extern void abort(void); #include void reach_error() { assert(0); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef __kernel_long_t __kernel_off_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __u32 nlink_t; typedef __kernel_off_t off_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct module; typedef void (*ctor_fn_t)(void); struct file_operations; struct device; struct net_device; struct completion; struct pt_regs; struct pid; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion_ldv_2023_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion_ldv_2023_8 ldv_2023 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct_ldv_2030_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct_ldv_2030_10 ldv_2030 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct_ldv_2147_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_2162_13 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_2163_11 { struct __anonstruct_ldv_2147_12 ldv_2147 ; struct __anonstruct_ldv_2162_13 ldv_2162 ; }; struct desc_struct { union __anonunion_ldv_2163_11 ldv_2163 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2766_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2766_18 ldv_2766 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5121_23 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5127_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5128_22 { struct __anonstruct_ldv_5121_23 ldv_5121 ; struct __anonstruct_ldv_5127_24 ldv_5127 ; }; union __anonunion_ldv_5137_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5128_22 ldv_5128 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5137_25 ldv_5137 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; struct __anonstruct_mm_segment_t_27 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_27 mm_segment_t; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; } __attribute__((__packed__)) ; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_5956_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_5957_28 { struct raw_spinlock rlock ; struct __anonstruct_ldv_5956_29 ldv_5956 ; }; struct spinlock { union __anonunion_ldv_5957_28 ldv_5957 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_32 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_33 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_34 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion_ldv_6191_31 { struct __anonstruct_futex_32 futex ; struct __anonstruct_nanosleep_33 nanosleep ; struct __anonstruct_poll_34 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion_ldv_6191_31 ldv_6191 ; }; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int preempt_count ; mm_segment_t addr_limit ; struct restart_block restart_block ; void *sysenter_return ; unsigned char sig_on_uaccess_error : 1 ; unsigned char uaccess_err : 1 ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct __anonstruct_seqlock_t_99 { unsigned int sequence ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_99 seqlock_t; struct seqcount { unsigned int sequence ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; int cpu ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; }; struct dev_pm_qos_request; struct pm_qos_constraints; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool ignore_children ; bool early_init ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct dev_pm_qos_request *pq_req ; struct pm_subsys_data *subsys_data ; struct pm_qos_constraints *constraints ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct __anonstruct_nodemask_t_100 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_100 nodemask_t; struct pci_bus; struct __anonstruct_mm_context_t_101 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_101 mm_context_t; struct vm_area_struct; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct notifier_block; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct proc_dir_entry; struct exception_table_entry { int insn ; int fixup ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[3U] ; }; struct kref { atomic_t refcount ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct user_namespace; typedef uid_t kuid_t; typedef gid_t kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct_ldv_14603_130 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion_ldv_14605_129 { struct __anonstruct_ldv_14603_130 ldv_14603 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion_ldv_14605_129 ldv_14605 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_root * , struct nsproxy * , struct ctl_table * ) ; }; struct cred; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; void const *(*namespace)(struct kobject * , struct attribute const * ) ; }; struct sysfs_dirent; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_15354_135 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion_ldv_15354_135 ldv_15354 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct static_key { atomic_t enabled ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; struct list_head source_list ; struct list_head target_list ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct uprobe; struct uprobe_task { enum uprobe_task_state state ; struct arch_uprobe_task autask ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; unsigned long vaddr ; }; struct xol_area { wait_queue_head_t wq ; atomic_t slot_count ; unsigned long *bitmap ; struct page *page ; unsigned long vaddr ; }; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion_ldv_16081_138 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct_ldv_16091_142 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion_ldv_16093_141 { atomic_t _mapcount ; struct __anonstruct_ldv_16091_142 ldv_16091 ; int units ; }; struct __anonstruct_ldv_16095_140 { union __anonunion_ldv_16093_141 ldv_16093 ; atomic_t _count ; }; union __anonunion_ldv_16096_139 { unsigned long counters ; struct __anonstruct_ldv_16095_140 ldv_16095 ; }; struct __anonstruct_ldv_16097_137 { union __anonunion_ldv_16081_138 ldv_16081 ; union __anonunion_ldv_16096_139 ldv_16096 ; }; struct __anonstruct_ldv_16104_144 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct_ldv_16110_145 { struct kmem_cache *slab_cache ; struct slab *slab_page ; }; union __anonunion_ldv_16111_143 { struct list_head lru ; struct __anonstruct_ldv_16104_144 ldv_16104 ; struct list_head list ; struct __anonstruct_ldv_16110_145 ldv_16110 ; }; union __anonunion_ldv_16116_146 { unsigned long private ; struct kmem_cache *slab ; struct page *first_page ; }; struct page { unsigned long flags ; struct address_space *mapping ; struct __anonstruct_ldv_16097_137 ldv_16097 ; union __anonunion_ldv_16111_143 ldv_16111 ; union __anonunion_ldv_16116_146 ldv_16116 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_148 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_147 { struct __anonstruct_linear_148 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { struct mm_struct *vm_mm ; unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct rb_node vm_rb ; union __anonunion_shared_147 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; pgtable_t pmd_huge_pte ; struct cpumask cpumask_allocation ; struct uprobes_state uprobes_state ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct siginfo; struct __anonstruct_sigset_t_149 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_149 sigset_t; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_151 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_152 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_153 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_154 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_155 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_156 { long _band ; int _fd ; }; struct __anonstruct__sigsys_157 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_150 { int _pad[28U] ; struct __anonstruct__kill_151 _kill ; struct __anonstruct__timer_152 _timer ; struct __anonstruct__rt_153 _rt ; struct __anonstruct__sigchld_154 _sigchld ; struct __anonstruct__sigfault_155 _sigfault ; struct __anonstruct__sigpoll_156 _sigpoll ; struct __anonstruct__sigsys_157 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_150 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_list; union __anonunion_ldv_17123_160 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion_ldv_17132_161 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_162 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_163 { unsigned long value ; void *rcudata ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion_ldv_17123_160 ldv_17123 ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_17132_161 ldv_17132 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_162 type_data ; union __anonunion_payload_163 payload ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct thread_group_cred { atomic_t usage ; pid_t tgid ; spinlock_t lock ; struct key *session_keyring ; struct key *process_keyring ; struct callback_head rcu ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kioctx; union __anonunion_ki_obj_164 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct list_head ki_run_list ; unsigned long ki_flags ; int ki_users ; unsigned int ki_key ; struct file *ki_filp ; struct kioctx *ki_ctx ; int (*ki_cancel)(struct kiocb * , struct io_event * ) ; ssize_t (*ki_retry)(struct kiocb * ) ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_164 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct list_head ki_batch ; struct eventfd_ctx *ki_eventfd ; }; struct aio_ring_info { unsigned long mmap_base ; unsigned long mmap_size ; struct page **ring_pages ; spinlock_t ring_lock ; long nr_pages ; unsigned int nr ; unsigned int tail ; struct page *internal_pages[8U] ; }; struct kioctx { atomic_t users ; int dead ; struct mm_struct *mm ; unsigned long user_id ; struct hlist_node list ; wait_queue_head_t wait ; spinlock_t ctx_lock ; int reqs_active ; struct list_head active_reqs ; struct list_head run_list ; unsigned int max_reqs ; struct aio_ring_info ring_info ; struct delayed_work wq ; struct callback_head callback_head ; }; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; int oom_score_adj ; int oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct uts_namespace; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; bool (*yield_to_task)(struct rq * , struct task_struct * , bool ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct task_struct * , int , int ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_waking)(struct task_struct * ) ; void (*task_woken)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , struct cpumask const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_fork)(struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * ) ; void (*switched_to)(struct rq * , struct task_struct * ) ; void (*prio_changed)(struct rq * , struct task_struct * , int ) ; unsigned int (*get_rr_interval)(struct rq * , struct task_struct * ) ; void (*task_move_group)(struct task_struct * , int ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct files_struct; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char no_new_privs : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; atomic_t ptrace_bp_refcnt ; struct uprobe_task *utask ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct dma_map_ops; struct dev_archdata { void *acpi_handle ; struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct iommu_ops; struct iommu_group; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct bin_attribute *dev_bin_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; void const *(*namespace)(struct class * , struct class_attribute const * ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion_ldv_20215_167 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; int pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char is_pcie : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct kset *msi_kset ; struct pci_vpd *vpd ; union __anonunion_ldv_20215_167 ldv_20215 ; struct pci_ats *ats ; }; struct pci_ops; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; }; struct shrinker { int (*shrink)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; struct list_head list ; atomic_long_t nr_in_batch ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct poll_table_struct; struct net; struct fasync_struct; struct sk_buff; typedef s32 dma_cookie_t; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct_ldv_26291_171 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion_ldv_26292_170 { __wsum csum ; struct __anonstruct_ldv_26291_171 ldv_26291 ; }; union __anonunion_ldv_26330_172 { __u32 mark ; __u32 dropcount ; __u32 avail_size ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion_ldv_26292_170 ldv_26292 ; __u32 priority ; unsigned char local_df : 1 ; unsigned char cloned : 1 ; unsigned char ip_summed : 2 ; unsigned char nohdr : 1 ; unsigned char nfctinfo : 3 ; unsigned char pkt_type : 3 ; unsigned char fclone : 2 ; unsigned char ipvs_property : 1 ; unsigned char peeked : 1 ; unsigned char nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct sk_buff *nfct_reasm ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; unsigned char ndisc_nodetype : 2 ; unsigned char pfmemalloc : 1 ; unsigned char ooo_okay : 1 ; unsigned char l4_rxhash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char head_frag : 1 ; dma_cookie_t dma_cookie ; __u32 secmark ; union __anonunion_ldv_26330_172 ldv_26330 ; sk_buff_data_t transport_header ; sk_buff_data_t network_header ; sk_buff_data_t mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct dev_pm_qos_request { struct plist_node node ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct __anonstruct_sync_serial_settings_173 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_173 sync_serial_settings; struct __anonstruct_te1_settings_174 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_174 te1_settings; struct __anonstruct_raw_hdlc_proto_175 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_175 raw_hdlc_proto; struct __anonstruct_fr_proto_176 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_176 fr_proto; struct __anonstruct_fr_proto_pvc_177 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_177 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_178 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_178 fr_proto_pvc_info; struct __anonstruct_cisco_proto_179 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_179 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_180 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_180 ifs_ifsu ; }; union __anonunion_ifr_ifrn_181 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_182 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_181 ifr_ifrn ; union __anonunion_ifr_ifru_182 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct nameidata; struct path; struct vfsmount; struct __anonstruct_ldv_27641_185 { u32 hash ; u32 len ; }; union __anonunion_ldv_27643_184 { struct __anonstruct_ldv_27641_185 ldv_27641 ; u64 hash_len ; }; struct qstr { union __anonunion_ldv_27643_184 ldv_27643 ; unsigned char const *name ; }; struct dentry_operations; struct super_block; union __anonunion_d_u_186 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; unsigned int d_count ; spinlock_t d_lock ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_186 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct inode const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct inode const * , struct dentry const * , struct inode const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct cgroup_subsys_state; struct export_operations; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct dquot; typedef __kernel_uid32_t projid_t; typedef projid_t kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion_ldv_28532_187 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion_ldv_28532_187 ldv_28532 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_189 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_188 { size_t written ; size_t count ; union __anonunion_arg_189 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_188 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; struct address_space *assoc_mapping ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion_ldv_28965_190 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion_ldv_28985_191 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion_ldv_29001_192 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion_ldv_28965_190 ldv_28965 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion_ldv_28985_191 ldv_28985 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_29001_192 ldv_29001 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_193 { struct list_head fu_list ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_193 f_u ; struct path f_path ; struct file_operations const *f_op ; spinlock_t f_lock ; int f_sb_list_cpu ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_195 { struct list_head link ; int state ; }; union __anonunion_fl_u_194 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_195 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_194 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head *s_files ; struct list_head s_mounts ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; spinlock_t s_inode_lru_lock ; struct list_head s_inode_lru ; int s_nr_inodes_unused ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; void (*truncate)(struct inode * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; int (*nr_cached_objects)(struct super_block * ) ; void (*free_cached_objects)(struct super_block * , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[60U] ; }; struct ethtool_flow_ext { __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[31U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[27U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[5U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[15U] ; }; struct udp_mib { unsigned long mibs[7U] ; }; struct linux_mib { unsigned long mibs[92U] ; }; struct linux_xfrm_mib { unsigned long mibs[27U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; atomic_t mem ; struct list_head lru_list ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; kgid_t sysctl_ping_group_range[2U] ; long sysctl_tcp_mem[3U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int icmpv6_time ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; typedef int read_proc_t(char * , char ** , off_t , int , int * , void * ); typedef int write_proc_t(struct file * , char const * , unsigned long , void * ); struct proc_dir_entry { unsigned int low_ino ; umode_t mode ; nlink_t nlink ; kuid_t uid ; kgid_t gid ; loff_t size ; struct inode_operations const *proc_iops ; struct file_operations const *proc_fops ; struct proc_dir_entry *next ; struct proc_dir_entry *parent ; struct proc_dir_entry *subdir ; void *data ; read_proc_t *read_proc ; write_proc_t *write_proc ; atomic_t count ; int pde_users ; struct completion *pde_unload_completion ; struct list_head pde_openers ; spinlock_t pde_unload_lock ; u8 namelen ; char name[] ; }; struct nlattr; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; int sysctl_events ; unsigned int sysctl_events_retry_timeout ; int sysctl_acct ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int sysctl_log_invalid ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; struct nf_ip_net nf_ct_proto ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; wait_queue_head_t km_waitq ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t rt_genid ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct cgroupfs_root; struct cgroup; struct css_id; struct cgroup_subsys_state { struct cgroup *cgroup ; atomic_t refcnt ; unsigned long flags ; struct css_id *id ; struct work_struct dput_work ; }; struct cgroup { unsigned long flags ; atomic_t count ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct cgroup *top_cgroup ; struct list_head css_sets ; struct list_head allcg_node ; struct list_head cft_q_node ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct callback_head callback_head ; struct list_head event_list ; spinlock_t event_list_lock ; struct simple_xattrs xattrs ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cg_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool synced ; bool global_use ; int refcount ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct work_struct free_work ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , unsigned short ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; }; struct iw_handler_def; struct iw_public_data; struct vlan_info; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_tstats; struct pcpu_dstats; union __anonunion_ldv_38229_221 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_tstats *tstats ; struct pcpu_dstats *dstats ; }; struct garp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; unsigned int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned char neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; struct net_device *master ; unsigned char *dev_addr ; struct netdev_hw_addr_list dev_addrs ; unsigned char broadcast[32U] ; struct kset *queues_kset ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; struct cpu_rmap *rx_cpu_rmap ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion_ldv_38229_221 ldv_38229 ; struct garp_port *garp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_msrment_ie { u8 token ; u8 mode ; u8 type ; u8 request[0U] ; }; struct ieee80211_channel_sw_ie { u8 mode ; u8 new_ch_num ; u8 count ; }; struct __anonstruct_auth_223 { __le16 auth_alg ; __le16 auth_transaction ; __le16 status_code ; u8 variable[0U] ; }; struct __anonstruct_deauth_224 { __le16 reason_code ; }; struct __anonstruct_assoc_req_225 { __le16 capab_info ; __le16 listen_interval ; u8 variable[0U] ; }; struct __anonstruct_assoc_resp_226 { __le16 capab_info ; __le16 status_code ; __le16 aid ; u8 variable[0U] ; }; struct __anonstruct_reassoc_resp_227 { __le16 capab_info ; __le16 status_code ; __le16 aid ; u8 variable[0U] ; }; struct __anonstruct_reassoc_req_228 { __le16 capab_info ; __le16 listen_interval ; u8 current_ap[6U] ; u8 variable[0U] ; }; struct __anonstruct_disassoc_229 { __le16 reason_code ; }; struct __anonstruct_beacon_230 { __le64 timestamp ; __le16 beacon_int ; __le16 capab_info ; u8 variable[0U] ; }; struct __anonstruct_probe_req_231 { u8 variable[0U] ; }; struct __anonstruct_probe_resp_232 { __le64 timestamp ; __le16 beacon_int ; __le16 capab_info ; u8 variable[0U] ; }; struct __anonstruct_wme_action_235 { u8 action_code ; u8 dialog_token ; u8 status_code ; u8 variable[0U] ; }; struct __anonstruct_chan_switch_236 { u8 action_code ; u8 element_id ; u8 length ; struct ieee80211_channel_sw_ie sw_elem ; }; struct __anonstruct_measurement_237 { u8 action_code ; u8 dialog_token ; u8 element_id ; u8 length ; struct ieee80211_msrment_ie msr_elem ; }; struct __anonstruct_addba_req_238 { u8 action_code ; u8 dialog_token ; __le16 capab ; __le16 timeout ; __le16 start_seq_num ; }; struct __anonstruct_addba_resp_239 { u8 action_code ; u8 dialog_token ; __le16 status ; __le16 capab ; __le16 timeout ; }; struct __anonstruct_delba_240 { u8 action_code ; __le16 params ; __le16 reason_code ; }; struct __anonstruct_self_prot_241 { u8 action_code ; u8 variable[0U] ; }; struct __anonstruct_mesh_action_242 { u8 action_code ; u8 variable[0U] ; }; struct __anonstruct_sa_query_243 { u8 action ; u8 trans_id[2U] ; }; struct __anonstruct_ht_smps_244 { u8 action ; u8 smps_control ; }; struct __anonstruct_tdls_discover_resp_245 { u8 action_code ; u8 dialog_token ; __le16 capability ; u8 variable[0U] ; }; union __anonunion_u_234 { struct __anonstruct_wme_action_235 wme_action ; struct __anonstruct_chan_switch_236 chan_switch ; struct __anonstruct_measurement_237 measurement ; struct __anonstruct_addba_req_238 addba_req ; struct __anonstruct_addba_resp_239 addba_resp ; struct __anonstruct_delba_240 delba ; struct __anonstruct_self_prot_241 self_prot ; struct __anonstruct_mesh_action_242 mesh_action ; struct __anonstruct_sa_query_243 sa_query ; struct __anonstruct_ht_smps_244 ht_smps ; struct __anonstruct_tdls_discover_resp_245 tdls_discover_resp ; }; struct __anonstruct_action_233 { u8 category ; union __anonunion_u_234 u ; }; union __anonunion_u_222 { struct __anonstruct_auth_223 auth ; struct __anonstruct_deauth_224 deauth ; struct __anonstruct_assoc_req_225 assoc_req ; struct __anonstruct_assoc_resp_226 assoc_resp ; struct __anonstruct_reassoc_resp_227 reassoc_resp ; struct __anonstruct_reassoc_req_228 reassoc_req ; struct __anonstruct_disassoc_229 disassoc ; struct __anonstruct_beacon_230 beacon ; struct __anonstruct_probe_req_231 probe_req ; struct __anonstruct_probe_resp_232 probe_resp ; struct __anonstruct_action_233 action ; }; struct ieee80211_mgmt { __le16 frame_control ; __le16 duration ; u8 da[6U] ; u8 sa[6U] ; u8 bssid[6U] ; __le16 seq_ctrl ; union __anonunion_u_222 u ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NUM_NL80211_IFTYPES = 11, NL80211_IFTYPE_MAX = 10 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1 } ; enum nl80211_channel_type { NL80211_CHAN_NO_HT = 0, NL80211_CHAN_HT20 = 1, NL80211_CHAN_HT40MINUS = 2, NL80211_CHAN_HT40PLUS = 3 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, __NL80211_AUTHTYPE_NUM = 4, NL80211_AUTHTYPE_MAX = 3, NL80211_AUTHTYPE_AUTOMATIC = 4 } ; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; u8 dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; }; struct ieee80211_regdomain { u32 n_reg_rules ; char alpha2[2U] ; u8 dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct survey_info { struct ieee80211_channel *channel ; u64 channel_time ; u64 channel_time_busy ; u64 channel_time_ext_busy ; u64 channel_time_rx ; u64 channel_time_tx ; u32 filled ; s8 noise ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct wiphy; struct