/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; struct request; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct timespec; struct compat_timespec; struct __anonstruct_futex_31 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_32 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_33 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_30 { struct __anonstruct_futex_31 futex ; struct __anonstruct_nanosleep_32 nanosleep ; struct __anonstruct_poll_33 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_30 __annonCompField19 ; }; typedef int pao_T__; typedef int pao_T_____0; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_46 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_46 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct __anonstruct_nodemask_t_47 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_47 nodemask_t; enum node_states { N_POSSIBLE = 0, N_ONLINE = 1, N_NORMAL_MEMORY = 2, N_HIGH_MEMORY = 2, N_MEMORY = 3, N_CPU = 4, NR_NODE_STATES = 5 } ; struct optimistic_spin_queue { atomic_t tail ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct vm_area_struct; struct notifier_block; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_53 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_54 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_52 { struct __anonstruct____missing_field_name_53 __annonCompField22 ; struct __anonstruct____missing_field_name_54 __annonCompField23 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_52 __annonCompField24 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct __anonstruct_mm_context_t_55 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_55 mm_context_t; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_56 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_58 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_62 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_61 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_62 __annonCompField27 ; int units ; }; struct __anonstruct____missing_field_name_60 { union __anonunion____missing_field_name_61 __annonCompField28 ; atomic_t _count ; }; union __anonunion____missing_field_name_59 { unsigned long counters ; struct __anonstruct____missing_field_name_60 __annonCompField29 ; unsigned int active ; }; struct __anonstruct____missing_field_name_57 { union __anonunion____missing_field_name_58 __annonCompField26 ; union __anonunion____missing_field_name_59 __annonCompField30 ; }; struct __anonstruct____missing_field_name_64 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_65 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_63 { struct list_head lru ; struct __anonstruct____missing_field_name_64 __annonCompField32 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_65 __annonCompField33 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_66 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_56 __annonCompField25 ; struct __anonstruct____missing_field_name_57 __annonCompField31 ; union __anonunion____missing_field_name_63 __annonCompField34 ; union __anonunion____missing_field_name_66 __annonCompField35 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_67 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_67 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct llist_node; struct llist_head { struct llist_node *first ; }; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct bio_vec; struct device_node; struct __anonstruct_kuid_t_159 { uid_t val ; }; typedef struct __anonstruct_kuid_t_159 kuid_t; struct __anonstruct_kgid_t_160 { gid_t val ; }; typedef struct __anonstruct_kgid_t_160 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_161 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_161 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_163 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_164 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_166 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_168 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_167 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_168 _addr_bnd ; }; struct __anonstruct__sigpoll_169 { long _band ; int _fd ; }; struct __anonstruct__sigsys_170 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_162 { int _pad[28U] ; struct __anonstruct__kill_163 _kill ; struct __anonstruct__timer_164 _timer ; struct __anonstruct__rt_165 _rt ; struct __anonstruct__sigchld_166 _sigchld ; struct __anonstruct__sigfault_167 _sigfault ; struct __anonstruct__sigpoll_169 _sigpoll ; struct __anonstruct__sigsys_170 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_162 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_175 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_176 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_178 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_177 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_178 __annonCompField50 ; }; union __anonunion_type_data_179 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_181 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_180 { union __anonunion_payload_181 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_175 __annonCompField48 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_176 __annonCompField49 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_177 __annonCompField51 ; union __anonunion_type_data_179 type_data ; union __anonunion____missing_field_name_180 __annonCompField52 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct device_type; struct kobject; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField56 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_187 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_187 __annonCompField57 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_189 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_188 { struct __anonstruct____missing_field_name_189 __annonCompField58 ; }; struct lockref { union __anonunion____missing_field_name_188 __annonCompField59 ; }; struct vfsmount; struct __anonstruct____missing_field_name_191 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_190 { struct __anonstruct____missing_field_name_191 __annonCompField60 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_190 __annonCompField61 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_192 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_192 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_194 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_193 { struct __anonstruct____missing_field_name_194 __annonCompField62 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_193 __annonCompField63 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_195 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_195 __annonCompField64 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_196 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_196 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_197 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_197 __annonCompField65 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_200 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_201 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_202 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_200 __annonCompField66 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_201 __annonCompField67 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_202 __annonCompField68 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_203 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_203 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_205 { struct list_head link ; int state ; }; union __anonunion_fl_u_204 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_205 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_204 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct exception_table_entry { int insn ; int fixup ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_210 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_211 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_210 __annonCompField72 ; union __anonunion____missing_field_name_211 __annonCompField73 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct elevator_queue; struct blk_trace; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_212 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_213 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_214 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_216 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_217 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_215 { struct __anonstruct_elv_216 elv ; struct __anonstruct_flush_217 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_212 __annonCompField74 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_213 __annonCompField75 ; union __anonunion____missing_field_name_214 __annonCompField76 ; union __anonunion____missing_field_name_215 __annonCompField77 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_plug_cb; struct blk_plug_cb { struct list_head list ; void (*callback)(struct blk_plug_cb * , bool ) ; void *data ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_219 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_219 __annonCompField78 ; unsigned long nr_segs ; }; typedef s32 dma_cookie_t; enum dma_status { DMA_COMPLETE = 0, DMA_IN_PROGRESS = 1, DMA_PAUSED = 2, DMA_ERROR = 3 } ; enum dma_transfer_direction { DMA_MEM_TO_MEM = 0, DMA_MEM_TO_DEV = 1, DMA_DEV_TO_MEM = 2, DMA_DEV_TO_DEV = 3, DMA_TRANS_NONE = 4 } ; struct data_chunk { size_t size ; size_t icg ; }; struct dma_interleaved_template { dma_addr_t src_start ; dma_addr_t dst_start ; enum dma_transfer_direction dir ; bool src_inc ; bool dst_inc ; bool src_sgl ; bool dst_sgl ; size_t numf ; size_t frame_size ; struct data_chunk sgl[0U] ; }; enum dma_ctrl_flags { DMA_PREP_INTERRUPT = 1, DMA_CTRL_ACK = 2, DMA_PREP_PQ_DISABLE_P = 4, DMA_PREP_PQ_DISABLE_Q = 8, DMA_PREP_CONTINUE = 16, DMA_PREP_FENCE = 32 } ; enum sum_check_flags { SUM_CHECK_P_RESULT = 1, SUM_CHECK_Q_RESULT = 2 } ; struct __anonstruct_dma_cap_mask_t_220 { unsigned long bits[1U] ; }; typedef struct __anonstruct_dma_cap_mask_t_220 dma_cap_mask_t; struct dma_chan_percpu { unsigned long memcpy_count ; unsigned long bytes_transferred ; }; struct dma_device; struct dma_chan_dev; struct dma_chan { struct dma_device *device ; dma_cookie_t cookie ; dma_cookie_t completed_cookie ; int chan_id ; struct dma_chan_dev *dev ; struct list_head device_node ; struct dma_chan_percpu *local ; int client_count ; int table_count ; void *private ; }; struct dma_chan_dev { struct dma_chan *chan ; struct device device ; int dev_id ; atomic_t *idr_ref ; }; enum dma_slave_buswidth { DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, DMA_SLAVE_BUSWIDTH_1_BYTE = 1, DMA_SLAVE_BUSWIDTH_2_BYTES = 2, DMA_SLAVE_BUSWIDTH_3_BYTES = 3, DMA_SLAVE_BUSWIDTH_4_BYTES = 4, DMA_SLAVE_BUSWIDTH_8_BYTES = 8, DMA_SLAVE_BUSWIDTH_16_BYTES = 16, DMA_SLAVE_BUSWIDTH_32_BYTES = 32, DMA_SLAVE_BUSWIDTH_64_BYTES = 64 } ; struct dma_slave_config { enum dma_transfer_direction direction ; dma_addr_t src_addr ; dma_addr_t dst_addr ; enum dma_slave_buswidth src_addr_width ; enum dma_slave_buswidth dst_addr_width ; u32 src_maxburst ; u32 dst_maxburst ; bool device_fc ; unsigned int slave_id ; }; enum dma_residue_granularity { DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, DMA_RESIDUE_GRANULARITY_SEGMENT = 1, DMA_RESIDUE_GRANULARITY_BURST = 2 } ; struct dmaengine_unmap_data { u8 map_cnt ; u8 to_cnt ; u8 from_cnt ; u8 bidi_cnt ; struct device *dev ; struct kref kref ; size_t len ; dma_addr_t addr[0U] ; }; struct dma_async_tx_descriptor { dma_cookie_t cookie ; enum dma_ctrl_flags flags ; dma_addr_t phys ; struct dma_chan *chan ; dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor * ) ; void (*callback)(void * ) ; void *callback_param ; struct dmaengine_unmap_data *unmap ; }; struct dma_tx_state { dma_cookie_t last ; dma_cookie_t used ; u32 residue ; }; struct dma_device { unsigned int chancnt ; unsigned int privatecnt ; struct list_head channels ; struct list_head global_node ; dma_cap_mask_t cap_mask ; unsigned short max_xor ; unsigned short max_pq ; u8 copy_align ; u8 xor_align ; u8 pq_align ; u8 fill_align ; int dev_id ; struct device *dev ; u32 src_addr_widths ; u32 dst_addr_widths ; u32 directions ; enum dma_residue_granularity residue_granularity ; int (*device_alloc_chan_resources)(struct dma_chan * ) ; void (*device_free_chan_resources)(struct dma_chan * ) ; struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(struct dma_chan * , dma_addr_t , dma_addr_t , size_t , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_xor)(struct dma_chan * , dma_addr_t , dma_addr_t * , unsigned int , size_t , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(struct dma_chan * , dma_addr_t * , unsigned int , size_t , enum sum_check_flags * , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_pq)(struct dma_chan * , dma_addr_t * , dma_addr_t * , unsigned int , unsigned char const * , size_t , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(struct dma_chan * , dma_addr_t * , dma_addr_t * , unsigned int , unsigned char const * , size_t , enum sum_check_flags * , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(struct dma_chan * , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_sg)(struct dma_chan * , struct scatterlist * , unsigned int , struct scatterlist * , unsigned int , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_slave_sg)(struct dma_chan * , struct scatterlist * , unsigned int , enum dma_transfer_direction , unsigned long , void * ) ; struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(struct dma_chan * , dma_addr_t , size_t , size_t , enum dma_transfer_direction , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(struct dma_chan * , struct dma_interleaved_template * , unsigned long ) ; int (*device_config)(struct dma_chan * , struct dma_slave_config * ) ; int (*device_pause)(struct dma_chan * ) ; int (*device_resume)(struct dma_chan * ) ; int (*device_terminate_all)(struct dma_chan * ) ; enum dma_status (*device_tx_status)(struct dma_chan * , dma_cookie_t , struct dma_tx_state * ) ; void (*device_issue_pending)(struct dma_chan * ) ; }; enum async_tx_flags { ASYNC_TX_XOR_ZERO_DST = 1, ASYNC_TX_XOR_DROP_DST = 2, ASYNC_TX_ACK = 4, ASYNC_TX_FENCE = 8 } ; struct async_submit_ctl { enum async_tx_flags flags ; struct dma_async_tx_descriptor *depend_tx ; void (*cb_fn)(void * ) ; void *cb_param ; void *scribble ; }; union __anonunion_addr_conv_t_221 { unsigned long addr ; struct page *page ; dma_addr_t dma ; }; typedef union __anonunion_addr_conv_t_221 addr_conv_t; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_226 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_226 __annonCompField79 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct rchan; struct rchan_buf { void *start ; void *data ; size_t offset ; size_t subbufs_produced ; size_t subbufs_consumed ; struct rchan *chan ; wait_queue_head_t read_wait ; struct timer_list timer ; struct dentry *dentry ; struct kref kref ; struct page **page_array ; unsigned int page_count ; unsigned int finalized ; size_t *padding ; size_t prev_padding ; size_t bytes_consumed ; size_t early_bytes ; unsigned int cpu ; }; struct rchan_callbacks; struct rchan { u32 version ; size_t subbuf_size ; size_t n_subbufs ; size_t alloc_size ; struct rchan_callbacks *cb ; struct kref kref ; void *private_data ; size_t last_toobig ; struct rchan_buf *buf[8192U] ; int is_global ; struct list_head list ; struct dentry *parent ; int has_base_filename ; char base_filename[255U] ; }; struct rchan_callbacks { int (*subbuf_start)(struct rchan_buf * , void * , void * , size_t ) ; void (*buf_mapped)(struct rchan_buf * , struct file * ) ; void (*buf_unmapped)(struct rchan_buf * , struct file * ) ; struct dentry *(*create_buf_file)(char const * , struct dentry * , umode_t , struct rchan_buf * , int * ) ; int (*remove_buf_file)(struct dentry * ) ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct blk_trace { int trace_state ; struct rchan *rchan ; unsigned long *sequence ; unsigned char *msg_data ; u16 act_mask ; u64 start_lba ; u64 end_lba ; u32 pid ; u32 dev ; struct dentry *dir ; struct dentry *dropped_file ; struct dentry *msg_file ; struct list_head running_list ; atomic_t dropped ; }; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct badblocks { int count ; int unacked_exist ; int shift ; u64 *page ; int changed ; seqlock_t lock ; sector_t sector ; sector_t size ; }; struct mddev; struct md_rdev { struct list_head same_set ; sector_t sectors ; struct mddev *mddev ; int last_events ; struct block_device *meta_bdev ; struct block_device *bdev ; struct page *sb_page ; struct page *bb_page ; int sb_loaded ; __u64 sb_events ; sector_t data_offset ; sector_t new_data_offset ; sector_t sb_start ; int sb_size ; int preferred_minor ; struct kobject kobj ; unsigned long flags ; wait_queue_head_t blocked_wait ; int desc_nr ; int raid_disk ; int new_raid_disk ; int saved_raid_disk ; sector_t recovery_offset ; atomic_t nr_pending ; atomic_t read_errors ; struct timespec last_read_error ; atomic_t corrected_errors ; struct work_struct del_work ; struct kernfs_node *sysfs_state ; struct badblocks badblocks ; }; struct md_personality; struct md_thread; struct bitmap; struct __anonstruct_bitmap_info_253 { struct file *file ; loff_t offset ; unsigned long space ; loff_t default_offset ; unsigned long default_space ; struct mutex mutex ; unsigned long chunksize ; unsigned long daemon_sleep ; unsigned long max_write_behind ; int external ; }; struct mddev { void *private ; struct md_personality *pers ; dev_t unit ; int md_minor ; struct list_head disks ; unsigned long flags ; int suspended ; atomic_t active_io ; int ro ; int sysfs_active ; int ready ; struct gendisk *gendisk ; struct kobject kobj ; int hold_active ; int major_version ; int minor_version ; int patch_version ; int persistent ; int external ; char metadata_type[17U] ; int chunk_sectors ; time_t ctime ; time_t utime ; int level ; int layout ; char clevel[16U] ; int raid_disks ; int max_disks ; sector_t dev_sectors ; sector_t array_sectors ; int external_size ; __u64 events ; int can_decrease_events ; char uuid[16U] ; sector_t reshape_position ; int delta_disks ; int new_level ; int new_layout ; int new_chunk_sectors ; int reshape_backwards ; struct md_thread *thread ; struct md_thread *sync_thread ; char *last_sync_action ; sector_t curr_resync ; sector_t curr_resync_completed ; unsigned long resync_mark ; sector_t resync_mark_cnt ; sector_t curr_mark_cnt ; sector_t resync_max_sectors ; atomic64_t resync_mismatches ; sector_t suspend_lo ; sector_t suspend_hi ; int sync_speed_min ; int sync_speed_max ; int parallel_resync ; int ok_start_degraded ; unsigned long recovery ; int recovery_disabled ; int in_sync ; struct mutex open_mutex ; struct mutex reconfig_mutex ; atomic_t active ; atomic_t openers ; int changed ; int degraded ; int merge_check_needed ; atomic_t recovery_active ; wait_queue_head_t recovery_wait ; sector_t recovery_cp ; sector_t resync_min ; sector_t resync_max ; struct kernfs_node *sysfs_state ; struct kernfs_node *sysfs_action ; struct work_struct del_work ; spinlock_t lock ; wait_queue_head_t sb_wait ; atomic_t pending_writes ; unsigned int safemode ; unsigned int safemode_delay ; struct timer_list safemode_timer ; atomic_t writes_pending ; struct request_queue *queue ; struct bitmap *bitmap ; struct __anonstruct_bitmap_info_253 bitmap_info ; atomic_t max_corr_read_errors ; struct list_head all_mddevs ; struct attribute_group *to_remove ; struct bio_set *bio_set ; struct bio *flush_bio ; atomic_t flush_pending ; struct work_struct flush_work ; struct work_struct event_work ; void (*sync_super)(struct mddev * , struct md_rdev * ) ; }; struct md_personality { char *name ; int level ; struct list_head list ; struct module *owner ; void (*make_request)(struct mddev * , struct bio * ) ; int (*run)(struct mddev * ) ; void (*free)(struct mddev * , void * ) ; void (*status)(struct seq_file * , struct mddev * ) ; void (*error_handler)(struct mddev * , struct md_rdev * ) ; int (*hot_add_disk)(struct mddev * , struct md_rdev * ) ; int (*hot_remove_disk)(struct mddev * , struct md_rdev * ) ; int (*spare_active)(struct mddev * ) ; sector_t (*sync_request)(struct mddev * , sector_t , int * , int ) ; int (*resize)(struct mddev * , sector_t ) ; sector_t (*size)(struct mddev * , sector_t , int ) ; int (*check_reshape)(struct mddev * ) ; int (*start_reshape)(struct mddev * ) ; void (*finish_reshape)(struct mddev * ) ; void (*quiesce)(struct mddev * , int ) ; void *(*takeover)(struct mddev * ) ; int (*congested)(struct mddev * , int ) ; int (*mergeable_bvec)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) ; }; struct md_sysfs_entry { struct attribute attr ; ssize_t (*show)(struct mddev * , char * ) ; ssize_t (*store)(struct mddev * , char const * , size_t ) ; }; struct md_thread { void (*run)(struct md_thread * ) ; struct mddev *mddev ; wait_queue_head_t wqueue ; unsigned long flags ; struct task_struct *tsk ; unsigned long timeout ; void *private ; }; enum check_states { check_state_idle = 0, check_state_run = 1, check_state_run_q = 2, check_state_run_pq = 3, check_state_check_result = 4, check_state_compute_run = 5, check_state_compute_result = 6 } ; enum reconstruct_states { reconstruct_state_idle = 0, reconstruct_state_prexor_drain_run = 1, reconstruct_state_drain_run = 2, reconstruct_state_run = 3, reconstruct_state_prexor_drain_result = 4, reconstruct_state_drain_result = 5, reconstruct_state_result = 6 } ; struct stripe_operations { int target ; int target2 ; enum sum_check_flags zero_sum_result ; }; struct r5dev { struct bio req ; struct bio rreq ; struct bio_vec vec ; struct bio_vec rvec ; struct page *page ; struct page *orig_page ; struct bio *toread ; struct bio *read ; struct bio *towrite ; struct bio *written ; sector_t sector ; unsigned long flags ; }; struct r5conf; struct r5worker_group; struct stripe_head { struct hlist_node hash ; struct list_head lru ; struct llist_node release_list ; struct r5conf *raid_conf ; short generation ; sector_t sector ; short pd_idx ; short qd_idx ; short ddf_layout ; short hash_lock_index ; unsigned long state ; atomic_t count ; int bm_seq ; int disks ; enum check_states check_state ; enum reconstruct_states reconstruct_state ; spinlock_t stripe_lock ; int cpu ; struct r5worker_group *group ; struct stripe_operations ops ; struct r5dev dev[1U] ; }; struct stripe_head_state { int syncing ; int expanding ; int expanded ; int replacing ; int locked ; int uptodate ; int to_read ; int to_write ; int failed ; int written ; int to_fill ; int compute ; int req_compute ; int non_overwrite ; int failed_num[2U] ; int p_failed ; int q_failed ; int dec_preread_active ; unsigned long ops_request ; struct bio *return_bi ; struct md_rdev *blocked_rdev ; int handle_bad_blocks ; }; struct disk_info { struct md_rdev *rdev ; struct md_rdev *replacement ; }; struct r5worker { struct work_struct work ; struct r5worker_group *group ; struct list_head temp_inactive_list[8U] ; bool working ; }; struct r5worker_group { struct list_head handle_list ; struct r5conf *conf ; struct r5worker *workers ; int stripes_cnt ; }; struct raid5_percpu { struct page *spare_page ; void *scribble ; }; struct r5conf { struct hlist_head *stripe_hashtbl ; spinlock_t hash_locks[8U] ; struct mddev *mddev ; int chunk_sectors ; int level ; int algorithm ; int max_degraded ; int raid_disks ; int max_nr_stripes ; sector_t reshape_progress ; sector_t reshape_safe ; int previous_raid_disks ; int prev_chunk_sectors ; int prev_algo ; short generation ; seqcount_t gen_lock ; unsigned long reshape_checkpoint ; long long min_offset_diff ; struct list_head handle_list ; struct list_head hold_list ; struct list_head delayed_list ; struct list_head bitmap_list ; struct bio *retry_read_aligned ; struct bio *retry_read_aligned_list ; atomic_t preread_active_stripes ; atomic_t active_aligned_reads ; atomic_t pending_full_writes ; int bypass_count ; int bypass_threshold ; int skip_copy ; struct list_head *last_hold ; atomic_t reshape_stripes ; int active_name ; char cache_name[2U][32U] ; struct kmem_cache *slab_cache ; int seq_flush ; int seq_write ; int quiesce ; int fullsync ; int recovery_disabled ; struct raid5_percpu *percpu ; size_t scribble_len ; struct notifier_block cpu_notify ; atomic_t active_stripes ; struct list_head inactive_list[8U] ; atomic_t empty_inactive_list_nr ; struct llist_head released_stripes ; wait_queue_head_t wait_for_stripe ; wait_queue_head_t wait_for_overlap ; int inactive_blocked ; int pool_size ; spinlock_t device_lock ; struct disk_info *disks ; struct md_thread *thread ; struct list_head temp_inactive_list[8U] ; struct r5worker_group *worker_groups ; int group_cnt ; int worker_cnt_per_group ; }; struct strip_zone { sector_t zone_end ; sector_t dev_start ; int nb_dev ; }; struct r0conf { struct strip_zone *strip_zone ; struct md_rdev **devlist ; int nr_strip_zones ; int has_merge_bvec ; }; struct bitmap_page { char *map ; unsigned char hijacked : 1 ; unsigned char pending : 1 ; unsigned int count : 30 ; }; struct bitmap_counts { spinlock_t lock ; struct bitmap_page *bp ; unsigned long pages ; unsigned long missing_pages ; unsigned long chunkshift ; unsigned long chunks ; }; struct bitmap_storage { struct file *file ; struct page *sb_page ; struct page **filemap ; unsigned long *filemap_attr ; unsigned long file_pages ; unsigned long bytes ; }; struct bitmap { struct bitmap_counts counts ; struct mddev *mddev ; __u64 events_cleared ; int need_sync ; struct bitmap_storage storage ; unsigned long flags ; int allclean ; atomic_t behind_writes ; unsigned long behind_writes_used ; unsigned long daemon_lastrun ; unsigned long last_end_sync ; atomic_t pending_writes ; wait_queue_head_t write_wait ; wait_queue_head_t overflow_wait ; wait_queue_head_t behind_wait ; struct kernfs_node *sysfs_can_clear ; }; struct raid5_plug_cb { struct blk_plug_cb cb ; struct list_head list ; struct list_head temp_inactive_list[8U] ; }; struct ldv_struct_EMGentry_11 { int signal_pending ; }; struct ldv_struct_dummy_resourceless_instance_3 { struct mddev *arg0 ; int signal_pending ; }; struct ldv_struct_io_instance_0 { struct md_personality *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef struct md_thread *ldv_func_ret_type___1; typedef struct md_thread *ldv_func_ret_type___2; typedef struct md_thread *ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void *__builtin_return_address(unsigned int ) ; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void *is_got ) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(res1); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_err_ptr(long error___0 ) ; long ldv_ptr_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) ; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) ; int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) ; int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) ; unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_210(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_207(int ldv_func_arg1 ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_208(void) ; static void ldv_ldv_check_final_state_209(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void ldv_after_alloc(void * ) ; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) ; void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) ; static int ldv_mutex_lock_interruptible_96(struct mutex *ldv_func_arg1 ) ; int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_reconfig_mutex_of_mddev(struct mutex *lock ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void __set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static void clear_bit_unlock(long nr , unsigned long volatile *addr ) { { { __asm__ volatile ("": : : "memory"); clear_bit(nr, addr); } return; } } __inline static void __clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int test_and_set_bit_lock(long nr , unsigned long volatile *addr ) { int tmp ; { { tmp = test_and_set_bit(nr, addr); } return (tmp); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } static unsigned long ldv_find_next_bit_5(unsigned long const *addr , unsigned long size , unsigned long offset ) ; static unsigned long ldv_find_first_bit_4(unsigned long const *addr , unsigned long size ) ; __inline static bool is_power_of_2(unsigned long n ) { { return ((bool )(n != 0UL && (n & (n - 1UL)) == 0UL)); } } extern int printk(char const * , ...) ; extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void ___might_sleep(char const * , int , int ) ; extern void __might_sleep(char const * , int , int ) ; extern int kstrtoull(char const * , unsigned int , unsigned long long * ) ; __inline static int kstrtoul(char const *s , unsigned int base , unsigned long *res ) { int tmp ; { { tmp = kstrtoull(s, base, (unsigned long long *)res); } return (tmp); } } extern int sprintf(char * , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } __inline static int list_empty_careful(struct list_head const *head ) { struct list_head *next ; { next = head->next; return ((unsigned long )((struct list_head const *)next) == (unsigned long )head && (unsigned long )next == (unsigned long )((struct list_head *)head->prev)); } } __inline static void __list_splice(struct list_head const *list , struct list_head *prev , struct list_head *next ) { struct list_head *first ; struct list_head *last ; { first = list->next; last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; return; } } __inline static void list_splice_tail_init(struct list_head *list , struct list_head *head ) { int tmp ; { { tmp = list_empty((struct list_head const *)list); } if (tmp == 0) { { __list_splice((struct list_head const *)list, head->prev, head); INIT_LIST_HEAD(list); } } else { } return; } } __inline static void INIT_HLIST_NODE(struct hlist_node *h ) { { h->next = (struct hlist_node *)0; h->pprev = (struct hlist_node **)0; return; } } __inline static int hlist_unhashed(struct hlist_node const *h ) { { return ((unsigned long )h->pprev == (unsigned long )((struct hlist_node **/* const */)0)); } } __inline static void __hlist_del(struct hlist_node *n ) { struct hlist_node *next ; struct hlist_node **pprev ; { next = n->next; pprev = n->pprev; *pprev = next; if ((unsigned long )next != (unsigned long )((struct hlist_node *)0)) { next->pprev = pprev; } else { } return; } } __inline static void hlist_del_init(struct hlist_node *n ) { int tmp ; { { tmp = hlist_unhashed((struct hlist_node const *)n); } if (tmp == 0) { { __hlist_del(n); INIT_HLIST_NODE(n); } } else { } return; } } __inline static void hlist_add_head(struct hlist_node *n , struct hlist_head *h ) { struct hlist_node *first ; { first = h->first; n->next = first; if ((unsigned long )first != (unsigned long )((struct hlist_node *)0)) { first->pprev = & n->next; } else { } h->first = n; n->pprev = & h->first; return; } } extern void __bad_percpu_size(void) ; extern void __bad_size_call_parameter(void) ; extern unsigned long __per_cpu_offset[8192U] ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3554; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3554; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3554; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3554; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_3554: ; return (pfo_ret__); } } extern void *memset(void * , int , size_t ) ; extern int __bitmap_weight(unsigned long const * , unsigned int ) ; __inline static int bitmap_weight(unsigned long const *src , unsigned int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern void warn_slowpath_fmt(char const * , int const , char const * , ...) ; extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_possible_mask ; extern struct cpumask const * const cpu_online_mask ; extern struct cpumask const * const cpu_present_mask ; __inline static unsigned int cpumask_check(unsigned int cpu ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; { { __ret_warn_once = cpu >= (unsigned int )nr_cpu_ids; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/cpumask.h", 116); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } return (cpu); } } __inline static unsigned int cpumask_first(struct cpumask const *srcp ) { unsigned long tmp ; { { tmp = ldv_find_first_bit_4((unsigned long const *)(& srcp->bits), (unsigned long )nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static unsigned int cpumask_next(int n , struct cpumask const *srcp ) { unsigned long tmp ; { if (n != -1) { { cpumask_check((unsigned int )n); } } else { } { tmp = ldv_find_next_bit_5((unsigned long const *)(& srcp->bits), (unsigned long )nr_cpu_ids, (unsigned long )(n + 1)); } return ((unsigned int )tmp); } } __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void arch_local_irq_restore(unsigned long f ) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.restore_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (809), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (45UL), [paravirt_opptr] "i" (& pv_irq_ops.restore_fl.func), [paravirt_clobber] "i" (1), "D" (f): "memory", "cc"); return; } } __inline static void arch_local_irq_disable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_disable.