u16 )i) + 1053U)); v = tmp___2; svbi->service_lines[0][i] = lcr2vbi[(int )v >> 4]; svbi->service_lines[1][i] = lcr2vbi[(int )v & 15]; svbi->service_set = (__u16 )((int )svbi->service_set | ((int )svbi->service_lines[0][i] | (int )svbi->service_lines[1][i])); i = i + 1; } ldv_26944: ; if (i <= 23) { goto ldv_26943; } else { } } else { i = 10; goto ldv_26948; ldv_26947: { tmp___3 = cx25840_read(client, (int )((unsigned int )((u16 )i) + 1050U)); v___0 = tmp___3; svbi->service_lines[0][i] = lcr2vbi[(int )v___0 >> 4]; svbi->service_lines[1][i] = lcr2vbi[(int )v___0 & 15]; svbi->service_set = (__u16 )((int )svbi->service_set | ((int )svbi->service_lines[0][i] | (int )svbi->service_lines[1][i])); i = i + 1; } ldv_26948: ; if (i <= 21) { goto ldv_26947; } else { } } return (0); } } int cx25840_s_raw_fmt(struct v4l2_subdev *sd , struct v4l2_vbi_format *fmt ) { struct i2c_client *client ; void *tmp ; struct cx25840_state *state ; struct cx25840_state *tmp___0 ; int is_pal ; int vbi_offset ; { { tmp = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp; tmp___0 = to_state(sd); state = tmp___0; is_pal = (state->std & 63744ULL) == 0ULL; vbi_offset = is_pal != 0; cx25840_std_setup(client); cx25840_write(client, 1151, (int )((u8 )vbi_offset)); cx25840_write(client, 1028, 46); } return (0); } } int cx25840_s_sliced_fmt(struct v4l2_subdev *sd , struct v4l2_sliced_vbi_format *svbi ) { struct i2c_client *client ; void *tmp ; struct cx25840_state *state ; struct cx25840_state *tmp___0 ; int is_pal ; int vbi_offset ; int i ; int x ; u8 lcr[24U] ; __u16 tmp___1 ; __u16 tmp___2 ; __u16 tmp___3 ; { { tmp = v4l2_get_subdevdata((struct v4l2_subdev const *)sd); client = (struct i2c_client *)tmp; tmp___0 = to_state(sd); state = tmp___0; is_pal = (state->std & 63744ULL) == 0ULL; vbi_offset = is_pal != 0; x = 0; } goto ldv_26970; ldv_26969: lcr[x] = 0U; x = x + 1; ldv_26970: ; if (x <= 23) { goto ldv_26969; } else { } { cx25840_std_setup(client); cx25840_write(client, 1028, 50); cx25840_write(client, 1030, 19); cx25840_write(client, 1151, (int )((u8 )vbi_offset)); } if (is_pal != 0) { i = 0; goto ldv_26973; ldv_26972: tmp___1 = 0U; svbi->service_lines[1][i] = tmp___1; svbi->service_lines[0][i] = tmp___1; i = i + 1; ldv_26973: ; if (i <= 6) { goto ldv_26972; } else { } } else { i = 0; goto ldv_26976; ldv_26975: tmp___2 = 0U; svbi->service_lines[1][i] = tmp___2; svbi->service_lines[0][i] = tmp___2; i = i + 1; ldv_26976: ; if (i <= 9) { goto ldv_26975; } else { } i = 22; goto ldv_26979; ldv_26978: tmp___3 = 0U; svbi->service_lines[1][i] = tmp___3; svbi->service_lines[0][i] = tmp___3; i = i + 1; ldv_26979: ; if (i <= 23) { goto ldv_26978; } else { } } i = 7; goto ldv_26990; ldv_26989: x = 0; goto ldv_26987; ldv_26986: ; { if ((int )svbi->service_lines[1 - x][i] == 1) { goto case_1; } else { } if ((int )svbi->service_lines[1 - x][i] == 16384) { goto case_16384; } else { } if ((int )svbi->service_lines[1 - x][i] == 4096) { goto case_4096; } else { } if ((int )svbi->service_lines[1 - x][i] == 1024) { goto case_1024; } else { } goto switch_break; case_1: /* CIL Label */ lcr[i] = (u8 )((int )((signed char )lcr[i]) | (int )((signed char )(1 << x * 4))); goto ldv_26982; case_16384: /* CIL Label */ lcr[i] = (u8 )((int )((signed char )lcr[i]) | (int )((signed char )(4 << x * 4))); goto ldv_26982; case_4096: /* CIL Label */ lcr[i] = (u8 )((int )((signed char )lcr[i]) | (int )((signed char )(6 << x * 4))); goto ldv_26982; case_1024: /* CIL Label */ lcr[i] = (u8 )((int )((signed char )lcr[i]) | (int )((signed char )(9 << x * 4))); goto ldv_26982; switch_break: /* CIL Label */ ; } ldv_26982: x = x + 1; ldv_26987: ; if (x <= 1) { goto ldv_26986; } else { } i = i + 1; ldv_26990: ; if (i <= 23) { goto ldv_26989; } else { } if (is_pal != 0) { x = 1; i = 1060; goto ldv_26993; ldv_26992: { cx25840_write(client, (int )((u16 )i), (int )lcr[x + 6]); i = i + 1; x = x + 1; } ldv_26993: ; if (i <= 1076) { goto ldv_26992; } else { } } else { x = 1; i = 1060; goto ldv_26996; ldv_26995: { cx25840_write(client, (int )((u16 )i), (int )lcr[x + 9]); i = i + 1; x = x + 1; } ldv_26996: ; if (i <= 1072) { goto ldv_26995; } else { } i = 1073; goto ldv_26999; ldv_26998: { cx25840_write(client, (int )((u16 )i), 0); i = i + 1; } ldv_26999: ; if (i <= 1076) { goto ldv_26998; } else { } } { cx25840_write(client, 1084, 22); cx25840_write(client, 1140, is_pal != 0 ? 42 : 34); } return (0); } } int cx25840_decode_vbi_line(struct v4l2_subdev *sd , struct v4l2_decode_vbi_line *vbi ) { struct cx25840_state *state ; struct cx25840_state *tmp ; u8 *p ; int id1 ; int id2 ; int l ; int err ; u32 tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = to_state(sd); state = tmp; p = vbi->p; err = 0; } if ((((unsigned int )*p != 0U || (unsigned int )*(p + 1UL) != 255U) || (unsigned int )*(p + 2UL) != 255U) || ((unsigned int )*(p + 3UL) != 85U && (unsigned int )*(p + 3UL) != 145U)) { tmp___0 = 0U; vbi->type = tmp___0; vbi->line = tmp___0; return (0); } else { } p = p + 4UL; id1 = (int )*(p + 0xffffffffffffffffUL); id2 = (int )*p & 15; l = (int )*(p + 2UL) & 63; l = l + state->vbi_line_offset; p = p + 4UL; { if (id2 == 1) { goto case_1; } else { } if (id2 == 4) { goto case_4; } else { } if (id2 == 6) { goto case_6; } else { } if (id2 == 9) { goto case_9; } else { } goto switch_default; case_1: /* CIL Label */ id2 = 1; goto ldv_27012; case_4: /* CIL Label */ id2 = 16384; goto ldv_27012; case_6: /* CIL Label */ { id2 = 4096; tmp___1 = odd_parity((int )*p); } if (tmp___1 == 0) { tmp___3 = 1; } else { { tmp___2 = odd_parity((int )*(p + 1UL)); } if (tmp___2 == 0) { tmp___3 = 1; } else { tmp___3 = 0; } } err = tmp___3; goto ldv_27012; case_9: /* CIL Label */ { id2 = 1024; tmp___4 = decode_vps(p, p); } if (tmp___4 != 0) { err = 1; } else { } goto ldv_27012; switch_default: /* CIL Label */ id2 = 0; err = 1; goto ldv_27012; switch_break: /* CIL Label */ ; } ldv_27012: vbi->type = err == 0 ? (u32 )id2 : 0U; vbi->line = err == 0 ? (u32 )l : 0U; vbi->is_second_field = (u32 )(err == 0 && id1 == 85); vbi->p = p; return (0); } } static void ldv_mutex_lock_27(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_29(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_31(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_33(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_35(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_37(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_rx_params_lock_of_cx25840_ir_state(struct mutex *lock ) ; void ldv_mutex_unlock_rx_params_lock_of_cx25840_ir_state(struct mutex *lock ) ; void ldv_mutex_lock_tx_params_lock_of_cx25840_ir_state(struct mutex *lock ) ; void ldv_mutex_unlock_tx_params_lock_of_cx25840_ir_state(struct mutex *lock ) ; __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField20.