/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct ldv_thread; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; typedef int pao_T__; typedef int pao_T_____0; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22110 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22110 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; enum pkt_hash_types { PKT_HASH_TYPE_NONE = 0, PKT_HASH_TYPE_L2 = 1, PKT_HASH_TYPE_L3 = 2, PKT_HASH_TYPE_L4 = 3 } ; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28468 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28469 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28468 reg_state : 8 ; bool dismantle ; enum ldv_28469 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_247 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_247 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_248 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_248 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_253 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_253 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_254 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_254 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_256 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_255 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_256 __annonCompField79 ; }; union __anonunion____missing_field_name_257 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_259 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_258 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_259 __annonCompField82 ; }; union __anonunion____missing_field_name_260 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_261 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_255 __annonCompField80 ; union __anonunion____missing_field_name_257 __annonCompField81 ; union __anonunion____missing_field_name_258 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_260 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_261 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_262 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_262 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_263 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_263 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct ipv6hdr { __u8 priority : 4 ; __u8 version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; __u16 res1 : 4 ; __u16 doff : 4 ; __u16 fin : 1 ; __u16 syn : 1 ; __u16 rst : 1 ; __u16 psh : 1 ; __u16 ack : 1 ; __u16 urg : 1 ; __u16 ece : 1 ; __u16 cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; struct arphdr { __be16 ar_hrd ; __be16 ar_pro ; unsigned char ar_hln ; unsigned char ar_pln ; __be16 ar_op ; }; union __anonunion____missing_field_name_275 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_275 __annonCompField86 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_276 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_278 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_277 { struct __anonstruct____missing_field_name_278 __annonCompField88 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_276 __annonCompField87 ; union __anonunion____missing_field_name_277 __annonCompField89 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; struct in_ifaddr; struct ipv4_devconf { void *sysctl ; int data[28U] ; unsigned long state[1U] ; }; struct ip_mc_list; struct in_device { struct net_device *dev ; atomic_t refcnt ; int dead ; struct in_ifaddr *ifa_list ; struct ip_mc_list *mc_list ; struct ip_mc_list **mc_hash ; int mc_count ; spinlock_t mc_tomb_lock ; struct ip_mc_list *mc_tomb ; unsigned long mr_v1_seen ; unsigned long mr_v2_seen ; unsigned long mr_maxdelay ; unsigned char mr_qrv ; unsigned char mr_gq_running ; unsigned char mr_ifc_count ; struct timer_list mr_gq_timer ; struct timer_list mr_ifc_timer ; struct neigh_parms *arp_parms ; struct ipv4_devconf cnf ; struct callback_head callback_head ; }; struct in_ifaddr { struct hlist_node hash ; struct in_ifaddr *ifa_next ; struct in_device *ifa_dev ; struct callback_head callback_head ; __be32 ifa_local ; __be32 ifa_address ; __be32 ifa_mask ; __be32 ifa_broadcast ; unsigned char ifa_scope ; unsigned char ifa_prefixlen ; __u32 ifa_flags ; char ifa_label[16U] ; __u32 ifa_valid_lft ; __u32 ifa_preferred_lft ; unsigned long ifa_cstamp ; unsigned long ifa_tstamp ; }; struct UPT1_TxStats { u64 TSOPktsTxOK ; u64 TSOBytesTxOK ; u64 ucastPktsTxOK ; u64 ucastBytesTxOK ; u64 mcastPktsTxOK ; u64 mcastBytesTxOK ; u64 bcastPktsTxOK ; u64 bcastBytesTxOK ; u64 pktsTxError ; u64 pktsTxDiscard ; }; struct UPT1_RxStats { u64 LROPktsRxOK ; u64 LROBytesRxOK ; u64 ucastPktsRxOK ; u64 ucastBytesRxOK ; u64 mcastPktsRxOK ; u64 mcastBytesRxOK ; u64 bcastPktsRxOK ; u64 bcastBytesRxOK ; u64 pktsRxOutOfBuf ; u64 pktsRxError ; }; struct UPT1_RSSConf { u16 hashType ; u16 hashFunc ; u16 hashKeySize ; u16 indTableSize ; u8 hashKey[40U] ; u8 indTable[128U] ; }; struct Vmxnet3_TxDesc { __le64 addr ; u32 len : 14 ; u32 gen : 1 ; u32 rsvd : 1 ; u32 dtype : 1 ; u32 ext1 : 1 ; u32 msscof : 14 ; u32 hlen : 10 ; u32 om : 2 ; u32 eop : 1 ; u32 cq : 1 ; u32 ext2 : 1 ; u32 ti : 1 ; u32 tci : 16 ; }; struct Vmxnet3_TxDataDesc { u8 data[128U] ; }; struct Vmxnet3_TxCompDesc { u32 txdIdx : 12 ; u32 ext1 : 20 ; __le32 ext2 ; __le32 ext3 ; u32 rsvd : 24 ; u32 type : 7 ; u32 gen : 1 ; }; struct Vmxnet3_RxDesc { __le64 addr ; u32 len : 14 ; u32 btype : 1 ; u32 dtype : 1 ; u32 rsvd : 15 ; u32 gen : 1 ; u32 ext1 ; }; struct Vmxnet3_RxCompDesc { u32 rxdIdx : 12 ; u32 ext1 : 2 ; u32 eop : 1 ; u32 sop : 1 ; u32 rqID : 10 ; u32 rssType : 4 ; u32 cnc : 1 ; u32 ext2 : 1 ; __le32 rssHash ; u32 len : 14 ; u32 err : 1 ; u32 ts : 1 ; u32 tci : 16 ; u32 csum : 16 ; u32 tuc : 1 ; u32 udp : 1 ; u32 tcp : 1 ; u32 ipc : 1 ; u32 v6 : 1 ; u32 v4 : 1 ; u32 frg : 1 ; u32 fcs : 1 ; u32 type : 7 ; u32 gen : 1 ; }; union Vmxnet3_GenericDesc { __le64 qword[2U] ; __le32 dword[4U] ; __le16 word[8U] ; struct Vmxnet3_TxDesc txd ; struct Vmxnet3_RxDesc rxd ; struct Vmxnet3_TxCompDesc tcd ; struct Vmxnet3_RxCompDesc rcd ; }; struct Vmxnet3_GOSInfo { u32 gosBits : 2 ; u32 gosType : 4 ; u32 gosVer : 16 ; u32 gosMisc : 10 ; }; struct Vmxnet3_DriverInfo { __le32 version ; struct Vmxnet3_GOSInfo gos ; __le32 vmxnet3RevSpt ; __le32 uptVerSpt ; }; struct Vmxnet3_MiscConf { struct Vmxnet3_DriverInfo driverInfo ; __le64 uptFeatures ; __le64 ddPA ; __le64 queueDescPA ; __le32 ddLen ; __le32 queueDescLen ; __le32 mtu ; __le16 maxNumRxSG ; u8 numTxQueues ; u8 numRxQueues ; __le32 reserved[4U] ; }; struct Vmxnet3_TxQueueConf { __le64 txRingBasePA ; __le64 dataRingBasePA ; __le64 compRingBasePA ; __le64 ddPA ; __le64 reserved ; __le32 txRingSize ; __le32 dataRingSize ; __le32 compRingSize ; __le32 ddLen ; u8 intrIdx ; u8 _pad[7U] ; }; struct Vmxnet3_RxQueueConf { __le64 rxRingBasePA[2U] ; __le64 compRingBasePA ; __le64 ddPA ; __le64 reserved ; __le32 rxRingSize[2U] ; __le32 compRingSize ; __le32 ddLen ; u8 intrIdx ; u8 _pad[7U] ; }; enum vmxnet3_intr_mask_mode { VMXNET3_IMM_AUTO = 0, VMXNET3_IMM_ACTIVE = 1, VMXNET3_IMM_LAZY = 2 } ; enum vmxnet3_intr_type { VMXNET3_IT_AUTO = 0, VMXNET3_IT_INTX = 1, VMXNET3_IT_MSI = 2, VMXNET3_IT_MSIX = 3 } ; struct Vmxnet3_IntrConf { bool autoMask ; u8 numIntrs ; u8 eventIntrIdx ; u8 modLevels[25U] ; __le32 intrCtrl ; __le32 reserved[2U] ; }; struct Vmxnet3_QueueStatus { bool stopped ; u8 _pad[3U] ; __le32 error ; }; struct Vmxnet3_TxQueueCtrl { __le32 txNumDeferred ; __le32 txThreshold ; __le64 reserved ; }; struct Vmxnet3_RxQueueCtrl { bool updateRxProd ; u8 _pad[7U] ; __le64 reserved ; }; struct Vmxnet3_RxFilterConf { __le32 rxMode ; __le16 mfTableLen ; __le16 _pad1 ; __le64 mfTablePA ; __le32 vfTable[128U] ; }; struct Vmxnet3_PM_PktFilter { u8 maskSize ; u8 patternSize ; u8 mask[16U] ; u8 pattern[128U] ; u8 pad[6U] ; }; struct Vmxnet3_PMConf { __le16 wakeUpEvents ; u8 numFilters ; u8 pad[5U] ; struct Vmxnet3_PM_PktFilter filters[6U] ; }; struct Vmxnet3_VariableLenConfDesc { __le32 confVer ; __le32 confLen ; __le64 confPA ; }; struct Vmxnet3_TxQueueDesc { struct Vmxnet3_TxQueueCtrl ctrl ; struct Vmxnet3_TxQueueConf conf ; struct Vmxnet3_QueueStatus status ; struct UPT1_TxStats stats ; u8 _pad[88U] ; }; struct Vmxnet3_RxQueueDesc { struct Vmxnet3_RxQueueCtrl ctrl ; struct Vmxnet3_RxQueueConf conf ; struct Vmxnet3_QueueStatus status ; struct UPT1_RxStats stats ; u8 __pad[88U] ; }; struct Vmxnet3_DSDevRead { struct Vmxnet3_MiscConf misc ; struct Vmxnet3_IntrConf intrConf ; struct Vmxnet3_RxFilterConf rxFilterConf ; struct Vmxnet3_VariableLenConfDesc rssConfDesc ; struct Vmxnet3_VariableLenConfDesc pmConfDesc ; struct Vmxnet3_VariableLenConfDesc pluginConfDesc ; }; struct Vmxnet3_DriverShared { __le32 magic ; __le32 pad ; struct Vmxnet3_DSDevRead devRead ; __le32 ecr ; __le32 reserved[5U] ; }; struct vmxnet3_cmd_ring { union Vmxnet3_GenericDesc *base ; u32 size ; u32 next2fill ; u32 next2comp ; u8 gen ; dma_addr_t basePA ; }; struct vmxnet3_comp_ring { union Vmxnet3_GenericDesc *base ; u32 size ; u32 next2proc ; u8 gen ; u8 intr_idx ; dma_addr_t basePA ; }; struct vmxnet3_tx_data_ring { struct Vmxnet3_TxDataDesc *base ; u32 size ; dma_addr_t basePA ; }; struct vmxnet3_tx_buf_info { u32 map_type ; u16 len ; u16 sop_idx ; dma_addr_t dma_addr ; struct sk_buff *skb ; }; struct vmxnet3_tq_driver_stats { u64 drop_total ; u64 drop_too_many_frags ; u64 drop_oversized_hdr ; u64 drop_hdr_inspect_err ; u64 drop_tso ; u64 tx_ring_full ; u64 linearized ; u64 copy_skb_header ; u64 oversized_hdr ; }; struct vmxnet3_tx_ctx { bool ipv4 ; u16 mss ; u32 eth_ip_hdr_size ; u32 l4_hdr_size ; u32 copy_size ; union Vmxnet3_GenericDesc *sop_txd ; union Vmxnet3_GenericDesc *eop_txd ; }; struct vmxnet3_adapter; struct vmxnet3_tx_queue { char name[24U] ; struct vmxnet3_adapter *adapter ; spinlock_t tx_lock ; struct vmxnet3_cmd_ring tx_ring ; struct vmxnet3_tx_buf_info *buf_info ; dma_addr_t buf_info_pa ; struct vmxnet3_tx_data_ring data_ring ; struct vmxnet3_comp_ring comp_ring ; struct Vmxnet3_TxQueueCtrl *shared ; struct vmxnet3_tq_driver_stats stats ; bool stopped ; int num_stop ; int qid ; }; enum vmxnet3_rx_buf_type { VMXNET3_RX_BUF_NONE = 0, VMXNET3_RX_BUF_SKB = 1, VMXNET3_RX_BUF_PAGE = 2 } ; union __anonunion____missing_field_name_281 { struct sk_buff *skb ; struct page *page ; }; struct vmxnet3_rx_buf_info { enum vmxnet3_rx_buf_type buf_type ; u16 len ; union __anonunion____missing_field_name_281 __annonCompField91 ; dma_addr_t dma_addr ; }; struct vmxnet3_rx_ctx { struct sk_buff *skb ; u32 sop_idx ; }; struct vmxnet3_rq_driver_stats { u64 drop_total ; u64 drop_err ; u64 drop_fcs ; u64 rx_buf_alloc_failure ; }; struct vmxnet3_rx_queue { char name[24U] ; struct vmxnet3_adapter *adapter ; struct napi_struct napi ; struct vmxnet3_cmd_ring rx_ring[2U] ; struct vmxnet3_comp_ring comp_ring ; struct vmxnet3_rx_ctx rx_ctx ; u32 qid ; u32 qid2 ; struct vmxnet3_rx_buf_info *buf_info[2U] ; dma_addr_t buf_info_pa ; struct Vmxnet3_RxQueueCtrl *shared ; struct vmxnet3_rq_driver_stats stats ; }; struct vmxnet3_intr { enum vmxnet3_intr_mask_mode mask_mode ; enum vmxnet3_intr_type type ; u8 num_intrs ; u8 event_intr_idx ; u8 mod_levels[17U] ; char event_msi_vector_name[27U] ; struct msix_entry msix_entries[17U] ; }; struct vmxnet3_adapter { struct vmxnet3_tx_queue tx_queue[8U] ; struct vmxnet3_rx_queue rx_queue[8U] ; unsigned long active_vlans[64U] ; struct vmxnet3_intr intr ; spinlock_t cmd_lock ; struct Vmxnet3_DriverShared *shared ; struct Vmxnet3_PMConf *pm_conf ; struct Vmxnet3_TxQueueDesc *tqd_start ; struct Vmxnet3_RxQueueDesc *rqd_start ; struct net_device *netdev ; struct pci_dev *pdev ; u8 *hw_addr0 ; u8 *hw_addr1 ; struct UPT1_RSSConf *rss_conf ; bool rss ; u32 num_rx_queues ; u32 num_tx_queues ; unsigned int skb_buf_size ; int rx_buf_per_pkt ; dma_addr_t shared_pa ; dma_addr_t queue_desc_pa ; u32 wol ; u32 link_speed ; u64 tx_timeout_count ; struct work_struct work ; unsigned long state ; int share_intr ; dma_addr_t adapter_pa ; dma_addr_t pm_conf_pa ; dma_addr_t rss_conf_pa ; }; struct ldv_struct_dummy_resourceless_instance_4 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_9 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_5 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_7 { int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef struct net_device *ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; enum hrtimer_restart; struct vmxnet3_stat_desc { char desc[32U] ; int offset ; }; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int fls64(__u64 x ) { int bitpos ; { bitpos = -1; __asm__ ("bsrq %1,%q0": "+r" (bitpos): "rm" (x)); return (bitpos + 1); } } extern unsigned long find_next_bit(unsigned long const * , unsigned long , unsigned long ) ; extern unsigned long find_first_bit(unsigned long const * , unsigned long ) ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static void le32_add_cpu(__le32 *var , u32 val ) { { *var = *var + val; return; } } __inline static unsigned int fls_long(unsigned long l ) { int tmp___0 ; { { tmp___0 = fls64((__u64 )l); } return ((unsigned int )tmp___0); } } __inline static unsigned long __rounddown_pow_of_two(unsigned long n ) { unsigned int tmp ; { { tmp = fls_long(n); } return (1UL << (int )(tmp - 1U)); } } extern int printk(char const * , ...) ; extern int __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int sprintf(char * , char const * , ...) ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int __bitmap_weight(unsigned long const * , int ) ; __inline static int bitmap_weight(unsigned long const *src , int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_online_mask ; __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/520b8de/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { { __asm__ volatile ("":); return (0); return (1); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern int lock_is_held(struct lockdep_map * ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_81(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_83(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_87(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_101(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_103(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_105(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_107(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_109(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_111(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_113(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_120(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_122(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(void) ; void ldv_spin_unlock_cmd_lock_of_vmxnet3_adapter(void) ; void ldv_spin_lock_tx_lock_of_vmxnet3_tx_queue(void) ; void ldv_spin_unlock_tx_lock_of_vmxnet3_tx_queue(void) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6681; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6681; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6681; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6681; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6681: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6693; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6693; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6693; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6693; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6693: ; return; } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_46(spinlock_t *lock ) ; __inline static void ldv_spin_lock_85(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_86(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_88(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_88(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_88(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void __rcu_read_lock(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void __rcu_read_unlock(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } extern bool rcu_is_watching(void) ; extern bool rcu_lockdep_current_cpu_online(void) ; __inline static void rcu_lock_acquire(struct lockdep_map *map ) { { { lock_acquire(map, 0U, 0, 2, 1, (struct lockdep_map *)0, (unsigned long )((void *)0)); } return; } } __inline static void rcu_lock_release(struct lockdep_map *map ) { { { lock_release(map, 1, (unsigned long )((void *)0)); } return; } } extern struct lockdep_map rcu_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; __inline static int rcu_read_lock_held(void) { int tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = debug_lockdep_rcu_enabled(); } if (tmp == 0) { return (1); } else { } { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { tmp___2 = rcu_lockdep_current_cpu_online(); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (0); } else { } { tmp___4 = lock_is_held(& rcu_lock_map); } return (tmp___4); } } __inline static void rcu_read_lock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { __rcu_read_lock(); rcu_lock_acquire(& rcu_lock_map); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 812, "rcu_read_lock() used illegally while idle"); } } else { } } else { } return; } } __inline static void rcu_read_unlock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 833, "rcu_read_unlock() used illegally while idle"); } } else { } } else { } { rcu_lock_release(& rcu_lock_map); __rcu_read_unlock(); } return; } } extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; extern int cpu_number ; extern void __bad_size_call_parameter(void) ; extern struct page *alloc_pages_current(gfp_t , unsigned int ) ; __inline static struct page *alloc_pages(gfp_t gfp_mask , unsigned int order ) { struct page *tmp ; { { tmp = alloc_pages_current(gfp_mask, order); } return (tmp); } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) ; static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void msleep(unsigned int ) ; extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void kfree(void const * ) ; extern void *ldv_malloc(size_t); void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); } return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/520b8de/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } void *ldv_zalloc(size_t size ) ; __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flag ) { void *ret ; void *tmp ; { { tmp = dma_alloc_attrs(dev, size, dma_handle, flag | 32768U, (struct dma_attrs *)0); ret = tmp; } return (ret); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } extern void consume_skb(struct sk_buff * ) ; extern int pskb_expand_head(struct sk_buff * , int , int , gfp_t ) ; __inline static void skb_set_hash(struct sk_buff *skb , __u32 hash , enum pkt_hash_types type ) { { skb->l4_rxhash = (unsigned int )type == 3U; skb->rxhash = hash; return; } } __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 124UL) == 0U) { return (0); } else { } { tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); } return (dataref != 1); } } __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static int pskb_may_pull(struct sk_buff *skb , unsigned int len ) { unsigned int tmp ; long tmp___0 ; long tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; { { tmp = skb_headlen((struct sk_buff const *)skb); tmp___0 = ldv__builtin_expect(len <= tmp, 1L); } if (tmp___0 != 0L) { return (1); } else { } { tmp___1 = ldv__builtin_expect(len > skb->len, 0L); } if (tmp___1 != 0L) { return (0); } else { } { tmp___2 = skb_headlen((struct sk_buff const *)skb); tmp___3 = __pskb_pull_tail(skb, (int )(len - tmp___2)); } return ((unsigned long )tmp___3 != (unsigned long )((unsigned char *)0U)); } } __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->__annonCompField68.__annonCompField67.csum_start - tmp)); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length , gfp_t gfp ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, gfp); skb = tmp; } return (skb); } } __inline static struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb_ip_align(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static void __skb_frag_set_page(skb_frag_t *frag , struct page *page ) { { frag->page.p = page; return; } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static int __skb_linearize(struct sk_buff *skb ) { unsigned char *tmp ; { { tmp = __pskb_pull_tail(skb, (int )skb->data_len); } return ((unsigned long )tmp != (unsigned long )((unsigned char *)0U) ? 0 : -12); } } __inline static int skb_linearize(struct sk_buff *skb ) { int tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp___2 = skb_is_nonlinear((struct sk_buff const *)skb); } if ((int )tmp___2) { { tmp___0 = __skb_linearize(skb); tmp___1 = tmp___0; } } else { tmp___1 = 0; } return (tmp___1); } } extern int skb_copy_bits(struct sk_buff const * , int , void * , int ) ; __inline static void *skb_header_pointer(struct sk_buff const *skb , int offset , int len , void *buffer ) { int hlen ; unsigned int tmp ; int tmp___0 ; { { tmp = skb_headlen(skb); hlen = (int )tmp; } if (hlen - offset >= len) { return ((void *)skb->data + (unsigned long )offset); } else { } { tmp___0 = skb_copy_bits(skb, offset, buffer, len); } if (tmp___0 < 0) { return ((void *)0); } else { } return (buffer); } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } __inline static u32 ethtool_rxfh_indir_default(u32 index , u32 n_rx_rings ) { { return (index % n_rx_rings); } } extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38437; ldv_38436: { msleep(1U); } ldv_38437: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38436; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern int dev_close(struct net_device * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_117(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_119(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_stop_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39362; ldv_39361: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_stop_queue(txq); i = i + 1U; } ldv_39362: ; if (i < dev->num_tx_queues) { goto ldv_39361; } else { } return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } __inline static void netif_start_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; netif_tx_start_queue(txq); } return; } } __inline static void netif_stop_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; int tmp___0 ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; tmp___0 = netpoll_trap(); } if (tmp___0 != 0) { return; } else { } { netif_tx_stop_queue(txq); } return; } } __inline static void netif_wake_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; tmp___0 = netpoll_trap(); } if (tmp___0 != 0) { return; } else { } { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& txq->state)); } if (tmp___1 != 0) { { __netif_schedule(txq->qdisc); } } else { } return; } } extern int netif_set_real_num_tx_queues(struct net_device * , unsigned int ) ; extern int netif_set_real_num_rx_queues(struct net_device * , unsigned int ) ; extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_receive_skb(struct sk_buff * ) ; extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_46(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_49(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39891; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39891; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39891; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39891; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39891: pscr_ret__ = pfo_ret__; goto ldv_39897; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39901; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39901; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39901; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39901; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39901: pscr_ret__ = pfo_ret_____0; goto ldv_39897; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39910; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39910; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39910; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39910; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39910: pscr_ret__ = pfo_ret_____1; goto ldv_39897; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39919; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39919; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39919; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39919; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39919: pscr_ret__ = pfo_ret_____2; goto ldv_39897; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39897; switch_break: /* CIL Label */ ; } ldv_39897: cpu = pscr_ret__; i = 0U; goto ldv_39929; ldv_39928: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_39929: ; if (i < dev->num_tx_queues) { goto ldv_39928; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_116(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_118(struct net_device *ldv_func_arg1 ) ; extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_notice(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int pci_enable_device(struct pci_dev * ) ; extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int