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (814), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (46UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_disable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static void arch_local_irq_enable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_enable.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (819), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (47UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_enable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static unsigned long arch_local_irq_save(void) { unsigned long f ; { { f = arch_local_save_flags(); arch_local_irq_disable(); } return (f); } } __inline static void *ERR_PTR(long error___0 ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void trace_hardirqs_on(void) ; extern void trace_hardirqs_off(void) ; __inline static void rep_nop(void) { { __asm__ volatile ("rep; nop": : : "memory"); return; } } __inline static void cpu_relax(void) { { { rep_nop(); } return; } } extern void __xchg_wrong_size(void) ; extern void __cmpxchg_wrong_size(void) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_add(int i , atomic_t *v ) ; __inline static void atomic_inc(atomic_t *v ) ; __inline static void atomic_dec(atomic_t *v ) ; __inline static int atomic_dec_and_test(atomic_t *v ) ; __inline static int atomic_add_return(int i , atomic_t *v ) ; __inline static int atomic_sub_return(int i , atomic_t *v ) { int tmp ; { { tmp = atomic_add_return(- i, v); } return (tmp); } } __inline static int atomic_cmpxchg(atomic_t *v , int old , int new ) { int __ret ; int __old ; int __new ; u8 volatile *__ptr ; u16 volatile *__ptr___0 ; u32 volatile *__ptr___1 ; u64 volatile *__ptr___2 ; { __old = old; __new = new; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __ptr = (u8 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgb %2,%1": "=a" (__ret), "+m" (*__ptr): "q" (__new), "0" (__old): "memory"); goto ldv_6202; case_2: /* CIL Label */ __ptr___0 = (u16 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgw %2,%1": "=a" (__ret), "+m" (*__ptr___0): "r" (__new), "0" (__old): "memory"); goto ldv_6202; case_4: /* CIL Label */ __ptr___1 = (u32 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgl %2,%1": "=a" (__ret), "+m" (*__ptr___1): "r" (__new), "0" (__old): "memory"); goto ldv_6202; case_8: /* CIL Label */ __ptr___2 = (u64 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgq %2,%1": "=a" (__ret), "+m" (*__ptr___2): "r" (__new), "0" (__old): "memory"); goto ldv_6202; switch_default: /* CIL Label */ { __cmpxchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_6202: ; return (__ret); } } __inline static int __atomic_add_unless(atomic_t *v , int a , int u ) { int c ; int old ; long tmp ; long tmp___0 ; { { c = atomic_read((atomic_t const *)v); } ldv_6231: { tmp = ldv__builtin_expect(c == u, 0L); } if (tmp != 0L) { goto ldv_6230; } else { } { old = atomic_cmpxchg(v, c, c + a); tmp___0 = ldv__builtin_expect(old == c, 1L); } if (tmp___0 != 0L) { goto ldv_6230; } else { } c = old; goto ldv_6231; ldv_6230: ; return (c); } } __inline static void atomic64_add(long i , atomic64_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; addq %1,%0": "=m" (v->counter): "er" (i), "m" (v->counter)); return; } } __inline static int atomic_add_unless(atomic_t *v , int a , int u ) { int tmp ; { { tmp = __atomic_add_unless(v, a, u); } return (tmp != u); } } extern int debug_locks ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern int lock_is_held(struct lockdep_map * ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_105(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_140(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_188(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_192(spinlock_t *ldv_func_arg1 ) ; extern int __ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock(spinlock_t * ) ; static int ldv___ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_111(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_device_lock_of_r5conf(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_device_lock_of_r5conf(void) ; int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_device_lock_of_r5conf(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_hash_locks_of_r5conf(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mddev(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_mddev(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_stripe_lock_of_stripe_head(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_stripe_lock_of_stripe_head(void) ; int ldv_linux_fs_sysfs_sysfs_create_group(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7242; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7242; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7242; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7242; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7242: ; return (pfo_ret__ & 2147483647); } } __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (val)); } goto ldv_7299; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7299; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7299; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (val)); } goto ldv_7299; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7299: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_7311; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7311; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7311; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (- val)); } goto ldv_7311; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7311: ; return; } } __inline static bool arch_static_branch(struct static_key *key ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static bool static_key_false(struct static_key *key ) { bool tmp ; { { tmp = arch_static_branch(key); } return (tmp); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_138(spinlock_t *lock ) ; __inline static void ldv_spin_lock_175(spinlock_t *lock ) ; __inline static void ldv_spin_lock_175(spinlock_t *lock ) ; __inline static void ldv_spin_lock_175(spinlock_t *lock ) ; __inline static void ldv_spin_lock_175(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_irq_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_121(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_121(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_121(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_121(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_121(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_121(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_139(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_176(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_176(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_176(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_176(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_122(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_122(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_122(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_122(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_122(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_122(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_122(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_122(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_110(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void __seqcount_init(seqcount_t *s , char const *name , struct lock_class_key *key ) { { { lockdep_init_map(& s->dep_map, name, key, 0); s->sequence = 0U; } return; } } __inline static void seqcount_lockdep_reader_access(seqcount_t const *s ) { seqcount_t *l ; unsigned long flags ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { l = (seqcount_t *)s; flags = arch_local_irq_save(); trace_hardirqs_off(); tmp = __builtin_return_address(0U); lock_acquire(& l->dep_map, 0U, 0, 2, 1, (struct lockdep_map *)0, (unsigned long )tmp); tmp___0 = __builtin_return_address(0U); lock_release(& l->dep_map, 1, (unsigned long )tmp___0); tmp___1 = arch_irqs_disabled_flags(flags); } if (tmp___1 != 0) { { arch_local_irq_restore(flags); trace_hardirqs_off(); } } else { { trace_hardirqs_on(); arch_local_irq_restore(flags); } } return; } } __inline static unsigned int __read_seqcount_begin(seqcount_t const *s ) { unsigned int ret ; unsigned int __var ; long tmp ; { repeat: { __var = 0U; ret = *((unsigned int const volatile *)(& s->sequence)); tmp = ldv__builtin_expect((long )((int )ret) & 1L, 0L); } if (tmp != 0L) { { cpu_relax(); } goto repeat; } else { } return (ret); } } __inline static unsigned int raw_read_seqcount_begin(seqcount_t const *s ) { unsigned int ret ; unsigned int tmp ; { { tmp = __read_seqcount_begin(s); ret = tmp; __asm__ volatile ("": : : "memory"); } return (ret); } } __inline static unsigned int read_seqcount_begin(seqcount_t const *s ) { unsigned int tmp ; { { seqcount_lockdep_reader_access(s); tmp = raw_read_seqcount_begin(s); } return (tmp); } } __inline static int __read_seqcount_retry(seqcount_t const *s , unsigned int start ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned int )s->sequence != start, 0L); } return ((int )tmp); } } __inline static int read_seqcount_retry(seqcount_t const *s , unsigned int start ) { int tmp ; { { __asm__ volatile ("": : : "memory"); tmp = __read_seqcount_retry(s, start); } return (tmp); } } __inline static void raw_write_seqcount_begin(seqcount_t *s ) { { s->sequence = s->sequence + 1U; __asm__ volatile ("": : : "memory"); return; } } __inline static void raw_write_seqcount_end(seqcount_t *s ) { { __asm__ volatile ("": : : "memory"); s->sequence = s->sequence + 1U; return; } } __inline static void write_seqcount_begin_nested(seqcount_t *s , int subclass ) { void *tmp ; { { raw_write_seqcount_begin(s); tmp = __builtin_return_address(0U); lock_acquire(& s->dep_map, (unsigned int )subclass, 0, 0, 1, (struct lockdep_map *)0, (unsigned long )tmp); } return; } } __inline static void write_seqcount_begin(seqcount_t *s ) { { { write_seqcount_begin_nested(s, 0); } return; } } __inline static void write_seqcount_end(seqcount_t *s ) { void *tmp ; { { tmp = __builtin_return_address(0U); lock_release(& s->dep_map, 1, (unsigned long )tmp); raw_write_seqcount_end(s); } return; } } extern unsigned long volatile jiffies ; __inline static int __nodes_weight(nodemask_t const *srcp , unsigned int nbits ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), nbits); } return (tmp); } } extern nodemask_t node_states[5U] ; __inline static int num_node_state(enum node_states state ) { int tmp ; { { tmp = __nodes_weight((nodemask_t const *)(& node_states) + (unsigned long )state, 1024U); } return (tmp); } } extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern void prepare_to_wait(wait_queue_head_t * , wait_queue_t * , int ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern int autoremove_wake_function(wait_queue_t * , unsigned int , int , void * ) ; static void ldv_synchronize_sched_38(void) ; __inline static void synchronize_rcu(void) { { { ldv_synchronize_sched_38(); } return; } } extern bool rcu_is_watching(void) ; extern bool rcu_lockdep_current_cpu_online(void) ; extern struct lockdep_map rcu_sched_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; extern int rcu_read_lock_held(void) ; __inline static int rcu_read_lock_sched_held(void) { int lockdep_opinion ; int tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; unsigned long _flags ; int tmp___5 ; int tmp___6 ; { { lockdep_opinion = 0; tmp = debug_lockdep_rcu_enabled(); } if (tmp == 0) { return (1); } else { } { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { tmp___2 = rcu_lockdep_current_cpu_online(); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (0); } else { } if (debug_locks != 0) { { lockdep_opinion = lock_is_held(& rcu_sched_lock_map); } } else { } if (lockdep_opinion != 0) { tmp___6 = 1; } else { { tmp___4 = preempt_count(); } if (tmp___4 != 0) { tmp___6 = 1; } else { { _flags = arch_local_save_flags(); tmp___5 = arch_irqs_disabled_flags(_flags); } if (tmp___5 != 0) { tmp___6 = 1; } else { tmp___6 = 0; } } } return (tmp___6); } } __inline static void rcu_read_lock(void) ; __inline static void rcu_read_unlock(void) ; __inline static void rcu_read_lock_sched_notrace(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void rcu_read_unlock_sched_notrace(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern void flush_workqueue(struct workqueue_struct * ) ; __inline static int notifier_from_errno(int err ) { { if (err != 0) { return ((1 - err) | 32768); } else { } return (1); } } __inline static void init_llist_head(struct llist_head *list ) { { list->first = (struct llist_node *)0; return; } } __inline static struct llist_node *llist_next(struct llist_node *node ) { { return (node->next); } } extern bool llist_add_batch(struct llist_node * , struct llist_node * , struct llist_head * ) ; __inline static bool llist_add(struct llist_node *new , struct llist_head *head ) { bool tmp ; { { tmp = llist_add_batch(new, new, head); } return (tmp); } } __inline static struct llist_node *llist_del_all(struct llist_head *head ) { struct llist_node *__ret ; { __ret = (struct llist_node *)0; { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret), "+m" (head->first): : "memory", "cc"); goto ldv_11045; case_2: /* CIL Label */ __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret), "+m" (head->first): : "memory", "cc"); goto ldv_11045; case_4: /* CIL Label */ __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret), "+m" (head->first): : "memory", "cc"); goto ldv_11045; case_8: /* CIL Label */ __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret), "+m" (head->first): : "memory", "cc"); goto ldv_11045; switch_default: /* CIL Label */ { __xchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_11045: ; return (__ret); } } extern struct llist_node *llist_reverse_order(struct llist_node * ) ; extern int __cpu_to_node(int ) ; extern int cpu_number ; extern void *__alloc_percpu(size_t , size_t ) ; extern void free_percpu(void * ) ; __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) ; extern long schedule_timeout_uninterruptible(long ) ; extern void schedule(void) ; extern void flush_signals(struct task_struct * ) ; extern int _cond_resched(void) ; extern struct kmem_cache *kmem_cache_create(char const * , size_t , size_t , unsigned long , void (*)(void * ) ) ; extern void kmem_cache_destroy(struct kmem_cache * ) ; extern void kfree(void const * ) ; extern void kmem_cache_free(struct kmem_cache * , void * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kmem_cache_zalloc(struct kmem_cache *k , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern void kernfs_notify(struct kernfs_node * ) ; extern int sysfs_create_link(struct kobject * , struct kobject * , char const * ) ; static int ldv_sysfs_create_group_187(struct kobject *ldv_func_arg1 , struct attribute_group const *ldv_func_arg2 ) ; extern void sysfs_notify(struct kobject * , char const * , char const * ) ; __inline static void sysfs_notify_dirent(struct kernfs_node *kn ) { { { kernfs_notify(kn); } return; } } extern int seq_printf(struct seq_file * , char const * , ...) ; extern int ___ratelimit(struct ratelimit_state * , char const * ) ; extern char const *bdevname(struct block_device * , char * ) ; extern int revalidate_disk(struct gendisk * ) ; __inline static dev_t disk_devt(struct gendisk *disk ) { { return (disk->part0.__dev.devt); } } __inline static sector_t get_start_sect(struct block_device *bdev ) { { return ((bdev->bd_part)->start_sect); } } __inline static void set_capacity(struct gendisk *disk , sector_t size ) { { disk->part0.nr_sects = size; return; } } extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void bvec_iter_advance(struct bio_vec *bv , struct bvec_iter *iter , unsigned int bytes ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; unsigned int len ; unsigned int _min1 ; unsigned int _min2 ; unsigned int _min1___0 ; unsigned int _min2___0 ; { { __ret_warn_once = bytes > iter->bi_size; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_fmt("include/linux/bio.h", 211, "Attempted to advance past end of bvec iter\n"); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } goto ldv_31159; ldv_31158: _min1 = bytes; _min1___0 = iter->bi_size; _min2___0 = (bv + (unsigned long )iter->bi_idx)->bv_len - iter->bi_bvec_done; _min2 = _min1___0 < _min2___0 ? _min1___0 : _min2___0; len = _min1 < _min2 ? _min1 : _min2; bytes = bytes - len; iter->bi_size = iter->bi_size - len; iter->bi_bvec_done = iter->bi_bvec_done + len; if (iter->bi_bvec_done == (bv + (unsigned long )iter->bi_idx)->bv_len) { iter->bi_bvec_done = 0U; iter->bi_idx = iter->bi_idx + 1U; } else { } ldv_31159: ; if (bytes != 0U) { goto ldv_31158; } else { } return; } } __inline static void bio_advance_iter(struct bio *bio , struct bvec_iter *iter , unsigned int bytes ) { { iter->bi_sector = iter->bi_sector + (sector_t )(bytes >> 9); if (((unsigned long long )bio->bi_rw & 640ULL) != 0ULL) { iter->bi_size = iter->bi_size - bytes; } else { { bvec_iter_advance(bio->bi_io_vec, iter, bytes); } } return; } } extern void bio_put(struct bio * ) ; extern void bio_endio(struct bio * , int ) ; extern void bio_init(struct bio * ) ; extern void bio_reset(struct bio * ) ; __inline static void queue_flag_set_unlocked(unsigned int flag , struct request_queue *q ) { { { __set_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); } return; } } __inline static void queue_flag_clear_unlocked(unsigned int flag , struct request_queue *q ) { { { __clear_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); } return; } } extern void generic_make_request(struct bio * ) ; extern void blk_recount_segments(struct request_queue * , struct bio * ) ; __inline static struct request_queue *bdev_get_queue(struct block_device *bdev ) { { return ((bdev->bd_disk)->queue); } } extern void blk_queue_max_write_same_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_io_min(struct request_queue * , unsigned int ) ; extern void blk_queue_io_opt(struct request_queue * , unsigned int ) ; extern void disk_stack_limits(struct gendisk * , struct block_device * , sector_t ) ; extern struct blk_plug_cb *blk_check_plugged(void (*)(struct blk_plug_cb * , bool ) , void * , int ) ; extern void blk_start_plug(struct blk_plug * ) ; extern void blk_finish_plug(struct blk_plug * ) ; __inline static unsigned int queue_max_sectors(struct request_queue *q ) { { return (q->limits.max_sectors); } } __inline static unsigned short queue_max_segments(struct request_queue *q ) { { return (q->limits.max_segments); } } __inline static void async_tx_ack(struct dma_async_tx_descriptor *tx ) { { tx->flags = (enum dma_ctrl_flags )((unsigned int )tx->flags | 2U); return; } } extern void dma_issue_pending_all(void) ; __inline static void init_async_submit(struct async_submit_ctl *args , enum async_tx_flags flags , struct dma_async_tx_descriptor *tx , void (*cb_fn)(void * ) , void *cb_param , addr_conv_t *scribble ) { { args->flags = flags; args->depend_tx = tx; args->cb_fn = cb_fn; args->cb_param = cb_param; args->scribble = (void *)scribble; return; } } extern struct dma_async_tx_descriptor *async_xor(struct page * , struct page ** , unsigned int , int , size_t , struct async_submit_ctl * ) ; extern struct dma_async_tx_descriptor *async_xor_val(struct page * , struct page ** , unsigned int , int , size_t , enum sum_check_flags * , struct async_submit_ctl * ) ; extern struct dma_async_tx_descriptor *async_memcpy(struct page * , struct page * , unsigned int , unsigned int , size_t , struct async_submit_ctl * ) ; extern struct dma_async_tx_descriptor *async_trigger_callback(struct async_submit_ctl * ) ; extern struct dma_async_tx_descriptor *async_gen_syndrome(struct page ** , unsigned int , int , size_t , struct async_submit_ctl * ) ; extern struct dma_async_tx_descriptor *async_syndrome_val(struct page ** , unsigned int , int , size_t , enum sum_check_flags * , struct page * , struct async_submit_ctl * ) ; extern struct dma_async_tx_descriptor *async_raid6_2data_recov(int , size_t , int , int , struct page ** , struct async_submit_ctl * ) ; extern struct dma_async_tx_descriptor *async_raid6_datap_recov(int , size_t , int , struct page ** , struct async_submit_ctl * ) ; extern void async_tx_quiesce(struct dma_async_tx_descriptor ** ) ; extern int register_cpu_notifier(struct notifier_block * ) ; extern void unregister_cpu_notifier(struct notifier_block * ) ; extern void get_online_cpus(void) ; extern void put_online_cpus(void) ; extern void __trace_note_message(struct blk_trace * , char const * , ...) ; extern struct tracepoint __tracepoint_block_bio_complete ; __inline static void trace_block_bio_complete(struct request_queue *q , struct bio *bio , int error___0 ) { struct tracepoint_func *it_func_ptr ; void *it_func ; void *__data ; struct tracepoint_func *________p1 ; struct tracepoint_func *_________p1 ; struct tracepoint_func *__var ; bool __warned ; int tmp ; int tmp___0 ; bool tmp___1 ; struct tracepoint_func *________p1___0 ; struct tracepoint_func *_________p1___0 ; struct tracepoint_func *__var___0 ; bool __warned___0 ; int tmp___2 ; int tmp___3 ; { { tmp___1 = static_key_false(& __tracepoint_block_bio_complete.key); } if ((int )tmp___1) { { rcu_read_lock_sched_notrace(); __var = (struct tracepoint_func *)0; _________p1 = *((struct tracepoint_func * volatile *)(& __tracepoint_block_bio_complete.funcs)); ________p1 = _________p1; tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_read_lock_sched_held(); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("include/trace/events/block.h", 320, "suspicious rcu_dereference_check() usage"); } } else { } } else { } it_func_ptr = ________p1; if ((unsigned long )it_func_ptr != (unsigned long )((struct tracepoint_func *)0)) { ldv_38155: { it_func = it_func_ptr->func; __data = it_func_ptr->data; (*((void (*)(void * , struct request_queue * , struct bio * , int ))it_func))(__data, q, bio, error___0); it_func_ptr = it_func_ptr + 1; } if ((unsigned long )it_func_ptr->func != (unsigned long )((void *)0)) { goto ldv_38155; } else { } } else { } { rcu_read_unlock_sched_notrace(); } } else { } { rcu_read_lock_sched_notrace(); __var___0 = (struct tracepoint_func *)0; _________p1___0 = *((struct tracepoint_func * volatile *)(& __tracepoint_block_bio_complete.funcs)); ________p1___0 = _________p1___0; tmp___2 = debug_lockdep_rcu_enabled(); } if (tmp___2 != 0 && ! __warned___0) { { tmp___3 = rcu_read_lock_sched_held(); } if (tmp___3 == 0) { { __warned___0 = 1; lockdep_rcu_suspicious("include/trace/events/block.h", 320, "suspicious rcu_dereference_check() usage"); } } else { } } else { } { rcu_read_unlock_sched_notrace(); } return; } } extern struct tracepoint __tracepoint_block_unplug ; __inline static void trace_block_unplug(struct request_queue *q , unsigned int depth , bool explicit ) { struct tracepoint_func *it_func_ptr ; void *it_func ; void *__data ; struct tracepoint_func *________p1 ; struct tracepoint_func *_________p1 ; struct tracepoint_func *__var ; bool __warned ; int tmp ; int tmp___0 ; bool tmp___1 ; struct tracepoint_func *________p1___0 ; struct tracepoint_func *_________p1___0 ; struct tracepoint_func *__var___0 ; bool __warned___0 ; int tmp___2 ; int tmp___3 ; { { tmp___1 = static_key_false(& __tracepoint_block_unplug.key); } if ((int )tmp___1) { { rcu_read_lock_sched_notrace(); __var = (struct tracepoint_func *)0; _________p1 = *((struct tracepoint_func * volatile *)(& __tracepoint_block_unplug.funcs)); ________p1 = _________p1; tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_read_lock_sched_held(); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("include/trace/events/block.h", 538, "suspicious rcu_dereference_check() usage"); } } else { } } else { } it_func_ptr = ________p1; if ((unsigned long )it_func_ptr != (unsigned long )((struct tracepoint_func *)0)) { ldv_38525: { it_func = it_func_ptr->func; __data = it_func_ptr->data; (*((void (*)(void * , struct request_queue * , unsigned int , bool ))it_func))(__data, q, depth, (int )explicit); it_func_ptr = it_func_ptr + 1; } if ((unsigned long )it_func_ptr->func != (unsigned long )((void *)0)) { goto ldv_38525; } else { } } else { } { rcu_read_unlock_sched_notrace(); } } else { } { rcu_read_lock_sched_notrace(); __var___0 = (struct tracepoint_func *)0; _________p1___0 = *((struct tracepoint_func * volatile *)(& __tracepoint_block_unplug.funcs)); ________p1___0 = _________p1___0; tmp___2 = debug_lockdep_rcu_enabled(); } if (tmp___2 != 0 && ! __warned___0) { { tmp___3 = rcu_read_lock_sched_held(); } if (tmp___3 == 0) { { __warned___0 = 1; lockdep_rcu_suspicious("include/trace/events/block.h", 538, "suspicious rcu_dereference_check() usage"); } } else { } } else { } { rcu_read_unlock_sched_notrace(); } return; } } extern struct tracepoint __tracepoint_block_bio_remap ; __inline static void trace_block_bio_remap(struct request_queue *q , struct bio *bio , dev_t dev , sector_t from ) { struct tracepoint_func *it_func_ptr ; void *it_func ; void *__data ; struct tracepoint_func *________p1 ; struct tracepoint_func *_________p1 ; struct tracepoint_func *__var ; bool __warned ; int tmp ; int tmp___0 ; bool tmp___1 ; struct tracepoint_func *________p1___0 ; struct tracepoint_func *_________p1___0 ; struct tracepoint_func *__var___0 ; bool __warned___0 ; int tmp___2 ; int tmp___3 ; { { tmp___1 = static_key_false(& __tracepoint_block_bio_remap.key); } if ((int )tmp___1) { { rcu_read_lock_sched_notrace(); __var = (struct tracepoint_func *)0; _________p1 = *((struct tracepoint_func * volatile *)(& __tracepoint_block_bio_remap.funcs)); ________p1 = _________p1; tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_read_lock_sched_held(); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("include/trace/events/block.h", 622, "suspicious rcu_dereference_check() usage"); } } else { } } else { } it_func_ptr = ________p1; if ((unsigned long )it_func_ptr != (unsigned long )((struct tracepoint_func *)0)) { ldv_38637: { it_func = it_func_ptr->func; __data = it_func_ptr->data; (*((void (*)(void * , struct request_queue * , struct bio * , dev_t , sector_t ))it_func))(__data, q, bio, dev, from); it_func_ptr = it_func_ptr + 1; } if ((unsigned long )it_func_ptr->func != (unsigned long )((void *)0)) { goto ldv_38637; } else { } } else { } { rcu_read_unlock_sched_notrace(); } } else { } { rcu_read_lock_sched_notrace(); __var___0 = (struct tracepoint_func *)0; _________p1___0 = *((struct tracepoint_func * volatile *)(& __tracepoint_block_bio_remap.funcs)); ________p1___0 = _________p1___0; tmp___2 = debug_lockdep_rcu_enabled(); } if (tmp___2 != 0 && ! __warned___0) { { tmp___3 = rcu_read_lock_sched_held(); } if (tmp___3 == 0) { { __warned___0 = 1; lockdep_rcu_suspicious("include/trace/events/block.h", 622, "suspicious rcu_dereference_check() usage"); } } else { } } else { } { rcu_read_unlock_sched_notrace(); } return; } } extern int md_is_badblock(struct badblocks * , sector_t , int , sector_t * , int * ) ; __inline static int is_badblock(struct md_rdev *rdev , sector_t s , int sectors , sector_t *first_bad , int *bad_sectors ) { int rv ; int tmp ; long tmp___0 ; { { tmp___0 = ldv__builtin_expect(rdev->badblocks.count != 0, 0L); } if (tmp___0 != 0L) { { tmp = md_is_badblock(& rdev->badblocks, rdev->data_offset + s, sectors, first_bad, bad_sectors); rv = tmp; } if (rv != 0) { *first_bad = *first_bad - rdev->data_offset; } else { } return (rv); } else { } return (0); } } extern int rdev_set_badblocks(struct md_rdev * , sector_t , int , int ) ; extern int rdev_clear_badblocks(struct md_rdev * , sector_t , int , int ) ; __inline static int mddev_lock(struct mddev *mddev ) { int tmp ; { { tmp = ldv_mutex_lock_interruptible_96(& mddev->reconfig_mutex); } return (tmp); } } extern void mddev_unlock(struct mddev * ) ; __inline static void md_sync_acct(struct block_device *bdev , unsigned long nr_sectors ) { { { atomic_add((int )nr_sectors, & ((bdev->bd_contains)->bd_disk)->sync_io); } return; } } __inline static void sysfs_notify_dirent_safe(struct kernfs_node *sd ) { { if ((unsigned long )sd != (unsigned long )((struct kernfs_node *)0)) { { sysfs_notify_dirent(sd); } } else { } return; } } __inline static char *mdname(struct mddev *mddev ) { { return ((unsigned long )mddev->gendisk != (unsigned long )((struct gendisk *)0) ? (char *)(& (mddev->gendisk)->disk_name) : (char *)"mdX"); } } __inline static int sysfs_link_rdev(struct mddev *mddev , struct md_rdev *rdev ) { char nm[20U] ; int tmp ; int tmp___0 ; { { tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___0 == 0 && (unsigned long )mddev->kobj.sd != (unsigned long )((struct kernfs_node *)0)) { { sprintf((char *)(& nm), "rd%d", rdev->raid_disk); tmp = sysfs_create_link(& mddev->kobj, & rdev->kobj, (char const *)(& nm)); } return (tmp); } else { return (0); } } } __inline static void safe_put_page(struct page *p ) { { if ((unsigned long )p != (unsigned long )((struct page *)0)) { { put_page(p); } } else { } return; } } extern int register_md_personality(struct md_personality * ) ; static int ldv_register_md_personality_201(struct md_personality *ldv_func_arg1 ) ; static int ldv_register_md_personality_202(struct md_personality *ldv_func_arg1 ) ; static int ldv_register_md_personality_203(struct md_personality *ldv_func_arg1 ) ; extern int unregister_md_personality(struct md_personality * ) ; static int ldv_unregister_md_personality_204(struct md_personality *ldv_func_arg1 ) ; static int ldv_unregister_md_personality_205(struct md_personality *ldv_func_arg1 ) ; static int ldv_unregister_md_personality_206(struct md_personality *ldv_func_arg1 ) ; extern struct md_thread *md_register_thread(void (*)(struct md_thread * ) , struct mddev * , char const * ) ; static struct md_thread *ldv_md_register_thread_185(void (*ldv_func_arg1)(struct md_thread * ) , struct mddev *ldv_func_arg2 , char const *ldv_func_arg3 ) ; static struct md_thread *ldv_md_register_thread_186(void (*ldv_func_arg1)(struct md_thread * ) , struct mddev *ldv_func_arg2 , char const *ldv_func_arg3 ) ; static struct md_thread *ldv_md_register_thread_194(void (*ldv_func_arg1)(struct md_thread * ) , struct mddev *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void md_unregister_thread(struct md_thread ** ) ; extern void md_wakeup_thread(struct md_thread * ) ; extern void md_check_recovery(struct mddev * ) ; extern void md_write_start(struct mddev * , struct bio * ) ; extern void md_write_end(struct mddev * ) ; extern void md_done_sync(struct mddev * , int , int ) ; extern void md_error(struct mddev * , struct md_rdev * ) ; extern void md_flush_request(struct mddev * , struct bio * ) ; extern void md_do_sync(struct md_thread * ) ; extern void md_new_event(struct mddev * ) ; extern int md_allow_write(struct mddev * ) ; extern void md_wait_for_blocked_rdev(struct md_rdev * , struct mddev * ) ; extern void md_set_array_sectors(struct mddev * , sector_t ) ; extern void mddev_suspend(struct mddev * ) ; extern void mddev_resume(struct mddev * ) ; extern struct bio *bio_clone_mddev(struct bio * , gfp_t , struct mddev * ) ; __inline static void rdev_dec_pending(struct md_rdev *rdev , struct mddev *mddev ) { int faulty ; int tmp ; int tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); faulty = tmp; tmp___0 = atomic_dec_and_test(& rdev->nr_pending); } if (tmp___0 != 0 && faulty != 0) { { set_bit(5L, (unsigned long volatile *)(& mddev->recovery)); md_wakeup_thread(mddev->thread); } } else { } return; } } __inline static int algorithm_valid_raid5(int layout ) { { return ((unsigned int )layout <= 5U); } } __inline static int algorithm_valid_raid6(int layout ) { { return (((unsigned int )layout <= 5U || (unsigned int )layout - 8U <= 2U) || (unsigned int )layout - 16U <= 4U); } } int raid5_set_cache_size(struct mddev *mddev , int size ) ; extern int bitmap_startwrite(struct bitmap * , sector_t , unsigned long , int ) ; extern void bitmap_endwrite(struct bitmap * , sector_t , unsigned long , int , int ) ; extern int bitmap_start_sync(struct bitmap * , sector_t , sector_t * , int ) ; extern void bitmap_end_sync(struct bitmap * , sector_t , sector_t * , int ) ; extern void bitmap_close_sync(struct bitmap * ) ; extern void bitmap_cond_end_sync(struct bitmap * , sector_t ) ; extern void bitmap_unplug(struct bitmap * ) ; extern int bitmap_resize(struct bitmap * , sector_t , int , int ) ; static bool devices_handle_discard_safely = 0; static struct workqueue_struct *raid5_wq ; __inline static struct hlist_head *stripe_hash(struct r5conf *conf , sector_t sect ) { int hash ; { hash = (int )(sect >> 3) & 511; return (conf->stripe_hashtbl + (unsigned long )hash); } } __inline static int stripe_hash_locks_hash(sector_t sect ) { { return ((int )(sect >> 3) & 7); } } __inline static void lock_device_hash_lock(struct r5conf *conf , int hash ) { { { ldv_spin_lock_irq_100((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); ldv_spin_lock_101(& conf->device_lock); } return; } } __inline static void unlock_device_hash_lock(struct r5conf *conf , int hash ) { { { ldv_spin_unlock_102(& conf->device_lock); ldv_spin_unlock_irq_103((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); } return; } } __inline static void lock_all_device_hash_locks_irq(struct r5conf *conf ) { int i ; { { arch_local_irq_disable(); trace_hardirqs_off(); ldv_spin_lock_104((spinlock_t *)(& conf->hash_locks)); i = 1; } goto ldv_39617; ldv_39616: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_105((spinlock_t *)(& conf->hash_locks) + (unsigned long )i); i = i + 1; } ldv_39617: ; if (i <= 7) { goto ldv_39616; } else { } { ldv_spin_lock_101(& conf->device_lock); } return; } } __inline static void unlock_all_device_hash_locks_irq(struct r5conf *conf ) { int i ; { { ldv_spin_unlock_102(& conf->device_lock); i = 8; } goto ldv_39624; ldv_39623: { ldv_spin_unlock_108((spinlock_t *)(& conf->hash_locks) + ((unsigned long )i + 0xffffffffffffffffUL)); i = i - 1; } ldv_39624: ; if (i != 0) { goto ldv_39623; } else { } { trace_hardirqs_on(); arch_local_irq_enable(); } return; } } __inline static struct bio *r5_next_bio(struct bio *bio , sector_t sector ) { int sectors ; { sectors = (int )(bio->bi_iter.bi_size >> 9); if (bio->bi_iter.bi_sector + (sector_t )sectors < sector + 8UL) { return (bio->bi_next); } else { return ((struct bio *)0); } } } __inline static int raid5_bi_processed_stripes(struct bio *bio ) { atomic_t *segments ; int tmp ; { { segments = (atomic_t *)(& bio->bi_phys_segments); tmp = atomic_read((atomic_t const *)segments); } return ((int )((unsigned int )tmp >> 16)); } } __inline static int raid5_dec_bi_active_stripes(struct bio *bio ) { atomic_t *segments ; int tmp ; { { segments = (atomic_t *)(& bio->bi_phys_segments); tmp = atomic_sub_return(1, segments); } return (tmp & 65535); } } __inline static void raid5_inc_bi_active_stripes(struct bio *bio ) { atomic_t *segments ; { { segments = (atomic_t *)(& bio->bi_phys_segments); atomic_inc(segments); } return; } } __inline static void raid5_set_bi_processed_stripes(struct bio *bio , unsigned int cnt ) { atomic_t *segments ; int old ; int new ; int tmp ; { segments = (atomic_t *)(& bio->bi_phys_segments); ldv_39650: { old = atomic_read((atomic_t const *)segments); new = (int )(((unsigned int )old & 65535U) | (cnt << 16)); tmp = atomic_cmpxchg(segments, old, new); } if (tmp != old) { goto ldv_39650; } else { } return; } } __inline static void raid5_set_bi_stripes(struct bio *bio , unsigned int cnt ) { atomic_t *segments ; { { segments = (atomic_t *)(& bio->bi_phys_segments); atomic_set(segments, (int )cnt); } return; } } __inline static int raid6_d0(struct stripe_head *sh ) { { if ((int )sh->ddf_layout != 0) { return (0); } else { } if ((int )sh->qd_idx == sh->disks + -1) { return (0); } else { return ((int )sh->qd_idx + 1); } } } __inline static int raid6_next_disk(int disk , int raid_disks ) { { disk = disk + 1; return (disk < raid_disks ? disk : 0); } } static int raid6_idx_to_slot(int idx , struct stripe_head *sh , int *count , int syndrome_disks ) { int slot ; { slot = *count; if ((int )sh->ddf_layout != 0) { *count = *count + 1; } else { } if (idx == (int )sh->pd_idx) { return (syndrome_disks); } else { } if (idx == (int )sh->qd_idx) { return (syndrome_disks + 1); } else { } if ((int )sh->ddf_layout == 0) { *count = *count + 1; } else { } return (slot); } } static void return_io(struct bio *return_bi ) { struct bio *bi ; struct request_queue *tmp ; { bi = return_bi; goto ldv_39676; ldv_39675: { return_bi = bi->bi_next; bi->bi_next = (struct bio *)0; bi->bi_iter.bi_size = 0U; tmp = bdev_get_queue(bi->bi_bdev); trace_block_bio_complete(tmp, bi, 0); bio_endio(bi, 0); bi = return_bi; } ldv_39676: ; if ((unsigned long )bi != (unsigned long )((struct bio *)0)) { goto ldv_39675; } else { } return; } } static void print_raid5_conf(struct r5conf *conf ) ; static int stripe_operations_active(struct stripe_head *sh ) { int tmp ; int tmp___0 ; int tmp___1 ; { if ((unsigned int )sh->check_state != 0U || (unsigned int )sh->reconstruct_state != 0U) { tmp___1 = 1; } else { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& sh->state)); } if (tmp != 0) { tmp___1 = 1; } else { { tmp___0 = constant_test_bit(16L, (unsigned long const volatile *)(& sh->state)); } if (tmp___0 != 0) { tmp___1 = 1; } else { tmp___1 = 0; } } } return (tmp___1); } } static void raid5_wakeup_stripe_thread(struct stripe_head *sh ) { struct r5conf *conf ; struct r5worker_group *group ; int thread_cnt ; int i ; int cpu ; unsigned int tmp ; unsigned int tmp___0 ; int tmp___1 ; struct r5worker_group *group___0 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { conf = sh->raid_conf; cpu = sh->cpu; tmp___0 = cpumask_check((unsigned int )cpu); tmp___1 = variable_test_bit((long )tmp___0, (unsigned long const volatile *)(& cpu_online_mask->bits)); } if (tmp___1 == 0) { { tmp = cpumask_first(cpu_online_mask); cpu = (int )tmp; sh->cpu = cpu; } } else { } { tmp___3 = list_empty((struct list_head const *)(& sh->lru)); } if (tmp___3 != 0) { { tmp___2 = __cpu_to_node(cpu); group___0 = conf->worker_groups + (unsigned long )tmp___2; list_add_tail(& sh->lru, & group___0->handle_list); group___0->stripes_cnt = group___0->stripes_cnt + 1; sh->group = group___0; } } else { } if (conf->worker_cnt_per_group == 0) { { md_wakeup_thread((conf->mddev)->thread); } return; } else { } { tmp___4 = __cpu_to_node(sh->cpu); group = conf->worker_groups + (unsigned long )tmp___4; (group->workers)->working = 1; queue_work_on(sh->cpu, raid5_wq, & (group->workers)->work); thread_cnt = group->stripes_cnt / 8 + -1; i = 1; } goto ldv_39693; ldv_39692: ; if (! (group->workers + (unsigned long )i)->working) { { (group->workers + (unsigned long )i)->working = 1; queue_work_on(sh->cpu, raid5_wq, & (group->workers + (unsigned long )i)->work); thread_cnt = thread_cnt - 1; } } else { } i = i + 1; ldv_39693: ; if (i < conf->worker_cnt_per_group && thread_cnt > 0) { goto ldv_39692; } else { } return; } } static void do_release_stripe(struct r5conf *conf , struct stripe_head *sh , struct list_head *temp_inactive_list ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; { { tmp = list_empty((struct list_head const *)(& sh->lru)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (295), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = atomic_read((atomic_t const *)(& conf->active_stripes)); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (296), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___11 = constant_test_bit(1L, (unsigned long const volatile *)(& sh->state)); } if (tmp___11 != 0) { { tmp___4 = constant_test_bit(7L, (unsigned long const volatile *)(& sh->state)); } if (tmp___4 != 0) { { tmp___5 = constant_test_bit(6L, (unsigned long const volatile *)(& sh->state)); } if (tmp___5 == 0) { { list_add_tail(& sh->lru, & conf->delayed_list); } } else { goto _L; } } else { _L: /* CIL Label */ { tmp___3 = constant_test_bit(9L, (unsigned long const volatile *)(& sh->state)); } if (tmp___3 != 0 && sh->bm_seq - conf->seq_write > 0) { { list_add_tail(& sh->lru, & conf->bitmap_list); } } else { { clear_bit(7L, (unsigned long volatile *)(& sh->state)); clear_bit(9L, (unsigned long volatile *)(& sh->state)); } if (conf->worker_cnt_per_group == 0) { { list_add_tail(& sh->lru, & conf->handle_list); } } else { { raid5_wakeup_stripe_thread(sh); } return; } } } { md_wakeup_thread((conf->mddev)->thread); } } else { { tmp___6 = stripe_operations_active(sh); tmp___7 = ldv__builtin_expect(tmp___6 != 0, 0L); } if (tmp___7 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (316), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___9 = test_and_set_bit(6L, (unsigned long volatile *)(& sh->state)); } if (tmp___9 != 0) { { tmp___8 = atomic_sub_return(1, & conf->preread_active_stripes); } if (tmp___8 <= 0) { { md_wakeup_thread((conf->mddev)->thread); } } else { } } else { } { atomic_dec(& conf->active_stripes); tmp___10 = constant_test_bit(10L, (unsigned long const volatile *)(& sh->state)); } if (tmp___10 == 0) { { list_add_tail(& sh->lru, temp_inactive_list); } } else { } } return; } } static void __release_stripe(struct r5conf *conf , struct stripe_head *sh , struct list_head *temp_inactive_list ) { int tmp ; { { tmp = atomic_dec_and_test(& sh->count); } if (tmp != 0) { { do_release_stripe(conf, sh, temp_inactive_list); } } else { } return; } } static void release_inactive_stripe_list(struct r5conf *conf , struct list_head *temp_inactive_list , int hash ) { int size ; bool do_wakeup ; unsigned long flags ; struct list_head *list ; int tmp ; int tmp___0 ; int tmp___1 ; { do_wakeup = 0; if (hash == 8) { size = 8; hash = 7; } else { size = 1; } goto ldv_39715; ldv_39714: { list = temp_inactive_list + ((unsigned long )size + 0xffffffffffffffffUL); tmp___1 = list_empty_careful((struct list_head const *)list); } if (tmp___1 == 0) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); tmp = list_empty((struct list_head const *)(& conf->inactive_list) + (unsigned long )hash); } if (tmp != 0) { { tmp___0 = list_empty((struct list_head const *)list); } if (tmp___0 == 0) { { atomic_dec(& conf->empty_inactive_list_nr); } } else { } } else { } { list_splice_tail_init(list, (struct list_head *)(& conf->inactive_list) + (unsigned long )hash); do_wakeup = 1; ldv_spin_unlock_irqrestore_110((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash, flags); } } else { } size = size - 1; hash = hash - 1; ldv_39715: ; if (size != 0) { goto ldv_39714; } else { } if ((int )do_wakeup) { { __wake_up(& conf->wait_for_stripe, 3U, 1, (void *)0); } if ((unsigned long )conf->retry_read_aligned != (unsigned long )((struct bio *)0)) { { md_wakeup_thread((conf->mddev)->thread); } } else { } } else { } return; } } static int release_stripe_list(struct r5conf *conf , struct list_head *temp_inactive_list ) { struct stripe_head *sh ; int count ; struct llist_node *head ; int hash ; struct llist_node const *__mptr ; { { count = 0; head = llist_del_all(& conf->released_stripes); head = llist_reverse_order(head); } goto ldv_39728; ldv_39727: { __mptr = (struct llist_node const *)head; sh = (struct stripe_head *)__mptr + 0xffffffffffffffe0UL; head = llist_next(head); __asm__ volatile ("mfence": : : "memory"); clear_bit(20L, (unsigned long volatile *)(& sh->state)); hash = (int )sh->hash_lock_index; __release_stripe(conf, sh, temp_inactive_list + (unsigned long )hash); count = count + 1; } ldv_39728: ; if ((unsigned long )head != (unsigned long )((struct llist_node *)0)) { goto ldv_39727; } else { } return (count); } } static void release_stripe(struct stripe_head *sh ) { struct r5conf *conf ; unsigned long flags ; struct list_head list ; int hash ; bool wakeup ; int tmp ; long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { conf = sh->raid_conf; tmp = atomic_add_unless(& sh->count, -1, 1); } if (tmp != 0) { return; } else { } { tmp___0 = ldv__builtin_expect((unsigned long )(conf->mddev)->thread == (unsigned long )((struct md_thread *)0), 0L); } if (tmp___0 != 0L) { goto slow_path; } else { { tmp___1 = test_and_set_bit(20L, (unsigned long volatile *)(& sh->state)); } if (tmp___1 != 0) { goto slow_path; } else { } } { wakeup = llist_add(& sh->release_list, & conf->released_stripes); } if ((int )wakeup) { { md_wakeup_thread((conf->mddev)->thread); } } else { } return; slow_path: { flags = arch_local_irq_save(); trace_hardirqs_off(); tmp___2 = ldv___ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_111(& conf->device_lock); } if (tmp___2 != 0) { { INIT_LIST_HEAD(& list); hash = (int )sh->hash_lock_index; do_release_stripe(conf, sh, & list); ldv_spin_unlock_102(& conf->device_lock); release_inactive_stripe_list(conf, & list, hash); } } else { } { tmp___3 = arch_irqs_disabled_flags(flags); } if (tmp___3 != 0) { { arch_local_irq_restore(flags); trace_hardirqs_off(); } } else { { trace_hardirqs_on(); arch_local_irq_restore(flags); } } return; } } __inline static void remove_hash(struct stripe_head *sh ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "raid456"; descriptor.function = "remove_hash"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "remove_hash(), stripe %llu\n"; descriptor.lineno = 448U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "remove_hash(), stripe %llu\n", (unsigned long long )sh->sector); } } else { } { hlist_del_init(& sh->hash); } return; } } __inline static void insert_hash(struct r5conf *conf , struct stripe_head *sh ) { struct hlist_head *hp ; struct hlist_head *tmp ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = stripe_hash(conf, sh->sector); hp = tmp; descriptor.modname = "raid456"; descriptor.function = "insert_hash"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "insert_hash(), stripe %llu\n"; descriptor.lineno = 458U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor, "insert_hash(), stripe %llu\n", (unsigned long long )sh->sector); } } else { } { hlist_add_head(& sh->hash, hp); } return; } } static struct stripe_head *get_free_stripe(struct r5conf *conf , int hash ) { struct stripe_head *sh ; struct list_head *first ; int tmp ; struct list_head const *__mptr ; long tmp___0 ; int tmp___1 ; { { sh = (struct stripe_head *)0; tmp = list_empty((struct list_head const *)(& conf->inactive_list) + (unsigned long )hash); } if (tmp != 0) { goto out; } else { } { first = ((struct list_head *)(& conf->inactive_list) + (unsigned long )hash)->next; __mptr = (struct list_head const *)first; sh = (struct stripe_head *)__mptr + 0xfffffffffffffff0UL; list_del_init(first); remove_hash(sh); atomic_inc(& conf->active_stripes); tmp___0 = ldv__builtin_expect(hash != (int )sh->hash_lock_index, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (476), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = list_empty((struct list_head const *)(& conf->inactive_list) + (unsigned long )hash); } if (tmp___1 != 0) { { atomic_inc(& conf->empty_inactive_list_nr); } } else { } out: ; return (sh); } } static void shrink_buffers(struct stripe_head *sh ) { struct page *p ; int i ; int num ; int __ret_warn_on ; long tmp ; { num = (sh->raid_conf)->pool_size; i = 0; goto ldv_39783; ldv_39782: { __ret_warn_on = (unsigned long )sh->dev[i].page != (unsigned long )sh->dev[i].orig_page; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/md/raid5.c", 490); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); p = sh->dev[i].page; } if ((unsigned long )p == (unsigned long )((struct page *)0)) { goto ldv_39781; } else { } { sh->dev[i].page = (struct page *)0; put_page(p); } ldv_39781: i = i + 1; ldv_39783: ; if (i < num) { goto ldv_39782; } else { } return; } } static int grow_buffers(struct stripe_head *sh ) { int i ; int num ; struct page *page ; { num = (sh->raid_conf)->pool_size; i = 0; goto ldv_39792; ldv_39791: { page = alloc_pages(208U, 0U); } if ((unsigned long )page == (unsigned long )((struct page *)0)) { return (1); } else { } sh->dev[i].page = page; sh->dev[i].orig_page = page; i = i + 1; ldv_39792: ; if (i < num) { goto ldv_39791; } else { } return (0); } } static void raid5_build_block(struct stripe_head *sh , int i , int previous ) ; static void stripe_set_idx(sector_t stripe , struct r5conf *conf , int previous , struct stripe_head *sh ) ; static void init_stripe(struct stripe_head *sh , sector_t sector , int previous ) { struct r5conf *conf ; int i ; int seq ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; struct _ddebug descriptor ; long tmp___5 ; unsigned int tmp___6 ; struct r5dev *dev ; int tmp___7 ; int __ret_warn_on ; long tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; { { conf = sh->raid_conf; tmp = atomic_read((atomic_t const *)(& sh->count)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (525), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& sh->state)); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (526), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___3 = stripe_operations_active(sh); tmp___4 = ldv__builtin_expect(tmp___3 != 0, 0L); } if (tmp___4 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (527), "i" (12UL)); __builtin_unreachable(); } } else { } { descriptor.modname = "raid456"; descriptor.function = "init_stripe"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "init_stripe called, stripe %llu\n"; descriptor.lineno = 530U; descriptor.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_pr_debug(& descriptor, "init_stripe called, stripe %llu\n", (unsigned long long )sector); } } else { } retry: { tmp___6 = read_seqcount_begin((seqcount_t const *)(& conf->gen_lock)); seq = (int )tmp___6; sh->generation = (short )((int )((unsigned short )conf->generation) - (int )((unsigned short )previous)); sh->disks = previous != 0 ? conf->previous_raid_disks : conf->raid_disks; sh->sector = sector; stripe_set_idx(sector, conf, previous, sh); sh->state = 0UL; i = sh->disks; } goto ldv_39818; ldv_39817: dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; if ((((unsigned long )dev->toread != (unsigned long )((struct bio *)0) || (unsigned long )dev->read != (unsigned long )((struct bio *)0)) || (unsigned long )dev->towrite != (unsigned long )((struct bio *)0)) || (unsigned long )dev->written != (unsigned long )((struct bio *)0)) { goto _L; } else { { tmp___9 = constant_test_bit(1L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___9 != 0) { _L: /* CIL Label */ { tmp___7 = constant_test_bit(1L, (unsigned long const volatile *)(& dev->flags)); printk("\vsector=%llx i=%d %p %p %p %p %d\n", (unsigned long long )sh->sector, i, dev->toread, dev->read, dev->towrite, dev->written, tmp___7); __ret_warn_on = 1; tmp___8 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___8 != 0L) { { warn_slowpath_null("drivers/md/raid5.c", 548); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } } else { } } { dev->flags = 0UL; raid5_build_block(sh, i, previous); } ldv_39818: tmp___10 = i; i = i - 1; if (tmp___10 != 0) { goto ldv_39817; } else { } { tmp___11 = read_seqcount_retry((seqcount_t const *)(& conf->gen_lock), (unsigned int )seq); } if (tmp___11 != 0) { goto retry; } else { } { insert_hash(conf, sh); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39825; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39825; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39825; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39825; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39825: pscr_ret__ = pfo_ret__; goto ldv_39831; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39835; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39835; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39835; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39835; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39835: pscr_ret__ = pfo_ret_____0; goto ldv_39831; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39844; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39844; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39844; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39844; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39844: pscr_ret__ = pfo_ret_____1; goto ldv_39831; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39853; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39853; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39853; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39853; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39853: pscr_ret__ = pfo_ret_____2; goto ldv_39831; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39831; switch_break: /* CIL Label */ ; } ldv_39831: sh->cpu = pscr_ret__; return; } } static struct stripe_head *__find_stripe(struct r5conf *conf , sector_t sector , short generation ) { struct stripe_head *sh ; struct _ddebug descriptor ; long tmp ; struct hlist_node *____ptr ; struct hlist_head *tmp___0 ; struct hlist_node const *__mptr ; struct stripe_head *tmp___1 ; struct hlist_node *____ptr___0 ; struct hlist_node const *__mptr___0 ; struct stripe_head *tmp___2 ; struct _ddebug descriptor___0 ; long tmp___3 ; { { descriptor.modname = "raid456"; descriptor.function = "__find_stripe"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "__find_stripe, sector %llu\n"; descriptor.lineno = 564U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "__find_stripe, sector %llu\n", (unsigned long long )sector); } } else { } { tmp___0 = stripe_hash(conf, sector); ____ptr = tmp___0->first; } if ((unsigned long )____ptr != (unsigned long )((struct hlist_node *)0)) { __mptr = (struct hlist_node const *)____ptr; tmp___1 = (struct stripe_head *)__mptr; } else { tmp___1 = (struct stripe_head *)0; } sh = tmp___1; goto ldv_39878; ldv_39877: ; if (sh->sector == sector && (int )sh->generation == (int )generation) { return (sh); } else { } ____ptr___0 = sh->hash.next; if ((unsigned long )____ptr___0 != (unsigned long )((struct hlist_node *)0)) { __mptr___0 = (struct hlist_node const *)____ptr___0; tmp___2 = (struct stripe_head *)__mptr___0; } else { tmp___2 = (struct stripe_head *)0; } sh = tmp___2; ldv_39878: ; if ((unsigned long )sh != (unsigned long )((struct stripe_head *)0)) { goto ldv_39877; } else { } { descriptor___0.modname = "raid456"; descriptor___0.function = "__find_stripe"; descriptor___0.filename = "drivers/md/raid5.c"; descriptor___0.format = "__stripe %llu not in cache\n"; descriptor___0.lineno = 568U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_pr_debug(& descriptor___0, "__stripe %llu not in cache\n", (unsigned long long )sector); } } else { } return ((struct stripe_head *)0); } } static int calc_degraded(struct r5conf *conf ) { int degraded ; int degraded2 ; int i ; struct md_rdev *rdev ; struct md_rdev *________p1 ; struct md_rdev *_________p1 ; struct md_rdev *__var ; bool __warned ; int tmp ; int tmp___0 ; struct md_rdev *________p1___0 ; struct md_rdev *_________p1___0 ; struct md_rdev *__var___0 ; bool __warned___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; struct md_rdev *rdev___0 ; struct md_rdev *________p1___1 ; struct md_rdev *_________p1___1 ; struct md_rdev *__var___1 ; bool __warned___1 ; int tmp___6 ; int tmp___7 ; struct md_rdev *________p1___2 ; struct md_rdev *_________p1___2 ; struct md_rdev *__var___2 ; bool __warned___2 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; { { rcu_read_lock(); degraded = 0; i = 0; } goto ldv_39903; ldv_39902: { __var = (struct md_rdev *)0; _________p1 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->rdev)); ________p1 = _________p1; tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_read_lock_held(); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 593, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev = ________p1; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___3 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___3 != 0) { { __var___0 = (struct md_rdev *)0; _________p1___0 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->replacement)); ________p1___0 = _________p1___0; tmp___1 = debug_lockdep_rcu_enabled(); } if (tmp___1 != 0 && ! __warned___0) { { tmp___2 = rcu_read_lock_held(); } if (tmp___2 == 0) { { __warned___0 = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 595, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev = ________p1___0; } else { } } else { } if ((unsigned long )rdev == (unsigned long )((struct md_rdev *)0)) { degraded = degraded + 1; } else { { tmp___5 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___5 != 0) { degraded = degraded + 1; } else { { tmp___4 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___4 != 