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField20.rlock, flags); } return; } } extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_28(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_30(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_32(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_34(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_36(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_38(struct mutex *ldv_func_arg1 ) ; __inline static unsigned int __kfifo_uint_must_check_helper(unsigned int val ) { { return (val); } } __inline static int __kfifo_int_must_check_helper(int val ) { { return (val); } } extern int __kfifo_alloc(struct __kfifo * , unsigned int , size_t , gfp_t ) ; extern void __kfifo_free(struct __kfifo * ) ; extern unsigned int __kfifo_in(struct __kfifo * , void const * , unsigned int ) ; extern unsigned int __kfifo_out(struct __kfifo * , void * , unsigned int ) ; __inline static void init_ir_raw_event(struct ir_raw_event *ev ) { { { memset((void *)ev, 0, 12UL); } return; } } static unsigned int ir_debug ; __inline static struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd ) { struct cx25840_state *state ; struct cx25840_state *tmp ; { { tmp = to_state(sd); state = tmp; } return ((unsigned long )state != (unsigned long )((struct cx25840_state *)0) ? state->ir_state : (struct cx25840_ir_state *)0); } } __inline static u16 count_to_clock_divider(unsigned int d ) { { if (d > 65536U) { d = 65535U; } else if (d <= 1U) { d = 1U; } else { d = d - 1U; } return ((u16 )d); } } __inline static u16 carrier_freq_to_clock_divider(unsigned int freq ) { int __x ; unsigned int __d ; u16 tmp ; { { __x = 54000000; __d = freq * 16U; tmp = count_to_clock_divider(((unsigned int )__x + __d / 2U) / __d); } return (tmp); } } __inline static unsigned int clock_divider_to_carrier_freq(unsigned int divider ) { int __x ; unsigned int __d ; { __x = 54000000; __d = (divider + 1U) * 16U; return (((unsigned int )__x + __d / 2U) / __d); } } __inline static unsigned int clock_divider_to_freq(unsigned int divider , unsigned int rollovers ) { int __x ; unsigned int __d ; { __x = 54000000; __d = (divider + 1U) * rollovers; return (((unsigned int )__x + __d / 2U) / __d); } } __inline static u16 count_to_lpf_count(unsigned int d ) { { if (d > 65535U) { d = 65535U; } else if (d <= 3U) { d = 0U; } else { } return ((u16 )d); } } __inline static u16 ns_to_lpf_count(unsigned int ns ) { unsigned int __x ; int __d ; u16 tmp ; { { __x = ns * 54U; __d = 1000; tmp = count_to_lpf_count((__x + (unsigned int )(__d / 2)) / (unsigned int )__d); } return (tmp); } } __inline static unsigned int lpf_count_to_ns(unsigned int count ) { unsigned int __x ; int __d ; { __x = count * 1000U; __d = 54; return ((__x + (unsigned int )(__d / 2)) / (unsigned int )__d); } } __inline static unsigned int lpf_count_to_us(unsigned int count ) { unsigned int __x ; int __d ; { __x = count; __d = 54; return ((__x + (unsigned int )(__d / 2)) / (unsigned int )__d); } } static u32 clock_divider_to_resolution(u16 divider ) { unsigned int __x ; int __d ; { __x = ((unsigned int )divider + 1U) * 4000U; __d = 54; return ((__x + (unsigned int )(__d / 2)) / (unsigned int )__d); } } static u64 pulse_width_count_to_ns(u16 count , u16 divider ) { u64 n ; u32 rem ; uint32_t __base ; uint32_t __rem ; { n = ((((unsigned long long )count << 2) | 3ULL) * (unsigned long long )((int )divider + 1)) * 1000ULL; __base = 54U; __rem = (uint32_t )(n % (u64 )__base); n = n / (u64 )__base; rem = __rem; if (rem > 26U) { n = n + 1ULL; } else { } return (n); } } static unsigned int pulse_width_count_to_us(u16 count , u16 divider ) { u64 n ; u32 rem ; uint32_t __base ; uint32_t __rem ; { n = (((unsigned long long )count << 2) | 3ULL) * (unsigned long long )((int )divider + 1); __base = 54U; __rem = (uint32_t )(n % (u64 )__base); n = n / (u64 )__base; rem = __rem; if (rem > 26U) { n = n + 1ULL; } else { } return ((unsigned int )n); } } static u64 ns_to_pulse_clocks(u32 ns ) { u64 clocks ; u32 rem ; uint32_t __base ; uint32_t __rem ; { clocks = (unsigned long long )ns * 54ULL; __base = 1000U; __rem = (uint32_t )(clocks % (u64 )__base); clocks = clocks / (u64 )__base; rem = __rem; if (rem > 499U) { clocks = clocks + 1ULL; } else { } return (clocks); } } static u16 pulse_clocks_to_clock_divider(u64 count ) { uint32_t __base ; uint32_t __rem ; { __base = 262143U; __rem = (uint32_t )(count % (u64 )__base); count = count / (u64 )__base; if (count > 65536ULL) { count = 65535ULL; } else if (count <= 1ULL) { count = 1ULL; } else { count = count - 1ULL; } return ((u16 )count); } } __inline static void control_tx_irq_watermark(struct i2c_client *c , enum tx_fifo_watermark level ) { { { cx25840_and_or4(c, 512, 4294965247U, (u32 )level); } return; } } __inline static void control_rx_irq_watermark(struct i2c_client *c , enum rx_fifo_watermark level ) { { { cx25840_and_or4(c, 512, 4294966271U, (u32 )level); } return; } } __inline static void control_tx_enable(struct i2c_client *c , bool enable ) { { { cx25840_and_or4(c, 512, 4294966655U, (int )enable ? 640U : 0U); } return; } } __inline static void control_rx_enable(struct i2c_client *c , bool enable ) { { { cx25840_and_or4(c, 512, 4294966975U, (int )enable ? 320U : 0U); } return; } } __inline static void control_tx_modulation_enable(struct i2c_client *c , bool enable ) { { { cx25840_and_or4(c, 512, 4294967263U, (int )enable ? 32U : 0U); } return; } } __inline static void control_rx_demodulation_enable(struct i2c_client *c , bool enable ) { { { cx25840_and_or4(c, 512, 4294967279U, (int )enable ? 16U : 0U); } return; } } __inline static void control_rx_s_edge_detection(struct i2c_client *c , u32 edge_types ) { { { cx25840_and_or4(c, 512, 4294967283U, edge_types & 12U); } return; } } static void control_rx_s_carrier_window(struct i2c_client *c , unsigned int carrier , unsigned int *carrier_range_low , unsigned int *carrier_range_high ) { u32 v ; unsigned int c16 ; unsigned int __x ; int __d ; unsigned int __x___0 ; int __d___0 ; unsigned int __x___1 ; int __d___1 ; unsigned int __x___2 ; int __d___2 ; unsigned int __x___3 ; int __d___3 ; unsigned int __x___4 ; int __d___4 ; { c16 = carrier * 16U; __x___1 = c16; __d___1 = 19; if (*carrier_range_low < (__x___1 + (unsigned int )(__d___1 / 2)) / (unsigned int )__d___1) { v = 2U; __x = c16; __d = 20; *carrier_range_low = (__x + (unsigned int )(__d / 2)) / (unsigned int )__d; } else { v = 0U; __x___0 = c16; __d___0 = 19; *carrier_range_low = (__x___0 + (unsigned int )(__d___0 / 2)) / (unsigned int )__d___0; } __x___4 = c16; __d___4 = 13; if (*carrier_range_high > (__x___4 + (unsigned int )(__d___4 / 2)) / (unsigned int )__d___4) { v = v | 1U; __x___2 = c16; __d___2 = 12; *carrier_range_high = (__x___2 + (unsigned int )(__d___2 / 2)) / (unsigned int )__d___2; } else { v = v; __x___3 = c16; __d___3 = 13; *carrier_range_high = (__x___3 + (unsigned int )(__d___3 / 2)) / (unsigned int )__d___3; } { cx25840_and_or4(c, 512, 4294967292U, v); } return; } } __inline static void control_tx_polarity_invert(struct i2c_client *c , bool invert ) { { { cx25840_and_or4(c, 512, 4294963199U, (int )invert ? 4096U : 0U); } return; } } static unsigned int txclk_tx_s_carrier(struct i2c_client *c , unsigned int freq , u16 *divider ) { unsigned int tmp ; { { *divider = carrier_freq_to_clock_divider(freq); cx25840_write4(c, 516, (u32 )*divider); tmp = clock_divider_to_carrier_freq((unsigned int )*divider); } return (tmp); } } static unsigned int rxclk_rx_s_carrier(struct i2c_client *c , unsigned int freq , u16 *divider ) { unsigned int tmp ; { { *divider = carrier_freq_to_clock_divider(freq); cx25840_write4(c, 520, (u32 )*divider); tmp = clock_divider_to_carrier_freq((unsigned int )*divider); } return (tmp); } } static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c , u32 ns , u16 *divider ) { u64 pulse_clocks ; u64 tmp ; { { pulse_clocks = ns_to_pulse_clocks(ns); *divider = pulse_clocks_to_clock_divider(pulse_clocks); cx25840_write4(c, 516, (u32 )*divider); tmp = pulse_width_count_to_ns(65535, (int )*divider); } return ((u32 )tmp); } } static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c , u32 ns , u16 *divider ) { u64 pulse_clocks ; u64 tmp ; { { pulse_clocks = ns_to_pulse_clocks(ns); *divider = pulse_clocks_to_clock_divider(pulse_clocks); cx25840_write4(c, 520, (u32 )*divider); tmp = pulse_width_count_to_ns(65535, (int )*divider); } return ((u32 )tmp); } } static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c , unsigned int duty_cycle ) { u32 n ; unsigned int __x ; int __d ; u32 __x___0 ; int __d___0 ; { __x = duty_cycle * 100U; __d = 625; n = (__x + (unsigned int )(__d / 2)) / (unsigned int )__d; if (n != 0U) { n = n - 1U; } else { } if (n > 15U) { n = 15U; } else { } { cx25840_write4(c, 524, n); __x___0 = (n + 1U) * 100U; __d___0 = 16; } return ((__x___0 + (u32 )(__d___0 / 2)) / (u32 )__d___0); } } static