pci_request_selected_regions(struct pci_dev * , int , char const * ) ; extern void pci_release_selected_regions(struct pci_dev * , int ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_124(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_125(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; extern int pci_msi_enabled(void) ; __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_58((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_59(& pdev->dev, data); } return; } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_91(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_92(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_93(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_94(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_95(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_96(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_97(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_98(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_99(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_100(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_115(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } __inline static __be16 vlan_get_protocol(struct sk_buff const *skb ) { __be16 protocol ; __be16 proto ; __be16 *protop ; void *tmp ; long tmp___0 ; { protocol = 0U; if (((int )skb->vlan_tci & 4096) != 0 || (unsigned int )((unsigned short )skb->protocol) != 129U) { protocol = skb->protocol; } else { { tmp = skb_header_pointer(skb, 16, 2, (void *)(& proto)); protop = (__be16 *)tmp; tmp___0 = ldv__builtin_expect((unsigned long )protop != (unsigned long )((__be16 *)0U), 1L); } if (tmp___0 != 0L) { protocol = *protop; } else { } } return (protocol); } } __inline static struct in_device *__in_dev_get_rcu(struct net_device const *dev ) { struct in_device *_________p1 ; bool __warned ; int tmp ; int tmp___0 ; { { _________p1 = *((struct in_device * const volatile *)(& dev->ip_ptr)); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_read_lock_held(); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("include/linux/inetdevice.h", 202, "suspicious rcu_dereference_check() usage"); } } else { } } else { } return (_________p1); } } __inline static struct in_device *in_dev_get(struct net_device const *dev ) { struct in_device *in_dev ; { { rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); } if ((unsigned long )in_dev != (unsigned long )((struct in_device *)0)) { { atomic_inc(& in_dev->refcnt); } } else { } { rcu_read_unlock(); } return (in_dev); } } extern void in_dev_finish_destroy(struct in_device * ) ; __inline static void in_dev_put(struct in_device *idev ) { int tmp ; { { tmp = atomic_dec_and_test(& idev->refcnt); } if (tmp != 0) { { in_dev_finish_destroy(idev); } } else { } return; } } __inline static void vmxnet3_cmd_ring_adv_next2fill(struct vmxnet3_cmd_ring *ring ) { long tmp ; { { ring->next2fill = ring->next2fill + 1U; tmp = ldv__builtin_expect(ring->next2fill == ring->size, 0L); } if (tmp != 0L) { ring->next2fill = 0U; ring->gen = (u8 )((unsigned int )ring->gen ^ 1U); } else { } return; } } __inline static void vmxnet3_cmd_ring_adv_next2comp(struct vmxnet3_cmd_ring *ring ) { long tmp ; { { ring->next2comp = ring->next2comp + 1U; tmp = ldv__builtin_expect(ring->next2comp == ring->size, 0L); } if (tmp != 0L) { ring->next2comp = 0U; } else { } return; } } __inline static int vmxnet3_cmd_ring_desc_avail(struct vmxnet3_cmd_ring *ring ) { { return ((int )((((ring->next2comp <= ring->next2fill ? ring->size : 0U) + ring->next2comp) - ring->next2fill) - 1U)); } } __inline static void vmxnet3_comp_ring_adv_next2proc(struct vmxnet3_comp_ring *ring ) { long tmp ; { { ring->next2proc = ring->next2proc + 1U; tmp = ldv__builtin_expect(ring->next2proc == ring->size, 0L); } if (tmp != 0L) { ring->next2proc = 0U; ring->gen = (u8 )((unsigned int )ring->gen ^ 1U); } else { } return; } } int vmxnet3_quiesce_dev(struct vmxnet3_adapter *adapter ) ; int vmxnet3_activate_dev(struct vmxnet3_adapter *adapter ) ; void vmxnet3_force_close(struct vmxnet3_adapter *adapter ) ; void vmxnet3_reset_dev(struct vmxnet3_adapter *adapter ) ; void vmxnet3_tq_destroy_all(struct vmxnet3_adapter *adapter ) ; void vmxnet3_rq_destroy_all(struct vmxnet3_adapter *adapter ) ; int vmxnet3_set_features(struct net_device *netdev , netdev_features_t features ) ; int vmxnet3_create_queues(struct vmxnet3_adapter *adapter , u32 tx_ring_size , u32 rx_ring_size , u32 rx_ring2_size ) ; void vmxnet3_set_ethtool_ops(struct net_device *netdev ) ; struct rtnl_link_stats64 *vmxnet3_get_stats64(struct net_device *netdev , struct rtnl_link_stats64 *stats ) ; char vmxnet3_driver_name[8U] ; char vmxnet3_driver_name[8U] = { 'v', 'm', 'x', 'n', 'e', 't', '3', '\000'}; static struct pci_device_id const vmxnet3_pciid_table[2U] = { {5549U, 1968U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static int enable_mq = 1; static void vmxnet3_write_mac_addr(struct vmxnet3_adapter *adapter , u8 *mac ) ; static void vmxnet3_enable_intr(struct vmxnet3_adapter *adapter , unsigned int intr_idx ) { { { writel(0U, (void volatile *)adapter->hw_addr0 + (unsigned long )(intr_idx * 8U)); } return; } } static void vmxnet3_disable_intr(struct vmxnet3_adapter *adapter , unsigned int intr_idx ) { { { writel(1U, (void volatile *)adapter->hw_addr0 + (unsigned long )(intr_idx * 8U)); } return; } } static void vmxnet3_enable_all_intrs(struct vmxnet3_adapter *adapter ) { int i ; { i = 0; goto ldv_51122; ldv_51121: { vmxnet3_enable_intr(adapter, (unsigned int )i); i = i + 1; } ldv_51122: ; if (i < (int )adapter->intr.num_intrs) { goto ldv_51121; } else { } (adapter->shared)->devRead.intrConf.intrCtrl = (adapter->shared)->devRead.intrConf.intrCtrl & 4294967294U; return; } } static void vmxnet3_disable_all_intrs(struct vmxnet3_adapter *adapter ) { int i ; { (adapter->shared)->devRead.intrConf.intrCtrl = (adapter->shared)->devRead.intrConf.intrCtrl | 1U; i = 0; goto ldv_51129; ldv_51128: { vmxnet3_disable_intr(adapter, (unsigned int )i); i = i + 1; } ldv_51129: ; if (i < (int )adapter->intr.num_intrs) { goto ldv_51128; } else { } return; } } static void vmxnet3_ack_events(struct vmxnet3_adapter *adapter , u32 events ) { { { writel(events, (void volatile *)adapter->hw_addr1 + 64U); } return; } } static bool vmxnet3_tq_stopped(struct vmxnet3_tx_queue *tq , struct vmxnet3_adapter *adapter ) { { return (tq->stopped); } } static void vmxnet3_tq_start(struct vmxnet3_tx_queue *tq , struct vmxnet3_adapter *adapter ) { { { tq->stopped = 0; netif_start_subqueue(adapter->netdev, (int )((u16 )(((long )tq - (long )(& adapter->tx_queue)) / 320L))); } return; } } static void vmxnet3_tq_wake(struct vmxnet3_tx_queue *tq , struct vmxnet3_adapter *adapter ) { { { tq->stopped = 0; netif_wake_subqueue(adapter->netdev, (int )((u16 )(((long )tq - (long )(& adapter->tx_queue)) / 320L))); } return; } } static void vmxnet3_tq_stop(struct vmxnet3_tx_queue *tq , struct vmxnet3_adapter *adapter ) { { { tq->stopped = 1; tq->num_stop = tq->num_stop + 1; netif_stop_subqueue(adapter->netdev, (int )((u16 )(((long )tq - (long )(& adapter->tx_queue)) / 320L))); } return; } } static void vmxnet3_check_link(struct vmxnet3_adapter *adapter , bool affectTxQueue ) { u32 ret ; int i ; unsigned long flags ; { { ldv___ldv_spin_lock_81(& adapter->cmd_lock); writel(4027383810U, (void volatile *)adapter->hw_addr1 + 32U); ret = readl((void const volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); adapter->link_speed = ret >> 16; } if ((int )ret & 1) { { netdev_info((struct net_device const *)adapter->netdev, "NIC Link is Up %d Mbps\n", adapter->link_speed); netif_carrier_on(adapter->netdev); } if ((int )affectTxQueue) { i = 0; goto ldv_51159; ldv_51158: { vmxnet3_tq_start((struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )i, adapter); i = i + 1; } ldv_51159: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51158; } else { } } else { } } else { { netdev_info((struct net_device const *)adapter->netdev, "NIC Link is Down\n"); netif_carrier_off(adapter->netdev); } if ((int )affectTxQueue) { i = 0; goto ldv_51162; ldv_51161: { vmxnet3_tq_stop((struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )i, adapter); i = i + 1; } ldv_51162: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51161; } else { } } else { } } return; } } static void vmxnet3_process_events(struct vmxnet3_adapter *adapter ) { int i ; unsigned long flags ; u32 events ; { events = (adapter->shared)->ecr; if (events == 0U) { return; } else { } { vmxnet3_ack_events(adapter, events); } if ((events & 4U) != 0U) { { vmxnet3_check_link(adapter, 1); } } else { } if ((events & 3U) != 0U) { { ldv___ldv_spin_lock_83(& adapter->cmd_lock); writel(4027383808U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); i = 0; } goto ldv_51171; ldv_51170: ; if ((int )(adapter->tqd_start + (unsigned long )i)->status.stopped) { { dev_err((struct device const *)(& (adapter->netdev)->dev), "%s: tq[%d] error 0x%x\n", (char *)(& (adapter->netdev)->name), i, (adapter->tqd_start + (unsigned long )i)->status.error); } } else { } i = i + 1; ldv_51171: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51170; } else { } i = 0; goto ldv_51174; ldv_51173: ; if ((int )(adapter->rqd_start + (unsigned long )i)->status.stopped) { { dev_err((struct device const *)(& (adapter->netdev)->dev), "%s: rq[%d] error 0x%x\n", (char *)(& (adapter->netdev)->name), i, (adapter->rqd_start + (unsigned long )i)->status.error); } } else { } i = i + 1; ldv_51174: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51173; } else { } { schedule_work(& adapter->work); } } else { } return; } } static void vmxnet3_unmap_tx_buf(struct vmxnet3_tx_buf_info *tbi , struct pci_dev *pdev ) { long tmp ; { if (tbi->map_type == 2U) { { dma_unmap_single_attrs(& pdev->dev, tbi->dma_addr, (size_t )tbi->len, 1, (struct dma_attrs *)0); } } else if (tbi->map_type == 3U) { { dma_unmap_page(& pdev->dev, tbi->dma_addr, (size_t )tbi->len, 1); } } else { { tmp = ldv__builtin_expect(tbi->map_type != 1U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (322), "i" (12UL)); __builtin_unreachable(); } } else { } } tbi->map_type = 1U; return; } } static int vmxnet3_unmap_pkt(u32 eop_idx , struct vmxnet3_tx_queue *tq , struct pci_dev *pdev , struct vmxnet3_adapter *adapter ) { struct sk_buff *skb ; int entries ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { { entries = 0; tmp = ldv__builtin_expect((u32 )(tq->buf_info + (unsigned long )eop_idx)->sop_idx != tq->tx_ring.next2comp, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (336), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect((unsigned int )*((unsigned char *)(tq->tx_ring.base + (unsigned long )eop_idx) + 13UL) == 0U, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (337), "i" (12UL)); __builtin_unreachable(); } } else { } { skb = (tq->buf_info + (unsigned long )eop_idx)->skb; tmp___1 = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (340), "i" (12UL)); __builtin_unreachable(); } } else { } { (tq->buf_info + (unsigned long )eop_idx)->skb = (struct sk_buff *)0; eop_idx = eop_idx + 1U; tmp___2 = ldv__builtin_expect(eop_idx == tq->tx_ring.size, 0L); } if (tmp___2 != 0L) { eop_idx = 0U; } else { } goto ldv_51189; ldv_51188: { vmxnet3_unmap_tx_buf(tq->buf_info + (unsigned long )tq->tx_ring.next2comp, pdev); vmxnet3_cmd_ring_adv_next2comp(& tq->tx_ring); entries = entries + 1; } ldv_51189: ; if (tq->tx_ring.next2comp != eop_idx) { goto ldv_51188; } else { } { dev_kfree_skb_any(skb); } return (entries); } } static int vmxnet3_tq_tx_complete(struct vmxnet3_tx_queue *tq , struct vmxnet3_adapter *adapter ) { int completed ; union Vmxnet3_GenericDesc *gdesc ; int tmp ; bool tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; bool tmp___5 ; long tmp___6 ; { completed = 0; gdesc = tq->comp_ring.base + (unsigned long )tq->comp_ring.next2proc; goto ldv_51198; ldv_51197: { tmp = vmxnet3_unmap_pkt(gdesc->tcd.txdIdx, tq, adapter->pdev, adapter); completed = completed + tmp; vmxnet3_comp_ring_adv_next2proc(& tq->comp_ring); gdesc = tq->comp_ring.base + (unsigned long )tq->comp_ring.next2proc; } ldv_51198: ; if ((int )gdesc->tcd.gen == (int )tq->comp_ring.gen) { goto ldv_51197; } else { } if (completed != 0) { { ldv_spin_lock_85(& tq->tx_lock); tmp___0 = vmxnet3_tq_stopped(tq, adapter); tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); } if (tmp___1 != 0L) { { tmp___2 = vmxnet3_cmd_ring_desc_avail(& tq->tx_ring); tmp___3 = ldv__builtin_expect(tmp___2 > 5, 0L); } if (tmp___3 != 0L) { tmp___4 = 1; } else { tmp___4 = 0; } } else { tmp___4 = 0; } if (tmp___4 != 0) { { tmp___5 = netif_carrier_ok((struct net_device const *)adapter->netdev); tmp___6 = ldv__builtin_expect((long )tmp___5, 0L); } if (tmp___6 != 0L) { { vmxnet3_tq_wake(tq, adapter); } } else { } } else { } { ldv_spin_unlock_86(& tq->tx_lock); } } else { } return (completed); } } static void vmxnet3_tq_cleanup(struct vmxnet3_tx_queue *tq , struct vmxnet3_adapter *adapter ) { int i ; struct vmxnet3_tx_buf_info *tbi ; long tmp ; long tmp___0 ; u32 tmp___1 ; { goto ldv_51207; ldv_51206: { tbi = tq->buf_info + (unsigned long )tq->tx_ring.next2comp; vmxnet3_unmap_tx_buf(tbi, adapter->pdev); } if ((unsigned long )tbi->skb != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_any(tbi->skb); tbi->skb = (struct sk_buff *)0; } } else { } { vmxnet3_cmd_ring_adv_next2comp(& tq->tx_ring); } ldv_51207: ; if (tq->tx_ring.next2comp != tq->tx_ring.next2fill) { goto ldv_51206; } else { } i = 0; goto ldv_51210; ldv_51209: { tmp = ldv__builtin_expect((unsigned long )(tq->buf_info + (unsigned long )i)->skb != (unsigned long )((struct sk_buff *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (416), "i" (12UL)); __builtin_unreachable(); } } else { { tmp___0 = ldv__builtin_expect((tq->buf_info + (unsigned long )i)->map_type != 1U, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (416), "i" (12UL)); __builtin_unreachable(); } } else { } } i = i + 1; ldv_51210: ; if ((u32 )i < tq->tx_ring.size) { goto ldv_51209; } else { } tq->tx_ring.gen = 1U; tmp___1 = 0U; tq->tx_ring.next2comp = tmp___1; tq->tx_ring.next2fill = tmp___1; tq->comp_ring.gen = 1U; tq->comp_ring.next2proc = 0U; return; } } static void vmxnet3_tq_destroy(struct vmxnet3_tx_queue *tq , struct vmxnet3_adapter *adapter ) { { if ((unsigned long )tq->tx_ring.base != (unsigned long )((union Vmxnet3_GenericDesc *)0)) { { dma_free_attrs(& (adapter->pdev)->dev, (unsigned long )tq->tx_ring.size * 16UL, (void *)tq->tx_ring.base, tq->tx_ring.basePA, (struct dma_attrs *)0); tq->tx_ring.base = (union Vmxnet3_GenericDesc *)0; } } else { } if ((unsigned long )tq->data_ring.base != (unsigned long )((struct Vmxnet3_TxDataDesc *)0)) { { dma_free_attrs(& (adapter->pdev)->dev, (unsigned long )tq->data_ring.size * 128UL, (void *)tq->data_ring.base, tq->data_ring.basePA, (struct dma_attrs *)0); tq->data_ring.base = (struct Vmxnet3_TxDataDesc *)0; } } else { } if ((unsigned long )tq->comp_ring.base != (unsigned long )((union Vmxnet3_GenericDesc *)0)) { { dma_free_attrs(& (adapter->pdev)->dev, (unsigned long )tq->comp_ring.size * 16UL, (void *)tq->comp_ring.base, tq->comp_ring.basePA, (struct dma_attrs *)0); tq->comp_ring.base = (union Vmxnet3_GenericDesc *)0; } } else { } if ((unsigned long )tq->buf_info != (unsigned long )((struct vmxnet3_tx_buf_info *)0)) { { dma_free_attrs(& (adapter->pdev)->dev, (unsigned long )tq->tx_ring.size * 24UL, (void *)tq->buf_info, tq->buf_info_pa, (struct dma_attrs *)0); tq->buf_info = (struct vmxnet3_tx_buf_info *)0; } } else { } return; } } void vmxnet3_tq_destroy_all(struct vmxnet3_adapter *adapter ) { int i ; { i = 0; goto ldv_51221; ldv_51220: { vmxnet3_tq_destroy((struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )i, adapter); i = i + 1; } ldv_51221: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51220; } else { } return; } } static void vmxnet3_tq_init(struct vmxnet3_tx_queue *tq , struct vmxnet3_adapter *adapter ) { int i ; u32 tmp ; { { memset((void *)tq->tx_ring.base, 0, (unsigned long )tq->tx_ring.size * 16UL); tmp = 0U; tq->tx_ring.next2comp = tmp; tq->tx_ring.next2fill = tmp; tq->tx_ring.gen = 1U; memset((void *)tq->data_ring.base, 0, (unsigned long )tq->data_ring.size * 128UL); memset((void *)tq->comp_ring.base, 0, (unsigned long )tq->comp_ring.size * 16UL); tq->comp_ring.next2proc = 0U; tq->comp_ring.gen = 1U; memset((void *)tq->buf_info, 0, (unsigned long )tq->tx_ring.size * 24UL); i = 0; } goto ldv_51229; ldv_51228: (tq->buf_info + (unsigned long )i)->map_type = 1U; i = i + 1; ldv_51229: ; if ((u32 )i < tq->tx_ring.size) { goto ldv_51228; } else { } return; } } static int vmxnet3_tq_create(struct vmxnet3_tx_queue *tq , struct vmxnet3_adapter *adapter ) { size_t sz ; long tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; { { tmp = ldv__builtin_expect((unsigned long )tq->tx_ring.base != (unsigned long )((union Vmxnet3_GenericDesc *)0), 0L); } if (tmp != 0L) { tmp___1 = 1; } else { { tmp___0 = ldv__builtin_expect((unsigned long )tq->data_ring.base != (unsigned long )((struct Vmxnet3_TxDataDesc *)0), 0L); } if (tmp___0 != 0L) { tmp___1 = 1; } else { tmp___1 = 0; } } if (tmp___1 != 0) { tmp___3 = 1; } else { { tmp___2 = ldv__builtin_expect((unsigned long )tq->comp_ring.base != (unsigned long )((union Vmxnet3_GenericDesc *)0), 0L); } if (tmp___2 != 0L) { tmp___3 = 1; } else { tmp___3 = 0; } } if (tmp___3 != 0) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (506), "i" (12UL)); __builtin_unreachable(); } } else { { tmp___4 = ldv__builtin_expect((unsigned long )tq->buf_info != (unsigned long )((struct vmxnet3_tx_buf_info *)0), 0L); } if (tmp___4 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (506), "i" (12UL)); __builtin_unreachable(); } } else { } } { tmp___5 = dma_alloc_attrs(& (adapter->pdev)->dev, (unsigned long )tq->tx_ring.size * 16UL, & tq->tx_ring.basePA, 208U, (struct dma_attrs *)0); tq->tx_ring.base = (union Vmxnet3_GenericDesc *)tmp___5; } if ((unsigned long )tq->tx_ring.base == (unsigned long )((union Vmxnet3_GenericDesc *)0)) { { netdev_err((struct net_device const *)adapter->netdev, "failed to allocate tx ring\n"); } goto err; } else { } { tmp___6 = dma_alloc_attrs(& (adapter->pdev)->dev, (unsigned long )tq->data_ring.size * 128UL, & tq->data_ring.basePA, 208U, (struct dma_attrs *)0); tq->data_ring.base = (struct Vmxnet3_TxDataDesc *)tmp___6; } if ((unsigned long )tq->data_ring.base == (unsigned long )((struct Vmxnet3_TxDataDesc *)0)) { { netdev_err((struct net_device const *)adapter->netdev, "failed to allocate data ring\n"); } goto err; } else { } { tmp___7 = dma_alloc_attrs(& (adapter->pdev)->dev, (unsigned long )tq->comp_ring.size * 16UL, & tq->comp_ring.basePA, 208U, (struct dma_attrs *)0); tq->comp_ring.base = (union Vmxnet3_GenericDesc *)tmp___7; } if ((unsigned long )tq->comp_ring.base == (unsigned long )((union Vmxnet3_GenericDesc *)0)) { { netdev_err((struct net_device const *)adapter->netdev, "failed to allocate tx comp ring\n"); } goto err; } else { } { sz = (unsigned long )tq->tx_ring.size * 24UL; tmp___8 = dma_zalloc_coherent(& (adapter->pdev)->dev, sz, & tq->buf_info_pa, 208U); tq->buf_info = (struct vmxnet3_tx_buf_info *)tmp___8; } if ((unsigned long )tq->buf_info == (unsigned long )((struct vmxnet3_tx_buf_info *)0)) { goto err; } else { } return (0); err: { vmxnet3_tq_destroy(tq, adapter); } return (-12); } } static void vmxnet3_tq_cleanup_all(struct vmxnet3_adapter *adapter ) { int i ; { i = 0; goto ldv_51242; ldv_51241: { vmxnet3_tq_cleanup((struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )i, adapter); i = i + 1; } ldv_51242: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51241; } else { } return; } } static int vmxnet3_rq_alloc_rx_buf(struct vmxnet3_rx_queue *rq , u32 ring_idx , int num_to_alloc , struct vmxnet3_adapter *adapter ) { int num_allocated ; struct vmxnet3_rx_buf_info *rbi_base ; struct vmxnet3_cmd_ring *ring ; u32 val ; struct vmxnet3_rx_buf_info *rbi ; union Vmxnet3_GenericDesc *gd ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; struct _ddebug descriptor ; long tmp___3 ; long tmp___4 ; long tmp___5 ; { num_allocated = 0; rbi_base = rq->buf_info[ring_idx]; ring = (struct vmxnet3_cmd_ring *)(& rq->rx_ring) + (unsigned long )ring_idx; goto ldv_51258; ldv_51257: rbi = rbi_base + (unsigned long )ring->next2fill; gd = ring->base + (unsigned long )ring->next2fill; if ((unsigned int )rbi->buf_type == 1U) { if ((unsigned long )rbi->__annonCompField91.skb == (unsigned long )((struct sk_buff *)0)) { { rbi->__annonCompField91.skb = __netdev_alloc_skb_ip_align(adapter->netdev, (unsigned int )rbi->len, 208U); tmp = ldv__builtin_expect((unsigned long )rbi->__annonCompField91.skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp != 0L) { rq->stats.rx_buf_alloc_failure = rq->stats.rx_buf_alloc_failure + 1ULL; goto ldv_51256; } else { } { rbi->dma_addr = dma_map_single_attrs(& (adapter->pdev)->dev, (void *)(rbi->__annonCompField91.skb)->data, (size_t )rbi->len, 2, (struct dma_attrs *)0); } } else { } val = 0U; } else { { tmp___0 = ldv__builtin_expect(*((unsigned long *)rbi + 0UL) != 17592186044418UL, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (596), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )rbi->__annonCompField91.page == (unsigned long )((struct page *)0)) { { rbi->__annonCompField91.page = alloc_pages(32U, 0U); tmp___1 = ldv__builtin_expect((unsigned long )rbi->__annonCompField91.page == (unsigned long )((struct page *)0), 0L); } if (tmp___1 != 0L) { rq->stats.rx_buf_alloc_failure = rq->stats.rx_buf_alloc_failure + 1ULL; goto ldv_51256; } else { } { rbi->dma_addr = dma_map_page(& (adapter->pdev)->dev, rbi->__annonCompField91.page, 0UL, 4096UL, 2); } } else { } val = 16384U; } { tmp___2 = ldv__builtin_expect(rbi->dma_addr == 0ULL, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (614), "i" (12UL)); __builtin_unreachable(); } } else { } gd->rxd.addr = rbi->dma_addr; gd->dword[2] = (((unsigned int )ring->gen == 0U ? 