0) { } else if (conf->raid_disks >= conf->previous_raid_disks) { degraded = degraded + 1; } else { } } } i = i + 1; ldv_39903: ; if (i < conf->previous_raid_disks) { goto ldv_39902; } else { } { rcu_read_unlock(); } if (conf->raid_disks == conf->previous_raid_disks) { return (degraded); } else { } { rcu_read_lock(); degraded2 = 0; i = 0; } goto ldv_39921; ldv_39920: { __var___1 = (struct md_rdev *)0; _________p1___1 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->rdev)); ________p1___1 = _________p1___1; tmp___6 = debug_lockdep_rcu_enabled(); } if (tmp___6 != 0 && ! __warned___1) { { tmp___7 = rcu_read_lock_held(); } if (tmp___7 == 0) { { __warned___1 = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 619, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev___0 = ________p1___1; if ((unsigned long )rdev___0 != (unsigned long )((struct md_rdev *)0)) { { tmp___10 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev___0->flags)); } if (tmp___10 != 0) { { __var___2 = (struct md_rdev *)0; _________p1___2 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->replacement)); ________p1___2 = _________p1___2; tmp___8 = debug_lockdep_rcu_enabled(); } if (tmp___8 != 0 && ! __warned___2) { { tmp___9 = rcu_read_lock_held(); } if (tmp___9 == 0) { { __warned___2 = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 621, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev___0 = ________p1___2; } else { } } else { } if ((unsigned long )rdev___0 == (unsigned long )((struct md_rdev *)0)) { degraded2 = degraded2 + 1; } else { { tmp___12 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev___0->flags)); } if (tmp___12 != 0) { degraded2 = degraded2 + 1; } else { { tmp___11 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev___0->flags)); } if (tmp___11 != 0) { } else if (conf->raid_disks <= conf->previous_raid_disks) { degraded2 = degraded2 + 1; } else { } } } i = i + 1; ldv_39921: ; if (i < conf->raid_disks) { goto ldv_39920; } else { } { rcu_read_unlock(); } if (degraded2 > degraded) { return (degraded2); } else { } return (degraded); } } static int has_failed(struct r5conf *conf ) { int degraded ; { if ((conf->mddev)->reshape_position == 0xffffffffffffffffUL) { return ((conf->mddev)->degraded > conf->max_degraded); } else { } { degraded = calc_degraded(conf); } if (degraded > conf->max_degraded) { return (1); } else { } return (0); } } static struct stripe_head *get_active_stripe(struct r5conf *conf , sector_t sector , int previous , int noblock , int noquiesce ) { struct stripe_head *sh ; int hash ; int tmp ; struct _ddebug descriptor ; long tmp___0 ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___1 ; int tmp___2 ; int tmp___3 ; wait_queue_t __wait___0 ; long __ret___0 ; long __int___0 ; long tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; int tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; { { tmp = stripe_hash_locks_hash(sector); hash = tmp; descriptor.modname = "raid456"; descriptor.function = "get_active_stripe"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "get_stripe, sector %llu\n"; descriptor.lineno = 661U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor, "get_stripe, sector %llu\n", (unsigned long long )sector); } } else { } { ldv_spin_lock_irq_100((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); } ldv_39955: ; if (conf->quiesce == 0 || noquiesce != 0) { goto ldv_39938; } else { } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_39944: { tmp___1 = prepare_to_wait_event(& conf->wait_for_stripe, & __wait, 2); __int = tmp___1; } if (conf->quiesce == 0 || noquiesce != 0) { goto ldv_39943; } else { } { ldv_spin_unlock_irq_103((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); schedule(); ldv_spin_lock_irq_100((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); } goto ldv_39944; ldv_39943: { finish_wait(& conf->wait_for_stripe, & __wait); } ldv_39938: { sh = __find_stripe(conf, sector, (int )((short )((int )((unsigned short )conf->generation) - (int )((unsigned short )previous)))); } if ((unsigned long )sh == (unsigned long )((struct stripe_head *)0)) { if (conf->inactive_blocked == 0) { { sh = get_free_stripe(conf, hash); } } else { } if (noblock != 0 && (unsigned long )sh == (unsigned long )((struct stripe_head *)0)) { goto ldv_39946; } else { } if ((unsigned long )sh == (unsigned long )((struct stripe_head *)0)) { { conf->inactive_blocked = 1; tmp___2 = list_empty((struct list_head const *)(& conf->inactive_list) + (unsigned long )hash); } if (tmp___2 == 0) { { tmp___3 = atomic_read((atomic_t const *)(& conf->active_stripes)); } if (tmp___3 < (conf->max_nr_stripes * 3) / 4 || conf->inactive_blocked == 0) { goto ldv_39947; } else { } } else { } { __ret___0 = 0L; INIT_LIST_HEAD(& __wait___0.task_list); __wait___0.flags = 0U; } ldv_39953: { tmp___4 = prepare_to_wait_event(& conf->wait_for_stripe, & __wait___0, 2); __int___0 = tmp___4; tmp___5 = list_empty((struct list_head const *)(& conf->inactive_list) + (unsigned long )hash); } if (tmp___5 == 0) { { tmp___6 = atomic_read((atomic_t const *)(& conf->active_stripes)); } if (tmp___6 < (conf->max_nr_stripes * 3) / 4 || conf->inactive_blocked == 0) { goto ldv_39952; } else { } } else { } { ldv_spin_unlock_irq_103((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); schedule(); ldv_spin_lock_irq_100((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); } goto ldv_39953; ldv_39952: { finish_wait(& conf->wait_for_stripe, & __wait___0); } ldv_39947: conf->inactive_blocked = 0; } else { { init_stripe(sh, sector, previous); atomic_inc(& sh->count); } } } else { { tmp___13 = atomic_add_unless(& sh->count, 1, 0); } if (tmp___13 == 0) { { ldv_spin_lock_101(& conf->device_lock); tmp___12 = atomic_read((atomic_t const *)(& sh->count)); } if (tmp___12 == 0) { { tmp___7 = constant_test_bit(1L, (unsigned long const volatile *)(& sh->state)); } if (tmp___7 == 0) { { atomic_inc(& conf->active_stripes); } } else { } { tmp___8 = list_empty((struct list_head const *)(& sh->lru)); tmp___9 = ldv__builtin_expect(tmp___8 != 0, 0L); } if (tmp___9 != 0L) { { tmp___10 = constant_test_bit(10L, (unsigned long const volatile *)(& sh->state)); tmp___11 = ldv__builtin_expect(tmp___10 == 0, 0L); } if (tmp___11 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (695), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } { list_del_init(& sh->lru); } if ((unsigned long )sh->group != (unsigned long )((struct r5worker_group *)0)) { (sh->group)->stripes_cnt = (sh->group)->stripes_cnt - 1; sh->group = (struct r5worker_group *)0; } else { } } else { } { atomic_inc(& sh->count); ldv_spin_unlock_102(& conf->device_lock); } } else { } } if ((unsigned long )sh == (unsigned long )((struct stripe_head *)0)) { goto ldv_39955; } else { } ldv_39946: { ldv_spin_unlock_irq_103((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); } return (sh); } } static int use_new_offset(struct r5conf *conf , struct stripe_head *sh ) { sector_t progress ; { progress = conf->reshape_progress; __asm__ volatile ("": : : "memory"); if (progress == 0xffffffffffffffffUL) { return (0); } else { } if ((int )sh->generation == (int )conf->generation + -1) { return (0); } else { } return (1); } } static void raid5_end_read_request(struct bio *bi , int error___0 ) ; static void raid5_end_write_request(struct bio *bi , int error___0 ) ; static void ops_run_io(struct stripe_head *sh , struct stripe_head_state *s ) { struct r5conf *conf ; int i ; int disks ; int rw ; int replace_only ; struct bio *bi ; struct bio *rbi ; struct md_rdev *rdev ; struct md_rdev *rrdev ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; struct md_rdev *________p1 ; struct md_rdev *_________p1 ; struct md_rdev *__var ; bool __warned ; int tmp___5 ; int tmp___6 ; struct md_rdev *________p1___0 ; struct md_rdev *_________p1___0 ; struct md_rdev *__var___0 ; bool __warned___0 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; sector_t first_bad ; int bad_sectors ; int bad ; int tmp___12 ; int tmp___13 ; struct _ddebug descriptor ; long tmp___14 ; int tmp___15 ; int tmp___16 ; int __ret_warn_on ; int tmp___17 ; long tmp___18 ; int tmp___19 ; dev_t tmp___20 ; struct request_queue *tmp___21 ; long tmp___22 ; struct _ddebug descriptor___0 ; long tmp___23 ; int tmp___24 ; int __ret_warn_on___0 ; int tmp___25 ; long tmp___26 ; int tmp___27 ; dev_t tmp___28 ; struct request_queue *tmp___29 ; struct _ddebug descriptor___1 ; long tmp___30 ; int tmp___31 ; { { conf = sh->raid_conf; disks = sh->disks; __might_sleep("drivers/md/raid5.c", 742, 0); i = disks; } goto ldv_39980; ldv_40009: { replace_only = 0; rrdev = (struct md_rdev *)0; tmp___3 = test_and_set_bit(6L, (unsigned long volatile *)(& sh->dev[i].flags)); } if (tmp___3 != 0) { { tmp = test_and_set_bit(15L, (unsigned long volatile *)(& sh->dev[i].flags)); } if (tmp != 0) { rw = 5137; } else { rw = 1; } { tmp___0 = constant_test_bit(23L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___0 != 0) { rw = rw | 128; } else { } } else { { tmp___2 = test_and_set_bit(5L, (unsigned long volatile *)(& sh->dev[i].flags)); } if (tmp___2 != 0) { rw = 0; } else { { tmp___1 = test_and_set_bit(22L, (unsigned long volatile *)(& sh->dev[i].flags)); } if (tmp___1 != 0) { rw = 1; replace_only = 1; } else { goto ldv_39980; } } } { tmp___4 = test_and_set_bit(16L, (unsigned long volatile *)(& sh->dev[i].flags)); } if (tmp___4 != 0) { rw = rw | 16; } else { } { bi = & sh->dev[i].req; rbi = & sh->dev[i].rreq; rcu_read_lock(); __var = (struct md_rdev *)0; _________p1 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->replacement)); ________p1 = _________p1; tmp___5 = debug_lockdep_rcu_enabled(); } if (tmp___5 != 0 && ! __warned) { { tmp___6 = rcu_read_lock_held(); } if (tmp___6 == 0) { { __warned = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 771, "suspicious rcu_dereference_check() usage"); } } else { } } else { } { rrdev = ________p1; __asm__ volatile ("mfence": : : "memory"); __var___0 = (struct md_rdev *)0; _________p1___0 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->rdev)); ________p1___0 = _________p1___0; tmp___7 = debug_lockdep_rcu_enabled(); } if (tmp___7 != 0 && ! __warned___0) { { tmp___8 = rcu_read_lock_held(); } if (tmp___8 == 0) { { __warned___0 = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 773, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev = ________p1___0; if ((unsigned long )rdev == (unsigned long )((struct md_rdev *)0)) { rdev = rrdev; rrdev = (struct md_rdev *)0; } else { } if (rw & 1) { if (replace_only != 0) { rdev = (struct md_rdev *)0; } else { } if ((unsigned long )rdev == (unsigned long )rrdev) { rrdev = (struct md_rdev *)0; } else { } } else { { tmp___9 = constant_test_bit(19L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___9 != 0 && (unsigned long )rrdev != (unsigned long )((struct md_rdev *)0)) { rdev = rrdev; } else { } rrdev = (struct md_rdev *)0; } if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___10 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___10 != 0) { rdev = (struct md_rdev *)0; } else { } } else { } if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { atomic_inc(& rdev->nr_pending); } } else { } if ((unsigned long )rrdev != (unsigned long )((struct md_rdev *)0)) { { tmp___11 = constant_test_bit(0L, (unsigned long const volatile *)(& rrdev->flags)); } if (tmp___11 != 0) { rrdev = (struct md_rdev *)0; } else { } } else { } if ((unsigned long )rrdev != (unsigned long )((struct md_rdev *)0)) { { atomic_inc(& rrdev->nr_pending); } } else { } { rcu_read_unlock(); } goto ldv_40000; ldv_39999: { tmp___12 = is_badblock(rdev, sh->sector, 8, & first_bad, & bad_sectors); bad = tmp___12; } if (bad == 0) { goto ldv_39998; } else { } if (bad < 0) { { set_bit(9L, (unsigned long volatile *)(& rdev->flags)); } if ((conf->mddev)->external == 0 && (conf->mddev)->flags != 0UL) { { md_check_recovery(conf->mddev); } } else { } { atomic_inc(& rdev->nr_pending); md_wait_for_blocked_rdev(rdev, conf->mddev); } } else { { rdev_dec_pending(rdev, conf->mddev); rdev = (struct md_rdev *)0; } } ldv_40000: ; if ((rw & 1) != 0 && (unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___13 = constant_test_bit(7L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___13 != 0) { goto ldv_39999; } else { goto ldv_39998; } } else { } ldv_39998: ; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { if (((unsigned long )*((long *)s + 0UL) & 0xffffffffffffffffUL) != 0UL || ((unsigned long )*((long *)s + 1UL) & 0xffffffffffffffffUL) != 0UL) { { md_sync_acct(rdev->bdev, 8UL); } } else { } { set_bit(13L, (unsigned long volatile *)(& sh->state)); bio_reset(bi); bi->bi_bdev = rdev->bdev; bi->bi_rw = (unsigned long )rw; bi->bi_end_io = rw & 1 ? & raid5_end_write_request : & raid5_end_read_request; bi->bi_private = (void *)sh; descriptor.modname = "raid456"; descriptor.function = "ops_run_io"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: for %llu schedule op %ld on disc %d\n"; descriptor.lineno = 854U; descriptor.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___14 != 0L) { { __dynamic_pr_debug(& descriptor, "%s: for %llu schedule op %ld on disc %d\n", "ops_run_io", (unsigned long long )sh->sector, bi->bi_rw, i); } } else { } { atomic_inc(& sh->count); tmp___15 = use_new_offset(conf, sh); } if (tmp___15 != 0) { bi->bi_iter.bi_sector = sh->sector + rdev->new_data_offset; } else { bi->bi_iter.bi_sector = sh->sector + rdev->data_offset; } { tmp___16 = constant_test_bit(8L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___16 != 0) { bi->bi_rw = (unsigned long )((unsigned long long )bi->bi_rw | 262144ULL); } else { } { tmp___19 = constant_test_bit(24L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___19 != 0) { { tmp___17 = constant_test_bit(0L, (unsigned long const volatile *)(& sh->dev[i].flags)); __ret_warn_on = tmp___17 != 0; tmp___18 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___18 != 0L) { { warn_slowpath_null("drivers/md/raid5.c", 866); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } } else { } sh->dev[i].vec.bv_page = sh->dev[i].page; bi->bi_vcnt = 1U; (bi->bi_io_vec)->bv_len = 4096U; (bi->bi_io_vec)->bv_offset = 0U; bi->bi_iter.bi_size = 4096U; if (((unsigned long long )rw & 128ULL) != 0ULL) { bi->bi_vcnt = 0U; } else { } if ((unsigned long )rrdev != (unsigned long )((struct md_rdev *)0)) { { set_bit(2L, (unsigned long volatile *)(& sh->dev[i].flags)); } } else { } if ((unsigned long )(conf->mddev)->gendisk != (unsigned long )((struct gendisk *)0)) { { tmp___20 = disk_devt((conf->mddev)->gendisk); tmp___21 = bdev_get_queue(bi->bi_bdev); trace_block_bio_remap(tmp___21, bi, tmp___20, sh->dev[i].sector); } } else { } { generic_make_request(bi); } } else { } if ((unsigned long )rrdev != (unsigned long )((struct md_rdev *)0)) { if (((unsigned long )*((long *)s + 0UL) & 0xffffffffffffffffUL) != 0UL || ((unsigned long )*((long *)s + 1UL) & 0xffffffffffffffffUL) != 0UL) { { md_sync_acct(rrdev->bdev, 8UL); } } else { } { set_bit(13L, (unsigned long volatile *)(& sh->state)); bio_reset(rbi); rbi->bi_bdev = rrdev->bdev; rbi->bi_rw = (unsigned long )rw; tmp___22 = ldv__builtin_expect(((unsigned long long )rw & 1ULL) == 0ULL, 0L); } if (tmp___22 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (897), "i" (12UL)); __builtin_unreachable(); } } else { } { rbi->bi_end_io = & raid5_end_write_request; rbi->bi_private = (void *)sh; descriptor___0.modname = "raid456"; descriptor___0.function = "ops_run_io"; descriptor___0.filename = "drivers/md/raid5.c"; descriptor___0.format = "%s: for %llu schedule op %ld on replacement disc %d\n"; descriptor___0.lineno = 904U; descriptor___0.flags = 0U; tmp___23 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___23 != 0L) { { __dynamic_pr_debug(& descriptor___0, "%s: for %llu schedule op %ld on replacement disc %d\n", "ops_run_io", (unsigned long long )sh->sector, rbi->bi_rw, i); } } else { } { atomic_inc(& sh->count); tmp___24 = use_new_offset(conf, sh); } if (tmp___24 != 0) { rbi->bi_iter.bi_sector = sh->sector + rrdev->new_data_offset; } else { rbi->bi_iter.bi_sector = sh->sector + rrdev->data_offset; } { tmp___27 = constant_test_bit(24L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___27 != 0) { { tmp___25 = constant_test_bit(0L, (unsigned long const volatile *)(& sh->dev[i].flags)); __ret_warn_on___0 = tmp___25 != 0; tmp___26 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___26 != 0L) { { warn_slowpath_null("drivers/md/raid5.c", 913); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } } else { } sh->dev[i].rvec.bv_page = sh->dev[i].page; rbi->bi_vcnt = 1U; (rbi->bi_io_vec)->bv_len = 4096U; (rbi->bi_io_vec)->bv_offset = 0U; rbi->bi_iter.bi_size = 4096U; if (((unsigned long long )rw & 128ULL) != 0ULL) { rbi->bi_vcnt = 0U; } else { } if ((unsigned long )(conf->mddev)->gendisk != (unsigned long )((struct gendisk *)0)) { { tmp___28 = disk_devt((conf->mddev)->gendisk); tmp___29 = bdev_get_queue(rbi->bi_bdev); trace_block_bio_remap(tmp___29, rbi, tmp___28, sh->dev[i].sector); } } else { } { generic_make_request(rbi); } } else { } if ((unsigned long )rdev == (unsigned long )((struct md_rdev *)0) && (unsigned long )rrdev == (unsigned long )((struct md_rdev *)0)) { if (rw & 1) { { set_bit(8L, (unsigned long volatile *)(& sh->state)); } } else { } { descriptor___1.modname = "raid456"; descriptor___1.function = "ops_run_io"; descriptor___1.filename = "drivers/md/raid5.c"; descriptor___1.format = "skip op %ld on disc %d for sector %llu\n"; descriptor___1.lineno = 935U; descriptor___1.flags = 0U; tmp___30 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___30 != 0L) { { __dynamic_pr_debug(& descriptor___1, "skip op %ld on disc %d for sector %llu\n", bi->bi_rw, i, (unsigned long long )sh->sector); } } else { } { clear_bit(1L, (unsigned long volatile *)(& sh->dev[i].flags)); set_bit(1L, (unsigned long volatile *)(& sh->state)); } } else { } ldv_39980: tmp___31 = i; i = i - 1; if (tmp___31 != 0) { goto ldv_40009; } else { } return; } } static struct dma_async_tx_descriptor *async_copy_data(int frombio , struct bio *bio , struct page **page , sector_t sector , struct dma_async_tx_descriptor *tx , struct stripe_head *sh ) { struct bio_vec bvl ; struct bvec_iter iter ; struct page *bio_page ; int page_offset___0 ; struct async_submit_ctl submit ; enum async_tx_flags flags ; int len ; int clen ; int b_offset ; struct bio_vec __constr_expr_0 ; unsigned int _min1 ; unsigned int _min2 ; { flags = 0; if (bio->bi_iter.bi_sector >= sector) { page_offset___0 = (int )((unsigned int )bio->bi_iter.bi_sector - (unsigned int )sector) * 512; } else { page_offset___0 = (int )((unsigned int )bio->bi_iter.bi_sector - (unsigned int )sector) * 512; } if (frombio != 0) { flags = (enum async_tx_flags )((unsigned int )flags | 8U); } else { } { init_async_submit(& submit, flags, tx, (void (*)(void * ))0, (void *)0, (addr_conv_t *)0); iter = bio->bi_iter; } goto ldv_40034; ldv_40033: len = (int )bvl.bv_len; b_offset = 0; if (page_offset___0 < 0) { b_offset = - page_offset___0; page_offset___0 = page_offset___0 + b_offset; len = len - b_offset; } else { } if (len > 0 && (unsigned int )(page_offset___0 + len) > 4096U) { clen = (int )(4096U - (unsigned int )page_offset___0); } else { clen = len; } if (clen > 0) { b_offset = (int )((unsigned int )b_offset + bvl.bv_offset); bio_page = bvl.bv_page; if (frombio != 0) { if (((sh->raid_conf)->skip_copy != 0 && b_offset == 0) && (page_offset___0 == 0 && clen == 4096)) { *page = bio_page; } else { { tx = async_memcpy(*page, bio_page, (unsigned int )page_offset___0, (unsigned int )b_offset, (size_t )clen, & submit); } } } else { { tx = async_memcpy(bio_page, *page, (unsigned int )b_offset, (unsigned int )page_offset___0, (size_t )clen, & submit); } } } else { } submit.depend_tx = tx; if (clen < len) { goto ldv_40032; } else { } { page_offset___0 = page_offset___0 + len; bio_advance_iter(bio, & iter, bvl.bv_len); } ldv_40034: ; if (iter.bi_size != 0U) { _min1 = iter.bi_size; _min2 = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_len - iter.bi_bvec_done; __constr_expr_0.bv_page = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_page; __constr_expr_0.bv_len = _min1 < _min2 ? _min1 : _min2; __constr_expr_0.bv_offset = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_offset + iter.bi_bvec_done; bvl = __constr_expr_0; goto ldv_40033; } else { } ldv_40032: ; return (tx); } } static void ops_complete_biofill(void *stripe_head_ref ) { struct stripe_head *sh ; struct bio *return_bi ; int i ; struct _ddebug descriptor ; long tmp ; struct r5dev *dev ; struct bio *rbi ; struct bio *rbi2 ; long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { sh = (struct stripe_head *)stripe_head_ref; return_bi = (struct bio *)0; descriptor.modname = "raid456"; descriptor.function = "ops_complete_biofill"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1012U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_complete_biofill", (unsigned long long )sh->sector); } } else { } i = sh->disks; goto ldv_40050; ldv_40049: { dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; tmp___2 = test_and_set_bit(13L, (unsigned long volatile *)(& dev->flags)); } if (tmp___2 != 0) { { tmp___0 = ldv__builtin_expect((unsigned long )dev->read == (unsigned long )((struct bio *)0), 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1026), "i" (12UL)); __builtin_unreachable(); } } else { } rbi = dev->read; dev->read = (struct bio *)0; goto ldv_40047; ldv_40046: { rbi2 = r5_next_bio(rbi, dev->sector); tmp___1 = raid5_dec_bi_active_stripes(rbi); } if (tmp___1 == 0) { rbi->bi_next = return_bi; return_bi = rbi; } else { } rbi = rbi2; ldv_40047: ; if ((unsigned long )rbi != (unsigned long )((struct bio *)0) && rbi->bi_iter.bi_sector < dev->sector + 8UL) { goto ldv_40046; } else { } } else { } ldv_40050: tmp___3 = i; i = i - 1; if (tmp___3 != 0) { goto ldv_40049; } else { } { clear_bit(15L, (unsigned long volatile *)(& sh->state)); return_io(return_bi); set_bit(1L, (unsigned long volatile *)(& sh->state)); release_stripe(sh); } return; } } static void ops_run_biofill(struct stripe_head *sh ) { struct dma_async_tx_descriptor *tx ; struct async_submit_ctl submit ; int i ; struct _ddebug descriptor ; long tmp ; struct r5dev *dev ; struct bio *rbi ; int tmp___0 ; int tmp___1 ; { { tx = (struct dma_async_tx_descriptor *)0; descriptor.modname = "raid456"; descriptor.function = "ops_run_biofill"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1055U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_run_biofill", (unsigned long long )sh->sector); } } else { } i = sh->disks; goto ldv_40066; ldv_40065: { dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; tmp___0 = constant_test_bit(13L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___0 != 0) { { ldv_spin_lock_irq_121(& sh->stripe_lock); rbi = dev->toread; dev->read = rbi; dev->toread = (struct bio *)0; ldv_spin_unlock_irq_122(& sh->stripe_lock); } goto ldv_40063; ldv_40062: { tx = async_copy_data(0, rbi, & dev->page, dev->sector, tx, sh); rbi = r5_next_bio(rbi, dev->sector); } ldv_40063: ; if ((unsigned long )rbi != (unsigned long )((struct bio *)0) && rbi->bi_iter.bi_sector < dev->sector + 8UL) { goto ldv_40062; } else { } } else { } ldv_40066: tmp___1 = i; i = i - 1; if (tmp___1 != 0) { goto ldv_40065; } else { } { atomic_inc(& sh->count); init_async_submit(& submit, 4, tx, & ops_complete_biofill, (void *)sh, (addr_conv_t *)0); async_trigger_callback(& submit); } return; } } static void mark_target_uptodate(struct stripe_head *sh , int target ) { struct r5dev *tgt ; int tmp ; long tmp___0 ; { if (target < 0) { return; } else { } { tgt = (struct r5dev *)(& sh->dev) + (unsigned long )target; set_bit(0L, (unsigned long volatile *)(& tgt->flags)); tmp = constant_test_bit(12L, (unsigned long const volatile *)(& tgt->flags)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1088), "i" (12UL)); __builtin_unreachable(); } } else { } { clear_bit(12L, (unsigned long volatile *)(& tgt->flags)); } return; } } static void ops_complete_compute(void *stripe_head_ref ) { struct stripe_head *sh ; struct _ddebug descriptor ; long tmp ; { { sh = (struct stripe_head *)stripe_head_ref; descriptor.modname = "raid456"; descriptor.function = "ops_complete_compute"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1097U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_complete_compute", (unsigned long long )sh->sector); } } else { } { mark_target_uptodate(sh, sh->ops.target); mark_target_uptodate(sh, sh->ops.target2); clear_bit(16L, (unsigned long volatile *)(& sh->state)); } if ((unsigned int )sh->check_state == 5U) { sh->check_state = 6; } else { } { set_bit(1L, (unsigned long volatile *)(& sh->state)); release_stripe(sh); } return; } } static addr_conv_t *to_addr_conv(struct stripe_head *sh , struct raid5_percpu *percpu ) { { return ((addr_conv_t *)(percpu->scribble + (unsigned long )(sh->disks + 2) * 8UL)); } } static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh , struct raid5_percpu *percpu ) { int disks ; struct page **xor_srcs ; int target ; struct r5dev *tgt ; struct page *xor_dest ; int count ; struct dma_async_tx_descriptor *tx ; struct async_submit_ctl submit ; int i ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; int tmp___3 ; addr_conv_t *tmp___4 ; long tmp___5 ; { { disks = sh->disks; xor_srcs = (struct page **)percpu->scribble; target = sh->ops.target; tgt = (struct r5dev *)(& sh->dev) + (unsigned long )target; xor_dest = tgt->page; count = 0; descriptor.modname = "raid456"; descriptor.function = "ops_run_compute5"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu block: %d\n"; descriptor.lineno = 1131U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu block: %d\n", "ops_run_compute5", (unsigned long long )sh->sector, target); } } else { } { tmp___0 = constant_test_bit(12L, (unsigned long const volatile *)(& tgt->flags)); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1132), "i" (12UL)); __builtin_unreachable(); } } else { } i = disks; goto ldv_40099; ldv_40098: ; if (i != target) { tmp___2 = count; count = count + 1; *(xor_srcs + (unsigned long )tmp___2) = sh->dev[i].page; } else { } ldv_40099: tmp___3 = i; i = i - 1; if (tmp___3 != 0) { goto ldv_40098; } else { } { atomic_inc(& sh->count); tmp___4 = to_addr_conv(sh, percpu); init_async_submit(& submit, 9, (struct dma_async_tx_descriptor *)0, & ops_complete_compute, (void *)sh, tmp___4); tmp___5 = ldv__builtin_expect(count == 1, 0L); } if (tmp___5 != 0L) { { tx = async_memcpy(xor_dest, *xor_srcs, 0U, 0U, 4096UL, & submit); } } else { { tx = async_xor(xor_dest, xor_srcs, 0U, count, 4096UL, & submit); } } return (tx); } } static int set_syndrome_sources(struct page **srcs , struct stripe_head *sh ) { int disks ; int syndrome_disks ; int d0_idx ; int tmp ; int count ; int i ; int slot ; int tmp___0 ; { { disks = sh->disks; syndrome_disks = (int )sh->ddf_layout != 0 ? disks : disks + -2; tmp = raid6_d0(sh); d0_idx = tmp; i = 0; } goto ldv_40111; ldv_40110: *(srcs + (unsigned long )i) = (struct page *)0; i = i + 1; ldv_40111: ; if (i < disks) { goto ldv_40110; } else { } count = 0; i = d0_idx; ldv_40114: { tmp___0 = raid6_idx_to_slot(i, sh, & count, syndrome_disks); slot = tmp___0; *(srcs + (unsigned long )slot) = sh->dev[i].page; i = raid6_next_disk(i, disks); } if (i != d0_idx) { goto ldv_40114; } else { } return (syndrome_disks); } } static struct dma_async_tx_descriptor *ops_run_compute6_1(struct stripe_head *sh , struct raid5_percpu *percpu ) { int disks ; struct page **blocks ; int target ; int qd_idx ; struct dma_async_tx_descriptor *tx ; struct async_submit_ctl submit ; struct r5dev *tgt ; struct page *dest ; int i ; int count ; long tmp ; struct _ddebug descriptor ; long tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; addr_conv_t *tmp___4 ; int tmp___5 ; int tmp___6 ; addr_conv_t *tmp___7 ; { disks = sh->disks; blocks = (struct page **)percpu->scribble; qd_idx = (int )sh->qd_idx; if (sh->ops.target < 0) { target = sh->ops.target2; } else if (sh->ops.target2 < 0) { target = sh->ops.target; } else { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1202), "i" (12UL)); __builtin_unreachable(); } } { tmp = ldv__builtin_expect(target < 0, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1203), "i" (12UL)); __builtin_unreachable(); } } else { } { descriptor.modname = "raid456"; descriptor.function = "ops_run_compute6_1"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu block: %d\n"; descriptor.lineno = 1205U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu block: %d\n", "ops_run_compute6_1", (unsigned long long )sh->sector, target); } } else { } { tgt = (struct r5dev *)(& sh->dev) + (unsigned long )target; tmp___1 = constant_test_bit(12L, (unsigned long const volatile *)(& tgt->flags)); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1208), "i" (12UL)); __builtin_unreachable(); } } else { } { dest = tgt->page; atomic_inc(& sh->count); } if (target == qd_idx) { { count = set_syndrome_sources(blocks, sh); *(blocks + (unsigned long )count) = (struct page *)0; tmp___3 = ldv__builtin_expect((unsigned long )*(blocks + ((unsigned long )count + 1UL)) != (unsigned long )dest, 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1216), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___4 = to_addr_conv(sh, percpu); init_async_submit(& submit, 8, (struct dma_async_tx_descriptor *)0, & ops_complete_compute, (void *)sh, tmp___4); tx = async_gen_syndrome(blocks, 0U, count + 2, 4096UL, & submit); } } else { count = 0; i = disks; goto ldv_40132; ldv_40133: ; if (i == target || i == qd_idx) { goto ldv_40132; } else { } tmp___5 = count; count = count + 1; *(blocks + (unsigned long )tmp___5) = sh->dev[i].page; ldv_40132: tmp___6 = i; i = i - 1; if (tmp___6 != 0) { goto ldv_40133; } else { } { tmp___7 = to_addr_conv(sh, percpu); init_async_submit(& submit, 9, (struct dma_async_tx_descriptor *)0, & ops_complete_compute, (void *)sh, tmp___7); tx = async_xor(dest, blocks, 0U, count, 4096UL, & submit); } } return (tx); } } static struct dma_async_tx_descriptor *ops_run_compute6_2(struct stripe_head *sh , struct raid5_percpu *percpu ) { int i ; int count ; int disks ; int syndrome_disks ; int d0_idx ; int tmp ; int faila ; int failb ; int target ; int target2 ; struct r5dev *tgt ; struct r5dev *tgt2 ; struct dma_async_tx_descriptor *tx ; struct page **blocks ; struct async_submit_ctl submit ; struct _ddebug descriptor ; long tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; long tmp___5 ; int slot ; int tmp___6 ; long tmp___7 ; int __tmp ; struct _ddebug descriptor___0 ; long tmp___8 ; addr_conv_t *tmp___9 ; struct dma_async_tx_descriptor *tmp___10 ; struct page *dest ; int data_target ; int qd_idx ; int tmp___11 ; int tmp___12 ; addr_conv_t *tmp___13 ; addr_conv_t *tmp___14 ; struct dma_async_tx_descriptor *tmp___15 ; addr_conv_t *tmp___16 ; struct dma_async_tx_descriptor *tmp___17 ; struct dma_async_tx_descriptor *tmp___18 ; { { disks = sh->disks; syndrome_disks = (int )sh->ddf_layout != 0 ? disks : disks + -2; tmp = raid6_d0(sh); d0_idx = tmp; faila = -1; failb = -1; target = sh->ops.target; target2 = sh->ops.target2; tgt = (struct r5dev *)(& sh->dev) + (unsigned long )target; tgt2 = (struct r5dev *)(& sh->dev) + (unsigned long )target2; blocks = (struct page **)percpu->scribble; descriptor.modname = "raid456"; descriptor.function = "ops_run_compute6_2"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu block1: %d block2: %d\n"; descriptor.lineno = 1255U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu block1: %d block2: %d\n", "ops_run_compute6_2", (unsigned long long )sh->sector, target, target2); } } else { } { tmp___1 = ldv__builtin_expect((long )(target < 0 || target2 < 0), 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1256), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = constant_test_bit(12L, (unsigned long const volatile *)(& tgt->flags)); tmp___3 = ldv__builtin_expect(tmp___2 == 0, 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1257), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___4 = constant_test_bit(12L, (unsigned long const volatile *)(& tgt2->flags)); tmp___5 = ldv__builtin_expect(tmp___4 == 0, 0L); } if (tmp___5 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1258), "i" (12UL)); __builtin_unreachable(); } } else { } i = 0; goto ldv_40156; ldv_40155: *(blocks + (unsigned long )i) = (struct page *)0; i = i + 1; ldv_40156: ; if (i < disks) { goto ldv_40155; } else { } count = 0; i = d0_idx; ldv_40159: { tmp___6 = raid6_idx_to_slot(i, sh, & count, syndrome_disks); slot = tmp___6; *(blocks + (unsigned long )slot) = sh->dev[i].page; } if (i == target) { faila = slot; } else { } if (i == target2) { failb = slot; } else { } { i = raid6_next_disk(i, disks); } if (i != d0_idx) { goto ldv_40159; } else { } { tmp___7 = ldv__builtin_expect(faila == failb, 0L); } if (tmp___7 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1279), "i" (12UL)); __builtin_unreachable(); } } else { } if (failb < faila) { __tmp = faila; faila = failb; failb = __tmp; } else { } { descriptor___0.modname = "raid456"; descriptor___0.function = "ops_run_compute6_2"; descriptor___0.filename = "drivers/md/raid5.c"; descriptor___0.format = "%s: stripe: %llu faila: %d failb: %d\n"; descriptor___0.lineno = 1283U; descriptor___0.