u32 filter_rx_s_min_width(struct i2c_client *c , u32 min_width_ns ) { u32 count ; u16 tmp ; unsigned int tmp___0 ; { { tmp = ns_to_lpf_count(min_width_ns); count = (u32 )tmp; cx25840_write4(c, 536, count); tmp___0 = lpf_count_to_ns(count); } return (tmp___0); } } __inline static void irqenable_rx(struct v4l2_subdev *sd , u32 mask ) { struct cx25840_state *state ; struct cx25840_state *tmp ; bool tmp___0 ; bool tmp___1 ; { { tmp = to_state(sd); state = tmp; tmp___0 = is_cx23885(state); } if ((int )tmp___0) { mask = mask ^ 51U; } else { { tmp___1 = is_cx23887(state); } if ((int )tmp___1) { mask = mask ^ 51U; } else { } } { mask = mask & 19U; cx25840_and_or4(state->c, 532, 4294967276U, mask); } return; } } __inline static void irqenable_tx(struct v4l2_subdev *sd , u32 mask ) { struct cx25840_state *state ; struct cx25840_state *tmp ; bool tmp___0 ; bool tmp___1 ; { { tmp = to_state(sd); state = tmp; tmp___0 = is_cx23885(state); } if ((int )tmp___0) { mask = mask ^ 51U; } else { { tmp___1 = is_cx23887(state); } if ((int )tmp___1) { mask = mask ^ 51U; } else { } } { mask = mask & 32U; cx25840_and_or4(state->c, 532, 4294967263U, mask); } return; } } int cx25840_ir_irq_handler(struct v4l2_subdev *sd , u32 status , bool *handled ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct cx25840_ir_state *ir_state ; struct cx25840_ir_state *tmp___0 ; struct i2c_client *c ; unsigned long flags ; union cx25840_ir_fifo_rec rx_data[8U] ; unsigned int i ; unsigned int j ; unsigned int k ; u32 events ; u32 v ; int tsr ; int rsr ; int rto ; int ror ; int tse ; int rse ; int rte ; int roe ; int kror ; u32 cntrl ; u32 irqen ; u32 stats ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; bool tmp___5 ; bool tmp___6 ; unsigned long __flags ; unsigned int __ret ; raw_spinlock_t *tmp___7 ; struct kfifo *__tmp ; void const *__buf ; unsigned long __n ; size_t __recsize ; struct __kfifo *__kfifo ; unsigned int tmp___8 ; raw_spinlock_t *tmp___9 ; struct kfifo *__tmpl ; { { tmp = to_state(sd); state = tmp; tmp___0 = to_ir_state(sd); ir_state = tmp___0; c = (struct i2c_client *)0; *handled = 0; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-19); } else { } { c = ir_state->c; tmp___1 = is_cx23885(state); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { tmp___3 = is_cx23887(state); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { return (-19); } else { } } else { } { cntrl = cx25840_read4(c, 512); irqen = cx25840_read4(c, 532); tmp___5 = is_cx23885(state); } if ((int )tmp___5) { irqen = irqen ^ 51U; } else { { tmp___6 = is_cx23887(state); } if ((int )tmp___6) { irqen = irqen ^ 51U; } else { } } { stats = cx25840_read4(c, 528); tsr = (int )stats & 32; rsr = (int )stats & 16; rto = (int )stats & 1; ror = (int )stats & 2; tse = (int )irqen & 32; rse = (int )irqen & 16; rte = (int )irqen & 1; roe = (int )irqen & 2; } if (ir_debug > 1U) { { printk("\017%s: IR IRQ Status: %s %s %s %s %s %s\n", (char *)(& sd->name), tsr != 0 ? (char *)"tsr" : (char *)" ", rsr != 0 ? (char *)"rsr" : (char *)" ", rto != 0 ? (char *)"rto" : (char *)" ", ror != 0 ? (char *)"ror" : (char *)" ", (stats & 8U) != 0U ? (char *)"tby" : (char *)" ", (stats & 4U) != 0U ? (char *)"rby" : (char *)" "); } } else { } if (ir_debug > 1U) { { printk("\017%s: IR IRQ Enables: %s %s %s %s\n", (char *)(& sd->name), tse != 0 ? (char *)"tse" : (char *)" ", rse != 0 ? (char *)"rse" : (char *)" ", rte != 0 ? (char *)"rte" : (char *)" ", roe != 0 ? (char *)"roe" : (char *)" "); } } else { } if (tse != 0 && tsr != 0) { { irqenable_tx(sd, 0U); events = 1U; } if (((unsigned long )sd != (unsigned long )((struct v4l2_subdev *)0) && (unsigned long )sd->v4l2_dev != (unsigned long )((struct v4l2_device *)0)) && (unsigned long )(sd->v4l2_dev)->notify != (unsigned long )((void (*)(struct v4l2_subdev * , unsigned int , void * ))0)) { { (*((sd->v4l2_dev)->notify))(sd, 1074034177U, (void *)(& events)); } } else { } *handled = 1; } else { } kror = 0; if ((rse != 0 && rsr != 0) || (rte != 0 && rto != 0)) { i = 0U; v = 131072U; goto ldv_31647; ldv_31646: j = 0U; goto ldv_31631; ldv_31630: { v = cx25840_read4(c, 572); rx_data[i].hw_fifo_data = v & 4294836223U; i = i + 1U; j = j + 1U; } ldv_31631: ; if ((v & 131072U) != 0U && j <= 7U) { goto ldv_31630; } else { } if (i == 0U) { goto ldv_31633; } else { } { j = i * 12U; tmp___7 = spinlock_check(& ir_state->rx_kfifo_lock); __flags = _raw_spin_lock_irqsave(tmp___7); __tmp = & ir_state->rx_kfifo; __buf = (void const *)(& rx_data); __n = (unsigned long )j; __recsize = 0UL; __kfifo = & __tmp->__annonCompField50.kfifo; tmp___8 = __kfifo_in(__kfifo, __buf, (unsigned int )__n); __ret = tmp___8; spin_unlock_irqrestore(& ir_state->rx_kfifo_lock, __flags); k = __ret; } if (k != j) { kror = kror + 1; } else { } i = 0U; ldv_31647: ; if ((v & 131072U) != 0U && kror == 0) { goto ldv_31646; } else { } ldv_31633: *handled = 1; } else { } events = 0U; v = 0U; if (kror != 0) { { events = events | 8U; printk("\v%s: IR receiver software FIFO overrun\n", (char *)(& sd->name)); } } else { } if (roe != 0 && ror != 0) { { v = v | 64U; events = events | 4U; printk("\v%s: IR receiver hardware FIFO overrun\n", (char *)(& sd->name)); } } else { } if (rte != 0 && rto != 0) { v = v | 256U; events = events | 2U; } else { } if (v != 0U) { { cx25840_write4(c, 512, cntrl & ~ v); cx25840_write4(c, 512, cntrl); *handled = 1; } } else { } { tmp___9 = spinlock_check(& ir_state->rx_kfifo_lock); flags = _raw_spin_lock_irqsave(tmp___9); __tmpl = & ir_state->rx_kfifo; } if (__tmpl->__annonCompField50.kfifo.in - __tmpl->__annonCompField50.kfifo.out > 1535U) { events = events | 1U; } else { } { spin_unlock_irqrestore(& ir_state->rx_kfifo_lock, flags); } if (events != 0U) { if (((unsigned long )sd != (unsigned long )((struct v4l2_subdev *)0) && (unsigned long )sd->v4l2_dev != (unsigned long )((struct v4l2_device *)0)) && (unsigned long )(sd->v4l2_dev)->notify != (unsigned long )((void (*)(struct v4l2_subdev * , unsigned int , void * ))0)) { { (*((sd->v4l2_dev)->notify))(sd, 1074034176U, (void *)(& events)); } } else { } } else { } return (0); } } static int cx25840_ir_rx_read(struct v4l2_subdev *sd , u8 *buf , size_t count , ssize_t *num ) { struct cx25840_ir_state *ir_state ; struct cx25840_ir_state *tmp ; bool invert ; u16 divider ; unsigned int i ; unsigned int n ; union cx25840_ir_fifo_rec *p ; unsigned int u ; unsigned int v ; unsigned int w ; int tmp___0 ; int tmp___1 ; unsigned long __flags ; unsigned int __ret ; raw_spinlock_t *tmp___2 ; struct kfifo *__tmp ; void *__buf ; unsigned long __n ; size_t __recsize ; struct __kfifo *__kfifo ; unsigned int tmp___3 ; u64 tmp___4 ; { { tmp = to_ir_state(sd); ir_state = tmp; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-19); } else { } { tmp___0 = atomic_read((atomic_t const *)(& ir_state->rx_invert)); invert = tmp___0 != 0; tmp___1 = atomic_read((atomic_t const *)(& ir_state->rxclk_divider)); divider = (unsigned short )tmp___1; n = (unsigned int )(count / 12UL) * 12U; } if (n == 0U) { *num = 0L; return (0); } else { } { tmp___2 = spinlock_check(& ir_state->rx_kfifo_lock); __flags = _raw_spin_lock_irqsave(tmp___2); __tmp = & ir_state->rx_kfifo; __buf = (void *)buf; __n = (unsigned long )n; __recsize = 0UL; __kfifo = & __tmp->__annonCompField50.kfifo; tmp___3 = __kfifo_out(__kfifo, __buf, (unsigned int )__n); __ret = __kfifo_uint_must_check_helper(tmp___3); spin_unlock_irqrestore(& ir_state->rx_kfifo_lock, __flags); n = __kfifo_uint_must_check_helper(__ret); n = n / 12U; *num = (ssize_t )((unsigned long )n * 12UL); p = (union cx25840_ir_fifo_rec *)buf; i = 0U; } goto ldv_31681; ldv_31680: ; if ((p->hw_fifo_data & 131071U) == 131071U) { u = 0U; w = 1U; } else { u = (p->hw_fifo_data & 65536U) != 0U; if ((int )invert) { u = u == 0U; } else { } w = 0U; } { tmp___4 = pulse_width_count_to_ns((int )((unsigned short )p->hw_fifo_data), (int )divider); v = (unsigned int )tmp___4; init_ir_raw_event(& p->ir_core_data); p->ir_core_data.pulse = (unsigned char )u; p->ir_core_data.