cfg80211_ssid { u8 ssid[32U] ; u8 ssid_len ; }; struct cfg80211_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; u8 const *ie ; size_t ie_len ; u32 rates[3U] ; struct wireless_dev *wdev ; struct wiphy *wiphy ; bool aborted ; bool no_cck ; struct ieee80211_channel *channels[0U] ; }; struct cfg80211_match_set { struct cfg80211_ssid ssid ; }; struct cfg80211_sched_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; u32 interval ; u8 const *ie ; size_t ie_len ; struct cfg80211_match_set *match_sets ; int n_match_sets ; s32 rssi_thold ; struct wiphy *wiphy ; struct net_device *dev ; struct ieee80211_channel *channels[0U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 *ssid ; u8 *bssid ; struct ieee80211_channel *channel ; enum nl80211_channel_type channel_type ; u8 *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; int mcast_rate[3U] ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; u8 *bssid ; u8 *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 *ie ; size_t ie_len ; bool privacy ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct __anonstruct_control_255 { u32 legacy ; u8 mcs[10U] ; }; struct cfg80211_bitrate_mask { struct __anonstruct_control_255 control[3U] ; }; struct cfg80211_wowlan_trig_pkt_pattern { u8 *mask ; u8 *pattern ; int pattern_len ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_wowlan_trig_pkt_pattern *patterns ; int n_patterns ; }; struct cfg80211_gtk_rekey_data { u8 kek[16U] ; u8 kck[16U] ; u8 replay_ctr[8U] ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; }; struct mac_address { u8 addr[6U] ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u32 flags ; u32 features ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support wowlan ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; int (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; enum ldv_29849 { CFG80211_SME_IDLE = 0, CFG80211_SME_CONNECTING = 1, CFG80211_SME_CONNECTED = 2 } ; struct __anonstruct_wext_256 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; struct work_struct cleanup_work ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; enum ldv_29849 sme_state ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct ieee80211_channel *preset_chan ; enum nl80211_channel_type preset_chantype ; struct ieee80211_channel *channel ; bool ibss_fixed ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; struct __anonstruct_wext_256 wext ; }; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool uapsd ; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount ; unsigned int dot11RTSFailureCount ; unsigned int dot11FCSErrorCount ; unsigned int dot11RTSSuccessCount ; }; enum ieee80211_rssi_event { RSSI_EVENT_HIGH = 0, RSSI_EVENT_LOW = 1 } ; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u32 basic_rates ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; enum nl80211_channel_type channel_type ; __be32 arp_addr_list[4U] ; u8 arp_addr_cnt ; bool arp_filter_enabled ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; }; struct ieee80211_tx_rate { s8 idx ; u8 count ; u8 flags ; }; struct __anonstruct_ldv_42643_260 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; }; union __anonunion_ldv_42645_259 { struct __anonstruct_ldv_42643_260 ldv_42643 ; unsigned long jiffies ; }; struct ieee80211_vif; struct ieee80211_key_conf; struct __anonstruct_control_258 { union __anonunion_ldv_42645_259 ldv_42645 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; }; struct __anonstruct_status_261 { struct ieee80211_tx_rate rates[4U] ; int ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; }; struct __anonstruct_ldv_42661_262 { struct ieee80211_tx_rate driver_rates[4U] ; void *rate_driver_data[3U] ; }; union __anonunion_ldv_42663_257 { struct __anonstruct_control_258 control ; struct __anonstruct_status_261 status ; struct __anonstruct_ldv_42661_262 ldv_42661 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion_ldv_42663_257 ldv_42663 ; }; struct ieee80211_sched_scan_ies { u8 *ie[3U] ; size_t len[3U] ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u16 freq ; u8 rate_idx ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 ampdu_delimiter_crc ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct ieee80211_channel *channel ; enum nl80211_channel_type channel_type ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_channel_switch { u64 timestamp ; bool block_tx ; struct ieee80211_channel *channel ; u8 count ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; u8 cab_queue ; u8 hw_queue[4U] ; u32 driver_flags ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; enum set_key_cmd { SET_KEY = 0, DISABLE_KEY = 1 } ; enum ieee80211_sta_state { IEEE80211_STA_NOTEXIST = 0, IEEE80211_STA_NONE = 1, IEEE80211_STA_AUTH = 2, IEEE80211_STA_ASSOC = 3, IEEE80211_STA_AUTHORIZED = 4 } ; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 drv_priv[0U] ; }; enum sta_notify_cmd { STA_NOTIFY_SLEEP = 0, STA_NOTIFY_AWAKE = 1 } ; struct ieee80211_tx_control { struct ieee80211_sta *sta ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; int channel_change_time ; int vif_data_size ; int sta_data_size ; int napi_weight ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; netdev_features_t netdev_features ; }; enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START = 0, IEEE80211_AMPDU_RX_STOP = 1, IEEE80211_AMPDU_TX_START = 2, IEEE80211_AMPDU_TX_STOP = 3, IEEE80211_AMPDU_TX_OPERATIONAL = 4 } ; enum ieee80211_frame_release_type { IEEE80211_FRAME_RELEASE_PSPOLL = 0, IEEE80211_FRAME_RELEASE_UAPSD = 1 } ; struct ieee80211_ops { void (*tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; int (*start)(struct ieee80211_hw * ) ; void (*stop)(struct ieee80211_hw * ) ; int (*suspend)(struct ieee80211_hw * , struct cfg80211_wowlan * ) ; int (*resume)(struct ieee80211_hw * ) ; void (*set_wakeup)(struct ieee80211_hw * , bool ) ; int (*add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*change_interface)(struct ieee80211_hw * , struct ieee80211_vif * , enum nl80211_iftype , bool ) ; void (*remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*config)(struct ieee80211_hw * , u32 ) ; void (*bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , u32 ) ; u64 (*prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , u64 ) ; int (*set_tim)(struct ieee80211_hw * , struct ieee80211_sta * , bool ) ; int (*set_key)(struct ieee80211_hw * , enum set_key_cmd , struct ieee80211_vif * , struct ieee80211_sta * , struct ieee80211_key_conf * ) ; void (*update_tkip_key)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_key_conf * , struct ieee80211_sta * , u32 , u16 * ) ; void (*set_rekey_data)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_gtk_rekey_data * ) ; int (*hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_scan_request * ) ; void (*cancel_hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*sched_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_sched_scan_request * , struct ieee80211_sched_scan_ies * ) ; void (*sched_scan_stop)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*sw_scan_start)(struct ieee80211_hw * ) ; void (*sw_scan_complete)(struct ieee80211_hw * ) ; int (*get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; void (*get_tkip_seq)(struct ieee80211_hw * , u8 , u32 * , u16 * ) ; int (*set_frag_threshold)(struct ieee80211_hw * , u32 ) ; int (*set_rts_threshold)(struct ieee80211_hw * , u32 ) ; int (*sta_add)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; int (*sta_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_notify)(struct ieee80211_hw * , struct ieee80211_vif * , enum sta_notify_cmd , struct ieee80211_sta * ) ; int (*sta_state)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , enum ieee80211_sta_state , enum ieee80211_sta_state ) ; void (*sta_rc_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u32 ) ; int (*conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , u16 , struct ieee80211_tx_queue_params const * ) ; u64 (*get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*set_tsf)(struct ieee80211_hw * , struct ieee80211_vif * , u64 ) ; void (*reset_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*tx_last_beacon)(struct ieee80211_hw * ) ; int (*ampdu_action)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_ampdu_mlme_action , struct ieee80211_sta * , u16 , u16 * , u8 ) ; int (*get_survey)(struct ieee80211_hw * , int , struct survey_info * ) ; void (*rfkill_poll)(struct ieee80211_hw * ) ; void (*set_coverage_class)(struct ieee80211_hw * , u8 ) ; int (*testmode_cmd)(struct ieee80211_hw * , void * , int ) ; int (*testmode_dump)(struct ieee80211_hw * , struct sk_buff * , struct netlink_callback * , void * , int ) ; void (*flush)(struct ieee80211_hw * , bool ) ; void (*channel_switch)(struct ieee80211_hw * , struct ieee80211_channel_switch * ) ; int (*napi_poll)(struct ieee80211_hw * , int ) ; int (*set_antenna)(struct ieee80211_hw * , u32 , u32 ) ; int (*get_antenna)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*remain_on_channel)(struct ieee80211_hw * , struct ieee80211_channel * , enum nl80211_channel_type , int ) ; int (*cancel_remain_on_channel)(struct ieee80211_hw * ) ; int (*set_ringparam)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_ringparam)(struct ieee80211_hw * , u32 * , u32 * , u32 * , u32 * ) ; bool (*tx_frames_pending)(struct ieee80211_hw * ) ; int (*set_bitrate_mask)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_bitrate_mask const * ) ; void (*rssi_callback)(struct ieee80211_hw * , enum ieee80211_rssi_event ) ; void (*allow_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; void (*release_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; int (*get_et_sset_count)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; void (*get_et_stats)(struct ieee80211_hw * , struct ieee80211_vif * , struct ethtool_stats * , u64 * ) ; void (*get_et_strings)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , u8 * ) ; int (*get_rssi)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , s8 * ) ; void (*mgd_prepare_tx)(struct ieee80211_hw * , struct ieee80211_vif * ) ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct rxd_ops { int rxd_size ; void (*rxd_init)(void * , dma_addr_t ) ; void (*rxd_refill)(void * , dma_addr_t , int ) ; int (*rxd_process)(void * , struct ieee80211_rx_status * , __le16 * , s8 * ) ; }; struct mwl8k_device_info { char *part_name ; char *helper_image ; char *fw_image_sta ; char *fw_image_ap ; struct rxd_ops *ap_rxd_ops ; u32 fw_api_ap ; }; struct __anonstruct_buf_267 { struct sk_buff *skb ; dma_addr_t dma ; }; struct mwl8k_rx_queue { int rxd_count ; int head ; int tail ; void *rxd ; dma_addr_t rxd_dma ; struct __anonstruct_buf_267 *buf ; }; struct mwl8k_tx_desc; struct mwl8k_tx_queue { int head ; int tail ; unsigned int len ; struct mwl8k_tx_desc *txd ; dma_addr_t txd_dma ; struct sk_buff **skb ; }; struct mwl8k_ampdu_stream { struct ieee80211_sta *sta ; u8 tid ; u8 state ; u8 idx ; u8 txq_idx ; }; struct mwl8k_priv { struct ieee80211_hw *hw ; struct pci_dev *pdev ; int irq ; struct mwl8k_device_info *device_info ; void *sram ; void *regs ; struct firmware const *fw_helper ; struct firmware const *fw_ucode ; bool ap_fw ; struct rxd_ops *rxd_ops ; struct ieee80211_supported_band band_24 ; struct ieee80211_channel channels_24[14U] ; struct ieee80211_rate rates_24[14U] ; struct ieee80211_supported_band band_50 ; struct ieee80211_channel channels_50[4U] ; struct ieee80211_rate rates_50[9U] ; u32 ap_macids_supported ; u32 sta_macids_supported ; u8 num_ampdu_queues ; spinlock_t stream_lock ; struct mwl8k_ampdu_stream ampdu[8U] ; struct work_struct watchdog_ba_handle ; struct mutex fw_mutex ; struct task_struct *fw_mutex_owner ; struct task_struct *hw_restart_owner ; int fw_mutex_depth ; struct completion *hostcmd_wait ; spinlock_t tx_lock ; struct completion *tx_wait ; u32 macids_used ; struct list_head vif_list ; u32 *cookie ; dma_addr_t cookie_dma ; u16 num_mcaddrs ; u8 hw_rev ; u32 fw_rev ; int pending_tx_pkts ; struct mwl8k_rx_queue rxq[1U] ; struct mwl8k_tx_queue txq[12U] ; u32 txq_offset[12U] ; bool radio_on ; bool radio_short_preamble ; bool sniffer_enabled ; bool wmm_enabled ; bool capture_beacon ; u8 capture_bssid[6U] ; struct sk_buff *beacon_skb ; struct work_struct finalize_join_worker ; struct tasklet_struct poll_tx_task ; struct tasklet_struct poll_rx_task ; s8 noise ; struct ieee80211_tx_queue_params wmm_params[4U] ; struct work_struct fw_reload ; bool hw_restart_in_progress ; unsigned int fw_state ; char *fw_pref ; char *fw_alt ; struct completion firmware_loading_complete ; }; struct __anonstruct_wep_key_conf_268 { u8 enabled ; u8 key[25U] ; }; struct mwl8k_vif { struct list_head list ; struct ieee80211_vif *vif ; int macid ; u16 seqno ; struct __anonstruct_wep_key_conf_268 wep_key_conf[4U] ; u8 bssid[6U] ; bool is_hw_crypto_enabled ; }; struct tx_traffic_info { u32 start_time ; u32 pkts ; }; struct mwl8k_sta { u8 peer_id ; u8 is_ampdu_allowed ; struct tx_traffic_info tx_stats[8U] ; }; struct mwl8k_cmd_pkt { __le16 code ; __le16 length ; __u8 seq_num ; __u8 macid ; __le16 result ; char payload[0U] ; }; struct mwl8k_dma_data { __le16 fwlen ; struct ieee80211_hdr wh ; char data[0U] ; }; struct mwl8k_rxd_8366_ap { __le16 pkt_len ; __u8 sq2 ; __u8 rate ; __le32 pkt_phys_addr ; __le32 next_rxd_phys_addr ; __le16 qos_control ; __le16 htsig2 ; __le32 hw_rssi_info ; __le32 hw_noise_floor_info ; __u8 noise_floor ; __u8 pad0[3U] ; __u8 rssi ; __u8 rx_status ; __u8 channel ; __u8 rx_ctrl ; }; struct mwl8k_rxd_sta { __le16 pkt_len ; __u8 link_quality ; __u8 noise_level ; __le32 pkt_phys_addr ; __le32 next_rxd_phys_addr ; __le16 qos_control ; __le16 rate_info ; __le32 pad0[4U] ; __u8 rssi ; __u8 channel ; __le16 pad1 ; __u8 rx_ctrl ; __u8 rx_status ; __u8 pad2[2U] ; }; struct __anonstruct_271 { struct sk_buff *skb ; dma_addr_t dma ; }; struct mwl8k_tx_desc { __le32 status ; __u8 data_rate ; __u8 tx_priority ; __le16 qos_control ; __le32 pkt_phys_addr ; __le16 pkt_len ; __u8 dest_MAC_addr[6U] ; __le32 next_txd_phys_addr ; __le32 timestamp ; __le16 rate_info ; __u8 peer_id ; __u8 tx_frag_cnt ; }; struct mwl8k_cmd_get_hw_spec_sta { struct mwl8k_cmd_pkt header ; __u8 hw_rev ; __u8 host_interface ; __le16 num_mcaddrs ; __u8 perm_addr[6U] ; __le16 region_code ; __le32 fw_rev ; __le32 ps_cookie ; __le32 caps ; __u8 mcs_bitmap[16U] ; __le32 rx_queue_ptr ; __le32 num_tx_queues ; __le32 tx_queue_ptrs[4U] ; __le32 caps2 ; __le32 num_tx_desc_per_queue ; __le32 total_rxd ; }; struct mwl8k_cmd_get_hw_spec_ap { struct mwl8k_cmd_pkt header ; __u8 hw_rev ; __u8 host_interface ; __le16 num_wcb ; __le16 num_mcaddrs ; __u8 perm_addr[6U] ; __le16 region_code ; __le16 num_antenna ; __le32 fw_rev ; __le32 wcbbase0 ; __le32 rxwrptr ; __le32 rxrdptr ; __le32 ps_cookie ; __le32 wcbbase1 ; __le32 wcbbase2 ; __le32 wcbbase3 ; __le32 fw_api_version ; __le32 caps ; __le32 num_of_ampdu_queues ; __le32 wcbbase_ampdu[8U] ; }; struct mwl8k_cmd_set_hw_spec { struct mwl8k_cmd_pkt header ; __u8 hw_rev ; __u8 host_interface ; __le16 num_mcaddrs ; __u8 perm_addr[6U] ; __le16 region_code ; __le32 fw_rev ; __le32 ps_cookie ; __le32 caps ; __le32 rx_queue_ptr ; __le32 num_tx_queues ; __le32 tx_queue_ptrs[12U] ; __le32 flags ; __le32 num_tx_desc_per_queue ; __le32 total_rxd ; }; struct mwl8k_cmd_mac_multicast_adr { struct mwl8k_cmd_pkt header ; __le16 action ; __le16 numaddr ; __u8 addr[0U][6U] ; }; struct mwl8k_cmd_get_stat { struct mwl8k_cmd_pkt header ; __le32 stats[64U] ; }; struct mwl8k_cmd_radio_control { struct mwl8k_cmd_pkt header ; __le16 action ; __le16 control ; __le16 radio_on ; }; struct mwl8k_cmd_rf_tx_power { struct mwl8k_cmd_pkt header ; __le16 action ; __le16 support_level ; __le16 current_level ; __le16 reserved ; __le16 power_level_list[8U] ; }; struct mwl8k_cmd_tx_power { struct mwl8k_cmd_pkt header ; __le16 action ; __le16 band ; __le16 channel ; __le16 bw ; __le16 sub_ch ; __le16 power_level_list[12U] ; }; struct mwl8k_cmd_rf_antenna { struct mwl8k_cmd_pkt header ; __le16 antenna ; __le16 mode ; }; struct mwl8k_cmd_set_beacon { struct mwl8k_cmd_pkt header ; __le16 beacon_len ; __u8 beacon[0U] ; }; struct mwl8k_cmd_set_pre_scan { struct mwl8k_cmd_pkt header ; }; struct mwl8k_cmd_set_post_scan { struct mwl8k_cmd_pkt header ; __le32 isibss ; __u8 bssid[6U] ; }; struct mwl8k_cmd_set_rf_channel { struct mwl8k_cmd_pkt header ; __le16 action ; __u8 current_channel ; __le32 channel_flags ; }; struct mwl8k_cmd_update_set_aid { struct mwl8k_cmd_pkt header ; __le16 aid ; __u8 bssid[6U] ; __le16 protection_mode ; __u8 supp_rates[14U] ; }; struct mwl8k_cmd_set_rate { struct mwl8k_cmd_pkt header ; __u8 legacy_rates[14U] ; __u8 mcs_set[16U] ; __u8 reserved[16U] ; }; struct mwl8k_cmd_finalize_join { struct mwl8k_cmd_pkt header ; __le32 sleep_interval ; __u8 beacon_data[128U] ; }; struct mwl8k_cmd_set_rts_threshold { struct mwl8k_cmd_pkt header ; __le16 action ; __le16 threshold ; }; struct mwl8k_cmd_set_slot { struct mwl8k_cmd_pkt header ; __le16 action ; __u8 short_slot ; }; struct __anonstruct_ap_277 { __le32 log_cw_max ; __le32 log_cw_min ; __u8 aifs ; __u8 txq ; }; struct __anonstruct_sta_278 { __u8 log_cw_max ; __u8 log_cw_min ; __u8 aifs ; __u8 txq ; }; union __anonunion_ldv_44666_276 { struct __anonstruct_ap_277 ap ; struct __anonstruct_sta_278 sta ; }; struct mwl8k_cmd_set_edca_params { struct mwl8k_cmd_pkt header ; __le16 action ; __le16 txop ; union __anonunion_ldv_44666_276 ldv_44666 ; }; struct mwl8k_cmd_set_wmm_mode { struct mwl8k_cmd_pkt header ; __le16 action ; }; struct mwl8k_cmd_mimo_config { struct mwl8k_cmd_pkt header ; __le32 action ; __u8 rx_antenna_map ; __u8 tx_antenna_map ; }; struct __anonstruct_rate_entry_279 { __le32 is_ht_rate ; __le32 enable_retry ; __le32 rate ; __le32 retry_count ; }; struct mwl8k_cmd_use_fixed_rate_sta { struct mwl8k_cmd_pkt header ; __le32 action ; __le32 allow_rate_drop ; __le32 num_rates ; struct __anonstruct_rate_entry_279 rate_entry[8U] ; __le32 rate_type ; __le32 reserved1 ; __le32 reserved2 ; }; struct mwl8k_rate_entry_ap { __le32 is_ht_rate ; __le32 enable_retry ; __le32 rate ; __le32 retry_count ; }; struct mwl8k_cmd_use_fixed_rate_ap { struct mwl8k_cmd_pkt header ; __le32 action ; __le32 allow_rate_drop ; __le32 num_rates ; struct mwl8k_rate_entry_ap rate_entry[4U] ; u8 multicast_rate ; u8 multicast_rate_type ; u8 management_rate ; }; struct mwl8k_cmd_enable_sniffer { struct mwl8k_cmd_pkt header ; __le32 action ; }; struct __anonstruct_mbss_281 { __le16 mac_type ; __u8 mac_addr[6U] ; }; union __anonunion_ldv_44757_280 { struct __anonstruct_mbss_281 mbss ; __u8 mac_addr[6U] ; }; struct mwl8k_cmd_update_mac_addr { struct mwl8k_cmd_pkt header ; union __anonunion_ldv_44757_280 ldv_44757 ; }; struct mwl8k_cmd_set_rate_adapt_mode { struct mwl8k_cmd_pkt header ; __le16 action ; __le16 mode ; }; struct mwl8k_cmd_get_watchdog_bitmap { struct mwl8k_cmd_pkt header ; u8 bitmap ; }; struct mwl8k_cmd_bss_start { struct mwl8k_cmd_pkt header ; __le32 enable ; }; struct mwl8k_create_ba_stream { __le32 flags ; __le32 idle_thrs ; __le32 bar_thrs ; __le32 window_size ; u8 peer_mac_addr[6U] ; u8 dialog_token ; u8 tid ; u8 queue_id ; u8 param_info ; __le32 ba_context ; u8 reset_seq_no_flag ; __le16 curr_seq_no ; u8 sta_src_mac_addr[6U] ; }; struct mwl8k_destroy_ba_stream { __le32 flags ; __le32 ba_context ; }; union __anonunion_ldv_44854_282 { struct mwl8k_create_ba_stream create_params ; struct mwl8k_destroy_ba_stream destroy_params ; }; struct mwl8k_cmd_bastream { struct mwl8k_cmd_pkt header ; __le32 action ; union __anonunion_ldv_44854_282 ldv_44854 ; }; struct mwl8k_cmd_set_new_stn { struct mwl8k_cmd_pkt header ; __le16 aid ; __u8 mac_addr[6U] ; __le16 stn_id ; __le16 action ; __le16 rsvd ; __le32 legacy_rates ; __u8 ht_rates[4U] ; __le16 cap_info ; __le16 ht_capabilities_info ; __u8 mac_ht_param_info ; __u8 rev ; __u8 control_channel ; __u8 add_channel ; __le16 op_mode ; __le16 stbc ; __u8 add_qos_info ; __u8 is_qos_sta ; __le32 fw_sta_ptr ; }; struct mwl8k_cmd_update_encryption { struct mwl8k_cmd_pkt header ; __le32 action ; __le32 reserved ; __u8 mac_addr[6U] ; __u8 encr_type ; }; struct mwl8k_cmd_set_key { struct mwl8k_cmd_pkt header ; __le32 action ; __le32 reserved ; __le16 length ; __le16 key_type_id ; __le32 key_info ; __le32 key_id ; __le16 key_len ; __u8 key_material[16U] ; __u8 tkip_tx_mic_key[8U] ; __u8 tkip_rx_mic_key[8U] ; __le16 tkip_rsc_low ; __le32 tkip_rsc_high ; __le16 tkip_tsc_low ; __le32 tkip_tsc_high ; __u8 mac_addr[6U] ; }; struct ewc_ht_info { __le16 control1 ; __le16 control2 ; __le16 control3 ; }; struct peer_capability_info { __u8 peer_type ; __le16 basic_caps ; __u8 ht_support ; __le16 ht_caps ; __u8 extended_ht_caps ; struct ewc_ht_info ewc_info ; __u8 legacy_rates[12U] ; __u8 ht_rates[16U] ; __u8 pad[16U] ; __u8 interop ; __u8 pad2 ; __u8 station_id ; __le16 amsdu_enabled ; }; struct mwl8k_cmd_update_stadb { struct mwl8k_cmd_pkt header ; __le32 action ; __u8 peer_addr[6U] ; __le32 reserved ; struct peer_capability_info peer_info ; }; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___13; long ldv__builtin_expect(long exp , long c ) ; __inline static int test_and_set_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %2,%1\n\tsbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } __inline static int constant_test_bit(unsigned int nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr / 64U)) >> ((int )nr & 63)) & 1); } } __inline static int ffs(int x ) { int r ; { __asm__ ("bsfl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } __inline static int fls(int x ) { int r ; { __asm__ ("bsrl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } __inline static unsigned int __arch_hweight32(unsigned int w ) { unsigned int res ; { res = 0U; __asm__ ("661:\n\tcall __sw_hweight32\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word (4*32+23)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0xf3,0x40,0x0f,0xb8,0xc7\n6641:\n\t.popsection": "=a" (res): "D" (w)); return (res); } } __inline static int __ilog2_u32(u32 n ) { int tmp ; { tmp = fls((int )n); return (tmp + -1); } } extern int printk(char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern unsigned long __phys_addr(unsigned long ) ; extern struct pv_irq_ops pv_irq_ops ; extern void __bad_percpu_size(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { switch (8UL) { case 1UL: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_2860; case 2UL: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2860; case 4UL: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2860; case 8UL: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2860; default: __bad_percpu_size(); } ldv_2860: ; return (pfo_ret__); } } extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void *memmove(void * , void const * , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/inst/current/envs/linux-3.7.3/linux-3.7.3/arch/x86/include/asm/paravirt.h"), "i" (827), "i" (12UL)); ldv_4720: ; goto ldv_4720; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (45UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; __inline static int mutex_is_locked(struct mutex *lock ) { int tmp ; { tmp = atomic_read((atomic_t const *)(& lock->count)); return (tmp != 1); } } __inline static int ldv_mutex_is_locked_15(struct mutex *lock ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_6(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_4(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) ; extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_8(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_cred_guard_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_cred_guard_mutex(struct mutex *lock ) ; void ldv_mutex_lock_fw_mutex(struct mutex *lock ) ; int ldv_mutex_is_locked_fw_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_fw_mutex(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mtx(struct mutex *lock ) ; void ldv_mutex_unlock_mtx(struct mutex *lock ) ; void ldv_mutex_lock_mutex(struct mutex *lock ) ; int ldv_mutex_trylock_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_mutex(struct mutex *lock ) ; extern unsigned long kernel_stack ; __inline static struct thread_info *current_thread_info(void) { struct thread_info *ti ; unsigned long pfo_ret__ ; { switch (8UL) { case 1UL: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6214; case 2UL: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6214; case 4UL: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6214; case 8UL: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6214; default: __bad_percpu_size(); } ldv_6214: ti = (struct thread_info *)(pfo_ret__ - 8152UL); return (ti); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->ldv_5957.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { _raw_spin_lock(& lock->ldv_5957.rlock); return; } } __inline static void spin_lock_bh(spinlock_t *lock ) { { _raw_spin_lock_bh(& lock->ldv_5957.