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___8 != 0L) { { __dynamic_pr_debug(& descriptor___0, "%s: stripe: %llu faila: %d failb: %d\n", "ops_run_compute6_2", (unsigned long long )sh->sector, faila, failb); } } else { } { atomic_inc(& sh->count); } if (failb == syndrome_disks + 1) { if (faila == syndrome_disks) { { tmp___9 = to_addr_conv(sh, percpu); init_async_submit(& submit, 8, (struct dma_async_tx_descriptor *)0, & ops_complete_compute, (void *)sh, tmp___9); tmp___10 = async_gen_syndrome(blocks, 0U, syndrome_disks + 2, 4096UL, & submit); } return (tmp___10); } else { qd_idx = (int )sh->qd_idx; if (target == qd_idx) { data_target = target2; } else { data_target = target; } count = 0; i = disks; goto ldv_40166; ldv_40167: ; if (i == data_target || i == qd_idx) { goto ldv_40166; } else { } tmp___11 = count; count = count + 1; *(blocks + (unsigned long )tmp___11) = sh->dev[i].page; ldv_40166: tmp___12 = i; i = i - 1; if (tmp___12 != 0) { goto ldv_40167; } else { } { dest = sh->dev[data_target].page; tmp___13 = to_addr_conv(sh, percpu); init_async_submit(& submit, 9, (struct dma_async_tx_descriptor *)0, (void (*)(void * ))0, (void *)0, tmp___13); tx = async_xor(dest, blocks, 0U, count, 4096UL, & submit); count = set_syndrome_sources(blocks, sh); tmp___14 = to_addr_conv(sh, percpu); init_async_submit(& submit, 8, tx, & ops_complete_compute, (void *)sh, tmp___14); tmp___15 = async_gen_syndrome(blocks, 0U, count + 2, 4096UL, & submit); } return (tmp___15); } } else { { tmp___16 = to_addr_conv(sh, percpu); init_async_submit(& submit, 8, (struct dma_async_tx_descriptor *)0, & ops_complete_compute, (void *)sh, tmp___16); } if (failb == syndrome_disks) { { tmp___17 = async_raid6_datap_recov(syndrome_disks + 2, 4096UL, faila, blocks, & submit); } return (tmp___17); } else { { tmp___18 = async_raid6_2data_recov(syndrome_disks + 2, 4096UL, faila, failb, blocks, & submit); } return (tmp___18); } } } } static void ops_complete_prexor(void *stripe_head_ref ) { struct stripe_head *sh ; struct _ddebug descriptor ; long tmp ; { { sh = (struct stripe_head *)stripe_head_ref; descriptor.modname = "raid456"; descriptor.function = "ops_complete_prexor"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1351U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_complete_prexor", (unsigned long long )sh->sector); } } else { } return; } } static struct dma_async_tx_descriptor *ops_run_prexor(struct stripe_head *sh , struct raid5_percpu *percpu , struct dma_async_tx_descriptor *tx ) { int disks ; struct page **xor_srcs ; int count ; int pd_idx ; int i ; struct async_submit_ctl submit ; struct page *xor_dest ; int tmp ; struct page *tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; struct r5dev *dev ; int tmp___2 ; int tmp___3 ; int tmp___4 ; addr_conv_t *tmp___5 ; { { disks = sh->disks; xor_srcs = (struct page **)percpu->scribble; count = 0; pd_idx = (int )sh->pd_idx; tmp = count; count = count + 1; tmp___0 = sh->dev[pd_idx].page; *(xor_srcs + (unsigned long )tmp) = tmp___0; xor_dest = tmp___0; descriptor.modname = "raid456"; descriptor.function = "ops_run_prexor"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1367U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_run_prexor", (unsigned long long )sh->sector); } } else { } i = disks; goto ldv_40191; ldv_40190: { dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; tmp___3 = constant_test_bit(14L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___3 != 0) { tmp___2 = count; count = count + 1; *(xor_srcs + (unsigned long )tmp___2) = dev->page; } else { } ldv_40191: tmp___4 = i; i = i - 1; if (tmp___4 != 0) { goto ldv_40190; } else { } { tmp___5 = to_addr_conv(sh, percpu); init_async_submit(& submit, 10, tx, & ops_complete_prexor, (void *)sh, tmp___5); tx = async_xor(xor_dest, xor_srcs, 0U, count, 4096UL, & submit); } return (tx); } } static struct dma_async_tx_descriptor *ops_run_biodrain(struct stripe_head *sh , struct dma_async_tx_descriptor *tx ) { int disks ; int i ; struct _ddebug descriptor ; long tmp ; struct r5dev *dev ; struct bio *chosen ; struct bio *wbi ; long tmp___0 ; struct bio *tmp___1 ; int __ret_warn_on ; long tmp___2 ; int tmp___3 ; int tmp___4 ; { { disks = sh->disks; descriptor.modname = "raid456"; descriptor.function = "ops_run_biodrain"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1390U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_run_biodrain", (unsigned long long )sh->sector); } } else { } i = disks; goto ldv_40210; ldv_40209: { dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; tmp___3 = test_and_set_bit(14L, (unsigned long volatile *)(& dev->flags)); } if (tmp___3 != 0) { { ldv_spin_lock_irq_121(& sh->stripe_lock); chosen = dev->towrite; dev->towrite = (struct bio *)0; tmp___0 = ldv__builtin_expect((unsigned long )dev->written != (unsigned long )((struct bio *)0), 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1402), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = chosen; dev->written = tmp___1; wbi = tmp___1; ldv_spin_unlock_irq_122(& sh->stripe_lock); __ret_warn_on = (unsigned long )dev->page != (unsigned long )dev->orig_page; tmp___2 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/md/raid5.c", 1405); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } goto ldv_40207; ldv_40206: ; if (((unsigned long long )wbi->bi_rw & 4096ULL) != 0ULL) { { set_bit(15L, (unsigned long volatile *)(& dev->flags)); } } else { } if (((unsigned long long )wbi->bi_rw & 16ULL) != 0ULL) { { set_bit(16L, (unsigned long volatile *)(& dev->flags)); } } else { } if (((unsigned long long )wbi->bi_rw & 128ULL) != 0ULL) { { set_bit(23L, (unsigned long volatile *)(& dev->flags)); } } else { { tx = async_copy_data(1, wbi, & dev->page, dev->sector, tx, sh); } if ((unsigned long )dev->page != (unsigned long )dev->orig_page) { { set_bit(24L, (unsigned long volatile *)(& dev->flags)); clear_bit(0L, (unsigned long volatile *)(& dev->flags)); clear_bit(3L, (unsigned long volatile *)(& dev->flags)); } } else { } } { wbi = r5_next_bio(wbi, dev->sector); } ldv_40207: ; if ((unsigned long )wbi != (unsigned long )((struct bio *)0) && wbi->bi_iter.bi_sector < dev->sector + 8UL) { goto ldv_40206; } else { } } else { } ldv_40210: tmp___4 = i; i = i - 1; if (tmp___4 != 0) { goto ldv_40209; } else { } return (tx); } } static void ops_complete_reconstruct(void *stripe_head_ref ) { struct stripe_head *sh ; int disks ; int pd_idx ; int qd_idx ; int i ; bool fua ; bool sync ; bool discard ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; struct r5dev *dev ; int tmp___4 ; int tmp___5 ; long tmp___6 ; { { sh = (struct stripe_head *)stripe_head_ref; disks = sh->disks; pd_idx = (int )sh->pd_idx; qd_idx = (int )sh->qd_idx; fua = 0; sync = 0; discard = 0; descriptor.modname = "raid456"; descriptor.function = "ops_complete_reconstruct"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1442U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_complete_reconstruct", (unsigned long long )sh->sector); } } else { } i = disks; goto ldv_40226; ldv_40225: { tmp___0 = constant_test_bit(15L, (unsigned long const volatile *)(& sh->dev[i].flags)); fua = ((int )fua | tmp___0) != 0; tmp___1 = constant_test_bit(16L, (unsigned long const volatile *)(& sh->dev[i].flags)); sync = ((int )sync | tmp___1) != 0; tmp___2 = constant_test_bit(23L, (unsigned long const volatile *)(& sh->dev[i].flags)); discard = ((int )discard | tmp___2) != 0; } ldv_40226: tmp___3 = i; i = i - 1; if (tmp___3 != 0) { goto ldv_40225; } else { } i = disks; goto ldv_40230; ldv_40229: dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; if (((unsigned long )dev->written != (unsigned long )((struct bio *)0) || i == pd_idx) || i == qd_idx) { if (! discard) { { tmp___4 = constant_test_bit(24L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___4 == 0) { { set_bit(0L, (unsigned long volatile *)(& dev->flags)); } } else { } } else { } if ((int )fua) { { set_bit(15L, (unsigned long volatile *)(& dev->flags)); } } else { } if ((int )sync) { { set_bit(16L, (unsigned long volatile *)(& dev->flags)); } } else { } } else { } ldv_40230: tmp___5 = i; i = i - 1; if (tmp___5 != 0) { goto ldv_40229; } else { } if ((unsigned int )sh->reconstruct_state == 2U) { sh->reconstruct_state = 5; } else if ((unsigned int )sh->reconstruct_state == 1U) { sh->reconstruct_state = 4; } else { { tmp___6 = ldv__builtin_expect((unsigned int )sh->reconstruct_state != 3U, 0L); } if (tmp___6 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1468), "i" (12UL)); __builtin_unreachable(); } } else { } sh->reconstruct_state = 6; } { set_bit(1L, (unsigned long volatile *)(& sh->state)); release_stripe(sh); } return; } } static void ops_run_reconstruct5(struct stripe_head *sh , struct raid5_percpu *percpu , struct dma_async_tx_descriptor *tx ) { int disks ; struct page **xor_srcs ; struct async_submit_ctl submit ; int count ; int pd_idx ; int i ; struct page *xor_dest ; int prexor ; unsigned long flags ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; struct page *tmp___2 ; struct r5dev *dev ; int tmp___3 ; int tmp___4 ; struct r5dev *dev___0 ; int tmp___5 ; int tmp___6 ; addr_conv_t *tmp___7 ; long tmp___8 ; { { disks = sh->disks; xor_srcs = (struct page **)percpu->scribble; count = 0; pd_idx = (int )sh->pd_idx; prexor = 0; descriptor.modname = "raid456"; descriptor.function = "ops_run_reconstruct5"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1489U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_run_reconstruct5", (unsigned long long )sh->sector); } } else { } i = 0; goto ldv_40251; ldv_40250: ; if (pd_idx == i) { goto ldv_40248; } else { } { tmp___0 = constant_test_bit(23L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___0 == 0) { goto ldv_40249; } else { } ldv_40248: i = i + 1; ldv_40251: ; if (i < sh->disks) { goto ldv_40250; } else { } ldv_40249: ; if (i >= sh->disks) { { atomic_inc(& sh->count); set_bit(23L, (unsigned long volatile *)(& sh->dev[pd_idx].flags)); ops_complete_reconstruct((void *)sh); } return; } else { } if ((unsigned int )sh->reconstruct_state == 1U) { prexor = 1; tmp___1 = count; count = count + 1; tmp___2 = sh->dev[pd_idx].page; *(xor_srcs + (unsigned long )tmp___1) = tmp___2; xor_dest = tmp___2; i = disks; goto ldv_40254; ldv_40253: dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; if ((unsigned long )dev->written != (unsigned long )((struct bio *)0)) { tmp___3 = count; count = count + 1; *(xor_srcs + (unsigned long )tmp___3) = dev->page; } else { } ldv_40254: tmp___4 = i; i = i - 1; if (tmp___4 != 0) { goto ldv_40253; } else { } } else { xor_dest = sh->dev[pd_idx].page; i = disks; goto ldv_40258; ldv_40257: dev___0 = (struct r5dev *)(& sh->dev) + (unsigned long )i; if (i != pd_idx) { tmp___5 = count; count = count + 1; *(xor_srcs + (unsigned long )tmp___5) = dev___0->page; } else { } ldv_40258: tmp___6 = i; i = i - 1; if (tmp___6 != 0) { goto ldv_40257; } else { } } { flags = prexor != 0 ? 6UL : 5UL; atomic_inc(& sh->count); tmp___7 = to_addr_conv(sh, percpu); init_async_submit(& submit, (enum async_tx_flags )flags, tx, & ops_complete_reconstruct, (void *)sh, tmp___7); tmp___8 = ldv__builtin_expect(count == 1, 0L); } if (tmp___8 != 0L) { { tx = async_memcpy(xor_dest, *xor_srcs, 0U, 0U, 4096UL, & submit); } } else { { tx = async_xor(xor_dest, xor_srcs, 0U, count, 4096UL, & submit); } } return; } } static void ops_run_reconstruct6(struct stripe_head *sh , struct raid5_percpu *percpu , struct dma_async_tx_descriptor *tx ) { struct async_submit_ctl submit ; struct page **blocks ; int count ; int i ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; addr_conv_t *tmp___1 ; { { blocks = (struct page **)percpu->scribble; descriptor.modname = "raid456"; descriptor.function = "ops_run_reconstruct6"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1549U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_run_reconstruct6", (unsigned long long )sh->sector); } } else { } i = 0; goto ldv_40274; ldv_40273: ; if ((int )sh->pd_idx == i || (int )sh->qd_idx == i) { goto ldv_40271; } else { } { tmp___0 = constant_test_bit(23L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___0 == 0) { goto ldv_40272; } else { } ldv_40271: i = i + 1; ldv_40274: ; if (i < sh->disks) { goto ldv_40273; } else { } ldv_40272: ; if (i >= sh->disks) { { atomic_inc(& sh->count); set_bit(23L, (unsigned long volatile *)(& sh->dev[(int )sh->pd_idx].flags)); set_bit(23L, (unsigned long volatile *)(& sh->dev[(int )sh->qd_idx].flags)); ops_complete_reconstruct((void *)sh); } return; } else { } { count = set_syndrome_sources(blocks, sh); atomic_inc(& sh->count); tmp___1 = to_addr_conv(sh, percpu); init_async_submit(& submit, 4, tx, & ops_complete_reconstruct, (void *)sh, tmp___1); async_gen_syndrome(blocks, 0U, count + 2, 4096UL, & submit); } return; } } static void ops_complete_check(void *stripe_head_ref ) { struct stripe_head *sh ; struct _ddebug descriptor ; long tmp ; { { sh = (struct stripe_head *)stripe_head_ref; descriptor.modname = "raid456"; descriptor.function = "ops_complete_check"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1579U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_complete_check", (unsigned long long )sh->sector); } } else { } { sh->check_state = 4; set_bit(1L, (unsigned long volatile *)(& sh->state)); release_stripe(sh); } return; } } static void ops_run_check_p(struct stripe_head *sh , struct raid5_percpu *percpu ) { int disks ; int pd_idx ; int qd_idx ; struct page *xor_dest ; struct page **xor_srcs ; struct dma_async_tx_descriptor *tx ; struct async_submit_ctl submit ; int count ; int i ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; addr_conv_t *tmp___3 ; { { disks = sh->disks; pd_idx = (int )sh->pd_idx; qd_idx = (int )sh->qd_idx; xor_srcs = (struct page **)percpu->scribble; descriptor.modname = "raid456"; descriptor.function = "ops_run_check_p"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu\n"; descriptor.lineno = 1599U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu\n", "ops_run_check_p", (unsigned long long )sh->sector); } } else { } count = 0; xor_dest = sh->dev[pd_idx].page; tmp___0 = count; count = count + 1; *(xor_srcs + (unsigned long )tmp___0) = xor_dest; i = disks; goto ldv_40296; ldv_40297: ; if (i == pd_idx || i == qd_idx) { goto ldv_40296; } else { } tmp___1 = count; count = count + 1; *(xor_srcs + (unsigned long )tmp___1) = sh->dev[i].page; ldv_40296: tmp___2 = i; i = i - 1; if (tmp___2 != 0) { goto ldv_40297; } else { } { tmp___3 = to_addr_conv(sh, percpu); init_async_submit(& submit, 0, (struct dma_async_tx_descriptor *)0, (void (*)(void * ))0, (void *)0, tmp___3); tx = async_xor_val(xor_dest, xor_srcs, 0U, count, 4096UL, & sh->ops.zero_sum_result, & submit); atomic_inc(& sh->count); init_async_submit(& submit, 4, tx, & ops_complete_check, (void *)sh, (addr_conv_t *)0); tx = async_trigger_callback(& submit); } return; } } static void ops_run_check_pq(struct stripe_head *sh , struct raid5_percpu *percpu , int checkp ) { struct page **srcs ; struct async_submit_ctl submit ; int count ; struct _ddebug descriptor ; long tmp ; addr_conv_t *tmp___0 ; { { srcs = (struct page **)percpu->scribble; descriptor.modname = "raid456"; descriptor.function = "ops_run_check_pq"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu checkp: %d\n"; descriptor.lineno = 1627U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu checkp: %d\n", "ops_run_check_pq", (unsigned long long )sh->sector, checkp); } } else { } { count = set_syndrome_sources(srcs, sh); } if (checkp == 0) { *(srcs + (unsigned long )count) = (struct page *)0; } else { } { atomic_inc(& sh->count); tmp___0 = to_addr_conv(sh, percpu); init_async_submit(& submit, 4, (struct dma_async_tx_descriptor *)0, & ops_complete_check, (void *)sh, tmp___0); async_syndrome_val(srcs, 0U, count + 2, 4096UL, & sh->ops.zero_sum_result, percpu->spare_page, & submit); } return; } } static void raid_run_ops(struct stripe_head *sh , unsigned long ops_request ) { int overlap_clear ; int i ; int disks ; struct dma_async_tx_descriptor *tx ; struct r5conf *conf ; int level ; struct raid5_percpu *percpu ; unsigned long cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; void const *__vpp_verify___0 ; unsigned long __ptr ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; struct r5dev *dev ; int tmp___6 ; int tmp___7 ; { { overlap_clear = 0; disks = sh->disks; tx = (struct dma_async_tx_descriptor *)0; conf = sh->raid_conf; level = conf->level; __preempt_count_add(1); __asm__ volatile ("": : : "memory"); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_40326; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40326; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40326; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40326; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_40326: pscr_ret__ = pfo_ret__; goto ldv_40332; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40336; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40336; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40336; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40336; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_40336: pscr_ret__ = pfo_ret_____0; goto ldv_40332; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40345; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40345; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40345; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40345; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_40345: pscr_ret__ = pfo_ret_____1; goto ldv_40332; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40354; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40354; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40354; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40354; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_40354: pscr_ret__ = pfo_ret_____2; goto ldv_40332; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_40332; switch_break: /* CIL Label */ ; } ldv_40332: { cpu = (unsigned long )pscr_ret__; __vpp_verify___0 = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (conf->percpu)); percpu = (struct raid5_percpu *)(__ptr + __per_cpu_offset[cpu]); tmp = constant_test_bit(0L, (unsigned long const volatile *)(& ops_request)); } if (tmp != 0) { { ops_run_biofill(sh); overlap_clear = overlap_clear + 1; } } else { } { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ops_request)); } if (tmp___1 != 0) { if (level <= 5) { { tx = ops_run_compute5(sh, percpu); } } else if (sh->ops.target2 < 0 || sh->ops.target < 0) { { tx = ops_run_compute6_1(sh, percpu); } } else { { tx = ops_run_compute6_2(sh, percpu); } } if ((unsigned long )tx != (unsigned long )((struct dma_async_tx_descriptor *)0)) { { tmp___0 = constant_test_bit(4L, (unsigned long const volatile *)(& ops_request)); } if (tmp___0 == 0) { { async_tx_ack(tx); } } else { } } else { } } else { } { tmp___2 = constant_test_bit(2L, (unsigned long const volatile *)(& ops_request)); } if (tmp___2 != 0) { { tx = ops_run_prexor(sh, percpu, tx); } } else { } { tmp___3 = constant_test_bit(3L, (unsigned long const volatile *)(& ops_request)); } if (tmp___3 != 0) { { tx = ops_run_biodrain(sh, tx); overlap_clear = overlap_clear + 1; } } else { } { tmp___4 = constant_test_bit(4L, (unsigned long const volatile *)(& ops_request)); } if (tmp___4 != 0) { if (level <= 5) { { ops_run_reconstruct5(sh, percpu, tx); } } else { { ops_run_reconstruct6(sh, percpu, tx); } } } else { } { tmp___5 = constant_test_bit(5L, (unsigned long const volatile *)(& ops_request)); } if (tmp___5 != 0) { if ((unsigned int )sh->check_state == 1U) { { ops_run_check_p(sh, percpu); } } else if ((unsigned int )sh->check_state == 2U) { { ops_run_check_pq(sh, percpu, 0); } } else if ((unsigned int )sh->check_state == 3U) { { ops_run_check_pq(sh, percpu, 1); } } else { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1693), "i" (12UL)); __builtin_unreachable(); } } } else { } if (overlap_clear != 0) { i = disks; goto ldv_40369; ldv_40368: { dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; tmp___6 = test_and_set_bit(7L, (unsigned long volatile *)(& dev->flags)); } if (tmp___6 != 0) { { __wake_up(& (sh->raid_conf)->wait_for_overlap, 3U, 1, (void *)0); } } else { } ldv_40369: tmp___7 = i; i = i - 1; if (tmp___7 != 0) { goto ldv_40368; } else { } } else { } { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } static int grow_one_stripe(struct r5conf *conf , int hash ) { struct stripe_head *sh ; void *tmp ; struct lock_class_key __key ; int tmp___0 ; { { tmp = kmem_cache_zalloc(conf->slab_cache, 208U); sh = (struct stripe_head *)tmp; } if ((unsigned long )sh == (unsigned long )((struct stripe_head *)0)) { return (0); } else { } { sh->raid_conf = conf; spinlock_check(& sh->stripe_lock); __raw_spin_lock_init(& sh->stripe_lock.__annonCompField18.rlock, "&(&sh->stripe_lock)->rlock", & __key); tmp___0 = grow_buffers(sh); } if (tmp___0 != 0) { { shrink_buffers(sh); kmem_cache_free(conf->slab_cache, (void *)sh); } return (0); } else { } { sh->hash_lock_index = (short )hash; atomic_set(& sh->count, 1); atomic_inc(& conf->active_stripes); INIT_LIST_HEAD(& sh->lru); release_stripe(sh); } return (1); } } static int grow_stripes(struct r5conf *conf , int num ) { struct kmem_cache *sc ; int devs ; int _max1 ; int _max2 ; int hash ; char *tmp ; int tmp___0 ; int tmp___1 ; { _max1 = conf->raid_disks; _max2 = conf->previous_raid_disks; devs = _max1 > _max2 ? _max1 : _max2; if ((unsigned long )(conf->mddev)->gendisk != (unsigned long )((struct gendisk *)0)) { { tmp = mdname(conf->mddev); sprintf((char *)(& conf->cache_name), "raid%d-%s", conf->level, tmp); } } else { { sprintf((char *)(& conf->cache_name), "raid%d-%p", conf->level, conf->mddev); } } { sprintf((char *)(& conf->cache_name) + 1U, "%s-alt", (char *)(& conf->cache_name)); conf->active_name = 0; sc = kmem_cache_create((char const *)(& conf->cache_name) + (unsigned long )conf->active_name, (unsigned long )(devs + -1) * 368UL + 576UL, 0UL, 0UL, (void (*)(void * ))0); } if ((unsigned long )sc == (unsigned long )((struct kmem_cache *)0)) { return (1); } else { } conf->slab_cache = sc; conf->pool_size = devs; hash = conf->max_nr_stripes % 8; goto ldv_40388; ldv_40387: { tmp___0 = grow_one_stripe(conf, hash); } if (tmp___0 == 0) { return (1); } else { } conf->max_nr_stripes = conf->max_nr_stripes + 1; hash = (hash + 1) % 8; ldv_40388: tmp___1 = num; num = num - 1; if (tmp___1 != 0) { goto ldv_40387; } else { } return (0); } } static size_t scribble_len(int num ) { size_t len ; { len = (unsigned long )(num + 2) * 16UL; return (len); } } static int resize_stripes(struct r5conf *conf , int newsize ) { struct stripe_head *osh ; struct stripe_head *nsh ; struct list_head newstripes ; struct disk_info *ndisks ; unsigned long cpu ; int err ; struct kmem_cache *sc ; int i ; int hash ; int cnt ; void *tmp ; struct lock_class_key __key ; struct list_head const *__mptr ; int tmp___0 ; struct list_head const *__mptr___0 ; int tmp___1 ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___2 ; int tmp___3 ; struct list_head const *__mptr___1 ; void *tmp___4 ; struct raid5_percpu *percpu ; void *scribble ; void const *__vpp_verify ; unsigned long __ptr ; unsigned int tmp___5 ; struct list_head const *__mptr___2 ; struct page *p ; struct page *tmp___6 ; int tmp___7 ; { newstripes.next = & newstripes; newstripes.prev = & newstripes; if (newsize <= conf->pool_size) { return (0); } else { } { err = md_allow_write(conf->mddev); } if (err != 0) { return (err); } else { } { sc = kmem_cache_create((char const *)(& conf->cache_name) + (unsigned long )(1 - conf->active_name), (unsigned long )(newsize + -1) * 368UL + 576UL, 0UL, 0UL, (void (*)(void * ))0); } if ((unsigned long )sc == (unsigned long )((struct kmem_cache *)0)) { return (-12); } else { } i = conf->max_nr_stripes; goto ldv_40411; ldv_40410: { tmp = kmem_cache_zalloc(sc, 208U); nsh = (struct stripe_head *)tmp; } if ((unsigned long )nsh == (unsigned long )((struct stripe_head *)0)) { goto ldv_40408; } else { } { nsh->raid_conf = conf; spinlock_check(& nsh->stripe_lock); __raw_spin_lock_init(& nsh->stripe_lock.