__annonCompField65.duration = v; p->ir_core_data.timeout = (unsigned char )w; } if (ir_debug > 1U) { { printk("\017%s: rx read: %10u ns %s %s\n", (char *)(& sd->name), v, u != 0U ? (char *)"mark" : (char *)"space", w != 0U ? (char *)"(timed out)" : (char *)""); } } else { } if (w != 0U) { if (ir_debug > 1U) { { printk("\017%s: rx read: end of rx\n", (char *)(& sd->name)); } } else { } } else { } p = p + 1; i = i + 1U; ldv_31681: ; if (i < n) { goto ldv_31680; } else { } return (0); } } static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd , struct v4l2_subdev_ir_parameters *p ) { struct cx25840_ir_state *ir_state ; struct cx25840_ir_state *tmp ; { { tmp = to_ir_state(sd); ir_state = tmp; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-19); } else { } { ldv_mutex_lock_27(& ir_state->rx_params_lock); memcpy((void *)p, (void const *)(& ir_state->rx_params), 44UL); ldv_mutex_unlock_28(& ir_state->rx_params_lock); } return (0); } } static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd ) { struct cx25840_ir_state *ir_state ; struct cx25840_ir_state *tmp ; struct i2c_client *c ; { { tmp = to_ir_state(sd); ir_state = tmp; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-19); } else { } { c = ir_state->c; ldv_mutex_lock_29(& ir_state->rx_params_lock); irqenable_rx(sd, 0U); control_rx_enable(c, 0); control_rx_demodulation_enable(c, 0); control_rx_s_edge_detection(c, 0U); filter_rx_s_min_width(c, 0U); cx25840_write4(c, 520, 65535U); ir_state->rx_params.shutdown = 1; ldv_mutex_unlock_30(& ir_state->rx_params_lock); } return (0); } } static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd , struct v4l2_subdev_ir_parameters *p ) { struct cx25840_ir_state *ir_state ; struct cx25840_ir_state *tmp ; struct i2c_client *c ; struct v4l2_subdev_ir_parameters *o ; u16 rxclk_divider ; int tmp___0 ; u64 tmp___1 ; unsigned long flags ; raw_spinlock_t *tmp___2 ; struct kfifo *__tmp ; unsigned int tmp___3 ; { { tmp = to_ir_state(sd); ir_state = tmp; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-19); } else { } if ((int )p->shutdown) { { tmp___0 = cx25840_ir_rx_shutdown(sd); } return (tmp___0); } else { } if ((unsigned int )p->mode != 0U) { return (-38); } else { } { c = ir_state->c; o = & ir_state->rx_params; ldv_mutex_lock_31(& ir_state->rx_params_lock); o->shutdown = p->shutdown; p->mode = 0; o->mode = p->mode; p->bytes_per_data_element = 12U; o->bytes_per_data_element = p->bytes_per_data_element; irqenable_rx(sd, 0U); control_rx_enable(c, 0); control_rx_demodulation_enable(c, (int )p->modulation); o->modulation = p->modulation; } if ((int )p->modulation) { { p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq, & rxclk_divider); o->carrier_freq = p->carrier_freq; p->duty_cycle = 50U; o->duty_cycle = p->duty_cycle; control_rx_s_carrier_window(c, p->carrier_freq, & p->carrier_range_lower, & p->carrier_range_upper); o->carrier_range_lower = p->carrier_range_lower; o->carrier_range_upper = p->carrier_range_upper; tmp___1 = pulse_width_count_to_ns(65535, (int )rxclk_divider); p->max_pulse_width = (unsigned int )tmp___1; } } else { { p->max_pulse_width = rxclk_rx_s_max_pulse_width(c, p->max_pulse_width, & rxclk_divider); } } { o->max_pulse_width = p->max_pulse_width; atomic_set(& ir_state->rxclk_divider, (int )rxclk_divider); p->noise_filter_min_width = filter_rx_s_min_width(c, p->noise_filter_min_width); o->noise_filter_min_width = p->noise_filter_min_width; p->resolution = clock_divider_to_resolution((int )rxclk_divider); o->resolution = p->resolution; control_rx_irq_watermark(c, 0); control_rx_s_edge_detection(c, 12U); o->invert_level = p->invert_level; atomic_set(& ir_state->rx_invert, (int )p->invert_level); o->interrupt_enable = p->interrupt_enable; o->enable = p->enable; } if ((int )p->enable) { { tmp___2 = spinlock_check(& ir_state->rx_kfifo_lock); flags = _raw_spin_lock_irqsave(tmp___2); __tmp = & ir_state->rx_kfifo; tmp___3 = 0U; __tmp->__annonCompField50.kfifo.out = tmp___3; __tmp->__annonCompField50.kfifo.in = tmp___3; spin_unlock_irqrestore(& ir_state->rx_kfifo_lock, flags); } if ((int )p->interrupt_enable) { { irqenable_rx(sd, 19U); } } else { } { control_rx_enable(c, (int )p->enable); } } else { } { ldv_mutex_unlock_32(& ir_state->rx_params_lock); } return (0); } } static int cx25840_ir_tx_write(struct v4l2_subdev *sd , u8 *buf , size_t count , ssize_t *num ) { struct cx25840_ir_state *ir_state ; struct cx25840_ir_state *tmp ; { { tmp = to_ir_state(sd); ir_state = tmp; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-19); } else { } { irqenable_tx(sd, 32U); *num = (ssize_t )count; } return (0); } } static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd , struct v4l2_subdev_ir_parameters *p ) { struct cx25840_ir_state *ir_state ; struct cx25840_ir_state *tmp ; { { tmp = to_ir_state(sd); ir_state = tmp; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-19); } else { } { ldv_mutex_lock_33(& ir_state->tx_params_lock); memcpy((void *)p, (void const *)(& ir_state->tx_params), 44UL); ldv_mutex_unlock_34(& ir_state->tx_params_lock); } return (0); } } static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd ) { struct cx25840_ir_state *ir_state ; struct cx25840_ir_state *tmp ; struct i2c_client *c ; { { tmp = to_ir_state(sd); ir_state = tmp; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-19); } else { } { c = ir_state->c; ldv_mutex_lock_35(& ir_state->tx_params_lock); irqenable_tx(sd, 0U); control_tx_enable(c, 0); control_tx_modulation_enable(c, 0); cx25840_write4(c, 516, 65535U); ir_state->tx_params.shutdown = 1; ldv_mutex_unlock_36(& ir_state->tx_params_lock); } return (0); } } static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd , struct v4l2_subdev_ir_parameters *p ) { struct cx25840_ir_state *ir_state ; struct cx25840_ir_state *tmp ; struct i2c_client *c ; struct v4l2_subdev_ir_parameters *o ; u16 txclk_divider ; int tmp___0 ; u64 tmp___1 ; { { tmp = to_ir_state(sd); ir_state = tmp; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-19); } else { } if ((int )p->shutdown) { { tmp___0 = cx25840_ir_tx_shutdown(sd); } return (tmp___0); } else { } if ((unsigned int )p->mode != 0U) { return (-38); } else { } { c = ir_state->c; o = & ir_state->tx_params; ldv_mutex_lock_37(& ir_state->tx_params_lock); o->shutdown = p->shutdown; p->mode = 0; o->mode = p->mode; p->bytes_per_data_element = 12U; o->bytes_per_data_element = p->bytes_per_data_element; irqenable_tx(sd, 0U); control_tx_enable(c, 0); control_tx_modulation_enable(c, (int )p->modulation); o->modulation = p->modulation; } if ((int )p->modulation) { { p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq, & txclk_divider); o->carrier_freq = p->carrier_freq; p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle); o->duty_cycle = p->duty_cycle; tmp___1 = pulse_width_count_to_ns(65535, (int )txclk_divider); p->max_pulse_width = (unsigned int )tmp___1; } } else { { p->max_pulse_width = txclk_tx_s_max_pulse_width(c, p->max_pulse_width, & txclk_divider); } } { o->max_pulse_width = p->max_pulse_width; atomic_set(& ir_state->txclk_divider, (int )txclk_divider); p->resolution = clock_divider_to_resolution((int )txclk_divider); o->resolution = p->resolution; control_tx_irq_watermark(c, 0); control_tx_polarity_invert(c, (int )p->invert_carrier_sense); o->invert_carrier_sense = p->invert_carrier_sense; o->invert_level = p->invert_level; o->interrupt_enable = p->interrupt_enable; o->enable = p->enable; } if ((int )p->enable) { if ((int )p->interrupt_enable) { { irqenable_tx(sd, 32U); } } else { } { control_tx_enable(c, (int )p->enable); } } else { } { ldv_mutex_unlock_38(& ir_state->tx_params_lock); } return (0); } } int cx25840_ir_log_status(struct