2147483648U : 0U) | val) | (u32 )rbi->len; if (num_allocated == num_to_alloc) { goto ldv_51256; } else { } { gd->dword[2] = gd->dword[2] | (__le32 )((int )ring->gen << 31); num_allocated = num_allocated + 1; vmxnet3_cmd_ring_adv_next2fill(ring); } ldv_51258: ; if (num_allocated <= num_to_alloc) { goto ldv_51257; } else { } ldv_51256: { descriptor.modname = "vmxnet3"; descriptor.function = "vmxnet3_rq_alloc_rx_buf"; descriptor.filename = "drivers/net/vmxnet3/vmxnet3_drv.c"; descriptor.format = "alloc_rx_buf: %d allocated, next2fill %u, next2comp %u\n"; descriptor.lineno = 631U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)adapter->netdev, "alloc_rx_buf: %d allocated, next2fill %u, next2comp %u\n", num_allocated, ring->next2fill, ring->next2comp); } } else { } { tmp___4 = ldv__builtin_expect(num_allocated != 0, 0L); } if (tmp___4 != 0L) { { tmp___5 = ldv__builtin_expect(ring->next2fill == ring->next2comp, 0L); } if (tmp___5 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (634), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } return (num_allocated); } } static void vmxnet3_append_frag(struct sk_buff *skb , struct Vmxnet3_RxCompDesc *rcd , struct vmxnet3_rx_buf_info *rbi ) { struct skb_frag_struct *frag ; unsigned char *tmp ; unsigned char *tmp___0 ; unsigned char *tmp___1 ; long tmp___2 ; unsigned char *tmp___3 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); tmp___0 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp)->frags) + (unsigned long )((struct skb_shared_info *)tmp___0)->nr_frags; tmp___1 = skb_end_pointer((struct sk_buff const *)skb); tmp___2 = ldv__builtin_expect((unsigned int )((struct skb_shared_info *)tmp___1)->nr_frags > 16U, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (647), "i" (12UL)); __builtin_unreachable(); } } else { } { __skb_frag_set_page(frag, rbi->__annonCompField91.page); frag->page_offset = 0U; skb_frag_size_set(frag, rcd->len); skb->data_len = skb->data_len + rcd->len; skb->truesize = skb->truesize + 4096U; tmp___3 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___3)->nr_frags = (unsigned char )((int )((struct skb_shared_info *)tmp___3)->nr_frags + 1); } return; } } static void vmxnet3_map_pkt(struct sk_buff *skb , struct vmxnet3_tx_ctx *ctx , struct vmxnet3_tx_queue *tq , struct pci_dev *pdev , struct vmxnet3_adapter *adapter ) { u32 dw2 ; u32 len ; unsigned long buf_offset ; int i ; union Vmxnet3_GenericDesc *gdesc ; struct vmxnet3_tx_buf_info *tbi ; unsigned int tmp ; long tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; unsigned int tmp___2 ; u32 buf_size ; long tmp___3 ; struct _ddebug descriptor___0 ; long tmp___4 ; struct skb_frag_struct const *frag ; unsigned char *tmp___5 ; u32 buf_size___0 ; long tmp___6 ; struct _ddebug descriptor___1 ; long tmp___7 ; unsigned char *tmp___8 ; { { tbi = (struct vmxnet3_tx_buf_info *)0; tmp = skb_headlen((struct sk_buff const *)skb); tmp___0 = ldv__builtin_expect(ctx->copy_size > tmp, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (669), "i" (12UL)); __builtin_unreachable(); } } else { } dw2 = (u32 )((int )((unsigned int )tq->tx_ring.gen ^ 1U) << 14); ctx->sop_txd = tq->tx_ring.base + (unsigned long )tq->tx_ring.next2fill; gdesc = ctx->sop_txd; if (ctx->copy_size != 0U) { { (ctx->sop_txd)->txd.addr = tq->data_ring.basePA + (unsigned long long )((unsigned long )tq->tx_ring.next2fill * 128UL); (ctx->sop_txd)->dword[2] = dw2 | ctx->copy_size; (ctx->sop_txd)->dword[3] = 0U; tbi = tq->buf_info + (unsigned long )tq->tx_ring.next2fill; tbi->map_type = 1U; descriptor.modname = "vmxnet3"; descriptor.function = "vmxnet3_map_pkt"; descriptor.filename = "drivers/net/vmxnet3/vmxnet3_drv.c"; descriptor.format = "txd[%u]: 0x%Lx 0x%x 0x%x\n"; descriptor.lineno = 692U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)adapter->netdev, "txd[%u]: 0x%Lx 0x%x 0x%x\n", tq->tx_ring.next2fill, (ctx->sop_txd)->txd.addr, (ctx->sop_txd)->dword[2], (ctx->sop_txd)->dword[3]); } } else { } { vmxnet3_cmd_ring_adv_next2fill(& tq->tx_ring); dw2 = (u32 )((int )tq->tx_ring.gen << 14); } } else { } { tmp___2 = skb_headlen((struct sk_buff const *)skb); len = tmp___2 - ctx->copy_size; buf_offset = (unsigned long )ctx->copy_size; } goto ldv_51285; ldv_51284: ; if (len <= 16383U) { buf_size = len; dw2 = dw2 | len; } else { buf_size = 16384U; } { tbi = tq->buf_info + (unsigned long )tq->tx_ring.next2fill; tbi->map_type = 2U; tbi->dma_addr = dma_map_single_attrs(& (adapter->pdev)->dev, (void *)(skb->data + buf_offset), (size_t )buf_size, 1, (struct dma_attrs *)0); tbi->len = (u16 )buf_size; gdesc = tq->tx_ring.base + (unsigned long )tq->tx_ring.next2fill; tmp___3 = ldv__builtin_expect((int )gdesc->txd.gen == (int )tq->tx_ring.gen, 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (722), "i" (12UL)); __builtin_unreachable(); } } else { } { gdesc->txd.addr = tbi->dma_addr; gdesc->dword[2] = dw2; gdesc->dword[3] = 0U; descriptor___0.modname = "vmxnet3"; descriptor___0.function = "vmxnet3_map_pkt"; descriptor___0.filename = "drivers/net/vmxnet3/vmxnet3_drv.c"; descriptor___0.format = "txd[%u]: 0x%Lx 0x%x 0x%x\n"; descriptor___0.lineno = 731U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)adapter->netdev, "txd[%u]: 0x%Lx 0x%x 0x%x\n", tq->tx_ring.next2fill, gdesc->txd.addr, gdesc->dword[2], gdesc->dword[3]); } } else { } { vmxnet3_cmd_ring_adv_next2fill(& tq->tx_ring); dw2 = (u32 )((int )tq->tx_ring.gen << 14); len = len - buf_size; buf_offset = buf_offset + (unsigned long )buf_size; } ldv_51285: ; if (len != 0U) { goto ldv_51284; } else { } i = 0; goto ldv_51294; ldv_51293: { tmp___5 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct const *)(& ((struct skb_shared_info *)tmp___5)->frags) + (unsigned long )i; buf_offset = 0UL; len = skb_frag_size(frag); } goto ldv_51291; ldv_51290: tbi = tq->buf_info + (unsigned long )tq->tx_ring.next2fill; if (len <= 16383U) { buf_size___0 = len; dw2 = dw2 | len; } else { buf_size___0 = 16384U; } { tbi->map_type = 3U; tbi->dma_addr = skb_frag_dma_map(& (adapter->pdev)->dev, frag, buf_offset, (size_t )buf_size___0, 1); tbi->len = (u16 )buf_size___0; gdesc = tq->tx_ring.base + (unsigned long )tq->tx_ring.next2fill; tmp___6 = ldv__builtin_expect((int )gdesc->txd.gen == (int )tq->tx_ring.gen, 0L); } if (tmp___6 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (762), "i" (12UL)); __builtin_unreachable(); } } else { } { gdesc->txd.addr = tbi->dma_addr; gdesc->dword[2] = dw2; gdesc->dword[3] = 0U; descriptor___1.modname = "vmxnet3"; descriptor___1.function = "vmxnet3_map_pkt"; descriptor___1.filename = "drivers/net/vmxnet3/vmxnet3_drv.c"; descriptor___1.format = "txd[%u]: 0x%llu %u %u\n"; descriptor___1.lineno = 771U; descriptor___1.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)adapter->netdev, "txd[%u]: 0x%llu %u %u\n", tq->tx_ring.next2fill, gdesc->txd.addr, gdesc->dword[2], gdesc->dword[3]); } } else { } { vmxnet3_cmd_ring_adv_next2fill(& tq->tx_ring); dw2 = (u32 )((int )tq->tx_ring.gen << 14); len = len - buf_size___0; buf_offset = buf_offset + (unsigned long )buf_size___0; } ldv_51291: ; if (len != 0U) { goto ldv_51290; } else { } i = i + 1; ldv_51294: { tmp___8 = skb_end_pointer((struct sk_buff const *)skb); } if (i < (int )((struct skb_shared_info *)tmp___8)->nr_frags) { goto ldv_51293; } else { } ctx->eop_txd = gdesc; tbi->skb = skb; tbi->sop_idx = (u16 )(((long )ctx->sop_txd - (long )tq->tx_ring.base) / 16L); return; } } static void vmxnet3_tq_init_all(struct vmxnet3_adapter *adapter ) { int i ; { i = 0; goto ldv_51301; ldv_51300: { vmxnet3_tq_init((struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )i, adapter); i = i + 1; } ldv_51301: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51300; } else { } return; } } static int vmxnet3_parse_and_copy_hdr(struct sk_buff *skb , struct vmxnet3_tx_queue *tq , struct vmxnet3_tx_ctx *ctx , struct vmxnet3_adapter *adapter ) { struct Vmxnet3_TxDataDesc *tdd ; int tmp ; int tmp___0 ; struct iphdr const *iph ; struct iphdr *tmp___1 ; u32 _min1 ; unsigned int _min2 ; unsigned int _min1___0 ; unsigned int _min2___0 ; unsigned int tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; struct _ddebug descriptor ; long tmp___6 ; { if ((unsigned int )ctx->mss != 0U) { { tmp = skb_transport_offset((struct sk_buff const *)skb); ctx->eth_ip_hdr_size = (u32 )tmp; ctx->l4_hdr_size = tcp_hdrlen((struct sk_buff const *)skb); ctx->copy_size = ctx->eth_ip_hdr_size + ctx->l4_hdr_size; } } else { if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { { tmp___0 = skb_checksum_start_offset((struct sk_buff const *)skb); ctx->eth_ip_hdr_size = (u32 )tmp___0; } if ((int )ctx->ipv4) { { tmp___1 = ip_hdr((struct sk_buff const *)skb); iph = (struct iphdr const *)tmp___1; } if ((unsigned int )((unsigned char )iph->protocol) == 6U) { { ctx->l4_hdr_size = tcp_hdrlen((struct sk_buff const *)skb); } } else if ((unsigned int )((unsigned char )iph->protocol) == 17U) { ctx->l4_hdr_size = 8U; } else { ctx->l4_hdr_size = 0U; } } else { ctx->l4_hdr_size = 0U; } _min1 = ctx->eth_ip_hdr_size + ctx->l4_hdr_size; _min2 = skb->len; ctx->copy_size = _min1 < _min2 ? _min1 : _min2; } else { { ctx->eth_ip_hdr_size = 0U; ctx->l4_hdr_size = 0U; _min1___0 = 128U; tmp___2 = skb_headlen((struct sk_buff const *)skb); _min2___0 = tmp___2; ctx->copy_size = _min1___0 < _min2___0 ? _min1___0 : _min2___0; } } { tmp___3 = pskb_may_pull(skb, ctx->copy_size); tmp___4 = ldv__builtin_expect(tmp___3 == 0, 0L); } if (tmp___4 != 0L) { goto err; } else { } } { tmp___5 = ldv__builtin_expect(ctx->copy_size > 128U, 0L); } if (tmp___5 != 0L) { tq->stats.oversized_hdr = tq->stats.oversized_hdr + 1ULL; ctx->copy_size = 0U; return (0); } else { } { tdd = tq->data_ring.base + (unsigned long )tq->tx_ring.next2fill; memcpy((void *)(& tdd->data), (void const *)skb->data, (size_t )ctx->copy_size); descriptor.modname = "vmxnet3"; descriptor.function = "vmxnet3_parse_and_copy_hdr"; descriptor.filename = "drivers/net/vmxnet3/vmxnet3_drv.c"; descriptor.format = "copy %u bytes to dataRing[%u]\n"; descriptor.lineno = 870U; descriptor.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)adapter->netdev, "copy %u bytes to dataRing[%u]\n", ctx->copy_size, tq->tx_ring.next2fill); } } else { } return (1); err: ; return (-1); } } static void vmxnet3_prepare_tso(struct sk_buff *skb , struct vmxnet3_tx_ctx *ctx ) { struct tcphdr *tcph ; struct tcphdr *tmp ; struct iphdr *iph ; struct iphdr *tmp___0 ; __sum16 tmp___1 ; struct ipv6hdr *iph___0 ; struct ipv6hdr *tmp___2 ; __sum16 tmp___3 ; { { tmp = tcp_hdr((struct sk_buff const *)skb); tcph = tmp; } if ((int )ctx->ipv4) { { tmp___0 = ip_hdr((struct sk_buff const *)skb); iph = tmp___0; iph->check = 0U; tmp___1 = csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 6, 0U); tcph->check = ~ ((int )tmp___1); } } else { { tmp___2 = ipv6_hdr((struct sk_buff const *)skb); iph___0 = tmp___2; tmp___3 = csum_ipv6_magic((struct in6_addr const *)(& iph___0->saddr), (struct in6_addr const *)(& iph___0->daddr), 0U, 6, 0U); tcph->check = ~ ((int )tmp___3); } } return; } } static int txd_estimate(struct sk_buff const *skb ) { int count ; unsigned int tmp ; int i ; struct skb_frag_struct const *frag ; unsigned char *tmp___0 ; unsigned int tmp___1 ; unsigned char *tmp___2 ; { { tmp = skb_headlen(skb); count = (int )((tmp + 16383U) / 16384U + 1U); i = 0; } goto ldv_51334; ldv_51333: { tmp___0 = skb_end_pointer(skb); frag = (struct skb_frag_struct const *)(& ((struct skb_shared_info *)tmp___0)->frags) + (unsigned long )i; tmp___1 = skb_frag_size(frag); count = (int )((unsigned int )count + (tmp___1 + 16383U) / 16384U); i = i + 1; } ldv_51334: { tmp___2 = skb_end_pointer(skb); } if (i < (int )((struct skb_shared_info *)tmp___2)->nr_frags) { goto ldv_51333; } else { } return (count); } } static int vmxnet3_tq_xmit(struct sk_buff *skb , struct vmxnet3_tx_queue *tq , struct vmxnet3_adapter *adapter , struct net_device *netdev ) { int ret ; u32 count ; unsigned long flags ; struct vmxnet3_tx_ctx ctx ; union Vmxnet3_GenericDesc *gdesc ; int tmp ; __be16 tmp___0 ; unsigned char *tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; unsigned int tmp___6 ; long tmp___7 ; struct _ddebug descriptor ; long tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; long tmp___12 ; long tmp___13 ; struct _ddebug descriptor___0 ; long tmp___14 ; { { tmp = txd_estimate((struct sk_buff const *)skb); count = (u32 )tmp; tmp___0 = vlan_get_protocol((struct sk_buff const *)skb); ctx.ipv4 = (unsigned int )tmp___0 == 8U; tmp___1 = skb_end_pointer((struct sk_buff const *)skb); ctx.mss = ((struct skb_shared_info *)tmp___1)->gso_size; } if ((unsigned int )ctx.mss != 0U) { { tmp___4 = skb_header_cloned((struct sk_buff const *)skb); } if (tmp___4 != 0) { { tmp___2 = pskb_expand_head(skb, 0, 0, 32U); tmp___3 = ldv__builtin_expect(tmp___2 != 0, 0L); } if (tmp___3 != 0L) { tq->stats.drop_tso = tq->stats.drop_tso + 1ULL; goto drop_pkt; } else { } tq->stats.copy_skb_header = tq->stats.copy_skb_header + 1ULL; } else { } { vmxnet3_prepare_tso(skb, & ctx); } } else { { tmp___7 = ldv__builtin_expect(count > 16U, 0L); } if (tmp___7 != 0L) { { tmp___5 = skb_linearize(skb); } if (tmp___5 != 0) { tq->stats.drop_too_many_frags = tq->stats.drop_too_many_frags + 1ULL; goto drop_pkt; } else { } { tq->stats.linearized = tq->stats.linearized + 1ULL; tmp___6 = skb_headlen((struct sk_buff const *)skb); count = (tmp___6 + 16383U) / 16384U + 1U; } } else { } } { ldv___ldv_spin_lock_87(& tq->tx_lock); tmp___9 = vmxnet3_cmd_ring_desc_avail(& tq->tx_ring); } if (count > (u32 )tmp___9) { { tq->stats.tx_ring_full = tq->stats.tx_ring_full + 1ULL; descriptor.modname = "vmxnet3"; descriptor.function = "vmxnet3_tq_xmit"; descriptor.filename = "drivers/net/vmxnet3/vmxnet3_drv.c"; descriptor.format = "tx queue stopped on %s, next2comp %u next2fill %u\n"; descriptor.lineno = 977U; descriptor.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___8 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)adapter->netdev, "tx queue stopped on %s, next2comp %u next2fill %u\n", (char *)(& (adapter->netdev)->name), tq->tx_ring.next2comp, tq->tx_ring.next2fill); } } else { } { vmxnet3_tq_stop(tq, adapter); ldv_spin_unlock_irqrestore_88(& tq->tx_lock, flags); } return (16); } else { } { ret = vmxnet3_parse_and_copy_hdr(skb, tq, & ctx, adapter); } if (ret >= 0) { { tmp___10 = ldv__builtin_expect(ret <= 0, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(ctx.copy_size != 0U, 0L); } if (tmp___11 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (987), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } if ((unsigned int )ctx.mss != 0U) { { tmp___12 = ldv__builtin_expect(ctx.eth_ip_hdr_size + ctx.l4_hdr_size > 16384U, 0L); } if (tmp___12 != 0L) { goto hdr_too_big; } else { } } else if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { { tmp___13 = ldv__builtin_expect(ctx.eth_ip_hdr_size + (u32 )skb->__annonCompField68.__annonCompField67.csum_offset > 1024U, 0L); } if (tmp___13 != 0L) { goto hdr_too_big; } else { } } else { } } else { tq->stats.drop_hdr_inspect_err = tq->stats.drop_hdr_inspect_err + 1ULL; goto unlock_drop_pkt; } { vmxnet3_map_pkt(skb, & ctx, tq, adapter->pdev, adapter); (ctx.eop_txd)->dword[3] = 12288U; gdesc = ctx.sop_txd; } if ((unsigned int )ctx.mss != 0U) { { gdesc->txd.hlen = (int )((unsigned short )ctx.eth_ip_hdr_size) + (int )((unsigned short )ctx.l4_hdr_size); gdesc->txd.om = 3U; gdesc->txd.msscof = ctx.mss; le32_add_cpu(& (tq->shared)->txNumDeferred, (((skb->len - gdesc->txd.hlen) + (unsigned int )ctx.mss) - 1U) / (unsigned int )ctx.mss); } } else { if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { gdesc->txd.hlen = (unsigned short )ctx.eth_ip_hdr_size; gdesc->txd.om = 2U; gdesc->txd.msscof = (int )((unsigned short )ctx.eth_ip_hdr_size) + (int )skb->__annonCompField68.__annonCompField67.csum_offset; } else { gdesc->txd.om = 0U; gdesc->txd.msscof = 0U; } { le32_add_cpu(& (tq->shared)->txNumDeferred, 1U); } } if (((int )skb->vlan_tci & 4096) != 0) { gdesc->txd.ti = 1U; gdesc->txd.tci = (unsigned int )skb->vlan_tci & 61439U; } else { } { gdesc->dword[2] = gdesc->dword[2] ^ 16384U; descriptor___0.modname = "vmxnet3"; descriptor___0.function = "vmxnet3_tq_xmit"; descriptor___0.filename = "drivers/net/vmxnet3/vmxnet3_drv.c"; descriptor___0.format = "txd[%u]: SOP 0x%Lx 0x%x 0x%x\n"; descriptor___0.lineno = 1061U; descriptor___0.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___14 != 0L) { { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)adapter->netdev, "txd[%u]: SOP 0x%Lx 0x%x 0x%x\n", (unsigned int )(((long )ctx.sop_txd - (long )tq->tx_ring.base) / 16L), gdesc->txd.addr, gdesc->dword[2], gdesc->dword[3]); } } else { } { ldv_spin_unlock_irqrestore_88(& tq->tx_lock, flags); } if ((tq->shared)->txNumDeferred >= (tq->shared)->txThreshold) { { (tq->shared)->txNumDeferred = 0U; writel(tq->tx_ring.next2fill, (void volatile *)adapter->hw_addr0 + (unsigned long )((tq->qid + 192) * 8)); } } else { } return (0); hdr_too_big: tq->stats.drop_oversized_hdr = tq->stats.drop_oversized_hdr + 1ULL; unlock_drop_pkt: { ldv_spin_unlock_irqrestore_88(& tq->tx_lock, flags); } drop_pkt: { tq->stats.drop_total = tq->stats.drop_total + 1ULL; consume_skb(skb); } return (0); } } static netdev_tx_t vmxnet3_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) { struct vmxnet3_adapter *adapter ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; tmp___0 = ldv__builtin_expect((u32 )skb->queue_mapping > adapter->num_tx_queues, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1091), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = vmxnet3_tq_xmit(skb, (struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )skb->queue_mapping, adapter, netdev); } return ((netdev_tx_t )tmp___1); } } static void vmxnet3_rx_csum(struct vmxnet3_adapter *adapter , struct sk_buff *skb , union Vmxnet3_GenericDesc *gdesc ) { long tmp ; long tmp___0 ; long tmp___1 ; __u16 tmp___2 ; { if ((unsigned int )*((unsigned char *)gdesc + 3UL) == 0U && ((adapter->netdev)->features & 4294967296ULL) != 0ULL) { if ((gdesc->dword[3] & 589824U) == 589824U) { { skb->ip_summed = 1U; tmp = ldv__builtin_expect((unsigned int )*((unsigned char *)gdesc + 14UL) == 0U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1108), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect((unsigned int )*((unsigned char *)gdesc + 14UL) == 0U, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1109), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = ldv__builtin_expect((unsigned int )*((unsigned char *)gdesc + 14UL) != 0U, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1110), "i" (12UL)); __builtin_unreachable(); } } else { } } else if (gdesc->rcd.csum != 0U) { { tmp___2 = __fswab16((int )gdesc->rcd.csum); skb->__annonCompField68.csum = (__wsum )tmp___2; skb->ip_summed = 3U; } } else { { skb_checksum_none_assert((struct sk_buff const *)skb); } } } else { { skb_checksum_none_assert((struct sk_buff const *)skb); } } return; } } static void vmxnet3_rx_error(struct vmxnet3_rx_queue *rq , struct Vmxnet3_RxCompDesc *rcd , struct vmxnet3_rx_ctx *ctx , struct vmxnet3_adapter *adapter ) { { rq->stats.drop_err = rq->stats.drop_err + 1ULL; if ((unsigned int )*((unsigned char *)rcd + 14UL) == 0U) { rq->stats.drop_fcs = rq->stats.drop_fcs + 1ULL; } else { } rq->stats.drop_total = rq->stats.drop_total + 1ULL; if ((unsigned long )ctx->skb != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_irq(ctx->skb); } } else { } ctx->skb = (struct sk_buff *)0; return; } } static int vmxnet3_rq_rx_complete(struct vmxnet3_rx_queue *rq , struct vmxnet3_adapter *adapter , int quota ) { u32 rxprod_reg[2U] ; u32 num_rxd ; bool skip_page_frags ; struct Vmxnet3_RxCompDesc *rcd ; struct vmxnet3_rx_ctx *ctx ; struct vmxnet3_rx_buf_info *rbi ; struct sk_buff *skb ; struct sk_buff *new_skb ; struct page *new_page ; int num_to_alloc ; struct Vmxnet3_RxDesc *rxd ; u32 idx ; u32 ring_idx ; struct vmxnet3_cmd_ring *ring ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; struct _ddebug descriptor ; long tmp___11 ; long tmp___12 ; long tmp___13 ; long tmp___14 ; long tmp___15 ; long tmp___16 ; long tmp___17 ; long tmp___18 ; long tmp___19 ; long tmp___20 ; { rxprod_reg[0] = 2048U; rxprod_reg[1] = 2560U; num_rxd = 0U; skip_page_frags = 0; ctx = & rq->rx_ctx; rcd = & (rq->comp_ring.base + (unsigned long )rq->comp_ring.next2proc)->rcd; goto ldv_51396; ldv_51395: new_skb = (struct sk_buff *)0; new_page = (struct page *)0; ring = (struct vmxnet3_cmd_ring *)0; if (num_rxd >= (u32 )quota) { goto ldv_51388; } else { } { num_rxd = num_rxd + 1U; tmp = ldv__builtin_expect(rcd->rqID != rq->qid, 0L); } if (tmp != 0L) { { tmp___0 = ldv__builtin_expect(rcd->rqID != rq->qid2, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1184), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } { idx = rcd->rxdIdx; ring_idx = rcd->rqID >= adapter->num_rx_queues; ring = (struct vmxnet3_cmd_ring *)(& rq->rx_ring) + (unsigned long )ring_idx; rxd = & (rq->rx_ring[ring_idx].base + (unsigned long )idx)->rxd; rbi = rq->buf_info[ring_idx] + (unsigned long )idx; tmp___1 = ldv__builtin_expect(rxd->addr != rbi->dma_addr, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1193), "i" (12UL)); __builtin_unreachable(); } } else { { tmp___2 = ldv__builtin_expect((int )rxd->len != (int )rbi->len, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1193), "i" (12UL)); __builtin_unreachable(); } } else { } } { tmp___3 = ldv__builtin_expect((unsigned int )*((unsigned char *)rcd + 1UL) != 0U, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect((unsigned int )*((unsigned char *)rcd + 9UL) != 0U, 0L); } if (tmp___4 != 0L) { { vmxnet3_rx_error(rq, rcd, ctx, adapter); } goto rcd_done; } else { } } else { } if ((unsigned int )*((unsigned char *)rcd + 1UL) != 0U) { { tmp___5 = ldv__builtin_expect((unsigned int )*((unsigned char *)rxd + 9UL) != 0U, 0L); } if (tmp___5 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1202), "i" (12UL)); __builtin_unreachable(); } } else { { tmp___6 = ldv__builtin_expect(rcd->rqID != rq->qid, 0L); } if (tmp___6 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1202), "i" (12UL)); __builtin_unreachable(); } } else { } } { tmp___7 = ldv__builtin_expect((unsigned int )rbi->buf_type != 1U, 0L); } if (tmp___7 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1204), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___8 = ldv__builtin_expect((unsigned long )ctx->skb != (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___8 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1205), "i" (12UL)); __builtin_unreachable(); } } else { { tmp___9 = ldv__builtin_expect((unsigned long )rbi->__annonCompField91.skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___9 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1205), "i" (12UL)); __builtin_unreachable(); } } else { } } { tmp___12 = ldv__builtin_expect((unsigned int )*((unsigned short *)rcd + 4UL) == 0U, 0L); } if (tmp___12 != 0L) { { tmp___10 = ldv__builtin_expect((unsigned int )*((unsigned char *)rcd + 1UL) != 192U, 0L); } if (tmp___10 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1209), "i" (12UL)); __builtin_unreachable(); } } else { } { descriptor.modname = "vmxnet3"; descriptor.function = "vmxnet3_rq_rx_complete"; descriptor.filename = "drivers/net/vmxnet3/vmxnet3_drv.c"; descriptor.format = "rxRing[%u][%u] 0 length\n"; descriptor.lineno = 1212U; descriptor.flags = 0U; tmp___11 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___11 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)adapter->netdev, "rxRing[%u][%u] 0 length\n", ring_idx, idx); } } else { } goto rcd_done; } else { } { skip_page_frags = 0; ctx->skb = rbi->__annonCompField91.skb; new_skb = netdev_alloc_skb_ip_align(adapter->netdev, (unsigned int )rbi->len); } if ((unsigned long )new_skb == (unsigned long )((struct sk_buff *)0)) { rq->stats.rx_buf_alloc_failure = rq->stats.rx_buf_alloc_failure + 1ULL; ctx->skb = (struct sk_buff *)0; rq->stats.drop_total = rq->stats.drop_total + 1ULL; skip_page_frags = 1; goto rcd_done; } else { } { dma_unmap_single_attrs(& (adapter->pdev)->dev, rbi->dma_addr, (size_t )rbi->len, 2, (struct dma_attrs *)0); } if ((unsigned int )*((unsigned char *)rcd + 3UL) != 0U && ((adapter->netdev)->features & 2147483648ULL) != 0ULL) { { skb_set_hash(ctx->skb, rcd->rssHash, 2); } } else { } { skb_put(ctx->skb, rcd->len); rbi->__annonCompField91.skb = new_skb; rbi->dma_addr = dma_map_single_attrs(& (adapter->pdev)->dev, (void *)(rbi->__annonCompField91.skb)->data, (size_t )rbi->len, 2, (struct dma_attrs *)0); rxd->addr = rbi->dma_addr; rxd->len = rbi->len; } } else { { tmp___13 = ldv__builtin_expect((unsigned long )ctx->skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect((long )(! skip_page_frags), 0L); } if (tmp___14 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1253), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } { tmp___15 = ldv__builtin_expect((unsigned int )rbi->buf_type != 2U, 0L); } if (tmp___15 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1256), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___16 = ldv__builtin_expect((unsigned int )*((unsigned char *)rxd + 9UL) == 0U, 0L); } if (tmp___16 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1257), "i" (12UL)); __builtin_unreachable(); } } else { } if ((int )skip_page_frags) { goto rcd_done; } else { } { new_page = alloc_pages(32U, 0U); tmp___17 = ldv__builtin_expect((unsigned long )new_page == (unsigned long )((struct page *)0), 0L); } if (tmp___17 != 0L) { { rq->stats.rx_buf_alloc_failure = rq->stats.rx_buf_alloc_failure + 1ULL; consume_skb(ctx->skb); ctx->skb = (struct sk_buff *)0; skip_page_frags = 1; } goto rcd_done; } else { } if ((unsigned int )*((unsigned short *)rcd + 4UL) != 0U) { { dma_unmap_page(& (adapter->pdev)->dev, rbi->dma_addr, (size_t )rbi->len, 2); vmxnet3_append_frag(ctx->skb, rcd, rbi); } } else { } { rbi->__annonCompField91.page = new_page; rbi->dma_addr = dma_map_page(& (adapter->pdev)->dev, rbi->__annonCompField91.page, 0UL, 4096UL, 2); rxd->addr = rbi->dma_addr; rxd->len = rbi->len; } } skb = ctx->skb; if ((unsigned int )*((unsigned char *)rcd + 1UL) != 0U) { { skb->len = skb->len + skb->data_len; vmxnet3_rx_csum(adapter, skb, (union Vmxnet3_GenericDesc *)rcd); skb->protocol = eth_type_trans(skb, adapter->netdev); tmp___18 = ldv__builtin_expect((int )((signed char )*((unsigned char *)rcd + 9UL)) < 0, 0L); } if (tmp___18 != 0L) { { __vlan_hwaccel_put_tag(skb, 129, (int )rcd->tci); } } else { } if (((adapter->netdev)->features & 32768ULL) != 0ULL) { { netif_receive_skb(skb); } } else { { napi_gro_receive(& rq->napi, skb); } } ctx->skb = (struct sk_buff *)0; } else { } rcd_done: { ring->next2comp = idx; num_to_alloc = vmxnet3_cmd_ring_desc_avail(ring); ring = (struct vmxnet3_cmd_ring *)(& rq->rx_ring) + (unsigned long )ring_idx; } goto ldv_51393; ldv_51392: { rxd = & (ring->base + (unsigned long )ring->next2fill)->rxd; tmp___19 = ldv__builtin_expect(rxd->addr == 0ULL, 0L); } if (tmp___19 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1325), "i" (12UL)); __builtin_unreachable(); } } else { } { rxd->gen = ring->gen; vmxnet3_cmd_ring_adv_next2fill(ring); num_to_alloc = num_to_alloc - 1; } ldv_51393: ; if (num_to_alloc != 0) { goto ldv_51392; } else { } { tmp___20 = ldv__builtin_expect((long )(rq->shared)->updateRxProd, 0L); } if (tmp___20 != 0L) { { writel(ring->next2fill, (void volatile *)adapter->hw_addr0 + (unsigned long )(rxprod_reg[ring_idx] + rq->qid * 8U)); } } else { } { vmxnet3_comp_ring_adv_next2proc(& rq->comp_ring); rcd = & (rq->comp_ring.base + (unsigned long )rq->comp_ring.next2proc)->rcd; } ldv_51396: ; if ((int )rcd->gen == (int )rq->comp_ring.gen) { goto ldv_51395; } else { } ldv_51388: ; return ((int )num_rxd); } } static void vmxnet3_rq_cleanup(struct vmxnet3_rx_queue *rq , struct vmxnet3_adapter *adapter ) { u32 i ; u32 ring_idx ; struct Vmxnet3_RxDesc *rxd ; u32 tmp ; { ring_idx = 0U; goto ldv_51408; ldv_51407: i = 0U; goto ldv_51405; ldv_51404: rxd = & (rq->rx_ring[ring_idx].base + (unsigned long )i)->rxd; if ((unsigned int )*((unsigned char *)rxd + 9UL) == 0U && (unsigned long )(rq->buf_info[ring_idx] + (unsigned long )i)->__annonCompField91.skb != (unsigned