/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef __kernel_long_t __kernel_suseconds_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u16 uint16_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct timeval { __kernel_time_t tv_sec ; __kernel_suseconds_t tv_usec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; char *driver_override ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_193 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_192 { struct __anonstruct____missing_field_name_193 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_192 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_195 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_194 { struct __anonstruct____missing_field_name_195 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_194 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_196 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_196 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_198 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_197 { struct __anonstruct____missing_field_name_198 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_197 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_200 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_200 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_201 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_201 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_204 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_205 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_206 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_204 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_205 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_206 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_207 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_207 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_209 { struct list_head link ; int state ; }; union __anonunion_fl_u_208 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_209 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_208 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct exception_table_entry { int insn ; int fixup ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_218 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_218 __annonCompField73 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; enum chipset_type { NOT_SUPPORTED = 0, SUPPORTED = 1 } ; struct agp_version { u16 major ; u16 minor ; }; struct agp_kern_info { struct agp_version version ; struct pci_dev *device ; enum chipset_type chipset ; unsigned long mode ; unsigned long aper_base ; size_t aper_size ; int max_memory ; int current_memory ; bool cant_use_aperture ; unsigned long page_mask ; struct vm_operations_struct const *vm_ops ; }; struct agp_bridge_data; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; typedef unsigned int drm_magic_t; struct drm_clip_rect { unsigned short x1 ; unsigned short y1 ; unsigned short x2 ; unsigned short y2 ; }; struct drm_hw_lock { unsigned int volatile lock ; char padding[60U] ; }; struct drm_mode_fb_cmd2 { __u32 fb_id ; __u32 width ; __u32 height ; __u32 pixel_format ; __u32 flags ; __u32 handles[4U] ; __u32 pitches[4U] ; __u32 offsets[4U] ; }; struct drm_mode_create_dumb { uint32_t height ; uint32_t width ; uint32_t bpp ; uint32_t flags ; uint32_t handle ; uint32_t pitch ; uint64_t size ; }; struct drm_event { __u32 type ; __u32 length ; }; struct drm_event_vblank { struct drm_event base ; __u64 user_data ; __u32 tv_sec ; __u32 tv_usec ; __u32 sequence ; __u32 reserved ; }; struct drm_device; struct drm_file; struct drm_agp_head { struct agp_kern_info agp_info ; struct list_head memory ; unsigned long mode ; struct agp_bridge_data *bridge ; int enabled ; int acquired ; unsigned long base ; int agp_mtrr ; int cant_use_aperture ; unsigned long page_mask ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct fb_fix_screeninfo { char id[16U] ; unsigned long smem_start ; __u32 smem_len ; __u32 type ; __u32 type_aux ; __u32 visual ; __u16 xpanstep ; __u16 ypanstep ; __u16 ywrapstep ; __u32 line_length ; unsigned long mmio_start ; __u32 mmio_len ; __u32 accel ; __u16 capabilities ; __u16 reserved[2U] ; }; struct fb_bitfield { __u32 offset ; __u32 length ; __u32 msb_right ; }; struct fb_var_screeninfo { __u32 xres ; __u32 yres ; __u32 xres_virtual ; __u32 yres_virtual ; __u32 xoffset ; __u32 yoffset ; __u32 bits_per_pixel ; __u32 grayscale ; struct fb_bitfield red ; struct fb_bitfield green ; struct fb_bitfield blue ; struct fb_bitfield transp ; __u32 nonstd ; __u32 activate ; __u32 height ; __u32 width ; __u32 accel_flags ; __u32 pixclock ; __u32 left_margin ; __u32 right_margin ; __u32 upper_margin ; __u32 lower_margin ; __u32 hsync_len ; __u32 vsync_len ; __u32 sync ; __u32 vmode ; __u32 rotate ; __u32 colorspace ; __u32 reserved[4U] ; }; struct fb_cmap { __u32 start ; __u32 len ; __u16 *red ; __u16 *green ; __u16 *blue ; __u16 *transp ; }; struct fb_copyarea { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 sx ; __u32 sy ; }; struct fb_fillrect { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 color ; __u32 rop ; }; struct fb_image { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 fg_color ; __u32 bg_color ; __u8 depth ; char const *data ; struct fb_cmap cmap ; }; struct fbcurpos { __u16 x ; __u16 y ; }; struct fb_cursor { __u16 set ; __u16 enable ; __u16 rop ; char const *mask ; struct fbcurpos hot ; struct fb_image image ; }; enum backlight_type { BACKLIGHT_RAW = 1, BACKLIGHT_PLATFORM = 2, BACKLIGHT_FIRMWARE = 3, BACKLIGHT_TYPE_MAX = 4 } ; struct backlight_device; struct fb_info; struct backlight_ops { unsigned int options ; int (*update_status)(struct backlight_device * ) ; int (*get_brightness)(struct backlight_device * ) ; int (*check_fb)(struct backlight_device * , struct fb_info * ) ; }; struct backlight_properties { int brightness ; int max_brightness ; int power ; int fb_blank ; enum backlight_type type ; unsigned int state ; }; struct backlight_device { struct backlight_properties props ; struct mutex update_lock ; struct mutex ops_lock ; struct backlight_ops const *ops ; struct notifier_block fb_notif ; struct list_head entry ; struct device dev ; bool fb_bl_on[32U] ; int use_count ; }; struct fb_chroma { __u32 redx ; __u32 greenx ; __u32 bluex ; __u32 whitex ; __u32 redy ; __u32 greeny ; __u32 bluey ; __u32 whitey ; }; struct fb_videomode; struct fb_monspecs { struct fb_chroma chroma ; struct fb_videomode *modedb ; __u8 manufacturer[4U] ; __u8 monitor[14U] ; __u8 serial_no[14U] ; __u8 ascii[14U] ; __u32 modedb_len ; __u32 model ; __u32 serial ; __u32 year ; __u32 week ; __u32 hfmin ; __u32 hfmax ; __u32 dclkmin ; __u32 dclkmax ; __u16 input ; __u16 dpms ; __u16 signal ; __u16 vfmin ; __u16 vfmax ; __u16 gamma ; unsigned char gtf : 1 ; __u16 misc ; __u8 version ; __u8 revision ; __u8 max_x ; __u8 max_y ; }; struct fb_blit_caps { u32 x ; u32 y ; u32 len ; u32 flags ; }; struct fb_pixmap { u8 *addr ; u32 size ; u32 offset ; u32 buf_align ; u32 scan_align ; u32 access_align ; u32 flags ; u32 blit_x ; u32 blit_y ; void (*writeio)(struct fb_info * , void * , void * , unsigned int ) ; void (*readio)(struct fb_info * , void * , void * , unsigned int ) ; }; struct fb_deferred_io { unsigned long delay ; struct mutex lock ; struct list_head pagelist ; void (*first_io)(struct fb_info * ) ; void (*deferred_io)(struct fb_info * , struct list_head * ) ; }; struct fb_ops { struct module *owner ; int (*fb_open)(struct fb_info * , int ) ; int (*fb_release)(struct fb_info * , int ) ; ssize_t (*fb_read)(struct fb_info * , char * , size_t , loff_t * ) ; ssize_t (*fb_write)(struct fb_info * , char const * , size_t , loff_t * ) ; int (*fb_check_var)(struct fb_var_screeninfo * , struct fb_info * ) ; int (*fb_set_par)(struct fb_info * ) ; int (*fb_setcolreg)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ) ; int (*fb_setcmap)(struct fb_cmap * , struct fb_info * ) ; int (*fb_blank)(int , struct fb_info * ) ; int (*fb_pan_display)(struct fb_var_screeninfo * , struct fb_info * ) ; void (*fb_fillrect)(struct fb_info * , struct fb_fillrect const * ) ; void (*fb_copyarea)(struct fb_info * , struct fb_copyarea const * ) ; void (*fb_imageblit)(struct fb_info * , struct fb_image const * ) ; int (*fb_cursor)(struct fb_info * , struct fb_cursor * ) ; void (*fb_rotate)(struct fb_info * , int ) ; int (*fb_sync)(struct fb_info * ) ; int (*fb_ioctl)(struct fb_info * , unsigned int , unsigned long ) ; int (*fb_compat_ioctl)(struct fb_info * , unsigned int , unsigned long ) ; int (*fb_mmap)(struct fb_info * , struct vm_area_struct * ) ; void (*fb_get_caps)(struct fb_info * , struct fb_blit_caps * , struct fb_var_screeninfo * ) ; void (*fb_destroy)(struct fb_info * ) ; int (*fb_debug_enter)(struct fb_info * ) ; int (*fb_debug_leave)(struct fb_info * ) ; }; struct fb_tilemap { __u32 width ; __u32 height ; __u32 depth ; __u32 length ; __u8 const *data ; }; struct fb_tilerect { __u32 sx ; __u32 sy ; __u32 width ; __u32 height ; __u32 index ; __u32 fg ; __u32 bg ; __u32 rop ; }; struct fb_tilearea { __u32 sx ; __u32 sy ; __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; }; struct fb_tileblit { __u32 sx ; __u32 sy ; __u32 width ; __u32 height ; __u32 fg ; __u32 bg ; __u32 length ; __u32 *indices ; }; struct fb_tilecursor { __u32 sx ; __u32 sy ; __u32 mode ; __u32 shape ; __u32 fg ; __u32 bg ; }; struct fb_tile_ops { void (*fb_settile)(struct fb_info * , struct fb_tilemap * ) ; void (*fb_tilecopy)(struct fb_info * , struct fb_tilearea * ) ; void (*fb_tilefill)(struct fb_info * , struct fb_tilerect * ) ; void (*fb_tileblit)(struct fb_info * , struct fb_tileblit * ) ; void (*fb_tilecursor)(struct fb_info * , struct fb_tilecursor * ) ; int (*fb_get_tilemax)(struct fb_info * ) ; }; struct aperture { resource_size_t base ; resource_size_t size ; }; struct apertures_struct { unsigned int count ; struct aperture ranges[0U] ; }; struct fb_info { atomic_t count ; int node ; int flags ; struct mutex lock ; struct mutex mm_lock ; struct fb_var_screeninfo var ; struct fb_fix_screeninfo fix ; struct fb_monspecs monspecs ; struct work_struct queue ; struct fb_pixmap pixmap ; struct fb_pixmap sprite ; struct fb_cmap cmap ; struct list_head modelist ; struct fb_videomode *mode ; struct backlight_device *bl_dev ; struct mutex bl_curve_mutex ; u8 bl_curve[128U] ; struct delayed_work deferred_work ; struct fb_deferred_io *fbdefio ; struct fb_ops *fbops ; struct device *device ; struct device *dev ; int class_flag ; struct fb_tile_ops *tileops ; char *screen_base ; unsigned long screen_size ; void *pseudo_palette ; u32 state ; void *fbcon_par ; void *par ; struct apertures_struct *apertures ; bool skip_vt_switch ; }; struct fb_videomode { char const *name ; u32 refresh ; u32 xres ; u32 yres ; u32 pixclock ; u32 left_margin ; u32 right_margin ; u32 upper_margin ; u32 lower_margin ; u32 hsync_len ; u32 vsync_len ; u32 sync ; u32 vmode ; u32 flag ; }; enum hdmi_picture_aspect { HDMI_PICTURE_ASPECT_NONE = 0, HDMI_PICTURE_ASPECT_4_3 = 1, HDMI_PICTURE_ASPECT_16_9 = 2, HDMI_PICTURE_ASPECT_RESERVED = 3 } ; struct ww_class { atomic_long_t stamp ; struct lock_class_key acquire_key ; struct lock_class_key mutex_key ; char const *acquire_name ; char const *mutex_name ; }; struct ww_mutex; struct ww_acquire_ctx { struct task_struct *task ; unsigned long stamp ; unsigned int acquired ; unsigned int done_acquire ; struct ww_class *ww_class ; struct ww_mutex *contending_lock ; struct lockdep_map dep_map ; unsigned int deadlock_inject_interval ; unsigned int deadlock_inject_countdown ; }; struct ww_mutex { struct mutex base ; struct ww_acquire_ctx *ctx ; struct ww_class *ww_class ; }; struct drm_modeset_lock; struct drm_modeset_acquire_ctx { struct ww_acquire_ctx ww_ctx ; struct drm_modeset_lock *contended ; struct list_head locked ; bool trylock_only ; }; struct drm_modeset_lock { struct ww_mutex mutex ; struct list_head head ; }; struct drm_crtc; struct drm_plane; struct drm_mode_set; struct drm_framebuffer; struct drm_object_properties; struct fence; struct drm_mode_object { uint32_t id ; uint32_t type ; struct drm_object_properties *properties ; }; struct drm_property; struct drm_object_properties { int count ; int atomic_count ; struct drm_property *properties[24U] ; uint64_t values[24U] ; }; enum drm_connector_force { DRM_FORCE_UNSPECIFIED = 0, DRM_FORCE_OFF = 1, DRM_FORCE_ON = 2, DRM_FORCE_ON_DIGITAL = 3 } ; enum drm_mode_status { MODE_OK = 0, MODE_HSYNC = 1, MODE_VSYNC = 2, MODE_H_ILLEGAL = 3, MODE_V_ILLEGAL = 4, MODE_BAD_WIDTH = 5, MODE_NOMODE = 6, MODE_NO_INTERLACE = 7, MODE_NO_DBLESCAN = 8, MODE_NO_VSCAN = 9, MODE_MEM = 10, MODE_VIRTUAL_X = 11, MODE_VIRTUAL_Y = 12, MODE_MEM_VIRT = 13, MODE_NOCLOCK = 14, MODE_CLOCK_HIGH = 15, MODE_CLOCK_LOW = 16, MODE_CLOCK_RANGE = 17, MODE_BAD_HVALUE = 18, MODE_BAD_VVALUE = 19, MODE_BAD_VSCAN = 20, MODE_HSYNC_NARROW = 21, MODE_HSYNC_WIDE = 22, MODE_HBLANK_NARROW = 23, MODE_HBLANK_WIDE = 24, MODE_VSYNC_NARROW = 25, MODE_VSYNC_WIDE = 26, MODE_VBLANK_NARROW = 27, MODE_VBLANK_WIDE = 28, MODE_PANEL = 29, MODE_INTERLACE_WIDTH = 30, MODE_ONE_WIDTH = 31, MODE_ONE_HEIGHT = 32, MODE_ONE_SIZE = 33, MODE_NO_REDUCED = 34, MODE_NO_STEREO = 35, MODE_UNVERIFIED = -3, MODE_BAD = -2, MODE_ERROR = -1 } ; struct drm_display_mode { struct list_head head ; struct drm_mode_object base ; char name[32U] ; enum drm_mode_status status ; unsigned int type ; int clock ; int hdisplay ; int hsync_start ; int hsync_end ; int htotal ; int hskew ; int vdisplay ; int vsync_start ; int vsync_end ; int vtotal ; int vscan ; unsigned int flags ; int width_mm ; int height_mm ; int crtc_clock ; int crtc_hdisplay ; int crtc_hblank_start ; int crtc_hblank_end ; int crtc_hsync_start ; int crtc_hsync_end ; int crtc_htotal ; int crtc_hskew ; int crtc_vdisplay ; int crtc_vblank_start ; int crtc_vblank_end ; int crtc_vsync_start ; int crtc_vsync_end ; int crtc_vtotal ; int *private ; int private_flags ; int vrefresh ; int hsync ; enum hdmi_picture_aspect picture_aspect_ratio ; }; struct drm_cmdline_mode { bool specified ; bool refresh_specified ; bool bpp_specified ; int xres ; int yres ; int bpp ; int refresh ; bool rb ; bool interlace ; bool cvt ; bool margins ; enum drm_connector_force force ; }; struct drm_connector; enum drm_connector_status { connector_status_connected = 1, connector_status_disconnected = 2, connector_status_unknown = 3 } ; enum subpixel_order { SubPixelUnknown = 0, SubPixelHorizontalRGB = 1, SubPixelHorizontalBGR = 2, SubPixelVerticalRGB = 3, SubPixelVerticalBGR = 4, SubPixelNone = 5 } ; struct drm_display_info { char name[32U] ; unsigned int width_mm ; unsigned int height_mm ; unsigned int min_vfreq ; unsigned int max_vfreq ; unsigned int min_hfreq ; unsigned int max_hfreq ; unsigned int pixel_clock ; unsigned int bpc ; enum subpixel_order subpixel_order ; u32 color_formats ; u32 const *bus_formats ; unsigned int num_bus_formats ; u8 edid_hdmi_dc_modes ; u8 cea_rev ; }; struct drm_tile_group { struct kref refcount ; struct drm_device *dev ; int id ; u8 group_data[8U] ; }; struct drm_framebuffer_funcs { void (*destroy)(struct drm_framebuffer * ) ; int (*create_handle)(struct drm_framebuffer * , struct drm_file * , unsigned int * ) ; int (*dirty)(struct drm_framebuffer * , struct drm_file * , unsigned int , unsigned int , struct drm_clip_rect * , unsigned int ) ; }; struct drm_framebuffer { struct drm_device *dev ; struct kref refcount ; struct list_head head ; struct drm_mode_object base ; struct drm_framebuffer_funcs const *funcs ; unsigned int pitches[4U] ; unsigned int offsets[4U] ; unsigned int width ; unsigned int height ; unsigned int depth ; int bits_per_pixel ; int flags ; uint32_t pixel_format ; struct list_head filp_head ; void *helper_private ; }; struct drm_property_blob { struct drm_mode_object base ; struct list_head head ; size_t length ; unsigned char data[] ; }; struct drm_property { struct list_head head ; struct drm_mode_object base ; uint32_t flags ; char name[32U] ; uint32_t num_values ; uint64_t *values ; struct drm_device *dev ; struct list_head enum_list ; }; struct drm_encoder; struct drm_pending_vblank_event; struct drm_bridge; struct drm_atomic_state; struct drm_crtc_state { struct drm_crtc *crtc ; bool enable ; bool active ; bool planes_changed ; bool mode_changed ; bool active_changed ; u32 plane_mask ; u32 last_vblank_count ; struct drm_display_mode adjusted_mode ; struct drm_display_mode mode ; struct drm_pending_vblank_event *event ; struct drm_atomic_state *state ; }; struct drm_crtc_funcs { void (*save)(struct drm_crtc * ) ; void (*restore)(struct drm_crtc * ) ; void (*reset)(struct drm_crtc * ) ; int (*cursor_set)(struct drm_crtc * , struct drm_file * , uint32_t , uint32_t , uint32_t ) ; int (*cursor_set2)(struct drm_crtc * , struct drm_file * , uint32_t , uint32_t , uint32_t , int32_t , int32_t ) ; int (*cursor_move)(struct drm_crtc * , int , int ) ; void (*gamma_set)(struct drm_crtc * , u16 * , u16 * , u16 * , uint32_t , uint32_t ) ; void (*destroy)(struct drm_crtc * ) ; int (*set_config)(struct drm_mode_set * ) ; int (*page_flip)(struct drm_crtc * , struct drm_framebuffer * , struct drm_pending_vblank_event * , uint32_t ) ; int (*set_property)(struct drm_crtc * , struct drm_property * , uint64_t ) ; struct drm_crtc_state *(*atomic_duplicate_state)(struct drm_crtc * ) ; void (*atomic_destroy_state)(struct drm_crtc * , struct drm_crtc_state * ) ; int (*atomic_set_property)(struct drm_crtc * , struct drm_crtc_state * , struct drm_property * , uint64_t ) ; int (*atomic_get_property)(struct drm_crtc * , struct drm_crtc_state const * , struct drm_property * , uint64_t * ) ; }; struct drm_crtc { struct drm_device *dev ; struct device_node *port ; struct list_head head ; struct drm_modeset_lock mutex ; struct drm_mode_object base ; struct drm_plane *primary ; struct drm_plane *cursor ; int cursor_x ; int cursor_y ; bool enabled ; struct drm_display_mode mode ; struct drm_display_mode hwmode ; bool invert_dimensions ; int x ; int y ; struct drm_crtc_funcs const *funcs ; uint32_t gamma_size ; uint16_t *gamma_store ; int framedur_ns ; int linedur_ns ; int pixeldur_ns ; void *helper_private ; struct drm_object_properties properties ; struct drm_crtc_state *state ; struct drm_modeset_acquire_ctx *acquire_ctx ; }; struct drm_connector_state { struct drm_connector *connector ; struct drm_crtc *crtc ; struct drm_encoder *best_encoder ; struct drm_atomic_state *state ; }; struct drm_connector_funcs { void (*dpms)(struct drm_connector * , int ) ; void (*save)(struct drm_connector * ) ; void (*restore)(struct drm_connector * ) ; void (*reset)(struct drm_connector * ) ; enum drm_connector_status (*detect)(struct drm_connector * , bool ) ; int (*fill_modes)(struct drm_connector * , uint32_t , uint32_t ) ; int (*set_property)(struct drm_connector * , struct drm_property * , uint64_t ) ; void (*destroy)(struct drm_connector * ) ; void (*force)(struct drm_connector * ) ; struct drm_connector_state *(*atomic_duplicate_state)(struct drm_connector * ) ; void (*atomic_destroy_state)(struct drm_connector * , struct drm_connector_state * ) ; int (*atomic_set_property)(struct drm_connector * , struct drm_connector_state * , struct drm_property * , uint64_t ) ; int (*atomic_get_property)(struct drm_connector * , struct drm_connector_state const * , struct drm_property * , uint64_t * ) ; }; struct drm_encoder_funcs { void (*reset)(struct drm_encoder * ) ; void (*destroy)(struct drm_encoder * ) ; }; struct drm_encoder { struct drm_device *dev ; struct list_head head ; struct drm_mode_object base ; char *name ; int encoder_type ; uint32_t possible_crtcs ; uint32_t possible_clones ; struct drm_crtc *crtc ; struct drm_bridge *bridge ; struct drm_encoder_funcs const *funcs ; void *helper_private ; }; struct drm_connector { struct drm_device *dev ; struct device *kdev ; struct device_attribute *attr ; struct list_head head ; struct drm_mode_object base ; char *name ; int connector_type ; int connector_type_id ; bool interlace_allowed ; bool doublescan_allowed ; bool stereo_allowed ; struct list_head modes ; enum drm_connector_status status ; struct list_head probed_modes ; struct drm_display_info display_info ; struct drm_connector_funcs const *funcs ; struct drm_property_blob *edid_blob_ptr ; struct drm_object_properties properties ; struct drm_property_blob *path_blob_ptr ; struct drm_property_blob *tile_blob_ptr ; uint8_t polled ; int dpms ; void *helper_private ; struct drm_cmdline_mode cmdline_mode ; enum drm_connector_force force ; bool override_edid ; uint32_t encoder_ids[3U] ; struct drm_encoder *encoder ; uint8_t eld[128U] ; bool dvi_dual ; int max_tmds_clock ; bool latency_present[2U] ; int video_latency[2U] ; int audio_latency[2U] ; int null_edid_counter ; unsigned int bad_edid_counter ; struct dentry *debugfs_entry ; struct drm_connector_state *state ; bool has_tile ; struct drm_tile_group *tile_group ; bool tile_is_single_monitor ; uint8_t num_h_tile ; uint8_t num_v_tile ; uint8_t tile_h_loc ; uint8_t tile_v_loc ; uint16_t tile_h_size ; uint16_t tile_v_size ; }; struct drm_plane_state { struct drm_plane *plane ; struct drm_crtc *crtc ; struct drm_framebuffer *fb ; struct fence *fence ; int32_t crtc_x ; int32_t crtc_y ; uint32_t crtc_w ; uint32_t crtc_h ; uint32_t src_x ; uint32_t src_y ; uint32_t src_h ; uint32_t src_w ; unsigned int rotation ; struct drm_atomic_state *state ; }; struct drm_plane_funcs { int (*update_plane)(struct drm_plane * , struct drm_crtc * , struct drm_framebuffer * , int , int , unsigned int , unsigned int , uint32_t , uint32_t , uint32_t , uint32_t ) ; int (*disable_plane)(struct drm_plane * ) ; void (*destroy)(struct drm_plane * ) ; void (*reset)(struct drm_plane * ) ; int (*set_property)(struct drm_plane * , struct drm_property * , uint64_t ) ; struct drm_plane_state *(*atomic_duplicate_state)(struct drm_plane * ) ; void (*atomic_destroy_state)(struct drm_plane * , struct drm_plane_state * ) ; int (*atomic_set_property)(struct drm_plane * , struct drm_plane_state * , struct drm_property * , uint64_t ) ; int (*atomic_get_property)(struct drm_plane * , struct drm_plane_state const * , struct drm_property * , uint64_t * ) ; }; enum drm_plane_type { DRM_PLANE_TYPE_OVERLAY = 0, DRM_PLANE_TYPE_PRIMARY = 1, DRM_PLANE_TYPE_CURSOR = 2 } ; struct drm_plane { struct drm_device *dev ; struct list_head head ; struct drm_modeset_lock mutex ; struct drm_mode_object base ; uint32_t possible_crtcs ; uint32_t *format_types ; uint32_t format_count ; struct drm_crtc *crtc ; struct drm_framebuffer *fb ; struct drm_framebuffer *old_fb ; struct drm_plane_funcs const *funcs ; struct drm_object_properties properties ; enum drm_plane_type type ; void *helper_private ; struct drm_plane_state *state ; }; struct drm_bridge_funcs { int (*attach)(struct drm_bridge * ) ; bool (*mode_fixup)(struct drm_bridge * , struct drm_display_mode const * , struct drm_display_mode * ) ; void (*disable)(struct drm_bridge * ) ; void (*post_disable)(struct drm_bridge * ) ; void (*mode_set)(struct drm_bridge * , struct drm_display_mode * , struct drm_display_mode * ) ; void (*pre_enable)(struct drm_bridge * ) ; void (*enable)(struct drm_bridge * ) ; }; struct drm_bridge { struct drm_device *dev ; struct drm_encoder *encoder ; struct list_head list ; struct drm_bridge_funcs const *funcs ; void *driver_private ; }; struct drm_atomic_state { struct drm_device *dev ; bool allow_modeset ; bool legacy_cursor_update ; struct drm_plane **planes ; struct drm_plane_state **plane_states ; struct drm_crtc **crtcs ; struct drm_crtc_state **crtc_states ; int num_connector ; struct drm_connector **connectors ; struct drm_connector_state **connector_states ; struct drm_modeset_acquire_ctx *acquire_ctx ; }; struct drm_mode_set { struct drm_framebuffer *fb ; struct drm_crtc *crtc ; struct drm_display_mode *mode ; uint32_t x ; uint32_t y ; struct drm_connector **connectors ; size_t num_connectors ; }; struct drm_mode_config_funcs { struct drm_framebuffer *(*fb_create)(struct drm_device * , struct drm_file * , struct drm_mode_fb_cmd2 * ) ; void (*output_poll_changed)(struct drm_device * ) ; int (*atomic_check)(struct drm_device * , struct drm_atomic_state * ) ; int (*atomic_commit)(struct drm_device * , struct drm_atomic_state * , bool ) ; }; struct drm_mode_group { uint32_t num_crtcs ; uint32_t num_encoders ; uint32_t num_connectors ; uint32_t *id_list ; }; struct drm_mode_config { struct mutex mutex ; struct drm_modeset_lock connection_mutex ; struct drm_modeset_acquire_ctx *acquire_ctx ; struct mutex idr_mutex ; struct idr crtc_idr ; struct idr tile_idr ; struct mutex fb_lock ; int num_fb ; struct list_head fb_list ; int num_connector ; struct list_head connector_list ; int num_encoder ; struct list_head encoder_list ; int num_overlay_plane ; int num_total_plane ; struct list_head plane_list ; int num_crtc ; struct list_head crtc_list ; struct list_head property_list ; int min_width ; int min_height ; int max_width ; int max_height ; struct drm_mode_config_funcs const *funcs ; resource_size_t fb_base ; bool poll_enabled ; bool poll_running ; bool delayed_event ; struct delayed_work output_poll_work ; struct list_head property_blob_list ; struct drm_property *edid_property ; struct drm_property *dpms_property ; struct drm_property *path_property ; struct drm_property *tile_property ; struct drm_property *plane_type_property ; struct drm_property *rotation_property ; struct drm_property *prop_src_x ; struct drm_property *prop_src_y ; struct drm_property *prop_src_w ; struct drm_property *prop_src_h ; struct drm_property *prop_crtc_x ; struct drm_property *prop_crtc_y ; struct drm_property *prop_crtc_w ; struct drm_property *prop_crtc_h ; struct drm_property *prop_fb_id ; struct drm_property *prop_crtc_id ; struct drm_property *prop_active ; struct drm_property *dvi_i_subconnector_property ; struct drm_property *dvi_i_select_subconnector_property ; struct drm_property *tv_subconnector_property ; struct drm_property *tv_select_subconnector_property ; struct drm_property *tv_mode_property ; struct drm_property *tv_left_margin_property ; struct drm_property *tv_right_margin_property ; struct drm_property *tv_top_margin_property ; struct drm_property *tv_bottom_margin_property ; struct drm_property *tv_brightness_property ; struct drm_property *tv_contrast_property ; struct drm_property *tv_flicker_reduction_property ; struct drm_property *tv_overscan_property ; struct drm_property *tv_saturation_property ; struct drm_property *tv_hue_property ; struct drm_property *scaling_mode_property ; struct drm_property *aspect_ratio_property ; struct drm_property *dirty_info_property ; struct drm_property *suggested_x_property ; struct drm_property *suggested_y_property ; uint32_t preferred_depth ; uint32_t prefer_shadow ; bool async_page_flip ; uint32_t cursor_width ; uint32_t cursor_height ; }; struct drm_open_hash { struct hlist_head *table ; u8 order ; }; struct drm_mm; struct drm_mm_node { struct list_head node_list ; struct list_head hole_stack ; unsigned char hole_follows : 1 ; unsigned char scanned_block : 1 ; unsigned char scanned_prev_free : 1 ; unsigned char scanned_next_free : 1 ; unsigned char scanned_preceeds_hole : 1 ; unsigned char allocated : 1 ; unsigned long color ; unsigned long start ; unsigned long size ; struct drm_mm *mm ; }; struct drm_mm { struct list_head hole_stack ; struct drm_mm_node head_node ; unsigned char scan_check_range : 1 ; unsigned int scan_alignment ; unsigned long scan_color ; unsigned long scan_size ; unsigned long scan_hit_start ; unsigned long scan_hit_end ; unsigned int scanned_blocks ; unsigned long scan_start ; unsigned long scan_end ; struct drm_mm_node *prev_scanned_node ; void (*color_adjust)(struct drm_mm_node * , unsigned long , unsigned long * , unsigned long * ) ; }; struct drm_vma_offset_node { rwlock_t vm_lock ; struct drm_mm_node vm_node ; struct rb_node vm_rb ; struct rb_root vm_files ; }; struct drm_vma_offset_manager { rwlock_t vm_lock ; struct rb_root vm_addr_space_rb ; struct drm_mm vm_addr_space_mm ; }; struct drm_local_map; struct drm_device_dma; struct drm_gem_object; struct reservation_object; struct dma_buf_attachment; typedef int drm_ioctl_t(struct drm_device * , void * , struct drm_file * ); struct drm_ioctl_desc { unsigned int cmd ; int flags ; drm_ioctl_t *func ; unsigned int cmd_drv ; char const *name ; }; struct drm_pending_event { struct drm_event *event ; struct list_head link ; struct drm_file *file_priv ; pid_t pid ; void (*destroy)(struct drm_pending_event * ) ; }; struct drm_prime_file_private { struct list_head head ; struct mutex lock ; }; struct drm_minor; struct drm_master; struct drm_file { unsigned char authenticated : 1 ; unsigned char is_master : 1 ; unsigned char stereo_allowed : 1 ; unsigned char universal_planes : 1 ; unsigned char atomic : 1 ; struct pid *pid ; kuid_t uid ; drm_magic_t magic ; struct list_head lhead ; struct drm_minor *minor ; unsigned long lock_count ; struct idr object_idr ; spinlock_t table_lock ; struct file *filp ; void *driver_priv ; struct drm_master *master ; struct list_head fbs ; struct mutex fbs_lock ; wait_queue_head_t event_wait ; struct list_head event_list ; int event_space ; struct drm_prime_file_private prime ; }; struct drm_lock_data { struct drm_hw_lock *hw_lock ; struct drm_file *file_priv ; wait_queue_head_t lock_queue ; unsigned long lock_time ; spinlock_t spinlock ; uint32_t kernel_waiters ; uint32_t user_waiters ; int idle_has_lock ; }; struct drm_master { struct kref refcount ; struct drm_minor *minor ; char *unique ; int unique_len ; struct drm_open_hash magiclist ; struct list_head magicfree ; struct drm_lock_data lock ; void *driver_priv ; }; struct dma_buf; struct drm_driver { int (*load)(struct drm_device * , unsigned long ) ; int (*firstopen)(struct drm_device * ) ; int (*open)(struct drm_device * , struct drm_file * ) ; void (*preclose)(struct drm_device * , struct drm_file * ) ; void (*postclose)(struct drm_device * , struct drm_file * ) ; void (*lastclose)(struct drm_device * ) ; int (*unload)(struct drm_device * ) ; int (*suspend)(struct drm_device * , pm_message_t ) ; int (*resume)(struct drm_device * ) ; int (*dma_ioctl)(struct drm_device * , void * , struct drm_file * ) ; int (*dma_quiescent)(struct drm_device * ) ; int (*context_dtor)(struct drm_device * , int ) ; int (*set_busid)(struct drm_device * , struct drm_master * ) ; u32 (*get_vblank_counter)(struct drm_device * , int ) ; int (*enable_vblank)(struct drm_device * , int ) ; void (*disable_vblank)(struct drm_device * , int ) ; int (*device_is_agp)(struct drm_device * ) ; int (*get_scanout_position)(struct drm_device * , int , unsigned int , int * , int * , ktime_t * , ktime_t * ) ; int (*get_vblank_timestamp)(struct drm_device * , int , int * , struct timeval * , unsigned int ) ; irqreturn_t (*irq_handler)(int , void * ) ; void (*irq_preinstall)(struct drm_device * ) ; int (*irq_postinstall)(struct drm_device * ) ; void (*irq_uninstall)(struct drm_device * ) ; int (*master_create)(struct drm_device * , struct drm_master * ) ; void (*master_destroy)(struct drm_device * , struct drm_master * ) ; int (*master_set)(struct drm_device * , struct drm_file * , bool ) ; void (*master_drop)(struct drm_device * , struct drm_file * , bool ) ; int (*debugfs_init)(struct drm_minor * ) ; void (*debugfs_cleanup)(struct drm_minor * ) ; void (*gem_free_object)(struct drm_gem_object * ) ; int (*gem_open_object)(struct drm_gem_object * , struct drm_file * ) ; void (*gem_close_object)(struct drm_gem_object * , struct drm_file * ) ; int (*prime_handle_to_fd)(struct drm_device * , struct drm_file * , uint32_t , uint32_t , int * ) ; int (*prime_fd_to_handle)(struct drm_device * , struct drm_file * , int , uint32_t * ) ; struct dma_buf *(*gem_prime_export)(struct drm_device * , struct drm_gem_object * , int ) ; struct drm_gem_object *(*gem_prime_import)(struct drm_device * , struct dma_buf * ) ; int (*gem_prime_pin)(struct drm_gem_object * ) ; void (*gem_prime_unpin)(struct drm_gem_object * ) ; struct reservation_object *(*gem_prime_res_obj)(struct drm_gem_object * ) ; struct sg_table *(*gem_prime_get_sg_table)(struct drm_gem_object * ) ; struct drm_gem_object *(*gem_prime_import_sg_table)(struct drm_device * , struct dma_buf_attachment * , struct sg_table * ) ; void *(*gem_prime_vmap)(struct drm_gem_object * ) ; void (*gem_prime_vunmap)(struct drm_gem_object * , void * ) ; int (*gem_prime_mmap)(struct drm_gem_object * , struct vm_area_struct * ) ; void (*vgaarb_irq)(struct drm_device * , bool ) ; int (*dumb_create)(struct drm_file * , struct drm_device * , struct drm_mode_create_dumb * ) ; int (*dumb_map_offset)(struct drm_file * , struct drm_device * , uint32_t , uint64_t * ) ; int (*dumb_destroy)(struct drm_file * , struct drm_device * , uint32_t ) ; struct vm_operations_struct const *gem_vm_ops ; int major ; int minor ; int patchlevel ; char *name ; char *desc ; char *date ; u32 driver_features ; int dev_priv_size ; struct drm_ioctl_desc const *ioctls ; int num_ioctls ; struct file_operations const *fops ; struct list_head legacy_dev_list ; }; struct drm_minor { int index ; int type ; struct device *kdev ; struct drm_device *dev ; struct dentry *debugfs_root ; struct list_head debugfs_list ; struct mutex debugfs_lock ; struct drm_master *master ; struct drm_mode_group mode_group ; }; struct drm_pending_vblank_event { struct drm_pending_event base ; int pipe ; struct drm_event_vblank event ; }; struct drm_vblank_crtc { struct drm_device *dev ; wait_queue_head_t queue ; struct timeval time[2U] ; struct timer_list disable_timer ; atomic_t count ; atomic_t refcount ; u32 last ; u32 last_wait ; unsigned int inmodeset ; int crtc ; bool enabled ; }; struct drm_sg_mem; struct __anonstruct_sigdata_222 { int context ; struct drm_hw_lock *lock ; }; struct drm_device { struct list_head legacy_dev_list ; int if_version ; struct kref ref ; struct device *dev ; struct drm_driver *driver ; void *dev_private ; struct drm_minor *control ; struct drm_minor *primary ; struct drm_minor *render ; atomic_t unplugged ; struct inode *anon_inode ; char *unique ; struct mutex struct_mutex ; struct mutex master_mutex ; int open_count ; spinlock_t buf_lock ; int buf_use ; atomic_t buf_alloc ; struct list_head filelist ; struct list_head maplist ; struct drm_open_hash map_hash ; struct list_head ctxlist ; struct mutex ctxlist_mutex ; struct idr ctx_idr ; struct list_head vmalist ; struct drm_device_dma *dma ; long volatile context_flag ; int last_context ; bool irq_enabled ; int irq ; bool vblank_disable_allowed ; bool vblank_disable_immediate ; struct drm_vblank_crtc *vblank ; spinlock_t vblank_time_lock ; spinlock_t vbl_lock ; u32 max_vblank_count ; struct list_head vblank_event_list ; spinlock_t event_lock ; struct drm_agp_head *agp ; struct pci_dev *pdev ; struct platform_device *platformdev ; struct drm_sg_mem *sg ; unsigned int num_crtcs ; sigset_t sigmask ; struct __anonstruct_sigdata_222 sigdata ; struct drm_local_map *agp_buffer_map ; unsigned int agp_buffer_token ; struct drm_mode_config mode_config ; struct mutex object_name_lock ; struct idr object_name_idr ; struct drm_vma_offset_manager *vma_offset_manager ; int switch_power_state ; }; struct drm_fb_helper; struct drm_fb_offset { int x ; int y ; }; struct drm_fb_helper_crtc { struct drm_mode_set mode_set ; struct drm_display_mode *desired_mode ; int x ; int y ; }; struct drm_fb_helper_surface_size { u32 fb_width ; u32 fb_height ; u32 surface_width ; u32 surface_height ; u32 surface_bpp ; u32 surface_depth ; }; struct drm_fb_helper_funcs { void (*gamma_set)(struct drm_crtc * , u16 , u16 , u16 , int ) ; void (*gamma_get)(struct drm_crtc * , u16 * , u16 * , u16 * , int ) ; int (*fb_probe)(struct drm_fb_helper * , struct drm_fb_helper_surface_size * ) ; bool (*initial_config)(struct drm_fb_helper * , struct drm_fb_helper_crtc ** , struct drm_display_mode ** , struct drm_fb_offset * , bool * , int , int ) ; }; struct drm_fb_helper_connector { struct drm_connector *connector ; }; struct drm_fb_helper { struct drm_framebuffer *fb ; struct drm_device *dev ; int crtc_count ; struct drm_fb_helper_crtc *crtc_info ; int connector_count ; int connector_info_alloc_count ; struct drm_fb_helper_connector **connector_info ; struct drm_fb_helper_funcs const *funcs ; struct fb_info *fbdev ; u32 pseudo_palette[17U] ; struct list_head kernel_fb_list ; bool delayed_hotplug ; }; struct fence_ops; struct fence { struct kref refcount ; struct fence_ops const *ops ; struct callback_head rcu ; struct list_head cb_list ; spinlock_t *lock ; unsigned int context ; unsigned int seqno ; unsigned long flags ; ktime_t timestamp ; int status ; }; struct fence_ops { char const *(*get_driver_name)(struct fence * ) ; char const *(*get_timeline_name)(struct fence * ) ; bool (*enable_signaling)(struct fence * ) ; bool (*signaled)(struct fence * ) ; long (*wait)(struct fence * , bool , long ) ; void (*release)(struct fence * ) ; int (*fill_driver_data)(struct fence * , void * , int ) ; void (*fence_value_str)(struct fence * , char * , int ) ; void (*timeline_value_str)(struct fence * , char * , int ) ; }; struct reservation_object_list { struct callback_head rcu ; u32 shared_count ; u32 shared_max ; struct fence *shared[] ; }; struct reservation_object { struct ww_mutex lock ; seqcount_t seq ; struct fence *fence_excl ; struct reservation_object_list *fence ; struct reservation_object_list *staged ; }; struct ttm_bo_device; struct ttm_place { unsigned int fpfn ; unsigned int lpfn ; uint32_t flags ; }; struct ttm_placement { unsigned int num_placement ; struct ttm_place const *placement ; unsigned int num_busy_placement ; struct ttm_place const *busy_placement ; }; struct ttm_bus_placement { void *addr ; unsigned long base ; unsigned long size ; unsigned long offset ; bool is_iomem ; bool io_reserved_vm ; uint64_t io_reserved_count ; }; struct ttm_mem_reg { void *mm_node ; unsigned long start ; unsigned long size ; unsigned long num_pages ; uint32_t page_alignment ; uint32_t mem_type ; uint32_t placement ; struct ttm_bus_placement bus ; }; enum ttm_bo_type { ttm_bo_type_device = 0, ttm_bo_type_kernel = 1, ttm_bo_type_sg = 2 } ; struct ttm_tt; struct ttm_bo_global; struct ttm_buffer_object { struct ttm_bo_global *glob ; struct ttm_bo_device *bdev ; enum ttm_bo_type type ; void (*destroy)(struct ttm_buffer_object * ) ; unsigned long num_pages ; size_t acc_size ; struct kref kref ; struct kref list_kref ; struct ttm_mem_reg mem ; struct file *persistent_swap_storage ; struct ttm_tt *ttm ; bool evicted ; atomic_t cpu_writers ; struct list_head lru ; struct list_head ddestroy ; struct list_head swap ; struct list_head io_reserve_lru ; unsigned long priv_flags ; struct drm_vma_offset_node vma_node ; unsigned long offset ; uint32_t cur_placement ; struct sg_table *sg ; struct reservation_object *resv ; struct reservation_object ttm_resv ; struct mutex wu_mutex ; }; struct ttm_mem_shrink { int (*do_shrink)(struct ttm_mem_shrink * ) ; }; struct ttm_mem_zone; struct ttm_mem_global { struct kobject kobj ; struct ttm_mem_shrink *shrink ; struct workqueue_struct *swap_queue ; struct work_struct work ; spinlock_t lock ; struct ttm_mem_zone *zones[2U] ; unsigned int num_zones ; struct ttm_mem_zone *zone_kernel ; struct ttm_mem_zone *zone_dma32 ; }; struct ttm_backend_func { int (*bind)(struct ttm_tt * , struct ttm_mem_reg * ) ; int (*unbind)(struct ttm_tt * ) ; void (*destroy)(struct ttm_tt * ) ; }; enum ttm_caching_state { tt_uncached = 0, tt_wc = 1, tt_cached = 2 } ; enum ldv_28477 { tt_bound = 0, tt_unbound = 1, tt_unpopulated = 2 } ; struct ttm_tt { struct ttm_bo_device *bdev ; struct ttm_backend_func *func ; struct page *dummy_read_page ; struct page **pages ; uint32_t page_flags ; unsigned long num_pages ; struct sg_table *sg ; struct ttm_bo_global *glob ; struct file *swap_storage ; enum ttm_caching_state caching_state ; enum ldv_28477 state ; }; struct ttm_mem_type_manager; struct ttm_mem_type_manager_func { int (*init)(struct ttm_mem_type_manager * , unsigned long ) ; int (*takedown)(struct ttm_mem_type_manager * ) ; int (*get_node)(struct ttm_mem_type_manager * , struct ttm_buffer_object * , struct ttm_place const * , struct ttm_mem_reg * ) ; void (*put_node)(struct ttm_mem_type_manager * , struct ttm_mem_reg * ) ; void (*debug)(struct ttm_mem_type_manager * , char const * ) ; }; struct ttm_mem_type_manager { struct