v4l2_subdev *sd ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct i2c_client *c ; char *s ; int i ; int j ; u32 cntrl ; u32 txclk ; u32 rxclk ; u32 cduty ; u32 stats ; u32 irqen ; u32 filtr ; bool tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; bool tmp___4 ; bool tmp___5 ; u32 tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; u64 tmp___10 ; unsigned int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned int tmp___14 ; u64 tmp___15 ; unsigned int tmp___16 ; { { tmp = to_state(sd); state = tmp; c = state->c; tmp___0 = is_cx23888(state); } if ((int )tmp___0) { return (0); } else { } { cntrl = cx25840_read4(c, 512); tmp___1 = cx25840_read4(c, 516); txclk = tmp___1 & 65535U; tmp___2 = cx25840_read4(c, 520); rxclk = tmp___2 & 65535U; tmp___3 = cx25840_read4(c, 524); cduty = tmp___3 & 15U; stats = cx25840_read4(c, 528); irqen = cx25840_read4(c, 532); tmp___4 = is_cx23885(state); } if ((int )tmp___4) { irqen = irqen ^ 51U; } else { { tmp___5 = is_cx23887(state); } if ((int )tmp___5) { irqen = irqen ^ 51U; } else { } } { tmp___6 = cx25840_read4(c, 536); filtr = tmp___6 & 65535U; printk("\016%s: IR Receiver:\n", (char *)(& sd->name)); printk("\016%s: \tEnabled: %s\n", (char *)(& sd->name), (cntrl & 256U) != 0U ? (char *)"yes" : (char *)"no"); printk("\016%s: \tDemodulation from a carrier: %s\n", (char *)(& sd->name), (cntrl & 16U) != 0U ? (char *)"enabled" : (char *)"disabled"); printk("\016%s: \tFIFO: %s\n", (char *)(& sd->name), (cntrl & 64U) != 0U ? (char *)"enabled" : (char *)"disabled"); } { if ((cntrl & 12U) == 0U) { goto case_0; } else { } if ((cntrl & 12U) == 4U) { goto case_4; } else { } if ((cntrl & 12U) == 8U) { goto case_8; } else { } if ((cntrl & 12U) == 12U) { goto case_12; } else { } goto switch_default; case_0: /* CIL Label */ s = (char *)"disabled"; goto ldv_31748; case_4: /* CIL Label */ s = (char *)"falling edge"; goto ldv_31748; case_8: /* CIL Label */ s = (char *)"rising edge"; goto ldv_31748; case_12: /* CIL Label */ s = (char *)"rising & falling edges"; goto ldv_31748; switch_default: /* CIL Label */ s = (char *)"??? edge"; goto ldv_31748; switch_break: /* CIL Label */ ; } ldv_31748: { printk("\016%s: \tPulse timers\' start/stop trigger: %s\n", (char *)(& sd->name), s); printk("\016%s: \tFIFO data on pulse timer overflow: %s\n", (char *)(& sd->name), (cntrl & 16384U) != 0U ? (char *)"not loaded" : (char *)"overflow marker"); printk("\016%s: \tFIFO interrupt watermark: %s\n", (char *)(& sd->name), (cntrl & 1024U) != 0U ? (char *)"not empty" : (char *)"half full or greater"); printk("\016%s: \tLoopback mode: %s\n", (char *)(& sd->name), (cntrl & 8192U) != 0U ? (char *)"loopback active" : (char *)"normal receive"); } if ((cntrl & 16U) != 0U) { { tmp___7 = clock_divider_to_carrier_freq(rxclk); printk("\016%s: \tExpected carrier (16 clocks): %u Hz\n", (char *)(& sd->name), tmp___7); } { if ((cntrl & 3U) == 0U) { goto case_0___0; } else { } if ((cntrl & 3U) == 1U) { goto case_1; } else { } if ((cntrl & 3U) == 2U) { goto case_2; } else { } if ((cntrl & 3U) == 3U) { goto case_3; } else { } goto switch_default___0; case_0___0: /* CIL Label */ i = 3; j = 3; goto ldv_31754; case_1: /* CIL Label */ i = 4; j = 3; goto ldv_31754; case_2: /* CIL Label */ i = 3; j = 4; goto ldv_31754; case_3: /* CIL Label */ i = 4; j = 4; goto ldv_31754; switch_default___0: /* CIL Label */ i = 0; j = 0; goto ldv_31754; switch_break___0: /* CIL Label */ ; } ldv_31754: { tmp___8 = clock_divider_to_freq(rxclk, (unsigned int )(16 - i)); tmp___9 = clock_divider_to_freq(rxclk, (unsigned int )(j + 16)); printk("\016%s: \tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n", (char *)(& sd->name), i, j, tmp___9, tmp___8); } } else { } { tmp___10 = pulse_width_count_to_ns(65535, (int )((u16 )rxclk)); tmp___11 = pulse_width_count_to_us(65535, (int )((u16 )rxclk)); printk("\016%s: \tMax measurable pulse width: %u us, %llu ns\n", (char *)(& sd->name), tmp___11, tmp___10); printk("\016%s: \tLow pass filter: %s\n", (char *)(& sd->name), filtr != 0U ? (char *)"enabled" : (char *)"disabled"); } if (filtr != 0U) { { tmp___12 = lpf_count_to_ns(filtr); tmp___13 = lpf_count_to_us(filtr); printk("\016%s: \tMin acceptable pulse width (LPF): %u us, %u ns\n", (char *)(& sd->name), tmp___13, tmp___12); } } else { } { printk("\016%s: \tPulse width timer timed-out: %s\n", (char *)(& sd->name), (int )stats & 1 ? (char *)"yes" : (char *)"no"); printk("\016%s: \tPulse width timer time-out intr: %s\n", (char *)(& sd->name), (int )irqen & 1 ? (char *)"enabled" : (char *)"disabled"); printk("\016%s: \tFIFO overrun: %s\n", (char *)(& sd->name), (stats & 2U) != 0U ? (char *)"yes" : (char *)"no"); printk("\016%s: \tFIFO overrun interrupt: %s\n", (char *)(& sd->name), (irqen & 2U) != 0U ? (char *)"enabled" : (char *)"disabled"); printk("\016%s: \tBusy: %s\n", (char *)(& sd->name), (stats & 4U) != 0U ? (char *)"yes" : (char *)"no"); printk("\016%s: \tFIFO service requested: %s\n", (char *)(& sd->name), (stats & 16U) != 0U ? (char *)"yes" : (char *)"no"); printk("\016%s: \tFIFO service request interrupt: %s\n", (char *)(& sd->name), (irqen & 16U) != 0U ? (char *)"enabled" : (char *)"disabled"); printk("\016%s: IR Transmitter:\n", (char *)(& sd->name)); printk("\016%s: \tEnabled: %s\n", (char *)(& sd->name), (cntrl & 512U) != 0U ? (char *)"yes" : (char *)"no"); printk("\016%s: \tModulation onto a carrier: %s\n", (char *)(& sd->name), (cntrl & 32U) != 0U ? (char *)"enabled" : (char *)"disabled"); printk("\016%s: \tFIFO: %s\n", (char *)(& sd->name), (cntrl & 128U) != 0U ? (char *)"enabled" : (char *)"disabled"); printk("\016%s: \tFIFO interrupt watermark: %s\n", (char *)(& sd->name), (cntrl & 2048U) != 0U ? (char *)"not empty" : (char *)"half full or less"); printk("\016%s: \tCarrier polarity: %s\n", (char *)(& sd->name), (cntrl & 4096U) != 0U ? (char *)"space:burst mark:noburst" : (char *)"space:noburst mark:burst"); } if ((cntrl & 32U) != 0U) { { tmp___14 = clock_divider_to_carrier_freq(txclk); printk("\016%s: \tCarrier (16 clocks): %u Hz\n", (char *)(& sd->name), tmp___14); printk("\016%s: \tCarrier duty cycle: %2u/16\n", (char *)(& sd->name), cduty + 1U); } } else { } { tmp___15 = pulse_width_count_to_ns(65535, (int )((u16 )txclk)); tmp___16 = pulse_width_count_to_us(65535, (int )((u16 )txclk)); printk("\016%s: \tMax pulse width: %u us, %llu ns\n", (char *)(& sd->name), tmp___16, tmp___15); printk("\016%s: \tBusy: %s\n", (char *)(& sd->name), (stats & 8U) != 0U ? (char *)"yes" : (char *)"no"); printk("\016%s: \tFIFO service requested: %s\n", (char *)(& sd->name), (stats & 32U) != 0U ? (char *)"yes" : (char *)"no"); printk("\016%s: \tFIFO service request interrupt: %s\n", (char *)(& sd->name), (irqen & 32U) != 0U ? (char *)"enabled" : (char *)"disabled"); } return (0); } } struct v4l2_subdev_ir_ops const cx25840_ir_ops = {& cx25840_ir_rx_read, & cx25840_ir_rx_g_parameters, & cx25840_ir_rx_s_parameters, & cx25840_ir_tx_write, & cx25840_ir_tx_g_parameters, & cx25840_ir_tx_s_parameters}; static struct v4l2_subdev_ir_parameters const default_rx_params = {12U, 0, 0, 0, 1, 1, 0U, 36000U, 0U, 0, (_Bool)0, 333333U, 35000U, 37000U, 0U}; static struct v4l2_subdev_ir_parameters const default_tx_params = {12U, 0, 0, 0, 1, 1, 0U, 36000U, 25U, 0, 0, 0U, 0U, 0U, 0U}; int cx25840_ir_probe(struct v4l2_subdev *sd ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct cx25840_ir_state *ir_state ; struct v4l2_subdev_ir_parameters default_params ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; void *tmp___4 ; struct lock_class_key __key ; struct kfifo *__tmp ; struct __kfifo *__kfifo ; int tmp___5 ; int tmp___6 ; bool tmp___7 ; bool tmp___8 ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; { { tmp = to_state(sd); state = tmp; tmp___0 = is_cx23885(state); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { tmp___2 = is_cx23887(state); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (0); } else { } } else { } { tmp___4 = devm_kzalloc(& (state->c)->dev, 552UL, 208U); ir_state = (struct cx25840_ir_state *)tmp___4; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-12); } else { } { spinlock_check(& ir_state->rx_kfifo_lock); __raw_spin_lock_init(& ir_state->rx_kfifo_lock.