long )((struct sk_buff *)0)) { { dma_unmap_single_attrs(& (adapter->pdev)->dev, rxd->addr, (size_t )rxd->len, 2, (struct dma_attrs *)0); consume_skb((rq->buf_info[ring_idx] + (unsigned long )i)->__annonCompField91.skb); (rq->buf_info[ring_idx] + (unsigned long )i)->__annonCompField91.skb = (struct sk_buff *)0; } } else if ((unsigned int )*((unsigned char *)rxd + 9UL) != 0U && (unsigned long )(rq->buf_info[ring_idx] + (unsigned long )i)->__annonCompField91.page != (unsigned long )((struct page *)0)) { { dma_unmap_page(& (adapter->pdev)->dev, rxd->addr, (size_t )rxd->len, 2); put_page((rq->buf_info[ring_idx] + (unsigned long )i)->__annonCompField91.page); (rq->buf_info[ring_idx] + (unsigned long )i)->__annonCompField91.page = (struct page *)0; } } else { } i = i + 1U; ldv_51405: ; if (i < rq->rx_ring[ring_idx].size) { goto ldv_51404; } else { } rq->rx_ring[ring_idx].gen = 1U; tmp = 0U; rq->rx_ring[ring_idx].next2comp = tmp; rq->rx_ring[ring_idx].next2fill = tmp; ring_idx = ring_idx + 1U; ldv_51408: ; if (ring_idx <= 1U) { goto ldv_51407; } else { } rq->comp_ring.gen = 1U; rq->comp_ring.next2proc = 0U; return; } } static void vmxnet3_rq_cleanup_all(struct vmxnet3_adapter *adapter ) { int i ; { i = 0; goto ldv_51415; ldv_51414: { vmxnet3_rq_cleanup((struct vmxnet3_rx_queue *)(& adapter->rx_queue) + (unsigned long )i, adapter); i = i + 1; } ldv_51415: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51414; } else { } return; } } static void vmxnet3_rq_destroy(struct vmxnet3_rx_queue *rq , struct vmxnet3_adapter *adapter ) { int i ; int j ; long tmp ; size_t sz ; { i = 0; goto ldv_51427; ldv_51426: ; if ((unsigned long )rq->buf_info[i] != (unsigned long )((struct vmxnet3_rx_buf_info *)0)) { j = 0; goto ldv_51424; ldv_51423: { tmp = ldv__builtin_expect((unsigned long )(rq->buf_info[i] + (unsigned long )j)->__annonCompField91.page != (unsigned long )((struct page *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1409), "i" (12UL)); __builtin_unreachable(); } } else { } j = j + 1; ldv_51424: ; if ((u32 )j < rq->rx_ring[i].size) { goto ldv_51423; } else { } } else { } i = i + 1; ldv_51427: ; if (i <= 1) { goto ldv_51426; } else { } i = 0; goto ldv_51430; ldv_51429: ; if ((unsigned long )rq->rx_ring[i].base != (unsigned long )((union Vmxnet3_GenericDesc *)0)) { { dma_free_attrs(& (adapter->pdev)->dev, (unsigned long )rq->rx_ring[i].size * 16UL, (void *)rq->rx_ring[i].base, rq->rx_ring[i].basePA, (struct dma_attrs *)0); rq->rx_ring[i].base = (union Vmxnet3_GenericDesc *)0; } } else { } rq->buf_info[i] = (struct vmxnet3_rx_buf_info *)0; i = i + 1; ldv_51430: ; if (i <= 1) { goto ldv_51429; } else { } if ((unsigned long )rq->comp_ring.base != (unsigned long )((union Vmxnet3_GenericDesc *)0)) { { dma_free_attrs(& (adapter->pdev)->dev, (unsigned long )rq->comp_ring.size * 16UL, (void *)rq->comp_ring.base, rq->comp_ring.basePA, (struct dma_attrs *)0); rq->comp_ring.base = (union Vmxnet3_GenericDesc *)0; } } else { } if ((unsigned long )rq->buf_info[0] != (unsigned long )((struct vmxnet3_rx_buf_info *)0)) { { sz = (unsigned long )(rq->rx_ring[0].size + rq->rx_ring[1].size) * 24UL; dma_free_attrs(& (adapter->pdev)->dev, sz, (void *)rq->buf_info[0], rq->buf_info_pa, (struct dma_attrs *)0); } } else { } return; } } static int vmxnet3_rq_init(struct vmxnet3_rx_queue *rq , struct vmxnet3_adapter *adapter ) { int i ; u32 tmp ; int tmp___0 ; { i = 0; goto ldv_51439; ldv_51438: ; if (i % adapter->rx_buf_per_pkt == 0) { (rq->buf_info[0] + (unsigned long )i)->buf_type = 1; (rq->buf_info[0] + (unsigned long )i)->len = (u16 )adapter->skb_buf_size; } else { (rq->buf_info[0] + (unsigned long )i)->buf_type = 2; (rq->buf_info[0] + (unsigned long )i)->len = 4096U; } i = i + 1; ldv_51439: ; if ((u32 )i < rq->rx_ring[0].size) { goto ldv_51438; } else { } i = 0; goto ldv_51442; ldv_51441: (rq->buf_info[1] + (unsigned long )i)->buf_type = 2; (rq->buf_info[1] + (unsigned long )i)->len = 4096U; i = i + 1; ldv_51442: ; if ((u32 )i < rq->rx_ring[1].size) { goto ldv_51441; } else { } i = 0; goto ldv_51445; ldv_51444: { tmp = 0U; rq->rx_ring[i].next2comp = tmp; rq->rx_ring[i].next2fill = tmp; memset((void *)rq->rx_ring[i].base, 0, (unsigned long )rq->rx_ring[i].size * 16UL); rq->rx_ring[i].gen = 1U; i = i + 1; } ldv_51445: ; if (i <= 1) { goto ldv_51444; } else { } { tmp___0 = vmxnet3_rq_alloc_rx_buf(rq, 0U, (int )(rq->rx_ring[0].size - 1U), adapter); } if (tmp___0 == 0) { return (-12); } else { } { vmxnet3_rq_alloc_rx_buf(rq, 1U, (int )(rq->rx_ring[1].size - 1U), adapter); rq->comp_ring.next2proc = 0U; memset((void *)rq->comp_ring.base, 0, (unsigned long )rq->comp_ring.size * 16UL); rq->comp_ring.gen = 1U; rq->rx_ctx.skb = (struct sk_buff *)0; } return (0); } } static int vmxnet3_rq_init_all(struct vmxnet3_adapter *adapter ) { int i ; int err ; long tmp ; { err = 0; i = 0; goto ldv_51454; ldv_51453: { err = vmxnet3_rq_init((struct vmxnet3_rx_queue *)(& adapter->rx_queue) + (unsigned long )i, adapter); tmp = ldv__builtin_expect(err != 0, 0L); } if (tmp != 0L) { { dev_err((struct device const *)(& (adapter->netdev)->dev), "%s: failed to initialize rx queue%i\n", (char *)(& (adapter->netdev)->name), i); } goto ldv_51452; } else { } i = i + 1; ldv_51454: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51453; } else { } ldv_51452: ; return (err); } } static int vmxnet3_rq_create(struct vmxnet3_rx_queue *rq , struct vmxnet3_adapter *adapter ) { int i ; size_t sz ; struct vmxnet3_rx_buf_info *bi ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { i = 0; goto ldv_51464; ldv_51463: { sz = (unsigned long )rq->rx_ring[i].size * 16UL; tmp = dma_alloc_attrs(& (adapter->pdev)->dev, sz, & rq->rx_ring[i].basePA, 208U, (struct dma_attrs *)0); rq->rx_ring[i].base = (union Vmxnet3_GenericDesc *)tmp; } if ((unsigned long )rq->rx_ring[i].base == (unsigned long )((union Vmxnet3_GenericDesc *)0)) { { netdev_err((struct net_device const *)adapter->netdev, "failed to allocate rx ring %d\n", i); } goto err; } else { } i = i + 1; ldv_51464: ; if (i <= 1) { goto ldv_51463; } else { } { sz = (unsigned long )rq->comp_ring.size * 16UL; tmp___0 = dma_alloc_attrs(& (adapter->pdev)->dev, sz, & rq->comp_ring.basePA, 208U, (struct dma_attrs *)0); rq->comp_ring.base = (union Vmxnet3_GenericDesc *)tmp___0; } if ((unsigned long )rq->comp_ring.base == (unsigned long )((union Vmxnet3_GenericDesc *)0)) { { netdev_err((struct net_device const *)adapter->netdev, "failed to allocate rx comp ring\n"); } goto err; } else { } { sz = (unsigned long )(rq->rx_ring[0].size + rq->rx_ring[1].size) * 24UL; tmp___1 = dma_zalloc_coherent(& (adapter->pdev)->dev, sz, & rq->buf_info_pa, 208U); bi = (struct vmxnet3_rx_buf_info *)tmp___1; } if ((unsigned long )bi == (unsigned long )((struct vmxnet3_rx_buf_info *)0)) { goto err; } else { } rq->buf_info[0] = bi; rq->buf_info[1] = bi + (unsigned long )rq->rx_ring[0].size; return (0); err: { vmxnet3_rq_destroy(rq, adapter); } return (-12); } } static int vmxnet3_rq_create_all(struct vmxnet3_adapter *adapter ) { int i ; int err ; long tmp ; { err = 0; i = 0; goto ldv_51473; ldv_51472: { err = vmxnet3_rq_create((struct vmxnet3_rx_queue *)(& adapter->rx_queue) + (unsigned long )i, adapter); tmp = ldv__builtin_expect(err != 0, 0L); } if (tmp != 0L) { { dev_err((struct device const *)(& (adapter->netdev)->dev), "%s: failed to create rx queue%i\n", (char *)(& (adapter->netdev)->name), i); } goto err_out; } else { } i = i + 1; ldv_51473: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51472; } else { } return (err); err_out: { vmxnet3_rq_destroy_all(adapter); } return (err); } } static int vmxnet3_do_poll(struct vmxnet3_adapter *adapter , int budget ) { int rcd_done ; int i ; long tmp ; int tmp___0 ; { { rcd_done = 0; tmp = ldv__builtin_expect((adapter->shared)->ecr != 0U, 0L); } if (tmp != 0L) { { vmxnet3_process_events(adapter); } } else { } i = 0; goto ldv_51482; ldv_51481: { vmxnet3_tq_tx_complete((struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )i, adapter); i = i + 1; } ldv_51482: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51481; } else { } i = 0; goto ldv_51485; ldv_51484: { tmp___0 = vmxnet3_rq_rx_complete((struct vmxnet3_rx_queue *)(& adapter->rx_queue) + (unsigned long )i, adapter, budget); rcd_done = rcd_done + tmp___0; i = i + 1; } ldv_51485: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51484; } else { } return (rcd_done); } } static int vmxnet3_poll(struct napi_struct *napi , int budget ) { struct vmxnet3_rx_queue *rx_queue ; struct napi_struct const *__mptr ; int rxd_done ; { { __mptr = (struct napi_struct const *)napi; rx_queue = (struct vmxnet3_rx_queue *)__mptr + 0xffffffffffffffe0UL; rxd_done = vmxnet3_do_poll(rx_queue->adapter, budget); } if (rxd_done < budget) { { napi_complete(napi); vmxnet3_enable_all_intrs(rx_queue->adapter); } } else { } return (rxd_done); } } static int vmxnet3_poll_rx_only(struct napi_struct *napi , int budget ) { struct vmxnet3_rx_queue *rq ; struct napi_struct const *__mptr ; struct vmxnet3_adapter *adapter ; int rxd_done ; struct vmxnet3_tx_queue *tq ; { __mptr = (struct napi_struct const *)napi; rq = (struct vmxnet3_rx_queue *)__mptr + 0xffffffffffffffe0UL; adapter = rq->adapter; if (adapter->share_intr == 0) { { tq = (struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )(((long )rq - (long )(& adapter->rx_queue)) / 448L); vmxnet3_tq_tx_complete(tq, adapter); } } else { } { rxd_done = vmxnet3_rq_rx_complete(rq, adapter, budget); } if (rxd_done < budget) { { napi_complete(napi); vmxnet3_enable_intr(adapter, (unsigned int )rq->comp_ring.intr_idx); } } else { } return (rxd_done); } } static irqreturn_t vmxnet3_msix_tx(int irq , void *data ) { struct vmxnet3_tx_queue *tq ; struct vmxnet3_adapter *adapter ; int i ; struct vmxnet3_tx_queue *txq ; { tq = (struct vmxnet3_tx_queue *)data; adapter = tq->adapter; if ((unsigned int )adapter->intr.mask_mode == 1U) { { vmxnet3_disable_intr(adapter, (unsigned int )tq->comp_ring.intr_idx); } } else { } if (adapter->share_intr == 1) { i = 0; goto ldv_51514; ldv_51513: { txq = (struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )i; vmxnet3_tq_tx_complete(txq, adapter); i = i + 1; } ldv_51514: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51513; } else { } } else { { vmxnet3_tq_tx_complete(tq, adapter); } } { vmxnet3_enable_intr(adapter, (unsigned int )tq->comp_ring.intr_idx); } return (1); } } static irqreturn_t vmxnet3_msix_rx(int irq , void *data ) { struct vmxnet3_rx_queue *rq ; struct vmxnet3_adapter *adapter ; { rq = (struct vmxnet3_rx_queue *)data; adapter = rq->adapter; if ((unsigned int )adapter->intr.mask_mode == 1U) { { vmxnet3_disable_intr(adapter, (unsigned int )rq->comp_ring.intr_idx); } } else { } { napi_schedule(& rq->napi); } return (1); } } static irqreturn_t vmxnet3_msix_event(int irq , void *data ) { struct net_device *dev ; struct vmxnet3_adapter *adapter ; void *tmp ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); adapter = (struct vmxnet3_adapter *)tmp; } if ((unsigned int )adapter->intr.mask_mode == 1U) { { vmxnet3_disable_intr(adapter, (unsigned int )adapter->intr.event_intr_idx); } } else { } if ((adapter->shared)->ecr != 0U) { { vmxnet3_process_events(adapter); } } else { } { vmxnet3_enable_intr(adapter, (unsigned int )adapter->intr.event_intr_idx); } return (1); } } static irqreturn_t vmxnet3_intr(int irq , void *dev_id ) { struct net_device *dev ; struct vmxnet3_adapter *adapter ; void *tmp ; u32 icr ; unsigned int tmp___0 ; long tmp___1 ; { { dev = (struct net_device *)dev_id; tmp = netdev_priv((struct net_device const *)dev); adapter = (struct vmxnet3_adapter *)tmp; } if ((unsigned int )adapter->intr.type == 1U) { { tmp___0 = readl((void const volatile *)adapter->hw_addr1 + 56U); icr = tmp___0; tmp___1 = ldv__builtin_expect(icr == 0U, 0L); } if (tmp___1 != 0L) { return (0); } else { } } else { } if ((unsigned int )adapter->intr.mask_mode == 1U) { { vmxnet3_disable_all_intrs(adapter); } } else { } { napi_schedule(& adapter->rx_queue[0].napi); } return (1); } } static void vmxnet3_netpoll(struct net_device *netdev ) { struct vmxnet3_adapter *adapter ; void *tmp ; int i ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; } { if ((unsigned int )adapter->intr.type == 3U) { goto case_3; } else { } if ((unsigned int )adapter->intr.type == 2U) { goto case_2; } else { } goto switch_default; case_3: /* CIL Label */ i = 0; goto ldv_51542; ldv_51541: { vmxnet3_msix_rx(0, (void *)(& adapter->rx_queue) + (unsigned long )i); i = i + 1; } ldv_51542: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51541; } else { } goto ldv_51544; case_2: /* CIL Label */ ; switch_default: /* CIL Label */ { vmxnet3_intr(0, (void *)adapter->netdev); } goto ldv_51544; switch_break: /* CIL Label */ ; } ldv_51544: ; return; } } static int vmxnet3_request_irqs(struct vmxnet3_adapter *adapter ) { struct vmxnet3_intr *intr ; int err ; int i ; int vector ; int tmp ; int tmp___0 ; struct vmxnet3_rx_queue *rq ; { intr = & adapter->intr; err = 0; vector = 0; if ((unsigned int )adapter->intr.type == 3U) { i = 0; goto ldv_51559; ldv_51558: ; if (adapter->share_intr != 0) { { sprintf((char *)(& adapter->tx_queue[i].name), "%s-tx-%d", (char *)(& (adapter->netdev)->name), vector); err = ldv_request_irq_91(intr->msix_entries[vector].vector, & vmxnet3_msix_tx, 0UL, (char const *)(& adapter->tx_queue[i].name), (void *)(& adapter->tx_queue) + (unsigned long )i); } } else { { sprintf((char *)(& adapter->tx_queue[i].name), "%s-rxtx-%d", (char *)(& (adapter->netdev)->name), vector); } } if (err != 0) { { dev_err((struct device const *)(& (adapter->netdev)->dev), "Failed to request irq for MSIX, %s, error %d\n", (char *)(& adapter->tx_queue[i].name), err); } return (err); } else { } if (adapter->share_intr == 1) { goto ldv_51555; ldv_51554: adapter->tx_queue[i].comp_ring.intr_idx = (u8 )vector; i = i + 1; ldv_51555: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51554; } else { } vector = vector + 1; goto ldv_51557; } else { tmp = vector; vector = vector + 1; adapter->tx_queue[i].comp_ring.intr_idx = (u8 )tmp; } i = i + 1; ldv_51559: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51558; } else { } ldv_51557: ; if (adapter->share_intr == 0) { vector = 0; } else { } i = 0; goto ldv_51561; ldv_51560: ; if (adapter->share_intr != 0) { { sprintf((char *)(& adapter->rx_queue[i].name), "%s-rx-%d", (char *)(& (adapter->netdev)->name), vector); } } else { { sprintf((char *)(& adapter->rx_queue[i].name), "%s-rxtx-%d", (char *)(& (adapter->netdev)->name), vector); } } { err = ldv_request_irq_92(intr->msix_entries[vector].vector, & vmxnet3_msix_rx, 0UL, (char const *)(& adapter->rx_queue[i].name), (void *)(& adapter->rx_queue) + (unsigned long )i); } if (err != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Failed to request irq for MSIX, %s, error %d\n", (char *)(& adapter->rx_queue[i].name), err); } return (err); } else { } tmp___0 = vector; vector = vector + 1; adapter->rx_queue[i].comp_ring.intr_idx = (u8 )tmp___0; i = i + 1; ldv_51561: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51560; } else { } { sprintf((char *)(& intr->event_msi_vector_name), "%s-event-%d", (char *)(& (adapter->netdev)->name), vector); err = ldv_request_irq_93(intr->msix_entries[vector].vector, & vmxnet3_msix_event, 0UL, (char const *)(& intr->event_msi_vector_name), (void *)adapter->netdev); intr->event_intr_idx = (u8 )vector; } } else if ((unsigned int )intr->type == 2U) { { adapter->num_rx_queues = 1U; err = ldv_request_irq_94((adapter->pdev)->irq, & vmxnet3_intr, 0UL, (char const *)(& (adapter->netdev)->name), (void *)adapter->netdev); } } else { { adapter->num_rx_queues = 1U; err = ldv_request_irq_95((adapter->pdev)->irq, & vmxnet3_intr, 128UL, (char const *)(& (adapter->netdev)->name), (void *)adapter->netdev); } } intr->num_intrs = (unsigned int )((u8 )vector) + 1U; if (err != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Failed to request irq (intr type:%d), error %d\n", (unsigned int )intr->type, err); } } else { i = 0; goto ldv_51565; ldv_51564: rq = (struct vmxnet3_rx_queue *)(& adapter->rx_queue) + (unsigned long )i; rq->qid = (u32 )i; rq->qid2 = (u32 )i + adapter->num_rx_queues; i = i + 1; ldv_51565: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51564; } else { } i = 0; goto ldv_51568; ldv_51567: intr->mod_levels[i] = 8U; i = i + 1; ldv_51568: ; if (i < (int )intr->num_intrs) { goto ldv_51567; } else { } if ((unsigned int )adapter->intr.type != 3U) { adapter->intr.event_intr_idx = 0U; i = 0; goto ldv_51571; ldv_51570: adapter->tx_queue[i].comp_ring.intr_idx = 0U; i = i + 1; ldv_51571: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51570; } else { } adapter->rx_queue[0].comp_ring.intr_idx = 0U; } else { } { netdev_info((struct net_device const *)adapter->netdev, "intr type %u, mode %u, %u vectors allocated\n", (unsigned int )intr->type, (unsigned int )intr->mask_mode, (int )intr->num_intrs); } } return (err); } } static void vmxnet3_free_irqs(struct vmxnet3_adapter *adapter ) { struct vmxnet3_intr *intr ; long tmp ; long tmp___0 ; int i ; int vector ; int tmp___1 ; int tmp___2 ; long tmp___3 ; { { intr = & adapter->intr; tmp = ldv__builtin_expect((unsigned int )intr->type == 0U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1909), "i" (12UL)); __builtin_unreachable(); } } else { { tmp___0 = ldv__builtin_expect((unsigned int )intr->num_intrs == 0U, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1909), "i" (12UL)); __builtin_unreachable(); } } else { } } { if ((unsigned int )intr->type == 3U) { goto case_3; } else { } if ((unsigned int )intr->type == 2U) { goto case_2; } else { } if ((unsigned int )intr->type == 1U) { goto case_1; } else { } goto switch_default; case_3: /* CIL Label */ vector = 0; if (adapter->share_intr != 0) { i = 0; goto ldv_51582; ldv_51581: { tmp___1 = vector; vector = vector + 1; ldv_free_irq_96(intr->msix_entries[tmp___1].vector, (void *)(& adapter->tx_queue) + (unsigned long )i); } if (adapter->share_intr == 1) { goto ldv_51580; } else { } i = i + 1; ldv_51582: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51581; } else { } ldv_51580: ; } else { } i = 0; goto ldv_51584; ldv_51583: { tmp___2 = vector; vector = vector + 1; ldv_free_irq_97(intr->msix_entries[tmp___2].vector, (void *)(& adapter->rx_queue) + (unsigned long )i); i = i + 1; } ldv_51584: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51583; } else { } { ldv_free_irq_98(intr->msix_entries[vector].vector, (void *)adapter->netdev); tmp___3 = ldv__builtin_expect(vector >= (int )intr->num_intrs, 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1933), "i" (12UL)); __builtin_unreachable(); } } else { } goto ldv_51586; case_2: /* CIL Label */ { ldv_free_irq_99((adapter->pdev)->irq, (void *)adapter->netdev); } goto ldv_51586; case_1: /* CIL Label */ { ldv_free_irq_100((adapter->pdev)->irq, (void *)adapter->netdev); } goto ldv_51586; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (1944), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51586: ; return; } } static void vmxnet3_restore_vlan(struct vmxnet3_adapter *adapter ) { u32 *vfTable ; u16 vid ; unsigned long tmp ; unsigned long tmp___0 ; { { vfTable = (u32 *)(& (adapter->shared)->devRead.rxFilterConf.vfTable); *vfTable = *vfTable | 1U; tmp = find_first_bit((unsigned long const *)(& adapter->active_vlans), 4096UL); vid = (u16 )tmp; } goto ldv_51596; ldv_51595: { *(vfTable + (unsigned long )((int )vid >> 5)) = *(vfTable + (unsigned long )((int )vid >> 5)) | (u32 )(1 << ((int )vid & 31)); tmp___0 = find_next_bit((unsigned long const *)(& adapter->active_vlans), 4096UL, (unsigned long )((int )vid + 1)); vid = (u16 )tmp___0; } ldv_51596: ; if ((unsigned int )vid <= 4095U) { goto ldv_51595; } else { } return; } } static int vmxnet3_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct vmxnet3_adapter *adapter ; void *tmp ; u32 *vfTable ; unsigned long flags ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; } if ((netdev->flags & 256U) == 0U) { { vfTable = (u32 *)(& (adapter->shared)->devRead.rxFilterConf.vfTable); *(vfTable + (unsigned long )((int )vid >> 5)) = *(vfTable + (unsigned long )((int )vid >> 5)) | (u32 )(1 << ((int )vid & 31)); ldv___ldv_spin_lock_101(& adapter->cmd_lock); writel(3405643781U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); } } else { } { set_bit((long )vid, (unsigned long volatile *)(& adapter->active_vlans)); } return (0); } } static int vmxnet3_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct vmxnet3_adapter *adapter ; void *tmp ; u32 *vfTable ; unsigned long flags ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; } if ((netdev->flags & 256U) == 0U) { { vfTable = (u32 *)(& (adapter->shared)->devRead.rxFilterConf.vfTable); *(vfTable + (unsigned long )((int )vid >> 5)) = *(vfTable + (unsigned long )((int )vid >> 5)) & (u32 )(~ (1 << ((int )vid & 31))); ldv___ldv_spin_lock_103(& adapter->cmd_lock); writel(3405643781U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); } } else { } { clear_bit((long )vid, (unsigned long volatile *)(& adapter->active_vlans)); } return (0); } } static u8 *vmxnet3_copy_mc(struct net_device *netdev ) { u8 *buf ; u32 sz ; void *tmp ; struct netdev_hw_addr *ha ; int i ; struct list_head const *__mptr ; int tmp___0 ; struct list_head const *__mptr___0 ; { buf = (u8 *)0U; sz = (u32 )(netdev->mc.count * 6); if (sz <= 65535U) { { tmp = kmalloc((size_t )sz, 32U); buf = (u8 *)tmp; } if ((unsigned long )buf != (unsigned long )((u8 *)0U)) { i = 0; __mptr = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_51626; ldv_51625: { tmp___0 = i; i = i + 1; memcpy((void *)buf + (unsigned long )(tmp___0 * 6), (void const *)(& ha->addr), 6UL); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_51626: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_51625; } else { } } else { } } else { } return (buf); } } static void vmxnet3_set_mc(struct net_device *netdev ) { struct vmxnet3_adapter *adapter ; void *tmp ; unsigned long flags ; struct Vmxnet3_RxFilterConf *rxConf ; u8 *new_table ; dma_addr_t new_table_pa ; u32 new_mode ; u32 *vfTable ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; rxConf = & (adapter->shared)->devRead.rxFilterConf; new_table = (u8 *)0U; new_table_pa = 0ULL; new_mode = 1U; } if ((netdev->flags & 256U) != 0U) { { vfTable = (u32 *)(& (adapter->shared)->devRead.rxFilterConf.vfTable); memset((void *)vfTable, 0, 512UL); new_mode = new_mode | 16U; } } else { { vmxnet3_restore_vlan(adapter); } } if ((netdev->flags & 2U) != 0U) { new_mode = new_mode | 4U; } else { } if ((netdev->flags & 512U) != 0U) { new_mode = new_mode | 8U; } else if (netdev->mc.count != 0) { { new_table = vmxnet3_copy_mc(netdev); } if ((unsigned long )new_table != (unsigned long )((u8 *)0U)) { { new_mode = new_mode | 2U; rxConf->mfTableLen = (unsigned int )((unsigned short )netdev->mc.count) * 6U; new_table_pa = dma_map_single_attrs(& (adapter->pdev)->dev, (void *)new_table, (size_t )rxConf->mfTableLen, 1, (struct dma_attrs *)0); rxConf->mfTablePA = new_table_pa; } } else { { netdev_info((struct net_device const *)netdev, "failed to copy mcast list, setting ALL_MULTI\n"); new_mode = new_mode | 8U; } } } else { } if ((new_mode & 2U) == 0U) { rxConf->mfTableLen = 0U; rxConf->mfTablePA = 0ULL; } else { } { ldv___ldv_spin_lock_105(& adapter->cmd_lock); } if (new_mode != rxConf->rxMode) { { rxConf->rxMode = new_mode; writel(3405643779U, (void volatile *)adapter->hw_addr1 + 32U); writel(3405643781U, (void volatile *)adapter->hw_addr1 + 32U); } } else { } { writel(3405643780U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); } if ((unsigned long )new_table != (unsigned long )((u8 *)0U)) { { dma_unmap_single_attrs(& (adapter->pdev)->dev, new_table_pa, (size_t )rxConf->mfTableLen, 1, (struct dma_attrs *)0); kfree((void const *)new_table); } } else { } return; } } void vmxnet3_rq_destroy_all(struct vmxnet3_adapter *adapter ) { int i ; { i = 0; goto ldv_51643; ldv_51642: { vmxnet3_rq_destroy((struct vmxnet3_rx_queue *)(& adapter->rx_queue) + (unsigned long )i, adapter); i = i + 1; } ldv_51643: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51642; } else { } return; } } static void vmxnet3_setup_driver_shared(struct vmxnet3_adapter *adapter ) { struct Vmxnet3_DriverShared *shared ; struct Vmxnet3_DSDevRead *devRead ; struct Vmxnet3_TxQueueConf *tqc ; struct Vmxnet3_RxQueueConf *rqc ; int i ; struct vmxnet3_tx_queue *tq ; long tmp ; struct vmxnet3_rx_queue *rq ; struct UPT1_RSSConf *rssConf ; uint8_t rss_key[40U] ; u32 tmp___0 ; { { shared = adapter->shared; devRead = & shared->devRead; memset((void *)shared, 0, 720UL); shared->magic = 3133079265U; devRead->misc.driverInfo.version = 16908288U; devRead->misc.driverInfo.gos.gosBits = 2U; devRead->misc.driverInfo.gos.gosType = 1U; *((u32 *)(& devRead->misc.driverInfo.gos)) = *((u32 *)(& devRead->misc.driverInfo.gos)); devRead->misc.driverInfo.vmxnet3RevSpt = 1U; devRead->misc.driverInfo.uptVerSpt = 1U; devRead->misc.ddPA = adapter->adapter_pa; devRead->misc.ddLen = 7168U; } if (((adapter->netdev)->features & 4294967296ULL) != 0ULL) { devRead->misc.uptFeatures = devRead->misc.uptFeatures | 1ULL; } else { } if (((adapter->netdev)->features & 32768ULL) != 0ULL) { devRead->misc.uptFeatures = devRead->misc.uptFeatures | 8ULL; devRead->misc.maxNumRxSG = 18U; } else { } if (((adapter->netdev)->features & 256ULL) != 0ULL) { devRead->misc.uptFeatures = devRead->misc.uptFeatures | 4ULL; } else { } devRead->misc.mtu = (adapter->netdev)->mtu; devRead->misc.queueDescPA = adapter->queue_desc_pa; devRead->misc.queueDescLen = (adapter->num_tx_queues + adapter->num_rx_queues) * 256U; devRead->misc.numTxQueues = (u8 )adapter->num_tx_queues; i = 0; goto ldv_51655; ldv_51654: { tq = (struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )i; tmp = ldv__builtin_expect((unsigned long )adapter->tx_queue[i].tx_ring.base == (unsigned long )((union Vmxnet3_GenericDesc *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (2162), "i" (12UL)); __builtin_unreachable(); } } else { } tqc = & (adapter->tqd_start + (unsigned long )i)->conf; tqc->txRingBasePA = tq->tx_ring.basePA; tqc->dataRingBasePA = tq->data_ring.basePA; tqc->compRingBasePA = tq->comp_ring.basePA; tqc->ddPA = tq->buf_info_pa; tqc->txRingSize = tq->tx_ring.size; tqc->dataRingSize = tq->data_ring.size; tqc->compRingSize = tq->comp_ring.size; tqc->ddLen = tqc->txRingSize * 24U; tqc->intrIdx = tq->comp_ring.intr_idx; i = i + 1; ldv_51655: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51654; } else { } devRead->misc.numRxQueues = (u8 )adapter->num_rx_queues; i = 0; goto ldv_51659; ldv_51658: rq = (struct vmxnet3_rx_queue *)(& adapter->rx_queue) + (unsigned long )i; rqc = & (adapter->rqd_start + (unsigned long )i)->conf; rqc->rxRingBasePA[0] = rq->rx_ring[0].basePA; rqc->rxRingBasePA[1] = rq->rx_ring[1].basePA; rqc->compRingBasePA = rq->comp_ring.basePA; rqc->ddPA = rq->buf_info_pa; rqc->rxRingSize[0] = rq->rx_ring[0].size; rqc->rxRingSize[1] = rq->rx_ring[1].size; rqc->compRingSize = rq->comp_ring.size; rqc->ddLen = (rqc->rxRingSize[0] + rqc->rxRingSize[1]) * 24U; rqc->intrIdx = rq->comp_ring.intr_idx; i = i + 1; ldv_51659: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51658; } else { } { memset((void *)adapter->rss_conf, 0, 176UL); } if ((int )adapter->rss) { { rssConf = adapter->rss_conf; rss_key[0] = 59U; rss_key[1] = 86U; rss_key[2] = 209U; rss_key[3] = 86U; rss_key[4] = 19U; rss_key[5] = 74U; rss_key[6] = 231U; rss_key[7] = 172U; rss_key[8] = 232U; rss_key[9] = 121U; rss_key[10] = 9U; rss_key[11] = 117U; rss_key[12] = 232U; rss_key[13] = 101U; rss_key[14] = 121U; rss_key[15] = 40U; rss_key[16] = 53U; rss_key[17] = 18U; rss_key[18] = 185U; rss_key[19] = 86U; rss_key[20] = 124U; rss_key[21] = 118U; rss_key[22] = 75U; rss_key[23] = 112U; rss_key[24] = 216U; rss_key[25] = 86U; rss_key[26] = 163U; rss_key[27] = 24U; rss_key[28] = 155U; rss_key[29] = 10U; rss_key[30] = 238U; rss_key[31] = 243U; rss_key[32] = 150U; rss_key[33] = 166U; rss_key[34] = 159U; rss_key[35] = 143U; rss_key[36] = 158U; rss_key[37] = 140U; rss_key[38] = 144U; rss_key[39] = 201U; devRead->misc.uptFeatures = devRead->misc.uptFeatures | 2ULL; devRead->misc.numRxQueues = (u8 )adapter->num_rx_queues; rssConf->hashType = 15U; rssConf->hashFunc = 1U; rssConf->hashKeySize = 40U; rssConf->indTableSize = 32U; memcpy((void *)(& rssConf->hashKey), (void const *)(& rss_key), 40UL); i = 0; } goto ldv_51664; ldv_51663: { tmp___0 = ethtool_rxfh_indir_default((u32 )i, adapter->num_rx_queues); rssConf->indTable[i] = (u8 )tmp___0; i = i + 1; } ldv_51664: ; if (i < (int )rssConf->indTableSize) { goto ldv_51663; } else { } devRead->rssConfDesc.confVer = 1U; devRead->rssConfDesc.confLen = 176U; devRead->rssConfDesc.confPA = adapter->rss_conf_pa; } else { } devRead->intrConf.autoMask = (unsigned int )adapter->intr.mask_mode == 0U; devRead->intrConf.numIntrs = adapter->intr.num_intrs; i = 0; goto ldv_51667; ldv_51666: devRead->intrConf.modLevels[i] = adapter->intr.mod_levels[i]; i = i + 1; ldv_51667: ; if (i < (int )adapter->intr.num_intrs) { goto ldv_51666; } else { } { devRead->intrConf.eventIntrIdx = adapter->intr.event_intr_idx; devRead->intrConf.intrCtrl = devRead->intrConf.intrCtrl | 1U; devRead->rxFilterConf.rxMode = 0U; vmxnet3_restore_vlan(adapter); vmxnet3_write_mac_addr(adapter, (adapter->netdev)->dev_addr); } return; } } int vmxnet3_activate_dev(struct vmxnet3_adapter *adapter ) { int err ; int i ; u32 ret ; unsigned long flags ; struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "vmxnet3"; descriptor.function = "vmxnet3_activate_dev"; descriptor.filename = "drivers/net/vmxnet3/vmxnet3_drv.c"; descriptor.format = "%s: skb_buf_size %d, rx_buf_per_pkt %d, ring sizes %u %u %u\n"; descriptor.lineno = 2263U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)adapter->netdev, "%s: skb_buf_size %d, rx_buf_per_pkt %d, ring sizes %u %u %u\n", (char *)(& (adapter->netdev)->name), adapter->skb_buf_size, adapter->rx_buf_per_pkt, adapter->tx_queue[0].tx_ring.size, adapter->rx_queue[0].rx_ring[0].size, adapter->rx_queue[0].rx_ring[1].size); } } else { } { vmxnet3_tq_init_all(adapter); err = vmxnet3_rq_init_all(adapter); } if (err != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Failed to init rx queue error %d\n", err); } goto rq_err; } else { } { err = vmxnet3_request_irqs(adapter); } if (err != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Failed to setup irq for error %d\n", err); } goto irq_err; } else { } { vmxnet3_setup_driver_shared(adapter); writel((unsigned int )adapter->shared_pa, (void volatile *)adapter->hw_addr1 + 16U); writel((unsigned int )(adapter->shared_pa >> 32), (void volatile *)adapter->hw_addr1 + 24U); ldv___ldv_spin_lock_107(& adapter->cmd_lock); writel(3405643776U, (void volatile *)adapter->hw_addr1 + 32U); ret = readl((void const volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); } if (ret != 0U) { { netdev_err((struct net_device const *)adapter->netdev, "Failed to activate dev: error %u\n", ret); err = -22; } goto activate_err; } else { } i = 0; goto ldv_51682; ldv_51681: { writel(adapter->rx_queue[i].rx_ring[0].next2fill, (void volatile *)adapter->hw_addr0 + (unsigned long )((i + 256) * 8)); writel(adapter->rx_queue[i].rx_ring[1].next2fill, (void volatile *)adapter->hw_addr0 + (unsigned long )((i + 320) * 8)); i = i + 1; } ldv_51682: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51681; } else { } { vmxnet3_set_mc(adapter->netdev); vmxnet3_check_link(adapter, 1); i = 0; } goto ldv_51685; ldv_51684: { napi_enable(& adapter->rx_queue[i].napi); i = i + 1; } ldv_51685: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51684; } else { } { vmxnet3_enable_all_intrs(adapter); clear_bit(1L, (unsigned long volatile *)(& adapter->state)); } return (0); activate_err: { writel(0U, (void volatile *)adapter->hw_addr1 + 16U); writel(0U, (void volatile *)adapter->hw_addr1 + 24U); vmxnet3_free_irqs(adapter); } irq_err: ; rq_err: { vmxnet3_rq_cleanup_all(adapter); } return (err); } } void vmxnet3_reset_dev(struct vmxnet3_adapter *adapter ) { unsigned long flags ; { { ldv___ldv_spin_lock_109(& adapter->cmd_lock); writel(3405643778U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); } return; } } int vmxnet3_quiesce_dev(struct vmxnet3_adapter *adapter ) { int i ; unsigned long flags ; int tmp ; { { tmp = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->state)); } if (tmp != 0) { return (0); } else { } { ldv___ldv_spin_lock_111(& adapter->cmd_lock); writel(3405643777U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); vmxnet3_disable_all_intrs(adapter); i = 0; } goto ldv_51697; ldv_51696: { napi_disable(& adapter->rx_queue[i].napi); i = i + 1; } ldv_51697: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51696; } else { } { netif_tx_disable(adapter->netdev); adapter->link_speed = 0U; netif_carrier_off(adapter->netdev); vmxnet3_tq_cleanup_all(adapter); vmxnet3_rq_cleanup_all(adapter); vmxnet3_free_irqs(adapter); } return (0); } } static void vmxnet3_write_mac_addr(struct vmxnet3_adapter *adapter , u8 *mac ) { u32 tmp ; { { tmp = *((u32 *)mac); writel(tmp, (void volatile *)adapter->hw_addr1 + 40U); tmp = (u32 )(((int )*(mac + 5UL) << 8) | (int )*(mac + 4UL)); writel(tmp, (void volatile *)adapter->hw_addr1 + 48U); } return; } } static int vmxnet3_set_mac_addr(struct net_device *netdev , void *p ) { struct sockaddr *addr ; struct vmxnet3_adapter *adapter ; void *tmp ; { { addr = (struct sockaddr *)p; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; memcpy((void *)netdev->dev_addr, (void const *)(& addr->sa_data), (size_t )netdev->addr_len); vmxnet3_write_mac_addr(adapter, (u8 *)(& addr->sa_data)); } return (0); } } static int vmxnet3_alloc_pci_resources(struct vmxnet3_adapter *adapter , bool *dma64 ) { int err ; unsigned long mmio_start ; unsigned long mmio_len ; struct pci_dev *pdev ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; { { pdev = adapter->pdev; err = pci_enable_device(pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to enable adapter: error %d\n", err); } return (err); } else { } { tmp___1 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp___1 == 0) { { tmp = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp != 0) { { dev_err((struct device const *)(& pdev->dev), "pci_set_consistent_dma_mask failed\n"); err = -5; } goto err_set_mask; } else { } *dma64 = 1; } else { { tmp___0 = pci_set_dma_mask(pdev, 4294967295ULL); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "pci_set_dma_mask failed\n"); err = -5; } goto err_set_mask; } else { } *dma64 = 0; } { err = pci_request_selected_regions(pdev, 3, (char const *)(& vmxnet3_driver_name)); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to request region for adapter: error %d\n", err); } goto err_set_mask; } else { } { pci_set_master(pdev); mmio_start = (unsigned long )pdev->resource[0].start; mmio_len = pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL) : 0UL; tmp___2 = ioremap((resource_size_t )mmio_start, mmio_len); adapter->hw_addr0 = (u8 *)tmp___2; } if ((unsigned long )adapter->hw_addr0 == (unsigned long )((u8 *)0U)) { { dev_err((struct device const *)(& pdev->dev), "Failed to map bar0\n"); err = -5; } goto err_ioremap; } else { } { mmio_start = (unsigned long )pdev->resource[1].start; mmio_len = pdev->resource[1].start != 0ULL || pdev->resource[1].end != pdev->resource[1].start ? (unsigned long )((pdev->resource[1].end - pdev->resource[1].start) + 1ULL) : 0UL; tmp___3 = ioremap((resource_size_t )mmio_start, mmio_len); adapter->hw_addr1 = (u8 *)tmp___3; } if ((unsigned long )adapter->hw_addr1 == (unsigned long )((u8 *)0U)) { { dev_err((struct device const *)(& pdev->dev), "Failed to map bar1\n"); err = -5; } goto err_bar1; } else { } return (0); err_bar1: { iounmap((void volatile *)adapter->hw_addr0); } err_ioremap: { pci_release_selected_regions(pdev, 3); } err_set_mask: { pci_disable_device(pdev); } return (err); } } static void vmxnet3_free_pci_resources(struct vmxnet3_adapter *adapter ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )adapter->pdev == (unsigned long )((struct pci_dev *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (2473), "i" (12UL)); __builtin_unreachable(); } } else { } { iounmap((void volatile *)adapter->hw_addr0); iounmap((void volatile *)adapter->hw_addr1); pci_release_selected_regions(adapter->pdev, 3); pci_disable_device(adapter->pdev); } return; } } static void vmxnet3_adjust_rx_ring_size(struct vmxnet3_adapter *adapter ) { size_t sz ; size_t i ; size_t ring0_size ; size_t ring1_size ; size_t comp_size ; struct vmxnet3_rx_queue *rq ; u32 __min1 ; u32 __min2 ; { rq = (struct vmxnet3_rx_queue *)(& adapter->rx_queue); if ((adapter->netdev)->mtu <= 3050U) { adapter->skb_buf_size = (adapter->netdev)->mtu + 22U; if (adapter->skb_buf_size <= 127U) { adapter->skb_buf_size = 128U; } else { } adapter->rx_buf_per_pkt = 1; } else { adapter->skb_buf_size = 3072U; sz = (size_t )((adapter->netdev)->mtu - 3050U); adapter->rx_buf_per_pkt = (int )((unsigned int )((sz + 4095UL) / 4096UL) + 1U); } sz = (size_t )(adapter->rx_buf_per_pkt * 32); ring0_size = (size_t )adapter->rx_queue[0].rx_ring[0].size; ring0_size = (((ring0_size + sz) - 1UL) / sz) * sz; __min1 = (u32 )ring0_size; __min2 = (u32 )(4096UL / sz) * (u32 )sz; ring0_size = (size_t )(__min1 < __min2 ? __min1 : __min2); ring1_size = (size_t )adapter->rx_queue[0].rx_ring[1].size; comp_size = ring0_size + ring1_size; i = 0UL; goto ldv_51737; ldv_51736: rq = (struct vmxnet3_rx_queue *)(& adapter->rx_queue) + i; rq->rx_ring[0].size = (u32 )ring0_size; rq->rx_ring[1].size = (u32 )ring1_size; rq->comp_ring.size = (u32 )comp_size; i = i + 1UL; ldv_51737: ; if (i < (size_t )adapter->num_rx_queues) { goto ldv_51736; } else { } return; } } int vmxnet3_create_queues(struct vmxnet3_adapter *adapter , u32 tx_ring_size , u32 rx_ring_size , u32 rx_ring2_size ) { int err ; int i ; struct vmxnet3_tx_queue *tq ; struct vmxnet3_rx_queue *rq ; { err = 0; i = 0; goto ldv_51750; ldv_51749: { tq = (struct vmxnet3_tx_queue *)(& adapter->tx_queue) + (unsigned long )i; tq->tx_ring.size = tx_ring_size; tq->data_ring.size = tx_ring_size; tq->comp_ring.size = tx_ring_size; tq->shared = & (adapter->tqd_start + (unsigned long )i)->ctrl; tq->stopped = 1; tq->adapter = adapter; tq->qid = i; err = vmxnet3_tq_create(tq, adapter); } if (err != 0) { goto queue_err; } else { } i = i + 1; ldv_51750: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51749; } else { } { adapter->rx_queue[0].rx_ring[0].size = rx_ring_size; adapter->rx_queue[0].rx_ring[1].size = rx_ring2_size; vmxnet3_adjust_rx_ring_size(adapter); i = 0; } goto ldv_51755; ldv_51754: { rq = (struct vmxnet3_rx_queue *)(& adapter->rx_queue) + (unsigned long )i; rq->shared = & (adapter->rqd_start + (unsigned long )i)->ctrl; rq->adapter = adapter; err = vmxnet3_rq_create(rq, adapter); } if (err != 0) { if (i == 0) { { netdev_err((struct net_device const *)adapter->netdev, "Could not allocate any rx queues. Aborting.\n"); } goto queue_err; } else { { netdev_info((struct net_device const *)adapter->netdev, "Number of rx queues changed to : %d.\n", i); adapter->num_rx_queues = (u32 )i; err = 0; } goto ldv_51753; } } else { } i = i + 1; ldv_51755: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51754; } else { } ldv_51753: ; return (err); queue_err: { vmxnet3_tq_destroy_all(adapter); } return (err); } } static int vmxnet3_open(struct net_device *netdev ) { struct vmxnet3_adapter *adapter ; int err ; int i ; void *tmp ; struct lock_class_key __key ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; i = 0; } goto ldv_51764; ldv_51763: { spinlock_check(& adapter->tx_queue[i].tx_lock); __raw_spin_lock_init(& adapter->tx_queue[i].tx_lock.__annonCompField19.rlock, "&(&adapter->tx_queue[i].tx_lock)->rlock", & __key); i = i + 1; } ldv_51764: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_51763; } else { } { err = vmxnet3_create_queues(adapter, 512U, 256U, 256U); } if (err != 0) { goto queue_err; } else { } { err = vmxnet3_activate_dev(adapter); } if (err != 0) { goto activate_err; } else { } return (0); activate_err: { vmxnet3_rq_destroy_all(adapter); vmxnet3_tq_destroy_all(adapter); } queue_err: ; return (err); } } static int vmxnet3_close(struct net_device *netdev ) { struct vmxnet3_adapter *adapter ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; } goto ldv_51773; ldv_51772: { msleep(1U); } ldv_51773: { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& adapter->state)); } if (tmp___0 != 0) { goto ldv_51772; } else { } { vmxnet3_quiesce_dev(adapter); vmxnet3_rq_destroy_all(adapter); vmxnet3_tq_destroy_all(adapter); clear_bit(0L, (unsigned long volatile *)(& adapter->state)); } return (0); } } void vmxnet3_force_close(struct vmxnet3_adapter *adapter ) { int i ; int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& adapter->state)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (2645), "i" (12UL)); __builtin_unreachable(); } } else { } i = 0; goto ldv_51780; ldv_51779: { napi_enable(& adapter->rx_queue[i].napi); i = i + 1; } ldv_51780: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51779; } else { } { dev_close(adapter->netdev); } return; } } static int vmxnet3_change_mtu(struct net_device *netdev , int new_mtu ) { struct vmxnet3_adapter *adapter ; void *tmp ; int err ; int tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; err = 0; } if ((unsigned int )new_mtu - 60U > 8940U) { return (-22); } else { } netdev->mtu = (unsigned int )new_mtu; goto ldv_51789; ldv_51788: { msleep(1U); } ldv_51789: { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& adapter->state)); } if (tmp___0 != 0) { goto ldv_51788; } else { } { tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { vmxnet3_quiesce_dev(adapter); vmxnet3_reset_dev(adapter); vmxnet3_rq_destroy_all(adapter); vmxnet3_adjust_rx_ring_size(adapter); err = vmxnet3_rq_create_all(adapter); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "failed to re-create rx queues, error %d. Closing it.\n", err); } goto out; } else { } { err = vmxnet3_activate_dev(adapter); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "failed to re-activate, error %d. Closing it\n", err); } goto out; } else { } } else { } out: { clear_bit(0L, (unsigned long volatile *)(& adapter->state)); } if (err != 0) { { vmxnet3_force_close(adapter); } } else { } return (err); } } static void vmxnet3_declare_features(struct vmxnet3_adapter *adapter , bool dma64 ) { struct net_device *netdev ; { netdev = adapter->netdev; netdev->hw_features = 4296114569ULL; if ((int )dma64) { netdev->hw_features = netdev->hw_features | 32ULL; } else { } netdev->vlan_features = netdev->hw_features & 0xfffffffffffffe7fULL; netdev->features = netdev->hw_features | 512ULL; return; } } static void vmxnet3_read_mac_addr(struct vmxnet3_adapter *adapter , u8 *mac ) { u32 tmp ; { { tmp = readl((void const volatile *)adapter->hw_addr1 + 40U); *((u32 *)mac) = tmp; tmp = readl((void const volatile *)adapter->hw_addr1 + 48U); *(mac + 4UL) = (u8 )tmp; *(mac + 5UL) = (u8 )(tmp >> 8); } return; } } static int vmxnet3_acquire_msix_vectors(struct vmxnet3_adapter *adapter , int vectors ) { int err ; int vector_threshold ; { err = 0; vector_threshold = 2; goto ldv_51810; ldv_51809: { err = pci_enable_msix(adapter->pdev, (struct msix_entry *)(& adapter->intr.msix_entries), vectors); } if (err == 0) { adapter->intr.num_intrs = (u8 )vectors; return (0); } else if (err < 0) { { dev_err((struct device const *)(& (adapter->netdev)->dev), "Failed to enable MSI-X, error: %d\n", err); vectors = 0; } } else if (err < vector_threshold) { goto ldv_51808; } else { { dev_err((struct device const *)(& (adapter->netdev)->dev), "Failed to enable %d MSI-X, trying %d instead\n", vectors, vector_threshold); vectors = vector_threshold; } } ldv_51810: ; if (vectors >= vector_threshold) { goto ldv_51809; } else { } ldv_51808: { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Number of MSI-X interrupts which can be allocated is lower than min threshold required.\n"); } return (err); } } static void vmxnet3_alloc_intr_resources(struct vmxnet3_adapter *adapter ) { u32 cfg ; unsigned long flags ; int vector ; int err ; int err___0 ; { { ldv___ldv_spin_lock_113(& adapter->cmd_lock); writel(4027383816U, (void volatile *)adapter->hw_addr1 + 32U); cfg = readl((void const volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); adapter->intr.type = (enum vmxnet3_intr_type )(cfg & 3U); adapter->intr.mask_mode = (enum vmxnet3_intr_mask_mode )((cfg >> 2) & 3U); } if ((unsigned int )adapter->intr.type == 0U) { adapter->intr.type = 3; } else { } if ((unsigned int )adapter->intr.type == 3U) { err = 0; adapter->intr.num_intrs = adapter->share_intr != 1 ? (u8 )adapter->num_tx_queues : 1U; adapter->intr.num_intrs = (unsigned int )adapter->intr.num_intrs + (adapter->share_intr != 0 ? (u8 )adapter->num_rx_queues : 0U); adapter->intr.num_intrs = (unsigned int )adapter->intr.num_intrs + 1U; adapter->intr.num_intrs = 2U > (unsigned int )adapter->intr.num_intrs ? 2U : adapter->intr.num_intrs; vector = 0; goto ldv_51819; ldv_51818: adapter->intr.msix_entries[vector].entry = (u16 )vector; vector = vector + 1; ldv_51819: ; if (vector < (int )adapter->intr.num_intrs) { goto ldv_51818; } else { } { err = vmxnet3_acquire_msix_vectors(adapter, (int )adapter->intr.num_intrs); } if (err == 2) { if (adapter->share_intr != 0 || adapter->num_rx_queues != 1U) { { adapter->share_intr = 1; netdev_err((struct net_device const *)adapter->netdev, "Number of rx queues : 1\n"); adapter->num_rx_queues = 1U; adapter->intr.num_intrs = 2U; } } else { } return; } else { } if (err == 0) { return; } else { } { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Failed to enable MSI-X, error %d. Limiting #rx queues to 1, try MSI.\n", err); adapter->intr.type = 2; } } else { } if ((unsigned int )adapter->intr.type == 2U) { { err___0 = pci_enable_msi_block(adapter->pdev, 1); } if (err___0 == 0) { adapter->num_rx_queues = 1U; adapter->intr.num_intrs = 1U; return; } else { } } else { } { adapter->num_rx_queues = 1U; _dev_info((struct device const *)(& (adapter->netdev)->dev), "Using INTx interrupt, #Rx queues: 1.\n"); adapter->intr.type = 1; adapter->intr.num_intrs = 1U; } return; } } static void vmxnet3_free_intr_resources(struct vmxnet3_adapter *adapter ) { long tmp ; { if ((unsigned int )adapter->intr.type == 3U) { { pci_disable_msix(adapter->pdev); } } else if ((unsigned int )adapter->intr.type == 2U) { { pci_disable_msi(adapter->pdev); } } else { { tmp = ldv__builtin_expect((unsigned int )adapter->intr.type != 1U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/vmxnet3/vmxnet3_drv.c"), "i" (2883), "i" (12UL)); __builtin_unreachable(); } } else { } } return; } } static void vmxnet3_tx_timeout(struct net_device *netdev ) { struct vmxnet3_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; adapter->tx_timeout_count = adapter->tx_timeout_count + 1ULL; netdev_err((struct net_device const *)adapter->netdev, "tx hang\n"); schedule_work(& adapter->work); netif_wake_queue(adapter->netdev); } return; } } static void vmxnet3_reset_work(struct work_struct *data ) { struct vmxnet3_adapter *adapter ; struct work_struct const *__mptr ; int tmp ; bool tmp___0 ; { { __mptr = (struct work_struct const *)data; adapter = (struct vmxnet3_adapter *)__mptr + 0xffffffffffffe478UL; tmp = test_and_set_bit(0L, (unsigned long volatile *)(& adapter->state)); } if (tmp != 0) { return; } else { } { rtnl_lock(); tmp___0 = netif_running((struct net_device const *)adapter->netdev); } if ((int )tmp___0) { { netdev_notice((struct net_device const *)adapter->netdev, "resetting\n"); vmxnet3_quiesce_dev(adapter); vmxnet3_reset_dev(adapter); vmxnet3_activate_dev(adapter); } } else { { netdev_info((struct net_device const *)adapter->netdev, "already closed\n"); } } { rtnl_unlock(); clear_bit(0L, (unsigned long volatile *)(& adapter->state)); } return; } } static int vmxnet3_probe_device(struct pci_dev *pdev , struct pci_device_id const *id ) { struct net_device_ops vmxnet3_netdev_ops ; int err ; bool dma64 ; u32 ver ; struct net_device *netdev ; struct vmxnet3_adapter *adapter ; u8 mac[6U] ; int size ; int num_tx_queues ; int num_rx_queues ; int tmp ; int _min1 ; int _min2 ; unsigned int tmp___0 ; unsigned long tmp___69 ; int _min1___0 ; int _min2___0 ; unsigned int tmp___70 ; unsigned long tmp___139 ; int _max1 ; int _max2 ; int _max1___0 ; int _max2___0 ; void *tmp___140 ; struct lock_class_key __key ; void *tmp___141 ; void *tmp___142 ; void *tmp___143 ; void *tmp___144 ; struct _ddebug descriptor ; long tmp___145 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; int i ; { { vmxnet3_netdev_ops.ndo_init = 0; vmxnet3_netdev_ops.ndo_uninit = 0; vmxnet3_netdev_ops.ndo_open = & vmxnet3_open; vmxnet3_netdev_ops.ndo_stop = & vmxnet3_close; vmxnet3_netdev_ops.ndo_start_xmit = & vmxnet3_xmit_frame; vmxnet3_netdev_ops.ndo_select_queue = 0; vmxnet3_netdev_ops.ndo_change_rx_flags = 0; vmxnet3_netdev_ops.ndo_set_rx_mode = & vmxnet3_set_mc; vmxnet3_netdev_ops.ndo_set_mac_address = & vmxnet3_set_mac_addr; vmxnet3_netdev_ops.ndo_validate_addr = 0; vmxnet3_netdev_ops.ndo_do_ioctl = 0; vmxnet3_netdev_ops.ndo_set_config = 0; vmxnet3_netdev_ops.ndo_change_mtu = & vmxnet3_change_mtu; vmxnet3_netdev_ops.ndo_neigh_setup = 0; vmxnet3_netdev_ops.ndo_tx_timeout = & vmxnet3_tx_timeout; vmxnet3_netdev_ops.ndo_get_stats64 = & vmxnet3_get_stats64; vmxnet3_netdev_ops.ndo_get_stats = 0; vmxnet3_netdev_ops.ndo_vlan_rx_add_vid = & vmxnet3_vlan_rx_add_vid; vmxnet3_netdev_ops.ndo_vlan_rx_kill_vid = & vmxnet3_vlan_rx_kill_vid; vmxnet3_netdev_ops.ndo_poll_controller = & vmxnet3_netpoll; vmxnet3_netdev_ops.ndo_netpoll_setup = 0; vmxnet3_netdev_ops.ndo_netpoll_cleanup = 0; vmxnet3_netdev_ops.ndo_busy_poll = 0; vmxnet3_netdev_ops.ndo_set_vf_mac = 0; vmxnet3_netdev_ops.ndo_set_vf_vlan = 0; vmxnet3_netdev_ops.ndo_set_vf_tx_rate = 0; vmxnet3_netdev_ops.ndo_set_vf_spoofchk = 0; vmxnet3_netdev_ops.ndo_get_vf_config = 0; vmxnet3_netdev_ops.ndo_set_vf_link_state = 0; vmxnet3_netdev_ops.ndo_set_vf_port = 0; vmxnet3_netdev_ops.ndo_get_vf_port = 0; vmxnet3_netdev_ops.ndo_setup_tc = 0; vmxnet3_netdev_ops.ndo_fcoe_enable = 0; vmxnet3_netdev_ops.ndo_fcoe_disable = 0; vmxnet3_netdev_ops.ndo_fcoe_ddp_setup = 0; vmxnet3_netdev_ops.ndo_fcoe_ddp_done = 0; vmxnet3_netdev_ops.ndo_fcoe_ddp_target = 0; vmxnet3_netdev_ops.ndo_fcoe_get_hbainfo = 0; vmxnet3_netdev_ops.ndo_fcoe_get_wwn = 0; vmxnet3_netdev_ops.ndo_rx_flow_steer = 0; vmxnet3_netdev_ops.ndo_add_slave = 0; vmxnet3_netdev_ops.ndo_del_slave = 0; vmxnet3_netdev_ops.ndo_fix_features = 0; vmxnet3_netdev_ops.ndo_set_features = & vmxnet3_set_features; vmxnet3_netdev_ops.ndo_neigh_construct = 0; vmxnet3_netdev_ops.ndo_neigh_destroy = 0; vmxnet3_netdev_ops.ndo_fdb_add = 0; vmxnet3_netdev_ops.ndo_fdb_del = 0; vmxnet3_netdev_ops.ndo_fdb_dump = 0; vmxnet3_netdev_ops.ndo_bridge_setlink = 0; vmxnet3_netdev_ops.ndo_bridge_getlink = 0; vmxnet3_netdev_ops.ndo_bridge_dellink = 0; vmxnet3_netdev_ops.ndo_change_carrier = 0; vmxnet3_netdev_ops.ndo_get_phys_port_id = 0; vmxnet3_netdev_ops.ndo_add_vxlan_port = 0; vmxnet3_netdev_ops.ndo_del_vxlan_port = 0; vmxnet3_netdev_ops.ndo_dfwd_add_station = 0; vmxnet3_netdev_ops.ndo_dfwd_del_station = 0; vmxnet3_netdev_ops.ndo_dfwd_start_xmit = 0; dma64 = 0; tmp = pci_msi_enabled(); } if (tmp == 0) { enable_mq = 0; } else { } if (enable_mq != 0) { { _min1 = 8; tmp___0 = cpumask_weight(cpu_online_mask); _min2 = (int )tmp___0; num_rx_queues = _min1 < _min2 ? _min1 : _min2; } } else { num_rx_queues = 1; } { tmp___69 = __rounddown_pow_of_two((unsigned long )num_rx_queues); num_rx_queues = (int )tmp___69; } if (enable_mq != 0) { { _min1___0 = 8; tmp___70 = cpumask_weight(cpu_online_mask); _min2___0 = (int )tmp___70; num_tx_queues = _min1___0 < _min2___0 ? _min1___0 : _min2___0; } } else { num_tx_queues = 1; } { tmp___139 = __rounddown_pow_of_two((unsigned long )num_tx_queues); num_tx_queues = (int )tmp___139; _max1 = num_tx_queues; _max2 = num_rx_queues; _max1___0 = num_tx_queues; _max2___0 = num_rx_queues; netdev = ldv_alloc_etherdev_mqs_115(7168, (unsigned int )(_max1___0 > _max2___0 ? _max1___0 : _max2___0), (unsigned int )(_max1 > _max2 ? _max1 : _max2)); _dev_info((struct device const *)(& pdev->dev), "# of Tx queues : %d, # of Rx queues : %d\n", num_tx_queues, num_rx_queues); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { return (-12); } else { } { pci_set_drvdata(pdev, (void *)netdev); tmp___140 = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp___140; adapter->netdev = netdev; adapter->pdev = pdev; spinlock_check(& adapter->cmd_lock); __raw_spin_lock_init(& adapter->cmd_lock.