__annonCompField18.rlock, "&(&nsh->stripe_lock)->rlock", & __key); list_add(& nsh->lru, & newstripes); i = i - 1; } ldv_40411: ; if (i != 0) { goto ldv_40410; } else { } ldv_40408: ; if (i != 0) { goto ldv_40415; ldv_40414: { __mptr = (struct list_head const *)newstripes.next; nsh = (struct stripe_head *)__mptr + 0xfffffffffffffff0UL; list_del(& nsh->lru); kmem_cache_free(sc, (void *)nsh); } ldv_40415: { tmp___0 = list_empty((struct list_head const *)(& newstripes)); } if (tmp___0 == 0) { goto ldv_40414; } else { } { kmem_cache_destroy(sc); } return (-12); } else { } hash = 0; cnt = 0; __mptr___0 = (struct list_head const *)newstripes.next; nsh = (struct stripe_head *)__mptr___0 + 0xfffffffffffffff0UL; goto ldv_40436; ldv_40435: { lock_device_hash_lock(conf, hash); tmp___1 = list_empty((struct list_head const *)(& conf->inactive_list) + (unsigned long )hash); } if (tmp___1 == 0) { goto ldv_40421; } else { } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_40427: { tmp___2 = prepare_to_wait_event(& conf->wait_for_stripe, & __wait, 2); __int = tmp___2; tmp___3 = list_empty((struct list_head const *)(& conf->inactive_list) + (unsigned long )hash); } if (tmp___3 == 0) { goto ldv_40426; } else { } { unlock_device_hash_lock(conf, hash); schedule(); lock_device_hash_lock(conf, hash); } goto ldv_40427; ldv_40426: { finish_wait(& conf->wait_for_stripe, & __wait); } ldv_40421: { osh = get_free_stripe(conf, hash); unlock_device_hash_lock(conf, hash); atomic_set(& nsh->count, 1); i = 0; } goto ldv_40430; ldv_40429: nsh->dev[i].page = osh->dev[i].page; nsh->dev[i].orig_page = osh->dev[i].page; i = i + 1; ldv_40430: ; if (i < conf->pool_size) { goto ldv_40429; } else { } goto ldv_40433; ldv_40432: nsh->dev[i].page = (struct page *)0; i = i + 1; ldv_40433: ; if (i < newsize) { goto ldv_40432; } else { } { nsh->hash_lock_index = (short )hash; kmem_cache_free(conf->slab_cache, (void *)osh); cnt = cnt + 1; } if (cnt >= conf->max_nr_stripes / 8 + (conf->max_nr_stripes % 8 > hash)) { hash = hash + 1; cnt = 0; } else { } __mptr___1 = (struct list_head const *)nsh->lru.next; nsh = (struct stripe_head *)__mptr___1 + 0xfffffffffffffff0UL; ldv_40436: ; if ((unsigned long )(& nsh->lru) != (unsigned long )(& newstripes)) { goto ldv_40435; } else { } { kmem_cache_destroy(conf->slab_cache); tmp___4 = kzalloc((unsigned long )newsize * 16UL, 16U); ndisks = (struct disk_info *)tmp___4; } if ((unsigned long )ndisks != (unsigned long )((struct disk_info *)0)) { i = 0; goto ldv_40439; ldv_40438: *(ndisks + (unsigned long )i) = *(conf->disks + (unsigned long )i); i = i + 1; ldv_40439: ; if (i < conf->raid_disks) { goto ldv_40438; } else { } { kfree((void const *)conf->disks); conf->disks = ndisks; } } else { err = -12; } { get_online_cpus(); conf->scribble_len = scribble_len(newsize); cpu = 0xffffffffffffffffUL; } goto ldv_40449; ldv_40448: { __vpp_verify = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (conf->percpu)); percpu = (struct raid5_percpu *)(__ptr + __per_cpu_offset[cpu]); scribble = kmalloc(conf->scribble_len, 16U); } if ((unsigned long )scribble != (unsigned long )((void *)0)) { { kfree((void const *)percpu->scribble); percpu->scribble = scribble; } } else { err = -12; goto ldv_40447; } ldv_40449: { tmp___5 = cpumask_next((int )cpu, cpu_present_mask); cpu = (unsigned long )tmp___5; } if (cpu < (unsigned long )nr_cpu_ids) { goto ldv_40448; } else { } ldv_40447: { put_online_cpus(); } goto ldv_40457; ldv_40456: { __mptr___2 = (struct list_head const *)newstripes.next; nsh = (struct stripe_head *)__mptr___2 + 0xfffffffffffffff0UL; list_del_init(& nsh->lru); i = conf->raid_disks; } goto ldv_40454; ldv_40453: ; if ((unsigned long )nsh->dev[i].page == (unsigned long )((struct page *)0)) { { tmp___6 = alloc_pages(16U, 0U); p = tmp___6; nsh->dev[i].page = p; nsh->dev[i].orig_page = p; } if ((unsigned long )p == (unsigned long )((struct page *)0)) { err = -12; } else { } } else { } i = i + 1; ldv_40454: ; if (i < newsize) { goto ldv_40453; } else { } { release_stripe(nsh); } ldv_40457: { tmp___7 = list_empty((struct list_head const *)(& newstripes)); } if (tmp___7 == 0) { goto ldv_40456; } else { } conf->slab_cache = sc; conf->active_name = 1 - conf->active_name; conf->pool_size = newsize; return (err); } } static int drop_one_stripe(struct r5conf *conf , int hash ) { struct stripe_head *sh ; int tmp ; long tmp___0 ; { { ldv_spin_lock_irq_100((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); sh = get_free_stripe(conf, hash); ldv_spin_unlock_irq_103((spinlock_t *)(& conf->hash_locks) + (unsigned long )hash); } if ((unsigned long )sh == (unsigned long )((struct stripe_head *)0)) { return (0); } else { } { tmp = atomic_read((atomic_t const *)(& sh->count)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1949), "i" (12UL)); __builtin_unreachable(); } } else { } { shrink_buffers(sh); kmem_cache_free(conf->slab_cache, (void *)sh); atomic_dec(& conf->active_stripes); } return (1); } } static void shrink_stripes(struct r5conf *conf ) { int hash ; int tmp ; { hash = 0; goto ldv_40472; ldv_40471: ; goto ldv_40469; ldv_40468: ; ldv_40469: { tmp = drop_one_stripe(conf, hash); } if (tmp != 0) { goto ldv_40468; } else { } hash = hash + 1; ldv_40472: ; if (hash <= 7) { goto ldv_40471; } else { } if ((unsigned long )conf->slab_cache != (unsigned long )((struct kmem_cache *)0)) { { kmem_cache_destroy(conf->slab_cache); } } else { } conf->slab_cache = (struct kmem_cache *)0; return; } } static void raid5_end_read_request(struct bio *bi , int error___0 ) { struct stripe_head *sh ; struct r5conf *conf ; int disks ; int i ; int uptodate ; int tmp ; char b[32U] ; struct md_rdev *rdev ; sector_t s ; struct _ddebug descriptor ; int tmp___0 ; long tmp___1 ; int tmp___2 ; int tmp___3 ; struct ratelimit_state _rs ; char const *tmp___4 ; char *tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; char const *bdn ; char const *tmp___10 ; int retry ; int set_bad ; struct ratelimit_state _rs___0 ; char *tmp___11 ; int tmp___12 ; struct ratelimit_state _rs___1 ; char *tmp___13 ; int tmp___14 ; struct ratelimit_state _rs___2 ; char *tmp___15 ; int tmp___16 ; char *tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; { { sh = (struct stripe_head *)bi->bi_private; conf = sh->raid_conf; disks = sh->disks; tmp = constant_test_bit(0L, (unsigned long const volatile *)(& bi->bi_flags)); uptodate = tmp; rdev = (struct md_rdev *)0; i = 0; } goto ldv_40488; ldv_40487: ; if ((unsigned long )bi == (unsigned long )(& sh->dev[i].req)) { goto ldv_40486; } else { } i = i + 1; ldv_40488: ; if (i < disks) { goto ldv_40487; } else { } ldv_40486: { descriptor.modname = "raid456"; descriptor.function = "raid5_end_read_request"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "end_read_request %llu/%d, count: %d, uptodate %d.\n"; descriptor.lineno = 1984U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = atomic_read((atomic_t const *)(& sh->count)); __dynamic_pr_debug(& descriptor, "end_read_request %llu/%d, count: %d, uptodate %d.\n", (unsigned long long )sh->sector, i, tmp___0, uptodate); } } else { } if (i == disks) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (1986), "i" (12UL)); __builtin_unreachable(); } return; } else { } { tmp___2 = constant_test_bit(19L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___2 != 0) { rdev = (conf->disks + (unsigned long )i)->replacement; } else { } if ((unsigned long )rdev == (unsigned long )((struct md_rdev *)0)) { rdev = (conf->disks + (unsigned long )i)->rdev; } else { } { tmp___3 = use_new_offset(conf, sh); } if (tmp___3 != 0) { s = sh->sector + rdev->new_data_offset; } else { s = sh->sector + rdev->data_offset; } if (uptodate != 0) { { set_bit(0L, (unsigned long volatile *)(& sh->dev[i].flags)); tmp___8 = constant_test_bit(9L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___8 != 0) { { _rs.lock.raw_lock.__annonCompField4.head_tail = 0U; _rs.lock.magic = 3735899821U; _rs.lock.owner_cpu = 4294967295U; _rs.lock.owner = (void *)-1; _rs.lock.dep_map.key = 0; _rs.lock.dep_map.class_cache[0] = 0; _rs.lock.dep_map.class_cache[1] = 0; _rs.lock.dep_map.name = "_rs.lock"; _rs.lock.dep_map.cpu = 0; _rs.lock.dep_map.ip = 0UL; _rs.interval = 1250; _rs.burst = 10; _rs.printed = 0; _rs.missed = 0; _rs.begin = 0UL; tmp___6 = ___ratelimit(& _rs, "raid5_end_read_request"); } if (tmp___6 != 0) { { tmp___4 = bdevname(rdev->bdev, (char *)(& b)); tmp___5 = mdname(conf->mddev); printk("\016md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", tmp___5, 8UL, (unsigned long long )s, tmp___4); } } else { } { atomic_add(8, & rdev->corrected_errors); clear_bit(9L, (unsigned long volatile *)(& sh->dev[i].flags)); clear_bit(10L, (unsigned long volatile *)(& sh->dev[i].flags)); } } else { { tmp___7 = constant_test_bit(8L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___7 != 0) { { clear_bit(8L, (unsigned long volatile *)(& sh->dev[i].flags)); } } else { } } { tmp___9 = atomic_read((atomic_t const *)(& rdev->read_errors)); } if (tmp___9 != 0) { { atomic_set(& rdev->read_errors, 0); } } else { } } else { { tmp___10 = bdevname(rdev->bdev, (char *)(& b)); bdn = tmp___10; retry = 0; set_bad = 0; clear_bit(0L, (unsigned long volatile *)(& sh->dev[i].flags)); atomic_inc(& rdev->read_errors); tmp___20 = constant_test_bit(19L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___20 != 0) { { _rs___0.lock.raw_lock.__annonCompField4.head_tail = 0U; _rs___0.lock.magic = 3735899821U; _rs___0.lock.owner_cpu = 4294967295U; _rs___0.lock.owner = (void *)-1; _rs___0.lock.dep_map.key = 0; _rs___0.lock.dep_map.class_cache[0] = 0; _rs___0.lock.dep_map.class_cache[1] = 0; _rs___0.lock.dep_map.name = "_rs.lock"; _rs___0.lock.dep_map.cpu = 0; _rs___0.lock.dep_map.ip = 0UL; _rs___0.interval = 1250; _rs___0.burst = 10; _rs___0.printed = 0; _rs___0.missed = 0; _rs___0.begin = 0UL; tmp___12 = ___ratelimit(& _rs___0, "raid5_end_read_request"); } if (tmp___12 != 0) { { tmp___11 = mdname(conf->mddev); printk("\fmd/raid:%s: read error on replacement device (sector %llu on %s).\n", tmp___11, (unsigned long long )s, bdn); } } else { } } else if ((conf->mddev)->degraded >= conf->max_degraded) { { set_bad = 1; _rs___1.lock.raw_lock.__annonCompField4.head_tail = 0U; _rs___1.lock.magic = 3735899821U; _rs___1.lock.owner_cpu = 4294967295U; _rs___1.lock.owner = (void *)-1; _rs___1.lock.dep_map.key = 0; _rs___1.lock.dep_map.class_cache[0] = 0; _rs___1.lock.dep_map.class_cache[1] = 0; _rs___1.lock.dep_map.name = "_rs.lock"; _rs___1.lock.dep_map.cpu = 0; _rs___1.lock.dep_map.ip = 0UL; _rs___1.interval = 1250; _rs___1.burst = 10; _rs___1.printed = 0; _rs___1.missed = 0; _rs___1.begin = 0UL; tmp___14 = ___ratelimit(& _rs___1, "raid5_end_read_request"); } if (tmp___14 != 0) { { tmp___13 = mdname(conf->mddev); printk("\fmd/raid:%s: read error not correctable (sector %llu on %s).\n", tmp___13, (unsigned long long )s, bdn); } } else { } } else { { tmp___19 = constant_test_bit(10L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___19 != 0) { { set_bad = 1; _rs___2.lock.raw_lock.__annonCompField4.head_tail = 0U; _rs___2.lock.magic = 3735899821U; _rs___2.lock.owner_cpu = 4294967295U; _rs___2.lock.owner = (void *)-1; _rs___2.lock.dep_map.key = 0; _rs___2.lock.dep_map.class_cache[0] = 0; _rs___2.lock.dep_map.class_cache[1] = 0; _rs___2.lock.dep_map.name = "_rs.lock"; _rs___2.lock.dep_map.cpu = 0; _rs___2.lock.dep_map.ip = 0UL; _rs___2.interval = 1250; _rs___2.burst = 10; _rs___2.printed = 0; _rs___2.missed = 0; _rs___2.begin = 0UL; tmp___16 = ___ratelimit(& _rs___2, "raid5_end_read_request"); } if (tmp___16 != 0) { { tmp___15 = mdname(conf->mddev); printk("\fmd/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", tmp___15, (unsigned long long )s, bdn); } } else { } } else { { tmp___18 = atomic_read((atomic_t const *)(& rdev->read_errors)); } if (tmp___18 > conf->max_nr_stripes) { { tmp___17 = mdname(conf->mddev); printk("\fmd/raid:%s: Too many read errors, failing device %s.\n", tmp___17, bdn); } } else { retry = 1; } } } if (set_bad != 0) { { tmp___21 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___21 != 0) { { tmp___22 = constant_test_bit(8L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___22 == 0) { retry = 1; } else { } } else { } } else { } if (retry != 0) { { tmp___23 = constant_test_bit(8L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___23 != 0) { { set_bit(9L, (unsigned long volatile *)(& sh->dev[i].flags)); clear_bit(8L, (unsigned long volatile *)(& sh->dev[i].flags)); } } else { { set_bit(8L, (unsigned long volatile *)(& sh->dev[i].flags)); } } } else { { clear_bit(9L, (unsigned long volatile *)(& sh->dev[i].flags)); clear_bit(10L, (unsigned long volatile *)(& sh->dev[i].flags)); } if (set_bad == 0) { { md_error(conf->mddev, rdev); } } else { { tmp___24 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___24 == 0) { { md_error(conf->mddev, rdev); } } else { { tmp___25 = rdev_set_badblocks(rdev, sh->sector, 8, 0); } if (tmp___25 == 0) { { md_error(conf->mddev, rdev); } } else { } } } } } { rdev_dec_pending(rdev, conf->mddev); clear_bit(1L, (unsigned long volatile *)(& sh->dev[i].flags)); set_bit(1L, (unsigned long volatile *)(& sh->state)); release_stripe(sh); } return; } } static void raid5_end_write_request(struct bio *bi , int error___0 ) { struct stripe_head *sh ; struct r5conf *conf ; int disks ; int i ; struct md_rdev *rdev ; int uptodate ; int tmp ; sector_t first_bad ; int bad_sectors ; int replacement ; struct _ddebug descriptor ; int tmp___0 ; long tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { { sh = (struct stripe_head *)bi->bi_private; conf = sh->raid_conf; disks = sh->disks; rdev = rdev; tmp = constant_test_bit(0L, (unsigned long const volatile *)(& bi->bi_flags)); uptodate = tmp; replacement = 0; i = 0; } goto ldv_40517; ldv_40516: ; if ((unsigned long )bi == (unsigned long )(& sh->dev[i].req)) { rdev = (conf->disks + (unsigned long )i)->rdev; goto ldv_40515; } else { } if ((unsigned long )bi == (unsigned long )(& sh->dev[i].rreq)) { rdev = (conf->disks + (unsigned long )i)->replacement; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { replacement = 1; } else { rdev = (conf->disks + (unsigned long )i)->rdev; } goto ldv_40515; } else { } i = i + 1; ldv_40517: ; if (i < disks) { goto ldv_40516; } else { } ldv_40515: { descriptor.modname = "raid456"; descriptor.function = "raid5_end_write_request"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "end_write_request %llu/%d, count %d, uptodate: %d.\n"; descriptor.lineno = 2122U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = atomic_read((atomic_t const *)(& sh->count)); __dynamic_pr_debug(& descriptor, "end_write_request %llu/%d, count %d, uptodate: %d.\n", (unsigned long long )sh->sector, i, tmp___0, uptodate); } } else { } if (i == disks) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (2124), "i" (12UL)); __builtin_unreachable(); } return; } else { } if (replacement != 0) { if (uptodate == 0) { { md_error(conf->mddev, rdev); } } else { { tmp___2 = is_badblock(rdev, sh->sector, 8, & first_bad, & bad_sectors); } if (tmp___2 != 0) { { set_bit(20L, (unsigned long volatile *)(& sh->dev[i].flags)); } } else { } } } else if (uptodate == 0) { { set_bit(8L, (unsigned long volatile *)(& sh->state)); set_bit(7L, (unsigned long volatile *)(& rdev->flags)); set_bit(17L, (unsigned long volatile *)(& sh->dev[i].flags)); tmp___3 = test_and_set_bit(10L, (unsigned long volatile *)(& rdev->flags)); } if (tmp___3 == 0) { { set_bit(5L, (unsigned long volatile *)(& (rdev->mddev)->recovery)); } } else { } } else { { tmp___5 = is_badblock(rdev, sh->sector, 8, & first_bad, & bad_sectors); } if (tmp___5 != 0) { { set_bit(18L, (unsigned long volatile *)(& sh->dev[i].flags)); tmp___4 = constant_test_bit(9L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___4 != 0) { { set_bit(10L, (unsigned long volatile *)(& sh->dev[i].flags)); } } else { } } else { } } { rdev_dec_pending(rdev, conf->mddev); tmp___6 = test_and_set_bit(2L, (unsigned long volatile *)(& sh->dev[i].flags)); } if (tmp___6 == 0) { { clear_bit(1L, (unsigned long volatile *)(& sh->dev[i].flags)); } } else { } { set_bit(1L, (unsigned long volatile *)(& sh->state)); release_stripe(sh); } return; } } static sector_t compute_blocknr(struct stripe_head *sh , int i , int previous ) ; static void raid5_build_block(struct stripe_head *sh , int i , int previous ) { struct r5dev *dev ; { { dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; bio_init(& dev->req); dev->req.bi_io_vec = & dev->vec; dev->req.bi_max_vecs = 1U; dev->req.bi_private = (void *)sh; bio_init(& dev->rreq); dev->rreq.bi_io_vec = & dev->rvec; dev->rreq.bi_max_vecs = 1U; dev->rreq.bi_private = (void *)sh; dev->flags = 0UL; dev->sector = compute_blocknr(sh, i, previous); } return; } } static void error(struct mddev *mddev , struct md_rdev *rdev ) { char b[32U] ; struct r5conf *conf ; unsigned long flags ; struct _ddebug descriptor ; long tmp ; char *tmp___0 ; char const *tmp___1 ; char *tmp___2 ; { { conf = (struct r5conf *)mddev->private; descriptor.modname = "raid456"; descriptor.function = "error"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "raid456: error called\n"; descriptor.lineno = 2188U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "raid456: error called\n"); } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(& conf->device_lock); clear_bit(1L, (unsigned long volatile *)(& rdev->flags)); mddev->degraded = calc_degraded(conf); ldv_spin_unlock_irqrestore_128(& conf->device_lock, flags); set_bit(3L, (unsigned long volatile *)(& mddev->recovery)); set_bit(6L, (unsigned long volatile *)(& rdev->flags)); set_bit(0L, (unsigned long volatile *)(& rdev->flags)); set_bit(0L, (unsigned long volatile *)(& mddev->flags)); tmp___0 = mdname(mddev); tmp___1 = bdevname(rdev->bdev, (char *)(& b)); tmp___2 = mdname(mddev); printk("\tmd/raid:%s: Disk failure on %s, disabling device.\nmd/raid:%s: Operation continuing on %d devices.\n", tmp___2, tmp___1, tmp___0, conf->raid_disks - mddev->degraded); } return; } } static sector_t raid5_compute_sector(struct r5conf *conf , sector_t r_sector , int previous , int *dd_idx , struct stripe_head *sh ) { sector_t stripe ; sector_t stripe2 ; sector_t chunk_number ; unsigned int chunk_offset ; int pd_idx ; int qd_idx ; int ddf_layout ; sector_t new_sector ; int algorithm ; int sectors_per_chunk ; int raid_disks ; int data_disks ; int _res ; int _res___0 ; int _res___1 ; int _res___2 ; int _res___3 ; int _res___4 ; int _res___5 ; int _res___6 ; int _res___7 ; int _res___8 ; int _res___9 ; int _res___10 ; int _res___11 ; int _res___12 ; int _res___13 ; int _res___14 ; int _res___15 ; { ddf_layout = 0; algorithm = previous != 0 ? conf->prev_algo : conf->algorithm; sectors_per_chunk = previous != 0 ? conf->prev_chunk_sectors : conf->chunk_sectors; raid_disks = previous != 0 ? conf->previous_raid_disks : conf->raid_disks; data_disks = raid_disks - conf->max_degraded; _res = (int )(r_sector % (sector_t )sectors_per_chunk); r_sector = r_sector / (sector_t )sectors_per_chunk; chunk_offset = (unsigned int )_res; chunk_number = r_sector; stripe = chunk_number; _res___0 = (int )(stripe % (sector_t )data_disks); stripe = stripe / (sector_t )data_disks; *dd_idx = _res___0; stripe2 = stripe; qd_idx = -1; pd_idx = qd_idx; { if (conf->level == 4) { goto case_4; } else { } if (conf->level == 5) { goto case_5; } else { } if (conf->level == 6) { goto case_6; } else { } goto switch_break; case_4: /* CIL Label */ pd_idx = data_disks; goto ldv_40563; case_5: /* CIL Label */ ; { if (algorithm == 0) { goto case_0; } else { } if (algorithm == 1) { goto case_1; } else { } if (algorithm == 2) { goto case_2; } else { } if (algorithm == 3) { goto case_3; } else { } if (algorithm == 4) { goto case_4___0; } else { } if (algorithm == 5) { goto case_5___0; } else { } goto switch_default; case_0: /* CIL Label */ _res___1 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = data_disks - _res___1; if (*dd_idx >= pd_idx) { *dd_idx = *dd_idx + 1; } else { } goto ldv_40568; case_1: /* CIL Label */ _res___2 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = _res___2; if (*dd_idx >= pd_idx) { *dd_idx = *dd_idx + 1; } else { } goto ldv_40568; case_2: /* CIL Label */ _res___3 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = data_disks - _res___3; *dd_idx = ((pd_idx + 1) + *dd_idx) % raid_disks; goto ldv_40568; case_3: /* CIL Label */ _res___4 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = _res___4; *dd_idx = ((pd_idx + 1) + *dd_idx) % raid_disks; goto ldv_40568; case_4___0: /* CIL Label */ pd_idx = 0; *dd_idx = *dd_idx + 1; goto ldv_40568; case_5___0: /* CIL Label */ pd_idx = data_disks; goto ldv_40568; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (2280), "i" (12UL)); __builtin_unreachable(); } switch_break___0: /* CIL Label */ ; } ldv_40568: ; goto ldv_40563; case_6: /* CIL Label */ ; { if (algorithm == 0) { goto case_0___0; } else { } if (algorithm == 1) { goto case_1___0; } else { } if (algorithm == 2) { goto case_2___0; } else { } if (algorithm == 3) { goto case_3___0; } else { } if (algorithm == 4) { goto case_4___1; } else { } if (algorithm == 5) { goto case_5___1; } else { } if (algorithm == 8) { goto case_8; } else { } if (algorithm == 9) { goto case_9; } else { } if (algorithm == 10) { goto case_10; } else { } if (algorithm == 16) { goto case_16; } else { } if (algorithm == 17) { goto case_17; } else { } if (algorithm == 18) { goto case_18; } else { } if (algorithm == 19) { goto case_19; } else { } if (algorithm == 20) { goto case_20; } else { } goto switch_default___0; case_0___0: /* CIL Label */ _res___5 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = (raid_disks + -1) - _res___5; qd_idx = pd_idx + 1; if (pd_idx == raid_disks + -1) { *dd_idx = *dd_idx + 1; qd_idx = 0; } else if (*dd_idx >= pd_idx) { *dd_idx = *dd_idx + 2; } else { } goto ldv_40585; case_1___0: /* CIL Label */ _res___6 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = _res___6; qd_idx = pd_idx + 1; if (pd_idx == raid_disks + -1) { *dd_idx = *dd_idx + 1; qd_idx = 0; } else if (*dd_idx >= pd_idx) { *dd_idx = *dd_idx + 2; } else { } goto ldv_40585; case_2___0: /* CIL Label */ _res___7 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = (raid_disks + -1) - _res___7; qd_idx = (pd_idx + 1) % raid_disks; *dd_idx = ((pd_idx + 2) + *dd_idx) % raid_disks; goto ldv_40585; case_3___0: /* CIL Label */ _res___8 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = _res___8; qd_idx = (pd_idx + 1) % raid_disks; *dd_idx = ((pd_idx + 2) + *dd_idx) % raid_disks; goto ldv_40585; case_4___1: /* CIL Label */ pd_idx = 0; qd_idx = 1; *dd_idx = *dd_idx + 2; goto ldv_40585; case_5___1: /* CIL Label */ pd_idx = data_disks; qd_idx = data_disks + 1; goto ldv_40585; case_8: /* CIL Label */ _res___9 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = _res___9; qd_idx = pd_idx + 1; if (pd_idx == raid_disks + -1) { *dd_idx = *dd_idx + 1; qd_idx = 0; } else if (*dd_idx >= pd_idx) { *dd_idx = *dd_idx + 2; } else { } ddf_layout = 1; goto ldv_40585; case_9: /* CIL Label */ stripe2 = stripe2 + 1UL; _res___10 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = (raid_disks + -1) - _res___10; qd_idx = pd_idx + 1; if (pd_idx == raid_disks + -1) { *dd_idx = *dd_idx + 1; qd_idx = 0; } else if (*dd_idx >= pd_idx) { *dd_idx = *dd_idx + 2; } else { } ddf_layout = 1; goto ldv_40585; case_10: /* CIL Label */ _res___11 = (int )(stripe2 % (sector_t )raid_disks); stripe2 = stripe2 / (sector_t )raid_disks; pd_idx = (raid_disks + -1) - _res___11; qd_idx = ((pd_idx + raid_disks) + -1) % raid_disks; *dd_idx = ((pd_idx + 1) + *dd_idx) % raid_disks; ddf_layout = 1; goto ldv_40585; case_16: /* CIL Label */ _res___12 = (int )(stripe2 % (sector_t )(raid_disks + -1)); stripe2 = stripe2 / (sector_t )(raid_disks + -1); pd_idx = data_disks - _res___12; if (*dd_idx >= pd_idx) { *dd_idx = *dd_idx + 1; } else { } qd_idx = raid_disks + -1; goto ldv_40585; case_17: /* CIL Label */ _res___13 = (int )(stripe2 % (sector_t )(raid_disks + -1)); stripe2 = stripe2 / (sector_t )(raid_disks + -1); pd_idx = _res___13; if (*dd_idx >= pd_idx) { *dd_idx = *dd_idx + 1; } else { } qd_idx = raid_disks + -1; goto ldv_40585; case_18: /* CIL Label */ _res___14 = (int )(stripe2 % (sector_t )(raid_disks + -1)); stripe2 = stripe2 / (sector_t )(raid_disks + -1); pd_idx = data_disks - _res___14; *dd_idx = ((pd_idx + 1) + *dd_idx) % (raid_disks + -1); qd_idx = raid_disks + -1; goto ldv_40585; case_19: /* CIL Label */ _res___15 = (int )(stripe2 % (sector_t )(raid_disks + -1)); stripe2 = stripe2 / (sector_t )(raid_disks + -1); pd_idx = _res___15; *dd_idx = ((pd_idx + 1) + *dd_idx) % (raid_disks + -1); qd_idx = raid_disks + -1; goto ldv_40585; case_20: /* CIL Label */ pd_idx = 0; *dd_idx = *dd_idx + 1; qd_idx = raid_disks + -1; goto ldv_40585; switch_default___0: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (2397), "i" (12UL)); __builtin_unreachable(); } switch_break___1: /* CIL Label */ ; } ldv_40585: ; goto ldv_40563; switch_break: /* CIL Label */ ; } ldv_40563: ; if ((unsigned long )sh != (unsigned long )((struct stripe_head *)0)) { sh->pd_idx = (short )pd_idx; sh->qd_idx = (short )qd_idx; sh->ddf_layout = (short )ddf_layout; } else { } new_sector = stripe * (sector_t )sectors_per_chunk + (sector_t )chunk_offset; return (new_sector); } } static sector_t compute_blocknr(struct stripe_head *sh , int i , int previous ) { struct r5conf *conf ; int raid_disks ; int data_disks ; sector_t new_sector ; sector_t check ; int sectors_per_chunk ; int algorithm ; sector_t stripe ; int chunk_offset ; sector_t chunk_number ; int dummy1 ; int dd_idx ; sector_t r_sector ; struct stripe_head sh2 ; int _res ; char *tmp ; { conf = sh->raid_conf; raid_disks = sh->disks; data_disks = raid_disks - conf->max_degraded; new_sector = sh->sector; sectors_per_chunk = previous != 0 ? conf->prev_chunk_sectors : conf->chunk_sectors; algorithm = previous != 0 ? conf->prev_algo : conf->algorithm; dd_idx = i; _res = (int )(new_sector % (sector_t )sectors_per_chunk); new_sector = new_sector / (sector_t )sectors_per_chunk; chunk_offset = _res; stripe = new_sector; if (i == (int )sh->pd_idx) { return (0UL); } else { } { if (conf->level == 4) { goto case_4; } else { } if (conf->level == 5) { goto case_5; } else { } if (conf->level == 6) { goto case_6; } else { } goto switch_break; case_4: /* CIL Label */ ; goto ldv_40642; case_5: /* CIL Label */ ; { if (algorithm == 0) { goto case_0; } else { } if (algorithm == 1) { goto case_1; } else { } if (algorithm == 2) { goto case_2; } else { } if (algorithm == 3) { goto case_3; } else { } if (algorithm == 4) { goto case_4___0; } else { } if (algorithm == 5) { goto case_5___0; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; if (i > (int )sh->pd_idx) { i = i - 1; } else { } goto ldv_40646; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; if (i < (int )sh->pd_idx) { i = i + raid_disks; } else { } i = i + ~ ((int )sh->pd_idx); goto ldv_40646; case_4___0: /* CIL Label */ i = i + -1; goto ldv_40646; case_5___0: /* CIL Label */ ; goto ldv_40646; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (2457), "i" (12UL)); __builtin_unreachable(); } switch_break___0: /* CIL Label */ ; } ldv_40646: ; goto ldv_40642; case_6: /* CIL Label */ ; if (i == (int )sh->qd_idx) { return (0UL); } else { } { if (algorithm == 0) { goto case_0___0; } else { } if (algorithm == 1) { goto case_1___0; } else { } if (algorithm == 8) { goto case_8; } else { } if (algorithm == 9) { goto case_9; } else { } if (algorithm == 2) { goto case_2___0; } else { } if (algorithm == 3) { goto case_3___0; } else { } if (algorithm == 4) { goto case_4___1; } else { } if (algorithm == 5) { goto case_5___1; } else { } if (algorithm == 10) { goto case_10; } else { } if (algorithm == 16) { goto case_16; } else { } if (algorithm == 17) { goto case_17; } else { } if (algorithm == 18) { goto case_18; } else { } if (algorithm == 19) { goto case_19; } else { } if (algorithm == 20) { goto case_20; } else { } goto switch_default___0; case_0___0: /* CIL Label */ ; case_1___0: /* CIL Label */ ; case_8: /* CIL Label */ ; case_9: /* CIL Label */ ; if ((int )sh->pd_idx == raid_disks + -1) { i = i - 1; } else if (i > (int )sh->pd_idx) { i = i + -2; } else { } goto ldv_40657; case_2___0: /* CIL Label */ ; case_3___0: /* CIL Label */ ; if ((int )sh->pd_idx == raid_disks + -1) { i = i - 1; } else { if (i < (int )sh->pd_idx) { i = i + raid_disks; } else { } i = i + (-2 - (int )sh->pd_idx); } goto ldv_40657; case_4___1: /* CIL Label */ i = i + -2; goto ldv_40657; case_5___1: /* CIL Label */ ; goto ldv_40657; case_10: /* CIL Label */ ; if ((int )sh->pd_idx == 0) { i = i - 1; } else { if (i < (int )sh->pd_idx) { i = i + raid_disks; } else { } i = i + ~ ((int )sh->pd_idx); } goto ldv_40657; case_16: /* CIL Label */ ; case_17: /* CIL Label */ ; if (i > (int )sh->pd_idx) { i = i - 1; } else { } goto ldv_40657; case_18: /* CIL Label */ ; case_19: /* CIL Label */ ; if (i < (int )sh->pd_idx) { i = i + (data_disks + 1); } else { } i = i + ~ ((int )sh->pd_idx); goto ldv_40657; case_20: /* CIL Label */ i = i + -1; goto ldv_40657; switch_default___0: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (2515), "i" (12UL)); __builtin_unreachable(); } switch_break___1: /* CIL Label */ ; } ldv_40657: ; goto ldv_40642; switch_break: /* CIL Label */ ; } ldv_40642: { chunk_number = stripe * (sector_t )data_disks + (sector_t )i; r_sector = chunk_number * (sector_t )sectors_per_chunk + (sector_t )chunk_offset; check = raid5_compute_sector(conf, r_sector, previous, & dummy1, & sh2); } if ((check != sh->sector || dummy1 != dd_idx) || ((unsigned int )*((int *)(& sh2) + 16UL) & 4294967295U) != ((unsigned int )*((int *)sh + 16UL) & 4294967295U)) { { tmp = mdname(conf->mddev); printk("\vmd/raid:%s: compute_blocknr: map not correct\n", tmp); } return (0UL); } else { } return (r_sector); } } static void schedule_reconstruction(struct stripe_head *sh , struct stripe_head_state *s , int rcw , int expand ) { int i ; int pd_idx ; int disks ; struct r5conf *conf ; int level ; struct r5dev *dev ; int tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; long tmp___5 ; struct r5dev *dev___0 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int qd_idx ; struct r5dev *dev___1 ; struct _ddebug descriptor ; long tmp___9 ; { pd_idx = (int )sh->pd_idx; disks = sh->disks; conf = sh->raid_conf; level = conf->level; if (rcw != 0) { i = disks; goto ldv_40682; ldv_40681: dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; if ((unsigned long )dev->towrite != (unsigned long )((struct bio *)0)) { { set_bit(1L, (unsigned long volatile *)(& dev->flags)); set_bit(14L, (unsigned long volatile *)(& dev->flags)); } if (expand == 0) { { clear_bit(0L, (unsigned long volatile *)(& dev->flags)); } } else { } s->locked = s->locked + 1; } else { } ldv_40682: tmp = i; i = i - 1; if (tmp != 0) { goto ldv_40681; } else { } if (expand == 0) { if (s->locked == 0) { return; } else { } { sh->reconstruct_state = 2; set_bit(3L, (unsigned long volatile *)(& s->ops_request)); } } else { sh->reconstruct_state = 3; } { set_bit(4L, (unsigned long volatile *)(& s->ops_request)); } if (s->locked + conf->max_degraded == disks) { { tmp___0 = test_and_set_bit(14L, (unsigned long volatile *)(& sh->state)); } if (tmp___0 == 0) { { atomic_inc(& conf->pending_full_writes); } } else { } } else { } } else { { tmp___1 = ldv__builtin_expect(level == 6, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (2574), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = constant_test_bit(0L, (unsigned long const volatile *)(& sh->dev[pd_idx].flags)); tmp___3 = ldv__builtin_expect(tmp___2 == 0, 0L); } if (tmp___3 != 0L) { { tmp___4 = constant_test_bit(12L, (unsigned long const volatile *)(& sh->dev[pd_idx].flags)); tmp___5 = ldv__builtin_expect(tmp___4 == 0, 0L); } if (tmp___5 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (2576), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } i = disks; goto ldv_40685; ldv_40686: dev___0 = (struct r5dev *)(& sh->dev) + (unsigned long )i; if (i == pd_idx) { goto ldv_40685; } else { } if ((unsigned long )dev___0->towrite != (unsigned long )((struct bio *)0)) { { tmp___6 = constant_test_bit(0L, (unsigned long const volatile *)(& dev___0->flags)); } if (tmp___6 != 0) { { set_bit(14L, (unsigned long volatile *)(& dev___0->flags)); set_bit(1L, (unsigned long volatile *)(& dev___0->flags)); clear_bit(0L, (unsigned