__annonCompField20.rlock, "&(&ir_state->rx_kfifo_lock)->rlock", & __key); __tmp = & ir_state->rx_kfifo; __kfifo = & __tmp->__annonCompField50.kfifo; tmp___5 = __kfifo_alloc(__kfifo, 3072U, 1UL, 208U); tmp___6 = __kfifo_int_must_check_helper(tmp___5); } if (tmp___6 != 0) { return (-12); } else { } { ir_state->c = state->c; state->ir_state = ir_state; tmp___7 = is_cx23885(state); } if ((int )tmp___7) { { cx25840_write4(ir_state->c, 532, 51U); } } else { { tmp___8 = is_cx23887(state); } if ((int )tmp___8) { { cx25840_write4(ir_state->c, 532, 51U); } } else { { cx25840_write4(ir_state->c, 532, 0U); } } } { __mutex_init(& ir_state->rx_params_lock, "&ir_state->rx_params_lock", & __key___0); default_params = default_rx_params; } if ((unsigned long )sd != (unsigned long )((struct v4l2_subdev *)0)) { if ((unsigned long )(sd->ops)->ir != (unsigned long )((struct v4l2_subdev_ir_ops const */* const */)0) && (unsigned long )((sd->ops)->ir)->rx_s_parameters != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ))0)) { { (*(((sd->ops)->ir)->rx_s_parameters))(sd, & default_params); } } else { } } else { } { __mutex_init(& ir_state->tx_params_lock, "&ir_state->tx_params_lock", & __key___1); default_params = default_tx_params; } if ((unsigned long )sd != (unsigned long )((struct v4l2_subdev *)0)) { if ((unsigned long )(sd->ops)->ir != (unsigned long )((struct v4l2_subdev_ir_ops const */* const */)0) && (unsigned long )((sd->ops)->ir)->tx_s_parameters != (unsigned long )((int (*/* const */)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ))0)) { { (*(((sd->ops)->ir)->tx_s_parameters))(sd, & default_params); } } else { } } else { } return (0); } } int cx25840_ir_remove(struct v4l2_subdev *sd ) { struct cx25840_state *state ; struct cx25840_state *tmp ; struct cx25840_ir_state *ir_state ; struct cx25840_ir_state *tmp___0 ; struct kfifo *__tmp ; struct __kfifo *__kfifo ; { { tmp = to_state(sd); state = tmp; tmp___0 = to_ir_state(sd); ir_state = tmp___0; } if ((unsigned long )ir_state == (unsigned long )((struct cx25840_ir_state *)0)) { return (-19); } else { } { cx25840_ir_rx_shutdown(sd); cx25840_ir_tx_shutdown(sd); __tmp = & ir_state->rx_kfifo; __kfifo = & __tmp->__annonCompField50.kfifo; __kfifo_free(__kfifo); state->ir_state = (struct cx25840_ir_state *)0; } return (0); } } void ldv_dummy_resourceless_instance_callback_3_28(int (*arg0)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) , struct v4l2_subdev *arg1 , struct v4l2_subdev_ir_parameters *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_29(int (*arg0)(struct v4l2_subdev * , unsigned char * , unsigned long , long * ) , struct v4l2_subdev *arg1 , unsigned char *arg2 , unsigned long arg3 , long *arg4 ) ; void ldv_dummy_resourceless_instance_callback_3_32(int (*arg0)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) , struct v4l2_subdev *arg1 , struct v4l2_subdev_ir_parameters *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_58(int (*arg0)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) , struct v4l2_subdev *arg1 , struct v4l2_subdev_ir_parameters *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_59(int (*arg0)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) , struct v4l2_subdev *arg1 , struct v4l2_subdev_ir_parameters *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_60(int (*arg0)(struct v4l2_subdev * , unsigned char * , unsigned long , long * ) , struct v4l2_subdev *arg1 , unsigned char *arg2 , unsigned long arg3 , long *arg4 ) ; struct ldv_thread ldv_thread_3 ; void ldv_dummy_resourceless_instance_callback_3_28(int (*arg0)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) , struct v4l2_subdev *arg1 , struct v4l2_subdev_ir_parameters *arg2 ) { { { cx25840_ir_rx_g_parameters(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_29(int (*arg0)(struct v4l2_subdev * , unsigned char * , unsigned long , long * ) , struct v4l2_subdev *arg1 , unsigned char *arg2 , unsigned long arg3 , long *arg4 ) { { { cx25840_ir_rx_read(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_3_32(int (*arg0)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) , struct v4l2_subdev *arg1 , struct v4l2_subdev_ir_parameters *arg2 ) { { { cx25840_ir_rx_s_parameters(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_58(int (*arg0)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) , struct v4l2_subdev *arg1 , struct v4l2_subdev_ir_parameters *arg2 ) { { { cx25840_ir_tx_g_parameters(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_59(int (*arg0)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) , struct v4l2_subdev *arg1 , struct v4l2_subdev_ir_parameters *arg2 ) { { { cx25840_ir_tx_s_parameters(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_60(int (*arg0)(struct v4l2_subdev * , unsigned char * , unsigned long , long * ) , struct v4l2_subdev *arg1 , unsigned char *arg2 , unsigned long arg3 , long *arg4 ) { { { cx25840_ir_tx_write(arg1, arg2, arg3, arg4); } return; } } void ldv_struct_v4l2_subdev_video_ops_dummy_resourceless_instance_3(void *arg0 ) { int (*ldv_3_callback_decode_vbi_line)(struct v4l2_subdev * , struct v4l2_decode_vbi_line * ) ; int (*ldv_3_callback_g_ctrl)(struct v4l2_subdev * , struct v4l2_control * ) ; int (*ldv_3_callback_g_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*ldv_3_callback_g_input_status)(struct v4l2_subdev * , unsigned int * ) ; int (*ldv_3_callback_g_register)(struct v4l2_subdev * , struct v4l2_dbg_register * ) ; int (*ldv_3_callback_g_sliced_fmt)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) ; int (*ldv_3_callback_g_std)(struct v4l2_subdev * , unsigned long long * ) ; int (*ldv_3_callback_g_tuner)(struct v4l2_subdev * , struct v4l2_tuner * ) ; int (*ldv_3_callback_interrupt_service_routine)(struct v4l2_subdev * , unsigned int , _Bool * ) ; int (*ldv_3_callback_load_fw)(struct v4l2_subdev * ) ; int (*ldv_3_callback_log_status)(struct v4l2_subdev * ) ; int (*ldv_3_callback_queryctrl)(struct v4l2_subdev * , struct v4l2_queryctrl * ) ; int (*ldv_3_callback_querymenu)(struct v4l2_subdev * , struct v4l2_querymenu * ) ; int (*ldv_3_callback_reset)(struct v4l2_subdev * , unsigned int ) ; int (*ldv_3_callback_rx_g_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*ldv_3_callback_rx_read)(struct v4l2_subdev * , unsigned char * , unsigned long , long * ) ; int (*ldv_3_callback_rx_s_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*ldv_3_callback_s_clock_freq)(struct v4l2_subdev * , unsigned int ) ; int (*ldv_3_callback_s_ctrl)(struct v4l2_subdev * , struct v4l2_control * ) ; int (*ldv_3_callback_s_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*ldv_3_callback_s_frequency)(struct v4l2_subdev * , struct v4l2_frequency * ) ; int (*ldv_3_callback_s_io_pin_config)(struct v4l2_subdev * , unsigned long , struct v4l2_subdev_io_pin_config * ) ; int (*ldv_3_callback_s_mbus_fmt)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) ; int (*ldv_3_callback_s_radio)(struct v4l2_subdev * ) ; int (*ldv_3_callback_s_raw_fmt)(struct v4l2_subdev * , struct v4l2_vbi_format * ) ; int (*ldv_3_callback_s_register)(struct v4l2_subdev * , struct v4l2_dbg_register * ) ; int (*ldv_3_callback_s_routing)(struct v4l2_subdev * , unsigned int , unsigned int , unsigned int ) ; int (*ldv_3_callback_s_sliced_fmt)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) ; int (*ldv_3_callback_s_std)(struct v4l2_subdev * , unsigned long long ) ; int (*ldv_3_callback_s_stream)(struct v4l2_subdev * , int ) ; int (*ldv_3_callback_s_tuner)(struct v4l2_subdev * , struct v4l2_tuner * ) ; int (*ldv_3_callback_try_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*ldv_3_callback_tx_g_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*ldv_3_callback_tx_s_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*ldv_3_callback_tx_write)(struct v4l2_subdev * , unsigned char * , unsigned long , long * ) ; struct v4l2_control *ldv_3_container_struct_v4l2_control_ptr ; struct v4l2_dbg_register *ldv_3_container_struct_v4l2_dbg_register_ptr ; struct v4l2_decode_vbi_line *ldv_3_container_struct_v4l2_decode_vbi_line_ptr ; struct v4l2_ext_controls *ldv_3_container_struct_v4l2_ext_controls_ptr ; struct v4l2_frequency *ldv_3_container_struct_v4l2_frequency_ptr ; struct v4l2_mbus_framefmt *ldv_3_container_struct_v4l2_mbus_framefmt_ptr ; struct v4l2_queryctrl *ldv_3_container_struct_v4l2_queryctrl_ptr ; struct v4l2_querymenu *ldv_3_container_struct_v4l2_querymenu_ptr ; struct v4l2_sliced_vbi_format *ldv_3_container_struct_v4l2_sliced_vbi_format_ptr ; struct v4l2_subdev_io_pin_config *ldv_3_container_struct_v4l2_subdev_io_pin_config_ptr ; struct v4l2_subdev_ir_parameters *ldv_3_container_struct_v4l2_subdev_ir_parameters_ptr ; struct v4l2_subdev *ldv_3_container_struct_v4l2_subdev_ptr ; struct v4l2_tuner *ldv_3_container_struct_v4l2_tuner_ptr ; struct v4l2_vbi_format *ldv_3_container_struct_v4l2_vbi_format_ptr ; unsigned long long *ldv_3_ldv_param_14_1_default ; unsigned int ldv_3_ldv_param_18_1_default ; _Bool *ldv_3_ldv_param_18_2_default ; unsigned int ldv_3_ldv_param_25_1_default ; unsigned char *ldv_3_ldv_param_29_1_default ; unsigned long ldv_3_ldv_param_29_2_default ; long *ldv_3_ldv_param_29_3_default ; unsigned int ldv_3_ldv_param_33_1_default ; unsigned long ldv_3_ldv_param_39_1_default ; unsigned int ldv_3_ldv_param_46_1_default ; unsigned int ldv_3_ldv_param_46_2_default ; unsigned int ldv_3_ldv_param_46_3_default ; unsigned long long ldv_3_ldv_param_50_1_default ; int ldv_3_ldv_param_53_1_default ; unsigned char *ldv_3_ldv_param_60_1_default ; unsigned long ldv_3_ldv_param_60_2_default ; long *ldv_3_ldv_param_60_3_default ; unsigned int *ldv_3_ldv_param_9_1_default ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; { goto ldv_call_3; return; ldv_call_3: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } if (tmp == 30) { goto case_30; } else { } if (tmp == 31) { goto case_31; } else { } if (tmp == 32) { goto case_32; } else { } if (tmp == 33) { goto case_33; } else { } if (tmp == 34) { goto case_34; } else { } if (tmp == 35) { goto case_35; } else { } if (tmp == 36) { goto case_36; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_3_ldv_param_60_1_default = (unsigned char *)tmp___0; tmp___1 = ldv_xmalloc(8UL); ldv_3_ldv_param_60_3_default = (long *)tmp___1; ldv_dummy_resourceless_instance_callback_3_60(ldv_3_callback_tx_write, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_60_1_default, ldv_3_ldv_param_60_2_default, ldv_3_ldv_param_60_3_default); ldv_free((void *)ldv_3_ldv_param_60_1_default); ldv_free((void *)ldv_3_ldv_param_60_3_default); } goto ldv_call_3; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_59(ldv_3_callback_tx_s_parameters, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_subdev_ir_parameters_ptr); } goto ldv_call_3; goto ldv_call_3; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_58(ldv_3_callback_tx_g_parameters, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_subdev_ir_parameters_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_57(ldv_3_callback_try_ext_ctrls, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_ext_controls_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_56(ldv_3_callback_s_tuner, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_tuner_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_53(ldv_3_callback_s_stream, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_53_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_50(ldv_3_callback_s_std, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_50_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_49(ldv_3_callback_s_sliced_fmt, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_sliced_vbi_format_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_46(ldv_3_callback_s_routing, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_46_1_default, ldv_3_ldv_param_46_2_default, ldv_3_ldv_param_46_3_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_45(ldv_3_callback_s_register, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_dbg_register_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_44(ldv_3_callback_s_raw_fmt, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_vbi_format_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_43(ldv_3_callback_s_radio, ldv_3_container_struct_v4l2_subdev_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_42(ldv_3_callback_s_mbus_fmt, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_mbus_framefmt_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_39(ldv_3_callback_s_io_pin_config, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_39_1_default, ldv_3_container_struct_v4l2_subdev_io_pin_config_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_38(ldv_3_callback_s_frequency, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_frequency_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_37(ldv_3_callback_s_ext_ctrls, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_ext_controls_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_36(ldv_3_callback_s_ctrl, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_control_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_33(ldv_3_callback_s_clock_freq, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_33_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_32(ldv_3_callback_rx_s_parameters, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_subdev_ir_parameters_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_20: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_3_ldv_param_29_1_default = (unsigned char *)tmp___2; tmp___3 = ldv_xmalloc(8UL); ldv_3_ldv_param_29_3_default = (long *)tmp___3; ldv_dummy_resourceless_instance_callback_3_29(ldv_3_callback_rx_read, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_29_1_default, ldv_3_ldv_param_29_2_default, ldv_3_ldv_param_29_3_default); ldv_free((void *)ldv_3_ldv_param_29_1_default); ldv_free((void *)ldv_3_ldv_param_29_3_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_28(ldv_3_callback_rx_g_parameters, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_subdev_ir_parameters_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_25(ldv_3_callback_reset, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_25_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_24(ldv_3_callback_querymenu, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_querymenu_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_24: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_23(ldv_3_callback_queryctrl, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_queryctrl_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_22(ldv_3_callback_log_status, ldv_3_container_struct_v4l2_subdev_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_21(ldv_3_callback_load_fw, ldv_3_container_struct_v4l2_subdev_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_27: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_3_ldv_param_18_2_default = (_Bool *)tmp___4; ldv_dummy_resourceless_instance_callback_3_18(ldv_3_callback_interrupt_service_routine, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_18_1_default, ldv_3_ldv_param_18_2_default); ldv_free((void *)ldv_3_ldv_param_18_2_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_17(ldv_3_callback_g_tuner, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_tuner_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_29: /* CIL Label */ { tmp___5 = ldv_xmalloc(8UL); ldv_3_ldv_param_14_1_default = (unsigned long long *)tmp___5; ldv_dummy_resourceless_instance_callback_3_14(ldv_3_callback_g_std, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_14_1_default); ldv_free((void *)ldv_3_ldv_param_14_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_13(ldv_3_callback_g_sliced_fmt, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_sliced_vbi_format_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_12(ldv_3_callback_g_register, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_dbg_register_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_32: /* CIL Label */ { tmp___6 = ldv_xmalloc(4UL); ldv_3_ldv_param_9_1_default = (unsigned int *)tmp___6; ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_g_input_status, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_ldv_param_9_1_default); ldv_free((void *)ldv_3_ldv_param_9_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_8(ldv_3_callback_g_ext_ctrls, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_ext_controls_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_7(ldv_3_callback_g_ctrl, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_control_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_35: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_decode_vbi_line, ldv_3_container_struct_v4l2_subdev_ptr, ldv_3_container_struct_v4l2_decode_vbi_line_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_36: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } static void ldv_mutex_lock_27(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_lock_rx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_28(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_rx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_lock_29(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_lock_rx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_30(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_rx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_lock_31(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_lock_rx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_32(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_rx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_lock_33(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_lock_tx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_34(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_tx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_lock_35(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_lock_tx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_36(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_tx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_lock_37(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_lock_tx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_38(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_tx_params_lock_of_cx25840_ir_state(ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } long ldv__builtin_expect(long exp , long c ) ; extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_MUTEXES_i_mutex_of_inode ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_i_mutex_of_inode); LDV_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_i_mutex_of_inode); tmp = ldv_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_i_mutex_of_inode); LDV_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_MUTEXES_lock ; void ldv_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_lock); LDV_MUTEXES_lock = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_lock); tmp = ldv_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_lock = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_lock(lock); } return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_lock); LDV_MUTEXES_lock = 0; } return; } } ldv_set LDV_MUTEXES_lock_of_v4l2_ctrl_handler ; void ldv_mutex_lock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_lock_of_v4l2_ctrl_handler); LDV_MUTEXES_lock_of_v4l2_ctrl_handler = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_lock_of_v4l2_ctrl_handler); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_lock_of_v4l2_ctrl_handler = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_lock_of_v4l2_ctrl_handler) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_lock_of_v4l2_ctrl_handler); tmp = ldv_mutex_is_locked_lock_of_v4l2_ctrl_handler(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_lock_of_v4l2_ctrl_handler = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock_of_v4l2_ctrl_handler(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_lock_of_v4l2_ctrl_handler(lock); } return (1); } } } void ldv_mutex_unlock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_lock_of_v4l2_ctrl_handler); LDV_MUTEXES_lock_of_v4l2_ctrl_handler = 0; } return; } } ldv_set LDV_MUTEXES_mutex_of_device ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_mutex_of_device); LDV_MUTEXES_mutex_of_device = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_mutex_of_device); tmp = ldv_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_mutex_of_device); LDV_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state ; void ldv_mutex_lock_rx_params_lock_of_cx25840_ir_state(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state); LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_rx_params_lock_of_cx25840_ir_state(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_rx_params_lock_of_cx25840_ir_state(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_rx_params_lock_of_cx25840_ir_state(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state); tmp = ldv_mutex_is_locked_rx_params_lock_of_cx25840_ir_state(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_rx_params_lock_of_cx25840_ir_state(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_rx_params_lock_of_cx25840_ir_state(lock); } return (1); } } } void ldv_mutex_unlock_rx_params_lock_of_cx25840_ir_state(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state); LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state = 0; } return; } } ldv_set LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state ; void ldv_mutex_lock_tx_params_lock_of_cx25840_ir_state(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state); LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_tx_params_lock_of_cx25840_ir_state(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_tx_params_lock_of_cx25840_ir_state(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_tx_params_lock_of_cx25840_ir_state(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state); tmp = ldv_mutex_is_locked_tx_params_lock_of_cx25840_ir_state(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_tx_params_lock_of_cx25840_ir_state(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_tx_params_lock_of_cx25840_ir_state(lock); } return (1); } } } void ldv_mutex_unlock_tx_params_lock_of_cx25840_ir_state(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state); LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state = 0; } return; } } void ldv_initialize(void) { { LDV_MUTEXES_i_mutex_of_inode = 0; LDV_MUTEXES_lock = 0; LDV_MUTEXES_lock_of_v4l2_ctrl_handler = 0; LDV_MUTEXES_mutex_of_device = 0; LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state = 0; LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state = 0; return; } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_lock_of_v4l2_ctrl_handler); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_rx_params_lock_of_cx25840_ir_state); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_tx_params_lock_of_cx25840_ir_state); } return; } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__linux-kernel-locking-mutex__drivers-media-i2c-cx25840-cx25840_true-unreach-call.cil.env.c" #include "model/common.env.c"