__annonCompField19.rlock, "&(&adapter->cmd_lock)->rlock", & __key); adapter->adapter_pa = dma_map_single_attrs(& (adapter->pdev)->dev, (void *)adapter, 7168UL, 1, (struct dma_attrs *)0); tmp___141 = dma_alloc_attrs(& (adapter->pdev)->dev, 720UL, & adapter->shared_pa, 208U, (struct dma_attrs *)0); adapter->shared = (struct Vmxnet3_DriverShared *)tmp___141; } if ((unsigned long )adapter->shared == (unsigned long )((struct Vmxnet3_DriverShared *)0)) { { dev_err((struct device const *)(& pdev->dev), "Failed to allocate memory\n"); err = -12; } goto err_alloc_shared; } else { } { adapter->num_rx_queues = (u32 )num_rx_queues; adapter->num_tx_queues = (u32 )num_tx_queues; adapter->rx_buf_per_pkt = 1; size = (int )(adapter->num_tx_queues * 256U); size = (int )((unsigned int )size + adapter->num_rx_queues * 256U); tmp___142 = dma_alloc_attrs(& (adapter->pdev)->dev, (size_t )size, & adapter->queue_desc_pa, 208U, (struct dma_attrs *)0); adapter->tqd_start = (struct Vmxnet3_TxQueueDesc *)tmp___142; } if ((unsigned long )adapter->tqd_start == (unsigned long )((struct Vmxnet3_TxQueueDesc *)0)) { { dev_err((struct device const *)(& pdev->dev), "Failed to allocate memory\n"); err = -12; } goto err_alloc_queue_desc; } else { } { adapter->rqd_start = (struct Vmxnet3_RxQueueDesc *)adapter->tqd_start + (unsigned long )adapter->num_tx_queues; tmp___143 = dma_alloc_attrs(& (adapter->pdev)->dev, 920UL, & adapter->pm_conf_pa, 208U, (struct dma_attrs *)0); adapter->pm_conf = (struct Vmxnet3_PMConf *)tmp___143; } if ((unsigned long )adapter->pm_conf == (unsigned long )((struct Vmxnet3_PMConf *)0)) { err = -12; goto err_alloc_pm; } else { } { tmp___144 = dma_alloc_attrs(& (adapter->pdev)->dev, 176UL, & adapter->rss_conf_pa, 208U, (struct dma_attrs *)0); adapter->rss_conf = (struct UPT1_RSSConf *)tmp___144; } if ((unsigned long )adapter->rss_conf == (unsigned long )((struct UPT1_RSSConf *)0)) { err = -12; goto err_alloc_rss; } else { } { err = vmxnet3_alloc_pci_resources(adapter, & dma64); } if (err < 0) { goto err_alloc_pci; } else { } { ver = readl((void const volatile *)adapter->hw_addr1); } if ((int )ver & 1) { { writel(1U, (void volatile *)adapter->hw_addr1); } } else { { dev_err((struct device const *)(& pdev->dev), "Incompatible h/w version (0x%x) for adapter\n", ver); err = -16; } goto err_ver; } { ver = readl((void const volatile *)adapter->hw_addr1 + 8U); } if ((int )ver & 1) { { writel(1U, (void volatile *)adapter->hw_addr1 + 8U); } } else { { dev_err((struct device const *)(& pdev->dev), "Incompatible upt version (0x%x) for adapter\n", ver); err = -16; } goto err_ver; } { netdev->dev.parent = & pdev->dev; vmxnet3_declare_features(adapter, (int )dma64); } if (adapter->num_tx_queues == adapter->num_rx_queues) { adapter->share_intr = 0; } else { adapter->share_intr = 2; } { vmxnet3_alloc_intr_resources(adapter); } if (adapter->num_rx_queues > 1U && (unsigned int )adapter->intr.type == 3U) { { adapter->rss = 1; netdev->hw_features = netdev->hw_features | 2147483648ULL; netdev->features = netdev->features | 2147483648ULL; descriptor.modname = "vmxnet3"; descriptor.function = "vmxnet3_probe_device"; descriptor.filename = "drivers/net/vmxnet3/vmxnet3_drv.c"; descriptor.format = "RSS is enabled.\n"; descriptor.lineno = 3082U; descriptor.flags = 0U; tmp___145 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___145 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "RSS is enabled.\n"); } } else { } } else { adapter->rss = 0; } { vmxnet3_read_mac_addr(adapter, (u8 *)(& mac)); memcpy((void *)netdev->dev_addr, (void const *)(& mac), (size_t )netdev->addr_len); netdev->netdev_ops = & vmxnet3_netdev_ops; vmxnet3_set_ethtool_ops(netdev); netdev->watchdog_timeo = 1250; __init_work(& adapter->work, 0); __constr_expr_0.counter = 137438953408L; adapter->work.data = __constr_expr_0; lockdep_init_map(& adapter->work.lockdep_map, "(&adapter->work)", & __key___0, 0); INIT_LIST_HEAD(& adapter->work.entry); adapter->work.func = & vmxnet3_reset_work; set_bit(1L, (unsigned long volatile *)(& adapter->state)); } if ((unsigned int )adapter->intr.type == 3U) { i = 0; goto ldv_51874; ldv_51873: { netif_napi_add(adapter->netdev, & adapter->rx_queue[i].napi, & vmxnet3_poll_rx_only, 64); i = i + 1; } ldv_51874: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51873; } else { } } else { { netif_napi_add(adapter->netdev, & adapter->rx_queue[0].napi, & vmxnet3_poll, 64); } } { netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues); netif_set_real_num_rx_queues(adapter->netdev, adapter->num_rx_queues); netif_carrier_off(netdev); err = ldv_register_netdev_116(netdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to register adapter\n"); } goto err_register; } else { } { vmxnet3_check_link(adapter, 0); } return (0); err_register: { vmxnet3_free_intr_resources(adapter); } err_ver: { vmxnet3_free_pci_resources(adapter); } err_alloc_pci: { dma_free_attrs(& (adapter->pdev)->dev, 176UL, (void *)adapter->rss_conf, adapter->rss_conf_pa, (struct dma_attrs *)0); } err_alloc_rss: { dma_free_attrs(& (adapter->pdev)->dev, 920UL, (void *)adapter->pm_conf, adapter->pm_conf_pa, (struct dma_attrs *)0); } err_alloc_pm: { dma_free_attrs(& (adapter->pdev)->dev, (size_t )size, (void *)adapter->tqd_start, adapter->queue_desc_pa, (struct dma_attrs *)0); } err_alloc_queue_desc: { dma_free_attrs(& (adapter->pdev)->dev, 720UL, (void *)adapter->shared, adapter->shared_pa, (struct dma_attrs *)0); } err_alloc_shared: { dma_unmap_single_attrs(& (adapter->pdev)->dev, adapter->adapter_pa, 7168UL, 1, (struct dma_attrs *)0); ldv_free_netdev_117(netdev); } return (err); } } static void vmxnet3_remove_device(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct vmxnet3_adapter *adapter ; void *tmp___0 ; int size ; int num_rx_queues ; int _min1 ; int _min2 ; unsigned int tmp___1 ; unsigned long tmp___70 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp___0; size = 0; } if (enable_mq != 0) { { _min1 = 8; tmp___1 = cpumask_weight(cpu_online_mask); _min2 = (int )tmp___1; num_rx_queues = _min1 < _min2 ? _min1 : _min2; } } else { num_rx_queues = 1; } { tmp___70 = __rounddown_pow_of_two((unsigned long )num_rx_queues); num_rx_queues = (int )tmp___70; cancel_work_sync(& adapter->work); ldv_unregister_netdev_118(netdev); vmxnet3_free_intr_resources(adapter); vmxnet3_free_pci_resources(adapter); dma_free_attrs(& (adapter->pdev)->dev, 176UL, (void *)adapter->rss_conf, adapter->rss_conf_pa, (struct dma_attrs *)0); dma_free_attrs(& (adapter->pdev)->dev, 920UL, (void *)adapter->pm_conf, adapter->pm_conf_pa, (struct dma_attrs *)0); size = (int )(adapter->num_tx_queues * 256U); size = (int )((unsigned int )size + (unsigned int )((unsigned long )num_rx_queues) * 256U); dma_free_attrs(& (adapter->pdev)->dev, (size_t )size, (void *)adapter->tqd_start, adapter->queue_desc_pa, (struct dma_attrs *)0); dma_free_attrs(& (adapter->pdev)->dev, 720UL, (void *)adapter->shared, adapter->shared_pa, (struct dma_attrs *)0); dma_unmap_single_attrs(& (adapter->pdev)->dev, adapter->adapter_pa, 7168UL, 1, (struct dma_attrs *)0); ldv_free_netdev_119(netdev); } return; } } static int vmxnet3_suspend(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct vmxnet3_adapter *adapter ; void *tmp___0 ; struct Vmxnet3_PMConf *pmConf ; struct ethhdr *ehdr ; struct arphdr *ahdr ; u8 *arpreq ; struct in_device *in_dev ; struct in_ifaddr *ifa ; unsigned long flags ; int i ; bool tmp___1 ; int tmp___2 ; struct pm_message __constr_expr_0 ; pci_power_t tmp___3 ; struct pm_message __constr_expr_1 ; pci_power_t tmp___4 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp___0; i = 0; tmp___1 = netif_running((struct net_device const *)netdev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } i = 0; goto ldv_51904; ldv_51903: { napi_disable(& adapter->rx_queue[i].napi); i = i + 1; } ldv_51904: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51903; } else { } { vmxnet3_disable_all_intrs(adapter); vmxnet3_free_irqs(adapter); vmxnet3_free_intr_resources(adapter); netif_device_detach(netdev); netif_tx_stop_all_queues(netdev); pmConf = adapter->pm_conf; memset((void *)pmConf, 0, 920UL); } if ((adapter->wol & 2U) != 0U) { { pmConf->filters[i].patternSize = 6U; pmConf->filters[i].maskSize = 1U; memcpy((void *)(& pmConf->filters[i].pattern), (void const *)netdev->dev_addr, 6UL); pmConf->filters[i].mask[0] = 63U; pmConf->wakeUpEvents = (__le16 )((unsigned int )pmConf->wakeUpEvents | 2U); i = i + 1; } } else { } if ((adapter->wol & 16U) != 0U) { { in_dev = in_dev_get((struct net_device const *)netdev); } if ((unsigned long )in_dev == (unsigned long )((struct in_device *)0)) { goto skip_arp; } else { } ifa = in_dev->ifa_list; if ((unsigned long )ifa == (unsigned long )((struct in_ifaddr *)0)) { goto skip_arp; } else { } { pmConf->filters[i].patternSize = 42U; pmConf->filters[i].maskSize = (unsigned int )((u8 )(((int )pmConf->filters[i].patternSize + -1) / 8)) + 1U; ehdr = (struct ethhdr *)(& pmConf->filters[i].pattern); ehdr->h_proto = 1544U; ahdr = (struct arphdr *)(& pmConf->filters[i].pattern) + 14U; ahdr->ar_op = 256U; arpreq = (u8 *)ahdr + 1U; arpreq = arpreq + 16UL; *((u32 *)arpreq) = ifa->ifa_address; pmConf->filters[i].mask[0] = 0U; pmConf->filters[i].mask[1] = 48U; pmConf->filters[i].mask[2] = 48U; pmConf->filters[i].mask[3] = 0U; pmConf->filters[i].mask[4] = 192U; pmConf->filters[i].mask[5] = 3U; in_dev_put(in_dev); pmConf->wakeUpEvents = (__le16 )((unsigned int )pmConf->wakeUpEvents | 2U); i = i + 1; } } else { } skip_arp: ; if ((adapter->wol & 32U) != 0U) { pmConf->wakeUpEvents = (__le16 )((unsigned int )pmConf->wakeUpEvents | 1U); } else { } { pmConf->numFilters = (u8 )i; (adapter->shared)->devRead.pmConfDesc.confVer = 1U; (adapter->shared)->devRead.pmConfDesc.confLen = 920U; (adapter->shared)->devRead.pmConfDesc.confPA = adapter->pm_conf_pa; ldv___ldv_spin_lock_120(& adapter->cmd_lock); writel(3405643784U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); pci_save_state(pdev); __constr_expr_0.event = 2; tmp___3 = pci_choose_state(pdev, __constr_expr_0); pci_enable_wake(pdev, tmp___3, adapter->wol != 0U); pci_disable_device(pdev); __constr_expr_1.event = 2; tmp___4 = pci_choose_state(pdev, __constr_expr_1); pci_set_power_state(pdev, tmp___4); } return (0); } } static int vmxnet3_resume(struct device *device ) { int err ; int i ; unsigned long flags ; struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct vmxnet3_adapter *adapter ; void *tmp___0 ; struct Vmxnet3_PMConf *pmConf ; bool tmp___1 ; int tmp___2 ; { { i = 0; __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp___0; tmp___1 = netif_running((struct net_device const *)netdev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } { pmConf = adapter->pm_conf; memset((void *)pmConf, 0, 920UL); (adapter->shared)->devRead.pmConfDesc.confVer = 1U; (adapter->shared)->devRead.pmConfDesc.confLen = 920U; (adapter->shared)->devRead.pmConfDesc.confPA = adapter->pm_conf_pa; netif_device_attach(netdev); pci_set_power_state(pdev, 0); pci_restore_state(pdev); err = pci_enable_device_mem(pdev); } if (err != 0) { return (err); } else { } { pci_enable_wake(pdev, 0, 0); ldv___ldv_spin_lock_122(& adapter->cmd_lock); writel(3405643784U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); vmxnet3_alloc_intr_resources(adapter); vmxnet3_request_irqs(adapter); i = 0; } goto ldv_51922; ldv_51921: { napi_enable(& adapter->rx_queue[i].napi); i = i + 1; } ldv_51922: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_51921; } else { } { vmxnet3_enable_all_intrs(adapter); } return (0); } } static struct dev_pm_ops const vmxnet3_pm_ops = {0, 0, & vmxnet3_suspend, & vmxnet3_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct pci_driver vmxnet3_driver = {{0, 0}, (char const *)(& vmxnet3_driver_name), (struct pci_device_id const *)(& vmxnet3_pciid_table), & vmxnet3_probe_device, & vmxnet3_remove_device, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & vmxnet3_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int vmxnet3_init_module(void) { int tmp ; { { printk("\016%s - version %s\n", (char *)"VMware vmxnet3 virtual NIC driver", (char *)"1.2.0.0-k-NAPI"); tmp = ldv___pci_register_driver_124(& vmxnet3_driver, & __this_module, "vmxnet3"); } return (tmp); } } static void vmxnet3_exit_module(void) { { { ldv_pci_unregister_driver_125(& vmxnet3_driver); } return; } } void ldv_EMGentry_exit_vmxnet3_exit_module_19_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_vmxnet3_init_module_19_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dispatch_deregister_16_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_17_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_platform_instance_13_19_4(void) ; void ldv_dispatch_irq_deregister_9_1(int arg0 ) ; void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_15_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_7_5(void) ; void ldv_dispatch_pm_register_7_6(void) ; void ldv_dispatch_register_11_4(struct net_device *arg0 ) ; void ldv_dispatch_register_18_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_platform_instance_13_19_5(void) ; void ldv_dummy_resourceless_instance_callback_4_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_11(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_12(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_13(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_14(int (*arg0)(struct net_device * , unsigned int * ) , struct net_device *arg1 , unsigned int *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_17(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_18(int (*arg0)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 , unsigned int *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_21(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_22(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_25(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_28(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_29(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_30(int (*arg0)(struct net_device * , unsigned int * ) , struct net_device *arg1 , unsigned int *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_33(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_entry_EMGentry_19(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; void ldv_interrupt_interrupt_instance_2(void *arg0 ) ; void ldv_interrupt_interrupt_instance_3(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_4(void *arg0 ) ; int ldv_pci_instance_probe_5_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_5_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_5_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_5_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_5_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_5_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_5_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_5(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_7_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_7_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_6_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_6_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_6_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_6_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_6_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_6_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_6_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_6_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_6_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_6_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_6_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_6_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_6_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_6_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_6_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_6_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_6_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_6_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_6_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_6_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_6_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_6_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_6_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_7(void *arg0 ) ; void ldv_pm_pm_ops_instance_6(void *arg0 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_16_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_19 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; void ldv_EMGentry_exit_vmxnet3_exit_module_19_2(void (*arg0)(void) ) { { { vmxnet3_exit_module(); } return; } } int ldv_EMGentry_init_vmxnet3_init_module_19_9(int (*arg0)(void) ) { int tmp ; { { tmp = vmxnet3_init_module(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_18_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_18_pci_driver_pci_driver = arg1; ldv_dispatch_register_18_2(ldv_18_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_8_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_8_netdev_net_device = (struct net_device *)tmp; } return (ldv_8_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_dispatch_deregister_16_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_deregister_17_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_platform_instance_13_19_4(void) { { return; } } void ldv_dispatch_irq_deregister_9_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_52424; case_1: /* CIL Label */ ; goto ldv_52424; case_2: /* CIL Label */ ; goto ldv_52424; case_3: /* CIL Label */ ; goto ldv_52424; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52424: ; return; } } void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; struct ldv_struct_interrupt_instance_0 *cf_arg_2 ; struct ldv_struct_interrupt_instance_0 *cf_arg_3 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } goto ldv_52445; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___1; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } goto ldv_52445; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_0 *)tmp___2; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } goto ldv_52445; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(40UL); cf_arg_3 = (struct ldv_struct_interrupt_instance_0 *)tmp___3; cf_arg_3->arg0 = arg0; cf_arg_3->arg1 = arg1; cf_arg_3->arg2 = arg2; cf_arg_3->arg3 = arg3; ldv_interrupt_interrupt_instance_3((void *)cf_arg_3); } goto ldv_52445; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52445: ; return; } } void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; struct ldv_struct_interrupt_instance_0 *cf_arg_2 ; struct ldv_struct_interrupt_instance_0 *cf_arg_3 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } goto ldv_52466; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___1; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } goto ldv_52466; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_0 *)tmp___2; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } goto ldv_52466; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(40UL); cf_arg_3 = (struct ldv_struct_interrupt_instance_0 *)tmp___3; cf_arg_3->arg0 = arg0; cf_arg_3->arg1 = arg1; cf_arg_3->arg2 = arg2; cf_arg_3->arg3 = arg3; ldv_interrupt_interrupt_instance_3((void *)cf_arg_3); } goto ldv_52466; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52466: ; return; } } void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; struct ldv_struct_interrupt_instance_0 *cf_arg_2 ; struct ldv_struct_interrupt_instance_0 *cf_arg_3 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } goto ldv_52487; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___1; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } goto ldv_52487; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_0 *)tmp___2; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } goto ldv_52487; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(40UL); cf_arg_3 = (struct ldv_struct_interrupt_instance_0 *)tmp___3; cf_arg_3->arg0 = arg0; cf_arg_3->arg1 = arg1; cf_arg_3->arg2 = arg2; cf_arg_3->arg3 = arg3; ldv_interrupt_interrupt_instance_3((void *)cf_arg_3); } goto ldv_52487; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52487: ; return; } } void ldv_dispatch_irq_register_15_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; struct ldv_struct_interrupt_instance_0 *cf_arg_2 ; struct ldv_struct_interrupt_instance_0 *cf_arg_3 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } goto ldv_52508; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___1; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } goto ldv_52508; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_0 *)tmp___2; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } goto ldv_52508; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(40UL); cf_arg_3 = (struct ldv_struct_interrupt_instance_0 *)tmp___3; cf_arg_3->arg0 = arg0; cf_arg_3->arg1 = arg1; cf_arg_3->arg2 = arg2; cf_arg_3->arg3 = arg3; ldv_interrupt_interrupt_instance_3((void *)cf_arg_3); } goto ldv_52508; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52508: ; return; } } void ldv_dispatch_pm_deregister_7_5(void) { { return; } } void ldv_dispatch_pm_register_7_6(void) { struct ldv_struct_platform_instance_7 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_platform_instance_7 *)tmp; ldv_pm_pm_ops_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_register_11_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_dummy_resourceless_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_net_dummy_resourceless_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_register_18_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_pci_instance_5 *)tmp; cf_arg_5->arg0 = arg0; ldv_pci_pci_instance_5((void *)cf_arg_5); } return; } } void ldv_dispatch_register_platform_instance_13_19_5(void) { struct ldv_struct_platform_instance_7 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_platform_instance_7 *)tmp; ldv_pm_platform_instance_7((void *)cf_arg_7); } return; } } void ldv_entry_EMGentry_19(void *arg0 ) { void (*ldv_19_exit_vmxnet3_exit_module_default)(void) ; int (*ldv_19_init_vmxnet3_init_module_default)(void) ; int ldv_19_ret_default ; int tmp ; int tmp___0 ; { { ldv_19_ret_default = ldv_EMGentry_init_vmxnet3_init_module_19_9(ldv_19_init_vmxnet3_init_module_default); ldv_19_ret_default = ldv_post_init(ldv_19_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_19_ret_default != 0); ldv_check_final_state(); ldv_stop(); } return; } else { { ldv_assume(ldv_19_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_platform_instance_13_19_5(); ldv_dispatch_deregister_platform_instance_13_19_4(); } } else { } { ldv_EMGentry_exit_vmxnet3_exit_module_19_2(ldv_19_exit_vmxnet3_exit_module_default); ldv_check_final_state(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_initialize(); ldv_entry_EMGentry_19((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_9_line_line ; { { ldv_9_line_line = arg1; ldv_dispatch_irq_deregister_9_1(ldv_9_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_10_netdev_net_device ; { { ldv_10_netdev_net_device = arg1; ldv_free((void *)ldv_10_netdev_net_device); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = vmxnet3_intr(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = vmxnet3_msix_event(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = vmxnet3_msix_rx(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = vmxnet3_msix_tx(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_1_line_line = data->arg0; ldv_1_callback_handler = data->arg1; ldv_1_thread_thread = data->arg2; ldv_1_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_2(void *arg0 ) { enum irqreturn (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line ; enum irqreturn ldv_2_ret_val_default ; enum irqreturn (*ldv_2_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_2_line_line = data->arg0; ldv_2_callback_handler = data->arg1; ldv_2_thread_thread = data->arg2; ldv_2_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_2_ret_val_default = ldv_interrupt_instance_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_2_ret_val_default == 2U); } if ((unsigned long )ldv_2_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_2_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_3(void *arg0 ) { enum irqreturn (*ldv_3_callback_handler)(int , void * ) ; void *ldv_3_data_data ; int ldv_3_line_line ; enum irqreturn ldv_3_ret_val_default ; enum irqreturn (*ldv_3_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_3_line_line = data->arg0; ldv_3_callback_handler = data->arg1; ldv_3_thread_thread = data->arg2; ldv_3_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_3_ret_val_default = ldv_interrupt_instance_handler_3_5(ldv_3_callback_handler, ldv_3_line_line, ldv_3_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_3_ret_val_default == 2U); } if ((unsigned long )ldv_3_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_3_3(ldv_3_thread_thread, ldv_3_line_line, ldv_3_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_3_ret_val_default != 2U); } } return; return; } } void ldv_net_dummy_resourceless_instance_4(void *arg0 ) { void (*ldv_4_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_4_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_4_callback_get_link)(struct net_device * ) ; void (*ldv_4_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_4_callback_get_regs_len)(struct net_device * ) ; void (*ldv_4_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_4_callback_get_rxfh_indir)(struct net_device * , unsigned int * ) ; unsigned int (*ldv_4_callback_get_rxfh_indir_size)(struct net_device * ) ; int (*ldv_4_callback_get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) ; int (*ldv_4_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_4_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_4_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; void (*ldv_4_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*ldv_4_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_4_callback_set_rxfh_indir)(struct net_device * , unsigned int * ) ; int (*ldv_4_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; struct net_device *ldv_4_container_net_device ; struct ethtool_cmd *ldv_4_container_struct_ethtool_cmd_ptr ; struct ethtool_drvinfo *ldv_4_container_struct_ethtool_drvinfo_ptr ; struct ethtool_regs *ldv_4_container_struct_ethtool_regs_ptr ; struct ethtool_ringparam *ldv_4_container_struct_ethtool_ringparam_ptr ; struct ethtool_rxnfc *ldv_4_container_struct_ethtool_rxnfc_ptr ; struct ethtool_stats *ldv_4_container_struct_ethtool_stats_ptr ; struct ethtool_wolinfo *ldv_4_container_struct_ethtool_wolinfo_ptr ; unsigned int *ldv_4_ldv_param_14_1_default ; unsigned int *ldv_4_ldv_param_18_2_default ; int ldv_4_ldv_param_22_1_default ; unsigned int ldv_4_ldv_param_25_1_default ; unsigned char *ldv_4_ldv_param_25_2_default ; unsigned int *ldv_4_ldv_param_30_1_default ; unsigned long long *ldv_4_ldv_param_7_2_default ; struct ldv_struct_dummy_resourceless_instance_4 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { data = (struct ldv_struct_dummy_resourceless_instance_4 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_4 *)0)) { { ldv_4_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_4; return; ldv_call_4: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_33(ldv_4_callback_set_wol, ldv_4_container_net_device, ldv_4_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_4; case_2: /* CIL Label */ { tmp___0 = ldv_xmalloc(4UL); ldv_4_ldv_param_30_1_default = (unsigned int *)tmp___0; ldv_dummy_resourceless_instance_callback_4_30(ldv_4_callback_set_rxfh_indir, ldv_4_container_net_device, ldv_4_ldv_param_30_1_default); ldv_free((void *)ldv_4_ldv_param_30_1_default); } goto ldv_call_4; goto ldv_call_4; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_29(ldv_4_callback_set_ringparam, ldv_4_container_net_device, ldv_4_container_struct_ethtool_ringparam_ptr); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_28(ldv_4_callback_get_wol, ldv_4_container_net_device, ldv_4_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_5: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_4_ldv_param_25_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_4_25(ldv_4_callback_get_strings, ldv_4_container_net_device, ldv_4_ldv_param_25_1_default, ldv_4_ldv_param_25_2_default); ldv_free((void *)ldv_4_ldv_param_25_2_default); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_22(ldv_4_callback_get_sset_count, ldv_4_container_net_device, ldv_4_ldv_param_22_1_default); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_21(ldv_4_callback_get_settings, ldv_4_container_net_device, ldv_4_container_struct_ethtool_cmd_ptr); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_8: /* CIL Label */ { tmp___2 = ldv_xmalloc(4UL); ldv_4_ldv_param_18_2_default = (unsigned int *)tmp___2; ldv_dummy_resourceless_instance_callback_4_18(ldv_4_callback_get_rxnfc, ldv_4_container_net_device, ldv_4_container_struct_ethtool_rxnfc_ptr, ldv_4_ldv_param_18_2_default); ldv_free((void *)ldv_4_ldv_param_18_2_default); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_17(ldv_4_callback_get_rxfh_indir_size, ldv_4_container_net_device); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_10: /* CIL Label */ { tmp___3 = ldv_xmalloc(4UL); ldv_4_ldv_param_14_1_default = (unsigned int *)tmp___3; ldv_dummy_resourceless_instance_callback_4_14(ldv_4_callback_get_rxfh_indir, ldv_4_container_net_device, ldv_4_ldv_param_14_1_default); ldv_free((void *)ldv_4_ldv_param_14_1_default); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_13(ldv_4_callback_get_ringparam, ldv_4_container_net_device, ldv_4_container_struct_ethtool_ringparam_ptr); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_12(ldv_4_callback_get_regs_len, ldv_4_container_net_device); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_11(ldv_4_callback_get_regs, ldv_4_container_net_device, ldv_4_container_struct_ethtool_regs_ptr, (void *)ldv_4_container_struct_ethtool_cmd_ptr); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_10(ldv_4_callback_get_link, ldv_4_container_net_device); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_15: /* CIL Label */ { tmp___4 = ldv_xmalloc(8UL); ldv_4_ldv_param_7_2_default = (unsigned long long *)tmp___4; ldv_dummy_resourceless_instance_callback_4_7(ldv_4_callback_get_ethtool_stats, ldv_4_container_net_device, ldv_4_container_struct_ethtool_stats_ptr, ldv_4_ldv_param_7_2_default); ldv_free((void *)ldv_4_ldv_param_7_2_default); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_get_drvinfo, ldv_4_container_net_device, ldv_4_container_struct_ethtool_drvinfo_ptr); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_17: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_pci_instance_probe_5_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = vmxnet3_probe_device(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_5_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { vmxnet3_remove_device(arg1); } return; } } void ldv_pci_instance_resume_5_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_5_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_5_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_5_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_5_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_5(void *arg0 ) { struct pci_driver *ldv_5_container_pci_driver ; struct pci_dev *ldv_5_resource_dev ; struct pm_message ldv_5_resource_pm_message ; struct pci_device_id *ldv_5_resource_struct_pci_device_id_ptr ; int ldv_5_ret_default ; struct ldv_struct_pci_instance_5 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_5 *)arg0; ldv_5_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_5 *)0)) { { ldv_5_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2936UL); ldv_5_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_5_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_5; return; ldv_main_5: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_pre_probe(); ldv_5_ret_default = ldv_pci_instance_probe_5_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_5_container_pci_driver->probe, ldv_5_resource_dev, ldv_5_resource_struct_pci_device_id_ptr); ldv_5_ret_default = ldv_post_probe(ldv_5_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_5_ret_default == 0); } goto ldv_call_5; } else { { ldv_assume(ldv_5_ret_default != 0); } goto ldv_main_5; } } else { { ldv_free((void *)ldv_5_resource_dev); ldv_free((void *)ldv_5_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_5: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_5; case_2: /* CIL Label */ ; if ((unsigned long )ldv_5_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_5_ret_default = ldv_pci_instance_suspend_5_8(ldv_5_container_pci_driver->suspend, ldv_5_resource_dev, ldv_5_resource_pm_message); } } else { } { ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); } if ((unsigned long )ldv_5_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_5_ret_default = ldv_pci_instance_suspend_late_5_7(ldv_5_container_pci_driver->suspend_late, ldv_5_resource_dev, ldv_5_resource_pm_message); } } else { } { ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); } if ((unsigned long )ldv_5_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_5_6(ldv_5_container_pci_driver->resume_early, ldv_5_resource_dev); } } else { } if ((unsigned long )ldv_5_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_5_5(ldv_5_container_pci_driver->resume, ldv_5_resource_dev); } } else { } goto ldv_call_5; case_3: /* CIL Label */ ; if ((unsigned long )ldv_5_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_5_3(ldv_5_container_pci_driver->shutdown, ldv_5_resource_dev); } } else { } { ldv_pci_instance_release_5_2(ldv_5_container_pci_driver->remove, ldv_5_resource_dev); } goto ldv_main_5; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_17_pci_driver_pci_driver ; { { ldv_17_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_17_1(ldv_17_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_7_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_7_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_6_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_6_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_6_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_6_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_6_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_6_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_6_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_6_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_6_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_early_6_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_6_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_6_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { vmxnet3_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_6_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_6_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_6_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_6_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_6_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_6_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { vmxnet3_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_6_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_6_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_6_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_6_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_6_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_7(void *arg0 ) { struct platform_driver *ldv_7_container_platform_driver ; struct platform_device *ldv_7_ldv_param_14_0_default ; struct platform_device *ldv_7_ldv_param_3_0_default ; int ldv_7_probed_default ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { ldv_7_probed_default = 1; goto ldv_main_7; return; ldv_main_7: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(1432UL); ldv_7_ldv_param_14_0_default = (struct platform_device *)tmp; ldv_pre_probe(); } if ((unsigned long )ldv_7_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_7_probed_default = ldv_platform_instance_probe_7_14(ldv_7_container_platform_driver->probe, ldv_7_ldv_param_14_0_default); } } else { } { ldv_7_probed_default = ldv_post_probe(ldv_7_probed_default); ldv_free((void *)ldv_7_ldv_param_14_0_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_7_probed_default == 0); } goto ldv_call_7; } else { { ldv_assume(ldv_7_probed_default != 0); } goto ldv_main_7; } } else { return; } return; ldv_call_7: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(1432UL); ldv_7_ldv_param_3_0_default = (struct platform_device *)tmp___3; } if ((unsigned long )ldv_7_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_7_3(ldv_7_container_platform_driver->remove, ldv_7_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_7_ldv_param_3_0_default); ldv_7_probed_default = 1; } goto ldv_main_7; case_2: /* CIL Label */ ; goto ldv_call_7; case_3: /* CIL Label */ { ldv_dispatch_pm_register_7_6(); ldv_dispatch_pm_deregister_7_5(); } goto ldv_call_7; goto ldv_call_7; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_pm_ops_instance_6(void *arg0 ) { struct device *ldv_6_device_device ; struct dev_pm_ops *ldv_6_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_6; return; ldv_do_6: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_6_27(ldv_6_pm_ops_dev_pm_ops->runtime_idle, ldv_6_device_device); } } else { } goto ldv_do_6; case_2: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_6_25(ldv_6_pm_ops_dev_pm_ops->runtime_suspend, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_6_24(ldv_6_pm_ops_dev_pm_ops->runtime_resume, ldv_6_device_device); } } else { } goto ldv_do_6; case_3: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_6_22(ldv_6_pm_ops_dev_pm_ops->prepare, ldv_6_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_instance_suspend_6_21(ldv_6_pm_ops_dev_pm_ops->suspend, ldv_6_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_6_20(ldv_6_pm_ops_dev_pm_ops->suspend_noirq, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_6_19(ldv_6_pm_ops_dev_pm_ops->resume_noirq, ldv_6_device_device); } } else { } } else { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_6_18(ldv_6_pm_ops_dev_pm_ops->suspend_late, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_6_17(ldv_6_pm_ops_dev_pm_ops->resume_early, ldv_6_device_device); } } else { } } { ldv_pm_ops_instance_resume_6_16(ldv_6_pm_ops_dev_pm_ops->resume, ldv_6_device_device); } goto ldv_52960; case_2___0: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->freeze != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_6_15(ldv_6_pm_ops_dev_pm_ops->freeze, ldv_6_device_device); } } else { } { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_6_14(ldv_6_pm_ops_dev_pm_ops->freeze_late, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_6_13(ldv_6_pm_ops_dev_pm_ops->thaw_early, ldv_6_device_device); } } else { } } else { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_6_12(ldv_6_pm_ops_dev_pm_ops->freeze_noirq, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_6_11(ldv_6_pm_ops_dev_pm_ops->thaw_noirq, ldv_6_device_device); } } else { } } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->thaw != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_6_10(ldv_6_pm_ops_dev_pm_ops->thaw, ldv_6_device_device); } } else { } goto ldv_52960; case_3___0: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->poweroff != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_6_9(ldv_6_pm_ops_dev_pm_ops->poweroff, ldv_6_device_device); } } else { } { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_6_8(ldv_6_pm_ops_dev_pm_ops->poweroff_late, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_6_7(ldv_6_pm_ops_dev_pm_ops->restore_early, ldv_6_device_device); } } else { } } else { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_6_6(ldv_6_pm_ops_dev_pm_ops->poweroff_noirq, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_6_5(ldv_6_pm_ops_dev_pm_ops->restore_noirq, ldv_6_device_device); } } else { } } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->restore != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_6_4(ldv_6_pm_ops_dev_pm_ops->restore, ldv_6_device_device); } } else { } goto ldv_52960; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_52960: ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_6_3(ldv_6_pm_ops_dev_pm_ops->complete, ldv_6_device_device); } } else { } goto ldv_do_6; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; int ldv_11_ret_default ; int tmp ; int tmp___0 ; { { ldv_11_ret_default = 1; ldv_11_ret_default = ldv_pre_register_netdev(); ldv_11_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_11_ret_default == 0); } if ((unsigned long )(ldv_11_netdev_net_device->netdev_ops)->ndo_open != (unsigned long )((int (*/* const */)(struct net_device * ))0)) { { ldv_11_ret_default = ldv_register_netdev_open_11_6((ldv_11_netdev_net_device->netdev_ops)->ndo_open, ldv_11_netdev_net_device); } } else { } { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_11_ret_default == 0); ldv_dispatch_register_11_4(ldv_11_netdev_net_device); } } else { { ldv_assume(ldv_11_ret_default != 0); } } } else { { ldv_assume(ldv_11_ret_default != 0); } } return (ldv_11_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_15_callback_handler)(int , void * ) ; void *ldv_15_data_data ; int ldv_15_line_line ; enum irqreturn (*ldv_15_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_15_line_line = (int )arg1; ldv_15_callback_handler = arg2; ldv_15_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_15_data_data = arg5; ldv_dispatch_irq_register_15_2(ldv_15_line_line, ldv_15_callback_handler, ldv_15_thread_thread, ldv_15_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_16_netdev_net_device ; { ldv_16_netdev_net_device = arg1; if ((unsigned long )(ldv_16_netdev_net_device->netdev_ops)->ndo_stop != (unsigned long )((int (*/* const */)(struct net_device * ))0)) { { ldv_unregister_netdev_stop_16_2((ldv_16_netdev_net_device->netdev_ops)->ndo_stop, ldv_16_netdev_net_device); } } else { } { ldv_dispatch_deregister_16_1(ldv_16_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_16_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { (*arg0)(arg1); } return; } } __inline static void ldv_spin_lock_46(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_49(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static void ldv___ldv_spin_lock_81(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_cmd_lock_of_vmxnet3_adapter(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_83(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_85(spinlock_t *lock ) { { { ldv_spin_lock_tx_lock_of_vmxnet3_tx_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_86(spinlock_t *lock ) { { { ldv_spin_unlock_tx_lock_of_vmxnet3_tx_queue(); spin_unlock(lock); } return; } } static void ldv___ldv_spin_lock_87(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_tx_lock_of_vmxnet3_tx_queue(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_88(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_tx_lock_of_vmxnet3_tx_queue(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static int ldv_request_irq_91(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_92(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_93(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_94(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_95(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_96(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_97(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_98(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_99(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_100(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv___ldv_spin_lock_101(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_103(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_105(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_107(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_109(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_111(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_113(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_115(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___5 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_116(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_117(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_118(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_119(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_120(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_122(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv___pci_register_driver_124(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_125(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } extern size_t strlcpy(char * , char const * , size_t ) ; static void ldv___ldv_spin_lock_81___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_83___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_85(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_87___0(spinlock_t *ldv_func_arg1 ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_82(spinlock_t *lock , unsigned long flags ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } static struct vmxnet3_stat_desc const vmxnet3_tq_dev_stats[11U] = { {{'T', 'x', ' ', 'Q', 'u', 'e', 'u', 'e', '#', '\000'}, 0}, {{' ', ' ', 'T', 'S', 'O', ' ', 'p', 'k', 't', 's', ' ', 't', 'x', '\000'}, 0}, {{' ', ' ', 'T', 'S', 'O', ' ', 'b', 'y', 't', 'e', 's', ' ', 't', 'x', '\000'}, 8}, {{' ', ' ', 'u', 'c', 'a', 's', 't', ' ', 'p', 'k', 't', 's', ' ', 't', 'x', '\000'}, 16}, {{' ', ' ', 'u', 'c', 'a', 's', 't', ' ', 'b', 'y', 't', 'e', 's', ' ', 't', 'x', '\000'}, 24}, {{' ', ' ', 'm', 'c', 'a', 's', 't', ' ', 'p', 'k', 't', 's', ' ', 't', 'x', '\000'}, 32}, {{' ', ' ', 'm', 'c', 'a', 's', 't', ' ', 'b', 'y', 't', 'e', 's', ' ', 't', 'x', '\000'}, 40}, {{' ', ' ', 'b', 'c', 'a', 's', 't', ' ', 'p', 'k', 't', 's', ' ', 't', 'x', '\000'}, 48}, {{' ', ' ', 'b', 'c', 'a', 's', 't', ' ', 'b', 'y', 't', 'e', 's', ' ', 't', 'x', '\000'}, 56}, {{' ', ' ', 'p', 'k', 't', 's', ' ', 't', 'x', ' ', 'e', 'r', 'r', '\000'}, 64}, {{' ', ' ', 'p', 'k', 't', 's', ' ', 't', 'x', ' ', 'd', 'i', 's', 'c', 'a', 'r', 'd', '\000'}, 72}}; static struct vmxnet3_stat_desc const vmxnet3_tq_driver_stats[9U] = { {{' ', ' ', 'd', 'r', 'v', ' ', 'd', 'r', 'o', 'p', 'p', 'e', 'd', ' ', 't', 'x', ' ', 't', 'o', 't', 'a', 'l', '\000'}, 0}, {{' ', ' ', ' ', ' ', ' ', 't', 'o', 'o', ' ', 'm', 'a', 'n', 'y', ' ', 'f', 'r', 'a', 'g', 's', '\000'}, 8}, {{' ', ' ', ' ', ' ', ' ', 'g', 'i', 'a', 'n', 't', ' ', 'h', 'd', 'r', '\000'}, 16}, {{' ', ' ', ' ', ' ', ' ', 'h', 'd', 'r', ' ', 'e', 'r', 'r', '\000'}, 24}, {{' ', ' ', ' ', ' ', ' ', 't', 's', 'o', '\000'}, 32}, {{' ', ' ', 'r', 'i', 'n', 'g', ' ', 'f', 'u', 'l', 'l', '\000'}, 40}, {{' ', ' ', 'p', 'k', 't', 's', ' ', 'l', 'i', 'n', 'e', 'a', 'r', 'i', 'z', 'e', 'd', '\000'}, 48}, {{' ', ' ', 'h', 'd', 'r', ' ', 'c', 'l', 'o', 'n', 'e', 'd', '\000'}, 56}, {{' ', ' ', 'g', 'i', 'a', 'n', 't', ' ', 'h', 'd', 'r', '\000'}, 64}}; static struct vmxnet3_stat_desc const vmxnet3_rq_dev_stats[11U] = { {{'R', 'x', ' ', 'Q', 'u', 'e', 'u', 'e', '#', '\000'}, 0}, {{' ', ' ', 'L', 'R', 'O', ' ', 'p', 'k', 't', 's', ' ', 'r', 'x', '\000'}, 0}, {{' ', ' ', 'L', 'R', 'O', ' ', 'b', 'y', 't', 'e', ' ', 'r', 'x', '\000'}, 8}, {{' ', ' ', 'u', 'c', 'a', 's', 't', ' ', 'p', 'k', 't', 's', ' ', 'r', 'x', '\000'}, 16}, {{' ', ' ', 'u', 'c', 'a', 's', 't', ' ', 'b', 'y', 't', 'e', 's', ' ', 'r', 'x', '\000'}, 24}, {{' ', ' ', 'm', 'c', 'a', 's', 't', ' ', 'p', 