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { _raw_spin_unlock(& lock->ldv_5957.rlock); return; } } __inline static void spin_unlock_bh(spinlock_t *lock ) { { _raw_spin_unlock_bh(& lock->ldv_5957.rlock); return; } } extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void __init_work(struct work_struct * , int ) ; extern bool cancel_work_sync(struct work_struct * ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { x->done = 0U; __init_waitqueue_head(& x->wait, "&x->wait", & __key); return; } } extern void wait_for_completion(struct completion * ) ; extern unsigned long wait_for_completion_timeout(struct completion * , unsigned long ) ; extern void complete(struct completion * ) ; __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern unsigned int ioread32(void * ) ; extern void iowrite32(u32 , void * ) ; extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; __inline static void __rcu_read_lock(void) { struct thread_info *tmp ; { tmp = current_thread_info(); tmp->preempt_count = tmp->preempt_count + 1; __asm__ volatile ("": : : "memory"); return; } } __inline static void __rcu_read_unlock(void) { struct thread_info *tmp ; { __asm__ volatile ("": : : "memory"); tmp = current_thread_info(); tmp->preempt_count = tmp->preempt_count + -1; __asm__ volatile ("": : : "memory"); return; } } extern int rcu_is_cpu_idle(void) ; __inline static void rcu_lock_acquire(struct lockdep_map *map ) { { lock_acquire(map, 0U, 0, 2, 1, 0, (unsigned long )((void *)0)); return; } } __inline static void rcu_lock_release(struct lockdep_map *map ) { { lock_release(map, 1, (unsigned long )((void *)0)); return; } } extern struct lockdep_map rcu_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; __inline static void rcu_read_lock(void) { bool __warned ; int tmp ; int tmp___0 ; { __rcu_read_lock(); rcu_lock_acquire(& rcu_lock_map); tmp = debug_lockdep_rcu_enabled(); if (tmp != 0 && ! __warned) { tmp___0 = rcu_is_cpu_idle(); if (tmp___0 != 0) { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 738, "rcu_read_lock() used illegally while idle"); } else { } } else { } return; } } __inline static void rcu_read_unlock(void) { bool __warned ; int tmp ; int tmp___0 ; { tmp = debug_lockdep_rcu_enabled(); if (tmp != 0 && ! __warned) { tmp___0 = rcu_is_cpu_idle(); if (tmp___0 != 0) { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 759, "rcu_read_unlock() used illegally while idle"); } else { } } else { } rcu_lock_release(& rcu_lock_map); __rcu_read_unlock(); return; } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, 0, flags, name, dev); return (tmp); } } extern void free_irq(unsigned int , void * ) ; __inline static void tasklet_unlock_wait(struct tasklet_struct *t ) { int tmp ; { goto ldv_13603; ldv_13602: __asm__ volatile ("": : : "memory"); ldv_13603: tmp = constant_test_bit(1U, (unsigned long const volatile *)(& t->state)); if (tmp != 0) { goto ldv_13602; } else { } return; } } extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { tmp = test_and_set_bit(0, (unsigned long volatile *)(& t->state)); if (tmp == 0) { __tasklet_schedule(t); } else { } return; } } __inline static void tasklet_disable_nosync(struct tasklet_struct *t ) { { atomic_inc(& t->count); __asm__ volatile ("": : : "memory"); return; } } __inline static void tasklet_disable(struct tasklet_struct *t ) { { tasklet_disable_nosync(t); tasklet_unlock_wait(t); __asm__ volatile ("mfence": : : "memory"); return; } } __inline static void tasklet_enable(struct tasklet_struct *t ) { { __asm__ volatile ("": : : "memory"); atomic_dec(& t->count); return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern struct module __this_module ; extern int _cond_resched(void) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } tmp = kobject_name(& dev->kobj); return (tmp); } } extern void *dev_get_drvdata(struct device const * ) ; extern int dev_set_drvdata(struct device * , void * ) ; extern void device_release_driver(struct device * ) ; extern int dev_printk(char const * , struct device const * , char const * , ...) ; extern int dev_err(struct device const * , char const * , ...) ; extern int dev_warn(struct device const * , char const * , ...) ; extern int dev_notice(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern void kfree(void const * ) ; extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } extern void *malloc(size_t size); long ldv_is_err(const void *ptr) { return ((unsigned long)ptr > ((unsigned long)-4095)); } void *ldv_malloc(size_t size) { if (__VERIFIER_nondet_int()) { void *res = malloc(size); assume_abort_if_not(!ldv_is_err(res)); return res; } else { return ((void *)0); } } void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && 0xffffffffffffffffUL / size < n) { return (0); } else { } tmp = __kmalloc(n * size, flags); return (tmp); } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc_array(n, size, flags | 32768U); return (tmp); } } void *ldv_zalloc(size_t size ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0) && *(dev->dma_mask) != 0ULL); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_24474: ; goto ldv_24474; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, 0xffffea0000000000UL + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, 0xffffea0000000000UL + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_24483: ; goto ldv_24483; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { tmp = get_dma_ops(dev); ops = tmp; if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); return (tmp___0); } else { } return (dma_addr == 0ULL); } } __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } tmp___0 = is_device_dma_capable(dev); if (tmp___0 == 0) { return (0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return (0); } else { } tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___1 != 0L) { warn_slowpath_null("/work/vladimir/UFO/Work/test/inst/current/envs/linux-3.7.3/linux-3.7.3/arch/x86/include/asm/dma-mapping.h", 165); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { (*(ops->free))(dev, size, vaddr, bus, attrs); } else { } return; } } __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : 0, size, dma_handle, 32U, 0); return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : 0, size, vaddr, dma_handle, 0); return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : 0, ptr, size, (enum dma_data_direction )direction, 0); return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : 0, dma_addr, size, (enum dma_data_direction )direction, 0); return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { tmp = dma_mapping_error(& pdev->dev, dma_addr); return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { tmp = dev_name(& pdev->dev); return (tmp); } } extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern int net_ratelimit(void) ; extern void kfree_skb(struct sk_buff * ) ; extern void consume_skb(struct sk_buff * ) ; extern struct sk_buff *skb_copy(struct sk_buff const * , gfp_t ) ; extern int pskb_expand_head(struct sk_buff * , int , int , gfp_t ) ; extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { tmp = __netdev_alloc_skb(dev, length, 32U); return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { tmp = netdev_alloc_skb(0, length); return (tmp); } } __inline static u16 skb_get_queue_mapping(struct sk_buff const *skb ) { { return ((u16 )skb->queue_mapping); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static unsigned int compare_ether_addr(u8 const *addr1 , u8 const *addr2 ) { u16 const *a ; u16 const *b ; { a = (u16 const *)addr1; b = (u16 const *)addr2; return ((unsigned int )((((int )((unsigned short )*a) ^ (int )((unsigned short )*b)) | ((int )((unsigned short )*(a + 1UL)) ^ (int )((unsigned short )*(b + 1UL)))) | ((int )((unsigned short )*(a + 2UL)) ^ (int )((unsigned short )*(b + 2UL)))) != 0U); } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { unsigned int tmp ; { tmp = compare_ether_addr(addr1, addr2); return (tmp == 0U); } } __inline static int ieee80211_has_a4(__le16 fc ) { __le16 tmp ; { tmp = 768U; return (((int )fc & (int )tmp) == (int )tmp); } } __inline static int ieee80211_has_protected(__le16 fc ) { { return (((int )fc & 16384) != 0); } } __inline static int ieee80211_is_mgmt(__le16 fc ) { { return (((int )fc & 12) == 0); } } __inline static int ieee80211_is_ctl(__le16 fc ) { { return (((int )fc & 12) == 4); } } __inline static int ieee80211_is_data(__le16 fc ) { { return (((int )fc & 12) == 8); } } __inline static int ieee80211_is_data_qos(__le16 fc ) { { return (((int )fc & 140) == 136); } } __inline static int ieee80211_is_beacon(__le16 fc ) { { return (((int )fc & 252) == 128); } } __inline static int ieee80211_is_auth(__le16 fc ) { { return (((int )fc & 252) == 176); } } __inline static int ieee80211_is_action(__le16 fc ) { { return (((int )fc & 252) == 208); } } __inline static u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr ) { int tmp ; { tmp = ieee80211_has_a4((int )hdr->frame_control); if (tmp != 0) { return ((u8 *)hdr + 30UL); } else { return ((u8 *)hdr + 24UL); } } } __inline static void set_wiphy_dev(struct wiphy *wiphy , struct device *dev ) { { wiphy->dev.parent = dev; return; } } extern int ieee80211_channel_to_frequency(int , enum ieee80211_band ) ; extern unsigned int ieee80211_hdrlen(__le16 ) ; extern u8 const *cfg80211_find_ie(u8 , u8 const * , int ) ; __inline static struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb ) { { return ((struct ieee80211_tx_info *)(& skb->cb)); } } __inline static struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb ) { { return ((struct ieee80211_rx_status *)(& skb->cb)); } } __inline static void ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info ) { int i ; { i = 0; goto ldv_42679; ldv_42678: info->ldv_42663.status.rates[i].count = 0U; i = i + 1; ldv_42679: ; if (i <= 3) { goto ldv_42678; } else { } memset((void *)(& info->ldv_42663.status.ampdu_ack_len), 0, 24UL); return; } } __inline static void SET_IEEE80211_DEV(struct ieee80211_hw *hw , struct device *dev ) { { set_wiphy_dev(hw->wiphy, dev); return; } } __inline static void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw , u8 *addr ) { size_t __len ; void *__ret ; { __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& (hw->wiphy)->perm_addr), (void const *)addr, __len); } else { __ret = memcpy((void *)(& (hw->wiphy)->perm_addr), (void const *)addr, __len); } return; } } extern struct ieee80211_hw *ieee80211_alloc_hw(size_t , struct ieee80211_ops const * ) ; extern int ieee80211_register_hw(struct ieee80211_hw * ) ; extern void ieee80211_unregister_hw(struct ieee80211_hw * ) ; extern void ieee80211_free_hw(struct ieee80211_hw * ) ; extern void ieee80211_restart_hw(struct ieee80211_hw * ) ; extern void ieee80211_rx_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern void ieee80211_tx_status_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw * , struct ieee80211_vif * , u16 * , u16 * ) ; __inline static struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct sk_buff *tmp ; { tmp = ieee80211_beacon_get_tim(hw, vif, 0, 0); return (tmp); } } extern void ieee80211_stop_queues(struct ieee80211_hw * ) ; extern void ieee80211_wake_queues(struct ieee80211_hw * ) ; extern void ieee80211_queue_work(struct ieee80211_hw * , struct work_struct * ) ; extern int ieee80211_start_tx_ba_session(struct ieee80211_sta * , u16 , u16 ) ; extern void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif * , u8 const * , u16 ) ; extern int ieee80211_stop_tx_ba_session(struct ieee80211_sta * , u16 ) ; extern void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif * , u8 const * , u16 ) ; extern struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif * , u8 const * ) ; extern struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw * , u8 const * , u8 const * ) ; extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern int request_firmware_nowait(struct module * , bool , char const * , struct device * , gfp_t , void * , void (*)(struct firmware const * , void * ) ) ; extern void release_firmware(struct firmware const * ) ; static bool ap_mode_default ; static struct ieee80211_channel const mwl8k_channels_24[14U] = { {0, 2412U, 1U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2417U, 2U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2422U, 3U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2427U, 4U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2432U, 5U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2437U, 6U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2442U, 7U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2447U, 8U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2452U, 9U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2457U, 10U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2462U, 11U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2467U, 12U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2472U, 13U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 2484U, 14U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}}; static struct ieee80211_rate const mwl8k_rates_24[14U] = { {0U, 10U, 2U, (unsigned short)0}, {0U, 20U, 4U, (unsigned short)0}, {0U, 55U, 11U, (unsigned short)0}, {0U, 110U, 22U, (unsigned short)0}, {0U, 220U, 44U, (unsigned short)0}, {0U, 60U, 12U, (unsigned short)0}, {0U, 90U, 18U, (unsigned short)0}, {0U, 120U, 24U, (unsigned short)0}, {0U, 180U, 36U, (unsigned short)0}, {0U, 240U, 48U, (unsigned short)0}, {0U, 360U, 72U, (unsigned short)0}, {0U, 480U, 96U, (unsigned short)0}, {0U, 540U, 108U, (unsigned short)0}, {0U, 720U, 144U, (unsigned short)0}}; static struct ieee80211_channel const mwl8k_channels_50[4U] = { {0, 5180U, 36U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 5200U, 40U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 5220U, 44U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}, {0, 5240U, 48U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0}}; static struct ieee80211_rate const mwl8k_rates_50[9U] = { {0U, 60U, 12U, (unsigned short)0}, {0U, 90U, 18U, (unsigned short)0}, {0U, 120U, 24U, (unsigned short)0}, {0U, 180U, 36U, (unsigned short)0}, {0U, 240U, 48U, (unsigned short)0}, {0U, 360U, 72U, (unsigned short)0}, {0U, 480U, 96U, (unsigned short)0}, {0U, 540U, 108U, (unsigned short)0}, {0U, 720U, 144U, (unsigned short)0}}; static char const *mwl8k_cmd_name(__le16 cmd , char *buf , int bufsize ) { u16 command ; { command = cmd; switch ((int )command & -32769) { case 1: snprintf(buf, (size_t )bufsize, "%s", (char *)"CODE_DNLD"); return ((char const *)buf); case 3: snprintf(buf, (size_t )bufsize, "%s", (char *)"GET_HW_SPEC"); return ((char const *)buf); case 4: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_HW_SPEC"); return ((char const *)buf); case 16: snprintf(buf, (size_t )bufsize, "%s", (char *)"MAC_MULTICAST_ADR"); return ((char const *)buf); case 20: snprintf(buf, (size_t )bufsize, "%s", (char *)"GET_STAT"); return ((char const *)buf); case 28: snprintf(buf, (size_t )bufsize, "%s", (char *)"RADIO_CONTROL"); return ((char const *)buf); case 30: snprintf(buf, (size_t )bufsize, "%s", (char *)"RF_TX_POWER"); return ((char const *)buf); case 31: snprintf(buf, (size_t )bufsize, "%s", (char *)"TX_POWER"); return ((char const *)buf); case 32: snprintf(buf, (size_t )bufsize, "%s", (char *)"RF_ANTENNA"); return ((char const *)buf); case 256: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_BEACON"); return ((char const *)buf); case 263: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_PRE_SCAN"); return ((char const *)buf); case 264: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_POST_SCAN"); return ((char const *)buf); case 266: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_RF_CHANNEL"); return ((char const *)buf); case 269: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_AID"); return ((char const *)buf); case 272: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_RATE"); return ((char const *)buf); case 273: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_FINALIZE_JOIN"); return ((char const *)buf); case 275: snprintf(buf, (size_t )bufsize, "%s", (char *)"RTS_THRESHOLD"); return ((char const *)buf); case 276: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_SLOT"); return ((char const *)buf); case 277: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_EDCA_PARAMS"); return ((char const *)buf); case 291: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_WMM_MODE"); return ((char const *)buf); case 293: snprintf(buf, (size_t )bufsize, "%s", (char *)"MIMO_CONFIG"); return ((char const *)buf); case 294: snprintf(buf, (size_t )bufsize, "%s", (char *)"USE_FIXED_RATE"); return ((char const *)buf); case 336: snprintf(buf, (size_t )bufsize, "%s", (char *)"ENABLE_SNIFFER"); return ((char const *)buf); case 514: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_MAC_ADDR"); return ((char const *)buf); case 515: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_RATEADAPT_MODE"); return ((char const *)buf); case 4352: snprintf(buf, (size_t )bufsize, "%s", (char *)"BSS_START"); return ((char const *)buf); case 4369: snprintf(buf, (size_t )bufsize, "%s", (char *)"SET_NEW_STN"); return ((char const *)buf); case 4386: snprintf(buf, (size_t )bufsize, "%s", (char *)"UPDATE_ENCRYPTION"); return ((char const *)buf); case 4387: snprintf(buf, (size_t )bufsize, "%s", (char *)"UPDATE_STADB"); return ((char const *)buf); case 4389: snprintf(buf, (size_t )bufsize, "%s", (char *)"BASTREAM"); return ((char const *)buf); case 517: snprintf(buf, (size_t )bufsize, "%s", (char *)"GET_WATCHDOG_BITMAP"); return ((char const *)buf); default: snprintf(buf, (size_t )bufsize, "0x%x", (int )cmd); } return ((char const *)buf); } } static void mwl8k_hw_reset(struct mwl8k_priv *priv ) { { iowrite32(32768U, priv->regs + 3096UL); iowrite32(32768U, priv->regs + 3096UL); msleep(20U); return; } } static void mwl8k_release_fw(struct firmware const **fw ) { { if ((unsigned long )*fw == (unsigned long )((struct firmware const *)0)) { return; } else { } release_firmware(*fw); *fw = 0; return; } } static void mwl8k_release_firmware(struct mwl8k_priv *priv ) { { mwl8k_release_fw(& priv->fw_ucode); mwl8k_release_fw(& priv->fw_helper); return; } } static void mwl8k_fw_state_machine(struct firmware const *fw , void *context ) ; static int mwl8k_request_fw(struct mwl8k_priv *priv , char const *fname , struct firmware const **fw , bool nowait ) { int tmp ; int tmp___0 ; { if ((unsigned long )*fw != (unsigned long )((struct firmware const *)0)) { mwl8k_release_fw(fw); } else { } if ((int )nowait) { tmp = request_firmware_nowait(& __this_module, 1, fname, & (priv->pdev)->dev, 208U, (void *)priv, & mwl8k_fw_state_machine); return (tmp); } else { tmp___0 = request_firmware(fw, fname, & (priv->pdev)->dev); return (tmp___0); } } } static int mwl8k_request_firmware(struct mwl8k_priv *priv , char *fw_image , bool nowait ) { struct mwl8k_device_info *di ; int rc ; char const *tmp ; char const *tmp___0 ; { di = priv->device_info; if ((unsigned long )di->helper_image != (unsigned long )((char *)0)) { if ((int )nowait) { rc = mwl8k_request_fw(priv, (char const *)di->helper_image, & priv->fw_helper, 1); } else { rc = mwl8k_request_fw(priv, (char const *)di->helper_image, & priv->fw_helper, 0); } if (rc != 0) { tmp = pci_name((struct pci_dev const *)priv->pdev); printk("\v%s: Error requesting helper fw %s\n", tmp, di->helper_image); } else { } if (rc != 0 || (int )nowait) { return (rc); } else { } } else { } if ((int )nowait) { priv->fw_state = 1U; rc = mwl8k_request_fw(priv, (char const *)fw_image, & priv->fw_ucode, 1); } else { rc = mwl8k_request_fw(priv, (char const *)fw_image, & priv->fw_ucode, 0); } if (rc != 0) { tmp___0 = pci_name((struct pci_dev const *)priv->pdev); printk("\v%s: Error requesting firmware file %s\n", tmp___0, fw_image); mwl8k_release_fw(& priv->fw_helper); return (rc); } else { } return (0); } } static int mwl8k_send_fw_load_cmd(struct mwl8k_priv *priv , void *data , int length ) { void *regs ; dma_addr_t dma_addr ; int loops ; int tmp ; u32 int_code ; { regs = priv->regs; dma_addr = pci_map_single(priv->pdev, data, (size_t )length, 1); tmp = pci_dma_mapping_error(priv->pdev, dma_addr); if (tmp != 0) { return (-12); } else { } iowrite32((u32 )dma_addr, regs + 3088UL); iowrite32(0U, regs + 3092UL); iowrite32(2U, regs + 3096UL); iowrite32(1048576U, regs + 3096UL); loops = 1000; ldv_43846: int_code = ioread32(regs + 3092UL); if (int_code == 5U) { iowrite32(0U, regs + 3092UL); goto ldv_43844; } else { } __might_sleep("/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared", 642, 0); _cond_resched(); __const_udelay(4295UL); loops = loops - 1; if (loops != 0) { goto ldv_43846; } else { } ldv_43844: pci_unmap_single(priv->pdev, dma_addr, (size_t )length, 1); return (loops != 0 ? 0 : -110); } } static int mwl8k_load_fw_image(struct mwl8k_priv *priv , u8 const *data , size_t length ) { struct mwl8k_cmd_pkt *cmd ; int done ; int rc ; void *tmp ; int block_size ; size_t __len ; void *__ret ; { rc = 0; tmp = kmalloc(264UL, 208U); cmd = (struct mwl8k_cmd_pkt *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_pkt *)0)) { return (-12); } else { } cmd->code = 1U; cmd->seq_num = 0U; cmd->macid = 0U; cmd->result = 0U; done = 0; goto ldv_43861; ldv_43860: block_size = (int )(256UL < length ? 256UL : length); __len = (size_t )block_size; __ret = memcpy((void *)(& cmd->payload), (void const *)data + (unsigned long )done, __len); cmd->length = (unsigned short )block_size; rc = mwl8k_send_fw_load_cmd(priv, (void *)cmd, (int )((unsigned int )block_size + 8U)); if (rc != 0) { goto ldv_43859; } else { } done = done + block_size; length = length - (size_t )block_size; ldv_43861: ; if (length != 0UL) { goto ldv_43860; } else { } ldv_43859: ; if (rc == 0) { cmd->length = 0U; rc = mwl8k_send_fw_load_cmd(priv, (void *)cmd, 8); } else { } kfree((void const *)cmd); return (rc); } } static int mwl8k_feed_fw_image(struct mwl8k_priv *priv , u8 const *data , size_t length ) { unsigned char *buffer ; int may_continue ; int rc ; u32 done ; u32 prev_block_size ; void *tmp ; u32 block_size ; size_t __len ; void *__ret ; { rc = 0; tmp = kmalloc(1024UL, 208U); buffer = (unsigned char *)tmp; if ((unsigned long )buffer == (unsigned long )((unsigned char *)0)) { return (-12); } else { } done = 0U; prev_block_size = 0U; may_continue = 1000; goto ldv_43874; ldv_43878: block_size = ioread32(priv->regs + 3136UL); if ((int )block_size & 1) { block_size = block_size & 4294967294U; may_continue = may_continue - 1; } else { done = done + prev_block_size; length = length - (size_t )prev_block_size; } if (block_size > 1024U || (size_t )block_size > length) { rc = -75; goto ldv_43873; } else { } if (length == 0UL) { rc = 0; goto ldv_43873; } else { } if (block_size == 0U) { rc = -71; may_continue = may_continue - 1; __const_udelay(4295UL); goto ldv_43874; } else { } prev_block_size = block_size; __len = (size_t )block_size; __ret = memcpy((void *)buffer, (void const *)data + (unsigned long )done, __len); rc = mwl8k_send_fw_load_cmd(priv, (void *)buffer, (int )block_size); if (rc != 0) { goto ldv_43873; } else { } ldv_43874: ; if (may_continue > 0) { goto ldv_43878; } else { } ldv_43873: ; if (rc == 0 && length != 0UL) { rc = -121; } else { } kfree((void const *)buffer); return (rc); } } static int mwl8k_load_firmware(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; struct firmware const *fw ; int rc ; int loops ; struct firmware const *helper ; char const *tmp ; char const *tmp___0 ; int tmp___1 ; char const *tmp___2 ; u32 ready_code ; { priv = (struct mwl8k_priv *)hw->priv; fw = priv->fw_ucode; tmp___1 = memcmp((void const *)fw->data, (void const *)"\001", 4UL); if (tmp___1 == 0) { helper = priv->fw_helper; if ((unsigned long )helper == (unsigned long )((struct firmware const *)0)) { tmp = pci_name((struct pci_dev const *)priv->pdev); printk("\v%s: helper image needed but none given\n", tmp); return (-22); } else { } rc = mwl8k_load_fw_image(priv, helper->data, helper->size); if (rc != 0) { tmp___0 = pci_name((struct pci_dev const *)priv->pdev); printk("\v%s: unable to load firmware helper image\n", tmp___0); return (rc); } else { } msleep(20U); rc = mwl8k_feed_fw_image(priv, fw->data, fw->size); } else { rc = mwl8k_load_fw_image(priv, fw->data, fw->size); } if (rc != 0) { tmp___2 = pci_name((struct pci_dev const *)priv->pdev); printk("\v%s: unable to load firmware image\n", tmp___2); return (rc); } else { } iowrite32(90U, priv->regs + 3088UL); loops = 500000; ldv_43890: ready_code = ioread32(priv->regs + 3092UL); if (ready_code == 4059231397U) { priv->ap_fw = 1; goto ldv_43888; } else if (ready_code == 4042388212U) { priv->ap_fw = 0; goto ldv_43888; } else { } __might_sleep("/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared", 802, 0); _cond_resched(); __const_udelay(4295UL); loops = loops - 1; if (loops != 0) { goto ldv_43890; } else { } ldv_43888: ; return (loops != 0 ? 