long volatile *)(& dev___0->flags)); s->locked = s->locked + 1; } } else { { tmp___7 = constant_test_bit(12L, (unsigned long const volatile *)(& dev___0->flags)); } if (tmp___7 != 0) { { set_bit(14L, (unsigned long volatile *)(& dev___0->flags)); set_bit(1L, (unsigned long volatile *)(& dev___0->flags)); clear_bit(0L, (unsigned long volatile *)(& dev___0->flags)); s->locked = s->locked + 1; } } else { } } } else { } ldv_40685: tmp___8 = i; i = i - 1; if (tmp___8 != 0) { goto ldv_40686; } else { } if (s->locked == 0) { return; } else { } { sh->reconstruct_state = 1; set_bit(2L, (unsigned long volatile *)(& s->ops_request)); set_bit(3L, (unsigned long volatile *)(& s->ops_request)); set_bit(4L, (unsigned long volatile *)(& s->ops_request)); } } { set_bit(1L, (unsigned long volatile *)(& sh->dev[pd_idx].flags)); clear_bit(0L, (unsigned long volatile *)(& sh->dev[pd_idx].flags)); s->locked = s->locked + 1; } if (level == 6) { { qd_idx = (int )sh->qd_idx; dev___1 = (struct r5dev *)(& sh->dev) + (unsigned long )qd_idx; set_bit(1L, (unsigned long volatile *)(& dev___1->flags)); clear_bit(0L, (unsigned long volatile *)(& dev___1->flags)); s->locked = s->locked + 1; } } else { } { descriptor.modname = "raid456"; descriptor.function = "schedule_reconstruction"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: stripe %llu locked: %d ops_request: %lx\n"; descriptor.lineno = 2619U; descriptor.flags = 0U; tmp___9 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___9 != 0L) { { __dynamic_pr_debug(& descriptor, "%s: stripe %llu locked: %d ops_request: %lx\n", "schedule_reconstruction", (unsigned long long )sh->sector, s->locked, s->ops_request); } } else { } return; } } static int add_stripe_bio(struct stripe_head *sh , struct bio *bi , int dd_idx , int forwrite ) { struct bio **bip ; struct r5conf *conf ; int firstwrite ; struct _ddebug descriptor ; long tmp ; long tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; sector_t sector ; struct _ddebug descriptor___0 ; long tmp___4 ; { { conf = sh->raid_conf; firstwrite = 0; descriptor.modname = "raid456"; descriptor.function = "add_stripe_bio"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "adding bi b#%llu to stripe s#%llu\n"; descriptor.lineno = 2635U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "adding bi b#%llu to stripe s#%llu\n", (unsigned long long )bi->bi_iter.bi_sector, (unsigned long long )sh->sector); } } else { } { ldv_spin_lock_irq_121(& sh->stripe_lock); } if (forwrite != 0) { bip = & sh->dev[dd_idx].towrite; if ((unsigned long )*bip == (unsigned long )((struct bio *)0)) { firstwrite = 1; } else { } } else { bip = & sh->dev[dd_idx].toread; } goto ldv_40705; ldv_40704: ; if ((*bip)->bi_iter.bi_sector + (sector_t )((*bip)->bi_iter.bi_size >> 9) > bi->bi_iter.bi_sector) { goto overlap; } else { } bip = & (*bip)->bi_next; ldv_40705: ; if ((unsigned long )*bip != (unsigned long )((struct bio *)0) && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { goto ldv_40704; } else { } if ((unsigned long )*bip != (unsigned long )((struct bio *)0) && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector + (sector_t )(bi->bi_iter.bi_size >> 9)) { goto overlap; } else { } { tmp___0 = ldv__builtin_expect((unsigned long )*bip != (unsigned long )((struct bio *)0), 0L); } if (tmp___0 != 0L) { { tmp___1 = ldv__builtin_expect((unsigned long )bi->bi_next != (unsigned long )((struct bio *)0), 0L); } if (tmp___1 != 0L) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } if (tmp___2 != 0) { { tmp___3 = ldv__builtin_expect((unsigned long )*bip != (unsigned long )bi->bi_next, 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (2660), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } if ((unsigned long )*bip != (unsigned long )((struct bio *)0)) { bi->bi_next = *bip; } else { } { *bip = bi; raid5_inc_bi_active_stripes(bi); } if (forwrite != 0) { sector = sh->dev[dd_idx].sector; bi = sh->dev[dd_idx].towrite; goto ldv_40709; ldv_40708: ; if (bi->bi_iter.bi_sector + (sector_t )(bi->bi_iter.bi_size >> 9) >= sector) { sector = bi->bi_iter.bi_sector + (sector_t )(bi->bi_iter.bi_size >> 9); } else { } { bi = r5_next_bio(bi, sh->dev[dd_idx].sector); } ldv_40709: ; if ((sector < sh->dev[dd_idx].sector + 8UL && (unsigned long )bi != (unsigned long )((struct bio *)0)) && bi->bi_iter.bi_sector <= sector) { goto ldv_40708; } else { } if (sector >= sh->dev[dd_idx].sector + 8UL) { { set_bit(3L, (unsigned long volatile *)(& sh->dev[dd_idx].flags)); } } else { } } else { } { descriptor___0.modname = "raid456"; descriptor___0.function = "add_stripe_bio"; descriptor___0.filename = "drivers/md/raid5.c"; descriptor___0.format = "added bi b#%llu to stripe s#%llu, disk %d.\n"; descriptor___0.lineno = 2682U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_pr_debug(& descriptor___0, "added bi b#%llu to stripe s#%llu, disk %d.\n", (unsigned long long )(*bip)->bi_iter.bi_sector, (unsigned long long )sh->sector, dd_idx); } } else { } { ldv_spin_unlock_irq_122(& sh->stripe_lock); } if ((unsigned long )(conf->mddev)->bitmap != (unsigned long )((struct bitmap *)0) && firstwrite != 0) { { bitmap_startwrite((conf->mddev)->bitmap, sh->sector, 8UL, 0); sh->bm_seq = conf->seq_flush + 1; set_bit(9L, (unsigned long volatile *)(& sh->state)); } } else { } return (1); overlap: { set_bit(7L, (unsigned long volatile *)(& sh->dev[dd_idx].flags)); ldv_spin_unlock_irq_122(& sh->stripe_lock); } return (0); } } static void end_reshape(struct r5conf *conf ) ; static void stripe_set_idx(sector_t stripe , struct r5conf *conf , int previous , struct stripe_head *sh ) { int sectors_per_chunk ; int dd_idx ; int chunk_offset ; int _res ; int disks ; { { sectors_per_chunk = previous != 0 ? conf->prev_chunk_sectors : conf->chunk_sectors; _res = (int )(stripe % (sector_t )sectors_per_chunk); stripe = stripe / (sector_t )sectors_per_chunk; chunk_offset = _res; disks = previous != 0 ? conf->previous_raid_disks : conf->raid_disks; raid5_compute_sector(conf, (stripe * (sector_t )(disks - conf->max_degraded)) * (sector_t )sectors_per_chunk + (sector_t )chunk_offset, previous, & dd_idx, sh); } return; } } static void handle_failed_stripe(struct r5conf *conf , struct stripe_head *sh , struct stripe_head_state *s , int disks , struct bio **return_bi ) { int i ; struct bio *bi ; int bitmap_end ; struct md_rdev *rdev ; struct md_rdev *________p1 ; struct md_rdev *_________p1 ; struct md_rdev *__var ; bool __warned ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; struct bio *nextbi ; struct bio *tmp___5 ; int tmp___6 ; int __ret_warn_on ; int tmp___7 ; long tmp___8 ; int tmp___9 ; struct bio *bi2 ; struct bio *tmp___10 ; int tmp___11 ; int tmp___12 ; struct bio *nextbi___0 ; struct bio *tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; { i = disks; goto ldv_40759; ldv_40758: { bitmap_end = 0; tmp___3 = constant_test_bit(9L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___3 != 0) { { rcu_read_lock(); __var = (struct md_rdev *)0; _________p1 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->rdev)); ________p1 = _________p1; tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_read_lock_held(); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 2730, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev = ________p1; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___1 != 0) { { atomic_inc(& rdev->nr_pending); } } else { rdev = (struct md_rdev *)0; } } else { rdev = (struct md_rdev *)0; } { rcu_read_unlock(); } if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___2 = rdev_set_badblocks(rdev, sh->sector, 8, 0); } if (tmp___2 == 0) { { md_error(conf->mddev, rdev); } } else { } { rdev_dec_pending(rdev, conf->mddev); } } else { } } else { } { ldv_spin_lock_irq_121(& sh->stripe_lock); bi = sh->dev[i].towrite; sh->dev[i].towrite = (struct bio *)0; ldv_spin_unlock_irq_122(& sh->stripe_lock); } if ((unsigned long )bi != (unsigned long )((struct bio *)0)) { bitmap_end = 1; } else { } { tmp___4 = test_and_set_bit(7L, (unsigned long volatile *)(& sh->dev[i].flags)); } if (tmp___4 != 0) { { __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); } } else { } goto ldv_40746; ldv_40745: { tmp___5 = r5_next_bio(bi, sh->dev[i].sector); nextbi = tmp___5; clear_bit(0L, (unsigned long volatile *)(& bi->bi_flags)); tmp___6 = raid5_dec_bi_active_stripes(bi); } if (tmp___6 == 0) { { md_write_end(conf->mddev); bi->bi_next = *return_bi; *return_bi = bi; } } else { } bi = nextbi; ldv_40746: ; if ((unsigned long )bi != (unsigned long )((struct bio *)0) && bi->bi_iter.bi_sector < sh->dev[i].sector + 8UL) { goto ldv_40745; } else { } if (bitmap_end != 0) { { bitmap_endwrite((conf->mddev)->bitmap, sh->sector, 8UL, 0, 0); } } else { } { bitmap_end = 0; bi = sh->dev[i].written; sh->dev[i].written = (struct bio *)0; tmp___9 = test_and_set_bit(24L, (unsigned long volatile *)(& sh->dev[i].flags)); } if (tmp___9 != 0) { { tmp___7 = constant_test_bit(0L, (unsigned long const volatile *)(& sh->dev[i].flags)); __ret_warn_on = tmp___7 != 0; tmp___8 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___8 != 0L) { { warn_slowpath_null("drivers/md/raid5.c", 2775); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); sh->dev[i].page = sh->dev[i].orig_page; } } else { } if ((unsigned long )bi != (unsigned long )((struct bio *)0)) { bitmap_end = 1; } else { } goto ldv_40752; ldv_40751: { tmp___10 = r5_next_bio(bi, sh->dev[i].sector); bi2 = tmp___10; clear_bit(0L, (unsigned long volatile *)(& bi->bi_flags)); tmp___11 = raid5_dec_bi_active_stripes(bi); } if (tmp___11 == 0) { { md_write_end(conf->mddev); bi->bi_next = *return_bi; *return_bi = bi; } } else { } bi = bi2; ldv_40752: ; if ((unsigned long )bi != (unsigned long )((struct bio *)0) && bi->bi_iter.bi_sector < sh->dev[i].sector + 8UL) { goto ldv_40751; } else { } { tmp___15 = constant_test_bit(13L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___15 == 0) { { tmp___16 = constant_test_bit(4L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___16 == 0) { goto _L; } else { { tmp___17 = constant_test_bit(9L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___17 != 0) { _L: /* CIL Label */ { ldv_spin_lock_irq_121(& sh->stripe_lock); bi = sh->dev[i].toread; sh->dev[i].toread = (struct bio *)0; ldv_spin_unlock_irq_122(& sh->stripe_lock); tmp___12 = test_and_set_bit(7L, (unsigned long volatile *)(& sh->dev[i].flags)); } if (tmp___12 != 0) { { __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); } } else { } goto ldv_40756; ldv_40755: { tmp___13 = r5_next_bio(bi, sh->dev[i].sector); nextbi___0 = tmp___13; clear_bit(0L, (unsigned long volatile *)(& bi->bi_flags)); tmp___14 = raid5_dec_bi_active_stripes(bi); } if (tmp___14 == 0) { bi->bi_next = *return_bi; *return_bi = bi; } else { } bi = nextbi___0; ldv_40756: ; if ((unsigned long )bi != (unsigned long )((struct bio *)0) && bi->bi_iter.bi_sector < sh->dev[i].sector + 8UL) { goto ldv_40755; } else { } } else { } } } else { } if (bitmap_end != 0) { { bitmap_endwrite((conf->mddev)->bitmap, sh->sector, 8UL, 0, 0); } } else { } { clear_bit(1L, (unsigned long volatile *)(& sh->dev[i].flags)); } ldv_40759: tmp___18 = i; i = i - 1; if (tmp___18 != 0) { goto ldv_40758; } else { } { tmp___20 = test_and_set_bit(14L, (unsigned long volatile *)(& sh->state)); } if (tmp___20 != 0) { { tmp___19 = atomic_dec_and_test(& conf->pending_full_writes); } if (tmp___19 != 0) { { md_wakeup_thread((conf->mddev)->thread); } } else { } } else { } return; } } static void handle_failed_sync(struct r5conf *conf , struct stripe_head *sh , struct stripe_head_state *s ) { int abort ; int i ; int tmp ; struct md_rdev *rdev ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { { abort = 0; clear_bit(3L, (unsigned long volatile *)(& sh->state)); tmp = test_and_set_bit(7L, (unsigned long volatile *)(& sh->dev[(int )sh->pd_idx].flags)); } if (tmp != 0) { { __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); } } else { } { s->syncing = 0; s->replacing = 0; tmp___6 = constant_test_bit(2L, (unsigned long const volatile *)(& (conf->mddev)->recovery)); } if (tmp___6 != 0) { i = 0; goto ldv_40770; ldv_40769: rdev = (conf->disks + (unsigned long )i)->rdev; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___0 == 0) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___1 == 0) { { tmp___2 = rdev_set_badblocks(rdev, sh->sector, 8, 0); } if (tmp___2 == 0) { abort = 1; } else { } } else { } } else { } } else { } rdev = (conf->disks + (unsigned long )i)->replacement; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___3 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___3 == 0) { { tmp___4 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___4 == 0) { { tmp___5 = rdev_set_badblocks(rdev, sh->sector, 8, 0); } if (tmp___5 == 0) { abort = 1; } else { } } else { } } else { } } else { } i = i + 1; ldv_40770: ; if (i < conf->raid_disks) { goto ldv_40769; } else { } if (abort != 0) { conf->recovery_disabled = (conf->mddev)->recovery_disabled; } else { } } else { } { md_done_sync(conf->mddev, 8, abort == 0); } return; } } static int want_replace(struct stripe_head *sh , int disk_idx ) { struct md_rdev *rdev ; int rv ; int tmp ; int tmp___0 ; { rv = 0; rdev = ((sh->raid_conf)->disks + (unsigned long )disk_idx)->replacement; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp == 0) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___0 == 0) { if (rdev->recovery_offset <= sh->sector || (rdev->mddev)->recovery_cp <= sh->sector) { rv = 1; } else { } } else { } } else { } } else { } return (rv); } } static int need_this_block(struct stripe_head *sh , struct stripe_head_state *s , int disk_idx , int disks ) { struct r5dev *dev ; struct r5dev *fdev[2U] ; int i ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { { dev = (struct r5dev *)(& sh->dev) + (unsigned long )disk_idx; fdev[0] = (struct r5dev *)(& sh->dev) + (unsigned long )s->failed_num[0]; fdev[1] = (struct r5dev *)(& sh->dev) + (unsigned long )s->failed_num[1]; tmp = constant_test_bit(1L, (unsigned long const volatile *)(& dev->flags)); } if (tmp != 0) { return (0); } else { { tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___0 != 0) { return (0); } else { } } if ((unsigned long )dev->toread != (unsigned long )((struct bio *)0)) { return (1); } else if ((unsigned long )dev->towrite != (unsigned long )((struct bio *)0)) { { tmp___1 = constant_test_bit(3L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___1 == 0) { return (1); } else { } } else { } if (((unsigned long )*((long *)s + 0UL) & 0xffffffffffffffffUL) != 0UL) { return (1); } else if (s->replacing != 0) { { tmp___2 = want_replace(sh, disk_idx); } if (tmp___2 != 0) { return (1); } else { } } else { } if ((s->failed > 0 && (unsigned long )(fdev[0])->toread != (unsigned long )((struct bio *)0)) || (s->failed > 1 && (unsigned long )(fdev[1])->toread != (unsigned long )((struct bio *)0))) { return (1); } else { } if (s->failed == 0 || s->to_write == 0) { return (0); } else { } { tmp___3 = constant_test_bit(4L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___3 != 0) { { tmp___4 = constant_test_bit(6L, (unsigned long const volatile *)(& sh->state)); } if (tmp___4 == 0) { return (0); } else { } } else { } i = 0; goto ldv_40788; ldv_40787: ; if ((unsigned long )(fdev[i])->towrite != (unsigned long )((struct bio *)0)) { { tmp___5 = constant_test_bit(0L, (unsigned long const volatile *)(& (fdev[i])->flags)); } if (tmp___5 == 0) { { tmp___6 = constant_test_bit(3L, (unsigned long const volatile *)(& (fdev[i])->flags)); } if (tmp___6 == 0) { return (1); } else { } } else { } } else { } i = i + 1; ldv_40788: ; if (i < s->failed) { goto ldv_40787; } else { } if ((sh->raid_conf)->level != 6 && sh->sector < ((sh->raid_conf)->mddev)->recovery_cp) { return (0); } else { } i = 0; goto ldv_40791; ldv_40790: { tmp___7 = constant_test_bit(0L, (unsigned long const volatile *)(& (fdev[i])->flags)); } if (tmp___7 == 0) { { tmp___8 = constant_test_bit(3L, (unsigned long const volatile *)(& (fdev[i])->flags)); } if (tmp___8 == 0) { return (1); } else { } } else { } i = i + 1; ldv_40791: ; if (i < s->failed) { goto ldv_40790; } else { } return (0); } } static int fetch_block(struct stripe_head *sh , struct stripe_head_state *s , int disk_idx , int disks ) { struct r5dev *dev ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; struct _ddebug descriptor ; long tmp___3 ; int other ; int tmp___4 ; int tmp___5 ; long tmp___6 ; struct _ddebug descriptor___0 ; long tmp___7 ; struct _ddebug descriptor___1 ; long tmp___8 ; int tmp___9 ; int tmp___10 ; { { dev = (struct r5dev *)(& sh->dev) + (unsigned long )disk_idx; tmp___10 = need_this_block(sh, s, disk_idx, disks); } if (tmp___10 != 0) { { tmp = constant_test_bit(12L, (unsigned long const volatile *)(& dev->flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (2997), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = constant_test_bit(5L, (unsigned long const volatile *)(& dev->flags)); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (2998), "i" (12UL)); __builtin_unreachable(); } } else { } if (s->uptodate == disks + -1 && (s->failed != 0 && (disk_idx == s->failed_num[0] || disk_idx == s->failed_num[1]))) { { descriptor.modname = "raid456"; descriptor.function = "fetch_block"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "Computing stripe %llu block %d\n"; descriptor.lineno = 3006U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_pr_debug(& descriptor, "Computing stripe %llu block %d\n", (unsigned long long )sh->sector, disk_idx); } } else { } { set_bit(16L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& s->ops_request)); set_bit(12L, (unsigned long volatile *)(& dev->flags)); sh->ops.target = disk_idx; sh->ops.target2 = -1; s->req_compute = 1; s->uptodate = s->uptodate + 1; } return (1); } else if (s->uptodate == disks + -2 && s->failed > 1) { other = disks; goto ldv_40803; ldv_40805: ; if (other == disk_idx) { goto ldv_40803; } else { } { tmp___4 = constant_test_bit(0L, (unsigned long const volatile *)(& sh->dev[other].flags)); } if (tmp___4 == 0) { goto ldv_40804; } else { } ldv_40803: tmp___5 = other; other = other - 1; if (tmp___5 != 0) { goto ldv_40805; } else { } ldv_40804: { tmp___6 = ldv__builtin_expect(other < 0, 0L); } if (tmp___6 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3033), "i" (12UL)); __builtin_unreachable(); } } else { } { descriptor___0.modname = "raid456"; descriptor___0.function = "fetch_block"; descriptor___0.filename = "drivers/md/raid5.c"; descriptor___0.format = "Computing stripe %llu blocks %d,%d\n"; descriptor___0.lineno = 3036U; descriptor___0.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_pr_debug(& descriptor___0, "Computing stripe %llu blocks %d,%d\n", (unsigned long long )sh->sector, disk_idx, other); } } else { } { set_bit(16L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& s->ops_request)); set_bit(12L, (unsigned long volatile *)(& sh->dev[disk_idx].flags)); set_bit(12L, (unsigned long volatile *)(& sh->dev[other].flags)); sh->ops.target = disk_idx; sh->ops.target2 = other; s->uptodate = s->uptodate + 2; s->req_compute = 1; } return (1); } else { { tmp___9 = constant_test_bit(4L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___9 != 0) { { set_bit(1L, (unsigned long volatile *)(& dev->flags)); set_bit(5L, (unsigned long volatile *)(& dev->flags)); s->locked = s->locked + 1; descriptor___1.modname = "raid456"; descriptor___1.function = "fetch_block"; descriptor___1.filename = "drivers/md/raid5.c"; descriptor___1.format = "Reading block %d (sync=%d)\n"; descriptor___1.lineno = 3051U; descriptor___1.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___8 != 0L) { { __dynamic_pr_debug(& descriptor___1, "Reading block %d (sync=%d)\n", disk_idx, s->syncing); } } else { } } else { } } } else { } return (0); } } static void handle_stripe_fill(struct stripe_head *sh , struct stripe_head_state *s , int disks ) { int i ; int tmp ; int tmp___0 ; int tmp___1 ; { { tmp___1 = constant_test_bit(16L, (unsigned long const volatile *)(& sh->state)); } if ((tmp___1 == 0 && (unsigned int )sh->check_state == 0U) && (unsigned int )sh->reconstruct_state == 0U) { i = disks; goto ldv_40816; ldv_40815: { tmp = fetch_block(sh, s, i, disks); } if (tmp != 0) { goto ldv_40814; } else { } ldv_40816: tmp___0 = i; i = i - 1; if (tmp___0 != 0) { goto ldv_40815; } else { } ldv_40814: ; } else { } { set_bit(1L, (unsigned long volatile *)(& sh->state)); } return; } } static void handle_stripe_clean_event(struct r5conf *conf , struct stripe_head *sh , int disks , struct bio **return_bi ) { int i ; struct r5dev *dev ; int discard_pending ; struct bio *wbi ; struct bio *wbi2 ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int __ret_warn_on ; int tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int __ret_warn_on___0 ; int tmp___11 ; long tmp___12 ; int __ret_warn_on___1 ; long tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; { discard_pending = 0; i = disks; goto ldv_40840; ldv_40839: ; if ((unsigned long )sh->dev[i].written != (unsigned long )((struct bio *)0)) { { dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; tmp___7 = constant_test_bit(1L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___7 == 0) { { tmp___8 = constant_test_bit(0L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___8 != 0) { goto _L___0; } else { { tmp___9 = constant_test_bit(23L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___9 != 0) { goto _L___0; } else { { tmp___10 = constant_test_bit(24L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___10 != 0) { _L___0: /* CIL Label */ { descriptor.modname = "raid456"; descriptor.function = "handle_stripe_clean_event"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "Return write for disc %d\n"; descriptor.lineno = 3100U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "Return write for disc %d\n", i); } } else { } { tmp___0 = test_and_set_bit(23L, (unsigned long volatile *)(& dev->flags)); } if (tmp___0 != 0) { { clear_bit(0L, (unsigned long volatile *)(& dev->flags)); } } else { } { tmp___3 = test_and_set_bit(24L, (unsigned long volatile *)(& dev->flags)); } if (tmp___3 != 0) { { tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& dev->flags)); __ret_warn_on = tmp___1 != 0; tmp___2 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/md/raid5.c", 3104); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); dev->page = dev->orig_page; } } else { } wbi = dev->written; dev->written = (struct bio *)0; goto ldv_40833; ldv_40832: { wbi2 = r5_next_bio(wbi, dev->sector); tmp___4 = raid5_dec_bi_active_stripes(wbi); } if (tmp___4 == 0) { { md_write_end(conf->mddev); wbi->bi_next = *return_bi; *return_bi = wbi; } } else { } wbi = wbi2; ldv_40833: ; if ((unsigned long )wbi != (unsigned long )((struct bio *)0) && wbi->bi_iter.bi_sector < dev->sector + 8UL) { goto ldv_40832; } else { } { tmp___5 = constant_test_bit(8L, (unsigned long const volatile *)(& sh->state)); bitmap_endwrite((conf->mddev)->bitmap, sh->sector, 8UL, tmp___5 == 0, 0); } } else { goto _L; } } } } else { _L: /* CIL Label */ { tmp___6 = constant_test_bit(23L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___6 != 0) { discard_pending = 1; } else { } } { tmp___11 = constant_test_bit(24L, (unsigned long const volatile *)(& dev->flags)); __ret_warn_on___0 = tmp___11 != 0; tmp___12 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___12 != 0L) { { warn_slowpath_null("drivers/md/raid5.c", 3125); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); __ret_warn_on___1 = (unsigned long )dev->page != (unsigned long )dev->orig_page; tmp___13 = ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } if (tmp___13 != 0L) { { warn_slowpath_null("drivers/md/raid5.c", 3126); } } else { } { ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } } else { } ldv_40840: tmp___14 = i; i = i - 1; if (tmp___14 != 0) { goto ldv_40839; } else { } if (discard_pending == 0) { { tmp___16 = constant_test_bit(23L, (unsigned long const volatile *)(& sh->dev[(int )sh->pd_idx].flags)); } if (tmp___16 != 0) { { clear_bit(23L, (unsigned long volatile *)(& sh->dev[(int )sh->pd_idx].flags)); clear_bit(0L, (unsigned long volatile *)(& sh->dev[(int )sh->pd_idx].flags)); } if ((int )sh->qd_idx >= 0) { { clear_bit(23L, (unsigned long volatile *)(& sh->dev[(int )sh->qd_idx].flags)); clear_bit(0L, (unsigned long volatile *)(& sh->dev[(int )sh->qd_idx].flags)); } } else { } { clear_bit(19L, (unsigned long volatile *)(& sh->state)); ldv_spin_lock_irq_136(& conf->device_lock); remove_hash(sh); ldv_spin_unlock_irq_137(& conf->device_lock); tmp___15 = constant_test_bit(2L, (unsigned long const volatile *)(& sh->state)); } if (tmp___15 != 0) { { set_bit(1L, (unsigned long volatile *)(& sh->state)); } } else { } } else { } } else { } { tmp___18 = test_and_set_bit(14L, (unsigned long volatile *)(& sh->state)); } if (tmp___18 != 0) { { tmp___17 = atomic_dec_and_test(& conf->pending_full_writes); } if (tmp___17 != 0) { { md_wakeup_thread((conf->mddev)->thread); } } else { } } else { } return; } } static void handle_stripe_dirtying(struct r5conf *conf , struct stripe_head *sh , struct stripe_head_state *s , int disks ) { int rmw ; int rcw ; int i ; sector_t recovery_cp ; struct _ddebug descriptor ; long tmp ; struct r5dev *dev ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; struct _ddebug descriptor___0 ; long tmp___10 ; struct blk_trace *bt ; long tmp___11 ; struct r5dev *dev___0 ; struct _ddebug descriptor___1 ; long tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int qread ; struct r5dev *dev___1 ; struct _ddebug descriptor___2 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; struct blk_trace *bt___0 ; int tmp___27 ; long tmp___28 ; int tmp___29 ; int tmp___30 ; int tmp___31 ; { rmw = 0; rcw = 0; recovery_cp = (conf->mddev)->recovery_cp; if (conf->max_degraded == 2 || ((recovery_cp != 0xffffffffffffffffUL && sh->sector >= recovery_cp) && s->failed == 0)) { { rcw = 1; rmw = 2; descriptor.modname = "raid456"; descriptor.function = "handle_stripe_dirtying"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n"; descriptor.lineno = 3181U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", conf->max_degraded, (unsigned long long )recovery_cp, (unsigned long long )sh->sector); } } else { } } else { i = disks; goto ldv_40856; ldv_40855: dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; if ((unsigned long )dev->towrite != (unsigned long )((struct bio *)0) || i == (int )sh->pd_idx) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___1 == 0) { { tmp___2 = constant_test_bit(0L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___2 == 0) { { tmp___3 = constant_test_bit(12L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___3 == 0) { { tmp___0 = constant_test_bit(4L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___0 != 0) { rmw = rmw + 1; } else { rmw = rmw + disks * 2; } } else { } } else { } } else { } } else { } { tmp___5 = constant_test_bit(3L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___5 == 0 && i != (int )sh->pd_idx) { { tmp___6 = constant_test_bit(1L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___6 == 0) { { tmp___7 = constant_test_bit(0L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___7 == 0) { { tmp___8 = constant_test_bit(12L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___8 == 0) { { tmp___4 = constant_test_bit(4L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___4 != 0) { rcw = rcw + 1; } else { rcw = rcw + disks * 2; } } else { } } else { } } else { } } else { } ldv_40856: tmp___9 = i; i = i - 1; if (tmp___9 != 0) { goto ldv_40855; } else { } } { descriptor___0.modname = "raid456"; descriptor___0.function = "handle_stripe_dirtying"; descriptor___0.filename = "drivers/md/raid5.c"; descriptor___0.format = "for sector %llu, rmw=%d rcw=%d\n"; descriptor___0.lineno = 3206U; descriptor___0.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___10 != 0L) { { __dynamic_pr_debug(& descriptor___0, "for sector %llu, rmw=%d rcw=%d\n", (unsigned long long )sh->sector, rmw, rcw); } } else { } { set_bit(1L, (unsigned long volatile *)(& sh->state)); } if (rmw < rcw && rmw > 0) { if ((unsigned long )(conf->mddev)->queue != (unsigned long )((struct request_queue *)0)) { { bt = ((conf->mddev)->queue)->blk_trace; tmp___11 = ldv__builtin_expect((unsigned long )bt != (unsigned long )((struct blk_trace *)0), 0L); } if (tmp___11 != 0L) { { __trace_note_message(bt, "raid5 rmw %llu %d", (unsigned long long )sh->sector, rmw); } } else { } } else { } i = disks; goto ldv_40863; ldv_40862: dev___0 = (struct r5dev *)(& sh->dev) + (unsigned long )i; if ((unsigned long )dev___0->towrite != (unsigned long )((struct bio *)0) || i == (int )sh->pd_idx) { { tmp___14 = constant_test_bit(1L, (unsigned long const volatile *)(& dev___0->flags)); } if (tmp___14 == 0) { { tmp___15 = constant_test_bit(0L, (unsigned long const volatile *)(& dev___0->flags)); } if (tmp___15 == 0) { { tmp___16 = constant_test_bit(12L, (unsigned long const volatile *)(& dev___0->flags)); } if (tmp___16 == 0) { { tmp___17 = constant_test_bit(4L, (unsigned long const volatile *)(& dev___0->flags)); } if (tmp___17 != 0) { { tmp___13 = constant_test_bit(6L, (unsigned long const volatile *)(& sh->state)); } if (tmp___13 != 0) { { descriptor___1.modname = "raid456"; descriptor___1.function = "handle_stripe_dirtying"; descriptor___1.filename = "drivers/md/raid5.c"; descriptor___1.format = "Read_old block %d for r-m-w\n"; descriptor___1.lineno = 3224U; descriptor___1.