ttm_bo_device *bdev ; bool has_type ; bool use_type ; uint32_t flags ; unsigned long gpu_offset ; uint64_t size ; uint32_t available_caching ; uint32_t default_caching ; struct ttm_mem_type_manager_func const *func ; void *priv ; struct mutex io_reserve_mutex ; bool use_io_reserve_lru ; bool io_reserve_fastpath ; struct list_head io_reserve_lru ; struct list_head lru ; }; struct ttm_bo_driver { struct ttm_tt *(*ttm_tt_create)(struct ttm_bo_device * , unsigned long , uint32_t , struct page * ) ; int (*ttm_tt_populate)(struct ttm_tt * ) ; void (*ttm_tt_unpopulate)(struct ttm_tt * ) ; int (*invalidate_caches)(struct ttm_bo_device * , uint32_t ) ; int (*init_mem_type)(struct ttm_bo_device * , uint32_t , struct ttm_mem_type_manager * ) ; void (*evict_flags)(struct ttm_buffer_object * , struct ttm_placement * ) ; int (*move)(struct ttm_buffer_object * , bool , bool , bool , struct ttm_mem_reg * ) ; int (*verify_access)(struct ttm_buffer_object * , struct file * ) ; void (*move_notify)(struct ttm_buffer_object * , struct ttm_mem_reg * ) ; int (*fault_reserve_notify)(struct ttm_buffer_object * ) ; void (*swap_notify)(struct ttm_buffer_object * ) ; int (*io_mem_reserve)(struct ttm_bo_device * , struct ttm_mem_reg * ) ; void (*io_mem_free)(struct ttm_bo_device * , struct ttm_mem_reg * ) ; }; struct ttm_bo_global { struct kobject kobj ; struct ttm_mem_global *mem_glob ; struct page *dummy_read_page ; struct ttm_mem_shrink shrink ; struct mutex device_list_mutex ; spinlock_t lru_lock ; struct list_head device_list ; struct list_head swap_lru ; atomic_t bo_count ; }; struct ttm_bo_device { struct list_head device_list ; struct ttm_bo_global *glob ; struct ttm_bo_driver *driver ; struct ttm_mem_type_manager man[8U] ; struct drm_vma_offset_manager vma_manager ; struct list_head ddestroy ; uint32_t val_seq ; struct address_space *dev_mapping ; struct delayed_work wq ; bool need_dma32 ; }; struct drm_gem_object { struct kref refcount ; unsigned int handle_count ; struct drm_device *dev ; struct file *filp ; struct drm_vma_offset_node vma_node ; size_t size ; int name ; uint32_t read_domains ; uint32_t write_domain ; uint32_t pending_read_domains ; uint32_t pending_write_domain ; struct dma_buf *dma_buf ; struct dma_buf_attachment *import_attach ; }; struct ldv_struct_dummy_resourceless_instance_5 { struct drm_connector *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_3 { int signal_pending ; }; enum hrtimer_restart; enum drm_global_types { DRM_GLOBAL_TTM_MEM = 0, DRM_GLOBAL_TTM_BO = 1, DRM_GLOBAL_TTM_OBJECT = 2, DRM_GLOBAL_NUM = 3 } ; struct drm_global_reference { enum drm_global_types global_type ; size_t size ; void *object ; int (*init)(struct drm_global_reference * ) ; void (*release)(struct drm_global_reference * ) ; }; enum ldv_28185 { ttm_bo_map_iomap = 129, ttm_bo_map_vmap = 2, ttm_bo_map_kmap = 3, ttm_bo_map_premapped = 132 } ; struct ttm_bo_kmap_obj { void *virtual ; struct page *page ; enum ldv_28185 bo_kmap_type ; struct ttm_buffer_object *bo ; }; struct ttm_bo_global_ref { struct drm_global_reference ref ; struct ttm_mem_global *mem_glob ; }; enum ast_chip { AST2000 = 0, AST2100 = 1, AST1100 = 2, AST2200 = 3, AST2150 = 4, AST2300 = 5, AST2400 = 6, AST1180 = 7 } ; enum ast_tx_chip { AST_TX_NONE = 0, AST_TX_SIL164 = 1, AST_TX_ITE66121 = 2, AST_TX_DP501 = 3 } ; struct ast_fbdev; struct __anonstruct_ttm_223 { struct drm_global_reference mem_global_ref ; struct ttm_bo_global_ref bo_global_ref ; struct ttm_bo_device bdev ; }; struct firmware; struct ast_private { struct drm_device *dev ; void *regs ; void *ioregs ; enum ast_chip chip ; bool vga2_clone ; uint32_t dram_bus_width ; uint32_t dram_type ; uint32_t mclk ; uint32_t vram_size ; struct ast_fbdev *fbdev ; int fb_mtrr ; struct __anonstruct_ttm_223 ttm ; struct drm_gem_object *cursor_cache ; uint64_t cursor_cache_gpu_addr ; struct ttm_bo_kmap_obj cache_kmap ; int next_cursor ; bool support_wide_screen ; enum ast_tx_chip tx_chip_type ; u8 dp501_maxclk ; u8 *dp501_fw_addr ; struct firmware const *dp501_fw ; }; struct ast_framebuffer { struct drm_framebuffer base ; struct drm_gem_object *obj ; }; struct ast_fbdev { struct drm_fb_helper helper ; struct ast_framebuffer afb ; struct list_head fbdev_list ; void *sysram ; int size ; struct ttm_bo_kmap_obj mapping ; int x1 ; int y1 ; int x2 ; int y2 ; spinlock_t dirty_lock ; }; struct ast_bo { struct ttm_buffer_object bo ; struct ttm_placement placement ; struct ttm_bo_kmap_obj kmap ; struct drm_gem_object gem ; struct ttm_place placements[3U] ; int pin_count ; }; enum hrtimer_restart; struct rt_mutex { raw_spinlock_t wait_lock ; struct rb_root waiters ; struct rb_node *waiters_leftmost ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_adapter; struct i2c_client; enum i2c_slave_event; enum i2c_slave_event; struct i2c_client { unsigned short flags ; unsigned short addr ; char name[20U] ; struct i2c_adapter *adapter ; struct device dev ; int irq ; struct list_head detected ; int (*slave_cb)(struct i2c_client * , enum i2c_slave_event , u8 * ) ; }; enum i2c_slave_event { I2C_SLAVE_REQ_READ_START = 0, I2C_SLAVE_REQ_READ_END = 1, I2C_SLAVE_REQ_WRITE_START = 2, I2C_SLAVE_REQ_WRITE_END = 3, I2C_SLAVE_STOP = 4 } ; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; int (*reg_slave)(struct i2c_client * ) ; int (*unreg_slave)(struct i2c_client * ) ; }; struct i2c_bus_recovery_info { int (*recover_bus)(struct i2c_adapter * ) ; int (*get_scl)(struct i2c_adapter * ) ; void (*set_scl)(struct i2c_adapter * , int ) ; int (*get_sda)(struct i2c_adapter * ) ; void (*prepare_recovery)(struct i2c_bus_recovery_info * ) ; void (*unprepare_recovery)(struct i2c_bus_recovery_info * ) ; int scl_gpio ; int sda_gpio ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; struct i2c_bus_recovery_info *bus_recovery_info ; }; struct edid; enum mode_set_atomic { LEAVE_ATOMIC_MODE_SET = 0, ENTER_ATOMIC_MODE_SET = 1 } ; struct drm_crtc_helper_funcs { void (*dpms)(struct drm_crtc * , int ) ; void (*prepare)(struct drm_crtc * ) ; void (*commit)(struct drm_crtc * ) ; bool (*mode_fixup)(struct drm_crtc * , struct drm_display_mode const * , struct drm_display_mode * ) ; int (*mode_set)(struct drm_crtc * , struct drm_display_mode * , struct drm_display_mode * , int , int , struct drm_framebuffer * ) ; void (*mode_set_nofb)(struct drm_crtc * ) ; int (*mode_set_base)(struct drm_crtc * , int , int , struct drm_framebuffer * ) ; int (*mode_set_base_atomic)(struct drm_crtc * , struct drm_framebuffer * , int , int , enum mode_set_atomic ) ; void (*load_lut)(struct drm_crtc * ) ; void (*disable)(struct drm_crtc * ) ; void (*enable)(struct drm_crtc * ) ; int (*atomic_check)(struct drm_crtc * , struct drm_crtc_state * ) ; void (*atomic_begin)(struct drm_crtc * ) ; void (*atomic_flush)(struct drm_crtc * ) ; }; struct drm_encoder_helper_funcs { void (*dpms)(struct drm_encoder * , int ) ; void (*save)(struct drm_encoder * ) ; void (*restore)(struct drm_encoder * ) ; bool (*mode_fixup)(struct drm_encoder * , struct drm_display_mode const * , struct drm_display_mode * ) ; void (*prepare)(struct drm_encoder * ) ; void (*commit)(struct drm_encoder * ) ; void (*mode_set)(struct drm_encoder * , struct drm_display_mode * , struct drm_display_mode * ) ; struct drm_crtc *(*get_crtc)(struct drm_encoder * ) ; enum drm_connector_status (*detect)(struct drm_encoder * , struct drm_connector * ) ; void (*disable)(struct drm_encoder * ) ; void (*enable)(struct drm_encoder * ) ; int (*atomic_check)(struct drm_encoder * , struct drm_crtc_state * , struct drm_connector_state * ) ; }; struct drm_connector_helper_funcs { int (*get_modes)(struct drm_connector * ) ; enum drm_mode_status (*mode_valid)(struct drm_connector * , struct drm_display_mode * ) ; struct drm_encoder *(*best_encoder)(struct drm_connector * ) ; }; struct i2c_algo_bit_data { void *data ; void (*setsda)(void * , int ) ; void (*setscl)(void * , int ) ; int (*getsda)(void * ) ; int (*getscl)(void * ) ; int (*pre_xfer)(struct i2c_adapter * ) ; void (*post_xfer)(struct i2c_adapter * ) ; int udelay ; int timeout ; }; struct ast_i2c_chan { struct i2c_adapter adapter ; struct drm_device *dev ; struct i2c_algo_bit_data bit ; }; struct ast_connector { struct drm_connector base ; struct ast_i2c_chan *i2c ; }; struct ast_crtc { struct drm_crtc base ; u8 lut_r[256U] ; u8 lut_g[256U] ; u8 lut_b[256U] ; struct drm_gem_object *cursor_bo ; uint64_t cursor_addr ; int cursor_width ; int cursor_height ; u8 offset_x ; u8 offset_y ; }; struct ast_encoder { struct drm_encoder base ; }; struct ast_vbios_stdtable { u8 misc ; u8 seq[4U] ; u8 crtc[25U] ; u8 ar[20U] ; u8 gr[9U] ; }; struct ast_vbios_enhtable { u32 ht ; u32 hde ; u32 hfp ; u32 hsync ; u32 vt ; u32 vde ; u32 vfp ; u32 vsync ; u32 dclk_index ; u32 flags ; u32 refresh_rate ; u32 refresh_rate_index ; u32 mode_id ; }; struct ast_vbios_dclk_info { u8 param1 ; u8 param2 ; u8 param3 ; }; struct ast_vbios_mode_info { struct ast_vbios_stdtable *std_table ; struct ast_vbios_enhtable *enh_table ; }; union __anonunion_srcdata32_225 { u32 ul ; u8 b[4U] ; }; union __anonunion_data32_226 { u32 ul ; u8 b[4U] ; }; union __anonunion_data16_228 { u16 us ; u8 b[2U] ; }; typedef int ldv_func_ret_type___0; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; enum hrtimer_restart; struct llist_head { struct llist_node *first ; }; typedef unsigned char cc_t; typedef unsigned int speed_t; typedef unsigned int tcflag_t; struct ktermios { tcflag_t c_iflag ; tcflag_t c_oflag ; tcflag_t c_cflag ; tcflag_t c_lflag ; cc_t c_line ; cc_t c_cc[19U] ; speed_t c_ispeed ; speed_t c_ospeed ; }; struct winsize { unsigned short ws_row ; unsigned short ws_col ; unsigned short ws_xpixel ; unsigned short ws_ypixel ; }; struct termiox { __u16 x_hflag ; __u16 x_cflag ; __u16 x_rflag[5U] ; __u16 x_sflag ; }; struct tty_driver; struct serial_icounter_struct; struct tty_operations { struct tty_struct *(*lookup)(struct tty_driver * , struct inode * , int ) ; int (*install)(struct tty_driver * , struct tty_struct * ) ; void (*remove)(struct tty_driver * , struct tty_struct * ) ; int (*open)(struct tty_struct * , struct file * ) ; void (*close)(struct tty_struct * , struct file * ) ; void (*shutdown)(struct tty_struct * ) ; void (*cleanup)(struct tty_struct * ) ; int (*write)(struct tty_struct * , unsigned char const * , int ) ; int (*put_char)(struct tty_struct * , unsigned char ) ; void (*flush_chars)(struct tty_struct * ) ; int (*write_room)(struct tty_struct * ) ; int (*chars_in_buffer)(struct tty_struct * ) ; int (*ioctl)(struct tty_struct * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct tty_struct * , unsigned int , unsigned long ) ; void (*set_termios)(struct tty_struct * , struct ktermios * ) ; void (*throttle)(struct tty_struct * ) ; void (*unthrottle)(struct tty_struct * ) ; void (*stop)(struct tty_struct * ) ; void (*start)(struct tty_struct * ) ; void (*hangup)(struct tty_struct * ) ; int (*break_ctl)(struct tty_struct * , int ) ; void (*flush_buffer)(struct tty_struct * ) ; void (*set_ldisc)(struct tty_struct * ) ; void (*wait_until_sent)(struct tty_struct * , int ) ; void (*send_xchar)(struct tty_struct * , char ) ; int (*tiocmget)(struct tty_struct * ) ; int (*tiocmset)(struct tty_struct * , unsigned int , unsigned int ) ; int (*resize)(struct tty_struct * , struct winsize * ) ; int (*set_termiox)(struct tty_struct * , struct termiox * ) ; int (*get_icount)(struct tty_struct * , struct serial_icounter_struct * ) ; int (*poll_init)(struct tty_driver * , int , char * ) ; int (*poll_get_char)(struct tty_driver * , int ) ; void (*poll_put_char)(struct tty_driver * , int , char ) ; struct file_operations const *proc_fops ; }; struct tty_port; struct tty_driver { int magic ; struct kref kref ; struct cdev *cdevs ; struct module *owner ; char const *driver_name ; char const *name ; int name_base ; int major ; int minor_start ; unsigned int num ; short type ; short subtype ; struct ktermios init_termios ; unsigned long flags ; struct proc_dir_entry *proc_entry ; struct tty_driver *other ; struct tty_struct **ttys ; struct tty_port **ports ; struct ktermios **termios ; void *driver_state ; struct tty_operations const *ops ; struct list_head tty_drivers ; }; struct ld_semaphore { long count ; raw_spinlock_t wait_lock ; unsigned int wait_readers ; struct list_head read_wait ; struct list_head write_wait ; struct lockdep_map dep_map ; }; struct tty_ldisc_ops { int magic ; char *name ; int num ; int flags ; int (*open)(struct tty_struct * ) ; void (*close)(struct tty_struct * ) ; void (*flush_buffer)(struct tty_struct * ) ; ssize_t (*chars_in_buffer)(struct tty_struct * ) ; ssize_t (*read)(struct tty_struct * , struct file * , unsigned char * , size_t ) ; ssize_t (*write)(struct tty_struct * , struct file * , unsigned char const * , size_t ) ; int (*ioctl)(struct tty_struct * , struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct tty_struct * , struct file * , unsigned int , unsigned long ) ; void (*set_termios)(struct tty_struct * , struct ktermios * ) ; unsigned int (*poll)(struct tty_struct * , struct file * , struct poll_table_struct * ) ; int (*hangup)(struct tty_struct * ) ; void (*receive_buf)(struct tty_struct * , unsigned char const * , char * , int ) ; void (*write_wakeup)(struct tty_struct * ) ; void (*dcd_change)(struct tty_struct * , unsigned int ) ; void (*fasync)(struct tty_struct * , int ) ; int (*receive_buf2)(struct tty_struct * , unsigned char const * , char * , int ) ; struct module *owner ; int refcount ; }; struct tty_ldisc { struct tty_ldisc_ops *ops ; struct tty_struct *tty ; }; union __anonunion____missing_field_name_219 { struct tty_buffer *next ; struct llist_node free ; }; struct tty_buffer { union __anonunion____missing_field_name_219 __annonCompField74 ; int used ; int size ; int commit ; int read ; int flags ; unsigned long data[0U] ; }; struct tty_bufhead { struct tty_buffer *head ; struct work_struct work ; struct mutex lock ; atomic_t priority ; struct tty_buffer sentinel ; struct llist_head free ; atomic_t mem_used ; int mem_limit ; struct tty_buffer *tail ; }; struct tty_port_operations { int (*carrier_raised)(struct tty_port * ) ; void (*dtr_rts)(struct tty_port * , int ) ; void (*shutdown)(struct tty_port * ) ; int (*activate)(struct tty_port * , struct tty_struct * ) ; void (*destruct)(struct tty_port * ) ; }; struct tty_port { struct tty_bufhead buf ; struct tty_struct *tty ; struct tty_struct *itty ; struct tty_port_operations const *ops ; spinlock_t lock ; int blocked_open ; int count ; wait_queue_head_t open_wait ; wait_queue_head_t close_wait ; wait_queue_head_t delta_msr_wait ; unsigned long flags ; unsigned char console : 1 ; unsigned char low_latency : 1 ; struct mutex mutex ; struct mutex buf_mutex ; unsigned char *xmit_buf ; unsigned int close_delay ; unsigned int closing_wait ; int drain_delay ; struct kref kref ; }; struct tty_struct { int magic ; struct kref kref ; struct device *dev ; struct tty_driver *driver ; struct tty_operations const *ops ; int index ; struct ld_semaphore ldisc_sem ; struct tty_ldisc *ldisc ; struct mutex atomic_write_lock ; struct mutex legacy_mutex ; struct mutex throttle_mutex ; struct rw_semaphore termios_rwsem ; struct mutex winsize_mutex ; spinlock_t ctrl_lock ; spinlock_t flow_lock ; struct ktermios termios ; struct ktermios termios_locked ; struct termiox *termiox ; char name[64U] ; struct pid *pgrp ; struct pid *session ; unsigned long flags ; int count ; struct winsize winsize ; unsigned char stopped : 1 ; unsigned char flow_stopped : 1 ; unsigned long unused : 62 ; int hw_stopped ; unsigned char ctrl_status ; unsigned char packet : 1 ; unsigned long unused_ctrl : 55 ; unsigned int receive_room ; int flow_change ; struct tty_struct *link ; struct fasync_struct *fasync ; int alt_speed ; wait_queue_head_t write_wait ; wait_queue_head_t read_wait ; struct work_struct hangup_work ; void *disc_data ; void *driver_data ; struct list_head tty_files ; int closing ; unsigned char *write_buf ; int write_cnt ; struct work_struct SAK_work ; struct tty_port *port ; }; struct ldv_struct_drm_framebuffer_unregister_private_14 { struct drm_framebuffer *arg0 ; int signal_pending ; }; enum hrtimer_restart; enum hrtimer_restart; struct ast_dramstruct { u16 index ; u32 data ; }; struct ast2300_dram_param { u32 dram_type ; u32 dram_chipid ; u32 dram_freq ; u32 vram_size ; u32 odt ; u32 wodt ; u32 rodt ; u32 dram_config ; u32 reg_PERIOD ; u32 reg_MADJ ; u32 reg_SADJ ; u32 reg_MRS ; u32 reg_EMRS ; u32 reg_AC1 ; u32 reg_AC2 ; u32 reg_DQSIC ; u32 reg_DRV ; u32 reg_IOZ ; u32 reg_DQIDLY ; u32 reg_FREQ ; u32 madj_max ; u32 dll2_finetune_step ; }; enum hrtimer_restart; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void *is_got ) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(res1); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } int ldv_undef_int(void) ; static void ldv_ldv_initialize_115(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_112(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_116(void) ; static void ldv_ldv_pre_probe_118(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_117(int retval ) ; static int ldv_ldv_post_probe_119(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_113(void) ; static void ldv_ldv_check_final_state_114(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern struct module __this_module ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } extern void console_lock(void) ; extern void console_unlock(void) ; extern bool vgacon_text_force(void) ; extern void drm_mode_config_reset(struct drm_device * ) ; extern long drm_ioctl(struct file * , unsigned int , unsigned long ) ; extern long drm_compat_ioctl(struct file * , unsigned int , unsigned long ) ; extern int drm_open(struct inode * , struct file * ) ; extern ssize_t drm_read(struct file * , char * , size_t , loff_t * ) ; extern int drm_release(struct inode * , struct file * ) ; extern unsigned int drm_poll(struct file * , struct poll_table_struct * ) ; extern void drm_put_dev(struct drm_device * ) ; extern int drm_pci_init(struct drm_driver * , struct pci_driver * ) ; extern void drm_pci_exit(struct drm_driver * , struct pci_driver * ) ; extern int drm_get_pci_dev(struct pci_dev * , struct pci_device_id const * , struct drm_driver * ) ; extern int drm_pci_set_busid(struct drm_device * , struct drm_master * ) ; extern void drm_helper_resume_force_mode(struct drm_device * ) ; extern void drm_kms_helper_poll_disable(struct drm_device * ) ; extern void drm_kms_helper_poll_enable(struct drm_device * ) ; extern int drm_gem_dumb_destroy(struct drm_file * , struct drm_device * , uint32_t ) ; int ast_driver_load(struct drm_device *dev , unsigned long flags ) ; int ast_driver_unload(struct drm_device *dev ) ; void ast_fbdev_set_suspend(struct drm_device *dev , int state ) ; int ast_dumb_create(struct drm_file *file , struct drm_device *dev , struct drm_mode_create_dumb *args ) ; void ast_gem_free_object(struct drm_gem_object *obj ) ; int ast_dumb_mmap_offset(struct drm_file *file , struct drm_device *dev , uint32_t handle , uint64_t *offset ) ; int ast_mmap(struct file *filp , struct vm_area_struct *vma ) ; void ast_post_gpu(struct drm_device *dev ) ; int ast_modeset = -1; static struct drm_driver driver ; static struct pci_device_id const pciidlist[3U] = { {6659U, 8192U, 4294967295U, 4294967295U, 196608U, 16711680U, 0UL}, {6659U, 8208U, 4294967295U, 4294967295U, 196608U, 16711680U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__pciidlist_device_table[3U] ; static int ast_pci_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { int tmp ; { { tmp = drm_get_pci_dev(pdev, ent, & driver); } return (tmp); } } static void ast_pci_remove(struct pci_dev *pdev ) { struct drm_device *dev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dev = (struct drm_device *)tmp; drm_put_dev(dev); } return; } } static int ast_drm_freeze(struct drm_device *dev ) { { { drm_kms_helper_poll_disable(dev); pci_save_state(dev->pdev); console_lock(); ast_fbdev_set_suspend(dev, 1); console_unlock(); } return (0); } } static int ast_drm_thaw(struct drm_device *dev ) { int error ; { { error = 0; ast_post_gpu(dev); drm_mode_config_reset(dev); drm_helper_resume_force_mode(dev); console_lock(); ast_fbdev_set_suspend(dev, 0); console_unlock(); } return (error); } } static int ast_drm_resume(struct drm_device *dev ) { int ret ; int tmp ; { { tmp = pci_enable_device(dev->pdev); } if (tmp != 0) { return (-5); } else { } { ret = ast_drm_thaw(dev); } if (ret != 0) { return (ret); } else { } { drm_kms_helper_poll_enable(dev); } return (0); } } static int ast_pm_suspend(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct drm_device *ddev ; void *tmp ; int error ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); ddev = (struct drm_device *)tmp; error = ast_drm_freeze(ddev); } if (error != 0) { return (error); } else { } { pci_disable_device(pdev); pci_set_power_state(pdev, 3); } return (0); } } static int ast_pm_resume(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct drm_device *ddev ; void *tmp ; int tmp___0 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); ddev = (struct drm_device *)tmp; tmp___0 = ast_drm_resume(ddev); } return (tmp___0); } } static int ast_pm_freeze(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct drm_device *ddev ; void *tmp ; int tmp___0 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); ddev = (struct drm_device *)tmp; } if ((unsigned long )ddev == (unsigned long )((struct drm_device *)0) || (unsigned long )ddev->dev_private == (unsigned long )((void *)0)) { return (-19); } else { } { tmp___0 = ast_drm_freeze(ddev); } return (tmp___0); } } static int ast_pm_thaw(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct drm_device *ddev ; void *tmp ; int tmp___0 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); ddev = (struct drm_device *)tmp; tmp___0 = ast_drm_thaw(ddev); } return (tmp___0); } } static int ast_pm_poweroff(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct drm_device *ddev ; void *tmp ; int tmp___0 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); ddev = (struct drm_device *)tmp; tmp___0 = ast_drm_freeze(ddev); } return (tmp___0); } } static struct dev_pm_ops const ast_pm_ops = {0, 0, & ast_pm_suspend, & ast_pm_resume, & ast_pm_freeze, & ast_pm_thaw, & ast_pm_poweroff, & ast_pm_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct pci_driver ast_pci_driver = {{0, 0}, "ast", (struct pci_device_id const *)(& pciidlist), & ast_pci_probe, & ast_pci_remove, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & ast_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static struct file_operations const ast_fops = {& __this_module, 0, & drm_read, 0, 0, 0, 0, 0, 0, & drm_poll, & drm_ioctl, & drm_compat_ioctl, & ast_mmap, 0, & drm_open, 0, & drm_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct drm_driver driver = {& ast_driver_load, 0, 0, 0, 0, 0, & ast_driver_unload, 0, 0, 0, 0, 0, & drm_pci_set_busid, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ast_gem_free_object, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ast_dumb_create, & ast_dumb_mmap_offset, & drm_gem_dumb_destroy, 0, 0, 1, 0, (char *)"ast", (char *)"AST", (char *)"20120228", 12288U, 0, 0, 0, & ast_fops, {0, 0}}; static int ast_init(void) { bool tmp ; int tmp___0 ; { { tmp = vgacon_text_force(); } if ((int )tmp && ast_modeset == -1) { return (-22); } else { } if (ast_modeset == 0) { return (-22); } else { } { tmp___0 = drm_pci_init(& driver, & ast_pci_driver); } return (tmp___0); } } static void ast_exit(void) { { { drm_pci_exit(& driver, & ast_pci_driver); } return; } } void ldv_EMGentry_exit_ast_exit_15_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_ast_init_15_26(int (*arg0)(void) ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_10_15_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_11_15_5(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_14_15_6(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_15_15_7(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_5_15_8(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_9_15_9(void) ; void ldv_dispatch_deregister_file_operations_instance_1_15_10(void) ; void ldv_dispatch_deregister_pci_instance_2_15_11(void) ; void ldv_dispatch_deregister_platform_instance_4_15_12(void) ; void ldv_dispatch_pm_deregister_3_5(void) ; void ldv_dispatch_pm_register_3_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_10_15_13(void) ; void ldv_dispatch_register_dummy_resourceless_instance_11_15_14(void) ; void ldv_dispatch_register_dummy_resourceless_instance_12_15_15(void) ; void ldv_dispatch_register_dummy_resourceless_instance_14_15_16(void) ; void ldv_dispatch_register_dummy_resourceless_instance_15_15_17(void) ; void ldv_dispatch_register_dummy_resourceless_instance_5_15_18(void) ; void ldv_dispatch_register_dummy_resourceless_instance_9_15_19(void) ; void ldv_dispatch_register_file_operations_instance_1_15_20(void) ; void ldv_dispatch_register_pci_instance_2_15_21(void) ; void ldv_dispatch_register_platform_instance_4_15_22(void) ; void ldv_dummy_resourceless_instance_callback_10_3(struct drm_framebuffer *(*arg0)(struct drm_device * , struct drm_file * , struct drm_mode_fb_cmd2 * ) , struct drm_device *arg1 , struct drm_file *arg2 , struct drm_mode_fb_cmd2 *arg3 ) ; void ldv_dummy_resourceless_instance_callback_11_11(void (*arg0)(struct ttm_bo_device * , struct ttm_mem_reg * ) , struct ttm_bo_device *arg1 , struct ttm_mem_reg *arg2 ) ; void ldv_dummy_resourceless_instance_callback_11_12(int (*arg0)(struct ttm_bo_device * , struct ttm_mem_reg * ) , struct ttm_bo_device *arg1 , struct ttm_mem_reg *arg2 ) ; void ldv_dummy_resourceless_instance_callback_11_13(int (*arg0)(struct ttm_buffer_object * , _Bool , _Bool , _Bool , struct ttm_mem_reg * ) , struct ttm_buffer_object *arg1 , _Bool arg2 , _Bool arg3 , _Bool arg4 , struct ttm_mem_reg *arg5 ) ; void ldv_dummy_resourceless_instance_callback_11_16(struct ttm_tt *(*arg0)(struct ttm_bo_device * , unsigned long , unsigned int , struct page * ) , struct ttm_bo_device *arg1 , unsigned long arg2 , unsigned int arg3 , struct page *arg4 ) ; void ldv_dummy_resourceless_instance_callback_11_19(int (*arg0)(struct ttm_tt * ) , struct ttm_tt *arg1 ) ; void ldv_dummy_resourceless_instance_callback_11_20(void (*arg0)(struct ttm_tt * ) , struct ttm_tt *arg1 ) ; void ldv_dummy_resourceless_instance_callback_11_21(int (*arg0)(struct ttm_buffer_object * , struct file * ) , struct ttm_buffer_object *arg1 , struct file *arg2 ) ; void ldv_dummy_resourceless_instance_callback_11_3(void (*arg0)(struct ttm_tt * ) , struct ttm_tt *arg1 ) ; void ldv_dummy_resourceless_instance_callback_11_7(void (*arg0)(struct ttm_buffer_object * , struct ttm_placement * ) , struct ttm_buffer_object *arg1 , struct ttm_placement *arg2 ) ; void ldv_dummy_resourceless_instance_callback_11_8(int (*arg0)(struct ttm_bo_device * , unsigned int , struct ttm_mem_type_manager * ) , struct ttm_bo_device *arg1 , unsigned int arg2 , struct ttm_mem_type_manager *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_10(void (*arg0)(struct drm_connector * , int ) , struct drm_connector *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_13(int (*arg0)(struct drm_connector * , unsigned int , unsigned int ) , struct drm_connector *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_3(void (*arg0)(struct drm_connector * ) , struct drm_connector *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_7(enum drm_connector_status (*arg0)(struct drm_connector * , _Bool ) , struct drm_connector *arg1 , _Bool arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_3(struct drm_encoder *(*arg0)(struct drm_connector * ) , struct drm_connector *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_7(int (*arg0)(struct drm_connector * ) , struct drm_connector *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_8(enum drm_mode_status (*arg0)(struct drm_connector * , struct drm_display_mode * ) , struct drm_connector *arg1 , struct drm_display_mode *arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_10(int (*arg0)(struct drm_crtc * , struct drm_file * , unsigned int , unsigned int , unsigned int ) , struct drm_crtc *arg1 , struct drm_file *arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 ) ; void ldv_dummy_resourceless_instance_callback_6_13(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_14(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_15(void (*arg0)(struct drm_crtc * , int ) , struct drm_crtc *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_18(void (*arg0)(struct drm_crtc * , unsigned short * , unsigned short * , unsigned short * , unsigned int , unsigned int ) , struct drm_crtc *arg1 , unsigned short *arg2 , unsigned short *arg3 , unsigned short *arg4 , unsigned int arg5 , unsigned int arg6 ) ; void ldv_dummy_resourceless_instance_callback_6_21(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_22(_Bool (*arg0)(struct drm_crtc * , struct drm_display_mode * , struct drm_display_mode * ) , struct drm_crtc *arg1 , struct drm_display_mode *arg2 , struct drm_display_mode *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_25(int (*arg0)(struct drm_crtc * , struct drm_display_mode * , struct drm_display_mode * , int , int , struct drm_framebuffer * ) , struct drm_crtc *arg1 , struct drm_display_mode *arg2 , struct drm_display_mode *arg3 , int arg4 , int arg5 , struct drm_framebuffer *arg6 ) ; void ldv_dummy_resourceless_instance_callback_6_28(int (*arg0)(struct drm_crtc * , int , int , struct drm_framebuffer * ) , struct drm_crtc *arg1 , int arg2 , int arg3 , struct drm_framebuffer *arg4 ) ; void ldv_dummy_resourceless_instance_callback_6_3(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_31(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_32(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_33(int (*arg0)(struct drm_mode_set * ) , struct drm_mode_set *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_7(int (*arg0)(struct drm_crtc * , int , int ) , struct drm_crtc *arg1 , int arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_11(_Bool (*arg0)(struct drm_encoder * , struct drm_display_mode * , struct drm_display_mode * ) , struct drm_encoder *arg1 , struct drm_display_mode *arg2 , struct drm_display_mode *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_14(void (*arg0)(struct drm_encoder * , struct drm_display_mode * , struct drm_display_mode * ) , struct drm_encoder *arg1 , struct drm_display_mode *arg2 , struct drm_display_mode *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_17(void (*arg0)(struct drm_encoder * ) , struct drm_encoder *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_3(void (*arg0)(struct drm_encoder * ) , struct drm_encoder *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_7(void (*arg0)(struct drm_encoder * ) , struct drm_encoder *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_8(void (*arg0)(struct drm_encoder * , int ) , struct drm_encoder *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_8_10(void (*arg0)(struct drm_crtc * , unsigned short , unsigned short , unsigned short , int ) , struct drm_crtc *arg1 , unsigned short arg2 , unsigned short arg3 , unsigned short arg4 , int arg5 ) ; void ldv_dummy_resourceless_instance_callback_8_3(int (*arg0)(struct drm_fb_helper * , struct drm_fb_helper_surface_size * ) , struct drm_fb_helper *arg1 , struct drm_fb_helper_surface_size *arg2 ) ; void ldv_dummy_resourceless_instance_callback_8_7(void (*arg0)(struct drm_crtc * , unsigned short * , unsigned short * , unsigned short * , int ) , struct drm_crtc *arg1 , unsigned short *arg2 , unsigned short *arg3 , unsigned short *arg4 , int arg5 ) ; void ldv_dummy_resourceless_instance_callback_9_3(void (*arg0)(struct drm_framebuffer * ) , struct drm_framebuffer *arg1 ) ; void ldv_entry_EMGentry_15(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_instance_callback_0_22(int (*arg0)(struct drm_file * , struct drm_device * , struct drm_mode_create_dumb * ) , struct drm_file *arg1 , struct drm_device *arg2 , struct drm_mode_create_dumb *arg3 ) ; void ldv_file_operations_instance_callback_0_25(int (*arg0)(struct drm_file * , struct drm_device * , unsigned int ) , struct drm_file *arg1 , struct drm_device *arg2 , unsigned int arg3 ) ; void ldv_file_operations_instance_callback_0_28(int (*arg0)(struct drm_file * , struct drm_device * , unsigned int , unsigned long long * ) , struct drm_file *arg1 , struct drm_device *arg2 , unsigned int arg3 , unsigned long long *arg4 ) ; void ldv_file_operations_instance_callback_0_31(int (*arg0)(int , struct fb_info * ) , int arg1 , struct fb_info *arg2 ) ; void ldv_file_operations_instance_callback_0_34(int (*arg0)(struct fb_var_screeninfo * , struct fb_info * ) , struct fb_var_screeninfo *arg1 , struct fb_info *arg2 ) ; void ldv_file_operations_instance_callback_0_35(void (*arg0)(struct fb_info * , struct fb_copyarea * ) , struct fb_info *arg1 , struct fb_copyarea *arg2 ) ; void ldv_file_operations_instance_callback_0_38(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) ; void ldv_file_operations_instance_callback_0_41(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) ; void ldv_file_operations_instance_callback_0_44(void (*arg0)(struct fb_info * , struct fb_fillrect * ) , struct fb_info *arg1 , struct fb_fillrect *arg2 ) ; void ldv_file_operations_instance_callback_0_47(void (*arg0)(struct fb_info * , struct fb_image * ) , struct fb_info *arg1 , struct fb_image *arg2 ) ; void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_0_50(int (*arg0)(struct fb_var_screeninfo * , struct fb_info * ) , struct fb_var_screeninfo *arg1 , struct fb_info *arg2 ) ; void ldv_file_operations_instance_callback_0_51(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) ; void ldv_file_operations_instance_callback_0_54(int (*arg0)(struct fb_cmap * , struct fb_info * ) , struct fb_cmap *arg1 , struct fb_info *arg2 ) ; void ldv_file_operations_instance_callback_0_55(void (*arg0)(struct drm_gem_object * ) , struct drm_gem_object *arg1 ) ; void ldv_file_operations_instance_callback_0_58(int (*arg0)(struct drm_device * , unsigned long ) , struct drm_device *arg1 , unsigned long arg2 ) ; void ldv_file_operations_instance_callback_0_61(int (*arg0)(struct file * , struct vm_area_struct * ) , struct file *arg1 , struct vm_area_struct *arg2 ) ; void ldv_file_operations_instance_callback_0_62(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) ; void ldv_file_operations_instance_callback_0_63(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_0_66(int (*arg0)(struct drm_device * , struct drm_master * ) , struct drm_device *arg1 , struct drm_master *arg2 ) ; void ldv_file_operations_instance_callback_0_69(int (*arg0)(struct drm_device * ) , struct drm_device *arg1 ) ; void ldv_file_operations_instance_callback_0_72(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_1(void *arg0 ) ; int ldv_platform_instance_probe_3_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_3_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_2_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_2_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_2_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_2_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_2_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_2_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_2_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_2_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_2_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_2_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_2_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_2_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_2_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_2_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_2_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_2_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_2_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_2_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_2_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_2_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_2_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_2_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_2_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_3(void *arg0 ) ; void ldv_pm_pm_ops_instance_2(void *arg0 ) ; void ldv_struct_drm_connector_funcs_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_drm_connector_helper_funcs_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_drm_crtc_helper_funcs_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_drm_encoder_helper_funcs_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_struct_drm_fb_helper_funcs_dummy_resourceless_instance_8(void *arg0 ) ; void ldv_struct_drm_framebuffer_funcs_dummy_resourceless_instance_9(void *arg0 ) ; void ldv_struct_drm_mode_config_funcs_dummy_resourceless_instance_10(void *arg0 ) ; void ldv_struct_ttm_bo_driver_dummy_resourceless_instance_11(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_10 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_15 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_ast_exit_15_2(void (*arg0)(void) ) { { { ast_exit(); } return; } } int ldv_EMGentry_init_ast_init_15_26(int (*arg0)(void) ) { int tmp ; { { tmp = ast_init(); } return (tmp); } } void ldv_dispatch_deregister_dummy_resourceless_instance_10_15_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_11_15_5(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_14_15_6(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_15_15_7(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_5_15_8(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_9_15_9(void) { { return; } } void ldv_dispatch_deregister_file_operations_instance_1_15_10(void) { { return; } } void ldv_dispatch_deregister_pci_instance_2_15_11(void) { { return; } } void ldv_dispatch_deregister_platform_instance_4_15_12(void) { { return; } } void ldv_dispatch_pm_deregister_3_5(void) { { return; } } void ldv_dispatch_pm_register_3_6(void) { struct ldv_struct_platform_instance_3 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_pm_pm_ops_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_10_15_13(void) { struct ldv_struct_platform_instance_3 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_struct_drm_encoder_helper_funcs_dummy_resourceless_instance_7((void *)cf_arg_7); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_11_15_14(void) { struct ldv_struct_platform_instance_3 *cf_arg_8 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_8 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_struct_drm_fb_helper_funcs_dummy_resourceless_instance_8((void *)cf_arg_8); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_12_15_15(void) { struct ldv_struct_platform_instance_3 *cf_arg_9 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_9 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_struct_drm_framebuffer_funcs_dummy_resourceless_instance_9((void *)cf_arg_9); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_14_15_16(void) { struct ldv_struct_platform_instance_3 *cf_arg_10 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_10 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_struct_drm_mode_config_funcs_dummy_resourceless_instance_10((void *)cf_arg_10); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_15_15_17(void) { struct ldv_struct_platform_instance_3 *cf_arg_11 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_11 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_struct_ttm_bo_driver_dummy_resourceless_instance_11((void *)cf_arg_11); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_5_15_18(void) { struct ldv_struct_platform_instance_3 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_struct_drm_connector_funcs_dummy_resourceless_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_9_15_19(void) { struct ldv_struct_platform_instance_3 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_struct_drm_crtc_helper_funcs_dummy_resourceless_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_register_file_operations_instance_1_15_20(void) { struct ldv_struct_platform_instance_3 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_pci_instance_2_15_21(void) { struct ldv_struct_platform_instance_3 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_1 