0 : -110); } } __inline static void mwl8k_remove_dma_header(struct sk_buff *skb , __le16 qos ) { struct mwl8k_dma_data *tr ; int hdrlen ; unsigned int tmp ; int tmp___0 ; { tr = (struct mwl8k_dma_data *)skb->data; tmp = ieee80211_hdrlen((int )tr->wh.frame_control); hdrlen = (int )tmp; if (hdrlen != 30) { tmp___0 = ieee80211_is_data_qos((int )tr->wh.frame_control); if (tmp___0 != 0) { memmove((void *)(& tr->data) + - ((unsigned long )hdrlen), (void const *)(& tr->wh), (size_t )(hdrlen + -2)); *((__le16 *)(& tr->data) + 0xfffffffffffffffeUL) = qos; } else { memmove((void *)(& tr->data) + - ((unsigned long )hdrlen), (void const *)(& tr->wh), (size_t )hdrlen); } } else { } if (hdrlen != 32) { skb_pull(skb, 32U - (unsigned int )hdrlen); } else { } return; } } static void mwl8k_add_dma_header(struct mwl8k_priv *priv , struct sk_buff *skb , int head_pad , int tail_pad ) { struct ieee80211_hdr *wh ; int hdrlen ; int reqd_hdrlen ; struct mwl8k_dma_data *tr ; unsigned int tmp ; int tmp___0 ; int tmp___1 ; { wh = (struct ieee80211_hdr *)skb->data; tmp = ieee80211_hdrlen((int )wh->frame_control); hdrlen = (int )tmp; if ((int )priv->ap_fw && (unsigned int )hdrlen <= 17U) { tmp___0 = pskb_expand_head(skb, 8, 0, 32U); if (tmp___0 != 0) { dev_err((struct device const *)(& ((priv->hw)->wiphy)->dev), "Failed to reallocate TX buffer\n"); return; } else { } skb->truesize = skb->truesize + 8U; } else { } reqd_hdrlen = (int )((unsigned int )head_pad + 32U); if (hdrlen != reqd_hdrlen) { skb_push(skb, (unsigned int )(reqd_hdrlen - hdrlen)); } else { } tmp___1 = ieee80211_is_data_qos((int )wh->frame_control); if (tmp___1 != 0) { hdrlen = hdrlen + -2; } else { } tr = (struct mwl8k_dma_data *)skb->data; if ((unsigned long )(& tr->wh) != (unsigned long )wh) { memmove((void *)(& tr->wh), (void const *)wh, (size_t )hdrlen); } else { } if (hdrlen != 30) { memset((void *)(& tr->wh) + (unsigned long )hdrlen, 0, 30UL - (unsigned long )hdrlen); } else { } tr->fwlen = (unsigned int )((int )((unsigned short )skb->len) + (int )((unsigned short )tail_pad)) - 32U; return; } } static void mwl8k_encapsulate_tx_frame(struct mwl8k_priv *priv , struct sk_buff *skb ) { struct ieee80211_hdr *wh ; struct ieee80211_tx_info *tx_info ; struct ieee80211_key_conf *key_conf ; int data_pad ; int head_pad ; int tmp ; { head_pad = 0; wh = (struct ieee80211_hdr *)skb->data; tx_info = IEEE80211_SKB_CB(skb); key_conf = 0; tmp = ieee80211_is_data((int )wh->frame_control); if (tmp != 0) { key_conf = tx_info->ldv_42663.control.hw_key; } else { } data_pad = 0; if ((unsigned long )key_conf != (unsigned long )((struct ieee80211_key_conf *)0)) { head_pad = (int )key_conf->iv_len; switch (key_conf->cipher) { case (u32 )1027073: ; case (u32 )1027077: data_pad = 4; goto ldv_43922; case (u32 )1027074: data_pad = 12; goto ldv_43922; case (u32 )1027076: data_pad = 8; goto ldv_43922; } ldv_43922: ; } else { } mwl8k_add_dma_header(priv, skb, head_pad, data_pad); return; } } static void mwl8k_rxd_8366_ap_init(void *_rxd , dma_addr_t next_dma_addr ) { struct mwl8k_rxd_8366_ap *rxd ; { rxd = (struct mwl8k_rxd_8366_ap *)_rxd; rxd->next_rxd_phys_addr = (unsigned int )next_dma_addr; rxd->rx_ctrl = 128U; return; } } static void mwl8k_rxd_8366_ap_refill(void *_rxd , dma_addr_t addr , int len ) { struct mwl8k_rxd_8366_ap *rxd ; { rxd = (struct mwl8k_rxd_8366_ap *)_rxd; rxd->pkt_len = (unsigned short )len; rxd->pkt_phys_addr = (unsigned int )addr; __asm__ volatile ("sfence": : : "memory"); rxd->rx_ctrl = 0U; return; } } static int mwl8k_rxd_8366_ap_process(void *_rxd , struct ieee80211_rx_status *status , __le16 *qos , s8 *noise ) { struct mwl8k_rxd_8366_ap *rxd ; int i ; int tmp ; { rxd = (struct mwl8k_rxd_8366_ap *)_rxd; if ((int )((signed char )rxd->rx_ctrl) >= 0) { return (-1); } else { } __asm__ volatile ("lfence": : : "memory"); memset((void *)status, 0, 32UL); status->signal = (s8 )(- ((int )rxd->rssi)); *noise = (s8 )(- ((int )rxd->noise_floor)); if ((int )((signed char )rxd->rate) < 0) { status->flag = status->flag | 512U; if (((int )rxd->rate & 64) != 0) { status->flag = status->flag | 1024U; } else { } status->rate_idx = (unsigned int )rxd->rate & 63U; } else { i = 0; goto ldv_43964; ldv_43963: ; if ((int )((unsigned short )mwl8k_rates_24[i].hw_value) == (int )((unsigned short )rxd->rate)) { status->rate_idx = (u8 )i; goto ldv_43962; } else { } i = i + 1; ldv_43964: ; if ((unsigned int )i <= 13U) { goto ldv_43963; } else { } ldv_43962: ; } if ((unsigned int )rxd->channel > 14U) { status->band = 1U; if ((status->flag & 512U) == 0U) { status->rate_idx = (unsigned int )status->rate_idx + 251U; } else { } } else { status->band = 0U; } tmp = ieee80211_channel_to_frequency((int )rxd->channel, (enum ieee80211_band )status->band); status->freq = (u16 )tmp; *qos = rxd->qos_control; if (((unsigned int )rxd->rx_status != 255U && (int )((signed char )rxd->rx_status) < 0) && ((int )rxd->rx_status & 2) != 0) { status->flag = status->flag | 1U; } else { } return ((int )rxd->pkt_len); } } static struct rxd_ops rxd_8366_ap_ops = {32, & mwl8k_rxd_8366_ap_init, & mwl8k_rxd_8366_ap_refill, & mwl8k_rxd_8366_ap_process}; static void mwl8k_rxd_sta_init(void *_rxd , dma_addr_t next_dma_addr ) { struct mwl8k_rxd_sta *rxd ; { rxd = (struct mwl8k_rxd_sta *)_rxd; rxd->next_rxd_phys_addr = (unsigned int )next_dma_addr; rxd->rx_ctrl = 2U; return; } } static void mwl8k_rxd_sta_refill(void *_rxd , dma_addr_t addr , int len ) { struct mwl8k_rxd_sta *rxd ; { rxd = (struct mwl8k_rxd_sta *)_rxd; rxd->pkt_len = (unsigned short )len; rxd->pkt_phys_addr = (unsigned int )addr; __asm__ volatile ("sfence": : : "memory"); rxd->rx_ctrl = 0U; return; } } static int mwl8k_rxd_sta_process(void *_rxd , struct ieee80211_rx_status *status , __le16 *qos , s8 *noise ) { struct mwl8k_rxd_sta *rxd ; u16 rate_info ; int tmp ; { rxd = (struct mwl8k_rxd_sta *)_rxd; if (((int )rxd->rx_ctrl & 2) == 0) { return (-1); } else { } __asm__ volatile ("lfence": : : "memory"); rate_info = rxd->rate_info; memset((void *)status, 0, 32UL); status->signal = (s8 )(- ((int )rxd->rssi)); *noise = (s8 )(- ((int )rxd->noise_level)); status->antenna = (unsigned int )((u8 )((int )rate_info >> 11)) & 3U; status->rate_idx = (unsigned int )((u8 )((int )rate_info >> 3)) & 63U; if ((int )((short )rate_info) < 0) { status->flag = status->flag | 256U; } else { } if (((int )rate_info & 4) != 0) { status->flag = status->flag | 1024U; } else { } if (((int )rate_info & 2) != 0) { status->flag = status->flag | 2048U; } else { } if ((int )rate_info & 1) { status->flag = status->flag | 512U; } else { } if ((unsigned int )rxd->channel > 14U) { status->band = 1U; if ((status->flag & 512U) == 0U) { status->rate_idx = (unsigned int )status->rate_idx + 251U; } else { } } else { status->band = 0U; } tmp = ieee80211_channel_to_frequency((int )rxd->channel, (enum ieee80211_band )status->band); status->freq = (u16 )tmp; *qos = rxd->qos_control; if (((int )rxd->rx_ctrl & 4) != 0 && ((int )rxd->rx_ctrl & 8) != 0) { status->flag = status->flag | 1U; } else { } return ((int )rxd->pkt_len); } } static struct rxd_ops rxd_sta_ops = {40, & mwl8k_rxd_sta_init, & mwl8k_rxd_sta_refill, & mwl8k_rxd_sta_process}; static int mwl8k_rxq_init(struct ieee80211_hw *hw , int index ) { struct mwl8k_priv *priv ; struct mwl8k_rx_queue *rxq ; int size ; int i ; void *tmp ; int desc_size ; void *rxd ; int nexti ; dma_addr_t next_dma_addr ; { priv = (struct mwl8k_priv *)hw->priv; rxq = (struct mwl8k_rx_queue *)(& priv->rxq) + (unsigned long )index; rxq->rxd_count = 0; rxq->head = 0; rxq->tail = 0; size = (priv->rxd_ops)->rxd_size * 256; rxq->rxd = pci_alloc_consistent(priv->pdev, (size_t )size, & rxq->rxd_dma); if ((unsigned long )rxq->rxd == (unsigned long )((void *)0)) { dev_err((struct device const *)(& (hw->wiphy)->dev), "failed to alloc RX descriptors\n"); return (-12); } else { } memset(rxq->rxd, 0, (size_t )size); tmp = kcalloc(256UL, 16UL, 208U); rxq->buf = (struct __anonstruct_271 *)tmp; if ((unsigned long )rxq->buf == (unsigned long )((struct __anonstruct_buf_267 *)0)) { dev_err((struct device const *)(& (hw->wiphy)->dev), "failed to alloc RX skbuff list\n"); pci_free_consistent(priv->pdev, (size_t )size, rxq->rxd, rxq->rxd_dma); return (-12); } else { } i = 0; goto ldv_44014; ldv_44013: desc_size = (priv->rxd_ops)->rxd_size; rxd = rxq->rxd + (unsigned long )((priv->rxd_ops)->rxd_size * i); nexti = i + 1; if (nexti == 256) { nexti = 0; } else { } next_dma_addr = rxq->rxd_dma + (dma_addr_t )(nexti * desc_size); (*((priv->rxd_ops)->rxd_init))(rxd, next_dma_addr); i = i + 1; ldv_44014: ; if (i <= 255) { goto ldv_44013; } else { } return (0); } } static int rxq_refill(struct ieee80211_hw *hw , int index , int limit ) { struct mwl8k_priv *priv ; struct mwl8k_rx_queue *rxq ; int refilled ; struct sk_buff *skb ; dma_addr_t addr ; int rx ; void *rxd ; int tmp ; int tmp___0 ; { priv = (struct mwl8k_priv *)hw->priv; rxq = (struct mwl8k_rx_queue *)(& priv->rxq) + (unsigned long )index; refilled = 0; goto ldv_44030; ldv_44029: skb = dev_alloc_skb(3800U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_44028; } else { } addr = pci_map_single(priv->pdev, (void *)skb->data, 3800UL, 2); rxq->rxd_count = rxq->rxd_count + 1; tmp = rxq->tail; rxq->tail = rxq->tail + 1; rx = tmp; if (rxq->tail == 256) { rxq->tail = 0; } else { } (rxq->buf + (unsigned long )rx)->skb = skb; (rxq->buf + (unsigned long )rx)->dma = addr; rxd = rxq->rxd + (unsigned long )((priv->rxd_ops)->rxd_size * rx); (*((priv->rxd_ops)->rxd_refill))(rxd, addr, 3800); refilled = refilled + 1; ldv_44030: ; if (rxq->rxd_count <= 255) { tmp___0 = limit; limit = limit - 1; if (tmp___0 != 0) { goto ldv_44029; } else { goto ldv_44028; } } else { } ldv_44028: ; return (refilled); } } static void mwl8k_rxq_deinit(struct ieee80211_hw *hw , int index ) { struct mwl8k_priv *priv ; struct mwl8k_rx_queue *rxq ; int i ; { priv = (struct mwl8k_priv *)hw->priv; rxq = (struct mwl8k_rx_queue *)(& priv->rxq) + (unsigned long )index; if ((unsigned long )rxq->rxd == (unsigned long )((void *)0)) { return; } else { } i = 0; goto ldv_44039; ldv_44038: ; if ((unsigned long )(rxq->buf + (unsigned long )i)->skb != (unsigned long )((struct sk_buff *)0)) { pci_unmap_single(priv->pdev, (rxq->buf + (unsigned long )i)->dma, 3800UL, 2); (rxq->buf + (unsigned long )i)->dma = 0ULL; kfree_skb((rxq->buf + (unsigned long )i)->skb); (rxq->buf + (unsigned long )i)->skb = 0; } else { } i = i + 1; ldv_44039: ; if (i <= 255) { goto ldv_44038; } else { } kfree((void const *)rxq->buf); rxq->buf = 0; pci_free_consistent(priv->pdev, (size_t )((priv->rxd_ops)->rxd_size * 256), rxq->rxd, rxq->rxd_dma); rxq->rxd = 0; return; } } __inline static int mwl8k_capture_bssid(struct mwl8k_priv *priv , struct ieee80211_hdr *wh ) { int tmp ; bool tmp___0 ; int tmp___1 ; { if ((int )priv->capture_beacon) { tmp = ieee80211_is_beacon((int )wh->frame_control); if (tmp != 0) { tmp___0 = ether_addr_equal((u8 const *)(& wh->addr3), (u8 const *)(& priv->capture_bssid)); if ((int )tmp___0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } } else { tmp___1 = 0; } return (tmp___1); } } __inline static void mwl8k_save_beacon(struct ieee80211_hw *hw , struct sk_buff *skb ) { struct mwl8k_priv *priv ; { priv = (struct mwl8k_priv *)hw->priv; priv->capture_beacon = 0; memset((void *)(& priv->capture_bssid), 0, 6UL); priv->beacon_skb = skb_copy((struct sk_buff const *)skb, 32U); if ((unsigned long )priv->beacon_skb != (unsigned long )((struct sk_buff *)0)) { ieee80211_queue_work(hw, & priv->finalize_join_worker); } else { } return; } } __inline static struct mwl8k_vif *mwl8k_find_vif_bss(struct list_head *vif_list , u8 *bssid ) { struct mwl8k_vif *mwl8k_vif ; struct list_head const *__mptr ; int tmp ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)vif_list->next; mwl8k_vif = (struct mwl8k_vif *)__mptr; goto ldv_44060; ldv_44059: tmp = memcmp((void const *)bssid, (void const *)(& mwl8k_vif->bssid), 6UL); if (tmp == 0) { return (mwl8k_vif); } else { } __mptr___0 = (struct list_head const *)mwl8k_vif->list.next; mwl8k_vif = (struct mwl8k_vif *)__mptr___0; ldv_44060: ; if ((unsigned long )(& mwl8k_vif->list) != (unsigned long )vif_list) { goto ldv_44059; } else { } return (0); } } static int rxq_process(struct ieee80211_hw *hw , int index , int limit ) { struct mwl8k_priv *priv ; struct mwl8k_vif *mwl8k_vif ; struct mwl8k_rx_queue *rxq ; int processed ; struct sk_buff *skb ; void *rxd ; int pkt_len ; struct ieee80211_rx_status status ; struct ieee80211_hdr *wh ; __le16 qos ; int tmp ; struct mwl8k_dma_data *tr ; int tmp___0 ; int tmp___1 ; size_t __len ; void *__ret ; struct ieee80211_rx_status *tmp___2 ; struct ieee80211_rx_status *tmp___3 ; int tmp___4 ; { priv = (struct mwl8k_priv *)hw->priv; mwl8k_vif = 0; rxq = (struct mwl8k_rx_queue *)(& priv->rxq) + (unsigned long )index; processed = 0; goto ldv_44083; ldv_44082: skb = (rxq->buf + (unsigned long )rxq->head)->skb; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_44077; } else { } rxd = rxq->rxd + (unsigned long )(rxq->head * (priv->rxd_ops)->rxd_size); pkt_len = (*((priv->rxd_ops)->rxd_process))(rxd, & status, & qos, & priv->noise); if (pkt_len < 0) { goto ldv_44077; } else { } (rxq->buf + (unsigned long )rxq->head)->skb = 0; pci_unmap_single(priv->pdev, (rxq->buf + (unsigned long )rxq->head)->dma, 3800UL, 2); (rxq->buf + (unsigned long )rxq->head)->dma = 0ULL; rxq->head = rxq->head + 1; if (rxq->head == 256) { rxq->head = 0; } else { } rxq->rxd_count = rxq->rxd_count - 1; wh = & ((struct mwl8k_dma_data *)skb->data)->wh; tmp = mwl8k_capture_bssid(priv, (struct ieee80211_hdr *)skb->data); if (tmp != 0) { mwl8k_save_beacon(hw, skb); } else { } tmp___1 = ieee80211_has_protected((int )wh->frame_control); if (tmp___1 != 0) { mwl8k_vif = mwl8k_find_vif_bss(& priv->vif_list, (u8 *)(& wh->addr1)); if ((unsigned long )mwl8k_vif != (unsigned long )((struct mwl8k_vif *)0) && (int )mwl8k_vif->is_hw_crypto_enabled) { if ((int )status.flag & 1) { tr = (struct mwl8k_dma_data *)skb->data; memset((void *)(& tr->data), 0, 4UL); pkt_len = pkt_len + 4; } else { } tmp___0 = ieee80211_is_auth((int )wh->frame_control); if (tmp___0 == 0) { status.flag = status.flag | 26U; } else { } } else { } } else { } skb_put(skb, (unsigned int )pkt_len); mwl8k_remove_dma_header(skb, (int )qos); __len = 32UL; if (__len > 63UL) { tmp___2 = IEEE80211_SKB_RXCB(skb); __ret = memcpy((void *)tmp___2, (void const *)(& status), __len); } else { tmp___3 = IEEE80211_SKB_RXCB(skb); __ret = memcpy((void *)tmp___3, (void const *)(& status), __len); } ieee80211_rx_irqsafe(hw, skb); processed = processed + 1; ldv_44083: ; if (rxq->rxd_count != 0) { tmp___4 = limit; limit = limit - 1; if (tmp___4 != 0) { goto ldv_44082; } else { goto ldv_44077; } } else { } ldv_44077: ; return (processed); } } static int mwl8k_txq_init(struct ieee80211_hw *hw , int index ) { struct mwl8k_priv *priv ; struct mwl8k_tx_queue *txq ; int size ; int i ; void *tmp ; void *tmp___0 ; struct mwl8k_tx_desc *tx_desc ; int nexti ; { priv = (struct mwl8k_priv *)hw->priv; txq = (struct mwl8k_tx_queue *)(& priv->txq) + (unsigned long )index; txq->len = 0U; txq->head = 0; txq->tail = 0; size = 4096; tmp = pci_alloc_consistent(priv->pdev, (size_t )size, & txq->txd_dma); txq->txd = (struct mwl8k_tx_desc *)tmp; if ((unsigned long )txq->txd == (unsigned long )((struct mwl8k_tx_desc *)0)) { dev_err((struct device const *)(& (hw->wiphy)->dev), "failed to alloc TX descriptors\n"); return (-12); } else { } memset((void *)txq->txd, 0, (size_t )size); tmp___0 = kcalloc(128UL, 8UL, 208U); txq->skb = (struct sk_buff **)tmp___0; if ((unsigned long )txq->skb == (unsigned long )((struct sk_buff **)0)) { dev_err((struct device const *)(& (hw->wiphy)->dev), "failed to alloc TX skbuff list\n"); pci_free_consistent(priv->pdev, (size_t )size, (void *)txq->txd, txq->txd_dma); return (-12); } else { } i = 0; goto ldv_44107; ldv_44106: tx_desc = txq->txd + (unsigned long )i; nexti = (i + 1) % 128; tx_desc->status = 0U; tx_desc->next_txd_phys_addr = (unsigned int )txq->txd_dma + (unsigned int )((unsigned long )nexti) * 32U; i = i + 1; ldv_44107: ; if (i <= 127) { goto ldv_44106; } else { } return (0); } } __inline static void mwl8k_tx_start(struct mwl8k_priv *priv ) { { iowrite32(1U, priv->regs + 3096UL); iowrite32(1048576U, priv->regs + 3096UL); ioread32(priv->regs + 3092UL); return; } } static void mwl8k_dump_tx_rings(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; int i ; struct mwl8k_tx_queue *txq ; int fw_owned ; int drv_owned ; int unused ; int desc ; struct mwl8k_tx_desc *tx_desc ; u32 status ; { priv = (struct mwl8k_priv *)hw->priv; i = 0; goto ldv_44128; ldv_44127: txq = (struct mwl8k_tx_queue *)(& priv->txq) + (unsigned long )i; fw_owned = 0; drv_owned = 0; unused = 0; desc = 0; goto ldv_44125; ldv_44124: tx_desc = txq->txd + (unsigned long )desc; status = tx_desc->status; if ((int )status < 0) { fw_owned = fw_owned + 1; } else { drv_owned = drv_owned + 1; } if ((unsigned int )tx_desc->pkt_len == 0U) { unused = unused + 1; } else { } desc = desc + 1; ldv_44125: ; if (desc <= 127) { goto ldv_44124; } else { } dev_err((struct device const *)(& (hw->wiphy)->dev), "txq[%d] len=%d head=%d tail=%d fw_owned=%d drv_owned=%d unused=%d\n", i, txq->len, txq->head, txq->tail, fw_owned, drv_owned, unused); i = i + 1; ldv_44128: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_44127; } else { } return; } } static int mwl8k_tx_wait_empty(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; struct completion tx_wait ; int retry ; int rc ; struct task_struct *tmp ; int oldcount ; unsigned long timeout ; unsigned long tmp___0 ; int __ret_warn_on ; long tmp___1 ; { priv = (struct mwl8k_priv *)hw->priv; init_completion(& tx_wait); tx_wait = tx_wait; __might_sleep("/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared", 1553, 0); if ((int )priv->hw_restart_in_progress) { tmp = get_current(); if ((unsigned long )priv->hw_restart_owner == (unsigned long )tmp) { return (0); } else { return (-16); } } else { } if (priv->pending_tx_pkts == 0) { return (0); } else { } retry = 0; rc = 0; spin_lock_bh(& priv->tx_lock); priv->tx_wait = & tx_wait; goto ldv_44143; ldv_44144: oldcount = priv->pending_tx_pkts; spin_unlock_bh(& priv->tx_lock); tmp___0 = msecs_to_jiffies(5000U); timeout = wait_for_completion_timeout(& tx_wait, tmp___0); spin_lock_bh(& priv->tx_lock); if (timeout != 0UL) { __ret_warn_on = priv->pending_tx_pkts != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___1 != 0L) { warn_slowpath_null("/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared", 1591); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); if (retry != 0) { dev_notice((struct device const *)(& (hw->wiphy)->dev), "tx rings drained\n"); } else { } goto ldv_44142; } else { } if (priv->pending_tx_pkts < oldcount) { dev_notice((struct device const *)(& (hw->wiphy)->dev), "waiting for tx rings to drain (%d -> %d pkts)\n", oldcount, priv->pending_tx_pkts); retry = 1; goto ldv_44143; } else { } priv->tx_wait = 0; dev_err((struct device const *)(& (hw->wiphy)->dev), "tx rings stuck for %d ms\n", 5000); mwl8k_dump_tx_rings(hw); priv->hw_restart_in_progress = 1; ieee80211_queue_work(hw, & priv->fw_reload); rc = -110; ldv_44143: ; if (rc == 0) { goto ldv_44144; } else { } ldv_44142: spin_unlock_bh(& priv->tx_lock); return (rc); } } static int mwl8k_tid_queue_mapping(u8 tid ) { long tmp ; { tmp = ldv__builtin_expect((unsigned int )tid > 7U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (1627), "i" (12UL)); ldv_44148: ; goto ldv_44148; } else { } switch ((int )tid) { case 0: ; case 3: ; return (2); case 1: ; case 2: ; return (3); case 4: ; case 5: ; return (1); case 6: ; case 7: ; return (0); default: ; return (-1); } } } static int mwl8k_txq_reclaim(struct ieee80211_hw *hw , int index , int limit , int force ) { struct mwl8k_priv *priv ; struct mwl8k_tx_queue *txq ; int processed ; int tx ; struct mwl8k_tx_desc *tx_desc ; unsigned long addr ; int size ; struct sk_buff *skb ; struct ieee80211_tx_info *info ; u32 status ; struct ieee80211_sta *sta ; struct mwl8k_sta *sta_info ; u16 rate_info ; struct ieee80211_hdr *wh ; long tmp ; long tmp___0 ; long tmp___1 ; int tmp___2 ; int tmp___3 ; { priv = (struct mwl8k_priv *)hw->priv; txq = (struct mwl8k_tx_queue *)(& priv->txq) + (unsigned long )index; processed = 0; goto ldv_44183; ldv_44182: sta_info = 0; tx = txq->head; tx_desc = txq->txd + (unsigned long )tx; status = tx_desc->status; if ((int )status < 0) { if (force == 0) { goto ldv_44178; } else { } tx_desc->status = tx_desc->status & 2147483647U; } else { } txq->head = (tx + 1) % 128; tmp = ldv__builtin_expect(txq->len == 0U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (1694), "i" (12UL)); ldv_44179: ; goto ldv_44179; } else { } txq->len = txq->len - 1U; priv->pending_tx_pkts = priv->pending_tx_pkts - 1; addr = (unsigned long )tx_desc->pkt_phys_addr; size = (int )tx_desc->pkt_len; skb = *(txq->skb + (unsigned long )tx); *(txq->skb + (unsigned long )tx) = 0; tmp___0 = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (1703), "i" (12UL)); ldv_44180: ; goto ldv_44180; } else { } pci_unmap_single(priv->pdev, (dma_addr_t )addr, (size_t )size, 1); mwl8k_remove_dma_header(skb, (int )tx_desc->qos_control); wh = (struct ieee80211_hdr *)skb->data; tx_desc->pkt_phys_addr = 0U; tx_desc->pkt_len = 0U; info = IEEE80211_SKB_CB(skb); tmp___2 = ieee80211_is_data((int )wh->frame_control); if (tmp___2 != 0) { rcu_read_lock(); sta = ieee80211_find_sta_by_ifaddr(hw, (u8 const *)(& wh->addr1), (u8 const *)(& wh->addr2)); if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { sta_info = (struct mwl8k_sta *)(& sta->drv_priv); tmp___1 = ldv__builtin_expect((unsigned long )sta_info == (unsigned long )((struct mwl8k_sta *)0), 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (1721), "i" (12UL)); ldv_44181: ; goto ldv_44181; } else { } rate_info = tx_desc->rate_info; if (((int )rate_info & 504) >> 3 <= 0 || ((int )rate_info & 1) == 0) { sta_info->is_ampdu_allowed = 0U; } else { sta_info->is_ampdu_allowed = 1U; } } else { } rcu_read_unlock(); } else { } ieee80211_tx_info_clear_status(info); info->ldv_42663.status.rates[0].idx = -1; info->ldv_42663.status.rates[0].count = 1U; if ((status & 7U) != 0U) { info->flags = info->flags | 512U; } else { } ieee80211_tx_status_irqsafe(hw, skb); processed = processed + 1; ldv_44183: ; if (txq->len != 0U) { tmp___3 = limit; limit = limit - 1; if (tmp___3 != 0) { goto ldv_44182; } else { goto ldv_44178; } } else { } ldv_44178: ; return (processed); } } static void mwl8k_txq_deinit(struct ieee80211_hw *hw , int index ) { struct mwl8k_priv *priv ; struct mwl8k_tx_queue *txq ; { priv = (struct mwl8k_priv *)hw->priv; txq = (struct mwl8k_tx_queue *)(& priv->txq) + (unsigned long )index; if ((unsigned long )txq->txd == (unsigned long )((struct mwl8k_tx_desc *)0)) { return; } else { } mwl8k_txq_reclaim(hw, index, 2147483647, 1); kfree((void const *)txq->skb); txq->skb = 0; pci_free_consistent(priv->pdev, 4096UL, (void *)txq->txd, txq->txd_dma); txq->txd = 0; return; } } static struct mwl8k_ampdu_stream *mwl8k_add_stream(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 tid ) { struct mwl8k_ampdu_stream *stream ; struct mwl8k_priv *priv ; int i ; { priv = (struct mwl8k_priv *)hw->priv; i = 0; goto ldv_44199; ldv_44198: stream = (struct mwl8k_ampdu_stream *)(& priv->ampdu) + (unsigned long )i; if ((unsigned int )stream->state == 0U) { stream->sta = sta; stream->state = 1U; stream->tid = tid; stream->idx = (u8 )i; stream->txq_idx = (unsigned int )((u8 )i) + 4U; dev_printk("\017", (struct device const *)(& (hw->wiphy)->dev), "Added a new stream for %pM %d", (u8 *)(& sta->addr), (int )tid); return (stream); } else { } i = i + 1; ldv_44199: ; if ((int )priv->num_ampdu_queues > i) { goto ldv_44198; } else { } return (0); } } static int mwl8k_start_stream(struct ieee80211_hw *hw , struct mwl8k_ampdu_stream *stream ) { int ret ; { if ((unsigned int )stream->state != 1U) { return (0); } else { } ret = ieee80211_start_tx_ba_session(stream->sta, (int )stream->tid, 0); if (ret != 0) { dev_printk("\017", (struct device const *)(& (hw->wiphy)->dev), "Failed to start stream for %pM %d: %d\n", (u8 *)(& (stream->sta)->addr), (int )stream->tid, ret); } else { dev_printk("\017", (struct device const *)(& (hw->wiphy)->dev), "Started stream for %pM %d\n", (u8 *)(& (stream->sta)->addr), (int )stream->tid); } return (ret); } } static void mwl8k_remove_stream(struct ieee80211_hw *hw , struct mwl8k_ampdu_stream *stream ) { { dev_printk("\017", (struct device const *)(& (hw->wiphy)->dev), "Remove stream for %pM %d\n", (u8 *)(& (stream->sta)->addr), (int )stream->tid); memset((void *)stream, 0, 16UL); return; } } static struct mwl8k_ampdu_stream *mwl8k_lookup_stream(struct ieee80211_hw *hw , u8 *addr , u8 tid ) { struct mwl8k_priv *priv ; int i ; struct mwl8k_ampdu_stream *stream ; int tmp ; { priv = (struct mwl8k_priv *)hw->priv; i = 0; goto ldv_44220; ldv_44219: stream = (struct mwl8k_ampdu_stream *)(& priv->ampdu) + (unsigned long )i; if ((unsigned int )stream->state == 0U) { goto ldv_44218; } else { } tmp = memcmp((void const *)(& (stream->sta)->addr), (void const *)addr, 6UL); if (tmp == 0 && (int )stream->tid == (int )tid) { return (stream); } else { } ldv_44218: i = i + 1; ldv_44220: ; if ((int )priv->num_ampdu_queues > i) { goto ldv_44219; } else { } return (0); } } __inline static bool mwl8k_ampdu_allowed(struct ieee80211_sta *sta , u8 tid ) { struct mwl8k_sta *sta_info ; struct tx_traffic_info *tx_stats ; long tmp ; { sta_info = (struct mwl8k_sta *)(& sta->drv_priv); tmp = ldv__builtin_expect((unsigned int )tid > 7U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (1851), "i" (12UL)); ldv_44228: ; goto ldv_44228; } else { } tx_stats = (struct tx_traffic_info *)(& sta_info->tx_stats) + (unsigned long )tid; return ((bool )((unsigned int )sta_info->is_ampdu_allowed != 0U && tx_stats->pkts > 64U)); } } __inline static void mwl8k_tx_count_packet(struct ieee80211_sta *sta , u8 tid ) { struct mwl8k_sta *sta_info ; struct tx_traffic_info *tx_stats ; long tmp ; { sta_info = (struct mwl8k_sta *)(& sta->drv_priv); tmp = ldv__builtin_expect((unsigned int )tid > 7U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (1863), "i" (12UL)); ldv_44235: ; goto ldv_44235; } else { } tx_stats = (struct tx_traffic_info *)(& sta_info->tx_stats) + (unsigned long )tid; if (tx_stats->start_time == 0U) { tx_stats->start_time = (u32 )jiffies; } else { } if ((unsigned long )jiffies - (unsigned long )tx_stats->start_time > 250UL) { tx_stats->pkts = 0U; tx_stats->start_time = 0U; } else { tx_stats->pkts = tx_stats->pkts + (u32 )1; } return; } } static void mwl8k_txq_xmit(struct ieee80211_hw *hw , int index , struct ieee80211_sta *sta , struct sk_buff *skb ) { struct mwl8k_priv *priv ; struct ieee80211_tx_info *tx_info ; struct mwl8k_vif *mwl8k_vif ; struct ieee80211_hdr *wh ; struct mwl8k_tx_queue *txq ; struct mwl8k_tx_desc *tx ; dma_addr_t dma ; u32 txstatus ; u8 txdatarate ; u16 qos ; int txpriority ; u8 tid ; struct mwl8k_ampdu_stream *stream ; bool start_ba_session ; bool mgmtframe ; struct ieee80211_mgmt *mgmt ; u8 *tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; u16 capab ; int tmp___6 ; long tmp___7 ; long tmp___8 ; int tmp___9 ; long tmp___10 ; int tmp___11 ; long tmp___12 ; bool tmp___13 ; int tmp___14 ; int tmp___15 ; long tmp___16 ; int tmp___17 ; { priv = (struct mwl8k_priv *)hw->priv; tid = 0U; stream = 0; start_ba_session = 0; mgmtframe = 0; mgmt = (struct ieee80211_mgmt *)skb->data; wh = (struct ieee80211_hdr *)skb->data; tmp___0 = ieee80211_is_data_qos((int )wh->frame_control); if (tmp___0 != 0) { tmp = ieee80211_get_qos_ctl(wh); qos = *((__le16 *)tmp); } else { qos = 0U; } tmp___1 = ieee80211_is_mgmt((int )wh->frame_control); if (tmp___1 != 0) { mgmtframe = 1; } else { } if ((int )priv->ap_fw) { mwl8k_encapsulate_tx_frame(priv, skb); } else { mwl8k_add_dma_header(priv, skb, 0, 0); } wh = & ((struct mwl8k_dma_data *)skb->data)->wh; tx_info = IEEE80211_SKB_CB(skb); mwl8k_vif = (struct mwl8k_vif *)(& (tx_info->ldv_42663.control.vif)->drv_priv); if ((tx_info->flags & 2U) != 0U) { wh->seq_ctrl = (unsigned int )wh->seq_ctrl & 15U; wh->seq_ctrl = (__le16 )((int )wh->seq_ctrl | (int )mwl8k_vif->seqno); mwl8k_vif->seqno = (unsigned int )mwl8k_vif->seqno + 16U; } else { } txstatus = 0U; txdatarate = 0U; tmp___4 = ieee80211_is_mgmt((int )wh->frame_control); if (tmp___4 != 0) { txdatarate = 0U; qos = (u16 )((unsigned int )qos | 65296U); } else { tmp___5 = ieee80211_is_ctl((int )wh->frame_control); if (tmp___5 != 0) { txdatarate = 0U; qos = (u16 )((unsigned int )qos | 65296U); } else { tmp___3 = ieee80211_is_data((int )wh->frame_control); if (tmp___3 != 0) { txdatarate = 1U; tmp___2 = is_multicast_ether_addr((u8 const *)(& wh->addr1)); if ((int )tmp___2) { txstatus = txstatus | 8U; } else { } qos = (unsigned int )qos & 65439U; if ((tx_info->flags & 64U) != 0U) { qos = (u16 )((unsigned int )qos | 96U); } else { qos = qos; } } else { } } } tmp___6 = ieee80211_is_action((int )wh->frame_control); tmp___7 = ldv__builtin_expect(tmp___6 != 0, 0L); if (tmp___7 != 0L) { tmp___8 = ldv__builtin_expect((unsigned int )mgmt->u.action.category == 3U, 0L); if (tmp___8 != 0L) { tmp___9 = 1; } else { tmp___9 = 0; } } else { tmp___9 = 0; } if (tmp___9 != 0) { tmp___10 = ldv__builtin_expect((unsigned int )mgmt->u.action.u.addba_req.action_code == 0U, 0L); if (tmp___10 != 0L) { tmp___11 = 1; } else { tmp___11 = 0; } } else { tmp___11 = 0; } if (tmp___11 != 0) { tmp___12 = ldv__builtin_expect((long )priv->ap_fw, 0L); if (tmp___12 != 0L) { capab = mgmt->u.action.u.addba_req.capab; tid = (u8 )(((int )capab & 60) >> 2); index = mwl8k_tid_queue_mapping((int )tid); } else { } } else { } txpriority = index; if ((((int )priv->ap_fw && (unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) && (int )sta->ht_cap.ht_supported) && (unsigned int )skb->protocol != 36488U) { tmp___14 = ieee80211_is_data_qos((int )wh->frame_control); if (tmp___14 != 0) { tid = (unsigned int )((u8 )qos) & 15U; mwl8k_tx_count_packet(sta, (int )tid); spin_lock(& priv->stream_lock); stream = mwl8k_lookup_stream(hw, (u8 *)(& sta->addr), (int )tid); if ((unsigned long )stream != (unsigned long )((struct mwl8k_ampdu_stream *)0)) { if ((unsigned int )stream->state == 3U) { txpriority = (int )stream->txq_idx; index = (int )stream->txq_idx; } else if ((unsigned int )stream->state == 1U) { } else { dev_warn((struct device const *)(& (hw->wiphy)->dev), "Cannot send packet while ADDBA dialog is underway.