'k', 't', 's', ' ', 'r', 'x', '\000'}, 32}, {{' ', ' ', 'm', 'c', 'a', 's', 't', ' ', 'b', 'y', 't', 'e', 's', ' ', 'r', 'x', '\000'}, 40}, {{' ', ' ', 'b', 'c', 'a', 's', 't', ' ', 'p', 'k', 't', 's', ' ', 'r', 'x', '\000'}, 48}, {{' ', ' ', 'b', 'c', 'a', 's', 't', ' ', 'b', 'y', 't', 'e', 's', ' ', 'r', 'x', '\000'}, 56}, {{' ', ' ', 'p', 'k', 't', 's', ' ', 'r', 'x', ' ', 'O', 'O', 'B', '\000'}, 64}, {{' ', ' ', 'p', 'k', 't', 's', ' ', 'r', 'x', ' ', 'e', 'r', 'r', '\000'}, 72}}; static struct vmxnet3_stat_desc const vmxnet3_rq_driver_stats[4U] = { {{' ', ' ', 'd', 'r', 'v', ' ', 'd', 'r', 'o', 'p', 'p', 'e', 'd', ' ', 'r', 'x', ' ', 't', 'o', 't', 'a', 'l', '\000'}, 0}, {{' ', ' ', ' ', ' ', ' ', 'e', 'r', 'r', '\000'}, 8}, {{' ', ' ', ' ', ' ', ' ', 'f', 'c', 's', '\000'}, 16}, {{' ', ' ', 'r', 'x', ' ', 'b', 'u', 'f', ' ', 'a', 'l', 'l', 'o', 'c', ' ', 'f', 'a', 'i', 'l', '\000'}, 24}}; static struct vmxnet3_stat_desc const vmxnet3_global_stats[1U] = { {{'t', 'x', ' ', 't', 'i', 'm', 'e', 'o', 'u', 't', ' ', 'c', 'o', 'u', 'n', 't', '\000'}, 7040}}; struct rtnl_link_stats64 *vmxnet3_get_stats64(struct net_device *netdev , struct rtnl_link_stats64 *stats ) { struct vmxnet3_adapter *adapter ; struct vmxnet3_tq_driver_stats *drvTxStats ; struct vmxnet3_rq_driver_stats *drvRxStats ; struct UPT1_TxStats *devTxStats ; struct UPT1_RxStats *devRxStats ; unsigned long flags ; int i ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; ldv___ldv_spin_lock_81___0(& adapter->cmd_lock); writel(4027383809U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); i = 0; } goto ldv_48444; ldv_48443: devTxStats = & (adapter->tqd_start + (unsigned long )i)->stats; drvTxStats = & adapter->tx_queue[i].stats; stats->tx_packets = stats->tx_packets + ((devTxStats->ucastPktsTxOK + devTxStats->mcastPktsTxOK) + devTxStats->bcastPktsTxOK); stats->tx_bytes = stats->tx_bytes + ((devTxStats->ucastBytesTxOK + devTxStats->mcastBytesTxOK) + devTxStats->bcastBytesTxOK); stats->tx_errors = stats->tx_errors + devTxStats->pktsTxError; stats->tx_dropped = stats->tx_dropped + drvTxStats->drop_total; i = i + 1; ldv_48444: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_48443; } else { } i = 0; goto ldv_48447; ldv_48446: devRxStats = & (adapter->rqd_start + (unsigned long )i)->stats; drvRxStats = & adapter->rx_queue[i].stats; stats->rx_packets = stats->rx_packets + ((devRxStats->ucastPktsRxOK + devRxStats->mcastPktsRxOK) + devRxStats->bcastPktsRxOK); stats->rx_bytes = stats->rx_bytes + ((devRxStats->ucastBytesRxOK + devRxStats->mcastBytesRxOK) + devRxStats->bcastBytesRxOK); stats->rx_errors = stats->rx_errors + devRxStats->pktsRxError; stats->rx_dropped = stats->rx_dropped + drvRxStats->drop_total; stats->multicast = stats->multicast + devRxStats->mcastPktsRxOK; i = i + 1; ldv_48447: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_48446; } else { } return (stats); } } static int vmxnet3_get_sset_count(struct net_device *netdev , int sset ) { struct vmxnet3_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; } { if (sset == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; return ((int )((adapter->num_tx_queues * 20U + adapter->num_rx_queues * 15U) + 1U)); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static int vmxnet3_get_regs_len(struct net_device *netdev ) { struct vmxnet3_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; } return ((int )((unsigned int )((unsigned long )(adapter->num_tx_queues * 8U) + (unsigned long )(adapter->num_rx_queues * 12U)) * 4U)); } } static void vmxnet3_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *drvinfo ) { struct vmxnet3_adapter *adapter ; void *tmp ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; strlcpy((char *)(& drvinfo->driver), (char const *)(& vmxnet3_driver_name), 32UL); strlcpy((char *)(& drvinfo->version), "1.2.0.0-k-NAPI", 32UL); tmp___0 = pci_name((struct pci_dev const *)adapter->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); tmp___1 = vmxnet3_get_sset_count(netdev, 1); drvinfo->n_stats = (__u32 )tmp___1; drvinfo->testinfo_len = 0U; drvinfo->eedump_len = 0U; tmp___2 = vmxnet3_get_regs_len(netdev); drvinfo->regdump_len = (__u32 )tmp___2; } return; } } static void vmxnet3_get_strings(struct net_device *netdev , u32 stringset , u8 *buf ) { struct vmxnet3_adapter *adapter ; void *tmp ; int i ; int j ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; } if (stringset == 1U) { j = 0; goto ldv_48494; ldv_48493: i = 0; goto ldv_48486; ldv_48485: { memcpy((void *)buf, (void const *)(& vmxnet3_tq_dev_stats[i].desc), 32UL); buf = buf + 32UL; i = i + 1; } ldv_48486: ; if ((unsigned int )i <= 10U) { goto ldv_48485; } else { } i = 0; goto ldv_48491; ldv_48490: { memcpy((void *)buf, (void const *)(& vmxnet3_tq_driver_stats[i].desc), 32UL); buf = buf + 32UL; i = i + 1; } ldv_48491: ; if ((unsigned int )i <= 8U) { goto ldv_48490; } else { } j = j + 1; ldv_48494: ; if ((u32 )j < adapter->num_tx_queues) { goto ldv_48493; } else { } j = 0; goto ldv_48507; ldv_48506: i = 0; goto ldv_48499; ldv_48498: { memcpy((void *)buf, (void const *)(& vmxnet3_rq_dev_stats[i].desc), 32UL); buf = buf + 32UL; i = i + 1; } ldv_48499: ; if ((unsigned int )i <= 10U) { goto ldv_48498; } else { } i = 0; goto ldv_48504; ldv_48503: { memcpy((void *)buf, (void const *)(& vmxnet3_rq_driver_stats[i].desc), 32UL); buf = buf + 32UL; i = i + 1; } ldv_48504: ; if ((unsigned int )i <= 3U) { goto ldv_48503; } else { } j = j + 1; ldv_48507: ; if ((u32 )j < adapter->num_rx_queues) { goto ldv_48506; } else { } i = 0; goto ldv_48512; ldv_48511: { memcpy((void *)buf, (void const *)(& vmxnet3_global_stats[i].desc), 32UL); buf = buf + 32UL; i = i + 1; } ldv_48512: ; if (i == 0) { goto ldv_48511; } else { } } else { } return; } } int vmxnet3_set_features(struct net_device *netdev , netdev_features_t features ) { struct vmxnet3_adapter *adapter ; void *tmp ; unsigned long flags ; netdev_features_t changed ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; changed = features ^ netdev->features; } if ((changed & 4295000320ULL) != 0ULL) { if ((features & 4294967296ULL) != 0ULL) { (adapter->shared)->devRead.misc.uptFeatures = (adapter->shared)->devRead.misc.uptFeatures | 1ULL; } else { (adapter->shared)->devRead.misc.uptFeatures = (adapter->shared)->devRead.misc.uptFeatures & 0xfffffffffffffffeULL; } if ((features & 32768ULL) != 0ULL) { (adapter->shared)->devRead.misc.uptFeatures = (adapter->shared)->devRead.misc.uptFeatures | 8ULL; } else { (adapter->shared)->devRead.misc.uptFeatures = (adapter->shared)->devRead.misc.uptFeatures & 0xfffffffffffffff7ULL; } if ((features & 256ULL) != 0ULL) { (adapter->shared)->devRead.misc.uptFeatures = (adapter->shared)->devRead.misc.uptFeatures | 4ULL; } else { (adapter->shared)->devRead.misc.uptFeatures = (adapter->shared)->devRead.misc.uptFeatures & 0xfffffffffffffffbULL; } { ldv___ldv_spin_lock_83___0(& adapter->cmd_lock); writel(3405643785U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); } } else { } return (0); } } static void vmxnet3_get_ethtool_stats(struct net_device *netdev , struct ethtool_stats *stats , u64 *buf ) { struct vmxnet3_adapter *adapter ; void *tmp ; unsigned long flags ; u8 *base ; int i ; int j ; u64 *tmp___0 ; u64 *tmp___1 ; u64 *tmp___2 ; u64 *tmp___3 ; u64 *tmp___4 ; u64 *tmp___5 ; u64 *tmp___6 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; j = 0; ldv___ldv_spin_lock_85(& adapter->cmd_lock); writel(4027383809U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); j = 0; } goto ldv_48542; ldv_48541: base = (u8 *)(& (adapter->tqd_start + (unsigned long )j)->stats); tmp___0 = buf; buf = buf + 1; *tmp___0 = (unsigned long long )j; i = 1; goto ldv_48534; ldv_48533: tmp___1 = buf; buf = buf + 1; *tmp___1 = *((u64 *)base + (unsigned long )vmxnet3_tq_dev_stats[i].offset); i = i + 1; ldv_48534: ; if ((unsigned int )i <= 10U) { goto ldv_48533; } else { } base = (u8 *)(& adapter->tx_queue[j].stats); i = 0; goto ldv_48539; ldv_48538: tmp___2 = buf; buf = buf + 1; *tmp___2 = *((u64 *)base + (unsigned long )vmxnet3_tq_driver_stats[i].offset); i = i + 1; ldv_48539: ; if ((unsigned int )i <= 8U) { goto ldv_48538; } else { } j = j + 1; ldv_48542: ; if ((u32 )j < adapter->num_tx_queues) { goto ldv_48541; } else { } j = 0; goto ldv_48555; ldv_48554: base = (u8 *)(& (adapter->rqd_start + (unsigned long )j)->stats); tmp___3 = buf; buf = buf + 1; *tmp___3 = (unsigned long long )j; i = 1; goto ldv_48547; ldv_48546: tmp___4 = buf; buf = buf + 1; *tmp___4 = *((u64 *)base + (unsigned long )vmxnet3_rq_dev_stats[i].offset); i = i + 1; ldv_48547: ; if ((unsigned int )i <= 10U) { goto ldv_48546; } else { } base = (u8 *)(& adapter->rx_queue[j].stats); i = 0; goto ldv_48552; ldv_48551: tmp___5 = buf; buf = buf + 1; *tmp___5 = *((u64 *)base + (unsigned long )vmxnet3_rq_driver_stats[i].offset); i = i + 1; ldv_48552: ; if ((unsigned int )i <= 3U) { goto ldv_48551; } else { } j = j + 1; ldv_48555: ; if ((u32 )j < adapter->num_tx_queues) { goto ldv_48554; } else { } base = (u8 *)adapter; i = 0; goto ldv_48560; ldv_48559: tmp___6 = buf; buf = buf + 1; *tmp___6 = *((u64 *)base + (unsigned long )vmxnet3_global_stats[i].offset); i = i + 1; ldv_48560: ; if (i == 0) { goto ldv_48559; } else { } return; } } static void vmxnet3_get_regs(struct net_device *netdev , struct ethtool_regs *regs , void *p ) { struct vmxnet3_adapter *adapter ; void *tmp ; u32 *buf ; int i ; int j ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; buf = (u32 *)p; i = 0; j = 0; tmp___0 = vmxnet3_get_regs_len(netdev); memset(p, 0, (size_t )tmp___0); regs->version = 1U; i = 0; } goto ldv_48572; ldv_48571: tmp___1 = j; j = j + 1; *(buf + (unsigned long )tmp___1) = adapter->tx_queue[i].tx_ring.next2fill; tmp___2 = j; j = j + 1; *(buf + (unsigned long )tmp___2) = adapter->tx_queue[i].tx_ring.next2comp; tmp___3 = j; j = j + 1; *(buf + (unsigned long )tmp___3) = (u32 )adapter->tx_queue[i].tx_ring.gen; tmp___4 = j; j = j + 1; *(buf + (unsigned long )tmp___4) = 0U; tmp___5 = j; j = j + 1; *(buf + (unsigned long )tmp___5) = adapter->tx_queue[i].comp_ring.next2proc; tmp___6 = j; j = j + 1; *(buf + (unsigned long )tmp___6) = (u32 )adapter->tx_queue[i].comp_ring.gen; tmp___7 = j; j = j + 1; *(buf + (unsigned long )tmp___7) = (u32 )adapter->tx_queue[i].stopped; tmp___8 = j; j = j + 1; *(buf + (unsigned long )tmp___8) = 0U; i = i + 1; ldv_48572: ; if ((u32 )i < adapter->num_tx_queues) { goto ldv_48571; } else { } i = 0; goto ldv_48575; ldv_48574: tmp___9 = j; j = j + 1; *(buf + (unsigned long )tmp___9) = adapter->rx_queue[i].rx_ring[0].next2fill; tmp___10 = j; j = j + 1; *(buf + (unsigned long )tmp___10) = adapter->rx_queue[i].rx_ring[0].next2comp; tmp___11 = j; j = j + 1; *(buf + (unsigned long )tmp___11) = (u32 )adapter->rx_queue[i].rx_ring[0].gen; tmp___12 = j; j = j + 1; *(buf + (unsigned long )tmp___12) = 0U; tmp___13 = j; j = j + 1; *(buf + (unsigned long )tmp___13) = adapter->rx_queue[i].rx_ring[1].next2fill; tmp___14 = j; j = j + 1; *(buf + (unsigned long )tmp___14) = adapter->rx_queue[i].rx_ring[1].next2comp; tmp___15 = j; j = j + 1; *(buf + (unsigned long )tmp___15) = (u32 )adapter->rx_queue[i].rx_ring[1].gen; tmp___16 = j; j = j + 1; *(buf + (unsigned long )tmp___16) = 0U; tmp___17 = j; j = j + 1; *(buf + (unsigned long )tmp___17) = adapter->rx_queue[i].comp_ring.next2proc; tmp___18 = j; j = j + 1; *(buf + (unsigned long )tmp___18) = (u32 )adapter->rx_queue[i].comp_ring.gen; tmp___19 = j; j = j + 1; *(buf + (unsigned long )tmp___19) = 0U; tmp___20 = j; j = j + 1; *(buf + (unsigned long )tmp___20) = 0U; i = i + 1; ldv_48575: ; if ((u32 )i < adapter->num_rx_queues) { goto ldv_48574; } else { } return; } } static void vmxnet3_get_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct vmxnet3_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; wol->supported = 50U; wol->wolopts = adapter->wol; } return; } } static int vmxnet3_set_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct vmxnet3_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; } if ((wol->wolopts & 77U) != 0U) { return (-95); } else { } { adapter->wol = wol->wolopts; device_set_wakeup_enable(& (adapter->pdev)->dev, adapter->wol != 0U); } return (0); } } static int vmxnet3_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct vmxnet3_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; ecmd->supported = 4256U; ecmd->advertising = 128U; ecmd->port = 0U; ecmd->transceiver = 0U; } if (adapter->link_speed != 0U) { { ethtool_cmd_speed_set(ecmd, adapter->link_speed); ecmd->duplex = 1U; } } else { { ethtool_cmd_speed_set(ecmd, 4294967295U); ecmd->duplex = 255U; } } return (0); } } static void vmxnet3_get_ringparam(struct net_device *netdev , struct ethtool_ringparam *param ) { struct vmxnet3_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; param->rx_max_pending = 4096U; param->tx_max_pending = 4096U; param->rx_mini_max_pending = 0U; param->rx_jumbo_max_pending = 0U; param->rx_pending = adapter->rx_queue[0].rx_ring[0].size; param->tx_pending = adapter->tx_queue[0].tx_ring.size; param->rx_mini_pending = 0U; param->rx_jumbo_pending = 0U; } return; } } static int vmxnet3_set_ringparam(struct net_device *netdev , struct ethtool_ringparam *param ) { struct vmxnet3_adapter *adapter ; void *tmp ; u32 new_tx_ring_size ; u32 new_rx_ring_size ; u32 sz ; int err ; u32 __min1 ; u32 __min2 ; u32 __min1___0 ; u32 __min2___0 ; int tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; err = 0; } if (param->tx_pending - 1U > 4095U) { return (-22); } else { } if (param->rx_pending - 1U > 4095U) { return (-22); } else { } if (adapter->rx_buf_per_pkt == 0) { { netdev_err((struct net_device const *)netdev, "adapter not completely initialized, ring size cannot be changed yet\n"); } return (-95); } else { } new_tx_ring_size = (param->tx_pending + 31U) & 4294967264U; __min1 = new_tx_ring_size; __min2 = 4096U; new_tx_ring_size = __min1 < __min2 ? __min1 : __min2; if (new_tx_ring_size > 4096U || (new_tx_ring_size & 31U) != 0U) { return (-22); } else { } sz = (u32 )(adapter->rx_buf_per_pkt * 32); new_rx_ring_size = (((param->rx_pending + sz) - 1U) / sz) * sz; __min1___0 = new_rx_ring_size; __min2___0 = (4096U / sz) * sz; new_rx_ring_size = __min1___0 < __min2___0 ? __min1___0 : __min2___0; if (new_rx_ring_size > 4096U || new_rx_ring_size % sz != 0U) { return (-22); } else { } if (new_tx_ring_size == adapter->tx_queue[0].tx_ring.size && new_rx_ring_size == adapter->rx_queue[0].rx_ring[0].size) { return (0); } else { } goto ldv_48613; ldv_48612: { msleep(1U); } ldv_48613: { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& adapter->state)); } if (tmp___0 != 0) { goto ldv_48612; } else { } { tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { vmxnet3_quiesce_dev(adapter); vmxnet3_reset_dev(adapter); vmxnet3_tq_destroy_all(adapter); vmxnet3_rq_destroy_all(adapter); err = vmxnet3_create_queues(adapter, new_tx_ring_size, new_rx_ring_size, 256U); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "failed to apply new sizes, try the default ones\n"); err = vmxnet3_create_queues(adapter, 512U, 256U, 256U); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "failed to create queues with default sizes. Closing it\n"); } goto out; } else { } } else { } { err = vmxnet3_activate_dev(adapter); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "failed to re-activate, error %d. Closing it\n", err); } } else { } } else { } out: { clear_bit(0L, (unsigned long volatile *)(& adapter->state)); } if (err != 0) { { vmxnet3_force_close(adapter); } } else { } return (err); } } static int vmxnet3_get_rxnfc(struct net_device *netdev , struct ethtool_rxnfc *info , u32 *rules ) { struct vmxnet3_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; } { if (info->cmd == 45U) { goto case_45; } else { } goto switch_break; case_45: /* CIL Label */ info->data = (__u64 )adapter->num_rx_queues; return (0); switch_break: /* CIL Label */ ; } return (-95); } } static u32 vmxnet3_get_rss_indir_size(struct net_device *netdev ) { struct vmxnet3_adapter *adapter ; void *tmp ; struct UPT1_RSSConf *rssConf ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; rssConf = adapter->rss_conf; } return ((u32 )rssConf->indTableSize); } } static int vmxnet3_get_rss_indir(struct net_device *netdev , u32 *p ) { struct vmxnet3_adapter *adapter ; void *tmp ; struct UPT1_RSSConf *rssConf ; unsigned int n ; unsigned int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; rssConf = adapter->rss_conf; n = (unsigned int )rssConf->indTableSize; } goto ldv_48636; ldv_48635: *(p + (unsigned long )n) = (u32 )rssConf->indTable[n]; ldv_48636: tmp___0 = n; n = n - 1U; if (tmp___0 != 0U) { goto ldv_48635; } else { } return (0); } } static int vmxnet3_set_rss_indir(struct net_device *netdev , u32 const *p ) { unsigned int i ; unsigned long flags ; struct vmxnet3_adapter *adapter ; void *tmp ; struct UPT1_RSSConf *rssConf ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct vmxnet3_adapter *)tmp; rssConf = adapter->rss_conf; i = 0U; } goto ldv_48647; ldv_48646: rssConf->indTable[i] = (u8 )*(p + (unsigned long )i); i = i + 1U; ldv_48647: ; if (i < (unsigned int )rssConf->indTableSize) { goto ldv_48646; } else { } { ldv___ldv_spin_lock_87___0(& adapter->cmd_lock); writel(3405643782U, (void volatile *)adapter->hw_addr1 + 32U); ldv_spin_unlock_irqrestore_82(& adapter->cmd_lock, flags); } return (0); } } static struct ethtool_ops const vmxnet3_ethtool_ops = {& vmxnet3_get_settings, 0, & vmxnet3_get_drvinfo, & vmxnet3_get_regs_len, & vmxnet3_get_regs, & vmxnet3_get_wol, & vmxnet3_set_wol, 0, 0, 0, & ethtool_op_get_link, 0, 0, 0, 0, 0, & vmxnet3_get_ringparam, & vmxnet3_set_ringparam, 0, 0, 0, & vmxnet3_get_strings, 0, & vmxnet3_get_ethtool_stats, 0, 0, 0, 0, & vmxnet3_get_sset_count, & vmxnet3_get_rxnfc, 0, 0, 0, & vmxnet3_get_rss_indir_size, & vmxnet3_get_rss_indir, & vmxnet3_set_rss_indir, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void vmxnet3_set_ethtool_ops(struct net_device *netdev ) { { netdev->ethtool_ops = & vmxnet3_ethtool_ops; return; } } void ldv_dummy_resourceless_instance_callback_4_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_11(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { vmxnet3_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_12(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { vmxnet3_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_13(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { vmxnet3_get_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_14(int (*arg0)(struct net_device * , unsigned int * ) , struct net_device *arg1 , unsigned int *arg2 ) { { { vmxnet3_get_rss_indir(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_17(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { vmxnet3_get_rss_indir_size(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_18(int (*arg0)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 , unsigned int *arg3 ) { { { vmxnet3_get_rxnfc(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_21(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { vmxnet3_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_22(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { vmxnet3_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_25(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { vmxnet3_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_28(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { vmxnet3_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_29(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { vmxnet3_set_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { vmxnet3_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_30(int (*arg0)(struct net_device * , unsigned int * ) , struct net_device *arg1 , unsigned int *arg2 ) { { { vmxnet3_set_rss_indir(arg1, (u32 const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_33(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { vmxnet3_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { vmxnet3_get_ethtool_stats(arg1, arg2, arg3); } return; } } static void ldv___ldv_spin_lock_81___0(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_83___0(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_85(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_87___0(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_cmd_lock_of_vmxnet3_adapter = 1; void ldv_spin_lock_cmd_lock_of_vmxnet3_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_cmd_lock_of_vmxnet3_adapter == 1); ldv_assume(ldv_spin_cmd_lock_of_vmxnet3_adapter == 1); ldv_spin_cmd_lock_of_vmxnet3_adapter = 2; } return; } } void ldv_spin_unlock_cmd_lock_of_vmxnet3_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_cmd_lock_of_vmxnet3_adapter == 2); ldv_assume(ldv_spin_cmd_lock_of_vmxnet3_adapter == 2); ldv_spin_cmd_lock_of_vmxnet3_adapter = 1; } return; } } int ldv_spin_trylock_cmd_lock_of_vmxnet3_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_cmd_lock_of_vmxnet3_adapter == 1); ldv_assume(ldv_spin_cmd_lock_of_vmxnet3_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_cmd_lock_of_vmxnet3_adapter = 2; return (1); } } } void ldv_spin_unlock_wait_cmd_lock_of_vmxnet3_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_cmd_lock_of_vmxnet3_adapter == 1); ldv_assume(ldv_spin_cmd_lock_of_vmxnet3_adapter == 1); } return; } } int ldv_spin_is_locked_cmd_lock_of_vmxnet3_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_cmd_lock_of_vmxnet3_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_cmd_lock_of_vmxnet3_adapter(void) { int tmp ; { { tmp = ldv_spin_is_locked_cmd_lock_of_vmxnet3_adapter(); } return (tmp == 0); } } int ldv_spin_is_contended_cmd_lock_of_vmxnet3_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_cmd_lock_of_vmxnet3_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_cmd_lock_of_vmxnet3_adapter == 1); ldv_assume(ldv_spin_cmd_lock_of_vmxnet3_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_cmd_lock_of_vmxnet3_adapter = 2; return (1); } else { } return (0); } } static int ldv_spin_dma_spin_lock = 1; void ldv_spin_lock_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); ldv_spin_dma_spin_lock = 2; } return; } } void ldv_spin_unlock_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_dma_spin_lock == 2); ldv_assume(ldv_spin_dma_spin_lock == 2); ldv_spin_dma_spin_lock = 1; } return; } } int ldv_spin_trylock_dma_spin_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_dma_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); } return; } } int ldv_spin_is_locked_dma_spin_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_dma_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_dma_spin_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_dma_spin_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_dma_spin_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_dma_spin_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_dma_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_lock_of_vmxnet3_tx_queue = 1; void ldv_spin_lock_tx_lock_of_vmxnet3_tx_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 1); ldv_assume(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 1); ldv_spin_tx_lock_of_vmxnet3_tx_queue = 2; } return; } } void ldv_spin_unlock_tx_lock_of_vmxnet3_tx_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 2); ldv_assume(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 2); ldv_spin_tx_lock_of_vmxnet3_tx_queue = 1; } return; } } int ldv_spin_trylock_tx_lock_of_vmxnet3_tx_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 1); ldv_assume(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_lock_of_vmxnet3_tx_queue = 2; return (1); } } } void ldv_spin_unlock_wait_tx_lock_of_vmxnet3_tx_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 1); ldv_assume(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 1); } return; } } int ldv_spin_is_locked_tx_lock_of_vmxnet3_tx_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_lock_of_vmxnet3_tx_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_lock_of_vmxnet3_tx_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_lock_of_vmxnet3_tx_queue(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_lock_of_vmxnet3_tx_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_lock_of_vmxnet3_tx_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 1); ldv_assume(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_lock_of_vmxnet3_tx_queue = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_cmd_lock_of_vmxnet3_adapter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_dma_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_res_counter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_lock_of_vmxnet3_tx_queue == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_cmd_lock_of_vmxnet3_adapter == 2) { return (1); } else { } if (ldv_spin_dma_spin_lock == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_tx_lock_of_vmxnet3_tx_queue == 2) { return (1); } else { } return (0); } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__linux-kernel-locking-spinlock__drivers-net-vmxnet3-vmxnet3_true-unreach-call.cil.env.c" #include "model/common.env.c"