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_pci_pci_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_platform_instance_4_15_22(void) { struct ldv_struct_platform_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_pm_platform_instance_3((void *)cf_arg_3); } return; } } void ldv_entry_EMGentry_15(void *arg0 ) { void (*ldv_15_exit_ast_exit_default)(void) ; int (*ldv_15_init_ast_init_default)(void) ; int ldv_15_ret_default ; int tmp ; int tmp___0 ; { { ldv_15_ret_default = ldv_EMGentry_init_ast_init_15_26(ldv_15_init_ast_init_default); ldv_15_ret_default = ldv_ldv_post_init_112(ldv_15_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_15_ret_default != 0); ldv_ldv_check_final_state_113(); ldv_stop(); } return; } else { { ldv_assume(ldv_15_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_platform_instance_4_15_22(); ldv_dispatch_register_pci_instance_2_15_21(); ldv_dispatch_register_file_operations_instance_1_15_20(); ldv_dispatch_register_dummy_resourceless_instance_9_15_19(); ldv_dispatch_register_dummy_resourceless_instance_5_15_18(); ldv_dispatch_register_dummy_resourceless_instance_15_15_17(); ldv_dispatch_register_dummy_resourceless_instance_14_15_16(); ldv_dispatch_register_dummy_resourceless_instance_12_15_15(); ldv_dispatch_register_dummy_resourceless_instance_11_15_14(); ldv_dispatch_register_dummy_resourceless_instance_10_15_13(); ldv_dispatch_deregister_platform_instance_4_15_12(); ldv_dispatch_deregister_pci_instance_2_15_11(); ldv_dispatch_deregister_file_operations_instance_1_15_10(); ldv_dispatch_deregister_dummy_resourceless_instance_9_15_9(); ldv_dispatch_deregister_dummy_resourceless_instance_5_15_8(); ldv_dispatch_deregister_dummy_resourceless_instance_15_15_7(); ldv_dispatch_deregister_dummy_resourceless_instance_14_15_6(); ldv_dispatch_deregister_dummy_resourceless_instance_11_15_5(); ldv_dispatch_deregister_dummy_resourceless_instance_10_15_4(); } } else { } { ldv_EMGentry_exit_ast_exit_15_2(ldv_15_exit_ast_exit_default); ldv_ldv_check_final_state_114(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_115(); ldv_entry_EMGentry_15((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { long (*ldv_0_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*ldv_0_callback_dumb_create)(struct drm_file * , struct drm_device * , struct drm_mode_create_dumb * ) ; int (*ldv_0_callback_dumb_destroy)(struct drm_file * , struct drm_device * , unsigned int ) ; int (*ldv_0_callback_dumb_map_offset)(struct drm_file * , struct drm_device * , unsigned int , unsigned long long * ) ; int (*ldv_0_callback_fb_blank)(int , struct fb_info * ) ; int (*ldv_0_callback_fb_check_var)(struct fb_var_screeninfo * , struct fb_info * ) ; void (*ldv_0_callback_fb_copyarea)(struct fb_info * , struct fb_copyarea * ) ; int (*ldv_0_callback_fb_debug_enter)(struct fb_info * ) ; int (*ldv_0_callback_fb_debug_leave)(struct fb_info * ) ; void (*ldv_0_callback_fb_fillrect)(struct fb_info * , struct fb_fillrect * ) ; void (*ldv_0_callback_fb_imageblit)(struct fb_info * , struct fb_image * ) ; int (*ldv_0_callback_fb_pan_display)(struct fb_var_screeninfo * , struct fb_info * ) ; int (*ldv_0_callback_fb_set_par)(struct fb_info * ) ; int (*ldv_0_callback_fb_setcmap)(struct fb_cmap * , struct fb_info * ) ; void (*ldv_0_callback_gem_free_object)(struct drm_gem_object * ) ; int (*ldv_0_callback_load)(struct drm_device * , unsigned long ) ; int (*ldv_0_callback_mmap)(struct file * , struct vm_area_struct * ) ; unsigned int (*ldv_0_callback_poll)(struct file * , struct poll_table_struct * ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; int (*ldv_0_callback_set_busid)(struct drm_device * , struct drm_master * ) ; int (*ldv_0_callback_unload)(struct drm_device * ) ; long (*ldv_0_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_0_container_file_operations ; struct drm_file *ldv_0_ldv_param_22_0_default ; struct drm_file *ldv_0_ldv_param_25_0_default ; unsigned int ldv_0_ldv_param_25_2_default ; struct drm_file *ldv_0_ldv_param_28_0_default ; unsigned int ldv_0_ldv_param_28_2_default ; unsigned long long *ldv_0_ldv_param_28_3_default ; int ldv_0_ldv_param_31_0_default ; struct fb_info *ldv_0_ldv_param_35_0_default ; struct fb_info *ldv_0_ldv_param_38_0_default ; struct fb_info *ldv_0_ldv_param_41_0_default ; struct fb_info *ldv_0_ldv_param_44_0_default ; struct fb_info *ldv_0_ldv_param_47_0_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; struct fb_info *ldv_0_ldv_param_51_0_default ; struct drm_gem_object *ldv_0_ldv_param_55_0_default ; struct drm_device *ldv_0_ldv_param_58_0_default ; unsigned int ldv_0_ldv_param_5_1_default ; char *ldv_0_ldv_param_63_1_default ; long long *ldv_0_ldv_param_63_3_default ; struct drm_device *ldv_0_ldv_param_66_0_default ; struct drm_device *ldv_0_ldv_param_69_0_default ; unsigned int ldv_0_ldv_param_72_1_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; struct fb_cmap *ldv_0_resource_struct_fb_cmap_ptr ; struct fb_var_screeninfo *ldv_0_resource_struct_fb_var_screeninfo_ptr ; int ldv_0_ret_default ; struct drm_device *ldv_0_size_cnt_struct_drm_device_ptr ; struct drm_master *ldv_0_size_cnt_struct_drm_master_ptr ; struct drm_mode_create_dumb *ldv_0_size_cnt_struct_drm_mode_create_dumb_ptr ; struct fb_copyarea *ldv_0_size_cnt_struct_fb_copyarea_ptr ; struct fb_fillrect *ldv_0_size_cnt_struct_fb_fillrect_ptr ; struct fb_image *ldv_0_size_cnt_struct_fb_image_ptr ; struct fb_info *ldv_0_size_cnt_struct_fb_info_ptr ; struct poll_table_struct *ldv_0_size_cnt_struct_poll_table_struct_ptr ; struct vm_area_struct *ldv_0_size_cnt_struct_vm_area_struct_ptr ; unsigned long ldv_0_size_cnt_write_size ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; void *tmp___16 ; void *tmp___17 ; void *tmp___18 ; void *tmp___19 ; void *tmp___20 ; void *tmp___21 ; void *tmp___22 ; void *tmp___23 ; void *tmp___24 ; void *tmp___25 ; { { ldv_0_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_xmalloc(40UL); ldv_0_resource_struct_fb_cmap_ptr = (struct fb_cmap *)tmp___1; tmp___2 = ldv_xmalloc(160UL); ldv_0_resource_struct_fb_var_screeninfo_ptr = (struct fb_var_screeninfo *)tmp___2; tmp___3 = ldv_undef_int(); ldv_0_size_cnt_struct_drm_device_ptr = (struct drm_device *)((long )tmp___3); } goto ldv_main_0; return; ldv_main_0: { tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); ldv_free((void *)ldv_0_resource_struct_fb_cmap_ptr); ldv_free((void *)ldv_0_resource_struct_fb_var_screeninfo_ptr); } return; } return; ldv_call_0: { tmp___6 = ldv_undef_int(); } { if (tmp___6 == 1) { goto case_1; } else { } if (tmp___6 == 2) { goto case_2; } else { } if (tmp___6 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___7 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___8; ldv_assume((unsigned long )ldv_0_size_cnt_struct_drm_device_ptr <= (unsigned long )((struct drm_device *)2147479552)); } if ((unsigned long )ldv_0_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); } goto ldv_main_0; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } { if (tmp___9 == 1) { goto case_1___0; } else { } if (tmp___9 == 2) { goto case_2___0; } else { } if (tmp___9 == 3) { goto case_3___0; } else { } if (tmp___9 == 4) { goto case_4; } else { } if (tmp___9 == 5) { goto case_5; } else { } if (tmp___9 == 6) { goto case_6; } else { } if (tmp___9 == 7) { goto case_7; } else { } if (tmp___9 == 8) { goto case_8; } else { } if (tmp___9 == 9) { goto case_9; } else { } if (tmp___9 == 10) { goto case_10; } else { } if (tmp___9 == 11) { goto case_11; } else { } if (tmp___9 == 12) { goto case_12; } else { } if (tmp___9 == 13) { goto case_13; } else { } if (tmp___9 == 14) { goto case_14; } else { } if (tmp___9 == 15) { goto case_15; } else { } if (tmp___9 == 16) { goto case_16; } else { } if (tmp___9 == 17) { goto case_17; } else { } if (tmp___9 == 18) { goto case_18; } else { } if (tmp___9 == 19) { goto case_19; } else { } if (tmp___9 == 20) { goto case_20; } else { } if (tmp___9 == 21) { goto case_21; } else { } if (tmp___9 == 22) { goto case_22; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_file_operations_instance_callback_0_72(ldv_0_callback_unlocked_ioctl, ldv_0_resource_file, ldv_0_ldv_param_72_1_default, ldv_0_size_cnt_write_size); } goto ldv_41444; case_2___0: /* CIL Label */ { tmp___10 = ldv_xmalloc(3144UL); ldv_0_ldv_param_69_0_default = (struct drm_device *)tmp___10; ldv_file_operations_instance_callback_0_69(ldv_0_callback_unload, ldv_0_ldv_param_69_0_default); ldv_free((void *)ldv_0_ldv_param_69_0_default); } goto ldv_41444; case_3___0: /* CIL Label */ { tmp___11 = ldv_xmalloc(3144UL); ldv_0_ldv_param_66_0_default = (struct drm_device *)tmp___11; ldv_file_operations_instance_callback_0_66(ldv_0_callback_set_busid, ldv_0_ldv_param_66_0_default, ldv_0_size_cnt_struct_drm_master_ptr); ldv_free((void *)ldv_0_ldv_param_66_0_default); } goto ldv_41444; case_4: /* CIL Label */ { tmp___12 = ldv_xmalloc(1UL); ldv_0_ldv_param_63_1_default = (char *)tmp___12; tmp___13 = ldv_xmalloc(8UL); ldv_0_ldv_param_63_3_default = (long long *)tmp___13; ldv_file_operations_instance_callback_0_63(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_63_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_63_3_default); ldv_free((void *)ldv_0_ldv_param_63_1_default); ldv_free((void *)ldv_0_ldv_param_63_3_default); } goto ldv_41444; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_0_62(ldv_0_callback_poll, ldv_0_resource_file, ldv_0_size_cnt_struct_poll_table_struct_ptr); } goto ldv_41444; case_6: /* CIL Label */ { ldv_file_operations_instance_callback_0_61(ldv_0_callback_mmap, ldv_0_resource_file, ldv_0_size_cnt_struct_vm_area_struct_ptr); } goto ldv_41444; case_7: /* CIL Label */ { tmp___14 = ldv_xmalloc(3144UL); ldv_0_ldv_param_58_0_default = (struct drm_device *)tmp___14; ldv_file_operations_instance_callback_0_58(ldv_0_callback_load, ldv_0_ldv_param_58_0_default, ldv_0_size_cnt_write_size); ldv_free((void *)ldv_0_ldv_param_58_0_default); } goto ldv_41444; case_8: /* CIL Label */ { tmp___15 = ldv_xmalloc(248UL); ldv_0_ldv_param_55_0_default = (struct drm_gem_object *)tmp___15; ldv_file_operations_instance_callback_0_55(ldv_0_callback_gem_free_object, ldv_0_ldv_param_55_0_default); ldv_free((void *)ldv_0_ldv_param_55_0_default); } goto ldv_41444; case_9: /* CIL Label */ { ldv_file_operations_instance_callback_0_54(ldv_0_callback_fb_setcmap, ldv_0_resource_struct_fb_cmap_ptr, ldv_0_size_cnt_struct_fb_info_ptr); } goto ldv_41444; case_10: /* CIL Label */ { tmp___16 = ldv_xmalloc(1608UL); ldv_0_ldv_param_51_0_default = (struct fb_info *)tmp___16; ldv_file_operations_instance_callback_0_51(ldv_0_callback_fb_set_par, ldv_0_ldv_param_51_0_default); ldv_free((void *)ldv_0_ldv_param_51_0_default); } goto ldv_41444; case_11: /* CIL Label */ { ldv_file_operations_instance_callback_0_50(ldv_0_callback_fb_pan_display, ldv_0_resource_struct_fb_var_screeninfo_ptr, ldv_0_size_cnt_struct_fb_info_ptr); } goto ldv_41444; case_12: /* CIL Label */ { tmp___17 = ldv_xmalloc(1608UL); ldv_0_ldv_param_47_0_default = (struct fb_info *)tmp___17; ldv_file_operations_instance_callback_0_47(ldv_0_callback_fb_imageblit, ldv_0_ldv_param_47_0_default, ldv_0_size_cnt_struct_fb_image_ptr); ldv_free((void *)ldv_0_ldv_param_47_0_default); } goto ldv_41444; case_13: /* CIL Label */ { tmp___18 = ldv_xmalloc(1608UL); ldv_0_ldv_param_44_0_default = (struct fb_info *)tmp___18; ldv_file_operations_instance_callback_0_44(ldv_0_callback_fb_fillrect, ldv_0_ldv_param_44_0_default, ldv_0_size_cnt_struct_fb_fillrect_ptr); ldv_free((void *)ldv_0_ldv_param_44_0_default); } goto ldv_41444; case_14: /* CIL Label */ { tmp___19 = ldv_xmalloc(1608UL); ldv_0_ldv_param_41_0_default = (struct fb_info *)tmp___19; ldv_file_operations_instance_callback_0_41(ldv_0_callback_fb_debug_leave, ldv_0_ldv_param_41_0_default); ldv_free((void *)ldv_0_ldv_param_41_0_default); } goto ldv_41444; case_15: /* CIL Label */ { tmp___20 = ldv_xmalloc(1608UL); ldv_0_ldv_param_38_0_default = (struct fb_info *)tmp___20; ldv_file_operations_instance_callback_0_38(ldv_0_callback_fb_debug_enter, ldv_0_ldv_param_38_0_default); ldv_free((void *)ldv_0_ldv_param_38_0_default); } goto ldv_41444; case_16: /* CIL Label */ { tmp___21 = ldv_xmalloc(1608UL); ldv_0_ldv_param_35_0_default = (struct fb_info *)tmp___21; ldv_file_operations_instance_callback_0_35(ldv_0_callback_fb_copyarea, ldv_0_ldv_param_35_0_default, ldv_0_size_cnt_struct_fb_copyarea_ptr); ldv_free((void *)ldv_0_ldv_param_35_0_default); } goto ldv_41444; case_17: /* CIL Label */ { ldv_file_operations_instance_callback_0_34(ldv_0_callback_fb_check_var, ldv_0_resource_struct_fb_var_screeninfo_ptr, ldv_0_size_cnt_struct_fb_info_ptr); } goto ldv_41444; case_18: /* CIL Label */ { ldv_file_operations_instance_callback_0_31(ldv_0_callback_fb_blank, ldv_0_ldv_param_31_0_default, ldv_0_size_cnt_struct_fb_info_ptr); } goto ldv_41444; case_19: /* CIL Label */ { tmp___22 = ldv_xmalloc(728UL); ldv_0_ldv_param_28_0_default = (struct drm_file *)tmp___22; tmp___23 = ldv_xmalloc(8UL); ldv_0_ldv_param_28_3_default = (unsigned long long *)tmp___23; ldv_file_operations_instance_callback_0_28(ldv_0_callback_dumb_map_offset, ldv_0_ldv_param_28_0_default, ldv_0_size_cnt_struct_drm_device_ptr, ldv_0_ldv_param_28_2_default, ldv_0_ldv_param_28_3_default); ldv_free((void *)ldv_0_ldv_param_28_0_default); ldv_free((void *)ldv_0_ldv_param_28_3_default); } goto ldv_41444; case_20: /* CIL Label */ { tmp___24 = ldv_xmalloc(728UL); ldv_0_ldv_param_25_0_default = (struct drm_file *)tmp___24; ldv_file_operations_instance_callback_0_25(ldv_0_callback_dumb_destroy, ldv_0_ldv_param_25_0_default, ldv_0_size_cnt_struct_drm_device_ptr, ldv_0_ldv_param_25_2_default); ldv_free((void *)ldv_0_ldv_param_25_0_default); } goto ldv_41444; case_21: /* CIL Label */ { tmp___25 = ldv_xmalloc(728UL); ldv_0_ldv_param_22_0_default = (struct drm_file *)tmp___25; ldv_file_operations_instance_callback_0_22(ldv_0_callback_dumb_create, ldv_0_ldv_param_22_0_default, ldv_0_size_cnt_struct_drm_device_ptr, ldv_0_size_cnt_struct_drm_mode_create_dumb_ptr); ldv_free((void *)ldv_0_ldv_param_22_0_default); } goto ldv_41444; case_22: /* CIL Label */ { ldv_file_operations_instance_callback_0_5(ldv_0_callback_compat_ioctl, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_size_cnt_write_size); } goto ldv_41444; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_41444: ; goto ldv_41467; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_41467: ; goto ldv_call_0; goto ldv_call_0; return; } } void ldv_file_operations_instance_callback_0_22(int (*arg0)(struct drm_file * , struct drm_device * , struct drm_mode_create_dumb * ) , struct drm_file *arg1 , struct drm_device *arg2 , struct drm_mode_create_dumb *arg3 ) { { { ast_dumb_create(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_25(int (*arg0)(struct drm_file * , struct drm_device * , unsigned int ) , struct drm_file *arg1 , struct drm_device *arg2 , unsigned int arg3 ) { { { drm_gem_dumb_destroy(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_28(int (*arg0)(struct drm_file * , struct drm_device * , unsigned int , unsigned long long * ) , struct drm_file *arg1 , struct drm_device *arg2 , unsigned int arg3 , unsigned long long *arg4 ) { { { ast_dumb_mmap_offset(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { drm_compat_ioctl(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_55(void (*arg0)(struct drm_gem_object * ) , struct drm_gem_object *arg1 ) { { { ast_gem_free_object(arg1); } return; } } void ldv_file_operations_instance_callback_0_58(int (*arg0)(struct drm_device * , unsigned long ) , struct drm_device *arg1 , unsigned long arg2 ) { { { ast_driver_load(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_61(int (*arg0)(struct file * , struct vm_area_struct * ) , struct file *arg1 , struct vm_area_struct *arg2 ) { { { ast_mmap(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_62(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) { { { drm_poll(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_63(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { drm_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_66(int (*arg0)(struct drm_device * , struct drm_master * ) , struct drm_device *arg1 , struct drm_master *arg2 ) { { { drm_pci_set_busid(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_69(int (*arg0)(struct drm_device * ) , struct drm_device *arg1 ) { { { ast_driver_unload(arg1); } return; } } void ldv_file_operations_instance_callback_0_72(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { drm_ioctl(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = drm_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { drm_release(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = ast_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ast_pci_remove(arg1); } return; } } void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_1(void *arg0 ) { struct pci_driver *ldv_1_container_pci_driver ; struct pci_dev *ldv_1_resource_dev ; struct pm_message ldv_1_resource_pm_message ; struct pci_device_id *ldv_1_resource_struct_pci_device_id_ptr ; int ldv_1_ret_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { ldv_1_ret_default = 1; tmp = ldv_xmalloc(2968UL); ldv_1_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_1_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_1; return; ldv_main_1: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_116(); ldv_1_ret_default = ldv_pci_instance_probe_1_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_1_container_pci_driver->probe, ldv_1_resource_dev, ldv_1_resource_struct_pci_device_id_ptr); ldv_1_ret_default = ldv_ldv_post_probe_117(ldv_1_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_dev); ldv_free((void *)ldv_1_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_1: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_1; case_2: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_1_8(ldv_1_container_pci_driver->suspend, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_late_1_7(ldv_1_container_pci_driver->suspend_late, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_1_6(ldv_1_container_pci_driver->resume_early, ldv_1_resource_dev); } } else { } if ((unsigned long )ldv_1_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_1_5(ldv_1_container_pci_driver->resume, ldv_1_resource_dev); } } else { } goto ldv_call_1; case_3: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_1_3(ldv_1_container_pci_driver->shutdown, ldv_1_resource_dev); } } else { } { ldv_pci_instance_release_1_2(ldv_1_container_pci_driver->remove, ldv_1_resource_dev); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_platform_instance_probe_3_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_3_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_2_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_2_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { ast_pm_freeze(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_2_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_2_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_2_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { ast_pm_poweroff(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_2_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_2_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_2_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_2_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { ast_pm_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_2_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_2_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_2_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { ast_pm_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_2_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_2_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_2_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_2_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_2_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_2_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { ast_pm_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_2_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_2_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_2_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { ast_pm_thaw(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_2_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_2_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_3(void *arg0 ) { struct platform_driver *ldv_3_container_platform_driver ; struct platform_device *ldv_3_ldv_param_14_0_default ; struct platform_device *ldv_3_ldv_param_3_0_default ; int ldv_3_probed_default ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { ldv_3_probed_default = 1; goto ldv_main_3; return; ldv_main_3: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(1464UL); ldv_3_ldv_param_14_0_default = (struct platform_device *)tmp; ldv_ldv_pre_probe_118(); } if ((unsigned long )ldv_3_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_3_probed_default = ldv_platform_instance_probe_3_14(ldv_3_container_platform_driver->probe, ldv_3_ldv_param_14_0_default); } } else { } { ldv_3_probed_default = ldv_ldv_post_probe_119(ldv_3_probed_default); ldv_free((void *)ldv_3_ldv_param_14_0_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_3_probed_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_probed_default != 0); } goto ldv_main_3; } } else { return; } return; ldv_call_3: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(1464UL); ldv_3_ldv_param_3_0_default = (struct platform_device *)tmp___3; } if ((unsigned long )ldv_3_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_3_3(ldv_3_container_platform_driver->remove, ldv_3_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_3_ldv_param_3_0_default); ldv_3_probed_default = 1; } goto ldv_main_3; case_2: /* CIL Label */ ; goto ldv_call_3; case_3: /* CIL Label */ { ldv_dispatch_pm_register_3_6(); ldv_dispatch_pm_deregister_3_5(); } goto ldv_call_3; goto ldv_call_3; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_pm_ops_instance_2(void *arg0 ) { struct device *ldv_2_device_device ; struct dev_pm_ops *ldv_2_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_2; return; ldv_do_2: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_2_27(ldv_2_pm_ops_dev_pm_ops->runtime_idle, ldv_2_device_device); } } else { } goto ldv_do_2; case_2: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_2_25(ldv_2_pm_ops_dev_pm_ops->runtime_suspend, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_2_24(ldv_2_pm_ops_dev_pm_ops->runtime_resume, ldv_2_device_device); } } else { } goto ldv_do_2; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_2_22(ldv_2_pm_ops_dev_pm_ops->prepare, ldv_2_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_instance_suspend_2_21(ldv_2_pm_ops_dev_pm_ops->suspend, ldv_2_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_2_20(ldv_2_pm_ops_dev_pm_ops->suspend_noirq, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_2_19(ldv_2_pm_ops_dev_pm_ops->resume_noirq, ldv_2_device_device); } } else { } } else { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_2_18(ldv_2_pm_ops_dev_pm_ops->suspend_late, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_2_17(ldv_2_pm_ops_dev_pm_ops->resume_early, ldv_2_device_device); } } else { } } { ldv_pm_ops_instance_resume_2_16(ldv_2_pm_ops_dev_pm_ops->resume, ldv_2_device_device); } goto ldv_41793; case_2___0: /* CIL Label */ { ldv_pm_ops_instance_freeze_2_15(ldv_2_pm_ops_dev_pm_ops->freeze, ldv_2_device_device); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_2_14(ldv_2_pm_ops_dev_pm_ops->freeze_late, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_2_13(ldv_2_pm_ops_dev_pm_ops->thaw_early, ldv_2_device_device); } } else { } } else { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_2_12(ldv_2_pm_ops_dev_pm_ops->freeze_noirq, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_2_11(ldv_2_pm_ops_dev_pm_ops->thaw_noirq, ldv_2_device_device); } } else { } } { ldv_pm_ops_instance_thaw_2_10(ldv_2_pm_ops_dev_pm_ops->thaw, ldv_2_device_device); } goto ldv_41793; case_3___0: /* CIL Label */ { ldv_pm_ops_instance_poweroff_2_9(ldv_2_pm_ops_dev_pm_ops->poweroff, ldv_2_device_device); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_2_8(ldv_2_pm_ops_dev_pm_ops->poweroff_late, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_2_7(ldv_2_pm_ops_dev_pm_ops->restore_early, ldv_2_device_device); } } else { } } else { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_2_6(ldv_2_pm_ops_dev_pm_ops->poweroff_noirq, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_2_5(ldv_2_pm_ops_dev_pm_ops->restore_noirq, ldv_2_device_device); } } else { } } { ldv_pm_ops_instance_restore_2_4(ldv_2_pm_ops_dev_pm_ops->restore, ldv_2_device_device); } goto ldv_41793; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_41793: ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_2_3(ldv_2_pm_ops_dev_pm_ops->complete, ldv_2_device_device); } } else { } goto ldv_do_2; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_drm_connector_funcs_dummy_resourceless_instance_4(void *arg0 ) { void (*ldv_4_callback_destroy)(struct drm_connector * ) ; enum drm_connector_status (*ldv_4_callback_detect)(struct drm_connector * , _Bool ) ; void (*ldv_4_callback_dpms)(struct drm_connector * , int ) ; int (*ldv_4_callback_fill_modes)(struct drm_connector * , unsigned int , unsigned int ) ; struct drm_connector *ldv_4_container_struct_drm_connector_ptr ; int ldv_4_ldv_param_10_1_default ; unsigned int ldv_4_ldv_param_13_1_default ; unsigned int ldv_4_ldv_param_13_2_default ; _Bool ldv_4_ldv_param_7_1_default ; int tmp ; { goto ldv_call_4; return; ldv_call_4: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_13(ldv_4_callback_fill_modes, ldv_4_container_struct_drm_connector_ptr, ldv_4_ldv_param_13_1_default, ldv_4_ldv_param_13_2_default); } goto ldv_call_4; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_10(ldv_4_callback_dpms, ldv_4_container_struct_drm_connector_ptr, ldv_4_ldv_param_10_1_default); } goto ldv_call_4; goto ldv_call_4; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_7(ldv_4_callback_detect, ldv_4_container_struct_drm_connector_ptr, (int )ldv_4_ldv_param_7_1_default); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_destroy, ldv_4_container_struct_drm_connector_ptr); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_5: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_drm_connector_helper_funcs_dummy_resourceless_instance_5(void *arg0 ) { struct drm_encoder *(*ldv_5_callback_best_encoder)(struct drm_connector * ) ; int (*ldv_5_callback_get_modes)(struct drm_connector * ) ; enum drm_mode_status (*ldv_5_callback_mode_valid)(struct drm_connector * , struct drm_display_mode * ) ; struct drm_connector *ldv_5_container_struct_drm_connector_ptr ; struct drm_display_mode *ldv_5_container_struct_drm_display_mode_ptr ; struct ldv_struct_dummy_resourceless_instance_5 *data ; int tmp ; { data = (struct ldv_struct_dummy_resourceless_instance_5 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_5 *)0)) { { ldv_5_container_struct_drm_connector_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_5; return; ldv_call_5: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_8(ldv_5_callback_mode_valid, ldv_5_container_struct_drm_connector_ptr, ldv_5_container_struct_drm_display_mode_ptr); } goto ldv_call_5; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_7(ldv_5_callback_get_modes, ldv_5_container_struct_drm_connector_ptr); } goto ldv_call_5; goto ldv_call_5; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_best_encoder, ldv_5_container_struct_drm_connector_ptr); } goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; case_4: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_drm_crtc_helper_funcs_dummy_resourceless_instance_6(void *arg0 ) { void (*ldv_6_callback_commit)(struct drm_crtc * ) ; int (*ldv_6_callback_cursor_move)(struct drm_crtc * , int , int ) ; int (*ldv_6_callback_cursor_set)(struct drm_crtc * , struct drm_file * , unsigned int , unsigned int , unsigned int ) ; void (*ldv_6_callback_destroy)(struct drm_crtc * ) ; void (*ldv_6_callback_disable)(struct drm_crtc * ) ; void (*ldv_6_callback_dpms)(struct drm_crtc * , int ) ; void (*ldv_6_callback_gamma_set)(struct drm_crtc * , unsigned short * , unsigned short * , unsigned short * , unsigned int , unsigned int ) ; void (*ldv_6_callback_load_lut)(struct drm_crtc * ) ; _Bool (*ldv_6_callback_mode_fixup)(struct drm_crtc * , struct drm_display_mode * , struct drm_display_mode * ) ; int (*ldv_6_callback_mode_set)(struct drm_crtc * , struct drm_display_mode * , struct drm_display_mode * , int , int , struct drm_framebuffer * ) ; int (*ldv_6_callback_mode_set_base)(struct drm_crtc * , int , int , struct drm_framebuffer * ) ; void (*ldv_6_callback_prepare)(struct drm_crtc * ) ; void (*ldv_6_callback_reset)(struct drm_crtc * ) ; int (*ldv_6_callback_set_config)(struct drm_mode_set * ) ; struct drm_crtc *ldv_6_container_struct_drm_crtc_ptr ; struct drm_display_mode *ldv_6_container_struct_drm_display_mode_ptr ; struct drm_file *ldv_6_container_struct_drm_file_ptr ; struct drm_framebuffer *ldv_6_container_struct_drm_framebuffer_ptr ; struct drm_mode_set *ldv_6_container_struct_drm_mode_set_ptr ; unsigned int ldv_6_ldv_param_10_2_default ; unsigned int ldv_6_ldv_param_10_3_default ; unsigned int ldv_6_ldv_param_10_4_default ; int ldv_6_ldv_param_15_1_default ; unsigned short *ldv_6_ldv_param_18_1_default ; unsigned short *ldv_6_ldv_param_18_2_default ; unsigned short *ldv_6_ldv_param_18_3_default ; unsigned int ldv_6_ldv_param_18_4_default ; unsigned int ldv_6_ldv_param_18_5_default ; struct drm_display_mode *ldv_6_ldv_param_22_2_default ; struct drm_display_mode *ldv_6_ldv_param_25_2_default ; int ldv_6_ldv_param_25_3_default ; int ldv_6_ldv_param_25_4_default ; int ldv_6_ldv_param_28_1_default ; int ldv_6_ldv_param_28_2_default ; int ldv_6_ldv_param_7_1_default ; int ldv_6_ldv_param_7_2_default ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { goto ldv_call_6; return; ldv_call_6: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_33(ldv_6_callback_set_config, ldv_6_container_struct_drm_mode_set_ptr); } goto ldv_call_6; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_32(ldv_6_callback_reset, ldv_6_container_struct_drm_crtc_ptr); } goto ldv_call_6; goto ldv_call_6; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_31(ldv_6_callback_prepare, ldv_6_container_struct_drm_crtc_ptr); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_28(ldv_6_callback_mode_set_base, ldv_6_container_struct_drm_crtc_ptr, ldv_6_ldv_param_28_1_default, ldv_6_ldv_param_28_2_default, ldv_6_container_struct_drm_framebuffer_ptr); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_5: /* CIL Label */ { tmp___0 = ldv_xmalloc(208UL); ldv_6_ldv_param_25_2_default = (struct drm_display_mode *)tmp___0; ldv_dummy_resourceless_instance_callback_6_25(ldv_6_callback_mode_set, ldv_6_container_struct_drm_crtc_ptr, ldv_6_container_struct_drm_display_mode_ptr, ldv_6_ldv_param_25_2_default, ldv_6_ldv_param_25_3_default, ldv_6_ldv_param_25_4_default, ldv_6_container_struct_drm_framebuffer_ptr); ldv_free((void *)ldv_6_ldv_param_25_2_default); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_6: /* CIL Label */ { tmp___1 = ldv_xmalloc(208UL); ldv_6_ldv_param_22_2_default = (struct drm_display_mode *)tmp___1; ldv_dummy_resourceless_instance_callback_6_22(ldv_6_callback_mode_fixup, ldv_6_container_struct_drm_crtc_ptr, ldv_6_container_struct_drm_display_mode_ptr, ldv_6_ldv_param_22_2_default); ldv_free((void *)ldv_6_ldv_param_22_2_default); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_21(ldv_6_callback_load_lut, ldv_6_container_struct_drm_crtc_ptr); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_8: /* CIL Label */ { tmp___2 = ldv_xmalloc(2UL); ldv_6_ldv_param_18_1_default = (unsigned short *)tmp___2; tmp___3 = ldv_xmalloc(2UL); ldv_6_ldv_param_18_2_default = (unsigned short *)tmp___3; tmp___4 = ldv_xmalloc(2UL); ldv_6_ldv_param_18_3_default = (unsigned short *)tmp___4; ldv_dummy_resourceless_instance_callback_6_18(ldv_6_callback_gamma_set, ldv_6_container_struct_drm_crtc_ptr, ldv_6_ldv_param_18_1_default, ldv_6_ldv_param_18_2_default, ldv_6_ldv_param_18_3_default, ldv_6_ldv_param_18_4_default, ldv_6_ldv_param_18_5_default); ldv_free((void *)ldv_6_ldv_param_18_1_default); ldv_free((void *)ldv_6_ldv_param_18_2_default); ldv_free((void *)ldv_6_ldv_param_18_3_default); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_15(ldv_6_callback_dpms, ldv_6_container_struct_drm_crtc_ptr, ldv_6_ldv_param_15_1_default); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_14(ldv_6_callback_disable, ldv_6_container_struct_drm_crtc_ptr); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_13(ldv_6_callback_destroy, ldv_6_container_struct_drm_crtc_ptr); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_10(ldv_6_callback_cursor_set, ldv_6_container_struct_drm_crtc_ptr, ldv_6_container_struct_drm_file_ptr, ldv_6_ldv_param_10_2_default, ldv_6_ldv_param_10_3_default, ldv_6_ldv_param_10_4_default); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_7(ldv_6_callback_cursor_move, ldv_6_container_struct_drm_crtc_ptr, ldv_6_ldv_param_7_1_default, ldv_6_ldv_param_7_2_default); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_commit, ldv_6_container_struct_drm_crtc_ptr); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_15: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_drm_encoder_helper_funcs_dummy_resourceless_instance_7(void *arg0 ) { void (*ldv_7_callback_commit)(struct drm_encoder * ) ; void (*ldv_7_callback_destroy)(struct drm_encoder * ) ; void (*ldv_7_callback_dpms)(struct drm_encoder * , int ) ; _Bool (*ldv_7_callback_mode_fixup)(struct drm_encoder * , struct drm_display_mode * , struct drm_display_mode * ) ; void (*ldv_7_callback_mode_set)(struct drm_encoder * , struct drm_display_mode * , struct drm_display_mode * ) ; void (*ldv_7_callback_prepare)(struct drm_encoder * ) ; struct drm_display_mode *ldv_7_container_struct_drm_display_mode_ptr ; struct drm_encoder *ldv_7_container_struct_drm_encoder_ptr ; struct drm_display_mode *ldv_7_ldv_param_11_2_default ; struct drm_display_mode *ldv_7_ldv_param_14_2_default ; int ldv_7_ldv_param_8_1_default ; int tmp ; void *tmp___0 ; void *tmp___1 ; { goto ldv_call_7; return; ldv_call_7: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_17(ldv_7_callback_prepare, ldv_7_container_struct_drm_encoder_ptr); } goto ldv_call_7; case_2: /* CIL Label */ { tmp___0 = ldv_xmalloc(208UL); ldv_7_ldv_param_14_2_default = (struct drm_display_mode *)tmp___0; ldv_dummy_resourceless_instance_callback_7_14(ldv_7_callback_mode_set, ldv_7_container_struct_drm_encoder_ptr, ldv_7_container_struct_drm_display_mode_ptr, ldv_7_ldv_param_14_2_default); ldv_free((void *)ldv_7_ldv_param_14_2_default); } goto ldv_call_7; goto ldv_call_7; case_3: /* CIL Label */ { tmp___1 = ldv_xmalloc(208UL); ldv_7_ldv_param_11_2_default = (struct drm_display_mode *)tmp___1; ldv_dummy_resourceless_instance_callback_7_11(ldv_7_callback_mode_fixup, ldv_7_container_struct_drm_encoder_ptr, ldv_7_container_struct_drm_display_mode_ptr, ldv_7_ldv_param_11_2_default); ldv_free((void *)ldv_7_ldv_param_11_2_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_8(ldv_7_callback_dpms, ldv_7_container_struct_drm_encoder_ptr, ldv_7_ldv_param_8_1_default); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_7(ldv_7_callback_destroy, ldv_7_container_struct_drm_encoder_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_commit, ldv_7_container_struct_drm_encoder_ptr); } goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; goto ldv_call_7; case_7: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_drm_fb_helper_funcs_dummy_resourceless_instance_8(void *arg0 ) { int (*ldv_8_callback_fb_probe)(struct drm_fb_helper * , struct drm_fb_helper_surface_size * ) ; void (*ldv_8_callback_gamma_get)(struct drm_crtc * , unsigned short * , unsigned short * , unsigned short * , int ) ; void (*ldv_8_callback_gamma_set)(struct drm_crtc * , unsigned short , unsigned short , unsigned short , int ) ; struct drm_crtc *ldv_8_container_struct_drm_crtc_ptr ; struct drm_fb_helper *ldv_8_container_struct_drm_fb_helper_ptr ; struct drm_fb_helper_surface_size *ldv_8_container_struct_drm_fb_helper_surface_size_ptr ; unsigned short ldv_8_ldv_param_10_1_default ; unsigned short ldv_8_ldv_param_10_2_default ; unsigned short ldv_8_ldv_param_10_3_default ; int ldv_8_ldv_param_10_4_default ; unsigned short *ldv_8_ldv_param_7_1_default ; unsigned short *ldv_8_ldv_param_7_2_default ; unsigned short *ldv_8_ldv_param_7_3_default ; int ldv_8_ldv_param_7_4_default ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { goto ldv_call_8; return; ldv_call_8: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_8_10(ldv_8_callback_gamma_set, ldv_8_container_struct_drm_crtc_ptr, (int )ldv_8_ldv_param_10_1_default, (int )ldv_8_ldv_param_10_2_default, (int )ldv_8_ldv_param_10_3_default, ldv_8_ldv_param_10_4_default); } goto ldv_call_8; case_2: /* CIL Label */ { tmp___0 = ldv_xmalloc(2UL); ldv_8_ldv_param_7_1_default = (unsigned short *)tmp___0; tmp___1 = ldv_xmalloc(2UL); ldv_8_ldv_param_7_2_default = (unsigned short *)tmp___1; tmp___2 = ldv_xmalloc(2UL); ldv_8_ldv_param_7_3_default = (unsigned short *)tmp___2; ldv_dummy_resourceless_instance_callback_8_7(ldv_8_callback_gamma_get, ldv_8_container_struct_drm_crtc_ptr, ldv_8_ldv_param_7_1_default, ldv_8_ldv_param_7_2_default, ldv_8_ldv_param_7_3_default, ldv_8_ldv_param_7_4_default); ldv_free((void *)ldv_8_ldv_param_7_1_default); ldv_free((void *)ldv_8_ldv_param_7_2_default); ldv_free((void *)ldv_8_ldv_param_7_3_default); } goto ldv_call_8; goto ldv_call_8; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_8_3(ldv_8_callback_fb_probe, ldv_8_container_struct_drm_fb_helper_ptr, ldv_8_container_struct_drm_fb_helper_surface_size_ptr); } goto ldv_call_8; goto ldv_call_8; goto ldv_call_8; case_4: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_drm_framebuffer_funcs_dummy_resourceless_instance_9(void *arg0 ) { void (*ldv_9_callback_destroy)(struct drm_framebuffer * ) ; struct drm_framebuffer *ldv_9_container_struct_drm_framebuffer_ptr ; int tmp ; { goto ldv_call_9; return; ldv_call_9: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_destroy, ldv_9_container_struct_drm_framebuffer_ptr); } goto ldv_call_9; } else { return; } return; } } void ldv_struct_drm_mode_config_funcs_dummy_resourceless_instance_10(void *arg0 ) { struct drm_framebuffer *(*ldv_10_callback_fb_create)(struct drm_device * , struct drm_file * , struct drm_mode_fb_cmd2 * ) ; struct drm_device *ldv_10_container_struct_drm_device_ptr ; struct drm_file *ldv_10_container_struct_drm_file_ptr ; struct drm_mode_fb_cmd2 *ldv_10_container_struct_drm_mode_fb_cmd2_ptr ; int tmp ; { goto ldv_call_10; return; ldv_call_10: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dummy_resourceless_instance_callback_10_3(ldv_10_callback_fb_create, ldv_10_container_struct_drm_device_ptr, ldv_10_container_struct_drm_file_ptr, ldv_10_container_struct_drm_mode_fb_cmd2_ptr); } goto ldv_call_10; } else { return; } return; } } void ldv_struct_ttm_bo_driver_dummy_resourceless_instance_11(void *arg0 ) { void (*ldv_11_callback_destroy)(struct ttm_tt * ) ; void (*ldv_11_callback_evict_flags)(struct ttm_buffer_object * , struct ttm_placement * ) ; int (*ldv_11_callback_init_mem_type)(struct ttm_bo_device * , unsigned int , struct ttm_mem_type_manager * ) ; void (*ldv_11_callback_io_mem_free)(struct ttm_bo_device * , struct ttm_mem_reg * ) ; int (*ldv_11_callback_io_mem_reserve)(struct ttm_bo_device * , struct ttm_mem_reg * ) ; int (*ldv_11_callback_move)(struct ttm_buffer_object * , _Bool , _Bool , _Bool , struct ttm_mem_reg * ) ; struct ttm_tt *(*ldv_11_callback_ttm_tt_create)(struct ttm_bo_device * , unsigned long , unsigned int , struct page * ) ; int (*ldv_11_callback_ttm_tt_populate)(struct ttm_tt * ) ; void (*ldv_11_callback_ttm_tt_unpopulate)(struct ttm_tt * ) ; int (*ldv_11_callback_verify_access)(struct ttm_buffer_object * , struct file * ) ; struct file *ldv_11_container_struct_file_ptr ; struct page *ldv_11_container_struct_page_ptr ; struct ttm_bo_device *ldv_11_container_struct_ttm_bo_device_ptr ; struct ttm_buffer_object *ldv_11_container_struct_ttm_buffer_object_ptr ; struct ttm_mem_reg *ldv_11_container_struct_ttm_mem_reg_ptr ; struct ttm_mem_type_manager *ldv_11_container_struct_ttm_mem_type_manager_ptr ; struct ttm_placement *ldv_11_container_struct_ttm_placement_ptr ; struct ttm_tt *ldv_11_container_struct_ttm_tt_ptr ; _Bool ldv_11_ldv_param_13_1_default ; _Bool ldv_11_ldv_param_13_2_default ; _Bool ldv_11_ldv_param_13_3_default ; unsigned long ldv_11_ldv_param_16_1_default ; unsigned int ldv_11_ldv_param_16_2_default ; unsigned int ldv_11_ldv_param_8_1_default ; int tmp ; { goto ldv_call_11; return; ldv_call_11: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_21(ldv_11_callback_verify_access, ldv_11_container_struct_ttm_buffer_object_ptr, ldv_11_container_struct_file_ptr); } goto ldv_call_11; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_20(ldv_11_callback_ttm_tt_unpopulate, ldv_11_container_struct_ttm_tt_ptr); } goto ldv_call_11; goto ldv_call_11; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_19(ldv_11_callback_ttm_tt_populate, ldv_11_container_struct_ttm_tt_ptr); } goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_16(ldv_11_callback_ttm_tt_create, ldv_11_container_struct_ttm_bo_device_ptr, ldv_11_ldv_param_16_1_default, ldv_11_ldv_param_16_2_default, ldv_11_container_struct_page_ptr); } goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_13(ldv_11_callback_move, ldv_11_container_struct_ttm_buffer_object_ptr, (int )ldv_11_ldv_param_13_1_default, (int )ldv_11_ldv_param_13_2_default, (int )ldv_11_ldv_param_13_3_default, ldv_11_container_struct_ttm_mem_reg_ptr); } goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_12(ldv_11_callback_io_mem_reserve, ldv_11_container_struct_ttm_bo_device_ptr, ldv_11_container_struct_ttm_mem_reg_ptr); } goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_11(ldv_11_callback_io_mem_free, ldv_11_container_struct_ttm_bo_device_ptr, ldv_11_container_struct_ttm_mem_reg_ptr); } goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_8(ldv_11_callback_init_mem_type, ldv_11_container_struct_ttm_bo_device_ptr, ldv_11_ldv_param_8_1_default, ldv_11_container_struct_ttm_mem_type_manager_ptr); } goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_7(ldv_11_callback_evict_flags, ldv_11_container_struct_ttm_buffer_object_ptr, ldv_11_container_struct_ttm_placement_ptr); } goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_3(ldv_11_callback_destroy, ldv_11_container_struct_ttm_tt_ptr); } goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; goto ldv_call_11; case_11: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } static int ldv_ldv_post_init_112(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_113(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_114(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_115(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_116(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_117(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_118(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_119(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } long ldv__builtin_expect(long exp , long c ) ; void *ldv_err_ptr(long error ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) ; int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) ; static void ldv_mutex_lock_110(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_112(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_struct_mutex_of_drm_device(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_struct_mutex_of_drm_device(struct mutex *lock ) ; extern int printk(char const * , ...) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static void *ERR_PTR(long error ) ; extern void __cmpxchg_wrong_size(void) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static int atomic_sub_and_test(int i , atomic_t *v ) ; __inline static int atomic_dec_and_test(atomic_t *v ) ; __inline static int atomic_cmpxchg(atomic_t *v , int old , int new ) { int __ret ; int __old ; int __new ; u8 volatile *__ptr ; u16 volatile *__ptr___0 ; u32 volatile *__ptr___1 ; u64 volatile *__ptr___2 ; { __old = old; __new = new; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __ptr = (u8 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgb %2,%1": "=a" (__ret), "+m" (*__ptr): "q" (__new), "0" (__old): "memory"); goto ldv_6246; case_2: /* CIL Label */ __ptr___0 = (u16 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgw %2,%1": "=a" (__ret), "+m" (*__ptr___0): "r" (__new), "0" (__old): "memory"); goto ldv_6246; case_4: /* CIL Label */ __ptr___1 = (u32 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgl %2,%1": "=a" (__ret), "+m" (*__ptr___1): "r" (__new), "0" (__old): "memory"); goto ldv_6246; case_8: /* CIL Label */ __ptr___2 = (u64 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgq %2,%1": "=a" (__ret), "+m" (*__ptr___2): "r" (__new), "0" (__old): "memory"); goto ldv_6246; switch_default: /* CIL Label */ { __cmpxchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_6246: ; return (__ret); } } __inline static int __atomic_add_unless(atomic_t *v , int a , int u ) { int c ; int old ; long tmp ; long tmp___0 ; { { c = atomic_read((atomic_t const *)v); } ldv_6275: { tmp = ldv__builtin_expect(c == u, 0L); } if (tmp != 0L) { goto ldv_6274; } else { } { old = atomic_cmpxchg(v, c, c + a); tmp___0 = ldv__builtin_expect(old == c, 1L); } if (tmp___0 != 0L) { goto ldv_6274; } else { } c = old; goto ldv_6275; ldv_6274: ; return (c); } } __inline static int atomic_add_unless(atomic_t *v , int a , int u ) { int tmp ; { { tmp = __atomic_add_unless(v, a, u); } return (tmp != u); } } static void ldv_mutex_unlock_111(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) ; __inline static int kref_sub(struct kref *kref , unsigned int count , void (*release)(struct kref * ) ) { int __ret_warn_on ; long tmp ; int tmp___0 ; { { __ret_warn_on = (unsigned long )release == (unsigned long )((void (*)(struct kref * ))0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/kref.h", 71); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); tmp___0 = atomic_sub_and_test((int )count, & kref->refcount); } if (tmp___0 != 0) { { (*release)(kref); } return (1); } else { } return (0); } } __inline static int kref_put(struct kref *kref , void (*release)(struct kref * ) ) { int tmp ; { { tmp = kref_sub(kref, 1U, release); } return (tmp); } } extern unsigned int ioread8(void * ) ; extern unsigned int ioread32(void * ) ; extern void iowrite8(u8 , void * ) ; extern void iowrite16(u16 , void * ) ; extern void iowrite32(u32 , void * ) ; extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern void drm_mode_config_init(struct drm_device * ) ; extern void drm_mode_config_cleanup(struct drm_device * ) ; extern int drm_framebuffer_init(struct drm_device * , struct drm_framebuffer * , struct drm_framebuffer_funcs const * ) ; extern void drm_framebuffer_cleanup(struct drm_framebuffer * ) ; __inline static __u64 drm_vma_node_offset_addr(struct drm_vma_offset_node *node ) { { return ((unsigned long long )node->vm_node.start << 12); } } extern void drm_err(char const * , ...) ; extern void ttm_bo_unref(struct ttm_buffer_object ** ) ; extern void drm_gem_object_free(struct kref * ) ; __inline static void drm_gem_object_unreference(struct drm_gem_object *obj ) { { if ((unsigned long )obj != (unsigned long )((struct drm_gem_object *)0)) { { kref_put(& obj->refcount, & drm_gem_object_free); } } else { } return; } } __inline static void drm_gem_object_unreference_unlocked(struct drm_gem_object *obj ) { struct drm_device *dev ; int tmp ; long tmp___0 ; int tmp___1 ; { if ((unsigned long )obj != (unsigned long )((struct drm_gem_object *)0)) { { tmp___1 = atomic_add_unless(& obj->refcount.refcount, -1, 1); } if (tmp___1 == 0) { { dev = obj->dev; ldv_mutex_lock_110(& dev->struct_mutex); tmp = atomic_dec_and_test(& obj->refcount.refcount); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { { drm_gem_object_free(& obj->refcount); } } else { } { ldv_mutex_unlock_111(& dev->struct_mutex); } } else { } } else { } return; } } extern int drm_gem_handle_create(struct drm_file * , struct drm_gem_object * , u32 * ) ; extern struct drm_gem_object *drm_gem_object_lookup(struct drm_device * , struct drm_file * , u32 ) ; __inline static u32 ast_read32(struct ast_private *ast , u32 reg ) { u32 val ; { { val = 0U; val = ioread32(ast->regs + (unsigned long )reg); } return (val); } } __inline static u8 ast_io_read8(struct ast_private *ast , u32 reg ) { u8 val ; unsigned int tmp ; { { val = 0U; tmp = ioread8(ast->ioregs + (unsigned long )reg); val = (u8 )tmp; } return (val); } } __inline static void ast_write32(struct ast_private *ast , u32 reg , u32 val ) { { { iowrite32(val, ast->regs + (unsigned long )reg); } return; } } __inline static void ast_io_write8(struct ast_private *ast , u32 reg , u8 val ) { { { iowrite8((int )val, ast->ioregs + (unsigned long )reg); } return; } } __inline static void ast_io_write16(struct ast_private *ast , u32 reg , u16 val ) { { { iowrite16((int )val, ast->ioregs + (unsigned long )reg); } return; } } __inline static void ast_set_index_reg(struct ast_private *ast , uint32_t base , uint8_t index , uint8_t val ) { { { ast_io_write16(ast, base, (int )((u16 )((int )((short )((int )val << 8)) | (int )((short )index)))); } return; } } void ast_set_index_reg_mask(struct ast_private *ast , uint32_t base , uint8_t index , uint8_t mask , uint8_t val ) ; uint8_t ast_get_index_reg(struct ast_private *ast , uint32_t base , uint8_t index ) ; uint8_t ast_get_index_reg_mask(struct ast_private *ast , uint32_t base , uint8_t index , uint8_t mask ) ; __inline static void ast_open_key(struct ast_private *ast ) { { { ast_set_index_reg(ast, 84U, 128, 168); } return; } } int ast_mode_init(struct drm_device *dev ) ; void ast_mode_fini(struct drm_device *dev ) ; int ast_framebuffer_init(struct drm_device *dev , struct ast_framebuffer *ast_fb , struct drm_mode_fb_cmd2 *mode_cmd , struct drm_gem_object *obj ) ; int ast_fbdev_init(struct drm_device *dev ) ; void ast_fbdev_fini(struct drm_device *dev ) ; int ast_mm_init(struct ast_private *ast ) ; void ast_mm_fini(struct ast_private *ast ) ; int ast_bo_create(struct drm_device *dev , int size , int align , uint32_t flags , struct ast_bo **pastbo ) ; int ast_gem_create(struct drm_device *dev , u32 size , bool iskernel , struct drm_gem_object **obj ) ; void ast_enable_vga(struct drm_device *dev ) ; void ast_enable_mmio(struct drm_device *dev ) ; bool ast_is_vga_enabled(struct drm_device *dev ) ; bool ast_backup_fw(struct drm_device *dev , u8 *addr , u32 size ) ; extern void drm_helper_mode_fill_fb_struct(struct drm_framebuffer * , struct drm_mode_fb_cmd2 * ) ; void ast_set_index_reg_mask(struct ast_private *ast , uint32_t base , uint8_t index , uint8_t mask , uint8_t val ) { u8 tmp ; u8 tmp___0 ; { { ast_io_write8(ast, base, (int )index); tmp___0 = ast_io_read8(ast, base + 1U); tmp = (u8 )(((int )tmp___0 & (int )mask) | (int )val); ast_set_index_reg(ast, base, (int )index, (int )tmp); } return; } } uint8_t ast_get_index_reg(struct ast_private *ast , uint32_t base , uint8_t index ) { uint8_t ret ; { { ast_io_write8(ast, base, (int )index); ret = ast_io_read8(ast, base + 1U); } return (ret); } } uint8_t ast_get_index_reg_mask(struct ast_private *ast , uint32_t base , uint8_t index , uint8_t mask ) { uint8_t ret ; u8 tmp ; { { ast_io_write8(ast, base, (int )index); tmp = ast_io_read8(ast, base + 1U); ret = (uint8_t )((int )tmp & (int )mask); } return (ret); } } static int ast_detect_chip(struct drm_device *dev , bool *need_post ) { struct ast_private *ast ; uint32_t data ; uint32_t jreg ; uint32_t data___0 ; bool tmp ; int tmp___0 ; uint8_t tmp___1 ; uint8_t tmp___2 ; uint8_t tmp___3 ; void *tmp___4 ; bool tmp___5 ; { { ast = (struct ast_private *)dev->dev_private; ast_open_key(ast); } if ((unsigned int )(dev->pdev)->device == 4480U) { { ast->chip = 2; printk("\016[drm] AST 1180 detected\n"); } } else if ((unsigned int )(dev->pdev)->revision > 47U) { { ast->chip = 6; printk("\016[drm] AST 2400 detected\n"); } } else if ((unsigned int )(dev->pdev)->revision > 31U) { { ast->chip = 5; printk("\016[drm] AST 2300 detected\n"); } } else if ((unsigned int )(dev->pdev)->revision > 15U) { { ast_write32(ast, 61444U, 510525440U); ast_write32(ast, 61440U, 1U); data___0 = ast_read32(ast, 73852U); } { if ((data___0 & 768U) == 512U) { goto case_512; } else { } if ((data___0 & 768U) == 256U) { goto case_256; } else { } if ((data___0 & 768U) == 0U) { goto case_0; } else { } goto switch_default; case_512: /* CIL Label */ { ast->chip = 2; printk("\016[drm] AST 1100 detected\n"); } goto ldv_40246; case_256: /* CIL Label */ { ast->chip = 3; printk("\016[drm] AST 2200 detected\n"); } goto ldv_40246; case_0: /* CIL Label */ { ast->chip = 4; printk("\016[drm] AST 2150 detected\n"); } goto ldv_40246; switch_default: /* CIL Label */ { ast->chip = 1; printk("\016[drm] AST 2100 detected\n"); } goto ldv_40246; switch_break: /* CIL Label */ ; } ldv_40246: ast->vga2_clone = 0; } else { { ast->chip = 0; printk("\016[drm] AST 2000 detected\n"); } } { tmp = ast_is_vga_enabled(dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { ast_enable_vga(dev); ast_enable_mmio(dev); printk("\016[drm] VGA not enabled on entry, requesting chip POST\n"); *need_post = 1; } } else { *need_post = 0; } { if ((unsigned int )ast->chip == 7U) { goto case_7; } else { } if ((unsigned int )ast->chip == 0U) { goto case_0___0; } else { } goto switch_default___0; case_7: /* CIL Label */ ast->support_wide_screen = 1; goto ldv_40251; case_0___0: /* CIL Label */ ast->support_wide_screen = 0; goto ldv_40251; switch_default___0: /* CIL Label */ { tmp___1 = ast_get_index_reg_mask(ast, 84U, 208, 255); jreg = (uint32_t )tmp___1; } if ((jreg & 128U) == 0U) { ast->support_wide_screen = 1; } else if ((int )jreg & 1) { ast->support_wide_screen = 1; } else { { ast->support_wide_screen = 0; ast_write32(ast, 61444U, 510525440U); ast_write32(ast, 61440U, 1U); data = ast_read32(ast, 73852U); data = data & 768U; } if ((unsigned int )ast->chip == 5U && data == 0U) { ast->support_wide_screen = 1; } else { } if ((unsigned int )ast->chip == 6U && data == 256U) { ast->support_wide_screen = 1; } else { } } goto ldv_40251; switch_break___0: /* CIL Label */ ; } ldv_40251: ast->tx_chip_type = 0; if (! *need_post) { { tmp___2 = ast_get_index_reg_mask(ast, 84U, 163, 255); jreg = (uint32_t )tmp___2; } if ((jreg & 128U) != 0U) { ast->tx_chip_type = 1; } else { } } else { } if ((unsigned int )ast->chip - 5U <= 1U) { { tmp___3 = ast_get_index_reg_mask(ast, 84U, 209, 255); jreg = (uint32_t )tmp___3; } { if (jreg == 4U) { goto case_4; } else { } if (jreg == 8U) { goto case_8; } else { } if (jreg == 12U) { goto case_12; } else { } goto switch_break___1; case_4: /* CIL Label */ ast->tx_chip_type = 1; goto ldv_40255; case_8: /* CIL Label */ { tmp___4 = kzalloc(32768UL, 208U); ast->dp501_fw_addr = (u8 *)tmp___4; } if ((unsigned long )ast->dp501_fw_addr != (unsigned long )((u8 *)0U)) { { tmp___5 = ast_backup_fw(dev, ast->dp501_fw_addr, 32768U); } if ((int )tmp___5) { { kfree((void const *)ast->dp501_fw_addr); ast->dp501_fw_addr = (u8 *)0U; } } else { } } else { } case_12: /* CIL Label */ ast->tx_chip_type = 3; switch_break___1: /* CIL Label */ ; } ldv_40255: ; } else { } { if ((unsigned int )ast->tx_chip_type == 1U) { goto case_1; } else { } if ((unsigned int )ast->tx_chip_type == 3U) { goto case_3; } else { } goto switch_default___1; case_1: /* CIL Label */ { printk("\016[drm] Using Sil164 TMDS transmitter\n"); } goto ldv_40259; case_3: /* CIL Label */ { printk("\016[drm] Using DP501 DisplayPort transmitter\n"); } goto ldv_40259; switch_default___1: /* CIL Label */ { printk("\016[drm] Analog VGA only\n"); } switch_break___2: /* CIL Label */ ; } ldv_40259: ; return (0); } } static int ast_get_dram_info(struct drm_device *dev ) { struct ast_private *ast ; uint32_t data ; uint32_t data2 ; uint32_t denum ; uint32_t num ; uint32_t div ; uint32_t ref_pll ; u32 tmp ; { { ast = (struct ast_private *)dev->dev_private; ast_write32(ast, 61444U, 510525440U); ast_write32(ast, 61440U, 1U); ast_write32(ast, 65536U, 4234150665U); } ldv_40272: { tmp = ast_read32(ast, 65536U); } if (tmp != 1U) { goto ldv_40272; } else { } { data = ast_read32(ast, 65540U); } if ((data & 1024U) != 0U) { ast->dram_bus_width = 16U; } else { ast->dram_bus_width = 32U; } if ((unsigned int )ast->chip - 5U <= 1U) { { if ((data & 3U) == 0U) { goto case_0; } else { } if ((data & 3U) == 1U) { goto case_1; } else { } if ((data & 3U) == 2U) { goto case_2; } else { } if ((data & 3U) == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ast->dram_type = 0U; goto ldv_40275; switch_default: /* CIL Label */ ; case_1: /* CIL Label */ ast->dram_type = 1U; goto ldv_40275; case_2: /* CIL Label */ ast->dram_type = 6U; goto ldv_40275; case_3: /* CIL Label */ ast->dram_type = 7U; goto ldv_40275; switch_break: /* CIL Label */ ; } ldv_40275: ; } else { { if ((data & 12U) == 0U) { goto case_0___0; } else { } if ((data & 12U) == 4U) { goto case_4; } else { } if ((data & 12U) == 8U) { goto case_8; } else { } if ((data & 12U) == 12U) { goto case_12; } else { } goto switch_break___0; case_0___0: /* CIL Label */ ; case_4: /* CIL Label */ ast->dram_type = 0U; goto ldv_40282; case_8: /* CIL Label */ ; if ((data & 64U) != 0U) { ast->dram_type = 1U; } else { ast->dram_type = 2U; } goto ldv_40282; case_12: /* CIL Label */ ast->dram_type = 3U; goto ldv_40282; switch_break___0: /* CIL Label */ ; } ldv_40282: ; } { data = ast_read32(ast, 65824U); data2 = ast_read32(ast, 65904U); } if ((data2 & 8192U) != 0U) { ref_pll = 14318U; } else { ref_pll = 12000U; } denum = data & 31U; num = (data & 16352U) >> 5; data = (data & 49152U) >> 14; { if (data == 3U) { goto case_3___0; } else { } if (data == 2U) { goto case_2___0; } else { } if (data == 1U) { goto case_1___0; } else { } goto switch_default___0; case_3___0: /* CIL Label */ div = 4U; goto ldv_40286; case_2___0: /* CIL Label */ ; case_1___0: /* CIL Label */ div = 2U; goto ldv_40286; switch_default___0: /* CIL Label */ div = 1U; goto ldv_40286; switch_break___1: /* CIL Label */ ; } ldv_40286: ast->mclk = (((ref_pll * (num + 2U)) / (denum + 2U)) * div) * 1000U; return (0); } } static void ast_user_framebuffer_destroy(struct drm_framebuffer *fb ) { struct ast_framebuffer *ast_fb ; struct drm_framebuffer const *__mptr ; { __mptr = (struct drm_framebuffer const *)fb; ast_fb = (struct ast_framebuffer *)__mptr; if ((unsigned long )ast_fb->obj != (unsigned long )((struct drm_gem_object *)0)) { { drm_gem_object_unreference_unlocked(ast_fb->obj); } } else { } { drm_framebuffer_cleanup(fb); kfree((void const *)fb); } return; } } static struct drm_framebuffer_funcs const ast_fb_funcs = {& ast_user_framebuffer_destroy, 0, 0}; int ast_framebuffer_init(struct drm_device *dev , struct ast_framebuffer *ast_fb , struct drm_mode_fb_cmd2 *mode_cmd , struct drm_gem_object *obj ) { int ret ; { { drm_helper_mode_fill_fb_struct(& ast_fb->base, mode_cmd); ast_fb->obj = obj; ret = drm_framebuffer_init(dev, & ast_fb->base, & ast_fb_funcs); } if (ret != 0) { { drm_err("framebuffer init failed %d\n", ret); } return (ret); } else { } return (0); } } static struct drm_framebuffer *ast_user_framebuffer_create(struct drm_device *dev , struct drm_file *filp , struct drm_mode_fb_cmd2 *mode_cmd ) { struct drm_gem_object *obj ; struct ast_framebuffer *ast_fb ; int ret ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { obj = drm_gem_object_lookup(dev, filp, mode_cmd->handles[0]); } if ((unsigned long )obj == (unsigned long )((struct drm_gem_object *)0)) { { tmp = ERR_PTR(-2L); } return ((struct drm_framebuffer *)tmp); } else { } { tmp___0 = kzalloc(144UL, 208U); ast_fb = (struct ast_framebuffer *)tmp___0; } if ((unsigned long )ast_fb == (unsigned long )((struct ast_framebuffer *)0)) { { drm_gem_object_unreference_unlocked(obj); tmp___1 = ERR_PTR(-12L); } return ((struct drm_framebuffer *)tmp___1); } else { } { ret = ast_framebuffer_init(dev, ast_fb, mode_cmd, obj); } if (ret != 0) { { drm_gem_object_unreference_unlocked(obj); kfree((void const *)ast_fb); tmp___2 = ERR_PTR((long )ret); } return ((struct drm_framebuffer *)tmp___2); } else { } return (& ast_fb->base); } } static struct drm_mode_config_funcs const ast_mode_funcs = {& ast_user_framebuffer_create, 0, 0, 0}; static u32 ast_get_vram_info(struct drm_device *dev ) { struct ast_private *ast ; u8 jreg ; u32 vram_size ; { { ast = (struct ast_private *)dev->dev_private; ast_open_key(ast); vram_size = 8388608U; jreg = ast_get_index_reg_mask(ast, 84U, 170, 255); } { if (((int )jreg & 3) == 0) { goto case_0; } else { } if (((int )jreg & 3) == 1) { goto case_1; } else { } if (((int )jreg & 3) == 2) { goto case_2; } else { } if (((int )jreg & 3) == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ vram_size = 8388608U; goto ldv_40320; case_1: /* CIL Label */ vram_size = 16777216U; goto ldv_40320; case_2: /* CIL Label */ vram_size = 33554432U; goto ldv_40320; case_3: /* CIL Label */ vram_size = 67108864U; goto ldv_40320; switch_break: /* CIL Label */ ; } ldv_40320: { jreg = ast_get_index_reg_mask(ast, 84U, 153, 255); } { if (((int )jreg & 3) == 1) { goto case_1___0; } else { } if (((int )jreg & 3) == 2) { goto case_2___0; } else { } if (((int )jreg & 3) == 3) { goto case_3___0; } else { } goto switch_break___0; case_1___0: /* CIL Label */ vram_size = vram_size - 1048576U; goto ldv_40325; case_2___0: /* CIL Label */ vram_size = vram_size - 2097152U; goto ldv_40325; case_3___0: /* CIL Label */ vram_size = vram_size - 4194304U; goto ldv_40325; switch_break___0: /* CIL Label */ ; } ldv_40325: ; return (vram_size); } } int ast_driver_load(struct drm_device *dev , unsigned long flags ) { struct ast_private *ast ; bool need_post ; int ret ; void *tmp ; { { ret = 0; tmp = kzalloc(2824UL, 208U); ast = (struct ast_private *)tmp; } if ((unsigned long )ast == (unsigned long )((struct ast_private *)0)) { return (-12); } else { } { dev->dev_private = (void *)ast; ast->dev = dev; ast->regs = pci_iomap(dev->pdev, 1, 0UL); } if ((unsigned long )ast->regs == (unsigned long )((void *)0)) { ret = -5; goto out_free; } else { } if (((dev->pdev)->resource[2].flags & 256UL) == 0UL) { { printk("\016[drm] platform has no IO space, trying MMIO\n"); ast->ioregs = ast->regs + 896UL; } } else { } if ((unsigned long )ast->ioregs == (unsigned long )((void *)0)) { { ast->ioregs = pci_iomap(dev->pdev, 2, 0UL); } if ((unsigned long )ast->ioregs == (unsigned long )((void *)0)) { ret = -5; goto out_free; } else { } } else { } { ast_detect_chip(dev, & need_post); } if ((unsigned int )ast->chip != 7U) { { ast_get_dram_info(dev); ast->vram_size = ast_get_vram_info(dev); printk("\016[drm] dram %d %d %d %08x\n", ast->mclk, ast->dram_type, ast->dram_bus_width, ast->vram_size); } } else { } if ((int )need_post) { { ast_post_gpu(dev); } } else { } { ret = ast_mm_init(ast); } if (ret != 0) { goto out_free; } else { } { drm_mode_config_init(dev); dev->mode_config.funcs = & ast_mode_funcs; dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; dev->mode_config.preferred_depth = 24U; dev->mode_config.prefer_shadow = 1U; } if (((((unsigned int )ast->chip == 1U || (unsigned int )ast->chip == 3U) || (unsigned int )ast->chip == 5U) || (unsigned int )ast->chip == 6U) || (unsigned int )ast->chip == 7U) { dev->mode_config.max_width = 1920; dev->mode_config.max_height = 2048; } else { dev->mode_config.max_width = 1600; dev->mode_config.max_height = 1200; } { ret = ast_mode_init(dev); } if (ret != 0) { goto out_free; } else { } { ret = ast_fbdev_init(dev); } if (ret != 0) { goto out_free; } else { } return (0); out_free: { kfree((void const *)ast); dev->dev_private = (void *)0; } return (ret); } } int ast_driver_unload(struct drm_device *dev ) { struct ast_private *ast ; { { ast = (struct ast_private *)dev->dev_private; kfree((void const *)ast->dp501_fw_addr); ast_mode_fini(dev); ast_fbdev_fini(dev); drm_mode_config_cleanup(dev); ast_mm_fini(ast); pci_iounmap(dev->pdev, ast->ioregs); pci_iounmap(dev->pdev, ast->regs); kfree((void const *)ast); } return (0); } } int ast_gem_create(struct drm_device *dev , u32 size , bool iskernel , struct drm_gem_object **obj ) { struct ast_bo *astbo ; int ret ; unsigned long __y ; { *obj = (struct drm_gem_object *)0; __y = 4096UL; size = (u32 )((((unsigned long )size + 4095UL) / 4096UL) * 4096UL); if (size == 0U) { return (-22); } else { } { ret = ast_bo_create(dev, (int )size, 0, 0U, & astbo); } if (ret != 0) { if (ret != -512) { { drm_err("failed to allocate GEM object\n"); } } else { } return (ret); } else { } *obj = & astbo->gem; return (0); } } int ast_dumb_create(struct drm_file *file , struct drm_device *dev , struct drm_mode_create_dumb *args ) { int ret ; struct drm_gem_object *gobj ; u32 handle ; { { args->pitch = args->width * ((args->bpp + 7U) / 8U); args->size = (uint64_t )(args->pitch * args->height); ret = ast_gem_create(dev, (u32 )args->size, 0, & gobj); } if (ret != 0) { return (ret); } else { } { ret = drm_gem_handle_create(file, gobj, & handle); drm_gem_object_unreference_unlocked(gobj); } if (ret != 0) { return (ret); } else { } args->handle = handle; return (0); } } static void ast_bo_unref(struct ast_bo **bo ) { struct ttm_buffer_object *tbo ; { if ((unsigned long )*bo == (unsigned long )((struct ast_bo *)0)) { return; } else { } { tbo = & (*bo)->bo; ttm_bo_unref(& tbo); *bo = (struct ast_bo *)0; } return; } } void ast_gem_free_object(struct drm_gem_object *obj ) { struct ast_bo *ast_bo___0 ; struct drm_gem_object const *__mptr ; { { __mptr = (struct drm_gem_object const *)obj; ast_bo___0 = (struct ast_bo *)__mptr + 0xfffffffffffffc58UL; ast_bo_unref(& ast_bo___0); } return; } } __inline static u64 ast_bo_mmap_offset(struct ast_bo *bo ) { __u64 tmp ; { { tmp = drm_vma_node_offset_addr(& bo->bo.vma_node); } return (tmp); } } int ast_dumb_mmap_offset(struct drm_file *file , struct drm_device *dev , uint32_t handle , uint64_t *offset ) { struct drm_gem_object *obj ; int ret ; struct ast_bo *bo ; struct drm_gem_object const *__mptr ; { { ldv_mutex_lock_112(& dev->struct_mutex); obj = drm_gem_object_lookup(dev, file, handle); } if ((unsigned long )obj == (unsigned long )((struct drm_gem_object *)0)) { ret = -2; goto out_unlock; } else { } { __mptr = (struct drm_gem_object const *)obj; bo = (struct ast_bo *)__mptr + 0xfffffffffffffc58UL; *offset = ast_bo_mmap_offset(bo); drm_gem_object_unreference(obj); ret = 0; } out_unlock: { ldv_mutex_unlock_113(& dev->struct_mutex); } return (ret); } } void ldv_dummy_resourceless_instance_callback_10_3(struct drm_framebuffer *(*arg0)(struct drm_device * , struct drm_file * , struct drm_mode_fb_cmd2 * ) , struct drm_device *arg1 , struct drm_file *arg2 , struct drm_mode_fb_cmd2 *arg3 ) { { { ast_user_framebuffer_create(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_9_3(void (*arg0)(struct drm_framebuffer * ) , struct drm_framebuffer *arg1 ) { { { ast_user_framebuffer_destroy(arg1); } return; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { { tmp = ldv_err_ptr(error); } return (tmp); } } __inline static int atomic_sub_and_test(int i , atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_sub_and_test(i, v); } return (tmp); } } __inline static int atomic_dec_and_test(atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_dec_and_test(v); } return (tmp); } } void *ldv_zalloc(size_t size ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void ldv_mutex_lock_110(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_struct_mutex_of_drm_device(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_111(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_struct_mutex_of_drm_device(ldv_func_arg1); } return; } } static void ldv_mutex_lock_112(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_struct_mutex_of_drm_device(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_struct_mutex_of_drm_device(ldv_func_arg1); } return; } } extern void ldv_after_alloc(void * ) ; static void ldv_mutex_lock_99(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_110___0(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_100(struct mutex *ldv_func_arg1 ) ; int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_base_of_ww_mutex(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_base_of_ww_mutex(struct mutex *lock ) ; int ldv_linux_kernel_locking_mutex_mutex_trylock_base_of_ww_mutex(struct mutex *lock ) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static int atomic_dec_and_test(atomic_t *v ) ; __inline static int atomic_cmpxchg___0(atomic_t *v , int old , int new ) { int __ret ; int __old ; int __new ; u8 volatile *__ptr ; u16 volatile *__ptr___0 ; u32 volatile *__ptr___1 ; u64 volatile *__ptr___2 ; { __old = old; __new = new; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __ptr = (u8 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgb %2,%1": "=a" (__ret), "+m" (*__ptr): "q" (__new), "0" (__old): "memory"); goto ldv_6242; case_2: /* CIL Label */ __ptr___0 = (u16 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgw %2,%1": "=a" (__ret), "+m" (*__ptr___0): "r" (__new), "0" (__old): "memory"); goto ldv_6242; case_4: /* CIL Label */ __ptr___1 = (u32 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgl %2,%1": "=a" (__ret), "+m" (*__ptr___1): "r" (__new), "0" (__old): "memory"); goto ldv_6242; case_8: /* CIL Label */ __ptr___2 = (u64 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgq %2,%1": "=a" (__ret), "+m" (*__ptr___2): "r" (__new), "0" (__old): "memory"); goto ldv_6242; switch_default: /* CIL Label */ { __cmpxchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_6242: ; return (__ret); } } __inline static int __atomic_add_unless___0(atomic_t *v , int a , int u ) { int c ; int old ; long tmp ; long tmp___0 ; { { c = atomic_read((atomic_t const *)v); } ldv_6271: { tmp = ldv__builtin_expect(c == u, 0L); } if (tmp != 0L) { goto ldv_6270; } else { } { old = atomic_cmpxchg___0(v, c, c + a); tmp___0 = ldv__builtin_expect(old == c, 1L); } if (tmp___0 != 0L) { goto ldv_6270; } else { } c = old; goto ldv_6271; ldv_6270: ; return (c); } } __inline static int atomic_add_unless___0(atomic_t *v , int a , int u ) { int tmp ; { { tmp = __atomic_add_unless___0(v, a, u); } return (tmp != u); } } void ldv_linux_kernel_locking_spinlock_spin_lock_lru_lock_of_ttm_bo_global(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lru_lock_of_ttm_bo_global(void) ; static int ldv_mutex_trylock_101(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_111___0(struct mutex *ldv_func_arg1 ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_108(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_109(spinlock_t *lock ) ; __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static void i2c_set_adapdata(struct i2c_adapter *dev , void *data ) { { { dev_set_drvdata(& dev->dev, data); } return; } } extern void i2c_del_adapter(struct i2c_adapter * ) ; extern int __ww_mutex_lock(struct ww_mutex * , struct ww_acquire_ctx * ) ; extern int __ww_mutex_lock_interruptible(struct ww_mutex * , struct ww_acquire_ctx * ) ; __inline static int ww_mutex_lock(struct ww_mutex *lock , struct ww_acquire_ctx *ctx ) { int tmp ; { if ((unsigned long )ctx != (unsigned long )((struct ww_acquire_ctx *)0)) { { tmp = __ww_mutex_lock(lock, ctx); } return (tmp); } else { } { ldv_mutex_lock_99(& lock->base); } return (0); } } __inline static int ww_mutex_lock_interruptible(struct ww_mutex *lock , struct ww_acquire_ctx *ctx ) { int tmp ; int tmp___0 ; { if ((unsigned long )ctx != (unsigned long )((struct ww_acquire_ctx *)0)) { { tmp = __ww_mutex_lock_interruptible(lock, ctx); } return (tmp); } else { { tmp___0 = ldv_mutex_lock_interruptible_100(& lock->base); } return (tmp___0); } } } extern void ww_mutex_unlock(struct ww_mutex * ) ; __inline static int ww_mutex_trylock(struct ww_mutex *lock ) { int tmp ; { { tmp = ldv_mutex_trylock_101(& lock->base); } return (tmp); } } extern int drm_mode_vrefresh(struct drm_display_mode const * ) ; extern void drm_crtc_cleanup(struct drm_crtc * ) ; extern int drm_connector_init(struct drm_device * , struct drm_connector * , struct drm_connector_funcs const * , int ) ; extern int drm_connector_register(struct drm_connector * ) ; static int ldv_drm_connector_register_113(struct drm_connector *ldv_func_arg1 ) ; extern void drm_connector_unregister(struct drm_connector * ) ; static void ldv_drm_connector_unregister_112(struct drm_connector *ldv_func_arg1 ) ; extern void drm_connector_cleanup(struct drm_connector * ) ; extern int drm_encoder_init(struct drm_device * , struct drm_encoder * , struct drm_encoder_funcs const * , int ) ; extern void drm_encoder_cleanup(struct drm_encoder * ) ; extern struct edid *drm_get_edid(struct drm_connector * , struct i2c_adapter * ) ; extern int drm_add_edid_modes(struct drm_connector * , struct edid * ) ; extern int drm_mode_connector_update_edid_property(struct drm_connector * , struct edid const * ) ; extern int drm_mode_connector_attach_encoder(struct drm_connector * , struct drm_encoder * ) ; extern int drm_mode_crtc_set_gamma_size(struct drm_crtc * , int ) ; extern struct drm_mode_object *drm_mode_object_find(struct drm_device * , uint32_t , uint32_t ) ; __inline static struct drm_encoder *drm_encoder_find(struct drm_device *dev , uint32_t id ) { struct drm_mode_object *mo ; struct drm_mode_object const *__mptr ; struct drm_encoder *tmp ; { { mo = drm_mode_object_find(dev, id, 3772834016U); } if ((unsigned long )mo != (unsigned long )((struct drm_mode_object *)0)) { __mptr = (struct drm_mode_object const *)mo; tmp = (struct drm_encoder *)__mptr + 0xffffffffffffffe8UL; } else { tmp = (struct drm_encoder *)0; } return (tmp); } } extern void drm_ut_debug_printk(char const * , char const * , ...) ; extern unsigned int drm_debug ; extern int drm_crtc_helper_set_config(struct drm_mode_set * ) ; extern void drm_helper_connector_dpms(struct drm_connector * , int ) ; __inline static void drm_crtc_helper_add(struct drm_crtc *crtc , struct drm_crtc_helper_funcs const *funcs ) { { crtc->helper_private = (void *)funcs; return; } } __inline static void drm_encoder_helper_add(struct drm_encoder *encoder , struct drm_encoder_helper_funcs const *funcs ) { { encoder->helper_private = (void *)funcs; return; } } __inline static void drm_connector_helper_add(struct drm_connector *connector , struct drm_connector_helper_funcs const *funcs ) { { connector->helper_private = (void *)funcs; return; } } extern int drm_helper_probe_single_connector_modes(struct drm_connector * , uint32_t , uint32_t ) ; extern int drm_crtc_init(struct drm_device * , struct drm_crtc * , struct drm_crtc_funcs const * ) ; extern void ttm_bo_add_to_lru(struct ttm_buffer_object * ) ; __inline static void *ttm_kmap_obj_virtual(struct ttm_bo_kmap_obj *map , bool *is_iomem ) { { *is_iomem = ((unsigned int )map->bo_kmap_type & 128U) != 0U; return (map->virtual); } } extern int ttm_bo_kmap(struct ttm_buffer_object * , unsigned long , unsigned long , struct ttm_bo_kmap_obj * ) ; extern void ttm_bo_kunmap(struct ttm_bo_kmap_obj * ) ; extern void ttm_bo_del_sub_from_lru(struct ttm_buffer_object * ) ; __inline static int __ttm_bo_reserve(struct ttm_buffer_object *bo , bool interruptible , bool no_wait , bool use_ticket , struct ww_acquire_ctx *ticket ) { int ret ; bool success ; int __ret_warn_on ; long tmp ; long tmp___0 ; int tmp___1 ; { ret = 0; if ((int )no_wait) { { __ret_warn_on = (unsigned long )ticket != (unsigned long )((struct ww_acquire_ctx *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/drm/ttm/ttm_bo_driver.h", 787); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return (-16); } else { } { tmp___1 = ww_mutex_trylock(& (bo->resv)->lock); success = tmp___1 != 0; } return ((int )success ? 