\n"); spin_unlock(& priv->stream_lock); consume_skb(skb); return; } } else { tmp___13 = mwl8k_ampdu_allowed(sta, (int )tid); if ((int )tmp___13) { stream = mwl8k_add_stream(hw, sta, (int )tid); if ((unsigned long )stream != (unsigned long )((struct mwl8k_ampdu_stream *)0)) { start_ba_session = 1; } else { } } else { } } spin_unlock(& priv->stream_lock); } else { } } else { } dma = pci_map_single(priv->pdev, (void *)skb->data, (size_t )skb->len, 1); tmp___15 = pci_dma_mapping_error(priv->pdev, dma); if (tmp___15 != 0) { dev_printk("\017", (struct device const *)(& (hw->wiphy)->dev), "failed to dma map skb, dropping TX frame.\n"); if ((int )start_ba_session) { spin_lock(& priv->stream_lock); mwl8k_remove_stream(hw, stream); spin_unlock(& priv->stream_lock); } else { } consume_skb(skb); return; } else { } spin_lock_bh(& priv->tx_lock); txq = (struct mwl8k_tx_queue *)(& priv->txq) + (unsigned long )index; if (txq->len > 125U) { if (! mgmtframe || txq->len == 128U) { if ((int )start_ba_session) { spin_lock(& priv->stream_lock); mwl8k_remove_stream(hw, stream); spin_unlock(& priv->stream_lock); } else { } spin_unlock_bh(& priv->tx_lock); consume_skb(skb); return; } else { } } else { } tmp___16 = ldv__builtin_expect((unsigned long )*(txq->skb + (unsigned long )txq->tail) != (unsigned long )((struct sk_buff *)0), 0L); if (tmp___16 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (2061), "i" (12UL)); ldv_44259: ; goto ldv_44259; } else { } *(txq->skb + (unsigned long )txq->tail) = skb; tx = txq->txd + (unsigned long )txq->tail; tx->data_rate = txdatarate; tx->tx_priority = (__u8 )txpriority; tx->qos_control = qos; tx->pkt_phys_addr = (unsigned int )dma; tx->pkt_len = (unsigned short )skb->len; tx->rate_info = 0U; if (! priv->ap_fw && (unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { tx->peer_id = ((struct mwl8k_sta *)(& sta->drv_priv))->peer_id; } else { tx->peer_id = 0U; } if ((int )priv->ap_fw) { tx->timestamp = ioread32(priv->regs + 42496UL); } else { } __asm__ volatile ("sfence": : : "memory"); tx->status = txstatus | 2147483648U; txq->len = txq->len + 1U; priv->pending_tx_pkts = priv->pending_tx_pkts + 1; txq->tail = txq->tail + 1; if (txq->tail == 128) { txq->tail = 0; } else { } mwl8k_tx_start(priv); spin_unlock_bh(& priv->tx_lock); if ((int )start_ba_session) { spin_lock(& priv->stream_lock); tmp___17 = mwl8k_start_stream(hw, stream); if (tmp___17 != 0) { mwl8k_remove_stream(hw, stream); } else { } spin_unlock(& priv->stream_lock); } else { } return; } } static int mwl8k_fw_lock(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; int rc ; struct task_struct *tmp ; { priv = (struct mwl8k_priv *)hw->priv; tmp = get_current(); if ((unsigned long )priv->fw_mutex_owner != (unsigned long )tmp) { ldv_mutex_lock_12(& priv->fw_mutex); ieee80211_stop_queues(hw); rc = mwl8k_tx_wait_empty(hw); if (rc != 0) { if (! priv->hw_restart_in_progress) { ieee80211_wake_queues(hw); } else { } ldv_mutex_unlock_13(& priv->fw_mutex); return (rc); } else { } priv->fw_mutex_owner = get_current(); } else { } priv->fw_mutex_depth = priv->fw_mutex_depth + 1; return (0); } } static void mwl8k_fw_unlock(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; { priv = (struct mwl8k_priv *)hw->priv; priv->fw_mutex_depth = priv->fw_mutex_depth - 1; if (priv->fw_mutex_depth == 0) { if (! priv->hw_restart_in_progress) { ieee80211_wake_queues(hw); } else { } priv->fw_mutex_owner = 0; ldv_mutex_unlock_14(& priv->fw_mutex); } else { } return; } } static int mwl8k_post_cmd(struct ieee80211_hw *hw , struct mwl8k_cmd_pkt *cmd ) { struct completion cmd_wait ; struct mwl8k_priv *priv ; void *regs ; dma_addr_t dma_addr ; unsigned int dma_size ; int rc ; unsigned long timeout ; u8 buf[32U] ; int tmp ; unsigned long tmp___0 ; char const *tmp___1 ; int ms ; unsigned int tmp___2 ; char const *tmp___3 ; char const *tmp___4 ; { init_completion(& cmd_wait); cmd_wait = cmd_wait; priv = (struct mwl8k_priv *)hw->priv; regs = priv->regs; timeout = 0UL; cmd->result = 65535U; dma_size = (unsigned int )cmd->length; dma_addr = pci_map_single(priv->pdev, (void *)cmd, (size_t )dma_size, 0); tmp = pci_dma_mapping_error(priv->pdev, dma_addr); if (tmp != 0) { return (-12); } else { } rc = mwl8k_fw_lock(hw); if (rc != 0) { pci_unmap_single(priv->pdev, dma_addr, (size_t )dma_size, 0); return (rc); } else { } priv->hostcmd_wait = & cmd_wait; iowrite32((u32 )dma_addr, regs + 3088UL); iowrite32(2U, regs + 3096UL); iowrite32(1048576U, regs + 3096UL); tmp___0 = msecs_to_jiffies(10000U); timeout = wait_for_completion_timeout(& cmd_wait, tmp___0); priv->hostcmd_wait = 0; mwl8k_fw_unlock(hw); pci_unmap_single(priv->pdev, dma_addr, (size_t )dma_size, 0); if (timeout == 0UL) { tmp___1 = mwl8k_cmd_name((int )cmd->code, (char *)(& buf), 32); dev_err((struct device const *)(& (hw->wiphy)->dev), "Command %s timeout after %u ms\n", tmp___1, 10000); rc = -110; } else { tmp___2 = jiffies_to_msecs(timeout); ms = (int )(10000U - tmp___2); rc = (unsigned int )cmd->result != 0U ? -22 : 0; if (rc != 0) { tmp___3 = mwl8k_cmd_name((int )cmd->code, (char *)(& buf), 32); dev_err((struct device const *)(& (hw->wiphy)->dev), "Command %s error 0x%x\n", tmp___3, (int )cmd->result); } else if (ms > 2000) { tmp___4 = mwl8k_cmd_name((int )cmd->code, (char *)(& buf), 32); dev_notice((struct device const *)(& (hw->wiphy)->dev), "Command %s took %d ms\n", tmp___4, ms); } else { } } return (rc); } } static int mwl8k_post_pervif_cmd(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct mwl8k_cmd_pkt *cmd ) { int tmp ; { if ((unsigned long )vif != (unsigned long )((struct ieee80211_vif *)0)) { cmd->macid = (__u8 )((struct mwl8k_vif *)(& vif->drv_priv))->macid; } else { } tmp = mwl8k_post_cmd(hw, cmd); return (tmp); } } static void mwl8k_setup_2ghz_band(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { priv = (struct mwl8k_priv *)hw->priv; __len = 560UL; if (__len > 63UL) { __ret = memcpy((void *)(& priv->channels_24), (void const *)(& mwl8k_channels_24), __len); } else { __ret = memcpy((void *)(& priv->channels_24), (void const *)(& mwl8k_channels_24), __len); } __len___0 = 168UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& priv->rates_24), (void const *)(& mwl8k_rates_24), __len___0); } else { __ret___0 = memcpy((void *)(& priv->rates_24), (void const *)(& mwl8k_rates_24), __len___0); } priv->band_24.band = IEEE80211_BAND_2GHZ; priv->band_24.channels = (struct ieee80211_channel *)(& priv->channels_24); priv->band_24.n_channels = 14; priv->band_24.bitrates = (struct ieee80211_rate *)(& priv->rates_24); priv->band_24.n_bitrates = 14; (hw->wiphy)->bands[0] = & priv->band_24; return; } } static void mwl8k_setup_5ghz_band(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { priv = (struct mwl8k_priv *)hw->priv; __len = 160UL; if (__len > 63UL) { __ret = memcpy((void *)(& priv->channels_50), (void const *)(& mwl8k_channels_50), __len); } else { __ret = memcpy((void *)(& priv->channels_50), (void const *)(& mwl8k_channels_50), __len); } __len___0 = 108UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& priv->rates_50), (void const *)(& mwl8k_rates_50), __len___0); } else { __ret___0 = memcpy((void *)(& priv->rates_50), (void const *)(& mwl8k_rates_50), __len___0); } priv->band_50.band = IEEE80211_BAND_5GHZ; priv->band_50.channels = (struct ieee80211_channel *)(& priv->channels_50); priv->band_50.n_channels = 4; priv->band_50.bitrates = (struct ieee80211_rate *)(& priv->rates_50); priv->band_50.n_bitrates = 9; (hw->wiphy)->bands[1] = & priv->band_50; return; } } static void mwl8k_set_ht_caps(struct ieee80211_hw *hw , struct ieee80211_supported_band *band , u32 cap ) { int rx_streams ; int tx_streams ; unsigned int tmp ; unsigned int tmp___0 ; { band->ht_cap.ht_supported = 1; if ((cap & 536870912U) != 0U) { band->ht_cap.cap = (u16 )((unsigned int )band->ht_cap.cap | 2048U); } else { } if ((cap & 134217728U) != 0U) { band->ht_cap.cap = (u16 )((unsigned int )band->ht_cap.cap | 16U); } else { } if ((cap & 67108864U) != 0U) { hw->flags = hw->flags | 512U; band->ht_cap.ampdu_factor = 3U; band->ht_cap.ampdu_density = 0U; } else { } if ((cap & 16777216U) != 0U) { band->ht_cap.cap = (u16 )((unsigned int )band->ht_cap.cap | 768U); } else { } if ((cap & 8388608U) != 0U) { band->ht_cap.cap = (u16 )((unsigned int )band->ht_cap.cap | 128U); } else { } if ((cap & 4194304U) != 0U) { band->ht_cap.cap = (u16 )((unsigned int )band->ht_cap.cap | 64U); } else { } if ((cap & 2097152U) != 0U) { band->ht_cap.cap = (u16 )((unsigned int )band->ht_cap.cap | 32U); } else { } if ((cap & 12288U) != 0U) { band->ht_cap.cap = (u16 )((unsigned int )band->ht_cap.cap | 1024U); } else { } if ((cap & 256U) != 0U) { band->ht_cap.cap = (u16 )((unsigned int )band->ht_cap.cap | 2U); } else { } tmp = __arch_hweight32(cap & 917504U); rx_streams = (int )tmp; tmp___0 = __arch_hweight32(cap & 114688U); tx_streams = (int )tmp___0; band->ht_cap.mcs.rx_mask[0] = 255U; if (rx_streams > 1) { band->ht_cap.mcs.rx_mask[1] = 255U; } else { } if (rx_streams > 2) { band->ht_cap.mcs.rx_mask[2] = 255U; } else { } band->ht_cap.mcs.rx_mask[4] = 1U; band->ht_cap.mcs.tx_params = 1U; if (rx_streams != tx_streams) { band->ht_cap.mcs.tx_params = (u8 )((unsigned int )band->ht_cap.mcs.tx_params | 2U); band->ht_cap.mcs.tx_params = (u8 )((int )((signed char )band->ht_cap.mcs.tx_params) | (int )((signed char )((tx_streams + -1) << 2))); } else { } return; } } static void mwl8k_set_caps(struct ieee80211_hw *hw , u32 caps ) { struct mwl8k_priv *priv ; { priv = (struct mwl8k_priv *)hw->priv; if ((int )caps & 1 || (caps & 7U) == 0U) { mwl8k_setup_2ghz_band(hw); if ((caps & 512U) != 0U) { mwl8k_set_ht_caps(hw, & priv->band_24, caps); } else { } } else { } if ((caps & 4U) != 0U) { mwl8k_setup_5ghz_band(hw); if ((caps & 512U) != 0U) { mwl8k_set_ht_caps(hw, & priv->band_50, caps); } else { } } else { } return; } } static int mwl8k_cmd_get_hw_spec_sta(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; struct mwl8k_cmd_get_hw_spec_sta *cmd ; int rc ; int i ; void *tmp ; { priv = (struct mwl8k_priv *)hw->priv; tmp = kzalloc(84UL, 208U); cmd = (struct mwl8k_cmd_get_hw_spec_sta *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_get_hw_spec_sta *)0)) { return (-12); } else { } cmd->header.code = 3U; cmd->header.length = 84U; memset((void *)(& cmd->perm_addr), 255, 6UL); cmd->ps_cookie = (unsigned int )priv->cookie_dma; cmd->rx_queue_ptr = (unsigned int )priv->rxq[0].rxd_dma; cmd->num_tx_queues = (unsigned int )((int )priv->num_ampdu_queues + 4); i = 0; goto ldv_44353; ldv_44352: cmd->tx_queue_ptrs[i] = (unsigned int )priv->txq[i].txd_dma; i = i + 1; ldv_44353: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_44352; } else { } cmd->num_tx_desc_per_queue = 128U; cmd->total_rxd = 256U; rc = mwl8k_post_cmd(hw, & cmd->header); if (rc == 0) { SET_IEEE80211_PERM_ADDR(hw, (u8 *)(& cmd->perm_addr)); priv->num_mcaddrs = cmd->num_mcaddrs; priv->fw_rev = cmd->fw_rev; priv->hw_rev = cmd->hw_rev; mwl8k_set_caps(hw, cmd->caps); priv->ap_macids_supported = 0U; priv->sta_macids_supported = 1U; } else { } kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_get_hw_spec_ap(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; struct mwl8k_cmd_get_hw_spec_ap *cmd ; int rc ; int i ; u32 api_version ; void *tmp ; int off ; { priv = (struct mwl8k_priv *)hw->priv; tmp = kzalloc(100UL, 208U); cmd = (struct mwl8k_cmd_get_hw_spec_ap *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_get_hw_spec_ap *)0)) { return (-12); } else { } cmd->header.code = 3U; cmd->header.length = 100U; memset((void *)(& cmd->perm_addr), 255, 6UL); cmd->ps_cookie = (unsigned int )priv->cookie_dma; rc = mwl8k_post_cmd(hw, & cmd->header); if (rc == 0) { api_version = cmd->fw_api_version; if ((priv->device_info)->fw_api_ap != api_version) { printk("\v%s: Unsupported fw API version for %s. Expected %d got %d.\n", (char *)"mwl8k", (priv->device_info)->part_name, (priv->device_info)->fw_api_ap, api_version); rc = -22; goto done; } else { } SET_IEEE80211_PERM_ADDR(hw, (u8 *)(& cmd->perm_addr)); priv->num_mcaddrs = cmd->num_mcaddrs; priv->fw_rev = cmd->fw_rev; priv->hw_rev = cmd->hw_rev; mwl8k_set_caps(hw, cmd->caps); priv->ap_macids_supported = 255U; priv->sta_macids_supported = 0U; priv->num_ampdu_queues = (u8 )cmd->num_of_ampdu_queues; if ((unsigned int )priv->num_ampdu_queues > 8U) { dev_warn((struct device const *)(& (hw->wiphy)->dev), "fw reported %d ampdu queues but we only support %d.\n", (int )priv->num_ampdu_queues, 8); priv->num_ampdu_queues = 8U; } else { } off = (int )cmd->rxwrptr & 65535; iowrite32((u32 )priv->rxq[0].rxd_dma, priv->sram + (unsigned long )off); off = (int )cmd->rxrdptr & 65535; iowrite32((u32 )priv->rxq[0].rxd_dma, priv->sram + (unsigned long )off); priv->txq_offset[0] = cmd->wcbbase0 & 65535U; priv->txq_offset[1] = cmd->wcbbase1 & 65535U; priv->txq_offset[2] = cmd->wcbbase2 & 65535U; priv->txq_offset[3] = cmd->wcbbase3 & 65535U; i = 0; goto ldv_44387; ldv_44386: priv->txq_offset[i + 4] = cmd->wcbbase_ampdu[i] & 65535U; i = i + 1; ldv_44387: ; if ((int )priv->num_ampdu_queues > i) { goto ldv_44386; } else { } } else { } done: kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_hw_spec(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; struct mwl8k_cmd_set_hw_spec *cmd ; int rc ; int i ; void *tmp ; int j ; { priv = (struct mwl8k_priv *)hw->priv; tmp = kzalloc(100UL, 208U); cmd = (struct mwl8k_cmd_set_hw_spec *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_hw_spec *)0)) { return (-12); } else { } cmd->header.code = 4U; cmd->header.length = 100U; cmd->ps_cookie = (unsigned int )priv->cookie_dma; cmd->rx_queue_ptr = (unsigned int )priv->rxq[0].rxd_dma; cmd->num_tx_queues = (unsigned int )((int )priv->num_ampdu_queues + 4); i = 0; goto ldv_44414; ldv_44413: j = ((int )priv->num_ampdu_queues + 3) - i; cmd->tx_queue_ptrs[i] = (unsigned int )priv->txq[j].txd_dma; i = i + 1; ldv_44414: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_44413; } else { } cmd->flags = 1712U; cmd->num_tx_desc_per_queue = 128U; cmd->total_rxd = 256U; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static struct mwl8k_cmd_pkt *__mwl8k_cmd_mac_multicast_adr(struct ieee80211_hw *hw , int allmulti , struct netdev_hw_addr_list *mc_list ) { struct mwl8k_priv *priv ; struct mwl8k_cmd_mac_multicast_adr *cmd ; int size ; int mc_count ; void *tmp ; struct netdev_hw_addr *ha ; int i ; struct list_head const *__mptr ; size_t __len ; void *__ret ; struct list_head const *__mptr___0 ; { priv = (struct mwl8k_priv *)hw->priv; mc_count = 0; if ((unsigned long )mc_list != (unsigned long )((struct netdev_hw_addr_list *)0)) { mc_count = mc_list->count; } else { } if (allmulti != 0 || (int )priv->num_mcaddrs < mc_count) { allmulti = 1; mc_count = 0; } else { } size = (int )((unsigned int )(mc_count * 6) + 12U); tmp = kzalloc((size_t )size, 32U); cmd = (struct mwl8k_cmd_mac_multicast_adr *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_mac_multicast_adr *)0)) { return (0); } else { } cmd->header.code = 16U; cmd->header.length = (unsigned short )size; cmd->action = 9U; if (allmulti != 0) { cmd->action = (__le16 )((unsigned int )cmd->action | 4U); } else if (mc_count != 0) { i = 0; cmd->action = (__le16 )((unsigned int )cmd->action | 2U); cmd->numaddr = (unsigned short )mc_count; __mptr = (struct list_head const *)mc_list->list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_44440; ldv_44439: __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->addr) + (unsigned long )i, (void const *)(& ha->addr), __len); } else { __ret = memcpy((void *)(& cmd->addr) + (unsigned long )i, (void const *)(& ha->addr), __len); } __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_44440: ; if ((unsigned long )ha != (unsigned long )mc_list) { goto ldv_44439; } else { } } else { } return (& cmd->header); } } static int mwl8k_cmd_get_stat(struct ieee80211_hw *hw , struct ieee80211_low_level_stats *stats ) { struct mwl8k_cmd_get_stat *cmd ; int rc ; void *tmp ; { tmp = kzalloc(264UL, 208U); cmd = (struct mwl8k_cmd_get_stat *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_get_stat *)0)) { return (-12); } else { } cmd->header.code = 20U; cmd->header.length = 264U; rc = mwl8k_post_cmd(hw, & cmd->header); if (rc == 0) { stats->dot11ACKFailureCount = cmd->stats[9]; stats->dot11RTSFailureCount = cmd->stats[12]; stats->dot11FCSErrorCount = cmd->stats[24]; stats->dot11RTSSuccessCount = cmd->stats[11]; } else { } kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_radio_control(struct ieee80211_hw *hw , bool enable , bool force ) { struct mwl8k_priv *priv ; struct mwl8k_cmd_radio_control *cmd ; int rc ; void *tmp ; { priv = (struct mwl8k_priv *)hw->priv; if ((int )priv->radio_on == (int )enable && ! force) { return (0); } else { } tmp = kzalloc(14UL, 208U); cmd = (struct mwl8k_cmd_radio_control *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_radio_control *)0)) { return (-12); } else { } cmd->header.code = 28U; cmd->header.length = 14U; cmd->action = 1U; cmd->control = (int )priv->radio_short_preamble ? 3U : 1U; cmd->radio_on = (int )enable ? 1U : 0U; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); if (rc == 0) { priv->radio_on = enable; } else { } return (rc); } } static int mwl8k_cmd_radio_disable(struct ieee80211_hw *hw ) { int tmp ; { tmp = mwl8k_cmd_radio_control(hw, 0, 0); return (tmp); } } static int mwl8k_cmd_radio_enable(struct ieee80211_hw *hw ) { int tmp ; { tmp = mwl8k_cmd_radio_control(hw, 1, 0); return (tmp); } } static int mwl8k_set_radio_preamble(struct ieee80211_hw *hw , bool short_preamble ) { struct mwl8k_priv *priv ; int tmp ; { priv = (struct mwl8k_priv *)hw->priv; priv->radio_short_preamble = short_preamble; tmp = mwl8k_cmd_radio_control(hw, 1, 1); return (tmp); } } static int mwl8k_cmd_rf_tx_power(struct ieee80211_hw *hw , int dBm ) { struct mwl8k_cmd_rf_tx_power *cmd ; int rc ; void *tmp ; { tmp = kzalloc(32UL, 208U); cmd = (struct mwl8k_cmd_rf_tx_power *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_rf_tx_power *)0)) { return (-12); } else { } cmd->header.code = 30U; cmd->header.length = 32U; cmd->action = 1U; cmd->support_level = (unsigned short )dBm; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_tx_power(struct ieee80211_hw *hw , struct ieee80211_conf *conf , unsigned short pwr ) { struct ieee80211_channel *channel ; struct mwl8k_cmd_tx_power *cmd ; int rc ; int i ; void *tmp ; { channel = conf->channel; tmp = kzalloc(42UL, 208U); cmd = (struct mwl8k_cmd_tx_power *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_tx_power *)0)) { return (-12); } else { } cmd->header.code = 31U; cmd->header.length = 42U; cmd->action = 2U; if ((unsigned int )channel->band == 0U) { cmd->band = 1U; } else if ((unsigned int )channel->band == 1U) { cmd->band = 4U; } else { } cmd->channel = channel->hw_value; if ((unsigned int )conf->channel_type == 0U || (unsigned int )conf->channel_type == 1U) { cmd->bw = 2U; } else { cmd->bw = 4U; if ((unsigned int )conf->channel_type == 2U) { cmd->sub_ch = 3U; } else if ((unsigned int )conf->channel_type == 3U) { cmd->sub_ch = 1U; } else { } } i = 0; goto ldv_44506; ldv_44505: cmd->power_level_list[i] = pwr; i = i + 1; ldv_44506: ; if (i <= 11) { goto ldv_44505; } else { } rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_rf_antenna(struct ieee80211_hw *hw , int antenna , int mask ) { struct mwl8k_cmd_rf_antenna *cmd ; int rc ; void *tmp ; { tmp = kzalloc(12UL, 208U); cmd = (struct mwl8k_cmd_rf_antenna *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_rf_antenna *)0)) { return (-12); } else { } cmd->header.code = 32U; cmd->header.length = 12U; cmd->antenna = (unsigned short )antenna; cmd->mode = (unsigned short )mask; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_beacon(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u8 *beacon , int len ) { struct mwl8k_cmd_set_beacon *cmd ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc((unsigned long )len + 10UL, 208U); cmd = (struct mwl8k_cmd_set_beacon *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_beacon *)0)) { return (-12); } else { } cmd->header.code = 256U; cmd->header.length = (unsigned int )((unsigned short )len) + 10U; cmd->beacon_len = (unsigned short )len; __len = (size_t )len; __ret = memcpy((void *)(& cmd->beacon), (void const *)beacon, __len); rc = mwl8k_post_pervif_cmd(hw, vif, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_pre_scan(struct ieee80211_hw *hw ) { struct mwl8k_cmd_set_pre_scan *cmd ; int rc ; void *tmp ; { tmp = kzalloc(8UL, 208U); cmd = (struct mwl8k_cmd_set_pre_scan *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_pre_scan *)0)) { return (-12); } else { } cmd->header.code = 263U; cmd->header.length = 8U; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_post_scan(struct ieee80211_hw *hw , __u8 const *mac ) { struct mwl8k_cmd_set_post_scan *cmd ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc(18UL, 208U); cmd = (struct mwl8k_cmd_set_post_scan *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_post_scan *)0)) { return (-12); } else { } cmd->header.code = 264U; cmd->header.length = 18U; cmd->isibss = 0U; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->bssid), (void const *)mac, __len); } else { __ret = memcpy((void *)(& cmd->bssid), (void const *)mac, __len); } rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_rf_channel(struct ieee80211_hw *hw , struct ieee80211_conf *conf ) { struct ieee80211_channel *channel ; struct mwl8k_cmd_set_rf_channel *cmd ; int rc ; void *tmp ; { channel = conf->channel; tmp = kzalloc(15UL, 208U); cmd = (struct mwl8k_cmd_set_rf_channel *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_rf_channel *)0)) { return (-12); } else { } cmd->header.code = 266U; cmd->header.length = 15U; cmd->action = 1U; cmd->current_channel = (__u8 )channel->hw_value; if ((unsigned int )channel->band == 0U) { cmd->channel_flags = cmd->channel_flags | 1U; } else if ((unsigned int )channel->band == 1U) { cmd->channel_flags = cmd->channel_flags | 4U; } else { } if ((unsigned int )conf->channel_type == 0U || (unsigned int )conf->channel_type == 1U) { cmd->channel_flags = cmd->channel_flags | 128U; } else if ((unsigned int )conf->channel_type == 2U) { cmd->channel_flags = cmd->channel_flags | 6400U; } else if ((unsigned int )conf->channel_type == 3U) { cmd->channel_flags = cmd->channel_flags | 2304U; } else { } rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static void legacy_rate_mask_to_array(u8 *rates , u32 mask ) { int i ; int j ; int tmp ; { mask = mask & 8175U; i = 0; j = 0; goto ldv_44579; ldv_44578: ; if (((u32 )(1 << i) & mask) != 0U) { tmp = j; j = j + 1; *(rates + (unsigned long )tmp) = (u8 )mwl8k_rates_24[i].hw_value; } else { } i = i + 1; ldv_44579: ; if (i <= 13) { goto ldv_44578; } else { } return; } } static int mwl8k_cmd_set_aid(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u32 legacy_rate_mask ) { struct mwl8k_cmd_update_set_aid *cmd ; u16 prot_mode ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc(32UL, 208U); cmd = (struct mwl8k_cmd_update_set_aid *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_update_set_aid *)0)) { return (-12); } else { } cmd->header.code = 269U; cmd->header.length = 32U; cmd->aid = vif->bss_conf.aid; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->bssid), (void const *)vif->bss_conf.bssid, __len); } else { __ret = memcpy((void *)(& cmd->bssid), (void const *)vif->bss_conf.bssid, __len); } if ((int )vif->bss_conf.use_cts_prot) { prot_mode = 7U; } else { switch ((int )vif->bss_conf.ht_operation_mode & 3) { case 2: prot_mode = 2U; goto ldv_44593; case 3: prot_mode = 6U; goto ldv_44593; default: prot_mode = 0U; goto ldv_44593; } ldv_44593: ; } cmd->protection_mode = prot_mode; legacy_rate_mask_to_array((u8 *)(& cmd->supp_rates), legacy_rate_mask); rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_rate(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u32 legacy_rate_mask , u8 *mcs_rates ) { struct mwl8k_cmd_set_rate *cmd ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc(54UL, 208U); cmd = (struct mwl8k_cmd_set_rate *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_rate *)0)) { return (-12); } else { } cmd->header.code = 272U; cmd->header.length = 54U; legacy_rate_mask_to_array((u8 *)(& cmd->legacy_rates), legacy_rate_mask); __len = 16UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->mcs_set), (void const *)mcs_rates, __len); } else { __ret = memcpy((void *)(& cmd->mcs_set), (void const *)mcs_rates, __len); } rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_finalize_join(struct ieee80211_hw *hw , void *frame , int framelen , int dtim ) { struct mwl8k_cmd_finalize_join *cmd ; struct ieee80211_mgmt *payload ; int payload_len ; int rc ; void *tmp ; unsigned int tmp___0 ; size_t __len ; void *__ret ; { payload = (struct ieee80211_mgmt *)frame; tmp = kzalloc(140UL, 208U); cmd = (struct mwl8k_cmd_finalize_join *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_finalize_join *)0)) { return (-12); } else { } cmd->header.code = 273U; cmd->header.length = 140U; cmd->sleep_interval = dtim != 0 ? (unsigned int )dtim : 1U; tmp___0 = ieee80211_hdrlen((int )payload->frame_control); payload_len = (int )((unsigned int )framelen - tmp___0); if (payload_len < 0) { payload_len = 0; } else if (payload_len > 128) { payload_len = 128; } else { } __len = (size_t )payload_len; __ret = memcpy((void *)(& cmd->beacon_data), (void const *)(& payload->u.beacon), __len); rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_rts_threshold(struct ieee80211_hw *hw , int rts_thresh ) { struct mwl8k_cmd_set_rts_threshold *cmd ; int rc ; void *tmp ; { tmp = kzalloc(12UL, 208U); cmd = (struct mwl8k_cmd_set_rts_threshold *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_rts_threshold *)0)) { return (-12); } else { } cmd->header.code = 275U; cmd->header.length = 12U; cmd->action = 1U; cmd->threshold = (unsigned short )rts_thresh; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_slot(struct ieee80211_hw *hw , bool short_slot_time ) { struct mwl8k_cmd_set_slot *cmd ; int rc ; void *tmp ; { tmp = kzalloc(11UL, 208U); cmd = (struct mwl8k_cmd_set_slot *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_slot *)0)) { return (-12); } else { } cmd->header.code = 276U; cmd->header.length = 11U; cmd->action = 1U; cmd->short_slot = (__u8 )short_slot_time; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_edca_params(struct ieee80211_hw *hw , __u8 qnum , __u16 cw_min , __u16 cw_max , __u8 aifs , __u16 txop ) { struct mwl8k_priv *priv ; struct mwl8k_cmd_set_edca_params *cmd ; int rc ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { priv = (struct mwl8k_priv *)hw->priv; tmp = kzalloc(24UL, 208U); cmd = (struct mwl8k_cmd_set_edca_params *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_edca_params *)0)) { return (-12); } else { } cmd->header.code = 277U; cmd->header.length = 24U; cmd->action = 7U; cmd->txop = txop; if ((int )priv->ap_fw) { tmp___0 = __ilog2_u32((u32 )((int )cw_max + 1)); cmd->ldv_44666.ap.log_cw_max = (unsigned int )tmp___0; tmp___1 = __ilog2_u32((u32 )((int )cw_min + 1)); cmd->ldv_44666.ap.log_cw_min = (unsigned int )tmp___1; cmd->ldv_44666.ap.aifs = aifs; cmd->ldv_44666.ap.txq = qnum; } else { tmp___2 = __ilog2_u32((u32 )((int )cw_max + 1)); cmd->ldv_44666.sta.log_cw_max = (unsigned char )tmp___2; tmp___3 = __ilog2_u32((u32 )((int )cw_min + 1)); cmd->ldv_44666.sta.log_cw_min = (unsigned char )tmp___3; cmd->ldv_44666.sta.aifs = aifs; cmd->ldv_44666.sta.txq = qnum; } rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_wmm_mode(struct ieee80211_hw *hw , bool enable ) { struct mwl8k_priv *priv ; struct mwl8k_cmd_set_wmm_mode *cmd ; int rc ; void *tmp ; { priv = (struct mwl8k_priv *)hw->priv; tmp = kzalloc(10UL, 208U); cmd = (struct mwl8k_cmd_set_wmm_mode *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_wmm_mode *)0)) { return (-12); } else { } cmd->header.code = 291U; cmd->header.length = 10U; cmd->action = (unsigned short )enable; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); if (rc == 0) { priv->wmm_enabled = enable; } else { } return (rc); } } static int mwl8k_cmd_mimo_config(struct ieee80211_hw *hw , __u8 rx , __u8 tx ) { struct mwl8k_cmd_mimo_config *cmd ; int rc ; void *tmp ; { tmp = kzalloc(14UL, 208U); cmd = (struct mwl8k_cmd_mimo_config *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_mimo_config *)0)) { return (-12); } else { } cmd->header.code = 293U; cmd->header.length = 14U; cmd->action = 1U; cmd->rx_antenna_map = rx; cmd->tx_antenna_map = tx; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_use_fixed_rate_sta(struct ieee80211_hw *hw ) { struct mwl8k_cmd_use_fixed_rate_sta *cmd ; int rc ; void *tmp ; { tmp = kzalloc(160UL, 208U); cmd = (struct mwl8k_cmd_use_fixed_rate_sta *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_use_fixed_rate_sta *)0)) { return (-12); } else { } cmd->header.code = 294U; cmd->header.length = 160U; cmd->action = 2U; cmd->rate_type = 0U; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_use_fixed_rate_ap(struct ieee80211_hw *hw , int mcast , int mgmt ) { struct mwl8k_cmd_use_fixed_rate_ap *cmd ; int rc ; void *tmp ; { tmp = kzalloc(87UL, 208U); cmd = (struct mwl8k_cmd_use_fixed_rate_ap *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_use_fixed_rate_ap *)0)) { return (-12); } else { } cmd->header.code = 294U; cmd->header.length = 87U; cmd->action = 2U; cmd->multicast_rate = (u8 )mcast; cmd->management_rate = (u8 )mgmt; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_enable_sniffer(struct ieee80211_hw *hw , bool enable ) { struct mwl8k_cmd_enable_sniffer *cmd ; int rc ; void *tmp ; { tmp = kzalloc(12UL, 208U); cmd = (struct mwl8k_cmd_enable_sniffer *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_enable_sniffer *)0)) { return (-12); } else { } cmd->header.code = 336U; cmd->header.length = 12U; cmd->action = (unsigned int )enable; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_update_mac_addr(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u8 *mac , bool set ) { struct mwl8k_priv *priv ; struct mwl8k_vif *mwl8k_vif ; struct mwl8k_cmd_update_mac_addr *cmd ; int mac_type ; int rc ; int tmp ; int tmp___0 ; void *tmp___1 ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { priv = (struct mwl8k_priv *)hw->priv; mwl8k_vif = (struct mwl8k_vif *)(& vif->drv_priv); mac_type = 2; if ((unsigned long )vif != (unsigned long )((struct ieee80211_vif *)0) && (unsigned int )vif->type == 2U) { tmp = ffs((int )priv->sta_macids_supported); if (mwl8k_vif->macid + 1 == tmp) { mac_type = 0; } else { mac_type = 1; } } else if ((unsigned long )vif != (unsigned long )((struct ieee80211_vif *)0) && (unsigned int )vif->type == 3U) { tmp___0 = ffs((int )priv->ap_macids_supported); if (mwl8k_vif->macid + 1 == tmp___0) { mac_type = 2; } else { mac_type = 3; } } else { } tmp___1 = kzalloc(16UL, 208U); cmd = (struct mwl8k_cmd_update_mac_addr *)tmp___1; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_update_mac_addr *)0)) { return (-12); } else { } if ((int )set) { cmd->header.code = 514U; } else { cmd->header.code = 518U; } cmd->header.length = 16U; if ((int )priv->ap_fw) { cmd->ldv_44757.mbss.mac_type = (unsigned short )mac_type; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->ldv_44757.mbss.mac_addr), (void const *)mac, __len); } else { __ret = memcpy((void *)(& cmd->ldv_44757.mbss.mac_addr), (void const *)mac, __len); } } else { __len___0 = 6UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& cmd->ldv_44757.mac_addr), (void const *)mac, __len___0); } else { __ret___0 = memcpy((void *)(& cmd->ldv_44757.mac_addr), (void const *)mac, __len___0); } } rc = mwl8k_post_pervif_cmd(hw, vif, & cmd->header); kfree((void const *)cmd); return (rc); } } __inline static int mwl8k_cmd_set_mac_addr(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u8 *mac ) { int tmp ; { tmp = mwl8k_cmd_update_mac_addr(hw, vif, mac, 1); return (tmp); } } __inline static int mwl8k_cmd_del_mac_addr(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u8 *mac ) { int tmp ; { tmp = mwl8k_cmd_update_mac_addr(hw, vif, mac, 0); return (tmp); } } static int mwl8k_cmd_set_rateadapt_mode(struct ieee80211_hw *hw , __u16 mode ) { struct mwl8k_cmd_set_rate_adapt_mode *cmd ; int rc ; void *tmp ; { tmp = kzalloc(12UL, 208U); cmd = (struct mwl8k_cmd_set_rate_adapt_mode *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_rate_adapt_mode *)0)) { return (-12); } else { } cmd->header.code = 515U; cmd->header.length = 12U; cmd->action = 1U; cmd->mode = mode; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_get_watchdog_bitmap(struct ieee80211_hw *hw , u8 *bitmap ) { struct mwl8k_cmd_get_watchdog_bitmap *cmd ; int rc ; void *tmp ; { tmp = kzalloc(9UL, 208U); cmd = (struct mwl8k_cmd_get_watchdog_bitmap *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_get_watchdog_bitmap *)0)) { return (-12); } else { } cmd->header.code = 517U; cmd->header.length = 9U; rc = mwl8k_post_cmd(hw, & cmd->header); if (rc == 0) { *bitmap = cmd->bitmap; } else { } kfree((void const *)cmd); return (rc); } } static void mwl8k_watchdog_ba_events(struct work_struct *work ) { int rc ; u8 bitmap ; u8 stream_index ; struct mwl8k_ampdu_stream *streams ; struct mwl8k_priv *priv ; struct work_struct const *__mptr ; long tmp ; { bitmap = 0U; __mptr = (struct work_struct const *)work; priv = (struct mwl8k_priv *)__mptr + 0xfffffffffffffa68UL; rc = mwl8k_cmd_get_watchdog_bitmap(priv->hw, & bitmap); if (rc != 0) { return; } else { } if ((unsigned int )bitmap == 170U) { return; } else { } stream_index = (unsigned int )bitmap + 252U; tmp = ldv__builtin_expect((int )priv->num_ampdu_queues <= (int )stream_index, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (3641), "i" (12UL)); ldv_44814: ; goto ldv_44814; } else { } streams = (struct mwl8k_ampdu_stream *)(& priv->ampdu) + (unsigned long )stream_index; if ((unsigned int )streams->state == 3U) { ieee80211_stop_tx_ba_session(streams->sta, (int )streams->tid); } else { } return; } } static int mwl8k_cmd_bss_start(struct ieee80211_hw *hw , struct ieee80211_vif *vif , int enable ) { struct mwl8k_cmd_bss_start *cmd ; int rc ; void *tmp ; { tmp = kzalloc(12UL, 208U); cmd = (struct mwl8k_cmd_bss_start *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_bss_start *)0)) { return (-12); } else { } cmd->header.code = 4352U; cmd->header.length = 12U; cmd->enable = (unsigned int )enable; rc = mwl8k_post_pervif_cmd(hw, vif, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_check_ba(struct ieee80211_hw *hw , struct mwl8k_ampdu_stream *stream ) { struct mwl8k_cmd_bastream *cmd ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc(51UL, 208U); cmd = (struct mwl8k_cmd_bastream *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_bastream *)0)) { return (-12); } else { } cmd->header.code = 4389U; cmd->header.length = 51U; cmd->action = 4U; cmd->ldv_44854.create_params.queue_id = stream->idx; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->ldv_44854.create_params.peer_mac_addr), (void const *)(& (stream->sta)->addr), __len); } else { __ret = memcpy((void *)(& cmd->ldv_44854.create_params.peer_mac_addr), (void const *)(& (stream->sta)->addr), __len); } cmd->ldv_44854.create_params.tid = stream->tid; cmd->ldv_44854.create_params.flags = 1U; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_create_ba(struct ieee80211_hw *hw , struct mwl8k_ampdu_stream *stream , u8 buf_size ) { struct mwl8k_cmd_bastream *cmd ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc(51UL, 208U); cmd = (struct mwl8k_cmd_bastream *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_bastream *)0)) { return (-12); } else { } cmd->header.code = 4389U; cmd->header.length = 51U; cmd->action = 0U; cmd->ldv_44854.create_params.bar_thrs = (unsigned int )buf_size; cmd->ldv_44854.create_params.window_size = (unsigned int )buf_size; cmd->ldv_44854.create_params.queue_id = stream->idx; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->ldv_44854.create_params.peer_mac_addr), (void const *)(& (stream->sta)->addr), __len); } else { __ret = memcpy((void *)(& cmd->ldv_44854.create_params.peer_mac_addr), (void const *)(& (stream->sta)->addr), __len); } cmd->ldv_44854.create_params.tid = stream->tid; cmd->ldv_44854.create_params.curr_seq_no = 0U; cmd->ldv_44854.create_params.reset_seq_no_flag = 1U; cmd->ldv_44854.create_params.param_info = (u8 )(((int )((signed char )(stream->sta)->ht_cap.ampdu_factor) & 3) | ((int )((signed char )((int )(stream->sta)->ht_cap.ampdu_density << 2)) & 28)); cmd->ldv_44854.create_params.flags = 1U; rc = mwl8k_post_cmd(hw, & cmd->header); dev_printk("\017", (struct device const *)(& (hw->wiphy)->dev), "Created a BA stream for %pM : tid %d\n", (u8 *)(& (stream->sta)->addr), (int )stream->tid); kfree((void const *)cmd); return (rc); } } static void mwl8k_destroy_ba(struct ieee80211_hw *hw , struct mwl8k_ampdu_stream *stream ) { struct mwl8k_cmd_bastream *cmd ; void *tmp ; { tmp = kzalloc(51UL, 208U); cmd = (struct mwl8k_cmd_bastream *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_bastream *)0)) { return; } else { } cmd->header.code = 4389U; cmd->header.length = 51U; cmd->action = 2U; cmd->ldv_44854.destroy_params.ba_context = (unsigned int )stream->idx; mwl8k_post_cmd(hw, & cmd->header); dev_printk("\017", (struct device const *)(& (hw->wiphy)->dev), "Deleted BA stream index %d\n", (int )stream->idx); kfree((void const *)cmd); return; } } static int mwl8k_cmd_set_new_stn_add(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_sta *sta ) { struct mwl8k_cmd_set_new_stn *cmd ; u32 rates ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc(48UL, 208U); cmd = (struct mwl8k_cmd_set_new_stn *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_new_stn *)0)) { return (-12); } else { } cmd->header.code = 4369U; cmd->header.length = 48U; cmd->aid = sta->aid; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->mac_addr), (void const *)(& sta->addr), __len); } else { __ret = memcpy((void *)(& cmd->mac_addr), (void const *)(& sta->addr), __len); } cmd->stn_id = sta->aid; cmd->action = 0U; if ((unsigned int )(hw->conf.channel)->band == 0U) { rates = sta->supp_rates[0]; } else { rates = sta->supp_rates[1] << 5; } cmd->legacy_rates = rates; if ((int )sta->ht_cap.ht_supported) { cmd->ht_rates[0] = sta->ht_cap.mcs.rx_mask[0]; cmd->ht_rates[1] = sta->ht_cap.mcs.rx_mask[1]; cmd->ht_rates[2] = sta->ht_cap.mcs.rx_mask[2]; cmd->ht_rates[3] = sta->ht_cap.mcs.rx_mask[3]; cmd->ht_capabilities_info = sta->ht_cap.cap; cmd->mac_ht_param_info = (__u8 )(((int )((signed char )sta->ht_cap.ampdu_factor) & 3) | (int )((signed char )(((int )sta->ht_cap.ampdu_density & 7) << 2))); cmd->is_qos_sta = 1U; } else { } rc = mwl8k_post_pervif_cmd(hw, vif, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_new_stn_add_self(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct mwl8k_cmd_set_new_stn *cmd ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc(48UL, 208U); cmd = (struct mwl8k_cmd_set_new_stn *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_new_stn *)0)) { return (-12); } else { } cmd->header.code = 4369U; cmd->header.length = 48U; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->mac_addr), (void const *)(& vif->addr), __len); } else { __ret = memcpy((void *)(& cmd->mac_addr), (void const *)(& vif->addr), __len); } rc = mwl8k_post_pervif_cmd(hw, vif, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_set_new_stn_del(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u8 *addr ) { struct mwl8k_cmd_set_new_stn *cmd ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc(48UL, 208U); cmd = (struct mwl8k_cmd_set_new_stn *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_new_stn *)0)) { return (-12); } else { } cmd->header.code = 4369U; cmd->header.length = 48U; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->mac_addr), (void const *)addr, __len); } else { __ret = memcpy((void *)(& cmd->mac_addr), (void const *)addr, __len); } cmd->action = 2U; rc = mwl8k_post_pervif_cmd(hw, vif, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_update_encryption_enable(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u8 *addr , u8 encr_type ) { struct mwl8k_cmd_update_encryption *cmd ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc(23UL, 208U); cmd = (struct mwl8k_cmd_update_encryption *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_update_encryption *)0)) { return (-12); } else { } cmd->header.code = 4386U; cmd->header.length = 23U; cmd->action = 0U; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->mac_addr), (void const *)addr, __len); } else { __ret = memcpy((void *)(& cmd->mac_addr), (void const *)addr, __len); } cmd->encr_type = encr_type; rc = mwl8k_post_pervif_cmd(hw, vif, & cmd->header); kfree((void const *)cmd); return (rc); } } static int mwl8k_encryption_set_cmd_info(struct mwl8k_cmd_set_key *cmd , u8 *addr , struct ieee80211_key_conf *key ) { size_t __len ; void *__ret ; { cmd->header.code = 4386U; cmd->header.length = 80U; cmd->length = 64U; cmd->key_id = (unsigned int )key->keyidx; cmd->key_len = (unsigned short )key->keylen; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->mac_addr), (void const *)addr, __len); } else { __ret = memcpy((void *)(& cmd->mac_addr), (void const *)addr, __len); } switch (key->cipher) { case (u32 )1027073: ; case (u32 )1027077: cmd->key_type_id = 0U; if ((int )key->keyidx == 0) { cmd->key_info = 16777216U; } else { } goto ldv_44982; case (u32 )1027074: cmd->key_type_id = 1U; cmd->key_info = ((int )key->flags & 8) != 0 ? 8U : 4U; cmd->key_info = cmd->key_info | 33554496U; goto ldv_44982; case (u32 )1027076: cmd->key_type_id = 2U; cmd->key_info = ((int )key->flags & 8) != 0 ? 8U : 4U; goto ldv_44982; default: ; return (-524); } ldv_44982: ; return (0); } } static int mwl8k_cmd_encryption_set_key(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u8 *addr , struct ieee80211_key_conf *key ) { struct mwl8k_cmd_set_key *cmd ; int rc ; int keymlen ; u32 action ; u8 idx ; struct mwl8k_vif *mwl8k_vif ; void *tmp ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { mwl8k_vif = (struct mwl8k_vif *)(& vif->drv_priv); tmp = kzalloc(80UL, 208U); cmd = (struct mwl8k_cmd_set_key *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_key *)0)) { return (-12); } else { } rc = mwl8k_encryption_set_cmd_info(cmd, addr, key); if (rc < 0) { goto done; } else { } idx = (u8 )key->keyidx; if (((int )key->flags & 8) != 0) { action = 1U; } else { action = 3U; } switch (key->cipher) { case (u32 )1027073: ; case (u32 )1027077: ; if ((unsigned int )mwl8k_vif->wep_key_conf[(int )idx].enabled == 0U) { __len = (unsigned long )key->keylen + 12UL; __ret = memcpy((void *)(& mwl8k_vif->wep_key_conf[(int )idx].key), (void const *)key, __len); mwl8k_vif->wep_key_conf[(int )idx].enabled = 1U; } else { } keymlen = (int )key->keylen; action = 1U; goto ldv_45004; case (u32 )1027074: keymlen = 32; goto ldv_45004; case (u32 )1027076: keymlen = (int )key->keylen; goto ldv_45004; default: rc = -524; goto done; } ldv_45004: __len___0 = (size_t )keymlen; __ret___0 = memcpy((void *)(& cmd->key_material), (void const *)(& key->key), __len___0); cmd->action = action; rc = mwl8k_post_pervif_cmd(hw, vif, & cmd->header); done: kfree((void const *)cmd); return (rc); } } static int mwl8k_cmd_encryption_remove_key(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u8 *addr , struct ieee80211_key_conf *key ) { struct mwl8k_cmd_set_key *cmd ; int rc ; struct mwl8k_vif *mwl8k_vif ; void *tmp ; { mwl8k_vif = (struct mwl8k_vif *)(& vif->drv_priv); tmp = kzalloc(80UL, 208U); cmd = (struct mwl8k_cmd_set_key *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_set_key *)0)) { return (-12); } else { } rc = mwl8k_encryption_set_cmd_info(cmd, addr, key); if (rc < 0) { goto done; } else { } if (key->cipher == 1027073U || key->cipher == 1027077U) { mwl8k_vif->wep_key_conf[(int )key->keyidx].enabled = 0U; } else { } cmd->action = 2U; rc = mwl8k_post_pervif_cmd(hw, vif, & cmd->header); done: kfree((void const *)cmd); return (rc); } } static int mwl8k_set_key(struct ieee80211_hw *hw , enum set_key_cmd cmd_param , struct ieee80211_vif *vif , struct ieee80211_sta *sta , struct ieee80211_key_conf *key ) { int rc ; u8 encr_type ; u8 *addr ; struct mwl8k_vif *mwl8k_vif ; { rc = 0; mwl8k_vif = (struct mwl8k_vif *)(& vif->drv_priv); if ((unsigned int )vif->type == 2U) { return (-95); } else { } if ((unsigned long )sta == (unsigned long )((struct ieee80211_sta *)0)) { addr = (u8 *)(& vif->addr); } else { addr = (u8 *)(& sta->addr); } if ((unsigned int )cmd_param == 0U) { rc = mwl8k_cmd_encryption_set_key(hw, vif, addr, key); if (rc != 0) { goto out; } else { } if (key->cipher == 1027073U || key->cipher == 1027077U) { encr_type = 0U; } else { encr_type = 7U; } rc = mwl8k_cmd_update_encryption_enable(hw, vif, addr, (int )encr_type); if (rc != 0) { goto out; } else { } mwl8k_vif->is_hw_crypto_enabled = 1; } else { rc = mwl8k_cmd_encryption_remove_key(hw, vif, addr, key); if (rc != 0) { goto out; } else { } } out: ; return (rc); } } static int mwl8k_cmd_update_stadb_add(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_sta *sta ) { struct mwl8k_cmd_update_stadb *cmd ; struct peer_capability_info *p ; u32 rates ; int rc ; void *tmp ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { tmp = kzalloc(84UL, 208U); cmd = (struct mwl8k_cmd_update_stadb *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_update_stadb *)0)) { return (-12); } else { } cmd->header.code = 4387U; cmd->header.length = 84U; cmd->action = 1U; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->peer_addr), (void const *)(& sta->addr), __len); } else { __ret = memcpy((void *)(& cmd->peer_addr), (void const *)(& sta->addr), __len); } p = & cmd->peer_info; p->peer_type = 2U; p->basic_caps = vif->bss_conf.assoc_capability; p->ht_support = (__u8 )sta->ht_cap.ht_supported; p->ht_caps = sta->ht_cap.cap; p->extended_ht_caps = (__u8 )(((int )((signed char )sta->ht_cap.ampdu_factor) & 3) | (int )((signed char )(((int )sta->ht_cap.ampdu_density & 7) << 2))); if ((unsigned int )(hw->conf.channel)->band == 0U) { rates = sta->supp_rates[0]; } else { rates = sta->supp_rates[1] << 5; } legacy_rate_mask_to_array((u8 *)(& p->legacy_rates), rates); __len___0 = 16UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& p->ht_rates), (void const *)(& sta->ht_cap.mcs.rx_mask), __len___0); } else { __ret___0 = memcpy((void *)(& p->ht_rates), (void const *)(& sta->ht_cap.mcs.rx_mask), __len___0); } p->interop = 1U; p->amsdu_enabled = 0U; rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc == 0 ? (int )p->station_id : rc); } } static int mwl8k_cmd_update_stadb_del(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u8 *addr ) { struct mwl8k_cmd_update_stadb *cmd ; int rc ; void *tmp ; size_t __len ; void *__ret ; { tmp = kzalloc(84UL, 208U); cmd = (struct mwl8k_cmd_update_stadb *)tmp; if ((unsigned long )cmd == (unsigned long )((struct mwl8k_cmd_update_stadb *)0)) { return (-12); } else { } cmd->header.code = 4387U; cmd->header.length = 84U; cmd->action = 2U; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd->peer_addr), (void const *)addr, __len); } else { __ret = memcpy((void *)(& cmd->peer_addr), (void const *)addr, __len); } rc = mwl8k_post_cmd(hw, & cmd->header); kfree((void const *)cmd); return (rc); } } static irqreturn_t mwl8k_interrupt(int irq , void *dev_id ) { struct ieee80211_hw *hw ; struct mwl8k_priv *priv ; u32 status ; int tmp ; { hw = (struct ieee80211_hw *)dev_id; priv = (struct mwl8k_priv *)hw->priv; status = ioread32(priv->regs + 3120UL); if (status == 0U) { return (IRQ_NONE); } else { } if ((int )status & 1) { status = status & 4294967294U; tasklet_schedule(& priv->poll_tx_task); } else { } if ((status & 2U) != 0U) { status = status & 4294967293U; tasklet_schedule(& priv->poll_rx_task); } else { } if ((status & 16384U) != 0U) { status = status & 4294950911U; ieee80211_queue_work(hw, & priv->watchdog_ba_handle); } else { } if (status != 0U) { iowrite32(~ status, priv->regs + 3120UL); } else { } if ((status & 4U) != 0U) { if ((unsigned long )priv->hostcmd_wait != (unsigned long )((struct completion *)0)) { complete(priv->hostcmd_wait); } else { } } else { } if ((status & 1024U) != 0U) { tmp = ldv_mutex_is_locked_15(& priv->fw_mutex); if ((tmp == 0 && (int )priv->radio_on) && priv->pending_tx_pkts != 0) { mwl8k_tx_start(priv); } else { } } else { } return (IRQ_HANDLED); } } static void mwl8k_tx_poll(unsigned long data ) { struct ieee80211_hw *hw ; struct mwl8k_priv *priv ; int limit ; int i ; int tmp ; { hw = (struct ieee80211_hw *)data; priv = (struct mwl8k_priv *)hw->priv; limit = 32; spin_lock_bh(& priv->tx_lock); i = 0; goto ldv_45097; ldv_45096: tmp = mwl8k_txq_reclaim(hw, i, limit, 0); limit = limit - tmp; i = i + 1; ldv_45097: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_45096; } else { } if (priv->pending_tx_pkts == 0 && (unsigned long )priv->tx_wait != (unsigned long )((struct completion *)0)) { complete(priv->tx_wait); priv->tx_wait = 0; } else { } spin_unlock_bh(& priv->tx_lock); if (limit != 0) { writel(4294967294U, (void volatile *)priv->regs + 3120U); } else { tasklet_schedule(& priv->poll_tx_task); } return; } } static void mwl8k_rx_poll(unsigned long data ) { struct ieee80211_hw *hw ; struct mwl8k_priv *priv ; int limit ; int tmp ; int tmp___0 ; { hw = (struct ieee80211_hw *)data; priv = (struct mwl8k_priv *)hw->priv; limit = 32; tmp = rxq_process(hw, 0, limit); limit = limit - tmp; tmp___0 = rxq_refill(hw, 0, limit); limit = limit - tmp___0; if (limit != 0) { writel(4294967293U, (void volatile *)priv->regs + 3120U); } else { tasklet_schedule(& priv->poll_rx_task); } return; } } static void mwl8k_tx(struct ieee80211_hw *hw , struct ieee80211_tx_control *control , struct sk_buff *skb ) { struct mwl8k_priv *priv ; int index ; u16 tmp ; { priv = (struct mwl8k_priv *)hw->priv; tmp = skb_get_queue_mapping((struct sk_buff const *)skb); index = (int )tmp; if (! priv->radio_on) { dev_printk("\017", (struct device const *)(& (hw->wiphy)->dev), "dropped TX frame since radio disabled\n"); consume_skb(skb); return; } else { } mwl8k_txq_xmit(hw, index, control->sta, skb); return; } } static int mwl8k_start(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; int rc ; { priv = (struct mwl8k_priv *)hw->priv; rc = request_irq((priv->pdev)->irq, & mwl8k_interrupt, 128UL, "mwl8k", (void *)hw); if (rc != 0) { priv->irq = -1; dev_err((struct device const *)(& (hw->wiphy)->dev), "failed to register IRQ handler\n"); return (-5); } else { } priv->irq = (int )(priv->pdev)->irq; tasklet_enable(& priv->poll_tx_task); tasklet_enable(& priv->poll_rx_task); iowrite32(1068271U, priv->regs + 3124UL); iowrite32(1068271U, priv->regs + 3132UL); rc = mwl8k_fw_lock(hw); if (rc == 0) { rc = mwl8k_cmd_radio_enable(hw); if (! priv->ap_fw) { if (rc == 0) { rc = mwl8k_cmd_enable_sniffer(hw, 0); } else { } if (rc == 0) { rc = mwl8k_cmd_set_pre_scan(hw); } else { } if (rc == 0) { rc = mwl8k_cmd_set_post_scan(hw, (__u8 const *)""); } else { } } else { } if (rc == 0) { rc = mwl8k_cmd_set_rateadapt_mode(hw, 0); } else { } if (rc == 0) { rc = mwl8k_cmd_set_wmm_mode(hw, 0); } else { } mwl8k_fw_unlock(hw); } else { } if (rc != 0) { iowrite32(0U, priv->regs + 3124UL); free_irq((priv->pdev)->irq, (void *)hw); priv->irq = -1; tasklet_disable(& priv->poll_tx_task); tasklet_disable(& priv->poll_rx_task); } else { } return (rc); } } static void mwl8k_stop(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; int i ; { priv = (struct mwl8k_priv *)hw->priv; if (! priv->hw_restart_in_progress) { mwl8k_cmd_radio_disable(hw); } else { } ieee80211_stop_queues(hw); iowrite32(0U, priv->regs + 3124UL); if (priv->irq != -1) { free_irq((priv->pdev)->irq, (void *)hw); priv->irq = -1; } else { } cancel_work_sync(& priv->finalize_join_worker); cancel_work_sync(& priv->watchdog_ba_handle); if ((unsigned long )priv->beacon_skb != (unsigned long )((struct sk_buff *)0)) { consume_skb(priv->beacon_skb); } else { } tasklet_disable(& priv->poll_tx_task); tasklet_disable(& priv->poll_rx_task); i = 0; goto ldv_45123; ldv_45122: mwl8k_txq_reclaim(hw, i, 2147483647, 1); i = i + 1; ldv_45123: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_45122; } else { } return; } } static int mwl8k_reload_firmware(struct ieee80211_hw *hw , char *fw_image ) ; static int mwl8k_add_interface(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct mwl8k_priv *priv ; struct mwl8k_vif *mwl8k_vif ; u32 macids_supported ; int macid ; int rc ; struct mwl8k_device_info *di ; int tmp ; int tmp___0 ; int tmp___1 ; size_t __len ; void *__ret ; { priv = (struct mwl8k_priv *)hw->priv; if ((int )priv->sniffer_enabled) { _dev_info((struct device const *)(& (hw->wiphy)->dev), "unable to create STA interface because sniffer mode is enabled\n"); return (-22); } else { } di = priv->device_info; switch ((unsigned int )vif->type) { case 3U: ; if (! priv->ap_fw && (unsigned long )di->fw_image_ap != (unsigned long )((char *)0)) { tmp = list_empty((struct list_head const *)(& priv->vif_list)); if (tmp == 0) { return (-16); } else { } rc = mwl8k_reload_firmware(hw, di->fw_image_ap); if (rc != 0) { return (rc); } else { } } else { } macids_supported = priv->ap_macids_supported; goto ldv_45139; case 2U: ; if ((int )priv->ap_fw && (unsigned long )di->fw_image_sta != (unsigned long )((char *)0)) { tmp___0 = list_empty((struct list_head const *)(& priv->vif_list)); if (tmp___0 == 0) { return (-16); } else { } rc = mwl8k_reload_firmware(hw, di->fw_image_sta); if (rc != 0) { return (rc); } else { } } else { } macids_supported = priv->sta_macids_supported; goto ldv_45139; default: ; return (-22); } ldv_45139: macid = ffs((int )(~ priv->macids_used & macids_supported)); tmp___1 = macid; macid = macid - 1; if (tmp___1 == 0) { return (-16); } else { } mwl8k_vif = (struct mwl8k_vif *)(& vif->drv_priv); memset((void *)mwl8k_vif, 0, 144UL); mwl8k_vif->vif = vif; mwl8k_vif->macid = macid; mwl8k_vif->seqno = 0U; __len = 6UL; if (__len > 63UL) { __ret = memcpy((void *)(& mwl8k_vif->bssid), (void const *)(& vif->addr), __len); } else { __ret = memcpy((void *)(& mwl8k_vif->bssid), (void const *)(& vif->addr), __len); } mwl8k_vif->is_hw_crypto_enabled = 0; mwl8k_cmd_set_mac_addr(hw, vif, (u8 *)(& vif->addr)); if ((int )priv->ap_fw) { mwl8k_cmd_set_new_stn_add_self(hw, vif); } else { } priv->macids_used = priv->macids_used | (u32 )(1 << mwl8k_vif->macid); list_add_tail(& mwl8k_vif->list, & priv->vif_list); return (0); } } static void mwl8k_remove_vif(struct mwl8k_priv *priv , struct mwl8k_vif *vif ) { { if (priv->macids_used == 0U) { return; } else { } priv->macids_used = priv->macids_used & (u32 )(~ (1 << vif->macid)); list_del(& vif->list); return; } } static void mwl8k_remove_interface(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct mwl8k_priv *priv ; struct mwl8k_vif *mwl8k_vif ; { priv = (struct mwl8k_priv *)hw->priv; mwl8k_vif = (struct mwl8k_vif *)(& vif->drv_priv); if ((int )priv->ap_fw) { mwl8k_cmd_set_new_stn_del(hw, vif, (u8 *)(& vif->addr)); } else { } mwl8k_cmd_del_mac_addr(hw, vif, (u8 *)(& vif->addr)); mwl8k_remove_vif(priv, mwl8k_vif); return; } } static void mwl8k_hw_restart_work(struct work_struct *work ) { struct mwl8k_priv *priv ; struct work_struct const *__mptr ; struct ieee80211_hw *hw ; struct mwl8k_device_info *di ; int rc ; { __mptr = (struct work_struct const *)work; priv = (struct mwl8k_priv *)__mptr + 0xfffffffffffff5b0UL; hw = priv->hw; if ((unsigned long )priv->hostcmd_wait != (unsigned long )((struct completion *)0)) { complete(priv->hostcmd_wait); priv->hostcmd_wait = 0; } else { } priv->hw_restart_owner = get_current(); di = priv->device_info; mwl8k_fw_lock(hw); if ((int )priv->ap_fw) { rc = mwl8k_reload_firmware(hw, di->fw_image_ap); } else { rc = mwl8k_reload_firmware(hw, di->fw_image_sta); } if (rc != 0) { goto fail; } else { } priv->hw_restart_owner = 0; priv->hw_restart_in_progress = 0; mwl8k_fw_unlock(hw); ieee80211_restart_hw(hw); dev_err((struct device const *)(& (hw->wiphy)->dev), "Firmware restarted successfully\n"); return; fail: mwl8k_fw_unlock(hw); dev_err((struct device const *)(& (hw->wiphy)->dev), "Firmware restart failed\n"); return; } } static int mwl8k_config(struct ieee80211_hw *hw , u32 changed ) { struct ieee80211_conf *conf ; struct mwl8k_priv *priv ; int rc ; { conf = & hw->conf; priv = (struct mwl8k_priv *)hw->priv; if ((conf->flags & 4U) != 0U) { mwl8k_cmd_radio_disable(hw); return (0); } else { } rc = mwl8k_fw_lock(hw); if (rc != 0) { return (rc); } else { } rc = mwl8k_cmd_radio_enable(hw); if (rc != 0) { goto out; } else { } rc = mwl8k_cmd_set_rf_channel(hw, conf); if (rc != 0) { goto out; } else { } if (conf->power_level > 18) { conf->power_level = 18; } else { } if ((int )priv->ap_fw) { if ((conf->flags & 32U) != 0U) { rc = mwl8k_cmd_tx_power(hw, conf, (int )((unsigned short )conf->power_level)); if (rc != 0) { goto out; } else { } } else { } rc = mwl8k_cmd_rf_antenna(hw, 1, 3); if (rc != 0) { dev_warn((struct device const *)(& (hw->wiphy)->dev), "failed to set # of RX antennas"); } else { } rc = mwl8k_cmd_rf_antenna(hw, 2, 7); if (rc != 0) { dev_warn((struct device const *)(& (hw->wiphy)->dev), "failed to set # of TX antennas"); } else { } } else { rc = mwl8k_cmd_rf_tx_power(hw, conf->power_level); if (rc != 0) { goto out; } else { } rc = mwl8k_cmd_mimo_config(hw, 7, 7); } out: mwl8k_fw_unlock(hw); return (rc); } } static void mwl8k_bss_info_changed_sta(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_bss_conf *info , u32 changed ) { struct mwl8k_priv *priv ; u32 ap_legacy_rates ; u8 ap_mcs_rates[16U] ; int rc ; int tmp ; struct ieee80211_sta *ap ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { priv = (struct mwl8k_priv *)hw->priv; ap_legacy_rates = 0U; tmp = mwl8k_fw_lock(hw); if (tmp != 0) { return; } else { } if ((int )changed & 1 && ! vif->bss_conf.assoc) { priv->capture_beacon = 0; } else { } if ((int )vif->bss_conf.assoc) { rcu_read_lock(); ap = ieee80211_find_sta(vif, vif->bss_conf.bssid); if ((unsigned long )ap == (unsigned long )((struct ieee80211_sta *)0)) { rcu_read_unlock(); goto out; } else { } if ((unsigned int )(hw->conf.channel)->band == 0U) { ap_legacy_rates = ap->supp_rates[0]; } else { ap_legacy_rates = ap->supp_rates[1] << 5; } __len = 16UL; if (__len > 63UL) { __ret = memcpy((void *)(& ap_mcs_rates), (void const *)(& ap->ht_cap.mcs.rx_mask), __len); } else { __ret = memcpy((void *)(& ap_mcs_rates), (void const *)(& ap->ht_cap.mcs.rx_mask), __len); } rcu_read_unlock(); } else { } if ((int )changed & 1 && (int )vif->bss_conf.assoc) { rc = mwl8k_cmd_set_rate(hw, vif, ap_legacy_rates, (u8 *)(& ap_mcs_rates)); if (rc != 0) { goto out; } else { } rc = mwl8k_cmd_use_fixed_rate_sta(hw); if (rc != 0) { goto out; } else { } } else { } if ((changed & 4U) != 0U) { rc = mwl8k_set_radio_preamble(hw, (int )vif->bss_conf.use_short_preamble); if (rc != 0) { goto out; } else { } } else { } if ((changed & 8U) != 0U) { rc = mwl8k_cmd_set_slot(hw, (int )vif->bss_conf.use_short_slot); if (rc != 0) { goto out; } else { } } else { } if ((int )vif->bss_conf.assoc && (changed & 19U) != 0U) { rc = mwl8k_cmd_set_aid(hw, vif, ap_legacy_rates); if (rc != 0) { goto out; } else { } } else { } if ((int )vif->bss_conf.assoc && (changed & 65U) != 0U) { __len___0 = 6UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& priv->capture_bssid), (void const *)vif->bss_conf.bssid, __len___0); } else { __ret___0 = memcpy((void *)(& priv->capture_bssid), (void const *)vif->bss_conf.bssid, __len___0); } priv->capture_beacon = 1; } else { } out: mwl8k_fw_unlock(hw); return; } } static void mwl8k_bss_info_changed_ap(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_bss_conf *info , u32 changed ) { int rc ; int tmp ; int idx ; int rate ; struct sk_buff *skb ; { tmp = mwl8k_fw_lock(hw); if (tmp != 0) { return; } else { } if ((changed & 4U) != 0U) { rc = mwl8k_set_radio_preamble(hw, (int )vif->bss_conf.use_short_preamble); if (rc != 0) { goto out; } else { } } else { } if ((changed & 32U) != 0U) { idx = ffs((int )vif->bss_conf.basic_rates); if (idx != 0) { idx = idx - 1; } else { } if ((unsigned int )(hw->conf.channel)->band == 0U) { rate = (int )mwl8k_rates_24[idx].hw_value; } else { rate = (int )mwl8k_rates_50[idx].hw_value; } mwl8k_cmd_use_fixed_rate_ap(hw, rate, rate); } else { } if ((changed & 320U) != 0U) { skb = ieee80211_beacon_get(hw, vif); if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { mwl8k_cmd_set_beacon(hw, vif, skb->data, (int )skb->len); kfree_skb(skb); } else { } } else { } if ((changed & 512U) != 0U) { mwl8k_cmd_bss_start(hw, vif, (int )info->enable_beacon); } else { } out: mwl8k_fw_unlock(hw); return; } } static void mwl8k_bss_info_changed(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_bss_conf *info , u32 changed ) { struct mwl8k_priv *priv ; { priv = (struct mwl8k_priv *)hw->priv; if (! priv->ap_fw) { mwl8k_bss_info_changed_sta(hw, vif, info, changed); } else { mwl8k_bss_info_changed_ap(hw, vif, info, changed); } return; } } static u64 mwl8k_prepare_multicast(struct ieee80211_hw *hw , struct netdev_hw_addr_list *mc_list ) { struct mwl8k_cmd_pkt *cmd ; { cmd = __mwl8k_cmd_mac_multicast_adr(hw, 0, mc_list); return ((u64 )cmd); } } static int mwl8k_configure_filter_sniffer(struct ieee80211_hw *hw , unsigned int changed_flags , unsigned int *total_flags ) { struct mwl8k_priv *priv ; int tmp ; int tmp___0 ; int tmp___1 ; { priv = (struct mwl8k_priv *)hw->priv; tmp___0 = list_empty((struct list_head const *)(& priv->vif_list)); if (tmp___0 == 0) { tmp = net_ratelimit(); if (tmp != 0) { _dev_info((struct device const *)(& (hw->wiphy)->dev), "not enabling sniffer mode because STA interface is active\n"); } else { } return (0); } else { } if (! priv->sniffer_enabled) { tmp___1 = mwl8k_cmd_enable_sniffer(hw, 1); if (tmp___1 != 0) { return (0); } else { } priv->sniffer_enabled = 1; } else { } *total_flags = *total_flags & 115U; return (1); } } static struct mwl8k_vif *mwl8k_first_vif(struct mwl8k_priv *priv ) { struct list_head const *__mptr ; int tmp ; { tmp = list_empty((struct list_head const *)(& priv->vif_list)); if (tmp == 0) { __mptr = (struct list_head const *)priv->vif_list.next; return ((struct mwl8k_vif *)__mptr); } else { } return (0); } } static void mwl8k_configure_filter(struct ieee80211_hw *hw , unsigned int changed_flags , unsigned int *total_flags , u64 multicast ) { struct mwl8k_priv *priv ; struct mwl8k_cmd_pkt *cmd ; int tmp ; int tmp___0 ; struct mwl8k_vif *mwl8k_vif ; u8 const *bssid ; { priv = (struct mwl8k_priv *)hw->priv; cmd = (struct mwl8k_cmd_pkt *)multicast; if ((int )priv->ap_fw) { *total_flags = *total_flags & 18U; kfree((void const *)cmd); return; } else { } if ((*total_flags & 96U) != 0U) { tmp = mwl8k_configure_filter_sniffer(hw, changed_flags, total_flags); if (tmp != 0) { kfree((void const *)cmd); return; } else { } } else { } *total_flags = *total_flags & 18U; tmp___0 = mwl8k_fw_lock(hw); if (tmp___0 != 0) { kfree((void const *)cmd); return; } else { } if ((int )priv->sniffer_enabled) { mwl8k_cmd_enable_sniffer(hw, 0); priv->sniffer_enabled = 0; } else { } if ((changed_flags & 16U) != 0U) { if ((*total_flags & 16U) != 0U) { mwl8k_cmd_set_pre_scan(hw); } else { mwl8k_vif = mwl8k_first_vif(priv); if ((unsigned long )mwl8k_vif != (unsigned long )((struct mwl8k_vif *)0)) { bssid = (mwl8k_vif->vif)->bss_conf.bssid; } else { bssid = (u8 const *)"\001"; } mwl8k_cmd_set_post_scan(hw, bssid); } } else { } if ((*total_flags & 2U) != 0U) { kfree((void const *)cmd); cmd = __mwl8k_cmd_mac_multicast_adr(hw, 1, 0); } else { } if ((unsigned long )cmd != (unsigned long )((struct mwl8k_cmd_pkt *)0)) { mwl8k_post_cmd(hw, cmd); kfree((void const *)cmd); } else { } mwl8k_fw_unlock(hw); return; } } static int mwl8k_set_rts_threshold(struct ieee80211_hw *hw , u32 value ) { int tmp ; { tmp = mwl8k_cmd_set_rts_threshold(hw, (int )value); return (tmp); } } static int mwl8k_sta_remove(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_sta *sta ) { struct mwl8k_priv *priv ; int tmp ; int tmp___0 ; { priv = (struct mwl8k_priv *)hw->priv; if ((int )priv->ap_fw) { tmp = mwl8k_cmd_set_new_stn_del(hw, vif, (u8 *)(& sta->addr)); return (tmp); } else { tmp___0 = mwl8k_cmd_update_stadb_del(hw, vif, (u8 *)(& sta->addr)); return (tmp___0); } } } static int mwl8k_sta_add(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_sta *sta ) { struct mwl8k_priv *priv ; int ret ; int i ; struct mwl8k_vif *mwl8k_vif ; struct ieee80211_key_conf *key ; { priv = (struct mwl8k_priv *)hw->priv; mwl8k_vif = (struct mwl8k_vif *)(& vif->drv_priv); if (! priv->ap_fw) { ret = mwl8k_cmd_update_stadb_add(hw, vif, sta); if (ret >= 0) { ((struct mwl8k_sta *)(& sta->drv_priv))->peer_id = (u8 )ret; if ((int )sta->ht_cap.ht_supported) { ((struct mwl8k_sta *)(& sta->drv_priv))->is_ampdu_allowed = 1U; } else { } ret = 0; } else { } } else { ret = mwl8k_cmd_set_new_stn_add(hw, vif, sta); } i = 0; goto ldv_45256; ldv_45255: key = (struct ieee80211_key_conf *)(& mwl8k_vif->wep_key_conf[i].key); if ((unsigned int )mwl8k_vif->wep_key_conf[i].enabled != 0U) { mwl8k_set_key(hw, SET_KEY, vif, sta, key); } else { } i = i + 1; ldv_45256: ; if (i <= 3) { goto ldv_45255; } else { } return (ret); } } static int mwl8k_conf_tx(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u16 queue , struct ieee80211_tx_queue_params const *params ) { struct mwl8k_priv *priv ; int rc ; long tmp ; size_t __len ; void *__ret ; int q ; { priv = (struct mwl8k_priv *)hw->priv; rc = mwl8k_fw_lock(hw); if (rc == 0) { tmp = ldv__builtin_expect((unsigned int )queue > 3U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (5080), "i" (12UL)); ldv_45266: ; goto ldv_45266; } else { } __len = 8UL; if (__len > 63UL) { __ret = memcpy((void *)(& priv->wmm_params) + (unsigned long )queue, (void const *)params, __len); } else { __ret = memcpy((void *)(& priv->wmm_params) + (unsigned long )queue, (void const *)params, __len); } if (! priv->wmm_enabled) { rc = mwl8k_cmd_set_wmm_mode(hw, 1); } else { } if (rc == 0) { q = 3 - (int )queue; rc = mwl8k_cmd_set_edca_params(hw, (int )((__u8 )q), (int )params->cw_min, (int )params->cw_max, (int )params->aifs, (int )params->txop); } else { } mwl8k_fw_unlock(hw); } else { } return (rc); } } static int mwl8k_get_stats(struct ieee80211_hw *hw , struct ieee80211_low_level_stats *stats ) { int tmp ; { tmp = mwl8k_cmd_get_stat(hw, stats); return (tmp); } } static int mwl8k_get_survey(struct ieee80211_hw *hw , int idx , struct survey_info *survey ) { struct mwl8k_priv *priv ; struct ieee80211_conf *conf ; { priv = (struct mwl8k_priv *)hw->priv; conf = & hw->conf; if (idx != 0) { return (-2); } else { } survey->channel = conf->channel; survey->filled = 1U; survey->noise = priv->noise; return (0); } } static int mwl8k_ampdu_action(struct ieee80211_hw *hw , struct ieee80211_vif *vif , enum ieee80211_ampdu_mlme_action action , struct ieee80211_sta *sta , u16 tid , u16 *ssn , u8 buf_size ) { int i ; int rc ; struct mwl8k_priv *priv ; struct mwl8k_ampdu_stream *stream ; u8 *addr ; long tmp ; long tmp___0 ; { rc = 0; priv = (struct mwl8k_priv *)hw->priv; addr = (u8 *)(& sta->addr); if ((hw->flags & 512U) == 0U) { return (-524); } else { } spin_lock(& priv->stream_lock); stream = mwl8k_lookup_stream(hw, addr, (int )((u8 )tid)); switch ((unsigned int )action) { case 0U: ; case 1U: ; goto ldv_45298; case 2U: *ssn = 0U; if ((unsigned long )stream == (unsigned long )((struct mwl8k_ampdu_stream *)0)) { dev_warn((struct device const *)(& (hw->wiphy)->dev), "Unexpected call to %s. Proceeding anyway.\n", "mwl8k_ampdu_action"); stream = mwl8k_add_stream(hw, sta, (int )((u8 )tid)); } else { } if ((unsigned long )stream == (unsigned long )((struct mwl8k_ampdu_stream *)0)) { dev_printk("\017", (struct device const *)(& (hw->wiphy)->dev), "no free AMPDU streams\n"); rc = -16; goto ldv_45298; } else { } stream->state = 2U; spin_unlock(& priv->stream_lock); i = 0; goto ldv_45303; ldv_45302: rc = mwl8k_check_ba(hw, stream); if (rc == 0 || rc == -16) { goto ldv_45301; } else { } msleep(1000U); i = i + 1; ldv_45303: ; if (i <= 4) { goto ldv_45302; } else { } ldv_45301: spin_lock(& priv->stream_lock); if (rc != 0) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Stream for tid %d busy after %d attempts\n", (int )tid, 5); mwl8k_remove_stream(hw, stream); rc = -16; goto ldv_45298; } else { } ieee80211_start_tx_ba_cb_irqsafe(vif, (u8 const *)addr, (int )tid); goto ldv_45298; case 3U: ; if ((unsigned long )stream != (unsigned long )((struct mwl8k_ampdu_stream *)0)) { if ((unsigned int )stream->state == 3U) { spin_unlock(& priv->stream_lock); mwl8k_destroy_ba(hw, stream); spin_lock(& priv->stream_lock); } else { } mwl8k_remove_stream(hw, stream); } else { } ieee80211_stop_tx_ba_cb_irqsafe(vif, (u8 const *)addr, (int )tid); goto ldv_45298; case 4U: tmp = ldv__builtin_expect((unsigned long )stream == (unsigned long )((struct mwl8k_ampdu_stream *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (5215), "i" (12UL)); ldv_45306: ; goto ldv_45306; } else { } tmp___0 = ldv__builtin_expect((unsigned int )stream->state != 2U, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (5216), "i" (12UL)); ldv_45307: ; goto ldv_45307; } else { } spin_unlock(& priv->stream_lock); rc = mwl8k_create_ba(hw, stream, (int )buf_size); spin_lock(& priv->stream_lock); if (rc == 0) { stream->state = 3U; } else { spin_unlock(& priv->stream_lock); mwl8k_destroy_ba(hw, stream); spin_lock(& priv->stream_lock); dev_printk("\017", (struct device const *)(& (hw->wiphy)->dev), "Failed adding stream for sta %pM tid %d\n", addr, (int )tid); mwl8k_remove_stream(hw, stream); } goto ldv_45298; default: rc = -524; } ldv_45298: spin_unlock(& priv->stream_lock); return (rc); } } static struct ieee80211_ops const mwl8k_ops = {& mwl8k_tx, & mwl8k_start, & mwl8k_stop, 0, 0, 0, & mwl8k_add_interface, 0, & mwl8k_remove_interface, & mwl8k_config, & mwl8k_bss_info_changed, & mwl8k_prepare_multicast, & mwl8k_configure_filter, 0, & mwl8k_set_key, 0, 0, 0, 0, 0, 0, 0, 0, & mwl8k_get_stats, 0, 0, & mwl8k_set_rts_threshold, & mwl8k_sta_add, & mwl8k_sta_remove, 0, 0, 0, & mwl8k_conf_tx, 0, 0, 0, 0, & mwl8k_ampdu_action, & mwl8k_get_survey, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void mwl8k_finalize_join_worker(struct work_struct *work ) { struct mwl8k_priv *priv ; struct work_struct const *__mptr ; struct sk_buff *skb ; struct ieee80211_mgmt *mgmt ; int len ; u8 const *tim ; u8 const *tmp ; int dtim_period ; { __mptr = (struct work_struct const *)work; priv = (struct mwl8k_priv *)__mptr + 0xfffffffffffff678UL; skb = priv->beacon_skb; mgmt = (struct ieee80211_mgmt *)skb->data; len = (int )(skb->len - 36U); tmp = cfg80211_find_ie(5, (u8 const *)(& mgmt->u.beacon.variable), len); tim = tmp; dtim_period = 1; if ((unsigned long )tim != (unsigned long )((u8 const *)0) && (unsigned int )((unsigned char )*(tim + 1UL)) > 1U) { dtim_period = (int )*(tim + 3UL); } else { } mwl8k_cmd_finalize_join(priv->hw, (void *)skb->data, (int )skb->len, dtim_period); consume_skb(skb); priv->beacon_skb = 0; return; } } static struct mwl8k_device_info mwl8k_info_tbl[3U] = { {(char *)"88w8363", (char *)"mwl8k/helper_8363.fw", (char *)"mwl8k/fmimage_8363.fw", 0, 0, 0U}, {(char *)"88w8687", (char *)"mwl8k/helper_8687.fw", (char *)"mwl8k/fmimage_8687.fw", 0, 0, 0U}, {(char *)"88w8366", (char *)"mwl8k/helper_8366.fw", (char *)"mwl8k/fmimage_8366.fw", (char *)"mwl8k/fmimage_8366_ap-2.fw", & rxd_8366_ap_ops, 2U}}; struct pci_device_id const __mod_pci_device_table ; static int mwl8k_request_alt_fw(struct mwl8k_priv *priv ) { int rc ; char const *tmp ; char const *tmp___0 ; { tmp = pci_name((struct pci_dev const *)priv->pdev); printk("\v%s: Error requesting preferred fw %s.