0 : -16); } else { } if ((int )interruptible) { { ret = ww_mutex_lock_interruptible(& (bo->resv)->lock, ticket); } } else { { ret = ww_mutex_lock(& (bo->resv)->lock, ticket); } } if (ret == -4) { return (-512); } else { } return (ret); } } __inline static int ttm_bo_reserve(struct ttm_buffer_object *bo , bool interruptible , bool no_wait , bool use_ticket , struct ww_acquire_ctx *ticket ) { int ret ; int __ret_warn_on ; int tmp ; long tmp___0 ; long tmp___1 ; { { tmp = atomic_read((atomic_t const *)(& bo->kref.refcount)); __ret_warn_on = tmp == 0; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("include/drm/ttm/ttm_bo_driver.h", 855); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); ret = __ttm_bo_reserve(bo, (int )interruptible, (int )no_wait, (int )use_ticket, ticket); tmp___1 = ldv__builtin_expect(ret == 0, 1L); } if (tmp___1 != 0L) { { ttm_bo_del_sub_from_lru(bo); } } else { } return (ret); } } __inline static void __ttm_bo_unreserve(struct ttm_buffer_object *bo ) { { { ww_mutex_unlock(& (bo->resv)->lock); } return; } } __inline static void ttm_bo_unreserve(struct ttm_buffer_object *bo ) { { if ((bo->mem.placement & 2097152U) == 0U) { { ldv_spin_lock_108(& (bo->glob)->lru_lock); ttm_bo_add_to_lru(bo); ldv_spin_unlock_109(& (bo->glob)->lru_lock); } } else { } { __ttm_bo_unreserve(bo); } return; } } __inline static void drm_gem_object_unreference_unlocked___0(struct drm_gem_object *obj ) { struct drm_device *dev ; int tmp ; long tmp___0 ; int tmp___1 ; { if ((unsigned long )obj != (unsigned long )((struct drm_gem_object *)0)) { { tmp___1 = atomic_add_unless___0(& obj->refcount.refcount, -1, 1); } if (tmp___1 == 0) { { dev = obj->dev; ldv_mutex_lock_110___0(& dev->struct_mutex); tmp = atomic_dec_and_test(& obj->refcount.refcount); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { { drm_gem_object_free(& obj->refcount); } } else { } { ldv_mutex_unlock_111___0(& dev->struct_mutex); } } else { } } else { } return; } } extern int i2c_bit_add_bus(struct i2c_adapter * ) ; int ast_bo_pin(struct ast_bo *bo , u32 pl_flag , u64 *gpu_addr ) ; __inline static int ast_bo_reserve(struct ast_bo *bo , bool no_wait ) { int ret ; { { ret = ttm_bo_reserve(& bo->bo, 1, (int )no_wait, 0, (struct ww_acquire_ctx *)0); } if (ret != 0) { if (ret != -512 && ret != -16) { { drm_err("reserve failed %p\n", bo); } } else { } return (ret); } else { } return (0); } } __inline static void ast_bo_unreserve(struct ast_bo *bo ) { { { ttm_bo_unreserve(& bo->bo); } return; } } int ast_bo_push_sysram(struct ast_bo *bo ) ; void ast_set_dp501_video_output(struct drm_device *dev , u8 mode ) ; bool ast_dp501_read_edid(struct drm_device *dev , u8 *ediddata ) ; u8 ast_get_dp501_max_clk(struct drm_device *dev ) ; static struct ast_vbios_dclk_info dclk_table[27U] = { {44U, 231U, 3U}, {149U, 98U, 3U}, {103U, 99U, 1U}, {118U, 99U, 1U}, {238U, 103U, 1U}, {130U, 98U, 1U}, {198U, 100U, 1U}, {148U, 98U, 1U}, {128U, 100U, 0U}, {123U, 99U, 0U}, {103U, 98U, 0U}, {124U, 98U, 0U}, {142U, 98U, 0U}, {133U, 36U, 0U}, {103U, 34U, 0U}, {106U, 34U, 0U}, {77U, 76U, 128U}, {167U, 120U, 128U}, {40U, 73U, 128U}, {55U, 73U, 128U}, {31U, 69U, 128U}, {71U, 108U, 128U}, {37U, 101U, 128U}, {119U, 88U, 128U}, {50U, 103U, 128U}, {106U, 109U, 128U}, {59U, 44U, 129U}}; static struct ast_vbios_stdtable vbios_stdtable[5U] = { {103U, {0U, 3U, 0U, 2U}, {95U, 79U, 80U, 130U, 85U, 129U, 191U, 31U, 0U, 79U, 13U, 14U, 0U, 0U, 0U, 0U, 156U, 142U, 143U, 40U, 31U, 150U, 185U, 163U, 255U}, {0U, 1U, 2U, 3U, 4U, 5U, 20U, 7U, 56U, 57U, 58U, 59U, 60U, 61U, 62U, 63U, 12U, 0U, 15U, 8U}, {0U, 0U, 0U, 0U, 0U, 16U, 14U, 0U, 255U}}, {227U, {1U, 15U, 0U, 6U}, {95U, 79U, 80U, 130U, 85U, 129U, 11U, 62U, 0U, 64U, 0U, 0U, 0U, 0U, 0U, 0U, 233U, 139U, 223U, 40U, 0U, 231U, 4U, 227U, 255U}, {0U, 1U, 2U, 3U, 4U, 5U, 20U, 7U, 56U, 57U, 58U, 59U, 60U, 61U, 62U, 63U, 1U, 0U, 15U, 0U}, {0U, 0U, 0U, 0U, 0U, 0U, 5U, 15U, 255U}}, {47U, {1U, 15U, 0U, 14U}, {95U, 79U, 80U, 130U, 84U, 128U, 11U, 62U, 0U, 64U, 0U, 0U, 0U, 0U, 0U, 0U, 234U, 140U, 223U, 40U, 64U, 231U, 4U, 163U, 255U}, {0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U, 13U, 14U, 15U, 1U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U, 0U, 64U, 5U, 15U, 255U}}, {47U, {1U, 15U, 0U, 14U}, {95U, 79U, 80U, 130U, 84U, 128U, 11U, 62U, 0U, 64U, 0U, 0U, 0U, 0U, 0U, 0U, 234U, 140U, 223U, 40U, 64U, 231U, 4U, 163U, 255U}, {0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U, 13U, 14U, 15U, 1U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U, 0U, 0U, 5U, 15U, 255U}}, {47U, {1U, 15U, 0U, 14U}, {95U, 79U, 80U, 130U, 84U, 128U, 11U, 62U, 0U, 64U, 0U, 0U, 0U, 0U, 0U, 0U, 234U, 140U, 223U, 40U, 64U, 231U, 4U, 163U, 255U}, {0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U, 13U, 14U, 15U, 1U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U, 0U, 0U, 5U, 15U, 255U}}}; static struct ast_vbios_enhtable res_640x480[5U] = { {800U, 640U, 8U, 96U, 525U, 480U, 2U, 2U, 0U, 5169U, 60U, 1U, 46U}, {832U, 640U, 16U, 40U, 520U, 480U, 1U, 3U, 2U, 5169U, 72U, 2U, 46U}, {840U, 640U, 16U, 64U, 500U, 480U, 1U, 3U, 2U, 5121U, 75U, 3U, 46U}, {832U, 640U, 56U, 56U, 509U, 480U, 1U, 3U, 3U, 5121U, 85U, 4U, 46U}, {832U, 640U, 56U, 56U, 509U, 480U, 1U, 3U, 3U, 5121U, 255U, 4U, 46U}}; static struct ast_vbios_enhtable res_800x600[6U] = { {1024U, 800U, 24U, 72U, 625U, 600U, 1U, 2U, 3U, 10241U, 56U, 1U, 48U}, {1056U, 800U, 40U, 128U, 628U, 600U, 1U, 4U, 4U, 10241U, 60U, 2U, 48U}, {1040U, 800U, 56U, 120U, 666U, 600U, 37U, 6U, 6U, 10241U, 72U, 3U, 48U}, {1056U, 800U, 16U, 80U, 625U, 600U, 1U, 3U, 5U, 10241U, 75U, 4U, 48U}, {1048U, 800U, 32U, 64U, 631U, 600U, 1U, 3U, 7U, 10241U, 84U, 5U, 48U}, {1048U, 800U, 32U, 64U, 631U, 600U, 1U, 3U, 7U, 10241U, 255U, 5U, 48U}}; static struct ast_vbios_enhtable res_1024x768[5U] = { {1344U, 1024U, 24U, 136U, 806U, 768U, 3U, 6U, 8U, 5121U, 60U, 1U, 49U}, {1328U, 1024U, 24U, 136U, 806U, 768U, 3U, 6U, 9U, 5121U, 70U, 2U, 49U}, {1312U, 1024U, 16U, 96U, 800U, 768U, 1U, 3U, 10U, 10241U, 75U, 3U, 49U}, {1376U, 1024U, 48U, 96U, 808U, 768U, 1U, 3U, 11U, 10241U, 84U, 4U, 49U}, {1376U, 1024U, 48U, 96U, 808U, 768U, 1U, 3U, 11U, 10241U, 255U, 4U, 49U}}; static struct ast_vbios_enhtable res_1280x1024[4U] = { {1688U, 1280U, 48U, 112U, 1066U, 1024U, 1U, 3U, 12U, 10241U, 60U, 1U, 50U}, {1688U, 1280U, 16U, 144U, 1066U, 1024U, 1U, 3U, 13U, 10241U, 75U, 2U, 50U}, {1728U, 1280U, 64U, 160U, 1072U, 1024U, 1U, 3U, 14U, 10241U, 85U, 3U, 50U}, {1728U, 1280U, 64U, 160U, 1072U, 1024U, 1U, 3U, 14U, 10241U, 255U, 3U, 50U}}; static struct ast_vbios_enhtable res_1600x1200[2U] = { {2160U, 1600U, 64U, 192U, 1250U, 1200U, 1U, 3U, 15U, 10241U, 60U, 1U, 51U}, {2160U, 1600U, 64U, 192U, 1250U, 1200U, 1U, 3U, 15U, 10241U, 255U, 1U, 51U}}; static struct ast_vbios_enhtable res_1360x768[2U] = { {1792U, 1360U, 64U, 112U, 795U, 768U, 3U, 6U, 24U, 11017U, 60U, 1U, 57U}, {1792U, 1360U, 64U, 112U, 795U, 768U, 3U, 6U, 24U, 11017U, 255U, 1U, 57U}}; static struct ast_vbios_enhtable res_1600x900[3U] = { {1760U, 1600U, 48U, 32U, 926U, 900U, 3U, 5U, 25U, 6921U, 60U, 1U, 58U}, {2112U, 1600U, 88U, 168U, 934U, 900U, 3U, 5U, 26U, 9993U, 60U, 2U, 58U}, {2112U, 1600U, 88U, 168U, 934U, 900U, 3U, 5U, 26U, 9993U, 255U, 2U, 58U}}; static struct ast_vbios_enhtable res_1920x1080[2U] = { {2200U, 1920U, 88U, 44U, 1125U, 1080U, 4U, 5U, 20U, 6921U, 60U, 1U, 56U}, {2200U, 1920U, 88U, 44U, 1125U, 1080U, 4U, 5U, 20U, 6921U, 255U, 1U, 56U}}; static struct ast_vbios_enhtable res_1280x800[3U] = { {1440U, 1280U, 48U, 32U, 823U, 800U, 3U, 6U, 21U, 6921U, 60U, 1U, 53U}, {1680U, 1280U, 72U, 128U, 831U, 800U, 3U, 6U, 17U, 9993U, 60U, 2U, 53U}, {1680U, 1280U, 72U, 128U, 831U, 800U, 3U, 6U, 17U, 9993U, 255U, 2U, 53U}}; static struct ast_vbios_enhtable res_1440x900[3U] = { {1600U, 1440U, 48U, 32U, 926U, 900U, 3U, 6U, 22U, 6921U, 60U, 1U, 54U}, {1904U, 1440U, 80U, 152U, 934U, 900U, 3U, 6U, 18U, 9993U, 60U, 2U, 54U}, {1904U, 1440U, 80U, 152U, 934U, 900U, 3U, 6U, 18U, 9993U, 255U, 2U, 54U}}; static struct ast_vbios_enhtable res_1680x1050[3U] = { {1840U, 1680U, 48U, 32U, 1080U, 1050U, 3U, 6U, 23U, 6921U, 60U, 1U, 55U}, {2240U, 1680U, 104U, 176U, 1089U, 1050U, 3U, 6U, 19U, 9993U, 60U, 2U, 55U}, {2240U, 1680U, 104U, 176U, 1089U, 1050U, 3U, 6U, 19U, 9993U, 255U, 2U, 55U}}; static struct ast_vbios_enhtable res_1920x1200[2U] = { {2080U, 1920U, 48U, 32U, 1235U, 1200U, 3U, 6U, 16U, 6921U, 60U, 1U, 52U}, {2080U, 1920U, 48U, 32U, 1235U, 1200U, 3U, 6U, 16U, 6921U, 255U, 1U, 52U}}; static struct ast_i2c_chan *ast_i2c_create(struct drm_device *dev ) ; static void ast_i2c_destroy(struct ast_i2c_chan *i2c ) ; static int ast_cursor_set(struct drm_crtc *crtc , struct drm_file *file_priv , uint32_t handle , uint32_t width , uint32_t height ) ; static int ast_cursor_move(struct drm_crtc *crtc , int x , int y ) ; __inline static void ast_load_palette_index(struct ast_private *ast , u8 index , u8 red , u8 green , u8 blue ) { { { ast_io_write8(ast, 72U, (int )index); ast_io_read8(ast, 68U); ast_io_write8(ast, 73U, (int )red); ast_io_read8(ast, 68U); ast_io_write8(ast, 73U, (int )green); ast_io_read8(ast, 68U); ast_io_write8(ast, 73U, (int )blue); ast_io_read8(ast, 68U); } return; } } static void ast_crtc_load_lut(struct drm_crtc *crtc ) { struct ast_private *ast ; struct ast_crtc *ast_crtc ; struct drm_crtc const *__mptr ; int i ; { ast = (struct ast_private *)(crtc->dev)->dev_private; __mptr = (struct drm_crtc const *)crtc; ast_crtc = (struct ast_crtc *)__mptr; if (! crtc->enabled) { return; } else { } i = 0; goto ldv_40404; ldv_40403: { ast_load_palette_index(ast, (int )((u8 )i), (int )ast_crtc->lut_r[i], (int )ast_crtc->lut_g[i], (int )ast_crtc->lut_b[i]); i = i + 1; } ldv_40404: ; if (i <= 255) { goto ldv_40403; } else { } return; } } static bool ast_get_vbios_mode_info(struct drm_crtc *crtc , struct drm_display_mode *mode , struct drm_display_mode *adjusted_mode , struct ast_vbios_mode_info *vbios_mode ) { struct ast_private *ast ; u32 refresh_rate_index ; u32 mode_id ; u32 color_index ; u32 refresh_rate ; u32 hborder ; u32 vborder ; bool check_sync ; struct ast_vbios_enhtable *best ; int tmp ; struct ast_vbios_enhtable *loop ; { ast = (struct ast_private *)(crtc->dev)->dev_private; refresh_rate_index = 0U; best = (struct ast_vbios_enhtable *)0; { if (((crtc->primary)->fb)->bits_per_pixel == 8) { goto case_8; } else { } if (((crtc->primary)->fb)->bits_per_pixel == 16) { goto case_16; } else { } if (((crtc->primary)->fb)->bits_per_pixel == 24) { goto case_24; } else { } if (((crtc->primary)->fb)->bits_per_pixel == 32) { goto case_32; } else { } goto switch_default; case_8: /* CIL Label */ vbios_mode->std_table = (struct ast_vbios_stdtable *)(& vbios_stdtable) + 2UL; color_index = 1U; goto ldv_40422; case_16: /* CIL Label */ vbios_mode->std_table = (struct ast_vbios_stdtable *)(& vbios_stdtable) + 3UL; color_index = 3U; goto ldv_40422; case_24: /* CIL Label */ ; case_32: /* CIL Label */ vbios_mode->std_table = (struct ast_vbios_stdtable *)(& vbios_stdtable) + 4UL; color_index = 4U; goto ldv_40422; switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } ldv_40422: ; { if (crtc->mode.crtc_hdisplay == 640) { goto case_640; } else { } if (crtc->mode.crtc_hdisplay == 800) { goto case_800; } else { } if (crtc->mode.crtc_hdisplay == 1024) { goto case_1024; } else { } if (crtc->mode.crtc_hdisplay == 1280) { goto case_1280; } else { } if (crtc->mode.crtc_hdisplay == 1360) { goto case_1360; } else { } if (crtc->mode.crtc_hdisplay == 1440) { goto case_1440; } else { } if (crtc->mode.crtc_hdisplay == 1600) { goto case_1600; } else { } if (crtc->mode.crtc_hdisplay == 1680) { goto case_1680; } else { } if (crtc->mode.crtc_hdisplay == 1920) { goto case_1920; } else { } goto switch_default___0; case_640: /* CIL Label */ vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_640x480) + (unsigned long )refresh_rate_index; goto ldv_40428; case_800: /* CIL Label */ vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_800x600) + (unsigned long )refresh_rate_index; goto ldv_40428; case_1024: /* CIL Label */ vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_1024x768) + (unsigned long )refresh_rate_index; goto ldv_40428; case_1280: /* CIL Label */ ; if (crtc->mode.crtc_vdisplay == 800) { vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_1280x800) + (unsigned long )refresh_rate_index; } else { vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_1280x1024) + (unsigned long )refresh_rate_index; } goto ldv_40428; case_1360: /* CIL Label */ vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_1360x768) + (unsigned long )refresh_rate_index; goto ldv_40428; case_1440: /* CIL Label */ vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_1440x900) + (unsigned long )refresh_rate_index; goto ldv_40428; case_1600: /* CIL Label */ ; if (crtc->mode.crtc_vdisplay == 900) { vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_1600x900) + (unsigned long )refresh_rate_index; } else { vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_1600x1200) + (unsigned long )refresh_rate_index; } goto ldv_40428; case_1680: /* CIL Label */ vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_1680x1050) + (unsigned long )refresh_rate_index; goto ldv_40428; case_1920: /* CIL Label */ ; if (crtc->mode.crtc_vdisplay == 1080) { vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_1920x1080) + (unsigned long )refresh_rate_index; } else { vbios_mode->enh_table = (struct ast_vbios_enhtable *)(& res_1920x1200) + (unsigned long )refresh_rate_index; } goto ldv_40428; switch_default___0: /* CIL Label */ ; return (0); switch_break___0: /* CIL Label */ ; } ldv_40428: { tmp = drm_mode_vrefresh((struct drm_display_mode const *)mode); refresh_rate = (u32 )tmp; check_sync = ((vbios_mode->enh_table)->flags & 256U) != 0U; } ldv_40443: loop = vbios_mode->enh_table; goto ldv_40439; ldv_40440: ; if ((int )check_sync && (((((mode->flags & 8U) != 0U && (loop->flags & 8192U) != 0U) || ((mode->flags & 4U) != 0U && (loop->flags & 4096U) != 0U)) || ((mode->flags & 2U) != 0U && (loop->flags & 2048U) != 0U)) || ((int )mode->flags & 1 && (loop->flags & 1024U) != 0U))) { loop = loop + 1; goto ldv_40439; } else { } if (loop->refresh_rate <= refresh_rate && ((unsigned long )best == (unsigned long )((struct ast_vbios_enhtable *)0) || loop->refresh_rate > best->refresh_rate)) { best = loop; } else { } loop = loop + 1; ldv_40439: ; if (loop->refresh_rate != 255U) { goto ldv_40440; } else { } if ((unsigned long )best != (unsigned long )((struct ast_vbios_enhtable *)0) || ! check_sync) { goto ldv_40442; } else { } check_sync = 0; goto ldv_40443; ldv_40442: ; if ((unsigned long )best != (unsigned long )((struct ast_vbios_enhtable *)0)) { vbios_mode->enh_table = best; } else { } hborder = ((vbios_mode->enh_table)->flags & 32U) != 0U ? 8U : 0U; vborder = ((vbios_mode->enh_table)->flags & 16U) != 0U ? 8U : 0U; adjusted_mode->crtc_htotal = (int )(vbios_mode->enh_table)->ht; adjusted_mode->crtc_hblank_start = (int )((vbios_mode->enh_table)->hde + hborder); adjusted_mode->crtc_hblank_end = (int )((vbios_mode->enh_table)->ht - hborder); adjusted_mode->crtc_hsync_start = (int )(((vbios_mode->enh_table)->hde + hborder) + (vbios_mode->enh_table)->hfp); adjusted_mode->crtc_hsync_end = (int )((((vbios_mode->enh_table)->hde + hborder) + (vbios_mode->enh_table)->hfp) + (vbios_mode->enh_table)->hsync); adjusted_mode->crtc_vtotal = (int )(vbios_mode->enh_table)->vt; adjusted_mode->crtc_vblank_start = (int )((vbios_mode->enh_table)->vde + vborder); adjusted_mode->crtc_vblank_end = (int )((vbios_mode->enh_table)->vt - vborder); adjusted_mode->crtc_vsync_start = (int )(((vbios_mode->enh_table)->vde + vborder) + (vbios_mode->enh_table)->vfp); adjusted_mode->crtc_vsync_end = (int )((((vbios_mode->enh_table)->vde + vborder) + (vbios_mode->enh_table)->vfp) + (vbios_mode->enh_table)->vsync); refresh_rate_index = (vbios_mode->enh_table)->refresh_rate_index; mode_id = (vbios_mode->enh_table)->mode_id; if ((unsigned int )ast->chip == 7U) { } else { { ast_set_index_reg(ast, 84U, 140, (int )((unsigned char )color_index) << 4U); ast_set_index_reg(ast, 84U, 141, (int )((uint8_t )refresh_rate_index)); ast_set_index_reg(ast, 84U, 142, (int )((uint8_t )mode_id)); ast_set_index_reg(ast, 84U, 145, 0); } if (((vbios_mode->enh_table)->flags & 512U) != 0U) { { ast_set_index_reg(ast, 84U, 145, 168); ast_set_index_reg(ast, 84U, 146, (int )((uint8_t )((crtc->primary)->fb)->bits_per_pixel)); ast_set_index_reg(ast, 84U, 147, (int )((uint8_t )(adjusted_mode->clock / 1000))); ast_set_index_reg(ast, 84U, 148, (int )((uint8_t )adjusted_mode->crtc_hdisplay)); ast_set_index_reg(ast, 84U, 149, (int )((uint8_t )(adjusted_mode->crtc_hdisplay >> 8))); ast_set_index_reg(ast, 84U, 150, (int )((uint8_t )adjusted_mode->crtc_vdisplay)); ast_set_index_reg(ast, 84U, 151, (int )((uint8_t )(adjusted_mode->crtc_vdisplay >> 8))); } } else { } } return (1); } } static void ast_set_std_reg(struct drm_crtc *crtc , struct drm_display_mode *mode , struct ast_vbios_mode_info *vbios_mode ) { struct ast_private *ast ; struct ast_vbios_stdtable *stdtable ; u32 i ; u8 jreg ; { { ast = (struct ast_private *)(crtc->dev)->dev_private; stdtable = vbios_mode->std_table; jreg = stdtable->misc; ast_io_write8(ast, 66U, (int )jreg); ast_set_index_reg(ast, 68U, 0, 3); i = 0U; } goto ldv_40454; ldv_40453: jreg = stdtable->seq[i]; if (i == 0U) { jreg = (u8 )((unsigned int )jreg | 32U); } else { } { ast_set_index_reg(ast, 68U, (int )((unsigned int )((uint8_t )i) + 1U), (int )jreg); i = i + 1U; } ldv_40454: ; if (i <= 3U) { goto ldv_40453; } else { } { ast_set_index_reg_mask(ast, 84U, 17, 127, 0); i = 0U; } goto ldv_40457; ldv_40456: { ast_set_index_reg(ast, 84U, (int )((uint8_t )i), (int )stdtable->crtc[i]); i = i + 1U; } ldv_40457: ; if (i <= 24U) { goto ldv_40456; } else { } { jreg = ast_io_read8(ast, 90U); i = 0U; } goto ldv_40460; ldv_40459: { jreg = stdtable->ar[i]; ast_io_write8(ast, 64U, (int )((unsigned char )i)); ast_io_write8(ast, 64U, (int )jreg); i = i + 1U; } ldv_40460: ; if (i <= 19U) { goto ldv_40459; } else { } { ast_io_write8(ast, 64U, 20); ast_io_write8(ast, 64U, 0); jreg = ast_io_read8(ast, 90U); ast_io_write8(ast, 64U, 32); i = 0U; } goto ldv_40463; ldv_40462: { ast_set_index_reg(ast, 78U, (int )((uint8_t )i), (int )stdtable->gr[i]); i = i + 1U; } ldv_40463: ; if (i <= 8U) { goto ldv_40462; } else { } return; } } static void ast_set_crtc_reg(struct drm_crtc *crtc , struct drm_display_mode *mode , struct ast_vbios_mode_info *vbios_mode ) { struct ast_private *ast ; u8 jreg05 ; u8 jreg07 ; u8 jreg09 ; u8 jregAC ; u8 jregAD ; u8 jregAE ; u16 temp ; { { ast = (struct ast_private *)(crtc->dev)->dev_private; jreg05 = 0U; jreg07 = 0U; jreg09 = 0U; jregAC = 0U; jregAD = 0U; jregAE = 0U; ast_set_index_reg_mask(ast, 84U, 17, 127, 0); temp = (unsigned int )((u16 )(mode->crtc_htotal >> 3)) + 65531U; } if (((int )temp & 256) != 0) { jregAC = (u8 )((unsigned int )jregAC | 1U); } else { } { ast_set_index_reg_mask(ast, 84U, 0, 0, (int )((uint8_t )temp)); temp = (unsigned int )((u16 )(mode->crtc_hdisplay >> 3)) + 65535U; } if (((int )temp & 256) != 0) { jregAC = (u8 )((unsigned int )jregAC | 4U); } else { } { ast_set_index_reg_mask(ast, 84U, 1, 0, (int )((uint8_t )temp)); temp = (unsigned int )((u16 )(mode->crtc_hblank_start >> 3)) + 65535U; } if (((int )temp & 256) != 0) { jregAC = (u8 )((unsigned int )jregAC | 16U); } else { } { ast_set_index_reg_mask(ast, 84U, 2, 0, (int )((uint8_t )temp)); temp = (unsigned int )((u16 )((unsigned int )((unsigned short )(mode->crtc_hblank_end >> 3)) + 65535U)) & 127U; } if (((int )temp & 32) != 0) { jreg05 = (u8 )((unsigned int )jreg05 | 128U); } else { } if (((int )temp & 64) != 0) { jregAD = (u8 )((unsigned int )jregAD | 1U); } else { } { ast_set_index_reg_mask(ast, 84U, 3, 224, (int )((uint8_t )temp) & 31); temp = (unsigned int )((u16 )(mode->crtc_hsync_start >> 3)) + 65535U; } if (((int )temp & 256) != 0) { jregAC = (u8 )((unsigned int )jregAC | 64U); } else { } { ast_set_index_reg_mask(ast, 84U, 4, 0, (int )((uint8_t )temp)); temp = (unsigned int )((u16 )((unsigned int )((unsigned short )(mode->crtc_hsync_end >> 3)) + 65535U)) & 63U; } if (((int )temp & 32) != 0) { jregAD = (u8 )((unsigned int )jregAD | 4U); } else { } { ast_set_index_reg_mask(ast, 84U, 5, 96, (int )((unsigned char )(((int )((signed char )temp) & 31) | (int )((signed char )jreg05)))); ast_set_index_reg_mask(ast, 84U, 172, 0, (int )jregAC); ast_set_index_reg_mask(ast, 84U, 173, 0, (int )jregAD); temp = (unsigned int )((u16 )mode->crtc_vtotal) + 65534U; } if (((int )temp & 256) != 0) { jreg07 = (u8 )((unsigned int )jreg07 | 1U); } else { } if (((int )temp & 512) != 0) { jreg07 = (u8 )((unsigned int )jreg07 | 32U); } else { } if (((int )temp & 1024) != 0) { jregAE = (u8 )((unsigned int )jregAE | 1U); } else { } { ast_set_index_reg_mask(ast, 84U, 6, 0, (int )((uint8_t )temp)); temp = (unsigned int )((u16 )mode->crtc_vsync_start) + 65535U; } if (((int )temp & 256) != 0) { jreg07 = (u8 )((unsigned int )jreg07 | 4U); } else { } if (((int )temp & 512) != 0) { jreg07 = (u8 )((unsigned int )jreg07 | 128U); } else { } if (((int )temp & 1024) != 0) { jregAE = (u8 )((unsigned int )jregAE | 8U); } else { } { ast_set_index_reg_mask(ast, 84U, 16, 0, (int )((uint8_t )temp)); temp = (unsigned int )((u16 )((unsigned int )((unsigned short )mode->crtc_vsync_end) + 65535U)) & 63U; } if (((int )temp & 16) != 0) { jregAE = (u8 )((unsigned int )jregAE | 32U); } else { } if (((int )temp & 32) != 0) { jregAE = (u8 )((unsigned int )jregAE | 64U); } else { } { ast_set_index_reg_mask(ast, 84U, 17, 112, (int )((uint8_t )temp) & 15); temp = (unsigned int )((u16 )mode->crtc_vdisplay) + 65535U; } if (((int )temp & 256) != 0) { jreg07 = (u8 )((unsigned int )jreg07 | 2U); } else { } if (((int )temp & 512) != 0) { jreg07 = (u8 )((unsigned int )jreg07 | 64U); } else { } if (((int )temp & 1024) != 0) { jregAE = (u8 )((unsigned int )jregAE | 2U); } else { } { ast_set_index_reg_mask(ast, 84U, 18, 0, (int )((uint8_t )temp)); temp = (unsigned int )((u16 )mode->crtc_vblank_start) + 65535U; } if (((int )temp & 256) != 0) { jreg07 = (u8 )((unsigned int )jreg07 | 8U); } else { } if (((int )temp & 512) != 0) { jreg09 = (u8 )((unsigned int )jreg09 | 32U); } else { } if (((int )temp & 1024) != 0) { jregAE = (u8 )((unsigned int )jregAE | 4U); } else { } { ast_set_index_reg_mask(ast, 84U, 21, 0, (int )((uint8_t )temp)); temp = (unsigned int )((u16 )mode->crtc_vblank_end) + 65535U; } if (((int )temp & 256) != 0) { jregAE = (u8 )((unsigned int )jregAE | 16U); } else { } { ast_set_index_reg_mask(ast, 84U, 22, 0, (int )((uint8_t )temp)); ast_set_index_reg_mask(ast, 84U, 7, 0, (int )jreg07); ast_set_index_reg_mask(ast, 84U, 9, 223, (int )jreg09); ast_set_index_reg_mask(ast, 84U, 174, 0, (int )((unsigned int )jregAE | 128U)); ast_set_index_reg_mask(ast, 84U, 17, 127, 128); } return; } } static void ast_set_offset_reg(struct drm_crtc *crtc ) { struct ast_private *ast ; u16 offset ; { { ast = (struct ast_private *)(crtc->dev)->dev_private; offset = (u16 )(((crtc->primary)->fb)->pitches[0] >> 3); ast_set_index_reg(ast, 84U, 19, (int )((uint8_t )offset)); ast_set_index_reg(ast, 84U, 176, (int )((uint8_t )((int )offset >> 8)) & 63); } return; } } static void ast_set_dclk_reg(struct drm_device *dev , struct drm_display_mode *mode , struct ast_vbios_mode_info *vbios_mode ) { struct ast_private *ast ; struct ast_vbios_dclk_info *clk_info ; { { ast = (struct ast_private *)dev->dev_private; clk_info = (struct ast_vbios_dclk_info *)(& dclk_table) + (unsigned long )(vbios_mode->enh_table)->dclk_index; ast_set_index_reg_mask(ast, 84U, 192, 0, (int )clk_info->param1); ast_set_index_reg_mask(ast, 84U, 193, 0, (int )clk_info->param2); ast_set_index_reg_mask(ast, 84U, 187, 15, (int )((uint8_t )(((int )((signed char )clk_info->param3) & -128) | (int )((signed char )(((int )clk_info->param3 & 3) << 4))))); } return; } } static void ast_set_ext_reg(struct drm_crtc *crtc , struct drm_display_mode *mode , struct ast_vbios_mode_info *vbios_mode ) { struct ast_private *ast ; u8 jregA0 ; u8 jregA3 ; u8 jregA8 ; { ast = (struct ast_private *)(crtc->dev)->dev_private; jregA0 = 0U; jregA3 = 0U; jregA8 = 0U; { if (((crtc->primary)->fb)->bits_per_pixel == 8) { goto case_8; } else { } if (((crtc->primary)->fb)->bits_per_pixel == 15) { goto case_15; } else { } if (((crtc->primary)->fb)->bits_per_pixel == 16) { goto case_16; } else { } if (((crtc->primary)->fb)->bits_per_pixel == 32) { goto case_32; } else { } goto switch_break; case_8: /* CIL Label */ jregA0 = 112U; jregA3 = 1U; jregA8 = 0U; goto ldv_40500; case_15: /* CIL Label */ ; case_16: /* CIL Label */ jregA0 = 112U; jregA3 = 4U; jregA8 = 2U; goto ldv_40500; case_32: /* CIL Label */ jregA0 = 112U; jregA3 = 8U; jregA8 = 2U; goto ldv_40500; switch_break: /* CIL Label */ ; } ldv_40500: { ast_set_index_reg_mask(ast, 84U, 160, 143, (int )jregA0); ast_set_index_reg_mask(ast, 84U, 163, 240, (int )jregA3); ast_set_index_reg_mask(ast, 84U, 168, 253, (int )jregA8); } if ((unsigned int )ast->chip - 5U <= 1U) { { ast_set_index_reg(ast, 84U, 167, 120); ast_set_index_reg(ast, 84U, 166, 96); } } else if ((unsigned int )ast->chip - 1U <= 3U) { { ast_set_index_reg(ast, 84U, 167, 63); ast_set_index_reg(ast, 84U, 166, 47); } } else { { ast_set_index_reg(ast, 84U, 167, 47); ast_set_index_reg(ast, 84U, 166, 31); } } return; } } static void ast_set_sync_reg(struct drm_device *dev , struct drm_display_mode *mode , struct ast_vbios_mode_info *vbios_mode ) { struct ast_private *ast ; u8 jreg ; { { ast = (struct ast_private *)dev->dev_private; jreg = ast_io_read8(ast, 76U); jreg = (unsigned int )jreg & 63U; } if (((vbios_mode->enh_table)->flags & 4096U) != 0U) { jreg = (u8 )((unsigned int )jreg | 128U); } else { } if (((vbios_mode->enh_table)->flags & 1024U) != 0U) { jreg = (u8 )((unsigned int )jreg | 64U); } else { } { ast_io_write8(ast, 66U, (int )jreg); } return; } } static bool ast_set_dac_reg(struct drm_crtc *crtc , struct drm_display_mode *mode , struct ast_vbios_mode_info *vbios_mode ) { { { if (((crtc->primary)->fb)->bits_per_pixel == 8) { goto case_8; } else { } goto switch_default; case_8: /* CIL Label */ ; goto ldv_40517; switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } ldv_40517: ; return (1); } } static void ast_set_start_address_crt1(struct drm_crtc *crtc , unsigned int offset ) { struct ast_private *ast ; u32 addr ; { { ast = (struct ast_private *)(crtc->dev)->dev_private; addr = offset >> 2; ast_set_index_reg(ast, 84U, 13, (int )((unsigned char )addr)); ast_set_index_reg(ast, 84U, 12, (int )((unsigned char )(addr >> 8))); ast_set_index_reg(ast, 84U, 175, (int )((unsigned char )(addr >> 16))); } return; } } static void ast_crtc_dpms(struct drm_crtc *crtc , int mode ) { struct ast_private *ast ; { ast = (struct ast_private *)(crtc->dev)->dev_private; if ((unsigned int )ast->chip == 7U) { return; } else { } { if (mode == 0) { goto case_0; } else { } if (mode == 1) { goto case_1; } else { } if (mode == 2) { goto case_2; } else { } if (mode == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { ast_set_index_reg_mask(ast, 68U, 1, 223, 0); } if ((unsigned int )ast->tx_chip_type == 3U) { { ast_set_dp501_video_output(crtc->dev, 1); } } else { } { ast_crtc_load_lut(crtc); } goto ldv_40533; case_3: /* CIL Label */ ; if ((unsigned int )ast->tx_chip_type == 3U) { { ast_set_dp501_video_output(crtc->dev, 0); } } else { } { ast_set_index_reg_mask(ast, 68U, 1, 223, 32); } goto ldv_40533; switch_break: /* CIL Label */ ; } ldv_40533: ; return; } } static bool ast_crtc_mode_fixup(struct drm_crtc *crtc , struct drm_display_mode const *mode , struct drm_display_mode *adjusted_mode ) { { return (1); } } static int ast_crtc_do_set_base(struct drm_crtc *crtc , struct drm_framebuffer *fb , int x , int y , int atomic ) { struct ast_private *ast ; struct drm_gem_object *obj ; struct ast_framebuffer *ast_fb ; struct ast_bo *bo ; int ret ; u64 gpu_addr ; struct drm_framebuffer const *__mptr ; struct drm_gem_object const *__mptr___0 ; struct drm_framebuffer const *__mptr___1 ; struct drm_gem_object const *__mptr___2 ; { ast = (struct ast_private *)(crtc->dev)->dev_private; if (atomic == 0 && (unsigned long )fb != (unsigned long )((struct drm_framebuffer *)0)) { { __mptr = (struct drm_framebuffer const *)fb; ast_fb = (struct ast_framebuffer *)__mptr; obj = ast_fb->obj; __mptr___0 = (struct drm_gem_object const *)obj; bo = (struct ast_bo *)__mptr___0 + 0xfffffffffffffc58UL; ret = ast_bo_reserve(bo, 0); } if (ret != 0) { return (ret); } else { } { ast_bo_push_sysram(bo); ast_bo_unreserve(bo); } } else { } { __mptr___1 = (struct drm_framebuffer const *)(crtc->primary)->fb; ast_fb = (struct ast_framebuffer *)__mptr___1; obj = ast_fb->obj; __mptr___2 = (struct drm_gem_object const *)obj; bo = (struct ast_bo *)__mptr___2 + 0xfffffffffffffc58UL; ret = ast_bo_reserve(bo, 0); } if (ret != 0) { return (ret); } else { } { ret = ast_bo_pin(bo, 4U, & gpu_addr); } if (ret != 0) { { ast_bo_unreserve(bo); } return (ret); } else { } if ((unsigned long )(& (ast->fbdev)->afb) == (unsigned long )ast_fb) { { ret = ttm_bo_kmap(& bo->bo, 0UL, bo->bo.num_pages, & bo->kmap); } if (ret != 0) { { drm_err("failed to kmap fbcon\n"); } } else { } } else { } { ast_bo_unreserve(bo); ast_set_start_address_crt1(crtc, (unsigned int )gpu_addr); } return (0); } } static int ast_crtc_mode_set_base(struct drm_crtc *crtc , int x , int y , struct drm_framebuffer *old_fb ) { int tmp ; { { tmp = ast_crtc_do_set_base(crtc, old_fb, x, y, 0); } return (tmp); } } static int ast_crtc_mode_set(struct drm_crtc *crtc , struct drm_display_mode *mode , struct drm_display_mode *adjusted_mode , int x , int y , struct drm_framebuffer *old_fb ) { struct drm_device *dev ; struct ast_private *ast ; struct ast_vbios_mode_info vbios_mode ; bool ret ; { dev = crtc->dev; ast = (struct ast_private *)(crtc->dev)->dev_private; if ((unsigned int )ast->chip == 7U) { { drm_err("AST 1180 modesetting not supported\n"); } return (-22); } else { } { ret = ast_get_vbios_mode_info(crtc, mode, adjusted_mode, & vbios_mode); } if (! ret) { return (-22); } else { } { ast_open_key(ast); ast_set_index_reg_mask(ast, 84U, 161, 255, 4); ast_set_std_reg(crtc, adjusted_mode, & vbios_mode); ast_set_crtc_reg(crtc, adjusted_mode, & vbios_mode); ast_set_offset_reg(crtc); ast_set_dclk_reg(dev, adjusted_mode, & vbios_mode); ast_set_ext_reg(crtc, adjusted_mode, & vbios_mode); ast_set_sync_reg(dev, adjusted_mode, & vbios_mode); ast_set_dac_reg(crtc, adjusted_mode, & vbios_mode); ast_crtc_mode_set_base(crtc, x, y, old_fb); } return (0); } } static void ast_crtc_disable(struct drm_crtc *crtc ) { { return; } } static void ast_crtc_prepare(struct drm_crtc *crtc ) { { return; } } static void ast_crtc_commit(struct drm_crtc *crtc ) { struct ast_private *ast ; { { ast = (struct ast_private *)(crtc->dev)->dev_private; ast_set_index_reg_mask(ast, 68U, 1, 223, 0); } return; } } static struct drm_crtc_helper_funcs const ast_crtc_helper_funcs = {& ast_crtc_dpms, & ast_crtc_prepare, & ast_crtc_commit, & ast_crtc_mode_fixup, & ast_crtc_mode_set, 0, & ast_crtc_mode_set_base, 0, & ast_crtc_load_lut, & ast_crtc_disable, 0, 0, 0, 0}; static void ast_crtc_reset(struct drm_crtc *crtc ) { { return; } } static void ast_crtc_gamma_set(struct drm_crtc *crtc , u16 *red , u16 *green , u16 *blue , uint32_t start , uint32_t size ) { struct ast_crtc *ast_crtc ; struct drm_crtc const *__mptr ; int end ; int i ; { __mptr = (struct drm_crtc const *)crtc; ast_crtc = (struct ast_crtc *)__mptr; end = (int )(256U < start + size ? 256U : start + size); i = (int )start; goto ldv_40607; ldv_40606: ast_crtc->lut_r[i] = (u8 )((int )*(red + (unsigned long )i) >> 8); ast_crtc->lut_g[i] = (u8 )((int )*(green + (unsigned long )i) >> 8); ast_crtc->lut_b[i] = (u8 )((int )*(blue + (unsigned long )i) >> 8); i = i + 1; ldv_40607: ; if (i < end) { goto ldv_40606; } else { } { ast_crtc_load_lut(crtc); } return; } } static void ast_crtc_destroy(struct drm_crtc *crtc ) { { { drm_crtc_cleanup(crtc); kfree((void const *)crtc); } return; } } static struct drm_crtc_funcs const ast_crtc_funcs = {0, 0, & ast_crtc_reset, & ast_cursor_set, 0, & ast_cursor_move, & ast_crtc_gamma_set, & ast_crtc_destroy, & drm_crtc_helper_set_config, 0, 0, 0, 0, 0, 0}; static int ast_crtc_init(struct drm_device *dev ) { struct ast_crtc *crtc ; int i ; void *tmp ; { { tmp = kzalloc(1960UL, 208U); crtc = (struct ast_crtc *)tmp; } if ((unsigned long )crtc == (unsigned long )((struct ast_crtc *)0)) { return (-12); } else { } { drm_crtc_init(dev, & crtc->base, & ast_crtc_funcs); drm_mode_crtc_set_gamma_size(& crtc->base, 256); drm_crtc_helper_add(& crtc->base, & ast_crtc_helper_funcs); i = 0; } goto ldv_40619; ldv_40618: crtc->lut_r[i] = (u8 )i; crtc->lut_g[i] = (u8 )i; crtc->lut_b[i] = (u8 )i; i = i + 1; ldv_40619: ; if (i <= 255) { goto ldv_40618; } else { } return (0); } } static void ast_encoder_destroy(struct drm_encoder *encoder ) { { { drm_encoder_cleanup(encoder); kfree((void const *)encoder); } return; } } static struct drm_encoder *ast_best_single_encoder(struct drm_connector *connector ) { int enc_id ; struct drm_encoder *tmp ; { enc_id = (int )connector->encoder_ids[0]; if (enc_id != 0) { { tmp = drm_encoder_find(connector->dev, (uint32_t )enc_id); } return (tmp); } else { } return ((struct drm_encoder *)0); } } static struct drm_encoder_funcs const ast_enc_funcs = {0, & ast_encoder_destroy}; static void ast_encoder_dpms(struct drm_encoder *encoder , int mode ) { { return; } } static bool ast_mode_fixup(struct drm_encoder *encoder , struct drm_display_mode const *mode , struct drm_display_mode *adjusted_mode ) { { return (1); } } static void ast_encoder_mode_set(struct drm_encoder *encoder , struct drm_display_mode *mode , struct drm_display_mode *adjusted_mode ) { { return; } } static void ast_encoder_prepare(struct drm_encoder *encoder ) { { return; } } static void ast_encoder_commit(struct drm_encoder *encoder ) { { return; } } static struct drm_encoder_helper_funcs const ast_enc_helper_funcs = {& ast_encoder_dpms, 0, 0, & ast_mode_fixup, & ast_encoder_prepare, & ast_encoder_commit, & ast_encoder_mode_set, 0, 0, 0, 0, 0}; static int ast_encoder_init(struct drm_device *dev ) { struct ast_encoder *ast_encoder ; void *tmp ; { { tmp = kzalloc(96UL, 208U); ast_encoder = (struct ast_encoder *)tmp; } if ((unsigned long )ast_encoder == (unsigned long )((struct ast_encoder *)0)) { return (-12); } else { } { drm_encoder_init(dev, & ast_encoder->base, & ast_enc_funcs, 1); drm_encoder_helper_add(& ast_encoder->base, & ast_enc_helper_funcs); ast_encoder->base.possible_crtcs = 1U; } return (0); } } static int ast_get_modes(struct drm_connector *connector ) { struct ast_connector *ast_connector ; struct drm_connector const *__mptr ; struct ast_private *ast ; struct edid *edid ; int ret ; bool flags ; void *tmp ; { __mptr = (struct drm_connector const *)connector; ast_connector = (struct ast_connector *)__mptr; ast = (struct ast_private *)(connector->dev)->dev_private; flags = 0; if ((unsigned int )ast->tx_chip_type == 3U) { { ast->dp501_maxclk = 255U; tmp = kmalloc(128UL, 208U); edid = (struct edid *)tmp; } if ((unsigned long )edid == (unsigned long )((struct edid *)0)) { return (-12); } else { } { flags = ast_dp501_read_edid(connector->dev, (u8 *)edid); } if ((int )flags) { { ast->dp501_maxclk = ast_get_dp501_max_clk(connector->dev); } } else { { kfree((void const *)edid); } } } else { } if (! flags) { { edid = drm_get_edid(connector, & (ast_connector->i2c)->adapter); } } else { } if ((unsigned long )edid != (unsigned long )((struct edid *)0)) { { drm_mode_connector_update_edid_property(& ast_connector->base, (struct edid const *)edid); ret = drm_add_edid_modes(connector, edid); kfree((void const *)edid); } return (ret); } else { { drm_mode_connector_update_edid_property(& ast_connector->base, (struct edid const *)0); } } return (0); } } static int ast_mode_valid(struct drm_connector *connector , struct drm_display_mode *mode ) { struct ast_private *ast ; int flags ; uint32_t jtemp ; uint8_t tmp ; { ast = (struct ast_private *)(connector->dev)->dev_private; flags = 6; if ((int )ast->support_wide_screen) { if (mode->hdisplay == 1680 && mode->vdisplay == 1050) { return (0); } else { } if (mode->hdisplay == 1280 && mode->vdisplay == 800) { return (0); } else { } if (mode->hdisplay == 1440 && mode->vdisplay == 900) { return (0); } else { } if (mode->hdisplay == 1360 && mode->vdisplay == 768) { return (0); } else { } if (mode->hdisplay == 1600 && mode->vdisplay == 900) { return (0); } else { } if (((((unsigned int )ast->chip == 1U || (unsigned int )ast->chip == 3U) || (unsigned int )ast->chip == 5U) || (unsigned int )ast->chip == 6U) || (unsigned int )ast->chip == 7U) { if (mode->hdisplay == 1920 && mode->vdisplay == 1080) { return (0); } else { } if (mode->hdisplay == 1920 && mode->vdisplay == 1200) { { tmp = ast_get_index_reg_mask(ast, 84U, 209, 255); jtemp = (uint32_t )tmp; } if ((int )jtemp & 1) { return (6); } else { return (0); } } else { } } else { } } else { } { if (mode->hdisplay == 640) { goto case_640; } else { } if (mode->hdisplay == 800) { goto case_800; } else { } if (mode->hdisplay == 1024) { goto case_1024; } else { } if (mode->hdisplay == 1280) { goto case_1280; } else { } if (mode->hdisplay == 1600) { goto case_1600; } else { } goto switch_default; case_640: /* CIL Label */ ; if (mode->vdisplay == 480) { flags = 0; } else { } goto ldv_40672; case_800: /* CIL Label */ ; if (mode->vdisplay == 600) { flags = 0; } else { } goto ldv_40672; case_1024: /* CIL Label */ ; if (mode->vdisplay == 768) { flags = 0; } else { } goto ldv_40672; case_1280: /* CIL Label */ ; if (mode->vdisplay == 1024) { flags = 0; } else { } goto ldv_40672; case_1600: /* CIL Label */ ; if (mode->vdisplay == 1200) { flags = 0; } else { } goto ldv_40672; switch_default: /* CIL Label */ ; return (flags); switch_break: /* CIL Label */ ; } ldv_40672: ; return (flags); } } static void ast_connector_destroy(struct drm_connector *connector ) { struct ast_connector *ast_connector ; struct drm_connector const *__mptr ; { { __mptr = (struct drm_connector const *)connector; ast_connector = (struct ast_connector *)__mptr; ast_i2c_destroy(ast_connector->i2c); ldv_drm_connector_unregister_112(connector); drm_connector_cleanup(connector); kfree((void const *)connector); } return; } } static enum drm_connector_status ast_connector_detect(struct drm_connector *connector , bool force ) { { return (1); } } static struct drm_connector_helper_funcs const ast_connector_helper_funcs = {& ast_get_modes, (enum drm_mode_status (*)(struct drm_connector * , struct drm_display_mode * ))(& ast_mode_valid), & ast_best_single_encoder}; static struct drm_connector_funcs const ast_connector_funcs = {& drm_helper_connector_dpms, 0, 0, 0, & ast_connector_detect, & drm_helper_probe_single_connector_modes, 0, & ast_connector_destroy, 0, 0, 0, 0, 0}; static int ast_connector_init(struct drm_device *dev ) { struct ast_connector *ast_connector ; struct drm_connector *connector ; struct drm_encoder *encoder ; void *tmp ; struct list_head const *__mptr ; { { tmp = kzalloc(928UL, 208U); ast_connector = (struct ast_connector *)tmp; } if ((unsigned long )ast_connector == (unsigned long )((struct ast_connector *)0)) { return (-12); } else { } { connector = & ast_connector->base; drm_connector_init(dev, connector, & ast_connector_funcs, 1); drm_connector_helper_add(connector, & ast_connector_helper_funcs); connector->interlace_allowed = 0; connector->doublescan_allowed = 0; ldv_drm_connector_register_113(connector); connector->polled = 2U; __mptr = (struct list_head const *)dev->mode_config.encoder_list.next; encoder = (struct drm_encoder *)__mptr + 0xfffffffffffffff8UL; drm_mode_connector_attach_encoder(connector, encoder); ast_connector->i2c = ast_i2c_create(dev); } if ((unsigned long )ast_connector->i2c == (unsigned long )((struct ast_i2c_chan *)0)) { { drm_err("failed to add ddc bus for connector\n"); } } else { } return (0); } } static int ast_cursor_init(struct drm_device *dev ) { struct ast_private *ast ; int size ; int ret ; struct drm_gem_object *obj ; struct ast_bo *bo ; uint64_t gpu_addr ; struct drm_gem_object const *__mptr ; long tmp ; long tmp___0 ; { { ast = (struct ast_private *)dev->dev_private; size = 16448; ret = ast_gem_create(dev, (u32 )size, 1, & obj); } if (ret != 0) { return (ret); } else { } { __mptr = (struct drm_gem_object const *)obj; bo = (struct ast_bo *)__mptr + 0xfffffffffffffc58UL; ret = ast_bo_reserve(bo, 0); tmp = ldv__builtin_expect(ret != 0, 0L); } if (tmp != 0L) { goto fail; } else { } { ret = ast_bo_pin(bo, 4U, & gpu_addr); ast_bo_unreserve(bo); } if (ret != 0) { goto fail; } else { } { ret = ttm_bo_kmap(& bo->bo, 0UL, bo->bo.num_pages, & ast->cache_kmap); } if (ret != 0) { goto fail; } else { } { ast->cursor_cache = obj; ast->cursor_cache_gpu_addr = gpu_addr; tmp___0 = ldv__builtin_expect((drm_debug & 4U) != 0U, 0L); } if (tmp___0 != 0L) { { drm_ut_debug_printk("ast_cursor_init", "pinned cursor cache at %llx\n", ast->cursor_cache_gpu_addr); } } else { } return (0); fail: ; return (ret); } } static void ast_cursor_fini(struct drm_device *dev ) { struct ast_private *ast ; { { ast = (struct ast_private *)dev->dev_private; ttm_bo_kunmap(& ast->cache_kmap); drm_gem_object_unreference_unlocked___0(ast->cursor_cache); } return; } } int ast_mode_init(struct drm_device *dev ) { { { ast_cursor_init(dev); ast_crtc_init(dev); ast_encoder_init(dev); ast_connector_init(dev); } return (0); } } void ast_mode_fini(struct drm_device *dev ) { { { ast_cursor_fini(dev); } return; } } static int get_clock(void *i2c_priv ) { struct ast_i2c_chan *i2c ; struct ast_private *ast ; uint32_t val ; uint8_t tmp ; { { i2c = (struct ast_i2c_chan *)i2c_priv; ast = (struct ast_private *)(i2c->dev)->dev_private; tmp = ast_get_index_reg_mask(ast, 84U, 183, 16); val = (uint32_t )((int )tmp >> 4); } return ((int )val & 1); } } static int get_data(void *i2c_priv ) { struct ast_i2c_chan *i2c ; struct ast_private *ast ; uint32_t val ; uint8_t tmp ; { { i2c = (struct ast_i2c_chan *)i2c_priv; ast = (struct ast_private *)(i2c->dev)->dev_private; tmp = ast_get_index_reg_mask(ast, 84U, 183, 32); val = (uint32_t )((int )tmp >> 5); } return ((int )val & 1); } } static void set_clock(void *i2c_priv , int clock ) { struct ast_i2c_chan *i2c ; struct ast_private *ast ; int i ; u8 ujcrb7 ; u8 jtemp ; { i2c = (struct ast_i2c_chan *)i2c_priv; ast = (struct ast_private *)(i2c->dev)->dev_private; i = 0; goto ldv_40744; ldv_40743: { ujcrb7 = clock & 1 ? 0U : 1U; ast_set_index_reg_mask(ast, 84U, 183, 254, (int )ujcrb7); jtemp = ast_get_index_reg_mask(ast, 84U, 183, 1); } if ((int )ujcrb7 == (int )jtemp) { goto ldv_40742; } else { } i = i + 1; ldv_40744: ; if (i <= 65535) { goto ldv_40743; } else { } ldv_40742: ; return; } } static void set_data(void *i2c_priv , int data ) { struct ast_i2c_chan *i2c ; struct ast_private *ast ; int i ; u8 ujcrb7 ; u8 jtemp ; { i2c = (struct ast_i2c_chan *)i2c_priv; ast = (struct ast_private *)(i2c->dev)->dev_private; i = 0; goto ldv_40756; ldv_40755: { ujcrb7 = data & 1 ? 0U : 4U; ast_set_index_reg_mask(ast, 84U, 183, 251, (int )ujcrb7); jtemp = ast_get_index_reg_mask(ast, 84U, 183, 4); } if ((int )ujcrb7 == (int )jtemp) { goto ldv_40754; } else { } i = i + 1; ldv_40756: ; if (i <= 65535) { goto ldv_40755; } else { } ldv_40754: ; return; } } static struct ast_i2c_chan *ast_i2c_create(struct drm_device *dev ) { struct ast_i2c_chan *i2c ; int ret ; void *tmp ; { { tmp = kzalloc(1992UL, 208U); i2c = (struct ast_i2c_chan *)tmp; } if ((unsigned long )i2c == (unsigned long )((struct ast_i2c_chan *)0)) { return ((struct ast_i2c_chan *)0); } else { } { i2c->adapter.owner = & __this_module; i2c->adapter.class = 8U; i2c->adapter.dev.parent = & (dev->pdev)->dev; i2c->dev = dev; i2c_set_adapdata(& i2c->adapter, (void *)i2c); snprintf((char *)(& i2c->adapter.name), 48UL, "AST i2c bit bus"); i2c->adapter.algo_data = (void *)(& i2c->bit); i2c->bit.udelay = 20; i2c->bit.timeout = 2; i2c->bit.data = (void *)i2c; i2c->bit.setsda = & set_data; i2c->bit.setscl = & set_clock; i2c->bit.getsda = & get_data; i2c->bit.getscl = & get_clock; ret = i2c_bit_add_bus(& i2c->adapter); } if (ret != 0) { { drm_err("Failed to register bit i2c\n"); } goto out_free; } else { } return (i2c); out_free: { kfree((void const *)i2c); } return ((struct ast_i2c_chan *)0); } } static void ast_i2c_destroy(struct ast_i2c_chan *i2c ) { { if ((unsigned long )i2c == (unsigned long )((struct ast_i2c_chan *)0)) { return; } else { } { i2c_del_adapter(& i2c->adapter); kfree((void const *)i2c); } return; } } static void ast_show_cursor(struct drm_crtc *crtc ) { struct ast_private *ast ; u8 jreg ; { { ast = (struct ast_private *)(crtc->dev)->dev_private; jreg = 2U; jreg = (u8 )((unsigned int )jreg | 1U); ast_set_index_reg_mask(ast, 84U, 203, 252, (int )jreg); } return; } } static void ast_hide_cursor(struct drm_crtc *crtc ) { struct ast_private *ast ; { { ast = (struct ast_private *)(crtc->dev)->dev_private; ast_set_index_reg_mask(ast, 84U, 203, 252, 0); } return; } } static u32 copy_cursor_image(u8 *src , u8 *dst , int width , int height ) { union __anonunion_srcdata32_225 srcdata32[2U] ; union __anonunion_data32_226 data32 ; union __anonunion_data16_228 data16 ; u32 csum ; s32 alpha_dst_delta ; s32 last_alpha_dst_delta ; u8 *srcxor ; u8 *dstxor ; int i ; int j ; u32 per_pixel_copy ; u32 two_pixel_copy ; { csum = 0U; alpha_dst_delta = 128; last_alpha_dst_delta = alpha_dst_delta - (width << 1); srcxor = src; dstxor = dst + ((unsigned long )last_alpha_dst_delta + (unsigned long )((64 - height) * alpha_dst_delta)); per_pixel_copy = (u32 )width & 1U; two_pixel_copy = (u32 )(width >> 1); j = 0; goto ldv_40806; ldv_40805: i = 0; goto ldv_40800; ldv_40799: { srcdata32[0].ul = *((u32 *)srcxor) & 4042322160U; srcdata32[1].ul = *((u32 *)srcxor + 4U) & 4042322160U; data32.b[0] = (u8 )((int )srcdata32[0].b[1] | ((int )srcdata32[0].b[0] >> 4)); data32.b[1] = (u8 )((int )srcdata32[0].b[3] | ((int )srcdata32[0].b[2] >> 4)); data32.b[2] = (u8 )((int )srcdata32[1].b[1] | ((int )srcdata32[1].b[0] >> 4)); data32.b[3] = (u8 )((int )srcdata32[1].b[3] | ((int )srcdata32[1].b[2] >> 4)); writel(data32.ul, (void volatile *)dstxor); csum = csum + data32.ul; dstxor = dstxor + 4UL; srcxor = srcxor + 8UL; i = i + 1; } ldv_40800: ; if ((u32 )i < two_pixel_copy) { goto ldv_40799; } else { } i = 0; goto ldv_40803; ldv_40802: { srcdata32[0].ul = *((u32 *)srcxor) & 4042322160U; data16.b[0] = (u8 )((int )srcdata32[0].b[1] | ((int )srcdata32[0].b[0] >> 4)); data16.b[1] = (u8 )((int )srcdata32[0].b[3] | ((int )srcdata32[0].b[2] >> 4)); writew((int )data16.us, (void volatile *)dstxor); csum = csum + (u32 )data16.us; dstxor = dstxor + 2UL; srcxor = srcxor + 4UL; i = i + 1; } ldv_40803: ; if ((u32 )i < per_pixel_copy) { goto ldv_40802; } else { } dstxor = dstxor + (unsigned long )last_alpha_dst_delta; j = j + 1; ldv_40806: ; if (j < height) { goto ldv_40805; } else { } return (csum); } } static int ast_cursor_set(struct drm_crtc *crtc , struct drm_file *file_priv , uint32_t handle , uint32_t width , uint32_t height ) { struct ast_private *ast ; struct ast_crtc *ast_crtc ; struct drm_crtc const *__mptr ; struct drm_gem_object *obj ; struct ast_bo *bo ; uint64_t gpu_addr ; u32 csum ; int ret ; struct ttm_bo_kmap_obj uobj_map ; u8 *src ; u8 *dst ; bool src_isiomem ; bool dst_isiomem ; struct drm_gem_object const *__mptr___0 ; void *tmp ; void *tmp___0 ; u8 *dst___0 ; { ast = (struct ast_private *)(crtc->dev)->dev_private; __mptr = (struct drm_crtc const *)crtc; ast_crtc = (struct ast_crtc *)__mptr; if (handle == 0U) { { ast_hide_cursor(crtc); } return (0); } else { } if (width > 64U || height > 64U) { return (-22); } else { } { obj = drm_gem_object_lookup(crtc->dev, file_priv, handle); } if ((unsigned long )obj == (unsigned long )((struct drm_gem_object *)0)) { { drm_err("Cannot find cursor object %x for crtc\n", handle); } return (-2); } else { } { __mptr___0 = (struct drm_gem_object const *)obj; bo = (struct ast_bo *)__mptr___0 + 0xfffffffffffffc58UL; ret = ast_bo_reserve(bo, 0); } if (ret != 0) { goto fail; } else { } { ret = ttm_bo_kmap(& bo->bo, 0UL, bo->bo.num_pages, & uobj_map); tmp = ttm_kmap_obj_virtual(& uobj_map, & src_isiomem); src = (u8 *)tmp; tmp___0 = ttm_kmap_obj_virtual(& ast->cache_kmap, & dst_isiomem); dst = (u8 *)tmp___0; } if ((int )src_isiomem) { { drm_err("src cursor bo should be in main memory\n"); } } else { } if (! dst_isiomem) { { drm_err("dst bo should be in VRAM\n"); } } else { } { dst = dst + (unsigned long )(ast->next_cursor * 8224); csum = copy_cursor_image(src, dst, (int )width, (int )height); ttm_bo_kunmap(& uobj_map); ast_bo_unreserve(bo); dst___0 = (u8 *)ast->cache_kmap.virtual + ((unsigned long )(ast->next_cursor * 8224) + 8192UL); writel(csum, (void volatile *)dst___0); writel(width, (void volatile *)dst___0 + 4U); writel(height, (void volatile *)dst___0 + 8U); writel(0U, (void volatile *)dst___0 + 20U); writel(0U, (void volatile *)dst___0 + 24U); gpu_addr = ast->cursor_cache_gpu_addr; gpu_addr = gpu_addr + (uint64_t )(ast->next_cursor * 8224); gpu_addr = gpu_addr >> 3; ast_set_index_reg(ast, 84U, 200, (int )((uint8_t )gpu_addr)); ast_set_index_reg(ast, 84U, 201, (int )((uint8_t )(gpu_addr >> 8))); ast_set_index_reg(ast, 84U, 202, (int )((uint8_t )(gpu_addr >> 16))); ast_crtc->cursor_width = (int )width; ast_crtc->cursor_height = (int )height; ast_crtc->offset_x = 64U - (unsigned int )((u8 )width); ast_crtc->offset_y = 64U - (unsigned int )((u8 )height); ast->next_cursor = (ast->next_cursor + 1) % 2; ast_show_cursor(crtc); drm_gem_object_unreference_unlocked___0(obj); } return (0); fail: { drm_gem_object_unreference_unlocked___0(obj); } return (ret); } } static int ast_cursor_move(struct drm_crtc *crtc , int x , int y ) { struct ast_crtc *ast_crtc ; struct drm_crtc const *__mptr ; struct ast_private *ast ; int x_offset ; int y_offset ; u8 *sig ; { { __mptr = (struct drm_crtc const *)crtc; ast_crtc = (struct ast_crtc *)__mptr; ast = (struct ast_private *)(crtc->dev)->dev_private; sig = (u8 *)ast->cache_kmap.virtual + ((unsigned long )(ast->next_cursor * 8224) + 8192UL); writel((unsigned int )x, (void volatile *)sig + 12U); writel((unsigned int )y, (void volatile *)sig + 16U); x_offset = (int )ast_crtc->offset_x; y_offset = (int )ast_crtc->offset_y; } if (x < 0) { x_offset = (int )ast_crtc->offset_x - x; x = 0; } else { } if (y < 0) { y_offset = (int )ast_crtc->offset_y - y; y = 0; } else { } { ast_set_index_reg(ast, 84U, 194, (int )((uint8_t )x_offset)); ast_set_index_reg(ast, 84U, 195, (int )((uint8_t )y_offset)); ast_set_index_reg(ast, 84U, 196, (int )((uint8_t )x)); ast_set_index_reg(ast, 84U, 197, (int )((uint8_t )(x >> 8)) & 15); ast_set_index_reg(ast, 84U, 198, (int )((uint8_t )y)); ast_set_index_reg(ast, 84U, 199, (int )((uint8_t )(y >> 8)) & 7); ast_set_index_reg_mask(ast, 84U, 203, 255, 0); } return (0); } } void ldv_dispatch_deregister_12_1(struct drm_connector *arg0 ) ; void ldv_dispatch_register_13_2(struct drm_connector *arg0 ) ; int ldv_drm_connector_register(int arg0 , struct drm_connector *arg1 ) ; void ldv_drm_connector_unregister(void *arg0 , struct drm_connector *arg1 ) ; void ldv_dispatch_deregister_12_1(struct drm_connector *arg0 ) { { return; } } void ldv_dispatch_register_13_2(struct drm_connector *arg0 ) { struct ldv_struct_dummy_resourceless_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_dummy_resourceless_instance_5 *)tmp; cf_arg_5->arg0 = arg0; ldv_struct_drm_connector_helper_funcs_dummy_resourceless_instance_5((void *)cf_arg_5); } return; } } int ldv_drm_connector_register(int arg0 , struct drm_connector *arg1 ) { struct drm_connector *ldv_13_struct_drm_connector_ptr_struct_drm_connector_ptr ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_struct_drm_connector_ptr_struct_drm_connector_ptr = arg1; ldv_dispatch_register_13_2(ldv_13_struct_drm_connector_ptr_struct_drm_connector_ptr); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_drm_connector_unregister(void *arg0 , struct drm_connector *arg1 ) { struct drm_connector *ldv_12_struct_drm_connector_ptr_struct_drm_connector_ptr ; { { ldv_12_struct_drm_connector_ptr_struct_drm_connector_ptr = arg1; ldv_dispatch_deregister_12_1(ldv_12_struct_drm_connector_ptr_struct_drm_connector_ptr); } return; return; } } void ldv_dummy_resourceless_instance_callback_4_10(void (*arg0)(struct drm_connector * , int ) , struct drm_connector *arg1 , int arg2 ) { { { drm_helper_connector_dpms(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_13(int (*arg0)(struct drm_connector * , unsigned int , unsigned int ) , struct drm_connector *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { drm_helper_probe_single_connector_modes(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(void (*arg0)(struct drm_connector * ) , struct drm_connector *arg1 ) { { { ast_connector_destroy(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_7(enum drm_connector_status (*arg0)(struct drm_connector * , _Bool ) , struct drm_connector *arg1 , _Bool arg2 ) { { { ast_connector_detect(arg1, (int )arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(struct drm_encoder *(*arg0)(struct drm_connector * ) , struct drm_connector *arg1 ) { { { ast_best_single_encoder(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_7(int (*arg0)(struct drm_connector * ) , struct drm_connector *arg1 ) { { { ast_get_modes(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_8(enum drm_mode_status (*arg0)(struct drm_connector * , struct drm_display_mode * ) , struct drm_connector *arg1 , struct drm_display_mode *arg2 ) { { { ast_mode_valid(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_10(int (*arg0)(struct drm_crtc * , struct drm_file * , unsigned int , unsigned int , unsigned int ) , struct drm_crtc *arg1 , struct drm_file *arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 ) { { { ast_cursor_set(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_dummy_resourceless_instance_callback_6_13(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) { { { ast_crtc_destroy(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_14(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) { { { ast_crtc_disable(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_15(void (*arg0)(struct drm_crtc * , int ) , struct drm_crtc *arg1 , int arg2 ) { { { ast_crtc_dpms(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_18(void (*arg0)(struct drm_crtc * , unsigned short * , unsigned short * , unsigned short * , unsigned int , unsigned int ) , struct drm_crtc *arg1 , unsigned short *arg2 , unsigned short *arg3 , unsigned short *arg4 , unsigned int arg5 , unsigned int arg6 ) { { { ast_crtc_gamma_set(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_6_21(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) { { { ast_crtc_load_lut(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_22(_Bool (*arg0)(struct drm_crtc * , struct drm_display_mode * , struct drm_display_mode * ) , struct drm_crtc *arg1 , struct drm_display_mode *arg2 , struct drm_display_mode *arg3 ) { { { ast_crtc_mode_fixup(arg1, (struct drm_display_mode const *)arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_25(int (*arg0)(struct drm_crtc * , struct drm_display_mode * , struct drm_display_mode * , int , int , struct drm_framebuffer * ) , struct drm_crtc *arg1 , struct drm_display_mode *arg2 , struct drm_display_mode *arg3 , int arg4 , int arg5 , struct drm_framebuffer *arg6 ) { { { ast_crtc_mode_set(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_6_28(int (*arg0)(struct drm_crtc * , int , int , struct drm_framebuffer * ) , struct drm_crtc *arg1 , int arg2 , int arg3 , struct drm_framebuffer *arg4 ) { { { ast_crtc_mode_set_base(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) { { { ast_crtc_commit(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_31(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) { { { ast_crtc_prepare(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_32(void (*arg0)(struct drm_crtc * ) , struct drm_crtc *arg1 ) { { { ast_crtc_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_33(int (*arg0)(struct drm_mode_set * ) , struct drm_mode_set *arg1 ) { { { drm_crtc_helper_set_config(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_7(int (*arg0)(struct drm_crtc * , int , int ) , struct drm_crtc *arg1 , int arg2 , int arg3 ) { { { ast_cursor_move(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_11(_Bool (*arg0)(struct drm_encoder * , struct drm_display_mode * , struct drm_display_mode * ) , struct drm_encoder *arg1 , struct drm_display_mode *arg2 , struct drm_display_mode *arg3 ) { { { ast_mode_fixup(arg1, (struct drm_display_mode const *)arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_14(void (*arg0)(struct drm_encoder * , struct drm_display_mode * , struct drm_display_mode * ) , struct drm_encoder *arg1 , struct drm_display_mode *arg2 , struct drm_display_mode *arg3 ) { { { ast_encoder_mode_set(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_17(void (*arg0)(struct drm_encoder * ) , struct drm_encoder *arg1 ) { { { ast_encoder_prepare(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(void (*arg0)(struct drm_encoder * ) , struct drm_encoder *arg1 ) { { { ast_encoder_commit(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_7(void (*arg0)(struct drm_encoder * ) , struct drm_encoder *arg1 ) { { { ast_encoder_destroy(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_8(void (*arg0)(struct drm_encoder * , int ) , struct drm_encoder *arg1 , int arg2 ) { { { ast_encoder_dpms(arg1, arg2); } return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc(size); ldv_after_alloc(res); } return (res); } } static void ldv_mutex_lock_99(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_base_of_ww_mutex(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_100(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_base_of_ww_mutex(ldv_func_arg1); } return (tmp); } } static int ldv_mutex_trylock_101(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_trylock_base_of_ww_mutex(ldv_func_arg1); } return (tmp); } } __inline static void ldv_spin_lock_108(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lru_lock_of_ttm_bo_global(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_109(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lru_lock_of_ttm_bo_global(); spin_unlock(lock); } return; } } static void ldv_mutex_lock_110___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_struct_mutex_of_drm_device(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_111___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_struct_mutex_of_drm_device(ldv_func_arg1); } return; } } static void ldv_drm_connector_unregister_112(struct drm_connector *ldv_func_arg1 ) { { { drm_connector_unregister(ldv_func_arg1); ldv_drm_connector_unregister((void *)0, ldv_func_arg1); } return; } } static int ldv_drm_connector_register_113(struct drm_connector *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = drm_connector_register(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_drm_connector_register(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_mutex_lock_99___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_110___1(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_100___0(struct mutex *ldv_func_arg1 ) ; extern struct pv_irq_ops pv_irq_ops ; extern void __bad_percpu_size(void) ; extern void __bad_size_call_parameter(void) ; extern void *memcpy(void * , void const * , size_t ) ; extern char *strcpy(char * , char const * ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_dec_and_test(atomic_t *v ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_dirty_lock_of_ast_fbdev(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_dirty_lock_of_ast_fbdev(void) ; static int ldv_mutex_trylock_101___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_111___1(struct mutex *ldv_func_arg1 ) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7174; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7174; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7174; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7174; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7174: ; return (pfo_ret__ & 2147483647); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void ldv_spin_lock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_109(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_113(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_113(spinlock_t *lock , unsigned long flags ) ; static void *ldv_vmalloc_115(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; __inline static void memcpy_toio(void volatile *dst , void const *src , size_t count ) { { { memcpy((void *)dst, src, count); } return; } } extern int cpu_number ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern atomic_t kgdb_active ; __inline static struct apertures_struct *alloc_apertures(unsigned int max_num ) { struct apertures_struct *a ; void *tmp ; { { tmp = kzalloc((unsigned long )max_num * 16UL + 8UL, 208U); a = (struct apertures_struct *)tmp; } if ((unsigned long )a == (unsigned long )((struct apertures_struct *)0)) { return ((struct apertures_struct *)0); } else { } a->count = max_num; return (a); } } extern void sys_fillrect(struct fb_info * , struct fb_fillrect const * ) ; extern void sys_copyarea(struct fb_info * , struct fb_copyarea const * ) ; extern void sys_imageblit(struct fb_info * , struct fb_image const * ) ; extern int unregister_framebuffer(struct fb_info * ) ; extern void fb_set_suspend(struct fb_info * , int ) ; extern struct fb_info *framebuffer_alloc(size_t , struct device * ) ; extern void framebuffer_release(struct fb_info * ) ; extern int fb_alloc_cmap(struct fb_cmap * , int , int ) ; extern void fb_dealloc_cmap(struct fb_cmap * ) ; __inline static int ww_mutex_lock___0(struct ww_mutex *lock , struct ww_acquire_ctx *ctx ) { int tmp ; { if ((unsigned long )ctx != (unsigned long )((struct ww_acquire_ctx *)0)) { { tmp = __ww_mutex_lock(lock, ctx); } return (tmp); } else { } { ldv_mutex_lock_99___0(& lock->base); } return (0); } } __inline static int ww_mutex_lock_interruptible___0(struct ww_mutex *lock , struct ww_acquire_ctx *ctx ) { int tmp ; int tmp___0 ; { if ((unsigned long )ctx != (unsigned long )((struct ww_acquire_ctx *)0)) { { tmp = __ww_mutex_lock_interruptible(lock, ctx); } return (tmp); } else { { tmp___0 = ldv_mutex_lock_interruptible_100___0(& lock->base); } return (tmp___0); } } } __inline static int ww_mutex_trylock___0(struct ww_mutex *lock ) { int tmp ; { { tmp = ldv_mutex_trylock_101___0(& lock->base); } return (tmp); } } extern void drm_framebuffer_unregister_private(struct drm_framebuffer * ) ; static void ldv_drm_framebuffer_unregister_private_116(struct drm_framebuffer *ldv_func_arg1 ) ; extern uint32_t drm_mode_legacy_fb_format(uint32_t , uint32_t ) ; extern void drm_fb_get_bpp_depth(uint32_t , unsigned int * , int * ) ; __inline static bool drm_can_sleep(void) { int tmp ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; int tmp___0 ; unsigned long _flags ; int tmp___1 ; { { tmp = preempt_count(); } if (((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL) { return (0); } else { __vpp_verify = (void const *)0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39715; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39715; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39715; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39715; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39715: pscr_ret__ = pfo_ret__; goto ldv_39721; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39725; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39725; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39725; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39725; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39725: pscr_ret__ = pfo_ret_____0; goto ldv_39721; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39734; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39734; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39734; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39734; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39734: pscr_ret__ = pfo_ret_____1; goto ldv_39721; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39743; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39743; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39743; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39743; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39743: pscr_ret__ = pfo_ret_____2; goto ldv_39721; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39721; switch_break: /* CIL Label */ ; } ldv_39721: { tmp___0 = atomic_read((atomic_t const *)(& kgdb_active)); } if (pscr_ret__ == tmp___0) { return (0); } else { { _flags = arch_local_save_flags(); tmp___1 = arch_irqs_disabled_flags(_flags); } if (tmp___1 != 0) { return (0); } else { } } } return (1); } } extern void drm_fb_helper_prepare(struct drm_device * , struct drm_fb_helper * , struct drm_fb_helper_funcs const * ) ; extern int drm_fb_helper_init(struct drm_device * , struct drm_fb_helper * , int , int ) ; extern void drm_fb_helper_fini(struct drm_fb_helper * ) ; extern int drm_fb_helper_blank(int , struct fb_info * ) ; extern int drm_fb_helper_pan_display(struct fb_var_screeninfo * , struct fb_info * ) ; extern int drm_fb_helper_set_par(struct fb_info * ) ; extern int drm_fb_helper_check_var(struct fb_var_screeninfo * , struct fb_info * ) ; extern void drm_fb_helper_fill_var(struct fb_info * , struct drm_fb_helper * , uint32_t , uint32_t ) ; extern void drm_fb_helper_fill_fix(struct fb_info * , uint32_t , uint32_t ) ; extern int drm_fb_helper_setcmap(struct fb_cmap * , struct fb_info * ) ; extern int drm_fb_helper_initial_config(struct drm_fb_helper * , int ) ; extern int drm_fb_helper_single_add_all_connectors(struct drm_fb_helper * ) ; extern int drm_fb_helper_debug_enter(struct fb_info * ) ; extern int drm_fb_helper_debug_leave(struct fb_info * ) ; extern void drm_helper_disable_unused_functions(struct drm_device * ) ; __inline static int __ttm_bo_reserve___0(struct ttm_buffer_object *bo , bool interruptible , bool no_wait , bool use_ticket , struct ww_acquire_ctx *ticket ) { int ret ; bool success ; int __ret_warn_on ; long tmp ; long tmp___0 ; int tmp___1 ; { ret = 0; if ((int )no_wait) { { __ret_warn_on = (unsigned long )ticket != (unsigned long )((struct ww_acquire_ctx *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/drm/ttm/ttm_bo_driver.h", 787); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return (-16); } else { } { tmp___1 = ww_mutex_trylock___0(& (bo->resv)->lock); success = tmp___1 != 0; } return ((int )success ? 0 : -16); } else { } if ((int )interruptible) { { ret = ww_mutex_lock_interruptible___0(& (bo->resv)->lock, ticket); } } else { { ret = ww_mutex_lock___0(& (bo->resv)->lock, ticket); } } if (ret == -4) { return (-512); } else { } return (ret); } } __inline static int ttm_bo_reserve___0(struct ttm_buffer_object *bo , bool interruptible , bool no_wait , bool use_ticket , struct ww_acquire_ctx *ticket ) { int ret ; int __ret_warn_on ; int tmp ; long tmp___0 ; long tmp___1 ; { { tmp = atomic_read((atomic_t const *)(& bo->kref.refcount)); __ret_warn_on = tmp == 0; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("include/drm/ttm/ttm_bo_driver.h", 855); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); ret = __ttm_bo_reserve___0(bo, (int )interruptible, (int )no_wait, (int )use_ticket, ticket); tmp___1 = ldv__builtin_expect(ret == 0, 1L); } if (tmp___1 != 0L) { { ttm_bo_del_sub_from_lru(bo); } } else { } return (ret); } } __inline static void ttm_bo_unreserve___0(struct ttm_buffer_object *bo ) { { if ((bo->mem.placement & 2097152U) == 0U) { { ldv_spin_lock_108(& (bo->glob)->lru_lock); ttm_bo_add_to_lru(bo); ldv_spin_unlock_109(& (bo->glob)->lru_lock); } } else { } { __ttm_bo_unreserve(bo); } return; } } __inline static void drm_gem_object_unreference_unlocked___1(struct drm_gem_object *obj ) { struct drm_device *dev ; int tmp ; long tmp___0 ; int tmp___1 ; { if ((unsigned long )obj != (unsigned long )((struct drm_gem_object *)0)) { { tmp___1 = atomic_add_unless___0(& obj->refcount.refcount, -1, 1); } if (tmp___1 == 0) { { dev = obj->dev; ldv_mutex_lock_110___1(& dev->struct_mutex); tmp = atomic_dec_and_test(& obj->refcount.refcount); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { { drm_gem_object_free(& obj->refcount); } } else { } { ldv_mutex_unlock_111___1(& dev->struct_mutex); } } else { } } else { } return; } } __inline static int ast_bo_reserve___0(struct ast_bo *bo , bool no_wait ) { int ret ; { { ret = ttm_bo_reserve___0(& bo->bo, 1, (int )no_wait, 0, (struct ww_acquire_ctx *)0); } if (ret != 0) { if (ret != -512 && ret != -16) { { drm_err("reserve failed %p\n", bo); } } else { } return (ret); } else { } return (0); } } __inline static void ast_bo_unreserve___0(struct ast_bo *bo ) { { { ttm_bo_unreserve___0(& bo->bo); } return; } } static void ast_dirty_update(struct ast_fbdev *afbdev , int x , int y , int width , int height ) { int i ; struct drm_gem_object *obj ; struct ast_bo *bo ; int src_offset ; int dst_offset ; int bpp ; int ret ; bool unmap ; bool store_for_later ; int x2 ; int y2 ; unsigned long flags ; struct drm_gem_object const *__mptr ; bool tmp ; int tmp___0 ; int tmp___1 ; { { bpp = (afbdev->afb.base.bits_per_pixel + 7) / 8; ret = -16; unmap = 0; store_for_later = 0; obj = afbdev->afb.obj; __mptr = (struct drm_gem_object const *)obj; bo = (struct ast_bo *)__mptr + 0xfffffffffffffc58UL; tmp = drm_can_sleep(); } if ((int )tmp) { { ret = ast_bo_reserve___0(bo, 1); } } else { } if (ret != 0) { if (ret != -16) { return; } else { } store_for_later = 1; } else { } { x2 = (x + width) + -1; y2 = (y + height) + -1; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(& afbdev->dirty_lock); } if (afbdev->y1 < y) { y = afbdev->y1; } else { } if (afbdev->y2 > y2) { y2 = afbdev->y2; } else { } if (afbdev->x1 < x) { x = afbdev->x1; } else { } if (afbdev->x2 > x2) { x2 = afbdev->x2; } else { } if ((int )store_for_later) { { afbdev->x1 = x; afbdev->x2 = x2; afbdev->y1 = y; afbdev->y2 = y2; ldv_spin_unlock_irqrestore_113(& afbdev->dirty_lock, flags); } return; } else { } { tmp___0 = 2147483647; afbdev->y1 = tmp___0; afbdev->x1 = tmp___0; tmp___1 = 0; afbdev->y2 = tmp___1; afbdev->x2 = tmp___1; ldv_spin_unlock_irqrestore_113(& afbdev->dirty_lock, flags); } if ((unsigned long )bo->kmap.virtual == (unsigned long )((void *)0)) { { ret = ttm_bo_kmap(& bo->bo, 0UL, bo->bo.num_pages, & bo->kmap); } if (ret != 0) { { drm_err("failed to kmap fb updates\n"); ast_bo_unreserve___0(bo); } return; } else { } unmap = 1; } else { } i = y; goto ldv_41131; ldv_41130: { dst_offset = (int )((unsigned int )i * afbdev->afb.base.pitches[0] + (unsigned int )(x * bpp)); src_offset = dst_offset; memcpy_toio((void volatile *)bo->kmap.virtual + (unsigned long )src_offset, (void const *)afbdev->sysram + (unsigned long )src_offset, (size_t )(((x2 - x) + 1) * bpp)); i = i + 1; } ldv_41131: ; if (i <= y2) { goto ldv_41130; } else { } if ((int )unmap) { { ttm_bo_kunmap(& bo->kmap); } } else { } { ast_bo_unreserve___0(bo); } return; } } static void ast_fillrect(struct fb_info *info , struct fb_fillrect const *rect ) { struct ast_fbdev *afbdev ; { { afbdev = (struct ast_fbdev *)info->par; sys_fillrect(info, rect); ast_dirty_update(afbdev, (int )rect->dx, (int )rect->dy, (int )rect->width, (int )rect->height); } return; } } static void ast_copyarea(struct fb_info *info , struct fb_copyarea const *area ) { struct ast_fbdev *afbdev ; { { afbdev = (struct ast_fbdev *)info->par; sys_copyarea(info, area); ast_dirty_update(afbdev, (int )area->dx, (int )area->dy, (int )area->width, (int )area->height); } return; } } static void ast_imageblit(struct fb_info *info , struct fb_image const *image ) { struct ast_fbdev *afbdev ; { { afbdev = (struct ast_fbdev *)info->par; sys_imageblit(info, image); ast_dirty_update(afbdev, (int )image->dx, (int )image->dy, (int )image->width, (int )image->height); } return; } } static struct fb_ops astfb_ops = {& __this_module, 0, 0, 0, 0, & drm_fb_helper_check_var, & drm_fb_helper_set_par, 0, & drm_fb_helper_setcmap, & drm_fb_helper_blank, & drm_fb_helper_pan_display, & ast_fillrect, & ast_copyarea, & ast_imageblit, 0, 0, 0, 0, 0, 0, 0, 0, & drm_fb_helper_debug_enter, & drm_fb_helper_debug_leave}; static int astfb_create_object(struct ast_fbdev *afbdev , struct drm_mode_fb_cmd2 *mode_cmd , struct drm_gem_object **gobj_p ) { struct drm_device *dev ; u32 bpp ; u32 depth ; u32 size ; struct drm_gem_object *gobj ; int ret ; { { dev = afbdev->helper.dev; ret = 0; drm_fb_get_bpp_depth(mode_cmd->pixel_format, & depth, (int *)(& bpp)); size = mode_cmd->pitches[0] * mode_cmd->height; ret = ast_gem_create(dev, size, 1, & gobj); } if (ret != 0) { return (ret); } else { } *gobj_p = gobj; return (ret); } } static int astfb_create(struct drm_fb_helper *helper , struct drm_fb_helper_surface_size *sizes ) { struct ast_fbdev *afbdev ; struct drm_fb_helper const *__mptr ; struct drm_device *dev ; struct drm_mode_fb_cmd2 mode_cmd ; struct drm_framebuffer *fb ; struct fb_info *info ; int size ; int ret ; struct device *device ; void *sysram ; struct drm_gem_object *gobj ; struct ast_bo *bo ; struct drm_gem_object const *__mptr___0 ; long tmp ; { { __mptr = (struct drm_fb_helper const *)helper; afbdev = (struct ast_fbdev *)__mptr; dev = afbdev->helper.dev; device = & (dev->pdev)->dev; gobj = (struct drm_gem_object *)0; bo = (struct ast_bo *)0; mode_cmd.width = sizes->surface_width; mode_cmd.height = sizes->surface_height; mode_cmd.pitches[0] = mode_cmd.width * ((sizes->surface_bpp + 7U) / 8U); mode_cmd.pixel_format = drm_mode_legacy_fb_format(sizes->surface_bpp, sizes->surface_depth); size = (int )(mode_cmd.pitches[0] * mode_cmd.height); ret = astfb_create_object(afbdev, & mode_cmd, & gobj); } if (ret != 0) { { drm_err("failed to create fbcon backing object %d\n", ret); } return (ret); } else { } { __mptr___0 = (struct drm_gem_object const *)gobj; bo = (struct ast_bo *)__mptr___0 + 0xfffffffffffffc58UL; sysram = ldv_vmalloc_115((unsigned long )size); } if ((unsigned long )sysram == (unsigned long )((void *)0)) { return (-12); } else { } { info = framebuffer_alloc(0UL, device); } if ((unsigned long )info == (unsigned long )((struct fb_info *)0)) { ret = -12; goto out; } else { } { info->par = (void *)afbdev; ret = ast_framebuffer_init(dev, & afbdev->afb, & mode_cmd, gobj); } if (ret != 0) { goto out; } else { } { afbdev->sysram = sysram; afbdev->size = size; fb = & afbdev->afb.base; afbdev->helper.fb = fb; afbdev->helper.fbdev = info; strcpy((char *)(& info->fix.id), "astdrmfb"); info->flags = 2097153; info->fbops = & astfb_ops; ret = fb_alloc_cmap(& info->cmap, 256, 0); } if (ret != 0) { ret = -12; goto out; } else { } { info->apertures = alloc_apertures(1U); } if ((unsigned long )info->apertures == (unsigned long )((struct apertures_struct *)0)) { ret = -12; goto out; } else { } { (info->apertures)->ranges[0].base = (dev->pdev)->resource[0].start; (info->apertures)->ranges[0].size = (dev->pdev)->resource[0].start != 0ULL || (dev->pdev)->resource[0].end != (dev->pdev)->resource[0].start ? ((dev->pdev)->resource[0].end - (dev->pdev)->resource[0].start) + 1ULL : 0ULL; drm_fb_helper_fill_fix(info, fb->pitches[0], fb->depth); drm_fb_helper_fill_var(info, & afbdev->helper, sizes->fb_width, sizes->fb_height); info->screen_base = (char *)sysram; info->screen_size = (unsigned long )size; info->pixmap.flags = 2U; tmp = ldv__builtin_expect((drm_debug & 4U) != 0U, 0L); } if (tmp != 0L) { { drm_ut_debug_printk("astfb_create", "allocated %dx%d\n", fb->width, fb->height); } } else { } return (0); out: ; return (ret); } } static void ast_fb_gamma_set(struct drm_crtc *crtc , u16 red , u16 green , u16 blue , int regno ) { struct ast_crtc *ast_crtc ; struct drm_crtc const *__mptr ; { __mptr = (struct drm_crtc const *)crtc; ast_crtc = (struct ast_crtc *)__mptr; ast_crtc->lut_r[regno] = (u8 )((int )red >> 8); ast_crtc->lut_g[regno] = (u8 )((int )green >> 8); ast_crtc->lut_b[regno] = (u8 )((int )blue >> 8); return; } } static void ast_fb_gamma_get(struct drm_crtc *crtc , u16 *red , u16 *green , u16 *blue , int regno ) { struct ast_crtc *ast_crtc ; struct drm_crtc const *__mptr ; { __mptr = (struct drm_crtc const *)crtc; ast_crtc = (struct ast_crtc *)__mptr; *red = (int )((u16 )ast_crtc->lut_r[regno]) << 8U; *green = (int )((u16 )ast_crtc->lut_g[regno]) << 8U; *blue = (int )((u16 )ast_crtc->lut_b[regno]) << 8U; return; } } static struct drm_fb_helper_funcs const ast_fb_helper_funcs = {& ast_fb_gamma_set, & ast_fb_gamma_get, & astfb_create, 0}; static void ast_fbdev_destroy(struct drm_device *dev , struct ast_fbdev *afbdev ) { struct fb_info *info ; struct ast_framebuffer *afb ; { afb = & afbdev->afb; if ((unsigned long )afbdev->helper.fbdev != (unsigned long )((struct fb_info *)0)) { { info = afbdev->helper.fbdev; unregister_framebuffer(info); } if (info->cmap.len != 0U) { { fb_dealloc_cmap(& info->cmap); } } else { } { framebuffer_release(info); } } else { } if ((unsigned long )afb->obj != (unsigned long )((struct drm_gem_object *)0)) { { drm_gem_object_unreference_unlocked___1(afb->obj); afb->obj = (struct drm_gem_object *)0; } } else { } { drm_fb_helper_fini(& afbdev->helper); vfree((void const *)afbdev->sysram); ldv_drm_framebuffer_unregister_private_116(& afb->base); drm_framebuffer_cleanup(& afb->base); } return; } } int ast_fbdev_init(struct drm_device *dev ) { struct ast_private *ast ; struct ast_fbdev *afbdev ; int ret ; void *tmp ; struct lock_class_key __key ; { { ast = (struct ast_private *)dev->dev_private; tmp = kzalloc(456UL, 208U); afbdev = (struct ast_fbdev *)tmp; } if ((unsigned long )afbdev == (unsigned long )((struct ast_fbdev *)0)) { return (-12); } else { } { ast->fbdev = afbdev; spinlock_check(& afbdev->dirty_lock); __raw_spin_lock_init(& afbdev->dirty_lock.__annonCompField18.rlock, "&(&afbdev->dirty_lock)->rlock", & __key); drm_fb_helper_prepare(dev, & afbdev->helper, & ast_fb_helper_funcs); ret = drm_fb_helper_init(dev, & afbdev->helper, 1, 1); } if (ret != 0) { goto free; } else { } { ret = drm_fb_helper_single_add_all_connectors(& afbdev->helper); } if (ret != 0) { goto fini; } else { } { drm_helper_disable_unused_functions(dev); ret = drm_fb_helper_initial_config(& afbdev->helper, 32); } if (ret != 0) { goto fini; } else { } return (0); fini: { drm_fb_helper_fini(& afbdev->helper); } free: { kfree((void const *)afbdev); } return (ret); } } void ast_fbdev_fini(struct drm_device *dev ) { struct ast_private *ast ; { ast = (struct ast_private *)dev->dev_private; if ((unsigned long )ast->fbdev == (unsigned long )((struct ast_fbdev *)0)) { return; } else { } { ast_fbdev_destroy(dev, ast->fbdev); kfree((void const *)ast->fbdev); ast->fbdev = (struct ast_fbdev *)0; } return; } } void ast_fbdev_set_suspend(struct drm_device *dev , int state ) { struct ast_private *ast ; { ast = (struct ast_private *)dev->dev_private; if ((unsigned long )ast->fbdev == (unsigned long )((struct ast_fbdev *)0)) { return; } else { } { fb_set_suspend((ast->fbdev)->helper.fbdev, state); } return; } } void ldv_dispatch_deregister_14_1(struct drm_framebuffer *arg0 ) ; void ldv_drm_framebuffer_unregister_private(void *arg0 , struct drm_framebuffer *arg1 ) ; void ldv_dispatch_deregister_14_1(struct drm_framebuffer *arg0 ) { { return; } } void ldv_drm_framebuffer_unregister_private(void *arg0 , struct drm_framebuffer *arg1 ) { struct drm_framebuffer *ldv_14_struct_drm_framebuffer_ptr_struct_drm_framebuffer_ptr ; { { ldv_14_struct_drm_framebuffer_ptr_struct_drm_framebuffer_ptr = arg1; ldv_dispatch_deregister_14_1(ldv_14_struct_drm_framebuffer_ptr_struct_drm_framebuffer_ptr); } return; return; } } void ldv_dummy_resourceless_instance_callback_8_10(void (*arg0)(struct drm_crtc * , unsigned short , unsigned short , unsigned short , int ) , struct drm_crtc *arg1 , unsigned short arg2 , unsigned short arg3 , unsigned short arg4 , int arg5 ) { { { ast_fb_gamma_set(arg1, (int )arg2, (int )arg3, (int )arg4, arg5); } return; } } void ldv_dummy_resourceless_instance_callback_8_3(int (*arg0)(struct drm_fb_helper * , struct drm_fb_helper_surface_size * ) , struct drm_fb_helper *arg1 , struct drm_fb_helper_surface_size *arg2 ) { { { astfb_create(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_8_7(void (*arg0)(struct drm_crtc * , unsigned short * , unsigned short * , unsigned short * , int ) , struct drm_crtc *arg1 , unsigned short *arg2 , unsigned short *arg3 , unsigned short *arg4 , int arg5 ) { { { ast_fb_gamma_get(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_file_operations_instance_callback_0_31(int (*arg0)(int , struct fb_info * ) , int arg1 , struct fb_info *arg2 ) { { { drm_fb_helper_blank(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_34(int (*arg0)(struct fb_var_screeninfo * , struct fb_info * ) , struct fb_var_screeninfo *arg1 , struct fb_info *arg2 ) { { { drm_fb_helper_check_var(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_35(void (*arg0)(struct fb_info * , struct fb_copyarea * ) , struct fb_info *arg1 , struct fb_copyarea *arg2 ) { { { ast_copyarea(arg1, (struct fb_copyarea const *)arg2); } return; } } void ldv_file_operations_instance_callback_0_38(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) { { { drm_fb_helper_debug_enter(arg1); } return; } } void ldv_file_operations_instance_callback_0_41(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) { { { drm_fb_helper_debug_leave(arg1); } return; } } void ldv_file_operations_instance_callback_0_44(void (*arg0)(struct fb_info * , struct fb_fillrect * ) , struct fb_info *arg1 , struct fb_fillrect *arg2 ) { { { ast_fillrect(arg1, (struct fb_fillrect const *)arg2); } return; } } void ldv_file_operations_instance_callback_0_47(void (*arg0)(struct fb_info * , struct fb_image * ) , struct fb_info *arg1 , struct fb_image *arg2 ) { { { ast_imageblit(arg1, (struct fb_image const *)arg2); } return; } } void ldv_file_operations_instance_callback_0_50(int (*arg0)(struct fb_var_screeninfo * , struct fb_info * ) , struct fb_var_screeninfo *arg1 , struct fb_info *arg2 ) { { { drm_fb_helper_pan_display(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_51(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) { { { drm_fb_helper_set_par(arg1); } return; } } void ldv_file_operations_instance_callback_0_54(int (*arg0)(struct fb_cmap * , struct fb_info * ) , struct fb_cmap *arg1 , struct fb_info *arg2 ) { { { drm_fb_helper_setcmap(arg1, arg2); } return; } } static void ldv_mutex_lock_99___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_base_of_ww_mutex(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_100___0(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_base_of_ww_mutex(ldv_func_arg1); } return (tmp); } } static int ldv_mutex_trylock_101___0(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_trylock_base_of_ww_mutex(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_lock_110___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_struct_mutex_of_drm_device(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_111___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_struct_mutex_of_drm_device(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_dirty_lock_of_ast_fbdev(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_113(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_dirty_lock_of_ast_fbdev(); spin_unlock_irqrestore(lock, flags); } return; } } static void *ldv_vmalloc_115(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc(ldv_func_arg1); } return (tmp); } } static void ldv_drm_framebuffer_unregister_private_116(struct drm_framebuffer *ldv_func_arg1 ) { { { drm_framebuffer_unregister_private(ldv_func_arg1); ldv_drm_framebuffer_unregister_private((void *)0, ldv_func_arg1); } return; } } extern int arch_phys_wc_add(unsigned long , unsigned long ) ; extern void arch_phys_wc_del(int ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int drm_global_item_ref(struct drm_global_reference * ) ; extern void drm_global_item_unref(struct drm_global_reference * ) ; extern bool drm_vma_node_is_allowed(struct drm_vma_offset_node * , struct file * ) ; __inline static int drm_vma_node_verify_access(struct drm_vma_offset_node *node , struct file *filp ) { bool tmp ; { { tmp = drm_vma_node_is_allowed(node, filp); } return ((int )tmp ? 