\nTrying alternative firmware %s\n", tmp, priv->fw_pref, priv->fw_alt); rc = mwl8k_request_fw(priv, (char const *)priv->fw_alt, & priv->fw_ucode, 1); if (rc != 0) { tmp___0 = pci_name((struct pci_dev const *)priv->pdev); printk("\v%s: Error requesting alt fw %s\n", tmp___0, priv->fw_alt); return (rc); } else { } return (0); } } static int mwl8k_firmware_load_success(struct mwl8k_priv *priv ) ; static void mwl8k_fw_state_machine(struct firmware const *fw , void *context ) { struct mwl8k_priv *priv ; struct mwl8k_device_info *di ; int rc ; char const *tmp ; char const *tmp___0 ; { priv = (struct mwl8k_priv *)context; di = priv->device_info; switch (priv->fw_state) { case 0U: ; if ((unsigned long )fw == (unsigned long )((struct firmware const *)0)) { tmp = pci_name((struct pci_dev const *)priv->pdev); printk("\v%s: Error requesting helper fw %s\n", tmp, di->helper_image); goto fail; } else { } priv->fw_helper = fw; rc = mwl8k_request_fw(priv, (char const *)priv->fw_pref, & priv->fw_ucode, 1); if (rc != 0 && (unsigned long )priv->fw_alt != (unsigned long )((char *)0)) { rc = mwl8k_request_alt_fw(priv); if (rc != 0) { goto fail; } else { } priv->fw_state = 2U; } else if (rc != 0) { goto fail; } else { priv->fw_state = 1U; } goto ldv_45350; case 1U: ; if ((unsigned long )fw == (unsigned long )((struct firmware const *)0)) { if ((unsigned long )priv->fw_alt != (unsigned long )((char *)0)) { rc = mwl8k_request_alt_fw(priv); if (rc != 0) { goto fail; } else { } priv->fw_state = 2U; } else { goto fail; } } else { priv->fw_ucode = fw; rc = mwl8k_firmware_load_success(priv); if (rc != 0) { goto fail; } else { complete(& priv->firmware_loading_complete); } } goto ldv_45350; case 2U: ; if ((unsigned long )fw == (unsigned long )((struct firmware const *)0)) { tmp___0 = pci_name((struct pci_dev const *)priv->pdev); printk("\v%s: Error requesting alt fw %s\n", tmp___0, di->helper_image); goto fail; } else { } priv->fw_ucode = fw; rc = mwl8k_firmware_load_success(priv); if (rc != 0) { goto fail; } else { complete(& priv->firmware_loading_complete); } goto ldv_45350; default: printk("\v%s: Unexpected firmware loading state: %d\n", (char *)"mwl8k", priv->fw_state); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/vladimir/UFO/Work/test/work/current--X--drivers/net/wireless/mwl8k.ko--X--defaultlinux-3.7.3--X--32_7a--X--ufo/linux-3.7.3/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/net/wireless/mwl8k.c.prepared"), "i" (5411), "i" (12UL)); ldv_45354: ; goto ldv_45354; } ldv_45350: ; return; fail: priv->fw_state = 3U; complete(& priv->firmware_loading_complete); device_release_driver(& (priv->pdev)->dev); mwl8k_release_firmware(priv); return; } } static int mwl8k_init_firmware(struct ieee80211_hw *hw , char *fw_image , bool nowait ) { struct mwl8k_priv *priv ; int rc ; int count ; { priv = (struct mwl8k_priv *)hw->priv; count = 1; retry: mwl8k_hw_reset(priv); rc = mwl8k_request_firmware(priv, fw_image, (int )nowait); if (rc != 0) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Firmware files not found\n"); return (rc); } else { } if ((int )nowait) { return (rc); } else { } rc = mwl8k_load_firmware(hw); if (rc != 0) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Cannot start firmware\n"); } else { } mwl8k_release_firmware(priv); if (rc != 0 && count != 0) { count = count - 1; dev_err((struct device const *)(& (hw->wiphy)->dev), "Trying to reload the firmware again\n"); msleep(20U); goto retry; } else { } return (rc); } } static int mwl8k_init_txqs(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; int rc ; int i ; { priv = (struct mwl8k_priv *)hw->priv; rc = 0; i = 0; goto ldv_45372; ldv_45371: rc = mwl8k_txq_init(hw, i); if (rc != 0) { goto ldv_45370; } else { } if ((int )priv->ap_fw) { iowrite32((u32 )priv->txq[i].txd_dma, priv->sram + (unsigned long )priv->txq_offset[i]); } else { } i = i + 1; ldv_45372: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_45371; } else { } ldv_45370: ; return (rc); } } static int mwl8k_probe_hw(struct ieee80211_hw *hw ) { struct mwl8k_priv *priv ; int rc ; int i ; { priv = (struct mwl8k_priv *)hw->priv; rc = 0; if ((int )priv->ap_fw) { priv->rxd_ops = (priv->device_info)->ap_rxd_ops; if ((unsigned long )priv->rxd_ops == (unsigned long )((struct rxd_ops *)0)) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Driver does not have AP firmware image support for this hardware\n"); goto err_stop_firmware; } else { } } else { priv->rxd_ops = & rxd_sta_ops; } priv->sniffer_enabled = 0; priv->wmm_enabled = 0; priv->pending_tx_pkts = 0; rc = mwl8k_rxq_init(hw, 0); if (rc != 0) { goto err_stop_firmware; } else { } rxq_refill(hw, 0, 2147483647); priv->num_ampdu_queues = 0U; if (! priv->ap_fw) { rc = mwl8k_init_txqs(hw); if (rc != 0) { goto err_free_queues; } else { } } else { } iowrite32(0U, priv->regs + 3120UL); iowrite32(0U, priv->regs + 3124UL); iowrite32(16387U, priv->regs + 3128UL); iowrite32(4U, priv->regs + 3132UL); rc = request_irq((priv->pdev)->irq, & mwl8k_interrupt, 128UL, "mwl8k", (void *)hw); if (rc != 0) { dev_err((struct device const *)(& (hw->wiphy)->dev), "failed to register IRQ handler\n"); goto err_free_queues; } else { } if (! priv->hw_restart_in_progress) { memset((void *)(& priv->ampdu), 0, 128UL); } else { } iowrite32(1068271U, priv->regs + 3124UL); if ((int )priv->ap_fw) { rc = mwl8k_cmd_get_hw_spec_ap(hw); if (rc == 0) { rc = mwl8k_init_txqs(hw); } else { } if (rc == 0) { rc = mwl8k_cmd_set_hw_spec(hw); } else { } } else { rc = mwl8k_cmd_get_hw_spec_sta(hw); } if (rc != 0) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Cannot initialise firmware\n"); goto err_free_irq; } else { } rc = mwl8k_cmd_radio_disable(hw); if (rc != 0) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Cannot disable\n"); goto err_free_irq; } else { } rc = mwl8k_cmd_set_mac_addr(hw, 0, (u8 *)""); if (rc != 0) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Cannot clear MAC address\n"); goto err_free_irq; } else { } iowrite32(0U, priv->regs + 3124UL); free_irq((priv->pdev)->irq, (void *)hw); _dev_info((struct device const *)(& (hw->wiphy)->dev), "%s v%d, %pm, %s firmware %u.%u.%u.%u\n", (priv->device_info)->part_name, (int )priv->hw_rev, (u8 *)(& (hw->wiphy)->perm_addr), (int )priv->ap_fw ? (char *)"AP" : (char *)"STA", priv->fw_rev >> 24, (priv->fw_rev >> 16) & 255U, (priv->fw_rev >> 8) & 255U, priv->fw_rev & 255U); return (0); err_free_irq: iowrite32(0U, priv->regs + 3124UL); free_irq((priv->pdev)->irq, (void *)hw); err_free_queues: i = 0; goto ldv_45383; ldv_45382: mwl8k_txq_deinit(hw, i); i = i + 1; ldv_45383: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_45382; } else { } mwl8k_rxq_deinit(hw, 0); err_stop_firmware: mwl8k_hw_reset(priv); return (rc); } } static int mwl8k_reload_firmware(struct ieee80211_hw *hw , char *fw_image ) { int i ; int rc ; struct mwl8k_priv *priv ; struct mwl8k_vif *vif ; struct mwl8k_vif *tmp_vif ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { rc = 0; priv = (struct mwl8k_priv *)hw->priv; mwl8k_stop(hw); mwl8k_rxq_deinit(hw, 0); if ((int )priv->hw_restart_in_progress) { __mptr = (struct list_head const *)priv->vif_list.next; vif = (struct mwl8k_vif *)__mptr; __mptr___0 = (struct list_head const *)vif->list.next; tmp_vif = (struct mwl8k_vif *)__mptr___0; goto ldv_45401; ldv_45400: mwl8k_remove_vif(priv, vif); vif = tmp_vif; __mptr___1 = (struct list_head const *)tmp_vif->list.next; tmp_vif = (struct mwl8k_vif *)__mptr___1; ldv_45401: ; if ((unsigned long )(& vif->list) != (unsigned long )(& priv->vif_list)) { goto ldv_45400; } else { } } else { } i = 0; goto ldv_45404; ldv_45403: mwl8k_txq_deinit(hw, i); i = i + 1; ldv_45404: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_45403; } else { } rc = mwl8k_init_firmware(hw, fw_image, 0); if (rc != 0) { goto fail; } else { } rc = mwl8k_probe_hw(hw); if (rc != 0) { goto fail; } else { } if ((int )priv->hw_restart_in_progress) { return (rc); } else { } rc = mwl8k_start(hw); if (rc != 0) { goto fail; } else { } rc = mwl8k_config(hw, 4294967295U); if (rc != 0) { goto fail; } else { } i = 0; goto ldv_45408; ldv_45407: rc = mwl8k_conf_tx(hw, 0, (int )((u16 )i), (struct ieee80211_tx_queue_params const *)(& priv->wmm_params) + (unsigned long )i); if (rc != 0) { goto fail; } else { } i = i + 1; ldv_45408: ; if (i <= 3) { goto ldv_45407; } else { } return (rc); fail: printk("\fmwl8k: Failed to reload firmware image.\n"); return (rc); } } static int mwl8k_firmware_load_success(struct mwl8k_priv *priv ) { struct ieee80211_hw *hw ; int i ; int rc ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_2 ; void *tmp ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; struct lock_class_key __key___4 ; { hw = priv->hw; rc = mwl8k_load_firmware(hw); mwl8k_release_firmware(priv); if (rc != 0) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Cannot start firmware\n"); return (rc); } else { } hw->extra_tx_headroom = 22U; hw->extra_tx_headroom = hw->extra_tx_headroom - ((int )priv->ap_fw ? 8U : 0U); hw->channel_change_time = 10; hw->queues = 4U; hw->flags = hw->flags | 65U; if ((int )priv->ap_fw) { hw->flags = hw->flags | 4194304U; } else { } hw->vif_data_size = 144; hw->sta_data_size = 68; priv->macids_used = 0U; INIT_LIST_HEAD(& priv->vif_list); priv->radio_on = 0; priv->radio_short_preamble = 0; __init_work(& priv->finalize_join_worker, 0); __constr_expr_0.counter = 4195328L; priv->finalize_join_worker.data = __constr_expr_0; lockdep_init_map(& priv->finalize_join_worker.lockdep_map, "(&priv->finalize_join_worker)", & __key, 0); INIT_LIST_HEAD(& priv->finalize_join_worker.entry); priv->finalize_join_worker.func = & mwl8k_finalize_join_worker; __init_work(& priv->watchdog_ba_handle, 0); __constr_expr_1.counter = 4195328L; priv->watchdog_ba_handle.data = __constr_expr_1; lockdep_init_map(& priv->watchdog_ba_handle.lockdep_map, "(&priv->watchdog_ba_handle)", & __key___0, 0); INIT_LIST_HEAD(& priv->watchdog_ba_handle.entry); priv->watchdog_ba_handle.func = & mwl8k_watchdog_ba_events; __init_work(& priv->fw_reload, 0); __constr_expr_2.counter = 4195328L; priv->fw_reload.data = __constr_expr_2; lockdep_init_map(& priv->fw_reload.lockdep_map, "(&priv->fw_reload)", & __key___1, 0); INIT_LIST_HEAD(& priv->fw_reload.entry); priv->fw_reload.func = & mwl8k_hw_restart_work; tasklet_init(& priv->poll_tx_task, & mwl8k_tx_poll, (unsigned long )hw); tasklet_disable(& priv->poll_tx_task); tasklet_init(& priv->poll_rx_task, & mwl8k_rx_poll, (unsigned long )hw); tasklet_disable(& priv->poll_rx_task); tmp = pci_alloc_consistent(priv->pdev, 4UL, & priv->cookie_dma); priv->cookie = (u32 *)tmp; if ((unsigned long )priv->cookie == (unsigned long )((u32 *)0)) { return (-12); } else { } __mutex_init(& priv->fw_mutex, "&priv->fw_mutex", & __key___2); priv->fw_mutex_owner = 0; priv->fw_mutex_depth = 0; priv->hostcmd_wait = 0; spinlock_check(& priv->tx_lock); __raw_spin_lock_init(& priv->tx_lock.ldv_5957.rlock, "&(&priv->tx_lock)->rlock", & __key___3); spinlock_check(& priv->stream_lock); __raw_spin_lock_init(& priv->stream_lock.ldv_5957.rlock, "&(&priv->stream_lock)->rlock", & __key___4); priv->tx_wait = 0; rc = mwl8k_probe_hw(hw); if (rc != 0) { goto err_free_cookie; } else { } (hw->wiphy)->interface_modes = 0U; if (priv->ap_macids_supported != 0U || (unsigned long )(priv->device_info)->fw_image_ap != (unsigned long )((char *)0)) { (hw->wiphy)->interface_modes = (u16 )((unsigned int )(hw->wiphy)->interface_modes | 8U); } else { } if (priv->sta_macids_supported != 0U || (unsigned long )(priv->device_info)->fw_image_sta != (unsigned long )((char *)0)) { (hw->wiphy)->interface_modes = (u16 )((unsigned int )(hw->wiphy)->interface_modes | 4U); } else { } rc = ieee80211_register_hw(hw); if (rc != 0) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Cannot register device\n"); goto err_unprobe_hw; } else { } return (0); err_unprobe_hw: i = 0; goto ldv_45428; ldv_45427: mwl8k_txq_deinit(hw, i); i = i + 1; ldv_45428: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_45427; } else { } mwl8k_rxq_deinit(hw, 0); err_free_cookie: ; if ((unsigned long )priv->cookie != (unsigned long )((u32 *)0)) { pci_free_consistent(priv->pdev, 4UL, (void *)priv->cookie, priv->cookie_dma); } else { } return (rc); } } static int mwl8k_probe(struct pci_dev *pdev , struct pci_device_id const *id ) { int printed_version ; struct ieee80211_hw *hw ; struct mwl8k_priv *priv ; struct mwl8k_device_info *di ; int rc ; { if (printed_version == 0) { printk("\016%s version %s\n", (char *)"Marvell TOPDOG(R) 802.11 Wireless Network Driver", (char *)"0.13"); printed_version = 1; } else { } rc = pci_enable_device(pdev); if (rc != 0) { printk("\v%s: Cannot enable new PCI device\n", (char *)"mwl8k"); return (rc); } else { } rc = pci_request_regions(pdev, "mwl8k"); if (rc != 0) { printk("\v%s: Cannot obtain PCI resources\n", (char *)"mwl8k"); goto err_disable_device; } else { } pci_set_master(pdev); hw = ieee80211_alloc_hw(2840UL, & mwl8k_ops); if ((unsigned long )hw == (unsigned long )((struct ieee80211_hw *)0)) { printk("\v%s: ieee80211 alloc failed\n", (char *)"mwl8k"); rc = -12; goto err_free_reg; } else { } SET_IEEE80211_DEV(hw, & pdev->dev); pci_set_drvdata(pdev, (void *)hw); priv = (struct mwl8k_priv *)hw->priv; priv->hw = hw; priv->pdev = pdev; priv->device_info = (struct mwl8k_device_info *)(& mwl8k_info_tbl) + id->driver_data; priv->sram = pci_iomap(pdev, 0, 65536UL); if ((unsigned long )priv->sram == (unsigned long )((void *)0)) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Cannot map device SRAM\n"); goto err_iounmap; } else { } priv->regs = pci_iomap(pdev, 1, 65536UL); if ((unsigned long )priv->regs == (unsigned long )((void *)0)) { priv->regs = pci_iomap(pdev, 2, 65536UL); if ((unsigned long )priv->regs == (unsigned long )((void *)0)) { dev_err((struct device const *)(& (hw->wiphy)->dev), "Cannot map device registers\n"); goto err_iounmap; } else { } } else { } init_completion(& priv->firmware_loading_complete); di = priv->device_info; if ((int )ap_mode_default && (unsigned long )di->fw_image_ap != (unsigned long )((char *)0)) { priv->fw_pref = di->fw_image_ap; priv->fw_alt = di->fw_image_sta; } else if (! ap_mode_default && (unsigned long )di->fw_image_sta != (unsigned long )((char *)0)) { priv->fw_pref = di->fw_image_sta; priv->fw_alt = di->fw_image_ap; } else if (((int )ap_mode_default && (unsigned long )di->fw_image_ap == (unsigned long )((char *)0)) && (unsigned long )di->fw_image_sta != (unsigned long )((char *)0)) { printk("\fAP fw is unavailable. Using STA fw."); priv->fw_pref = di->fw_image_sta; } else if ((! ap_mode_default && (unsigned long )di->fw_image_sta == (unsigned long )((char *)0)) && (unsigned long )di->fw_image_ap != (unsigned long )((char *)0)) { printk("\fSTA fw is unavailable. Using AP fw."); priv->fw_pref = di->fw_image_ap; } else { } rc = mwl8k_init_firmware(hw, priv->fw_pref, 1); if (rc != 0) { goto err_stop_firmware; } else { } priv->hw_restart_in_progress = 0; return (rc); err_stop_firmware: mwl8k_hw_reset(priv); err_iounmap: ; if ((unsigned long )priv->regs != (unsigned long )((void *)0)) { pci_iounmap(pdev, priv->regs); } else { } if ((unsigned long )priv->sram != (unsigned long )((void *)0)) { pci_iounmap(pdev, priv->sram); } else { } pci_set_drvdata(pdev, 0); ieee80211_free_hw(hw); err_free_reg: pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); return (rc); } } static void mwl8k_shutdown(struct pci_dev *pdev ) { { printk("\v===>%s(%u)\n", "mwl8k_shutdown", 5891); return; } } static void mwl8k_remove(struct pci_dev *pdev ) { struct ieee80211_hw *hw ; void *tmp ; struct mwl8k_priv *priv ; int i ; { tmp = pci_get_drvdata(pdev); hw = (struct ieee80211_hw *)tmp; if ((unsigned long )hw == (unsigned long )((struct ieee80211_hw *)0)) { return; } else { } priv = (struct mwl8k_priv *)hw->priv; wait_for_completion(& priv->firmware_loading_complete); if (priv->fw_state == 3U) { mwl8k_hw_reset(priv); goto unmap; } else { } ieee80211_stop_queues(hw); ieee80211_unregister_hw(hw); tasklet_kill(& priv->poll_tx_task); tasklet_kill(& priv->poll_rx_task); mwl8k_hw_reset(priv); i = 0; goto ldv_45455; ldv_45454: mwl8k_txq_reclaim(hw, i, 2147483647, 1); i = i + 1; ldv_45455: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_45454; } else { } i = 0; goto ldv_45458; ldv_45457: mwl8k_txq_deinit(hw, i); i = i + 1; ldv_45458: ; if ((int )priv->num_ampdu_queues + 4 > i) { goto ldv_45457; } else { } mwl8k_rxq_deinit(hw, 0); pci_free_consistent(priv->pdev, 4UL, (void *)priv->cookie, priv->cookie_dma); unmap: pci_iounmap(pdev, priv->regs); pci_iounmap(pdev, priv->sram); pci_set_drvdata(pdev, 0); ieee80211_free_hw(hw); pci_release_regions(pdev); pci_disable_device(pdev); return; } } void ldv_check_final_state(void) ; extern void ldv_check_return_value(int ) ; extern void ldv_check_return_value_probe(int ) ; void ldv_initialize(void) ; extern void ldv_handler_precall(void) ; extern int __VERIFIER_nondet_int(void) ; int LDV_IN_INTERRUPT ; int main(void) { void *var_mwl8k_rxd_8366_ap_init_13_p0 ; dma_addr_t var_mwl8k_rxd_8366_ap_init_13_p1 ; void *var_mwl8k_rxd_8366_ap_refill_14_p0 ; dma_addr_t var_mwl8k_rxd_8366_ap_refill_14_p1 ; int var_mwl8k_rxd_8366_ap_refill_14_p2 ; void *var_mwl8k_rxd_8366_ap_process_15_p0 ; struct ieee80211_rx_status *var_group1 ; __le16 *var_mwl8k_rxd_8366_ap_process_15_p2 ; s8 *var_mwl8k_rxd_8366_ap_process_15_p3 ; void *var_mwl8k_rxd_sta_init_16_p0 ; dma_addr_t var_mwl8k_rxd_sta_init_16_p1 ; void *var_mwl8k_rxd_sta_refill_17_p0 ; dma_addr_t var_mwl8k_rxd_sta_refill_17_p1 ; int var_mwl8k_rxd_sta_refill_17_p2 ; void *var_mwl8k_rxd_sta_process_18_p0 ; __le16 *var_mwl8k_rxd_sta_process_18_p2 ; s8 *var_mwl8k_rxd_sta_process_18_p3 ; struct ieee80211_hw *var_group2 ; struct ieee80211_tx_control *var_group3 ; struct sk_buff *var_mwl8k_tx_99_p2 ; struct ieee80211_vif *var_group4 ; u32 var_mwl8k_config_106_p1 ; struct ieee80211_bss_conf *var_mwl8k_bss_info_changed_109_p2 ; u32 var_mwl8k_bss_info_changed_109_p3 ; struct netdev_hw_addr_list *var_group5 ; unsigned int var_mwl8k_configure_filter_113_p1 ; unsigned int *var_mwl8k_configure_filter_113_p2 ; u64 var_mwl8k_configure_filter_113_p3 ; enum set_key_cmd var_mwl8k_set_key_93_p1 ; struct ieee80211_vif *var_mwl8k_set_key_93_p2 ; struct ieee80211_sta *var_mwl8k_set_key_93_p3 ; struct ieee80211_key_conf *var_mwl8k_set_key_93_p4 ; u32 var_mwl8k_set_rts_threshold_114_p1 ; struct ieee80211_sta *var_mwl8k_sta_add_116_p2 ; struct ieee80211_sta *var_mwl8k_sta_remove_115_p2 ; u16 var_mwl8k_conf_tx_117_p2 ; struct ieee80211_tx_queue_params const *var_mwl8k_conf_tx_117_p3 ; struct ieee80211_low_level_stats *var_group6 ; int var_mwl8k_get_survey_119_p1 ; struct survey_info *var_mwl8k_get_survey_119_p2 ; enum ieee80211_ampdu_mlme_action var_mwl8k_ampdu_action_120_p2 ; struct ieee80211_sta *var_mwl8k_ampdu_action_120_p3 ; u16 var_mwl8k_ampdu_action_120_p4 ; u16 *var_mwl8k_ampdu_action_120_p5 ; u8 var_mwl8k_ampdu_action_120_p6 ; struct pci_dev *var_group7 ; struct pci_device_id const *var_mwl8k_probe_129_p1 ; int res_mwl8k_probe_129 ; int var_mwl8k_interrupt_96_p0 ; void *var_mwl8k_interrupt_96_p1 ; int ldv_s_mwl8k_driver_pci_driver ; int tmp ; int tmp___0 ; { ldv_s_mwl8k_driver_pci_driver = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_45579; ldv_45578: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_handler_precall(); mwl8k_rxd_8366_ap_init(var_mwl8k_rxd_8366_ap_init_13_p0, var_mwl8k_rxd_8366_ap_init_13_p1); goto ldv_45549; case 1: ldv_handler_precall(); mwl8k_rxd_8366_ap_refill(var_mwl8k_rxd_8366_ap_refill_14_p0, var_mwl8k_rxd_8366_ap_refill_14_p1, var_mwl8k_rxd_8366_ap_refill_14_p2); goto ldv_45549; case 2: ldv_handler_precall(); mwl8k_rxd_8366_ap_process(var_mwl8k_rxd_8366_ap_process_15_p0, var_group1, var_mwl8k_rxd_8366_ap_process_15_p2, var_mwl8k_rxd_8366_ap_process_15_p3); goto ldv_45549; case 3: ldv_handler_precall(); mwl8k_rxd_sta_init(var_mwl8k_rxd_sta_init_16_p0, var_mwl8k_rxd_sta_init_16_p1); goto ldv_45549; case 4: ldv_handler_precall(); mwl8k_rxd_sta_refill(var_mwl8k_rxd_sta_refill_17_p0, var_mwl8k_rxd_sta_refill_17_p1, var_mwl8k_rxd_sta_refill_17_p2); goto ldv_45549; case 5: ldv_handler_precall(); mwl8k_rxd_sta_process(var_mwl8k_rxd_sta_process_18_p0, var_group1, var_mwl8k_rxd_sta_process_18_p2, var_mwl8k_rxd_sta_process_18_p3); goto ldv_45549; case 6: ldv_handler_precall(); mwl8k_tx(var_group2, var_group3, var_mwl8k_tx_99_p2); goto ldv_45549; case 7: ldv_handler_precall(); mwl8k_start(var_group2); goto ldv_45549; case 8: ldv_handler_precall(); mwl8k_stop(var_group2); goto ldv_45549; case 9: ldv_handler_precall(); mwl8k_add_interface(var_group2, var_group4); goto ldv_45549; case 10: ldv_handler_precall(); mwl8k_remove_interface(var_group2, var_group4); goto ldv_45549; case 11: ldv_handler_precall(); mwl8k_config(var_group2, var_mwl8k_config_106_p1); goto ldv_45549; case 12: ldv_handler_precall(); mwl8k_bss_info_changed(var_group2, var_group4, var_mwl8k_bss_info_changed_109_p2, var_mwl8k_bss_info_changed_109_p3); goto ldv_45549; case 13: ldv_handler_precall(); mwl8k_prepare_multicast(var_group2, var_group5); goto ldv_45549; case 14: ldv_handler_precall(); mwl8k_configure_filter(var_group2, var_mwl8k_configure_filter_113_p1, var_mwl8k_configure_filter_113_p2, var_mwl8k_configure_filter_113_p3); goto ldv_45549; case 15: ldv_handler_precall(); mwl8k_set_key(var_group2, var_mwl8k_set_key_93_p1, var_mwl8k_set_key_93_p2, var_mwl8k_set_key_93_p3, var_mwl8k_set_key_93_p4); goto ldv_45549; case 16: ldv_handler_precall(); mwl8k_set_rts_threshold(var_group2, var_mwl8k_set_rts_threshold_114_p1); goto ldv_45549; case 17: ldv_handler_precall(); mwl8k_sta_add(var_group2, var_group4, var_mwl8k_sta_add_116_p2); goto ldv_45549; case 18: ldv_handler_precall(); mwl8k_sta_remove(var_group2, var_group4, var_mwl8k_sta_remove_115_p2); goto ldv_45549; case 19: ldv_handler_precall(); mwl8k_conf_tx(var_group2, var_group4, (int )var_mwl8k_conf_tx_117_p2, var_mwl8k_conf_tx_117_p3); goto ldv_45549; case 20: ldv_handler_precall(); mwl8k_get_stats(var_group2, var_group6); goto ldv_45549; case 21: ldv_handler_precall(); mwl8k_get_survey(var_group2, var_mwl8k_get_survey_119_p1, var_mwl8k_get_survey_119_p2); goto ldv_45549; case 22: ldv_handler_precall(); mwl8k_ampdu_action(var_group2, var_group4, var_mwl8k_ampdu_action_120_p2, var_mwl8k_ampdu_action_120_p3, (int )var_mwl8k_ampdu_action_120_p4, var_mwl8k_ampdu_action_120_p5, (int )var_mwl8k_ampdu_action_120_p6); goto ldv_45549; case 23: ; if (ldv_s_mwl8k_driver_pci_driver == 0) { res_mwl8k_probe_129 = mwl8k_probe(var_group7, var_mwl8k_probe_129_p1); ldv_check_return_value(res_mwl8k_probe_129); ldv_check_return_value_probe(res_mwl8k_probe_129); if (res_mwl8k_probe_129 != 0) { goto ldv_module_exit; } else { } ldv_s_mwl8k_driver_pci_driver = ldv_s_mwl8k_driver_pci_driver + 1; } else { } goto ldv_45549; case 24: ; if (ldv_s_mwl8k_driver_pci_driver == 1) { ldv_handler_precall(); mwl8k_remove(var_group7); ldv_s_mwl8k_driver_pci_driver = 0; } else { } goto ldv_45549; case 25: ldv_handler_precall(); mwl8k_shutdown(var_group7); goto ldv_45549; case 26: LDV_IN_INTERRUPT = 2; ldv_handler_precall(); mwl8k_interrupt(var_mwl8k_interrupt_96_p0, var_mwl8k_interrupt_96_p1); LDV_IN_INTERRUPT = 1; goto ldv_45549; default: ; goto ldv_45549; } ldv_45549: ; ldv_45579: tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0 || ldv_s_mwl8k_driver_pci_driver != 0) { goto ldv_45578; } else { } ldv_module_exit: ; ldv_check_final_state(); return 0; } } void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_4(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_6(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_8(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mtx(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mtx(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mtx(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mtx(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_fw_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_fw_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_fw_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static int ldv_mutex_is_locked_15(struct mutex *lock ) { ldv_func_ret_type___13 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_is_locked(lock); ldv_func_res = tmp; tmp___0 = ldv_mutex_is_locked_fw_mutex(lock); return (tmp___0); return (ldv_func_res); } } __inline static void ldv_error(void) __attribute__((__no_instrument_function__)) ; __inline static void ldv_error(void) { { ERROR: {reach_error();abort();} } } extern int __VERIFIER_nondet_int(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } static int ldv_mutex_cred_guard_mutex ; int ldv_mutex_lock_interruptible_cred_guard_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_cred_guard_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_cred_guard_mutex(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex = 2; return; } } int ldv_mutex_trylock_cred_guard_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_cred_guard_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_cred_guard_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_cred_guard_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_cred_guard_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_cred_guard_mutex(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex == 2) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex = 1; return; } } static int ldv_mutex_fw_mutex ; int ldv_mutex_lock_interruptible_fw_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_fw_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_fw_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_fw_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_fw_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_fw_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_fw_mutex(struct mutex *lock ) { { if (ldv_mutex_fw_mutex == 1) { } else { ldv_error(); } ldv_mutex_fw_mutex = 2; return; } } int ldv_mutex_trylock_fw_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_fw_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_fw_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_fw_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_fw_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_fw_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_fw_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_fw_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_fw_mutex(struct mutex *lock ) { { if (ldv_mutex_fw_mutex == 2) { } else { ldv_error(); } ldv_mutex_fw_mutex = 1; return; } } static int ldv_mutex_lock ; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 1) { } else { ldv_error(); } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 2) { } else { ldv_error(); } ldv_mutex_lock = 1; return; } } static int ldv_mutex_mtx ; int ldv_mutex_lock_interruptible_mtx(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mtx == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mtx = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mtx(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mtx == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mtx = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mtx(struct mutex *lock ) { { if (ldv_mutex_mtx == 1) { } else { ldv_error(); } ldv_mutex_mtx = 2; return; } } int ldv_mutex_trylock_mtx(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mtx == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_mtx = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mtx(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mtx == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mtx = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mtx(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mtx == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mtx(struct mutex *lock ) { { if (ldv_mutex_mtx == 2) { } else { ldv_error(); } ldv_mutex_mtx = 1; return; } } static int ldv_mutex_mutex ; int ldv_mutex_lock_interruptible_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex(struct mutex *lock ) { { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } ldv_mutex_mutex = 2; return; } } int ldv_mutex_trylock_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex(struct mutex *lock ) { { if (ldv_mutex_mutex == 2) { } else { ldv_error(); } ldv_mutex_mutex = 1; return; } } void ldv_initialize(void) { { ldv_mutex_cred_guard_mutex = 1; ldv_mutex_fw_mutex = 1; ldv_mutex_lock = 1; ldv_mutex_mtx = 1; ldv_mutex_mutex = 1; return; } } void ldv_check_final_state(void) { { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } if (ldv_mutex_fw_mutex == 1) { } else { ldv_error(); } if (ldv_mutex_lock == 1) { } else { ldv_error(); } if (ldv_mutex_mtx == 1) { } else { ldv_error(); } if (ldv_mutex_mutex == 1) { } else { ldv_error(); } return; } } #include "model/main0_false-unreach-call_drivers-net-wireless-mwl8k-ko---32_7a--linux-3.7.3.env.c" #include "model/common.env.c"