0 : -13); } } extern int ttm_bo_validate(struct ttm_buffer_object * , struct ttm_placement * , bool , bool ) ; extern size_t ttm_bo_dma_acc_size(struct ttm_bo_device * , unsigned long , unsigned int ) ; extern int ttm_bo_init(struct ttm_bo_device * , struct ttm_buffer_object * , unsigned long , enum ttm_bo_type , struct ttm_placement * , uint32_t , bool , struct file * , size_t , struct sg_table * , struct reservation_object * , void (*)(struct ttm_buffer_object * ) ) ; extern int ttm_bo_init_mm(struct ttm_bo_device * , unsigned int , unsigned long ) ; extern int ttm_bo_mmap(struct file * , struct vm_area_struct * , struct ttm_bo_device * ) ; extern int ttm_mem_global_init(struct ttm_mem_global * ) ; extern void ttm_mem_global_release(struct ttm_mem_global * ) ; extern int ttm_tt_init(struct ttm_tt * , struct ttm_bo_device * , unsigned long , uint32_t , struct page * ) ; extern void ttm_tt_fini(struct ttm_tt * ) ; extern void ttm_bo_global_release(struct drm_global_reference * ) ; extern int ttm_bo_global_init(struct drm_global_reference * ) ; extern int ttm_bo_device_release(struct ttm_bo_device * ) ; extern int ttm_bo_device_init(struct ttm_bo_device * , struct ttm_bo_global * , struct ttm_bo_driver * , struct address_space * , uint64_t , bool ) ; extern int ttm_bo_move_memcpy(struct ttm_buffer_object * , bool , bool , struct ttm_mem_reg * ) ; extern struct ttm_mem_type_manager_func const ttm_bo_manager_func ; extern void drm_gem_object_release(struct drm_gem_object * ) ; extern int drm_gem_object_init(struct drm_device * , struct drm_gem_object * , size_t ) ; __inline static struct ast_bo *ast_bo(struct ttm_buffer_object *bo ) { struct ttm_buffer_object const *__mptr ; { __mptr = (struct ttm_buffer_object const *)bo; return ((struct ast_bo *)__mptr); } } int ast_bo_unpin(struct ast_bo *bo ) ; void ast_ttm_placement(struct ast_bo *bo , int domain ) ; extern int ttm_pool_populate(struct ttm_tt * ) ; extern void ttm_pool_unpopulate(struct ttm_tt * ) ; __inline static struct ast_private *ast_bdev(struct ttm_bo_device *bd ) { struct ttm_bo_device const *__mptr ; { __mptr = (struct ttm_bo_device const *)bd; return ((struct ast_private *)__mptr + 0xffffffffffffff68UL); } } static int ast_ttm_mem_global_init(struct drm_global_reference *ref ) { int tmp ; { { tmp = ttm_mem_global_init((struct ttm_mem_global *)ref->object); } return (tmp); } } static void ast_ttm_mem_global_release(struct drm_global_reference *ref ) { { { ttm_mem_global_release((struct ttm_mem_global *)ref->object); } return; } } static int ast_ttm_global_init(struct ast_private *ast ) { struct drm_global_reference *global_ref ; int r ; { { global_ref = & ast->ttm.mem_global_ref; global_ref->global_type = 0; global_ref->size = 504UL; global_ref->init = & ast_ttm_mem_global_init; global_ref->release = & ast_ttm_mem_global_release; r = drm_global_item_ref(global_ref); } if (r != 0) { { drm_err("Failed setting up TTM memory accounting subsystem.\n"); } return (r); } else { } { ast->ttm.bo_global_ref.mem_glob = (struct ttm_mem_global *)ast->ttm.mem_global_ref.object; global_ref = & ast->ttm.bo_global_ref.ref; global_ref->global_type = 1; global_ref->size = 592UL; global_ref->init = & ttm_bo_global_init; global_ref->release = & ttm_bo_global_release; r = drm_global_item_ref(global_ref); } if (r != 0) { { drm_err("Failed setting up TTM BO subsystem.\n"); drm_global_item_unref(& ast->ttm.mem_global_ref); } return (r); } else { } return (0); } } static void ast_ttm_global_release(struct ast_private *ast ) { { if ((unsigned long )ast->ttm.mem_global_ref.release == (unsigned long )((void (*)(struct drm_global_reference * ))0)) { return; } else { } { drm_global_item_unref(& ast->ttm.bo_global_ref.ref); drm_global_item_unref(& ast->ttm.mem_global_ref); ast->ttm.mem_global_ref.release = (void (*)(struct drm_global_reference * ))0; } return; } } static void ast_bo_ttm_destroy(struct ttm_buffer_object *tbo ) { struct ast_bo *bo ; struct ttm_buffer_object const *__mptr ; { { __mptr = (struct ttm_buffer_object const *)tbo; bo = (struct ast_bo *)__mptr; drm_gem_object_release(& bo->gem); kfree((void const *)bo); } return; } } static bool ast_ttm_bo_is_ast_bo(struct ttm_buffer_object *bo ) { { if ((unsigned long )bo->destroy == (unsigned long )(& ast_bo_ttm_destroy)) { return (1); } else { } return (0); } } static int ast_bo_init_mem_type(struct ttm_bo_device *bdev , uint32_t type , struct ttm_mem_type_manager *man ) { { { if (type == 0U) { goto case_0; } else { } if (type == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ man->flags = 2U; man->available_caching = 458752U; man->default_caching = 65536U; goto ldv_40105; case_2: /* CIL Label */ man->func = & ttm_bo_manager_func; man->flags = 3U; man->available_caching = 393216U; man->default_caching = 262144U; goto ldv_40105; switch_default: /* CIL Label */ { drm_err("Unsupported memory type %u\n", type); } return (-22); switch_break: /* CIL Label */ ; } ldv_40105: ; return (0); } } static void ast_bo_evict_flags(struct ttm_buffer_object *bo , struct ttm_placement *pl ) { struct ast_bo *astbo ; struct ast_bo *tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = ast_bo(bo); astbo = tmp; tmp___0 = ast_ttm_bo_is_ast_bo(bo); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return; } else { } { ast_ttm_placement(astbo, 1); *pl = astbo->placement; } return; } } static int ast_bo_verify_access(struct ttm_buffer_object *bo , struct file *filp ) { struct ast_bo *astbo ; struct ast_bo *tmp ; int tmp___0 ; { { tmp = ast_bo(bo); astbo = tmp; tmp___0 = drm_vma_node_verify_access(& astbo->gem.vma_node, filp); } return (tmp___0); } } static int ast_ttm_io_mem_reserve(struct ttm_bo_device *bdev , struct ttm_mem_reg *mem ) { struct ttm_mem_type_manager *man ; struct ast_private *ast ; struct ast_private *tmp ; { { man = (struct ttm_mem_type_manager *)(& bdev->man) + (unsigned long )mem->mem_type; tmp = ast_bdev(bdev); ast = tmp; mem->bus.addr = (void *)0; mem->bus.offset = 0UL; mem->bus.size = mem->num_pages << 12; mem->bus.base = 0UL; mem->bus.is_iomem = 0; } if ((man->flags & 2U) == 0U) { return (-22); } else { } { if (mem->mem_type == 0U) { goto case_0; } else { } if (mem->mem_type == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (0); case_2: /* CIL Label */ mem->bus.offset = mem->start << 12; mem->bus.base = (unsigned long )((ast->dev)->pdev)->resource[0].start; mem->bus.is_iomem = 1; goto ldv_40126; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_40126: ; return (0); } } static void ast_ttm_io_mem_free(struct ttm_bo_device *bdev , struct ttm_mem_reg *mem ) { { return; } } static int ast_bo_move(struct ttm_buffer_object *bo , bool evict , bool interruptible , bool no_wait_gpu , struct ttm_mem_reg *new_mem ) { int r ; { { r = ttm_bo_move_memcpy(bo, (int )evict, (int )no_wait_gpu, new_mem); } return (r); } } static void ast_ttm_backend_destroy(struct ttm_tt *tt ) { { { ttm_tt_fini(tt); kfree((void const *)tt); } return; } } static struct ttm_backend_func ast_tt_backend_func = {0, 0, & ast_ttm_backend_destroy}; static struct ttm_tt *ast_ttm_tt_create(struct ttm_bo_device *bdev , unsigned long size , uint32_t page_flags , struct page *dummy_read_page ) { struct ttm_tt *tt ; void *tmp ; int tmp___0 ; { { tmp = kzalloc(80UL, 208U); tt = (struct ttm_tt *)tmp; } if ((unsigned long )tt == (unsigned long )((struct ttm_tt *)0)) { return ((struct ttm_tt *)0); } else { } { tt->func = & ast_tt_backend_func; tmp___0 = ttm_tt_init(tt, bdev, size, page_flags, dummy_read_page); } if (tmp___0 != 0) { { kfree((void const *)tt); } return ((struct ttm_tt *)0); } else { } return (tt); } } static int ast_ttm_tt_populate(struct ttm_tt *ttm ) { int tmp ; { { tmp = ttm_pool_populate(ttm); } return (tmp); } } static void ast_ttm_tt_unpopulate(struct ttm_tt *ttm ) { { { ttm_pool_unpopulate(ttm); } return; } } struct ttm_bo_driver ast_bo_driver = {& ast_ttm_tt_create, & ast_ttm_tt_populate, & ast_ttm_tt_unpopulate, 0, & ast_bo_init_mem_type, & ast_bo_evict_flags, & ast_bo_move, & ast_bo_verify_access, 0, 0, 0, & ast_ttm_io_mem_reserve, & ast_ttm_io_mem_free}; int ast_mm_init(struct ast_private *ast ) { int ret ; struct drm_device *dev ; struct ttm_bo_device *bdev ; { { dev = ast->dev; bdev = & ast->ttm.bdev; ret = ast_ttm_global_init(ast); } if (ret != 0) { return (ret); } else { } { ret = ttm_bo_device_init(& ast->ttm.bdev, (struct ttm_bo_global *)ast->ttm.bo_global_ref.ref.object, & ast_bo_driver, (dev->anon_inode)->i_mapping, 1048576ULL, 1); } if (ret != 0) { { drm_err("Error initialising bo driver; %d\n", ret); } return (ret); } else { } { ret = ttm_bo_init_mm(bdev, 2U, (unsigned long )(ast->vram_size >> 12)); } if (ret != 0) { { drm_err("Failed ttm VRAM init: %d\n", ret); } return (ret); } else { } { ast->fb_mtrr = arch_phys_wc_add((unsigned long )(dev->pdev)->resource[0].start, (dev->pdev)->resource[0].start != 0ULL || (dev->pdev)->resource[0].end != (dev->pdev)->resource[0].start ? (unsigned long )(((dev->pdev)->resource[0].end - (dev->pdev)->resource[0].start) + 1ULL) : 0UL); } return (0); } } void ast_mm_fini(struct ast_private *ast ) { { { ttm_bo_device_release(& ast->ttm.bdev); ast_ttm_global_release(ast); arch_phys_wc_del(ast->fb_mtrr); } return; } } void ast_ttm_placement(struct ast_bo *bo , int domain ) { u32 c ; unsigned int i ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; { c = 0U; bo->placement.placement = (struct ttm_place const *)(& bo->placements); bo->placement.busy_placement = (struct ttm_place const *)(& bo->placements); if ((domain & 4) != 0) { tmp = c; c = c + 1U; bo->placements[tmp].flags = 393220U; } else { } if (domain & 1) { tmp___0 = c; c = c + 1U; bo->placements[tmp___0].flags = 65537U; } else { } if (c == 0U) { tmp___1 = c; c = c + 1U; bo->placements[tmp___1].flags = 65537U; } else { } bo->placement.num_placement = c; bo->placement.num_busy_placement = c; i = 0U; goto ldv_40174; ldv_40173: bo->placements[i].fpfn = 0U; bo->placements[i].lpfn = 0U; i = i + 1U; ldv_40174: ; if (i < c) { goto ldv_40173; } else { } return; } } int ast_bo_create(struct drm_device *dev , int size , int align , uint32_t flags , struct ast_bo **pastbo ) { struct ast_private *ast ; struct ast_bo *astbo ; size_t acc_size ; int ret ; void *tmp ; { { ast = (struct ast_private *)dev->dev_private; tmp = kzalloc(1224UL, 208U); astbo = (struct ast_bo *)tmp; } if ((unsigned long )astbo == (unsigned long )((struct ast_bo *)0)) { return (-12); } else { } { ret = drm_gem_object_init(dev, & astbo->gem, (size_t )size); } if (ret != 0) { { kfree((void const *)astbo); } return (ret); } else { } { astbo->bo.bdev = & ast->ttm.bdev; ast_ttm_placement(astbo, 5); acc_size = ttm_bo_dma_acc_size(& ast->ttm.bdev, (unsigned long )size, 1224U); ret = ttm_bo_init(& ast->ttm.bdev, & astbo->bo, (unsigned long )size, 0, & astbo->placement, (uint32_t )(align >> 12), 0, (struct file *)0, acc_size, (struct sg_table *)0, (struct reservation_object *)0, & ast_bo_ttm_destroy); } if (ret != 0) { return (ret); } else { } *pastbo = astbo; return (0); } } __inline static u64 ast_bo_gpu_offset(struct ast_bo *bo ) { { return ((u64 )bo->bo.offset); } } int ast_bo_pin(struct ast_bo *bo , u32 pl_flag , u64 *gpu_addr ) { int i ; int ret ; { if (bo->pin_count != 0) { bo->pin_count = bo->pin_count + 1; if ((unsigned long )gpu_addr != (unsigned long )((u64 *)0ULL)) { { *gpu_addr = ast_bo_gpu_offset(bo); } } else { } } else { } { ast_ttm_placement(bo, (int )pl_flag); i = 0; } goto ldv_40198; ldv_40197: bo->placements[i].flags = bo->placements[i].flags | 2097152U; i = i + 1; ldv_40198: ; if ((unsigned int )i < bo->placement.num_placement) { goto ldv_40197; } else { } { ret = ttm_bo_validate(& bo->bo, & bo->placement, 0, 0); } if (ret != 0) { return (ret); } else { } bo->pin_count = 1; if ((unsigned long )gpu_addr != (unsigned long )((u64 *)0ULL)) { { *gpu_addr = ast_bo_gpu_offset(bo); } } else { } return (0); } } int ast_bo_unpin(struct ast_bo *bo ) { int i ; int ret ; { if (bo->pin_count == 0) { { drm_err("unpin bad %p\n", bo); } return (0); } else { } bo->pin_count = bo->pin_count - 1; if (bo->pin_count != 0) { return (0); } else { } i = 0; goto ldv_40206; ldv_40205: bo->placements[i].flags = bo->placements[i].flags & 4292870143U; i = i + 1; ldv_40206: ; if ((unsigned int )i < bo->placement.num_placement) { goto ldv_40205; } else { } { ret = ttm_bo_validate(& bo->bo, & bo->placement, 0, 0); } if (ret != 0) { return (ret); } else { } return (0); } } int ast_bo_push_sysram(struct ast_bo *bo ) { int i ; int ret ; { if (bo->pin_count == 0) { { drm_err("unpin bad %p\n", bo); } return (0); } else { } bo->pin_count = bo->pin_count - 1; if (bo->pin_count != 0) { return (0); } else { } if ((unsigned long )bo->kmap.virtual != (unsigned long )((void *)0)) { { ttm_bo_kunmap(& bo->kmap); } } else { } { ast_ttm_placement(bo, 1); i = 0; } goto ldv_40214; ldv_40213: bo->placements[i].flags = bo->placements[i].flags | 2097152U; i = i + 1; ldv_40214: ; if ((unsigned int )i < bo->placement.num_placement) { goto ldv_40213; } else { } { ret = ttm_bo_validate(& bo->bo, & bo->placement, 0, 0); } if (ret != 0) { { drm_err("pushing to VRAM failed\n"); } return (ret); } else { } return (0); } } int ast_mmap(struct file *filp , struct vm_area_struct *vma ) { struct drm_file *file_priv ; struct ast_private *ast ; long tmp ; int tmp___0 ; { { tmp = ldv__builtin_expect((unsigned long long )vma->vm_pgoff <= 1048575ULL, 0L); } if (tmp != 0L) { return (-22); } else { } { file_priv = (struct drm_file *)filp->private_data; ast = (struct ast_private *)((file_priv->minor)->dev)->dev_private; tmp___0 = ttm_bo_mmap(filp, vma, & ast->ttm.bdev); } return (tmp___0); } } void ldv_dummy_resourceless_instance_callback_11_11(void (*arg0)(struct ttm_bo_device * , struct ttm_mem_reg * ) , struct ttm_bo_device *arg1 , struct ttm_mem_reg *arg2 ) { { { ast_ttm_io_mem_free(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_11_12(int (*arg0)(struct ttm_bo_device * , struct ttm_mem_reg * ) , struct ttm_bo_device *arg1 , struct ttm_mem_reg *arg2 ) { { { ast_ttm_io_mem_reserve(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_11_13(int (*arg0)(struct ttm_buffer_object * , _Bool , _Bool , _Bool , struct ttm_mem_reg * ) , struct ttm_buffer_object *arg1 , _Bool arg2 , _Bool arg3 , _Bool arg4 , struct ttm_mem_reg *arg5 ) { { { ast_bo_move(arg1, (int )arg2, (int )arg3, (int )arg4, arg5); } return; } } void ldv_dummy_resourceless_instance_callback_11_16(struct ttm_tt *(*arg0)(struct ttm_bo_device * , unsigned long , unsigned int , struct page * ) , struct ttm_bo_device *arg1 , unsigned long arg2 , unsigned int arg3 , struct page *arg4 ) { { { ast_ttm_tt_create(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_11_19(int (*arg0)(struct ttm_tt * ) , struct ttm_tt *arg1 ) { { { ast_ttm_tt_populate(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_11_20(void (*arg0)(struct ttm_tt * ) , struct ttm_tt *arg1 ) { { { ast_ttm_tt_unpopulate(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_11_21(int (*arg0)(struct ttm_buffer_object * , struct file * ) , struct ttm_buffer_object *arg1 , struct file *arg2 ) { { { ast_bo_verify_access(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_11_3(void (*arg0)(struct ttm_tt * ) , struct ttm_tt *arg1 ) { { { ast_ttm_backend_destroy(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_11_7(void (*arg0)(struct ttm_buffer_object * , struct ttm_placement * ) , struct ttm_buffer_object *arg1 , struct ttm_placement *arg2 ) { { { ast_bo_evict_flags(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_11_8(int (*arg0)(struct ttm_bo_device * , unsigned int , struct ttm_mem_type_manager * ) , struct ttm_bo_device *arg1 , unsigned int arg2 , struct ttm_mem_type_manager *arg3 ) { { { ast_bo_init_mem_type(arg1, arg2, arg3); } return; } } extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern void __udelay(unsigned long ) ; extern void __const_udelay(unsigned long ) ; u32 ast_mindwm(struct ast_private *ast , u32 r ) ; void ast_moutdwm(struct ast_private *ast , u32 r , u32 v ) ; void ast_init_3rdtx(struct drm_device *dev ) ; static struct ast_dramstruct const ast2000_dram_table_data[25U] = { {264U, 0U}, {288U, 18977U}, {65280U, 67U}, {0U, 4294967295U}, {4U, 137U}, {8U, 573772627U}, {12U, 218562571U}, {16U, 286339891U}, {32U, 1114960U}, {40U, 503851248U}, {36U, 1U}, {28U, 0U}, {20U, 3U}, {65280U, 67U}, {24U, 305U}, {20U, 1U}, {65280U, 67U}, {24U, 49U}, {20U, 1U}, {65280U, 67U}, {40U, 503851249U}, {36U, 3U}, {44U, 521087227U}, {48U, 4294966785U}, {65535U, 4294967295U}}; static struct ast_dramstruct const ast1100_dram_table_data[50U] = { {8192U, 378054824U}, {8224U, 16880U}, {65280U, 67U}, {0U, 4234150665U}, {108U, 9474192U}, {100U, 327680U}, {4U, 1413U}, {8U, 1114895U}, {16U, 572528420U}, {24U, 506003738U}, {32U, 13115938U}, {20U, 16782627U}, {28U, 270795021U}, {36U, 13313314U}, {56U, 4294967170U}, {60U, 0U}, {64U, 0U}, {68U, 0U}, {72U, 0U}, {76U, 0U}, {80U, 0U}, {84U, 0U}, {88U, 0U}, {92U, 0U}, {96U, 53125162U}, {100U, 2961408U}, {104U, 0U}, {112U, 0U}, {116U, 0U}, {120U, 0U}, {124U, 0U}, {52U, 1U}, {65280U, 67U}, {44U, 1842U}, {48U, 64U}, {40U, 5U}, {40U, 7U}, {40U, 3U}, {40U, 1U}, {12U, 23048U}, {44U, 1586U}, {40U, 1U}, {48U, 960U}, {40U, 3U}, {48U, 64U}, {40U, 3U}, {12U, 23073U}, {52U, 31747U}, {288U, 19521U}, {65535U, 4294967295U}}; static struct ast_dramstruct const ast2100_dram_table_data[50U] = { {8192U, 378054824U}, {8224U, 16672U}, {65280U, 67U}, {0U, 4234150665U}, {108U, 9474192U}, {100U, 458752U}, {4U, 1161U}, {8U, 1114895U}, {16U, 842017062U}, {24U, 659292450U}, {32U, 13509154U}, {20U, 16782627U}, {28U, 270795021U}, {36U, 13313314U}, {56U, 4294967170U}, {60U, 0U}, {64U, 0U}, {68U, 0U}, {72U, 0U}, {76U, 0U}, {80U, 0U}, {84U, 0U}, {88U, 0U}, {92U, 0U}, {96U, 254451754U}, {100U, 4141061U}, {104U, 33686018U}, {112U, 0U}, {116U, 0U}, {120U, 0U}, {124U, 0U}, {52U, 1U}, {65280U, 67U}, {44U, 2370U}, {48U, 64U}, {40U, 5U}, {40U, 7U}, {40U, 3U}, {40U, 1U}, {12U, 23048U}, {44U, 2114U}, {40U, 1U}, {48U, 960U}, {40U, 3U}, {48U, 64U}, {40U, 3U}, {12U, 23073U}, {52U, 31747U}, {288U, 20577U}, {65535U, 4294967295U}}; static void ast_init_dram_2300(struct drm_device *dev ) ; void ast_enable_vga(struct drm_device *dev ) { struct ast_private *ast ; { { ast = (struct ast_private *)dev->dev_private; ast_io_write8(ast, 67U, 1); ast_io_write8(ast, 66U, 1); } return; } } void ast_enable_mmio(struct drm_device *dev ) { struct ast_private *ast ; { { ast = (struct ast_private *)dev->dev_private; ast_set_index_reg_mask(ast, 84U, 161, 255, 4); } return; } } bool ast_is_vga_enabled(struct drm_device *dev ) { struct ast_private *ast ; u8 ch ; { ast = (struct ast_private *)dev->dev_private; if ((unsigned int )ast->chip == 7U) { } else { { ch = ast_io_read8(ast, 67U); } if ((unsigned int )ch != 0U) { { ast_open_key(ast); ch = ast_get_index_reg_mask(ast, 84U, 182, 255); } return (((int )ch & 4) != 0); } else { } } return (0); } } static u8 const extreginfo[4U] = { 15U, 4U, 28U, 255U}; static u8 const extreginfo_ast2300a0[4U] = { 15U, 4U, 28U, 255U}; static u8 const extreginfo_ast2300[4U] = { 15U, 4U, 31U, 255U}; static void ast_set_def_ext_reg(struct drm_device *dev ) { struct ast_private *ast ; u8 i ; u8 index ; u8 reg ; u8 const *ext_reg_info ; { ast = (struct ast_private *)dev->dev_private; i = 129U; goto ldv_40078; ldv_40077: { ast_set_index_reg(ast, 84U, (int )i, 0); i = (u8 )((int )i + 1); } ldv_40078: ; if ((unsigned int )i <= 143U) { goto ldv_40077; } else { } if ((unsigned int )ast->chip - 5U <= 1U) { if ((unsigned int )(dev->pdev)->revision > 31U) { ext_reg_info = (u8 const *)(& extreginfo_ast2300); } else { ext_reg_info = (u8 const *)(& extreginfo_ast2300a0); } } else { ext_reg_info = (u8 const *)(& extreginfo); } index = 160U; goto ldv_40081; ldv_40080: { ast_set_index_reg_mask(ast, 84U, (int )index, 0, (int )*ext_reg_info); index = (u8 )((int )index + 1); ext_reg_info = ext_reg_info + 1; } ldv_40081: ; if ((unsigned int )((unsigned char )*ext_reg_info) != 255U) { goto ldv_40080; } else { } { ast_set_index_reg_mask(ast, 84U, 140, 0, 1); ast_set_index_reg_mask(ast, 84U, 183, 0, 0); reg = 4U; } if ((unsigned int )ast->chip - 5U <= 1U) { reg = (u8 )((unsigned int )reg | 32U); } else { } { ast_set_index_reg_mask(ast, 84U, 182, 255, (int )reg); } return; } } u32 ast_mindwm(struct ast_private *ast , u32 r ) { uint32_t data ; u32 tmp ; u32 tmp___0 ; { { ast_write32(ast, 61444U, r & 4294901760U); ast_write32(ast, 61440U, 1U); } ldv_40088: { tmp = ast_read32(ast, 61444U); data = tmp & 4294901760U; } if (data != (r & 4294901760U)) { goto ldv_40088; } else { } { tmp___0 = ast_read32(ast, (r & 65535U) + 65536U); } return (tmp___0); } } void ast_moutdwm(struct ast_private *ast , u32 r , u32 v ) { uint32_t data ; u32 tmp ; { { ast_write32(ast, 61444U, r & 4294901760U); ast_write32(ast, 61440U, 1U); } ldv_40096: { tmp = ast_read32(ast, 61444U); data = tmp & 4294901760U; } if (data != (r & 4294901760U)) { goto ldv_40096; } else { } { ast_write32(ast, (r & 65535U) + 65536U, v); } return; } } static u32 const pattern_AST2150[14U] = { 4278255360U, 3425946675U, 2857740885U, 4294836225U, 1748304382U, 253307312U, 755712838U, 1618378498U, 1874736806U, 975515701U, 806971501U, 1103500926U, 1644253887U, 552620256U}; static u32 mmctestburst2_ast2150(struct ast_private *ast , u32 datagen ) { u32 data ; u32 timeout ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; { { ast_moutdwm(ast, 510525552U, 0U); ast_moutdwm(ast, 510525552U, (datagen << 3) | 1U); timeout = 0U; } ldv_40105: { tmp = ast_mindwm(ast, 510525552U); data = tmp & 64U; timeout = timeout + 1U; } if (timeout > 5000000U) { { ast_moutdwm(ast, 510525552U, 0U); } return (4294967295U); } else { } if (data == 0U) { goto ldv_40105; } else { } { ast_moutdwm(ast, 510525552U, 0U); ast_moutdwm(ast, 510525552U, (datagen << 3) | 3U); timeout = 0U; } ldv_40107: { tmp___0 = ast_mindwm(ast, 510525552U); data = tmp___0 & 64U; timeout = timeout + 1U; } if (timeout > 5000000U) { { ast_moutdwm(ast, 510525552U, 0U); } return (4294967295U); } else { } if (data == 0U) { goto ldv_40107; } else { } { tmp___1 = ast_mindwm(ast, 510525552U); data = (tmp___1 & 128U) >> 7; ast_moutdwm(ast, 510525552U, 0U); } return (data); } } static int cbrtest_ast2150(struct ast_private *ast ) { int i ; u32 tmp ; { i = 0; goto ldv_40114; ldv_40113: { tmp = mmctestburst2_ast2150(ast, (u32 )i); } if (tmp != 0U) { return (0); } else { } i = i + 1; ldv_40114: ; if (i <= 7) { goto ldv_40113; } else { } return (1); } } static int cbrscan_ast2150(struct ast_private *ast , int busw ) { u32 patcnt ; u32 loop ; int tmp ; { patcnt = 0U; goto ldv_40126; ldv_40125: { ast_moutdwm(ast, 510525564U, pattern_AST2150[patcnt]); loop = 0U; } goto ldv_40124; ldv_40123: { tmp = cbrtest_ast2150(ast); } if (tmp != 0) { goto ldv_40122; } else { } loop = loop + 1U; ldv_40124: ; if (loop <= 4U) { goto ldv_40123; } else { } ldv_40122: ; if (loop == 5U) { return (0); } else { } patcnt = patcnt + 1U; ldv_40126: ; if (patcnt <= 7U) { goto ldv_40125; } else { } return (1); } } static void cbrdlli_ast2150(struct ast_private *ast , int busw ) { u32 dll_min[4U] ; u32 dll_max[4U] ; u32 dlli ; u32 data ; u32 passcnt ; int tmp ; { cbr_start: dll_min[3] = 255U; dll_min[2] = dll_min[3]; dll_min[1] = dll_min[2]; dll_min[0] = dll_min[1]; dll_max[3] = 0U; dll_max[2] = dll_max[3]; dll_max[1] = dll_max[2]; dll_max[0] = dll_max[1]; passcnt = 0U; dlli = 0U; goto ldv_40139; ldv_40138: { ast_moutdwm(ast, 510525544U, ((dlli | (dlli << 8)) | (dlli << 16)) | (dlli << 24)); tmp = cbrscan_ast2150(ast, busw); data = (u32 )tmp; } if (data != 0U) { if ((int )data & 1) { if (dll_min[0] > dlli) { dll_min[0] = dlli; } else { } if (dll_max[0] < dlli) { dll_max[0] = dlli; } else { } } else { } passcnt = passcnt + 1U; } else if (passcnt > 9U) { goto cbr_start; } else { } dlli = dlli + 1U; ldv_40139: ; if (dlli <= 99U) { goto ldv_40138; } else { } if (dll_max[0] == 0U || dll_max[0] - dll_min[0] <= 9U) { goto cbr_start; } else { } { dlli = dll_min[0] + ((dll_max[0] - dll_min[0]) * 7U >> 4); ast_moutdwm(ast, 510525544U, ((dlli | (dlli << 8)) | (dlli << 16)) | (dlli << 24)); } return; } } static void ast_init_dram_reg(struct drm_device *dev ) { struct ast_private *ast ; u8 j ; u32 data ; u32 temp ; u32 i ; struct ast_dramstruct const *dram_reg_info ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; { { ast = (struct ast_private *)dev->dev_private; j = ast_get_index_reg_mask(ast, 84U, 208, 255); } if ((int )((signed char )j) >= 0) { if ((unsigned int )ast->chip == 0U) { { dram_reg_info = (struct ast_dramstruct const *)(& ast2000_dram_table_data); ast_write32(ast, 61444U, 510525440U); ast_write32(ast, 61440U, 1U); ast_write32(ast, 65792U, 168U); } ldv_40150: { tmp = ast_read32(ast, 65792U); } if (tmp != 168U) { goto ldv_40150; } else { } } else { if ((unsigned int )ast->chip == 1U || (unsigned int )ast->chip == 2200U) { dram_reg_info = (struct ast_dramstruct const *)(& ast2100_dram_table_data); } else { dram_reg_info = (struct ast_dramstruct const *)(& ast1100_dram_table_data); } { ast_write32(ast, 61444U, 510525440U); ast_write32(ast, 61440U, 1U); ast_write32(ast, 73728U, 378054824U); } ldv_40152: { tmp___0 = ast_read32(ast, 73728U); } if (tmp___0 != 1U) { goto ldv_40152; } else { } { ast_write32(ast, 65536U, 4234150665U); } ldv_40154: { tmp___1 = ast_read32(ast, 65536U); } if (tmp___1 != 1U) { goto ldv_40154; } else { } } goto ldv_40160; ldv_40159: ; if ((unsigned int )((unsigned short )dram_reg_info->index) == 65280U) { i = 0U; goto ldv_40157; ldv_40156: { __udelay((unsigned long )dram_reg_info->data); i = i + 1U; } ldv_40157: ; if (i <= 14U) { goto ldv_40156; } else { } } else if ((unsigned int )((unsigned short )dram_reg_info->index) == 4U && (unsigned int )ast->chip != 0U) { data = dram_reg_info->data; if (ast->dram_type == 1U) { data = 3465U; } else if (ast->dram_type == 3U) { data = 3213U; } else { } { temp = ast_read32(ast, 73840U); temp = temp & 12U; temp = temp << 2; ast_write32(ast, (u32 )((int )dram_reg_info->index + 65536), data | temp); } } else { { ast_write32(ast, (u32 )((int )dram_reg_info->index + 65536), dram_reg_info->data); } } dram_reg_info = dram_reg_info + 1; ldv_40160: ; if ((unsigned int )((unsigned short )dram_reg_info->index) != 65535U) { goto ldv_40159; } else { } { data = ast_read32(ast, 65824U); } if (data == 20577U) { { data = ast_read32(ast, 65540U); } if ((data & 64U) != 0U) { { cbrdlli_ast2150(ast, 16); } } else { { cbrdlli_ast2150(ast, 32); } } } else { } { if ((unsigned int )ast->chip == 0U) { goto case_0; } else { } if ((unsigned int )ast->chip == 2U) { goto case_2; } else { } if ((unsigned int )ast->chip == 1U) { goto case_1; } else { } if ((unsigned int )ast->chip == 3U) { goto case_3; } else { } if ((unsigned int )ast->chip == 4U) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ { temp = ast_read32(ast, 65856U); ast_write32(ast, 65856U, temp | 64U); } goto ldv_40163; case_2: /* CIL Label */ ; case_1: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ { temp = ast_read32(ast, 73740U); ast_write32(ast, 73740U, temp & 4294967293U); temp = ast_read32(ast, 73792U); ast_write32(ast, 73792U, temp | 64U); } goto ldv_40163; switch_default: /* CIL Label */ ; goto ldv_40163; switch_break: /* CIL Label */ ; } ldv_40163: ; } else { } ldv_40169: { j = ast_get_index_reg_mask(ast, 84U, 208, 255); } if (((int )j & 64) == 0) { goto ldv_40169; } else { } return; } } void ast_post_gpu(struct drm_device *dev ) { u32 reg ; struct ast_private *ast ; { { ast = (struct ast_private *)dev->dev_private; pci_read_config_dword((struct pci_dev const *)(ast->dev)->pdev, 4, & reg); reg = reg | 3U; pci_write_config_dword((struct pci_dev const *)(ast->dev)->pdev, 4, reg); ast_enable_vga(dev); ast_enable_mmio(dev); ast_open_key(ast); ast_set_def_ext_reg(dev); } if ((unsigned int )ast->chip - 5U <= 1U) { { ast_init_dram_2300(dev); } } else { { ast_init_dram_reg(dev); } } { ast_init_3rdtx(dev); } return; } } static u32 const pattern[8U] = { 4278255360U, 3425946675U, 2857740885U, 2289535095U, 2462862702U, 1413299422U, 4058530759U, 2086785619U}; static int mmc_test_burst(struct ast_private *ast , u32 datagen ) { u32 data ; u32 timeout ; u32 tmp ; { { ast_moutdwm(ast, 510525552U, 0U); ast_moutdwm(ast, 510525552U, (datagen << 3) | 193U); timeout = 0U; } ldv_40206: { tmp = ast_mindwm(ast, 510525552U); data = tmp & 12288U; } if ((data & 8192U) != 0U) { return (0); } else { } timeout = timeout + 1U; if (timeout > 5000000U) { { ast_moutdwm(ast, 510525552U, 0U); } return (0); } else { } if (data == 0U) { goto ldv_40206; } else { } { ast_moutdwm(ast, 510525552U, 0U); } return (1); } } static int mmc_test_burst2(struct ast_private *ast , u32 datagen ) { u32 data ; u32 timeout ; u32 tmp ; { { ast_moutdwm(ast, 510525552U, 0U); ast_moutdwm(ast, 510525552U, (datagen << 3) | 65U); timeout = 0U; } ldv_40214: { tmp = ast_mindwm(ast, 510525552U); data = tmp & 4096U; timeout = timeout + 1U; } if (timeout > 5000000U) { { ast_moutdwm(ast, 510525552U, 0U); } return (-1); } else { } if (data == 0U) { goto ldv_40214; } else { } { data = ast_mindwm(ast, 510525560U); data = (data | (data >> 16)) & 65535U; ast_moutdwm(ast, 510525552U, 0U); } return ((int )data); } } static int mmc_test_single(struct ast_private *ast , u32 datagen ) { u32 data ; u32 timeout ; u32 tmp ; { { ast_moutdwm(ast, 510525552U, 0U); ast_moutdwm(ast, 510525552U, (datagen << 3) | 197U); timeout = 0U; } ldv_40222: { tmp = ast_mindwm(ast, 510525552U); data = tmp & 12288U; } if ((data & 8192U) != 0U) { return (0); } else { } timeout = timeout + 1U; if (timeout > 5000000U) { { ast_moutdwm(ast, 510525552U, 0U); } return (0); } else { } if (data == 0U) { goto ldv_40222; } else { } { ast_moutdwm(ast, 510525552U, 0U); } return (1); } } static int mmc_test_single2(struct ast_private *ast , u32 datagen ) { u32 data ; u32 timeout ; u32 tmp ; { { ast_moutdwm(ast, 510525552U, 0U); ast_moutdwm(ast, 510525552U, (datagen << 3) | 5U); timeout = 0U; } ldv_40230: { tmp = ast_mindwm(ast, 510525552U); data = tmp & 4096U; timeout = timeout + 1U; } if (timeout > 5000000U) { { ast_moutdwm(ast, 510525552U, 0U); } return (-1); } else { } if (data == 0U) { goto ldv_40230; } else { } { data = ast_mindwm(ast, 510525560U); data = (data | (data >> 16)) & 65535U; ast_moutdwm(ast, 510525552U, 0U); } return ((int )data); } } static int cbr_test(struct ast_private *ast ) { u32 data ; int i ; int tmp ; int tmp___0 ; { { tmp = mmc_test_single2(ast, 0U); data = (u32 )tmp; } if ((data & 255U) != 0U && (data & 65280U) != 0U) { return (0); } else { } i = 0; goto ldv_40238; ldv_40237: { tmp___0 = mmc_test_burst2(ast, (u32 )i); data = (u32 )tmp___0; } if ((data & 255U) != 0U && (data & 65280U) != 0U) { return (0); } else { } i = i + 1; ldv_40238: ; if (i <= 7) { goto ldv_40237; } else { } if (data == 0U) { return (3); } else if ((data & 255U) != 0U) { return (2); } else { } return (1); } } static int cbr_scan(struct ast_private *ast ) { u32 data ; u32 data2 ; u32 patcnt ; u32 loop ; int tmp ; { data2 = 3U; patcnt = 0U; goto ldv_40251; ldv_40250: { ast_moutdwm(ast, 510525564U, pattern[patcnt]); loop = 0U; } goto ldv_40249; ldv_40248: { tmp = cbr_test(ast); data = (u32 )tmp; } if (data != 0U) { data2 = data2 & data; if (data2 == 0U) { return (0); } else { } goto ldv_40247; } else { } loop = loop + 1U; ldv_40249: ; if (loop <= 4U) { goto ldv_40248; } else { } ldv_40247: ; if (loop == 5U) { return (0); } else { } patcnt = patcnt + 1U; ldv_40251: ; if (patcnt <= 7U) { goto ldv_40250; } else { } return ((int )data2); } } static u32 cbr_test2(struct ast_private *ast ) { u32 data ; int tmp ; int tmp___0 ; { { tmp = mmc_test_burst2(ast, 0U); data = (u32 )tmp; } if (data == 65535U) { return (0U); } else { } { tmp___0 = mmc_test_single2(ast, 0U); data = data | (u32 )tmp___0; } if (data == 65535U) { return (0U); } else { } return (~ data & 65535U); } } static u32 cbr_scan2(struct ast_private *ast ) { u32 data ; u32 data2 ; u32 patcnt ; u32 loop ; { data2 = 65535U; patcnt = 0U; goto ldv_40268; ldv_40267: { ast_moutdwm(ast, 510525564U, pattern[patcnt]); loop = 0U; } goto ldv_40266; ldv_40265: { data = cbr_test2(ast); } if (data != 0U) { data2 = data2 & data; if (data2 == 0U) { return (0U); } else { } goto ldv_40264; } else { } loop = loop + 1U; ldv_40266: ; if (loop <= 4U) { goto ldv_40265; } else { } ldv_40264: ; if (loop == 5U) { return (0U); } else { } patcnt = patcnt + 1U; ldv_40268: ; if (patcnt <= 7U) { goto ldv_40267; } else { } return (data2); } } static u32 cbr_test3(struct ast_private *ast ) { int tmp ; int tmp___0 ; { { tmp = mmc_test_burst(ast, 0U); } if (tmp == 0) { return (0U); } else { } { tmp___0 = mmc_test_single(ast, 0U); } if (tmp___0 == 0) { return (0U); } else { } return (1U); } } static u32 cbr_scan3(struct ast_private *ast ) { u32 patcnt ; u32 loop ; u32 tmp ; { patcnt = 0U; goto ldv_40282; ldv_40281: { ast_moutdwm(ast, 510525564U, pattern[patcnt]); loop = 0U; } goto ldv_40280; ldv_40279: { tmp = cbr_test3(ast); } if (tmp != 0U) { goto ldv_40278; } else { } loop = loop + 1U; ldv_40280: ; if (loop <= 1U) { goto ldv_40279; } else { } ldv_40278: ; if (loop == 2U) { return (0U); } else { } patcnt = patcnt + 1U; ldv_40282: ; if (patcnt <= 7U) { goto ldv_40281; } else { } return (1U); } } static bool finetuneDQI_L(struct ast_private *ast , struct ast2300_dram_param *param ) { u32 gold_sadj[2U] ; u32 dllmin[16U] ; u32 dllmax[16U] ; u32 dlli ; u32 data ; u32 cnt ; u32 mask ; u32 passcnt ; u32 retry ; bool status ; u32 tmp ; { retry = 0U; status = 0; FINETUNE_START: cnt = 0U; goto ldv_40300; ldv_40299: dllmin[cnt] = 255U; dllmax[cnt] = 0U; cnt = cnt + 1U; ldv_40300: ; if (cnt <= 15U) { goto ldv_40299; } else { } passcnt = 0U; dlli = 0U; goto ldv_40307; ldv_40306: { ast_moutdwm(ast, 510525544U, ((dlli << 16) | (dlli << 24)) | 5120U); ast_moutdwm(ast, 510525556U, 4095U); data = cbr_scan2(ast); } if (data != 0U) { mask = 65537U; cnt = 0U; goto ldv_40303; ldv_40302: ; if ((data & mask) != 0U) { if (dllmin[cnt] > dlli) { dllmin[cnt] = dlli; } else { } if (dllmax[cnt] < dlli) { dllmax[cnt] = dlli; } else { } } else { } mask = mask << 1; cnt = cnt + 1U; ldv_40303: ; if (cnt <= 15U) { goto ldv_40302; } else { } passcnt = passcnt + 1U; } else if (passcnt > 9U) { goto ldv_40305; } else { } dlli = dlli + 1U; ldv_40307: ; if (dlli <= 75U) { goto ldv_40306; } else { } ldv_40305: gold_sadj[0] = 0U; passcnt = 0U; cnt = 0U; goto ldv_40309; ldv_40308: ; if (dllmax[cnt] > dllmin[cnt] && dllmax[cnt] - dllmin[cnt] > 9U) { gold_sadj[0] = gold_sadj[0] + dllmin[cnt]; passcnt = passcnt + 1U; } else { } cnt = cnt + 1U; ldv_40309: ; if (cnt <= 15U) { goto ldv_40308; } else { } tmp = retry; retry = retry + 1U; if (tmp > 10U) { goto FINETUNE_DONE; } else { } if (passcnt != 16U) { goto FINETUNE_START; } else { } status = 1; FINETUNE_DONE: gold_sadj[0] = gold_sadj[0] >> 4; gold_sadj[1] = gold_sadj[0]; data = 0U; cnt = 0U; goto ldv_40313; ldv_40312: data = data >> 3; if (dllmax[cnt] > dllmin[cnt] && dllmax[cnt] - dllmin[cnt] > 9U) { dlli = dllmin[cnt]; if (gold_sadj[0] >= dlli) { dlli = (gold_sadj[0] - dlli) * 19U >> 5; if (dlli > 3U) { dlli = 3U; } else { } } else { dlli = (dlli - gold_sadj[0]) * 19U >> 5; if (dlli > 4U) { dlli = 4U; } else { } dlli = - dlli & 7U; } data = data | (dlli << 21); } else { } cnt = cnt + 1U; ldv_40313: ; if (cnt <= 7U) { goto ldv_40312; } else { } { ast_moutdwm(ast, 510525568U, data); data = 0U; cnt = 8U; } goto ldv_40316; ldv_40315: data = data >> 3; if (dllmax[cnt] > dllmin[cnt] && dllmax[cnt] - dllmin[cnt] > 9U) { dlli = dllmin[cnt]; if (gold_sadj[1] >= dlli) { dlli = (gold_sadj[1] - dlli) * 19U >> 5; if (dlli > 3U) { dlli = 3U; } else { dlli = (dlli - 1U) & 7U; } } else { dlli = (dlli - gold_sadj[1]) * 19U >> 5; dlli = dlli + 1U; if (dlli > 4U) { dlli = 4U; } else { } dlli = - dlli & 7U; } data = data | (dlli << 21); } else { } cnt = cnt + 1U; ldv_40316: ; if (cnt <= 15U) { goto ldv_40315; } else { } { ast_moutdwm(ast, 510525572U, data); } return (status); } } static void finetuneDQSI(struct ast_private *ast ) { u32 dlli ; u32 dqsip ; u32 dqidly ; u32 reg_mcr18 ; u32 reg_mcr0c ; u32 passcnt[2U] ; u32 diff ; u32 g_dqidly ; u32 g_dqsip ; u32 g_margin ; u32 g_side ; u16 pass[32U][2U][2U] ; char tag[2U][76U] ; u32 tmp ; { { reg_mcr0c = ast_mindwm(ast, 510525452U); reg_mcr18 = ast_mindwm(ast, 510525464U); reg_mcr18 = reg_mcr18 & 65535U; ast_moutdwm(ast, 510525464U, reg_mcr18); dlli = 0U; } goto ldv_40335; ldv_40334: tag[0][dlli] = 0; tag[1][dlli] = 0; dlli = dlli + 1U; ldv_40335: ; if (dlli <= 75U) { goto ldv_40334; } else { } dqidly = 0U; goto ldv_40338; ldv_40337: pass[dqidly][0][0] = 255U; pass[dqidly][0][1] = 0U; pass[dqidly][1][0] = 255U; pass[dqidly][1][1] = 0U; dqidly = dqidly + 1U; ldv_40338: ; if (dqidly <= 31U) { goto ldv_40337; } else { } dqidly = 0U; goto ldv_40347; ldv_40346: passcnt[1] = 0U; passcnt[0] = passcnt[1]; dqsip = 0U; goto ldv_40344; ldv_40343: { ast_moutdwm(ast, 510525452U, 0U); ast_moutdwm(ast, 510525464U, (reg_mcr18 | (dqidly << 16)) | (dqsip << 23)); ast_moutdwm(ast, 510525452U, reg_mcr0c); dlli = 0U; } goto ldv_40342; ldv_40341: { ast_moutdwm(ast, 510525544U, ((dlli << 16) | (dlli << 24)) | 4864U); ast_moutdwm(ast, 510525552U, 0U); ast_moutdwm(ast, 510525556U, 1023U); tmp = cbr_scan3(ast); } if (tmp != 0U) { if (dlli == 0U) { goto ldv_40340; } else { } passcnt[dqsip] = passcnt[dqsip] + 1U; tag[dqsip][dlli] = 80; if (dlli < (u32 )pass[dqidly][dqsip][0]) { pass[dqidly][dqsip][0] = (unsigned short )dlli; } else { } if (dlli > (u32 )pass[dqidly][dqsip][1]) { pass[dqidly][dqsip][1] = (unsigned short )dlli; } else { } } else if (passcnt[dqsip] > 4U) { goto ldv_40340; } else { pass[dqidly][dqsip][0] = 255U; pass[dqidly][dqsip][1] = 0U; } dlli = dlli + 1U; ldv_40342: ; if (dlli <= 75U) { goto ldv_40341; } else { } ldv_40340: dqsip = dqsip + 1U; ldv_40344: ; if (dqsip <= 1U) { goto ldv_40343; } else { } if (passcnt[0] == 0U && passcnt[1] == 0U) { dqidly = dqidly + 1U; } else { } dqidly = dqidly + 1U; ldv_40347: ; if (dqidly <= 31U) { goto ldv_40346; } else { } g_side = 0U; g_margin = g_side; g_dqsip = g_margin; g_dqidly = g_dqsip; dqidly = 0U; goto ldv_40360; ldv_40359: dqsip = 0U; goto ldv_40357; ldv_40356: ; if ((int )pass[dqidly][dqsip][0] > (int )pass[dqidly][dqsip][1]) { goto ldv_40349; } else { } diff = (u32 )((int )pass[dqidly][dqsip][1] - (int )pass[dqidly][dqsip][0]); if (diff + 2U < g_margin) { goto ldv_40349; } else { } passcnt[1] = 0U; passcnt[0] = passcnt[1]; dlli = (u32 )pass[dqidly][dqsip][0]; goto ldv_40351; ldv_40350: dlli = dlli - 1U; passcnt[0] = passcnt[0] + 1U; ldv_40351: ; if (dlli != 0U && (int )((signed char )tag[dqsip][dlli]) != 0) { goto ldv_40350; } else { } dlli = (u32 )pass[dqidly][dqsip][1]; goto ldv_40354; ldv_40353: dlli = dlli + 1U; passcnt[1] = passcnt[1] + 1U; ldv_40354: ; if (dlli <= 75U && (int )((signed char )tag[dqsip][dlli]) != 0) { goto ldv_40353; } else { } if (passcnt[0] > passcnt[1]) { passcnt[0] = passcnt[1]; } else { } passcnt[1] = 0U; if (passcnt[0] > g_side) { passcnt[1] = passcnt[0] - g_side; } else { } if (diff > g_margin + 1U && (passcnt[1] != 0U || passcnt[0] > 8U)) { g_margin = diff; g_dqidly = dqidly; g_dqsip = dqsip; g_side = passcnt[0]; } else if (passcnt[1] > 1U && g_side <= 7U) { if (diff > g_margin) { g_margin = diff; } else { } g_dqidly = dqidly; g_dqsip = dqsip; g_side = passcnt[0]; } else { } ldv_40349: dqsip = dqsip + 1U; ldv_40357: ; if (dqsip <= 1U) { goto ldv_40356; } else { } dqidly = dqidly + 1U; ldv_40360: ; if (dqidly <= 31U) { goto ldv_40359; } else { } { reg_mcr18 = (reg_mcr18 | (g_dqidly << 16)) | (g_dqsip << 23); ast_moutdwm(ast, 510525464U, reg_mcr18); } return; } } static bool cbr_dll2(struct ast_private *ast , struct ast2300_dram_param *param ) { u32 dllmin[2U] ; u32 dllmax[2U] ; u32 dlli ; u32 data ; u32 passcnt ; u32 retry ; bool status ; bool tmp ; int tmp___0 ; int tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; { { retry = 0U; status = 0; finetuneDQSI(ast); tmp = finetuneDQI_L(ast, param); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (status); } else { } CBR_START2: dllmin[1] = 255U; dllmin[0] = dllmin[1]; dllmax[1] = 0U; dllmax[0] = dllmax[1]; passcnt = 0U; dlli = 0U; goto ldv_40376; ldv_40375: { ast_moutdwm(ast, 510525544U, ((dlli << 16) | (dlli << 24)) | 4864U); ast_moutdwm(ast, 510525556U, 65535U); tmp___1 = cbr_scan(ast); data = (u32 )tmp___1; } if (data != 0U) { if ((int )data & 1) { if (dllmin[0] > dlli) { dllmin[0] = dlli; } else { } if (dllmax[0] < dlli) { dllmax[0] = dlli; } else { } } else { } if ((data & 2U) != 0U) { if (dllmin[1] > dlli) { dllmin[1] = dlli; } else { } if (dllmax[1] < dlli) { dllmax[1] = dlli; } else { } } else { } passcnt = passcnt + 1U; } else if (passcnt > 9U) { goto ldv_40374; } else { } dlli = dlli + 1U; ldv_40376: ; if (dlli <= 75U) { goto ldv_40375; } else { } ldv_40374: tmp___2 = retry; retry = retry + 1U; if (tmp___2 > 10U) { goto CBR_DONE2; } else { } if (dllmax[0] == 0U || dllmax[0] - dllmin[0] <= 9U) { goto CBR_START2; } else { } if (dllmax[1] == 0U || dllmax[1] - dllmin[1] <= 9U) { goto CBR_START2; } else { } status = 1; CBR_DONE2: { dlli = (dllmin[1] + dllmax[1]) >> 1; dlli = dlli << 8; dlli = dlli + ((dllmin[0] + dllmax[0]) >> 1); tmp___3 = ast_mindwm(ast, 510787672U); ast_moutdwm(ast, 510525544U, tmp___3 | (dlli << 16)); } return (status); } } static void get_ddr3_info(struct ast_private *ast , struct ast2300_dram_param *param ) { u32 trap ; u32 trap_AC2 ; u32 trap_MRS ; u32 tmp ; { { ast_moutdwm(ast, 510533632U, 378054824U); tmp = ast_mindwm(ast, 510533744U); trap = (tmp >> 25) & 3U; trap_AC2 = (trap << 16) + 131072U; trap_AC2 = trap_AC2 | (((trap & 2U) << 19) + 3145728U); trap_MRS = (trap << 4) + 16U; trap_MRS = trap_MRS | ((trap & 2U) << 18); param->reg_MADJ = 216140U; param->reg_SADJ = 6144U; param->reg_DRV = 240U; param->reg_PERIOD = param->dram_freq; param->rodt = 0U; } { if (param->dram_freq == 336U) { goto case_336; } else { } if (param->dram_freq == 396U) { goto case_396; } else { } if (param->dram_freq == 408U) { goto case_408; } else { } if (param->dram_freq == 456U) { goto case_456; } else { } if (param->dram_freq == 504U) { goto case_504; } else { } if (param->dram_freq == 528U) { goto case_528; } else { } if (param->dram_freq == 576U) { goto case_576; } else { } if (param->dram_freq == 600U) { goto case_600; } else { } if (param->dram_freq == 624U) { goto case_624; } else { } goto switch_default___0; case_336: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 400U); param->wodt = 0U; param->reg_AC1 = 572532517U; param->reg_AC2 = trap_AC2 | 2852156947U; param->reg_DQSIC = 186U; param->reg_MRS = trap_MRS | 67113984U; param->reg_EMRS = 0U; param->reg_IOZ = 35U; param->reg_DQIDLY = 116U; param->reg_FREQ = 19904U; param->madj_max = 96U; param->dll2_finetune_step = 3U; } { if (param->dram_chipid == 0U) { goto case_0; } else { } if (param->dram_chipid == 1U) { goto case_1; } else { } if (param->dram_chipid == 6U) { goto case_6; } else { } if (param->dram_chipid == 7U) { goto case_7; } else { } goto switch_default; switch_default: /* CIL Label */ ; case_0: /* CIL Label */ ; case_1: /* CIL Label */ param->reg_AC2 = trap_AC2 | 2852156947U; goto ldv_40389; case_6: /* CIL Label */ param->reg_AC2 = trap_AC2 | 2852156956U; goto ldv_40389; case_7: /* CIL Label */ param->reg_AC2 = trap_AC2 | 2852156982U; goto ldv_40389; switch_break___0: /* CIL Label */ ; } ldv_40389: ; goto ldv_40392; switch_default___0: /* CIL Label */ ; case_396: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 1009U); param->wodt = 1U; param->reg_AC1 = 858794021U; param->reg_AC2 = trap_AC2 | 3422590487U; param->reg_DQSIC = 226U; param->reg_MRS = trap_MRS | 67114496U; param->reg_EMRS = 0U; param->reg_IOZ = 52U; param->reg_DRV = 250U; param->reg_DQIDLY = 137U; param->reg_FREQ = 20544U; param->madj_max = 96U; param->dll2_finetune_step = 4U; } { if (param->dram_chipid == 0U) { goto case_0___0; } else { } if (param->dram_chipid == 1U) { goto case_1___0; } else { } if (param->dram_chipid == 6U) { goto case_6___0; } else { } if (param->dram_chipid == 7U) { goto case_7___0; } else { } goto switch_default___1; switch_default___1: /* CIL Label */ ; case_0___0: /* CIL Label */ ; case_1___0: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422590487U; goto ldv_40398; case_6___0: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422590498U; goto ldv_40398; case_7___0: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422590527U; goto ldv_40398; switch_break___1: /* CIL Label */ ; } ldv_40398: ; goto ldv_40392; case_408: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 496U); param->wodt = 1U; param->reg_AC1 = 858794021U; param->reg_AC2 = trap_AC2 | 3422590487U; param->reg_DQSIC = 226U; param->reg_MRS = trap_MRS | 67114496U; param->reg_EMRS = 0U; param->reg_IOZ = 35U; param->reg_DRV = 250U; param->reg_DQIDLY = 137U; param->reg_FREQ = 20672U; param->madj_max = 96U; param->dll2_finetune_step = 4U; } { if (param->dram_chipid == 0U) { goto case_0___1; } else { } if (param->dram_chipid == 1U) { goto case_1___1; } else { } if (param->dram_chipid == 6U) { goto case_6___1; } else { } if (param->dram_chipid == 7U) { goto case_7___1; } else { } goto switch_default___2; switch_default___2: /* CIL Label */ ; case_0___1: /* CIL Label */ ; case_1___1: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422590487U; goto ldv_40405; case_6___1: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422590498U; goto ldv_40405; case_7___1: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422590527U; goto ldv_40405; switch_break___2: /* CIL Label */ ; } ldv_40405: ; goto ldv_40392; case_456: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 560U); param->wodt = 0U; param->reg_AC1 = 858794278U; param->reg_AC2 = 3443824154U; param->reg_DQSIC = 252U; param->reg_MRS = 530480U; param->reg_EMRS = 0U; param->reg_IOZ = 69U; param->reg_DQIDLY = 151U; param->reg_FREQ = 21184U; param->madj_max = 88U; param->dll2_finetune_step = 4U; } goto ldv_40392; case_504: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 624U); param->wodt = 1U; param->reg_AC1 = 858794278U; param->reg_AC2 = 3729040925U; param->reg_DQSIC = 279U; param->reg_MRS = 530992U; param->reg_EMRS = 0U; param->reg_IOZ = 117440699U; param->reg_DQIDLY = 160U; param->reg_FREQ = 21696U; param->madj_max = 79U; param->dll2_finetune_step = 4U; } goto ldv_40392; case_528: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 656U); param->wodt = 1U; param->rodt = 1U; param->reg_AC1 = 858794278U; param->reg_AC2 = 4014257694U; param->reg_DQSIC = 293U; param->reg_MRS = 530992U; param->reg_EMRS = 64U; param->reg_DRV = 245U; param->reg_IOZ = 35U; param->reg_DQIDLY = 136U; param->reg_FREQ = 21952U; param->madj_max = 76U; param->dll2_finetune_step = 3U; } goto ldv_40392; case_576: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 320U); param->reg_MADJ = 1271912U; param->reg_SADJ = 17716U; param->wodt = 1U; param->rodt = 1U; param->reg_AC1 = 858794551U; param->reg_AC2 = 4015437342U; param->reg_DQSIC = 319U; param->reg_MRS = 1055312U; param->reg_EMRS = 64U; param->reg_DRV = 250U; param->reg_IOZ = 35U; param->reg_DQIDLY = 120U; param->reg_FREQ = 22464U; param->madj_max = 136U; param->dll2_finetune_step = 3U; } goto ldv_40392; case_600: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 737U); param->reg_MADJ = 1271912U; param->reg_SADJ = 17716U; param->wodt = 1U; param->rodt = 1U; param->reg_AC1 = 842017335U; param->reg_AC2 = 3747001887U; param->reg_DQSIC = 333U; param->reg_MRS = 1055312U; param->reg_EMRS = 4U; param->reg_DRV = 245U; param->reg_IOZ = 35U; param->reg_DQIDLY = 120U; param->reg_FREQ = 22720U; param->madj_max = 132U; param->dll2_finetune_step = 3U; } goto ldv_40392; case_624: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 352U); param->reg_MADJ = 1271912U; param->reg_SADJ = 17716U; param->wodt = 1U; param->rodt = 1U; param->reg_AC1 = 842017335U; param->reg_AC2 = 4015437345U; param->reg_DQSIC = 346U; param->reg_MRS = 34609744U; param->reg_EMRS = 4U; param->reg_DRV = 245U; param->reg_IOZ = 52U; param->reg_DQIDLY = 120U; param->reg_FREQ = 22976U; param->madj_max = 128U; param->dll2_finetune_step = 3U; } goto ldv_40392; switch_break: /* CIL Label */ ; } ldv_40392: ; { if (param->dram_chipid == 0U) { goto case_0___2; } else { } if (param->dram_chipid == 1U) { goto case_1___2; } else { } if (param->dram_chipid == 6U) { goto case_6___2; } else { } if (param->dram_chipid == 7U) { goto case_7___2; } else { } goto switch_default___3; case_0___2: /* CIL Label */ param->dram_config = 304U; goto ldv_40415; switch_default___3: /* CIL Label */ ; case_1___2: /* CIL Label */ param->dram_config = 305U; goto ldv_40415; case_6___2: /* CIL Label */ param->dram_config = 306U; goto ldv_40415; case_7___2: /* CIL Label */ param->dram_config = 307U; goto ldv_40415; switch_break___3: /* CIL Label */ ; } ldv_40415: ; { if (param->vram_size == 8388608U) { goto case_8388608; } else { } if (param->vram_size == 16777216U) { goto case_16777216; } else { } if (param->vram_size == 33554432U) { goto case_33554432; } else { } if (param->vram_size == 67108864U) { goto case_67108864; } else { } goto switch_default___4; switch_default___4: /* CIL Label */ ; case_8388608: /* CIL Label */ param->dram_config = param->dram_config; goto ldv_40422; case_16777216: /* CIL Label */ param->dram_config = param->dram_config | 4U; goto ldv_40422; case_33554432: /* CIL Label */ param->dram_config = param->dram_config | 8U; goto ldv_40422; case_67108864: /* CIL Label */ param->dram_config = param->dram_config | 12U; goto ldv_40422; switch_break___4: /* CIL Label */ ; } ldv_40422: ; return; } } static void ddr3_init(struct ast_private *ast , struct ast2300_dram_param *param ) { u32 data ; u32 data2 ; u32 retry ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; bool tmp___5 ; int tmp___6 ; u32 tmp___7 ; { retry = 0U; ddr3_init_start: { ast_moutdwm(ast, 510525440U, 4234150665U); ast_moutdwm(ast, 510525464U, 256U); ast_moutdwm(ast, 510525476U, 0U); ast_moutdwm(ast, 510525492U, 0U); __const_udelay(42950UL); ast_moutdwm(ast, 510525540U, param->reg_MADJ); ast_moutdwm(ast, 510525544U, param->reg_SADJ); __const_udelay(42950UL); ast_moutdwm(ast, 510525540U, param->reg_MADJ | 786432U); __const_udelay(42950UL); ast_moutdwm(ast, 510525444U, param->dram_config); ast_moutdwm(ast, 510525448U, 9438223U); ast_moutdwm(ast, 510525456U, param->reg_AC1); ast_moutdwm(ast, 510525460U, param->reg_AC2); ast_moutdwm(ast, 510525472U, param->reg_DQSIC); ast_moutdwm(ast, 510525568U, 0U); ast_moutdwm(ast, 510525572U, 0U); ast_moutdwm(ast, 510525576U, param->reg_DQIDLY); ast_moutdwm(ast, 510525464U, 1073783152U); ast_moutdwm(ast, 510525464U, 9072U); ast_moutdwm(ast, 510525496U, 0U); ast_moutdwm(ast, 510525504U, 4282664004U); ast_moutdwm(ast, 510525508U, 572662306U); ast_moutdwm(ast, 510525512U, 572662306U); ast_moutdwm(ast, 510525516U, 2U); ast_moutdwm(ast, 510525520U, 2147483648U); ast_moutdwm(ast, 510525520U, 0U); ast_moutdwm(ast, 510525524U, 0U); ast_moutdwm(ast, 510525536U, param->reg_DRV); ast_moutdwm(ast, 510525548U, param->reg_IOZ); ast_moutdwm(ast, 510525552U, 0U); ast_moutdwm(ast, 510525556U, 0U); ast_moutdwm(ast, 510525560U, 0U); ast_moutdwm(ast, 510525564U, 0U); } ldv_40434: { data = ast_mindwm(ast, 510525468U); } if ((data & 134217728U) == 0U) { goto ldv_40434; } else { } { data = ast_mindwm(ast, 510525468U); data = (data >> 8) & 255U; } goto ldv_40440; ldv_40439: { tmp = ast_mindwm(ast, 510525540U); data2 = (tmp & 4294180863U) + 4U; } if ((data2 & 255U) > param->madj_max) { goto ldv_40436; } else { } { ast_moutdwm(ast, 510525540U, data2); } if ((data2 & 1048576U) != 0U) { data2 = ((data2 & 255U) >> 3) + 3U; } else { data2 = ((data2 & 255U) >> 2) + 5U; } { tmp___0 = ast_mindwm(ast, 510525544U); data = tmp___0 & 4294902015U; data2 = data2 + (data & 255U); data = data | (data2 << 8); ast_moutdwm(ast, 510525544U, data); __const_udelay(42950UL); tmp___1 = ast_mindwm(ast, 510525540U); ast_moutdwm(ast, 510525540U, tmp___1 | 786432U); __const_udelay(42950UL); tmp___2 = ast_mindwm(ast, 510525464U); data = tmp___2 & 4294963711U; ast_moutdwm(ast, 510525464U, data); data = data | 512U; ast_moutdwm(ast, 510525464U, data); } ldv_40437: { data = ast_mindwm(ast, 510525468U); } if ((data & 134217728U) == 0U) { goto ldv_40437; } else { } { data = ast_mindwm(ast, 510525468U); data = (data >> 8) & 255U; } ldv_40440: ; if ((data & 8U) != 0U || ((data & 7U) <= 1U || data <= 3U)) { goto ldv_40439; } else { } ldv_40436: { tmp___3 = ast_mindwm(ast, 510525544U); ast_moutdwm(ast, 510787672U, tmp___3 & 65535U); tmp___4 = ast_mindwm(ast, 510525464U); data = tmp___4 | 3072U; ast_moutdwm(ast, 510525464U, data); ast_moutdwm(ast, 510525492U, 1U); ast_moutdwm(ast, 510525452U, 64U); __const_udelay(214750UL); ast_moutdwm(ast, 510525484U, param->reg_MRS | 256U); ast_moutdwm(ast, 510525488U, param->reg_EMRS); ast_moutdwm(ast, 510525480U, 5U); ast_moutdwm(ast, 510525480U, 7U); ast_moutdwm(ast, 510525480U, 3U); ast_moutdwm(ast, 510525480U, 1U); ast_moutdwm(ast, 510525484U, param->reg_MRS); ast_moutdwm(ast, 510525452U, 23560U); ast_moutdwm(ast, 510525480U, 1U); ast_moutdwm(ast, 510525452U, 23553U); data = 0U; } if (param->wodt != 0U) { data = 768U; } else { } if (param->rodt != 0U) { data = (data | ((param->reg_AC2 & 393216U) >> 3)) | 12288U; } else { } { ast_moutdwm(ast, 510525492U, data | 3U); tmp___5 = cbr_dll2(ast, param); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { tmp___7 = retry; retry = retry + 1U; if (tmp___7 <= 9U) { goto ddr3_init_start; } else { } } else { } { ast_moutdwm(ast, 510525728U, param->reg_FREQ); } return; } } static void get_ddr2_info(struct ast_private *ast , struct ast2300_dram_param *param ) { u32 trap ; u32 trap_AC2 ; u32 trap_MRS ; u32 tmp ; { { ast_moutdwm(ast, 510533632U, 378054824U); tmp = ast_mindwm(ast, 510533744U); trap = (tmp >> 25) & 3U; trap_AC2 = (trap << 20) | (trap << 16); trap_AC2 = trap_AC2 + 1114112U; trap_MRS = (trap << 4) | 64U; param->reg_MADJ = 216140U; param->reg_SADJ = 6144U; param->reg_DRV = 240U; param->reg_PERIOD = param->dram_freq; param->rodt = 0U; } { if (param->dram_freq == 264U) { goto case_264; } else { } if (param->dram_freq == 336U) { goto case_336; } else { } if (param->dram_freq == 396U) { goto case_396; } else { } if (param->dram_freq == 408U) { goto case_408; } else { } if (param->dram_freq == 456U) { goto case_456; } else { } if (param->dram_freq == 504U) { goto case_504; } else { } if (param->dram_freq == 528U) { goto case_528; } else { } if (param->dram_freq == 552U) { goto case_552; } else { } if (param->dram_freq == 576U) { goto case_576; } else { } goto switch_default___0; case_264: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 304U); param->wodt = 0U; param->reg_AC1 = 286266643U; param->reg_AC2 = 2014408721U; param->reg_DQSIC = 146U; param->reg_MRS = 2114U; param->reg_EMRS = 0U; param->reg_DRV = 240U; param->reg_IOZ = 52U; param->reg_DQIDLY = 90U; param->reg_FREQ = 19136U; param->madj_max = 138U; param->dll2_finetune_step = 3U; } goto ldv_40449; case_336: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 400U); param->wodt = 1U; param->reg_AC1 = 572532243U; param->reg_AC2 = trap_AC2 | 2852163606U; param->reg_DQSIC = 186U; param->reg_MRS = trap_MRS | 2562U; param->reg_EMRS = 64U; param->reg_DRV = 250U; param->reg_IOZ = 52U; param->reg_DQIDLY = 116U; param->reg_FREQ = 19904U; param->madj_max = 96U; param->dll2_finetune_step = 3U; } { if (param->dram_chipid == 0U) { goto case_0; } else { } if (param->dram_chipid == 1U) { goto case_1; } else { } if (param->dram_chipid == 6U) { goto case_6; } else { } if (param->dram_chipid == 7U) { goto case_7; } else { } goto switch_default; switch_default: /* CIL Label */ ; case_0: /* CIL Label */ param->reg_AC2 = trap_AC2 | 2852163602U; goto ldv_40453; case_1: /* CIL Label */ param->reg_AC2 = trap_AC2 | 2852163606U; goto ldv_40453; case_6: /* CIL Label */ param->reg_AC2 = trap_AC2 | 2852163619U; goto ldv_40453; case_7: /* CIL Label */ param->reg_AC2 = trap_AC2 | 2852163643U; goto ldv_40453; switch_break___0: /* CIL Label */ ; } ldv_40453: ; goto ldv_40449; switch_default___0: /* CIL Label */ ; case_396: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 1009U); param->wodt = 1U; param->rodt = 0U; param->reg_AC1 = 858793748U; param->reg_AC2 = trap_AC2 | 3422597147U; param->reg_DQSIC = 226U; param->reg_MRS = trap_MRS | 3074U; param->reg_EMRS = 64U; param->reg_DRV = 250U; param->reg_IOZ = 52U; param->reg_DQIDLY = 137U; param->reg_FREQ = 20544U; param->madj_max = 96U; param->dll2_finetune_step = 4U; } { if (param->dram_chipid == 0U) { goto case_0___0; } else { } if (param->dram_chipid == 1U) { goto case_1___0; } else { } if (param->dram_chipid == 6U) { goto case_6___0; } else { } if (param->dram_chipid == 7U) { goto case_7___0; } else { } goto switch_default___1; case_0___0: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422597142U; goto ldv_40460; switch_default___1: /* CIL Label */ ; case_1___0: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422597147U; goto ldv_40460; case_6___0: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422597163U; goto ldv_40460; case_7___0: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422597183U; goto ldv_40460; switch_break___1: /* CIL Label */ ; } ldv_40460: ; goto ldv_40449; case_408: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 496U); param->wodt = 1U; param->rodt = 0U; param->reg_AC1 = 858793748U; param->reg_AC2 = trap_AC2 | 3422597147U; param->reg_DQSIC = 226U; param->reg_MRS = trap_MRS | 3074U; param->reg_EMRS = 64U; param->reg_DRV = 250U; param->reg_IOZ = 52U; param->reg_DQIDLY = 137U; param->reg_FREQ = 20672U; param->madj_max = 96U; param->dll2_finetune_step = 4U; } { if (param->dram_chipid == 0U) { goto case_0___1; } else { } if (param->dram_chipid == 1U) { goto case_1___1; } else { } if (param->dram_chipid == 6U) { goto case_6___1; } else { } if (param->dram_chipid == 7U) { goto case_7___1; } else { } goto switch_default___2; case_0___1: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422597142U; goto ldv_40467; switch_default___2: /* CIL Label */ ; case_1___1: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422597147U; goto ldv_40467; case_6___1: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422597163U; goto ldv_40467; case_7___1: /* CIL Label */ param->reg_AC2 = trap_AC2 | 3422597183U; goto ldv_40467; switch_break___2: /* CIL Label */ ; } ldv_40467: ; goto ldv_40449; case_456: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 560U); param->wodt = 0U; param->reg_AC1 = 858794005U; param->reg_AC2 = 3443830814U; param->reg_DQSIC = 252U; param->reg_MRS = 3698U; param->reg_EMRS = 0U; param->reg_DRV = 0U; param->reg_IOZ = 52U; param->reg_DQIDLY = 151U; param->reg_FREQ = 21184U; param->madj_max = 88U; param->dll2_finetune_step = 3U; } goto ldv_40449; case_504: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 609U); param->wodt = 1U; param->rodt = 1U; param->reg_AC1 = 858794005U; param->reg_AC2 = 3729047586U; param->reg_DQSIC = 279U; param->reg_MRS = 3698U; param->reg_EMRS = 64U; param->reg_DRV = 10U; param->reg_IOZ = 69U; param->reg_DQIDLY = 160U; param->reg_FREQ = 21696U; param->madj_max = 79U; param->dll2_finetune_step = 3U; } goto ldv_40449; case_528: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 288U); param->wodt = 1U; param->rodt = 1U; param->reg_AC1 = 858794005U; param->reg_AC2 = 4014264356U; param->reg_DQSIC = 293U; param->reg_MRS = 3698U; param->reg_EMRS = 4U; param->reg_DRV = 249U; param->reg_IOZ = 69U; param->reg_DQIDLY = 167U; param->reg_FREQ = 21952U; param->madj_max = 76U; param->dll2_finetune_step = 3U; } goto ldv_40449; case_552: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 673U); param->wodt = 1U; param->rodt = 1U; param->reg_AC1 = 1128278293U; param->reg_AC2 = 4282703909U; param->reg_DQSIC = 306U; param->reg_MRS = 3698U; param->reg_EMRS = 64U; param->reg_DRV = 10U; param->reg_IOZ = 69U; param->reg_DQIDLY = 173U; param->reg_FREQ = 22208U; param->madj_max = 76U; param->dll2_finetune_step = 3U; } goto ldv_40449; case_576: /* CIL Label */ { ast_moutdwm(ast, 510533664U, 320U); param->wodt = 1U; param->rodt = 1U; param->reg_AC1 = 1128278293U; param->reg_AC2 = 4282703911U; param->reg_DQSIC = 319U; param->reg_MRS = 3698U; param->reg_EMRS = 4U; param->reg_DRV = 245U; param->reg_IOZ = 69U; param->reg_DQIDLY = 179U; param->reg_FREQ = 22464U; param->madj_max = 76U; param->dll2_finetune_step = 3U; } goto ldv_40449; switch_break: /* CIL Label */ ; } ldv_40449: ; { if (param->dram_chipid == 0U) { goto case_0___2; } else { } if (param->dram_chipid == 1U) { goto case_1___2; } else { } if (param->dram_chipid == 6U) { goto case_6___2; } else { } if (param->dram_chipid == 7U) { goto case_7___2; } else { } goto switch_default___3; case_0___2: /* CIL Label */ param->dram_config = 256U; goto ldv_40478; switch_default___3: /* CIL Label */ ; case_1___2: /* CIL Label */ param->dram_config = 289U; goto ldv_40478; case_6___2: /* CIL Label */ param->dram_config = 290U; goto ldv_40478; case_7___2: /* CIL Label */ param->dram_config = 291U; goto ldv_40478; switch_break___3: /* CIL Label */ ; } ldv_40478: ; { if (param->vram_size == 8388608U) { goto case_8388608; } else { } if (param->vram_size == 16777216U) { goto case_16777216; } else { } if (param->vram_size == 33554432U) { goto case_33554432; } else { } if (param->vram_size == 67108864U) { goto case_67108864; } else { } goto switch_default___4; switch_default___4: /* CIL Label */ ; case_8388608: /* CIL Label */ param->dram_config = param->dram_config; goto ldv_40485; case_16777216: /* CIL Label */ param->dram_config = param->dram_config | 4U; goto ldv_40485; case_33554432: /* CIL Label */ param->dram_config = param->dram_config | 8U; goto ldv_40485; case_67108864: /* CIL Label */ param->dram_config = param->dram_config | 12U; goto ldv_40485; switch_break___4: /* CIL Label */ ; } ldv_40485: ; return; } } static void ddr2_init(struct ast_private *ast , struct ast2300_dram_param *param ) { u32 data ; u32 data2 ; u32 retry ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; bool tmp___5 ; int tmp___6 ; u32 tmp___7 ; { retry = 0U; ddr2_init_start: { ast_moutdwm(ast, 510525440U, 4234150665U); ast_moutdwm(ast, 510525464U, 256U); ast_moutdwm(ast, 510525476U, 0U); ast_moutdwm(ast, 510525540U, param->reg_MADJ); ast_moutdwm(ast, 510525544U, param->reg_SADJ); __const_udelay(42950UL); ast_moutdwm(ast, 510525540U, param->reg_MADJ | 786432U); __const_udelay(42950UL); ast_moutdwm(ast, 510525444U, param->dram_config); ast_moutdwm(ast, 510525448U, 9438223U); ast_moutdwm(ast, 510525456U, param->reg_AC1); ast_moutdwm(ast, 510525460U, param->reg_AC2); ast_moutdwm(ast, 510525472U, param->reg_DQSIC); ast_moutdwm(ast, 510525568U, 0U); ast_moutdwm(ast, 510525572U, 0U); ast_moutdwm(ast, 510525576U, param->reg_DQIDLY); ast_moutdwm(ast, 510525464U, 1073783088U); ast_moutdwm(ast, 510525464U, 9008U); ast_moutdwm(ast, 510525496U, 0U); ast_moutdwm(ast, 510525504U, 4286611456U); ast_moutdwm(ast, 510525508U, 2290386022U); ast_moutdwm(ast, 510525512U, 1145307144U); ast_moutdwm(ast, 510525516U, 0U); ast_moutdwm(ast, 510525520U, 2147483648U); ast_moutdwm(ast, 510525520U, 0U); ast_moutdwm(ast, 510525524U, 0U); ast_moutdwm(ast, 510525536U, param->reg_DRV); ast_moutdwm(ast, 510525548U, param->reg_IOZ); ast_moutdwm(ast, 510525552U, 0U); ast_moutdwm(ast, 510525556U, 0U); ast_moutdwm(ast, 510525560U, 0U); ast_moutdwm(ast, 510525564U, 0U); } ldv_40497: { data = ast_mindwm(ast, 510525468U); } if ((data & 134217728U) == 0U) { goto ldv_40497; } else { } { data = ast_mindwm(ast, 510525468U); data = (data >> 8) & 255U; } goto ldv_40503; ldv_40502: { tmp = ast_mindwm(ast, 510525540U); data2 = (tmp & 4294180863U) + 4U; } if ((data2 & 255U) > param->madj_max) { goto ldv_40499; } else { } { ast_moutdwm(ast, 510525540U, data2); } if ((data2 & 1048576U) != 0U) { data2 = ((data2 & 255U) >> 3) + 3U; } else { data2 = ((data2 & 255U) >> 2) + 5U; } { tmp___0 = ast_mindwm(ast, 510525544U); data = tmp___0 & 4294902015U; data2 = data2 + (data & 255U); data = data | (data2 << 8); ast_moutdwm(ast, 510525544U, data); __const_udelay(42950UL); tmp___1 = ast_mindwm(ast, 510525540U); ast_moutdwm(ast, 510525540U, tmp___1 | 786432U); __const_udelay(42950UL); tmp___2 = ast_mindwm(ast, 510525464U); data = tmp___2 & 4294963711U; ast_moutdwm(ast, 510525464U, data); data = data | 512U; ast_moutdwm(ast, 510525464U, data); } ldv_40500: { data = ast_mindwm(ast, 510525468U); } if ((data & 134217728U) == 0U) { goto ldv_40500; } else { } { data = ast_mindwm(ast, 510525468U); data = (data >> 8) & 255U; } ldv_40503: ; if ((data & 8U) != 0U || ((data & 7U) <= 1U || data <= 3U)) { goto ldv_40502; } else { } ldv_40499: { tmp___3 = ast_mindwm(ast, 510525448U); ast_moutdwm(ast, 510787672U, tmp___3 & 65535U); tmp___4 = ast_mindwm(ast, 510525464U); data = tmp___4 | 3072U; ast_moutdwm(ast, 510525464U, data); ast_moutdwm(ast, 510525492U, 1U); ast_moutdwm(ast, 510525452U, 0U); __const_udelay(214750UL); ast_moutdwm(ast, 510525484U, param->reg_MRS | 256U); ast_moutdwm(ast, 510525488U, param->reg_EMRS); ast_moutdwm(ast, 510525480U, 5U); ast_moutdwm(ast, 510525480U, 7U); ast_moutdwm(ast, 510525480U, 3U); ast_moutdwm(ast, 510525480U, 1U); ast_moutdwm(ast, 510525452U, 23560U); ast_moutdwm(ast, 510525484U, param->reg_MRS); ast_moutdwm(ast, 510525480U, 1U); ast_moutdwm(ast, 510525488U, param->reg_EMRS | 896U); ast_moutdwm(ast, 510525480U, 3U); ast_moutdwm(ast, 510525488U, param->reg_EMRS); ast_moutdwm(ast, 510525480U, 3U); ast_moutdwm(ast, 510525452U, 2147441665U); data = 0U; } if (param->wodt != 0U) { data = 1280U; } else { } if (param->rodt != 0U) { data = (data | ((param->reg_AC2 & 393216U) >> 3)) | 12288U; } else { } { ast_moutdwm(ast, 510525492U, data | 3U); ast_moutdwm(ast, 510525728U, param->reg_FREQ); tmp___5 = cbr_dll2(ast, param); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { tmp___7 = retry; retry = retry + 1U; if (tmp___7 <= 9U) { goto ddr2_init_start; } else { } } else { } return; } } static void ast_init_dram_2300(struct drm_device *dev ) { struct ast_private *ast ; struct ast2300_dram_param param ; u32 temp ; u8 reg ; u32 tmp ; u32 tmp___0 ; { { ast = (struct ast_private *)dev->dev_private; reg = ast_get_index_reg_mask(ast, 84U, 208, 255); } if ((int )((signed char )reg) >= 0) { { ast_write32(ast, 61444U, 510525440U); ast_write32(ast, 61440U, 1U); ast_write32(ast, 73728U, 378054824U); } ldv_40511: { tmp = ast_read32(ast, 73728U); } if (tmp != 1U) { goto ldv_40511; } else { } { ast_write32(ast, 65536U, 4234150665U); } ldv_40513: { tmp___0 = ast_read32(ast, 65536U); } if (tmp___0 != 1U) { goto ldv_40513; } else { } { temp = ast_read32(ast, 73736U); temp = temp | 115U; ast_write32(ast, 73736U, temp); param.dram_type = 0U; } if ((temp & 16777216U) != 0U) { param.dram_type = 1U; } else { } param.dram_chipid = ast->dram_type; param.dram_freq = ast->mclk; param.vram_size = ast->vram_size; if (param.dram_type == 0U) { { get_ddr3_info(ast, & param); ddr3_init(ast, & param); } } else { { get_ddr2_info(ast, & param); ddr2_init(ast, & param); } } { temp = ast_mindwm(ast, 510533696U); ast_moutdwm(ast, 510533696U, temp | 64U); } } else { } ldv_40515: { reg = ast_get_index_reg_mask(ast, 84U, 208, 255); } if (((int )reg & 64) == 0) { goto ldv_40515; } else { } return; } } extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void msleep(unsigned int ) ; int ast_load_dp501_microcode(struct drm_device *dev ) ; bool ast_launch_m68k(struct drm_device *dev ) ; int ast_load_dp501_microcode(struct drm_device *dev ) { struct ast_private *ast ; char *fw_name ; int err ; { { ast = (struct ast_private *)dev->dev_private; fw_name = (char *)"ast_dp501_fw.bin"; err = request_firmware(& ast->dp501_fw, (char const *)fw_name, dev->dev); } if (err != 0) { return (err); } else { } return (0); } } static void send_ack(struct ast_private *ast ) { u8 sendack ; { { sendack = ast_get_index_reg_mask(ast, 84U, 155, 255); sendack = (u8 )((unsigned int )sendack | 128U); ast_set_index_reg_mask(ast, 84U, 155, 0, (int )sendack); } return; } } static void send_nack(struct ast_private *ast ) { u8 sendack ; { { sendack = ast_get_index_reg_mask(ast, 84U, 155, 255); sendack = (unsigned int )sendack & 127U; ast_set_index_reg_mask(ast, 84U, 155, 0, (int )sendack); } return; } } static bool wait_ack(struct ast_private *ast ) { u8 waitack ; u32 retry ; u32 tmp ; { retry = 0U; ldv_40093: { waitack = ast_get_index_reg_mask(ast, 84U, 210, 255); waitack = (unsigned int )waitack & 128U; __const_udelay(429500UL); } if ((unsigned int )waitack == 0U) { tmp = retry; retry = retry + 1U; if (tmp <= 999U) { goto ldv_40093; } else { goto ldv_40094; } } else { } ldv_40094: ; if (retry <= 999U) { return (1); } else { return (0); } } } static bool wait_nack(struct ast_private *ast ) { u8 waitack ; u32 retry ; u32 tmp ; { retry = 0U; ldv_40100: { waitack = ast_get_index_reg_mask(ast, 84U, 210, 255); waitack = (unsigned int )waitack & 128U; __const_udelay(429500UL); } if ((unsigned int )waitack != 0U) { tmp = retry; retry = retry + 1U; if (tmp <= 999U) { goto ldv_40100; } else { goto ldv_40101; } } else { } ldv_40101: ; if (retry <= 999U) { return (1); } else { return (0); } } } static void set_cmd_trigger(struct ast_private *ast ) { { { ast_set_index_reg_mask(ast, 84U, 155, 191, 64); } return; } } static void clear_cmd_trigger(struct ast_private *ast ) { { { ast_set_index_reg_mask(ast, 84U, 155, 191, 0); } return; } } static bool ast_write_cmd(struct drm_device *dev , u8 data ) { struct ast_private *ast ; int retry ; bool tmp ; int tmp___0 ; bool tmp___1 ; { { ast = (struct ast_private *)dev->dev_private; retry = 0; tmp___1 = wait_nack(ast); } if ((int )tmp___1) { { send_nack(ast); ast_set_index_reg_mask(ast, 84U, 154, 0, (int )data); send_ack(ast); set_cmd_trigger(ast); } ldv_40114: { tmp = wait_ack(ast); } if ((int )tmp) { { clear_cmd_trigger(ast); send_nack(ast); } return (1); } else { } tmp___0 = retry; retry = retry + 1; if (tmp___0 <= 99) { goto ldv_40114; } else { } } else { } { clear_cmd_trigger(ast); send_nack(ast); } return (0); } } static bool ast_write_data(struct drm_device *dev , u8 data ) { struct ast_private *ast ; bool tmp ; bool tmp___0 ; { { ast = (struct ast_private *)dev->dev_private; tmp___0 = wait_nack(ast); } if ((int )tmp___0) { { send_nack(ast); ast_set_index_reg_mask(ast, 84U, 154, 0, (int )data); send_ack(ast); tmp = wait_ack(ast); } if ((int )tmp) { { send_nack(ast); } return (1); } else { } } else { } { send_nack(ast); } return (0); } } void ast_set_dp501_video_output(struct drm_device *dev , u8 mode ) { { { ast_write_cmd(dev, 64); ast_write_data(dev, (int )mode); msleep(10U); } return; } } static u32 get_fw_base(struct ast_private *ast ) { u32 tmp ; { { tmp = ast_mindwm(ast, 510533892U); } return (tmp & 2147483647U); } } bool ast_backup_fw(struct drm_device *dev , u8 *addr , u32 size ) { struct ast_private *ast ; u32 i ; u32 data ; u32 boot_address ; u32 tmp ; { { ast = (struct ast_private *)dev->dev_private; tmp = ast_mindwm(ast, 510533888U); data = tmp & 1U; } if (data != 0U) { { boot_address = get_fw_base(ast); i = 0U; } goto ldv_40138; ldv_40137: { *((u32 *)addr + (unsigned long )i) = ast_mindwm(ast, boot_address + i); i = i + 4U; } ldv_40138: ; if (i < size) { goto ldv_40137; } else { } return (1); } else { } return (0); } } bool ast_launch_m68k(struct drm_device *dev ) { struct ast_private *ast ; u32 i ; u32 data ; u32 len ; u32 boot_address ; u8 *fw_addr ; u8 jreg ; u32 tmp ; u32 tmp___0 ; { { ast = (struct ast_private *)dev->dev_private; len = 0U; fw_addr = (u8 *)0U; tmp = ast_mindwm(ast, 510533888U); data = tmp & 1U; } if (data == 0U) { if ((unsigned long )ast->dp501_fw_addr != (unsigned long )((u8 *)0U)) { fw_addr = ast->dp501_fw_addr; len = 32768U; } else if ((unsigned long )ast->dp501_fw != (unsigned long )((struct firmware const *)0)) { fw_addr = (u8 *)(ast->dp501_fw)->data; len = (u32 )(ast->dp501_fw)->size; } else { } { ast_moutdwm(ast, 510533632U, 378054824U); data = ast_mindwm(ast, 510525444U); } { if ((data & 3U) == 0U) { goto case_0; } else { } if ((data & 3U) == 1U) { goto case_1; } else { } if ((data & 3U) == 2U) { goto case_2; } else { } if ((data & 3U) == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ boot_address = 1140850688U; goto ldv_40151; switch_default: /* CIL Label */ ; case_1: /* CIL Label */ boot_address = 1207959552U; goto ldv_40151; case_2: /* CIL Label */ boot_address = 1342177280U; goto ldv_40151; case_3: /* CIL Label */ boot_address = 1610612736U; goto ldv_40151; switch_break: /* CIL Label */ ; } ldv_40151: boot_address = boot_address - 2097152U; i = 0U; goto ldv_40157; ldv_40156: { data = *((u32 *)fw_addr + (unsigned long )i); ast_moutdwm(ast, boot_address + i, data); i = i + 4U; } ldv_40157: ; if (i < len) { goto ldv_40156; } else { } { ast_moutdwm(ast, 510533632U, 378054824U); ast_moutdwm(ast, 510533892U, boot_address + 2147483648U); ast_moutdwm(ast, 510533888U, 1U); tmp___0 = ast_mindwm(ast, 510533696U); data = tmp___0 & 4294963711U; data = data | 2048U; ast_moutdwm(ast, 510533696U, data); jreg = ast_get_index_reg_mask(ast, 84U, 153, 252); jreg = (u8 )((unsigned int )jreg | 2U); ast_set_index_reg(ast, 84U, 153, (int )jreg); } } else { } return (1); } } u8 ast_get_dp501_max_clk(struct drm_device *dev ) { struct ast_private *ast ; u32 boot_address ; u32 offset ; u32 data ; u8 linkcap[4U] ; u8 linkrate ; u8 linklanes ; u8 maxclk ; { { ast = (struct ast_private *)dev->dev_private; maxclk = 255U; boot_address = get_fw_base(ast); offset = 61440U; data = ast_mindwm(ast, boot_address + offset); } if ((data & 240U) != 16U) { return (maxclk); } else { } { offset = 61460U; *((u32 *)(& linkcap)) = ast_mindwm(ast, boot_address + offset); } if ((unsigned int )linkcap[2] == 0U) { linkrate = linkcap[0]; linklanes = linkcap[1]; data = (u32 )((unsigned int )linkrate == 10U ? (int )linklanes * 90 : (int )linklanes * 54); if (data > 255U) { data = 255U; } else { } maxclk = (unsigned char )data; } else { } return (maxclk); } } bool ast_dp501_read_edid(struct drm_device *dev , u8 *ediddata ) { struct ast_private *ast ; u32 i ; u32 boot_address ; u32 offset ; u32 data ; { { ast = (struct ast_private *)dev->dev_private; boot_address = get_fw_base(ast); offset = 61440U; data = ast_mindwm(ast, boot_address + offset); } if ((data & 240U) != 16U) { return (0); } else { } { offset = 61456U; data = ast_mindwm(ast, boot_address + offset); } if ((data & 1U) == 0U) { return (0); } else { } offset = 61472U; i = 0U; goto ldv_40180; ldv_40179: { data = ast_mindwm(ast, (boot_address + offset) + i); *((u32 *)ediddata + (unsigned long )i) = data; i = i + 4U; } ldv_40180: ; if (i <= 127U) { goto ldv_40179; } else { } return (1); } } static bool ast_init_dvo(struct drm_device *dev ) { struct ast_private *ast ; u8 jreg ; u32 data ; { { ast = (struct ast_private *)dev->dev_private; ast_write32(ast, 61444U, 510525440U); ast_write32(ast, 61440U, 1U); ast_write32(ast, 73728U, 378054824U); jreg = ast_get_index_reg_mask(ast, 84U, 208, 255); } if ((int )((signed char )jreg) >= 0) { { data = ast_read32(ast, 73736U); data = data & 4294965503U; data = data | 1280U; ast_write32(ast, 73736U, data); } if ((unsigned int )ast->chip == 5U) { { data = ast_read32(ast, 73860U); data = data | 4294836224U; ast_write32(ast, 73860U, data); data = ast_read32(ast, 73864U); data = data | 1048575U; ast_write32(ast, 73864U, data); data = ast_read32(ast, 73872U); data = data & 4294967247U; data = data | 32U; ast_write32(ast, 73872U, data); } } else { { data = ast_read32(ast, 73864U); data = data | 805306368U; ast_write32(ast, 73864U, data); data = ast_read32(ast, 73868U); data = data | 207U; ast_write32(ast, 73868U, data); data = ast_read32(ast, 73892U); data = data | 4294901760U; ast_write32(ast, 73892U, data); data = ast_read32(ast, 73896U); data = data | 15U; ast_write32(ast, 73896U, data); data = ast_read32(ast, 73876U); data = data | 2U; ast_write32(ast, 73876U, data); } } } else { } { data = ast_read32(ast, 73772U); data = data & 4294705151U; ast_write32(ast, 73772U, data); ast_set_index_reg_mask(ast, 84U, 163, 207, 128); } return (1); } } static void ast_init_analog(struct drm_device *dev ) { struct ast_private *ast ; u32 data ; { { ast = (struct ast_private *)dev->dev_private; ast_write32(ast, 61444U, 510525440U); ast_write32(ast, 61440U, 1U); ast_write32(ast, 73728U, 378054824U); ast_write32(ast, 73728U, 378054824U); ast_write32(ast, 73728U, 378054824U); data = ast_read32(ast, 73772U); data = data & 4294770687U; ast_write32(ast, 0U, data); ast_set_index_reg_mask(ast, 84U, 163, 207, 0); } return; } } void ast_init_3rdtx(struct drm_device *dev ) { struct ast_private *ast ; u8 jreg ; { ast = (struct ast_private *)dev->dev_private; if ((unsigned int )ast->chip - 5U <= 1U) { { jreg = ast_get_index_reg_mask(ast, 84U, 209, 255); } { if (((int )jreg & 14) == 4) { goto case_4; } else { } if (((int )jreg & 14) == 8) { goto case_8; } else { } if (((int )jreg & 14) == 12) { goto case_12; } else { } goto switch_default; case_4: /* CIL Label */ { ast_init_dvo(dev); } goto ldv_40199; case_8: /* CIL Label */ { ast_launch_m68k(dev); } goto ldv_40199; case_12: /* CIL Label */ { ast_init_dvo(dev); } goto ldv_40199; switch_default: /* CIL Label */ ; if ((unsigned int )ast->tx_chip_type == 1U) { { ast_init_dvo(dev); } } else { { ast_init_analog(dev); } } switch_break: /* CIL Label */ ; } ldv_40199: ; } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(size_t size ) { void *ptr ; void *tmp ; { { tmp = ldv_malloc(size); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_malloc(sizeof(struct class)); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(size); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void *is_got ) { long tmp ; { { ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex ; void ldv_linux_kernel_locking_mutex_mutex_lock_base_of_ww_mutex(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_base_of_ww_mutex(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_base_of_ww_mutex(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_base_of_ww_mutex(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_base_of_ww_mutex(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_base_of_ww_mutex(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_base_of_ww_mutex(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_base_of_ww_mutex(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_fb_info(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_fb_info(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock_of_fb_info(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_struct_mutex_of_drm_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_struct_mutex_of_drm_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_struct_mutex_of_drm_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_struct_mutex_of_drm_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_struct_mutex_of_drm_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_struct_mutex_of_drm_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_struct_mutex_of_drm_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_struct_mutex_of_drm_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_backlight_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_update_lock_of_backlight_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_update_lock_of_backlight_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_backlight_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_backlight_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_base_of_ww_mutex); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_struct_mutex_of_drm_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_dirty_lock_of_ast_fbdev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 1); ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_dirty_lock_of_ast_fbdev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 2); ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_dirty_lock_of_ast_fbdev(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_dirty_lock_of_ast_fbdev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_dirty_lock_of_ast_fbdev(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_dirty_lock_of_ast_fbdev(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_dirty_lock_of_ast_fbdev(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_dirty_lock_of_ast_fbdev(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_dirty_lock_of_ast_fbdev(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_ttm_mem_global(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_ttm_mem_global(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_ttm_mem_global(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_ttm_mem_global(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_ttm_mem_global(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_ttm_mem_global(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_ttm_mem_global(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_ttm_mem_global(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_ttm_mem_global(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lru_lock_of_ttm_bo_global(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 1); ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lru_lock_of_ttm_bo_global(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 2); ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lru_lock_of_ttm_bo_global(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lru_lock_of_ttm_bo_global(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lru_lock_of_ttm_bo_global(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lru_lock_of_ttm_bo_global(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lru_lock_of_ttm_bo_global(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lru_lock_of_ttm_bo_global(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lru_lock_of_ttm_bo_global(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_dirty_lock_of_ast_fbdev == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_ttm_mem_global == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lru_lock_of_ttm_bo_global == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-4.0-rc1---drivers--gpu--drm--ast--ast.ko_false-unreach-call.cil.env.c" #include "model/common.env.c"