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___12 != 0L) { { __dynamic_pr_debug(& descriptor___1, "Read_old block %d for r-m-w\n", i); } } else { } { set_bit(1L, (unsigned long volatile *)(& dev___0->flags)); set_bit(5L, (unsigned long volatile *)(& dev___0->flags)); s->locked = s->locked + 1; } } else { { set_bit(7L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& sh->state)); } } } else { } } else { } } else { } } else { } } else { } ldv_40863: tmp___18 = i; i = i - 1; if (tmp___18 != 0) { goto ldv_40862; } else { } } else { } if (rcw <= rmw && rcw > 0) { qread = 0; rcw = 0; i = disks; goto ldv_40869; ldv_40868: { dev___1 = (struct r5dev *)(& sh->dev) + (unsigned long )i; tmp___22 = constant_test_bit(3L, (unsigned long const volatile *)(& dev___1->flags)); } if ((tmp___22 == 0 && i != (int )sh->pd_idx) && i != (int )sh->qd_idx) { { tmp___23 = constant_test_bit(1L, (unsigned long const volatile *)(& dev___1->flags)); } if (tmp___23 == 0) { { tmp___24 = constant_test_bit(0L, (unsigned long const volatile *)(& dev___1->flags)); } if (tmp___24 == 0) { { tmp___25 = constant_test_bit(12L, (unsigned long const volatile *)(& dev___1->flags)); } if (tmp___25 == 0) { { rcw = rcw + 1; tmp___20 = constant_test_bit(4L, (unsigned long const volatile *)(& dev___1->flags)); } if (tmp___20 != 0) { { tmp___21 = constant_test_bit(6L, (unsigned long const volatile *)(& sh->state)); } if (tmp___21 != 0) { { descriptor___2.modname = "raid456"; descriptor___2.function = "handle_stripe_dirtying"; descriptor___2.filename = "drivers/md/raid5.c"; descriptor___2.format = "Read_old block %d for Reconstruct\n"; descriptor___2.lineno = 3251U; descriptor___2.flags = 0U; tmp___19 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___19 != 0L) { { __dynamic_pr_debug(& descriptor___2, "Read_old block %d for Reconstruct\n", i); } } else { } { set_bit(1L, (unsigned long volatile *)(& dev___1->flags)); set_bit(5L, (unsigned long volatile *)(& dev___1->flags)); s->locked = s->locked + 1; qread = qread + 1; } } else { { set_bit(7L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& sh->state)); } } } else { { set_bit(7L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& sh->state)); } } } else { } } else { } } else { } } else { } ldv_40869: tmp___26 = i; i = i - 1; if (tmp___26 != 0) { goto ldv_40868; } else { } if (rcw != 0 && (unsigned long )(conf->mddev)->queue != (unsigned long )((struct request_queue *)0)) { { bt___0 = ((conf->mddev)->queue)->blk_trace; tmp___28 = ldv__builtin_expect((unsigned long )bt___0 != (unsigned long )((struct blk_trace *)0), 0L); } if (tmp___28 != 0L) { { tmp___27 = constant_test_bit(7L, (unsigned long const volatile *)(& sh->state)); __trace_note_message(bt___0, "raid5 rcw %llu %d %d %d", (unsigned long long )sh->sector, rcw, qread, tmp___27); } } else { } } else { } } else { } if (rcw > disks && rmw > disks) { { tmp___29 = constant_test_bit(6L, (unsigned long const volatile *)(& sh->state)); } if (tmp___29 == 0) { { set_bit(7L, (unsigned long volatile *)(& sh->state)); } } else { } } else { } if (s->req_compute != 0) { goto _L; } else { { tmp___30 = constant_test_bit(16L, (unsigned long const volatile *)(& sh->state)); } if (tmp___30 == 0) { _L: /* CIL Label */ if (s->locked == 0 && (rcw == 0 || rmw == 0)) { { tmp___31 = constant_test_bit(9L, (unsigned long const volatile *)(& sh->state)); } if (tmp___31 == 0) { { schedule_reconstruction(sh, s, rcw == 0, 0); } } else { } } else { } } else { } } return; } } static void handle_parity_checks5(struct r5conf *conf , struct stripe_head *sh , struct stripe_head_state *s , int disks ) { struct r5dev *dev ; long tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; { { dev = (struct r5dev *)0; set_bit(1L, (unsigned long volatile *)(& sh->state)); } { if ((unsigned int )sh->check_state == 0U) { goto case_0; } else { } if ((unsigned int )sh->check_state == 6U) { goto case_6; } else { } if ((unsigned int )sh->check_state == 1U) { goto case_1; } else { } if ((unsigned int )sh->check_state == 4U) { goto case_4; } else { } if ((unsigned int )sh->check_state == 5U) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ ; if (s->failed == 0) { { tmp = ldv__builtin_expect(s->uptodate != disks, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3299), "i" (12UL)); __builtin_unreachable(); } } else { } { sh->check_state = 1; set_bit(5L, (unsigned long volatile *)(& s->ops_request)); clear_bit(0L, (unsigned long volatile *)(& sh->dev[(int )sh->pd_idx].flags)); s->uptodate = s->uptodate - 1; } goto ldv_40880; } else { } dev = (struct r5dev *)(& sh->dev) + (unsigned long )s->failed_num[0]; case_6: /* CIL Label */ sh->check_state = 0; if ((unsigned long )dev == (unsigned long )((struct r5dev *)0)) { dev = (struct r5dev *)(& sh->dev) + (unsigned long )sh->pd_idx; } else { } { tmp___0 = constant_test_bit(4L, (unsigned long const volatile *)(& sh->state)); } if (tmp___0 != 0) { goto ldv_40880; } else { } { tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& dev->flags)); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3318), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___3 = ldv__builtin_expect(s->uptodate != disks, 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3319), "i" (12UL)); __builtin_unreachable(); } } else { } { set_bit(1L, (unsigned long volatile *)(& dev->flags)); s->locked = s->locked + 1; set_bit(6L, (unsigned long volatile *)(& dev->flags)); clear_bit(8L, (unsigned long volatile *)(& sh->state)); set_bit(4L, (unsigned long volatile *)(& sh->state)); } goto ldv_40880; case_1: /* CIL Label */ ; goto ldv_40880; case_4: /* CIL Label */ sh->check_state = 0; if (s->failed != 0) { goto ldv_40880; } else { } if (((unsigned int )sh->ops.zero_sum_result & 1U) == 0U) { { set_bit(4L, (unsigned long volatile *)(& sh->state)); } } else { { atomic64_add(8L, & (conf->mddev)->resync_mismatches); tmp___4 = constant_test_bit(7L, (unsigned long const volatile *)(& (conf->mddev)->recovery)); } if (tmp___4 != 0) { { set_bit(4L, (unsigned long volatile *)(& sh->state)); } } else { { sh->check_state = 5; set_bit(16L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& s->ops_request)); set_bit(12L, (unsigned long volatile *)(& sh->dev[(int )sh->pd_idx].flags)); sh->ops.target = (int )sh->pd_idx; sh->ops.target2 = -1; s->uptodate = s->uptodate + 1; } } } goto ldv_40880; case_5: /* CIL Label */ ; goto ldv_40880; switch_default: /* CIL Label */ { printk("\v%s: unknown check_state: %d sector: %llu\n", "handle_parity_checks5", (unsigned int )sh->check_state, (unsigned long long )sh->sector); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3371), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_40880: ; return; } } static void handle_parity_checks6(struct r5conf *conf , struct stripe_head *sh , struct stripe_head_state *s , int disks ) { int pd_idx ; int qd_idx ; struct r5dev *dev ; long tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int *target ; int tmp___3 ; { { pd_idx = (int )sh->pd_idx; qd_idx = (int )sh->qd_idx; set_bit(1L, (unsigned long volatile *)(& sh->state)); tmp = ldv__builtin_expect(s->failed > 2, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3385), "i" (12UL)); __builtin_unreachable(); } } else { } { if ((unsigned int )sh->check_state == 0U) { goto case_0; } else { } if ((unsigned int )sh->check_state == 6U) { goto case_6; } else { } if ((unsigned int )sh->check_state == 1U) { goto case_1; } else { } if ((unsigned int )sh->check_state == 2U) { goto case_2; } else { } if ((unsigned int )sh->check_state == 3U) { goto case_3; } else { } if ((unsigned int )sh->check_state == 4U) { goto case_4; } else { } if ((unsigned int )sh->check_state == 5U) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ ; if (s->failed == s->q_failed) { sh->check_state = 1; } else { } if (s->q_failed == 0 && s->failed <= 1) { if ((unsigned int )sh->check_state == 1U) { sh->check_state = 3; } else { sh->check_state = 2; } } else { } sh->ops.zero_sum_result = 0; if ((unsigned int )sh->check_state == 1U) { { clear_bit(0L, (unsigned long volatile *)(& sh->dev[pd_idx].flags)); s->uptodate = s->uptodate - 1; } } else { } if ((unsigned int )sh->check_state - 1U <= 2U) { { set_bit(5L, (unsigned long volatile *)(& s->ops_request)); } goto ldv_40897; } else { } { tmp___0 = ldv__builtin_expect(s->failed != 2, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3431), "i" (12UL)); __builtin_unreachable(); } } else { } case_6: /* CIL Label */ { sh->check_state = 0; tmp___1 = constant_test_bit(4L, (unsigned long const volatile *)(& sh->state)); } if (tmp___1 != 0) { goto ldv_40897; } else { } { tmp___2 = ldv__builtin_expect(s->uptodate < disks + -1, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3443), "i" (12UL)); __builtin_unreachable(); } } else { } if (s->failed == 2) { { dev = (struct r5dev *)(& sh->dev) + (unsigned long )s->failed_num[1]; s->locked = s->locked + 1; set_bit(1L, (unsigned long volatile *)(& dev->flags)); set_bit(6L, (unsigned long volatile *)(& dev->flags)); } } else { } if (s->failed > 0) { { dev = (struct r5dev *)(& sh->dev) + (unsigned long )s->failed_num[0]; s->locked = s->locked + 1; set_bit(1L, (unsigned long volatile *)(& dev->flags)); set_bit(6L, (unsigned long volatile *)(& dev->flags)); } } else { } if ((int )sh->ops.zero_sum_result & 1) { { dev = (struct r5dev *)(& sh->dev) + (unsigned long )pd_idx; s->locked = s->locked + 1; set_bit(1L, (unsigned long volatile *)(& dev->flags)); set_bit(6L, (unsigned long volatile *)(& dev->flags)); } } else { } if (((unsigned int )sh->ops.zero_sum_result & 2U) != 0U) { { dev = (struct r5dev *)(& sh->dev) + (unsigned long )qd_idx; s->locked = s->locked + 1; set_bit(1L, (unsigned long volatile *)(& dev->flags)); set_bit(6L, (unsigned long volatile *)(& dev->flags)); } } else { } { clear_bit(8L, (unsigned long volatile *)(& sh->state)); set_bit(4L, (unsigned long volatile *)(& sh->state)); } goto ldv_40897; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; goto ldv_40897; case_4: /* CIL Label */ sh->check_state = 0; if ((unsigned int )sh->ops.zero_sum_result == 0U) { if (s->failed == 0) { { set_bit(4L, (unsigned long volatile *)(& sh->state)); } } else { sh->check_state = 6; } } else { { atomic64_add(8L, & (conf->mddev)->resync_mismatches); tmp___3 = constant_test_bit(7L, (unsigned long const volatile *)(& (conf->mddev)->recovery)); } if (tmp___3 != 0) { { set_bit(4L, (unsigned long volatile *)(& sh->state)); } } else { { target = & sh->ops.target; sh->ops.target = -1; sh->ops.target2 = -1; sh->check_state = 5; set_bit(16L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& s->ops_request)); } if ((int )sh->ops.zero_sum_result & 1) { { set_bit(12L, (unsigned long volatile *)(& sh->dev[pd_idx].flags)); *target = pd_idx; target = & sh->ops.target2; s->uptodate = s->uptodate + 1; } } else { } if (((unsigned int )sh->ops.zero_sum_result & 2U) != 0U) { { set_bit(12L, (unsigned long volatile *)(& sh->dev[qd_idx].flags)); *target = qd_idx; s->uptodate = s->uptodate + 1; } } else { } } } goto ldv_40897; case_5: /* CIL Label */ ; goto ldv_40897; switch_default: /* CIL Label */ { printk("\v%s: unknown check_state: %d sector: %llu\n", "handle_parity_checks6", (unsigned int )sh->check_state, (unsigned long long )sh->sector); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3534), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_40897: ; return; } } static void handle_stripe_expansion(struct r5conf *conf , struct stripe_head *sh ) { int i ; struct dma_async_tx_descriptor *tx ; int dd_idx ; int j ; struct stripe_head *sh2 ; struct async_submit_ctl submit ; sector_t bn ; sector_t tmp ; sector_t s ; sector_t tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tx = (struct dma_async_tx_descriptor *)0; clear_bit(11L, (unsigned long volatile *)(& sh->state)); i = 0; } goto ldv_40924; ldv_40923: ; if (i != (int )sh->pd_idx && i != (int )sh->qd_idx) { { tmp = compute_blocknr(sh, i, 1); bn = tmp; tmp___0 = raid5_compute_sector(conf, bn, 0, & dd_idx, (struct stripe_head *)0); s = tmp___0; sh2 = get_active_stripe(conf, s, 0, 1, 1); } if ((unsigned long )sh2 == (unsigned long )((struct stripe_head *)0)) { goto ldv_40919; } else { } { tmp___1 = constant_test_bit(10L, (unsigned long const volatile *)(& sh2->state)); } if (tmp___1 == 0) { { release_stripe(sh2); } goto ldv_40919; } else { { tmp___2 = constant_test_bit(11L, (unsigned long const volatile *)(& sh2->dev[dd_idx].flags)); } if (tmp___2 != 0) { { release_stripe(sh2); } goto ldv_40919; } else { } } { init_async_submit(& submit, 0, tx, (void (*)(void * ))0, (void *)0, (addr_conv_t *)0); tx = async_memcpy(sh2->dev[dd_idx].page, sh->dev[i].page, 0U, 0U, 4096UL, & submit); set_bit(11L, (unsigned long volatile *)(& sh2->dev[dd_idx].flags)); set_bit(0L, (unsigned long volatile *)(& sh2->dev[dd_idx].flags)); j = 0; } goto ldv_40922; ldv_40921: ; if (j != (int )sh2->pd_idx && j != (int )sh2->qd_idx) { { tmp___3 = constant_test_bit(11L, (unsigned long const volatile *)(& sh2->dev[j].flags)); } if (tmp___3 == 0) { goto ldv_40920; } else { } } else { } j = j + 1; ldv_40922: ; if (j < conf->raid_disks) { goto ldv_40921; } else { } ldv_40920: ; if (j == conf->raid_disks) { { set_bit(12L, (unsigned long volatile *)(& sh2->state)); set_bit(1L, (unsigned long volatile *)(& sh2->state)); } } else { } { release_stripe(sh2); } } else { } ldv_40919: i = i + 1; ldv_40924: ; if (i < sh->disks) { goto ldv_40923; } else { } { async_tx_quiesce(& tx); } return; } } static void analyse_stripe(struct stripe_head *sh , struct stripe_head_state *s ) { struct r5conf *conf ; int disks ; struct r5dev *dev ; int i ; int do_recovery ; struct md_rdev *rdev ; sector_t first_bad ; int bad_sectors ; int is_bad ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; struct md_rdev *________p1 ; struct md_rdev *_________p1 ; struct md_rdev *__var ; bool __warned ; int tmp___8 ; int tmp___9 ; struct md_rdev *________p1___0 ; struct md_rdev *_________p1___0 ; struct md_rdev *__var___0 ; bool __warned___0 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; struct md_rdev *rdev2 ; struct md_rdev *________p1___1 ; struct md_rdev *_________p1___1 ; struct md_rdev *__var___1 ; bool __warned___1 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; struct md_rdev *rdev2___0 ; struct md_rdev *________p1___2 ; struct md_rdev *_________p1___2 ; struct md_rdev *__var___2 ; bool __warned___2 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; int tmp___28 ; struct md_rdev *rdev2___1 ; struct md_rdev *________p1___3 ; struct md_rdev *_________p1___3 ; struct md_rdev *__var___3 ; bool __warned___3 ; int tmp___29 ; int tmp___30 ; int tmp___31 ; int tmp___32 ; int tmp___33 ; int tmp___34 ; int tmp___35 ; int tmp___36 ; int tmp___37 ; int tmp___38 ; int tmp___39 ; { { conf = sh->raid_conf; disks = sh->disks; do_recovery = 0; memset((void *)s, 0, 112UL); s->expanding = constant_test_bit(11L, (unsigned long const volatile *)(& sh->state)); s->expanded = constant_test_bit(12L, (unsigned long const volatile *)(& sh->state)); s->failed_num[0] = -1; s->failed_num[1] = -1; rcu_read_lock(); i = disks; } goto ldv_40980; ldv_40979: { is_bad = 0; dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; descriptor.modname = "raid456"; descriptor.function = "analyse_stripe"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "check %d: state 0x%lx read %p write %p written %p\n"; descriptor.lineno = 3635U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "check %d: state 0x%lx read %p write %p written %p\n", i, dev->flags, dev->toread, dev->towrite, dev->written); } } else { } { tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___0 != 0 && (unsigned long )dev->toread != (unsigned long )((struct bio *)0)) { { tmp___1 = constant_test_bit(15L, (unsigned long const volatile *)(& sh->state)); } if (tmp___1 == 0) { { set_bit(13L, (unsigned long volatile *)(& dev->flags)); } } else { } } else { } { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___2 != 0) { s->locked = s->locked + 1; } else { } { tmp___3 = constant_test_bit(0L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___3 != 0) { s->uptodate = s->uptodate + 1; } else { } { tmp___5 = constant_test_bit(12L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___5 != 0) { { s->compute = s->compute + 1; tmp___4 = ldv__builtin_expect(s->compute > 2, 0L); } if (tmp___4 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3652), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } { tmp___6 = constant_test_bit(13L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___6 != 0) { s->to_fill = s->to_fill + 1; } else if ((unsigned long )dev->toread != (unsigned long )((struct bio *)0)) { s->to_read = s->to_read + 1; } else { } if ((unsigned long )dev->towrite != (unsigned long )((struct bio *)0)) { { s->to_write = s->to_write + 1; tmp___7 = constant_test_bit(3L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___7 == 0) { s->non_overwrite = s->non_overwrite + 1; } else { } } else { } if ((unsigned long )dev->written != (unsigned long )((struct bio *)0)) { s->written = s->written + 1; } else { } { __var = (struct md_rdev *)0; _________p1 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->replacement)); ________p1 = _________p1; tmp___8 = debug_lockdep_rcu_enabled(); } if (tmp___8 != 0 && ! __warned) { { tmp___9 = rcu_read_lock_held(); } if (tmp___9 == 0) { { __warned = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 3669, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev = ________p1; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___12 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___12 == 0) { if (rdev->recovery_offset >= sh->sector + 8UL) { { tmp___13 = is_badblock(rdev, sh->sector, 8, & first_bad, & bad_sectors); } if (tmp___13 == 0) { { set_bit(19L, (unsigned long volatile *)(& dev->flags)); } } else { goto _L___1; } } else { goto _L___1; } } else { goto _L___1; } } else { _L___1: /* CIL Label */ if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { set_bit(21L, (unsigned long volatile *)(& dev->flags)); } } else { } { __var___0 = (struct md_rdev *)0; _________p1___0 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->rdev)); ________p1___0 = _________p1___0; tmp___10 = debug_lockdep_rcu_enabled(); } if (tmp___10 != 0 && ! __warned___0) { { tmp___11 = rcu_read_lock_held(); } if (tmp___11 == 0) { { __warned___0 = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 3678, "suspicious rcu_dereference_check() usage"); } } else { } } else { } { rdev = ________p1___0; clear_bit(19L, (unsigned long volatile *)(& dev->flags)); } } if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___14 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___14 != 0) { rdev = (struct md_rdev *)0; } else { } } else { } if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { is_bad = is_badblock(rdev, sh->sector, 8, & first_bad, & bad_sectors); } if ((unsigned long )s->blocked_rdev == (unsigned long )((struct md_rdev *)0)) { { tmp___15 = constant_test_bit(6L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___15 != 0 || is_bad < 0) { if (is_bad < 0) { { set_bit(9L, (unsigned long volatile *)(& rdev->flags)); } } else { } { s->blocked_rdev = rdev; atomic_inc(& rdev->nr_pending); } } else { } } else { } } else { } { clear_bit(4L, (unsigned long volatile *)(& dev->flags)); } if ((unsigned long )rdev == (unsigned long )((struct md_rdev *)0)) { } else if (is_bad != 0) { { tmp___16 = constant_test_bit(7L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___16 == 0) { { tmp___17 = constant_test_bit(0L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___17 != 0) { { set_bit(4L, (unsigned long volatile *)(& dev->flags)); set_bit(9L, (unsigned long volatile *)(& dev->flags)); } } else { } } else { } } else { { tmp___20 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___20 != 0) { { set_bit(4L, (unsigned long volatile *)(& dev->flags)); } } else if (sh->sector + 8UL <= rdev->recovery_offset) { { set_bit(4L, (unsigned long volatile *)(& dev->flags)); } } else { { tmp___18 = constant_test_bit(0L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___18 != 0) { { tmp___19 = constant_test_bit(11L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___19 != 0) { { set_bit(4L, (unsigned long volatile *)(& dev->flags)); } } else { } } else { } } } { tmp___24 = constant_test_bit(17L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___24 != 0) { { __var___1 = (struct md_rdev *)0; _________p1___1 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->rdev)); ________p1___1 = _________p1___1; tmp___21 = debug_lockdep_rcu_enabled(); } if (tmp___21 != 0 && ! __warned___1) { { tmp___22 = rcu_read_lock_held(); } if (tmp___22 == 0) { { __warned___1 = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 3726, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev2 = ________p1___1; if ((unsigned long )rdev2 == (unsigned long )rdev) { { clear_bit(4L, (unsigned long volatile *)(& dev->flags)); } } else { } if ((unsigned long )rdev2 != (unsigned long )((struct md_rdev *)0)) { { tmp___23 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev2->flags)); } if (tmp___23 == 0) { { s->handle_bad_blocks = 1; atomic_inc(& rdev2->nr_pending); } } else { { clear_bit(17L, (unsigned long volatile *)(& dev->flags)); } } } else { { clear_bit(17L, (unsigned long volatile *)(& dev->flags)); } } } else { } { tmp___28 = constant_test_bit(18L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___28 != 0) { { __var___2 = (struct md_rdev *)0; _________p1___2 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->rdev)); ________p1___2 = _________p1___2; tmp___25 = debug_lockdep_rcu_enabled(); } if (tmp___25 != 0 && ! __warned___2) { { tmp___26 = rcu_read_lock_held(); } if (tmp___26 == 0) { { __warned___2 = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 3739, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev2___0 = ________p1___2; if ((unsigned long )rdev2___0 != (unsigned long )((struct md_rdev *)0)) { { tmp___27 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev2___0->flags)); } if (tmp___27 == 0) { { s->handle_bad_blocks = 1; atomic_inc(& rdev2___0->nr_pending); } } else { { clear_bit(18L, (unsigned long volatile *)(& dev->flags)); } } } else { { clear_bit(18L, (unsigned long volatile *)(& dev->flags)); } } } else { } { tmp___32 = constant_test_bit(20L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___32 != 0) { { __var___3 = (struct md_rdev *)0; _________p1___3 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )i)->replacement)); ________p1___3 = _________p1___3; tmp___29 = debug_lockdep_rcu_enabled(); } if (tmp___29 != 0 && ! __warned___3) { { tmp___30 = rcu_read_lock_held(); } if (tmp___30 == 0) { { __warned___3 = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 3748, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev2___1 = ________p1___3; if ((unsigned long )rdev2___1 != (unsigned long )((struct md_rdev *)0)) { { tmp___31 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev2___1->flags)); } if (tmp___31 == 0) { { s->handle_bad_blocks = 1; atomic_inc(& rdev2___1->nr_pending); } } else { { clear_bit(20L, (unsigned long volatile *)(& dev->flags)); } } } else { { clear_bit(20L, (unsigned long volatile *)(& dev->flags)); } } } else { } { tmp___33 = constant_test_bit(4L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___33 == 0) { { clear_bit(9L, (unsigned long volatile *)(& dev->flags)); clear_bit(10L, (unsigned long volatile *)(& dev->flags)); } } else { } { tmp___34 = constant_test_bit(9L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___34 != 0) { { clear_bit(4L, (unsigned long volatile *)(& dev->flags)); } } else { } { tmp___36 = constant_test_bit(4L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___36 == 0) { if (s->failed <= 1) { s->failed_num[s->failed] = i; } else { } s->failed = s->failed + 1; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___35 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___35 == 0) { do_recovery = 1; } else { } } else { } } else { } ldv_40980: tmp___37 = i; i = i - 1; if (tmp___37 != 0) { goto ldv_40979; } else { } { tmp___39 = constant_test_bit(3L, (unsigned long const volatile *)(& sh->state)); } if (tmp___39 != 0) { if (do_recovery != 0 || sh->sector >= (conf->mddev)->recovery_cp) { s->syncing = 1; } else { { tmp___38 = constant_test_bit(6L, (unsigned long const volatile *)(& (conf->mddev)->recovery)); } if (tmp___38 != 0) { s->syncing = 1; } else { s->replacing = 1; } } } else { } { rcu_read_unlock(); } return; } } static void handle_stripe(struct stripe_head *sh ) { struct stripe_head_state s ; struct r5conf *conf ; int i ; int prexor ; int disks ; struct r5dev *pdev ; struct r5dev *qdev ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; struct _ddebug descriptor ; int tmp___3 ; long tmp___4 ; long tmp___5 ; int tmp___6 ; struct _ddebug descriptor___0 ; long tmp___7 ; int tmp___8 ; long tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; int tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; struct r5dev *dev ; struct _ddebug descriptor___1 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; int tmp___28 ; int tmp___29 ; int tmp___30 ; int tmp___31 ; int tmp___32 ; int __ret_warn_on ; int tmp___33 ; long tmp___34 ; int tmp___35 ; int tmp___36 ; int tmp___37 ; int tmp___38 ; int tmp___39 ; int tmp___40 ; struct r5dev *dev___0 ; int tmp___41 ; int tmp___42 ; int tmp___43 ; int tmp___44 ; struct stripe_head *sh_src ; struct stripe_head *tmp___45 ; int tmp___46 ; int tmp___47 ; int tmp___48 ; int tmp___49 ; int tmp___50 ; long tmp___51 ; struct md_rdev *rdev ; struct r5dev *dev___1 ; int tmp___52 ; int tmp___53 ; int tmp___54 ; int tmp___55 ; int tmp___56 ; int tmp___57 ; { { conf = sh->raid_conf; disks = sh->disks; clear_bit(1L, (unsigned long volatile *)(& sh->state)); tmp = test_and_set_bit_lock(0L, (unsigned long volatile *)(& sh->state)); } if (tmp != 0) { { set_bit(1L, (unsigned long volatile *)(& sh->state)); } return; } else { } { tmp___2 = constant_test_bit(2L, (unsigned long const volatile *)(& sh->state)); } if (tmp___2 != 0) { { ldv_spin_lock_138(& sh->stripe_lock); tmp___0 = constant_test_bit(19L, (unsigned long const volatile *)(& sh->state)); } if (tmp___0 == 0) { { tmp___1 = test_and_set_bit(2L, (unsigned long volatile *)(& sh->state)); } if (tmp___1 != 0) { { set_bit(3L, (unsigned long volatile *)(& sh->state)); clear_bit(4L, (unsigned long volatile *)(& sh->state)); clear_bit(5L, (unsigned long volatile *)(& sh->state)); } } else { } } else { } { ldv_spin_unlock_139(& sh->stripe_lock); } } else { } { clear_bit(7L, (unsigned long volatile *)(& sh->state)); descriptor.modname = "raid456"; descriptor.function = "handle_stripe"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n"; descriptor.lineno = 3823U; descriptor.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = atomic_read((atomic_t const *)(& sh->count)); __dynamic_pr_debug(& descriptor, "handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", (unsigned long long )sh->sector, sh->state, tmp___3, (int )sh->pd_idx, (int )sh->qd_idx, (unsigned int )sh->check_state, (unsigned int )sh->reconstruct_state); } } else { } { analyse_stripe(sh, & s); } if (s.handle_bad_blocks != 0) { { set_bit(1L, (unsigned long volatile *)(& sh->state)); } goto finish; } else { } { tmp___5 = ldv__builtin_expect((unsigned long )s.blocked_rdev != (unsigned long )((struct md_rdev *)0), 0L); } if (tmp___5 != 0L) { if (((((unsigned long )*((long *)(& s) + 0UL) & 0xffffffffffffffffUL) != 0UL || ((unsigned long )*((long *)(& s) + 1UL) & 0xffffffffffffffffUL) != 0UL) || s.to_write != 0) || s.written != 0) { { set_bit(1L, (unsigned long volatile *)(& sh->state)); } goto finish; } else { } { rdev_dec_pending(s.blocked_rdev, conf->mddev); s.blocked_rdev = (struct md_rdev *)0; } } else { } if (s.to_fill != 0) { { tmp___6 = constant_test_bit(15L, (unsigned long const volatile *)(& sh->state)); } if (tmp___6 == 0) { { set_bit(0L, (unsigned long volatile *)(& s.ops_request)); set_bit(15L, (unsigned long volatile *)(& sh->state)); } } else { } } else { } { descriptor___0.modname = "raid456"; descriptor___0.function = "handle_stripe"; descriptor___0.filename = "drivers/md/raid5.c"; descriptor___0.format = "locked=%d uptodate=%d to_read=%d to_write=%d failed=%d failed_num=%d,%d\n"; descriptor___0.lineno = 3851U; descriptor___0.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_pr_debug(& descriptor___0, "locked=%d uptodate=%d to_read=%d to_write=%d failed=%d failed_num=%d,%d\n", s.locked, s.uptodate, s.to_read, s.to_write, s.failed, s.failed_num[0], s.failed_num[1]); } } else { } if (s.failed > conf->max_degraded) { sh->check_state = 0; sh->reconstruct_state = 0; if ((s.to_read + s.to_write) + s.written != 0) { { handle_failed_stripe(conf, sh, & s, disks, & s.return_bi); } } else { } if (s.syncing + s.replacing != 0) { { handle_failed_sync(conf, sh, & s); } } else { } } else { } prexor = 0; if ((unsigned int )sh->reconstruct_state == 4U) { prexor = 1; } else { } if ((unsigned int )sh->reconstruct_state - 4U <= 1U) { { sh->reconstruct_state = 0; tmp___8 = constant_test_bit(0L, (unsigned long const volatile *)(& sh->dev[(int )sh->pd_idx].flags)); tmp___9 = ldv__builtin_expect(tmp___8 == 0, 0L); } if (tmp___9 != 0L) { { tmp___10 = constant_test_bit(23L, (unsigned long const volatile *)(& sh->dev[(int )sh->pd_idx].flags)); tmp___11 = ldv__builtin_expect(tmp___10 == 0, 0L); } if (tmp___11 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3878), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } { tmp___12 = ldv__builtin_expect((int )sh->qd_idx >= 0, 0L); } if (tmp___12 != 0L) { { tmp___13 = constant_test_bit(0L, (unsigned long const volatile *)(& sh->dev[(int )sh->qd_idx].flags)); tmp___14 = ldv__builtin_expect(tmp___13 == 0, 0L); } if (tmp___14 != 0L) { tmp___15 = 1; } else { tmp___15 = 0; } } else { tmp___15 = 0; } if (tmp___15 != 0) { { tmp___16 = constant_test_bit(23L, (unsigned long const volatile *)(& sh->dev[(int )sh->qd_idx].flags)); tmp___17 = ldv__builtin_expect(tmp___16 == 0, 0L); } if (tmp___17 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (3881), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } i = disks; goto ldv_40998; ldv_40999: { dev = (struct r5dev *)(& sh->dev) + (unsigned long )i; tmp___20 = constant_test_bit(1L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___20 != 0 && ((i == (int )sh->pd_idx || i == (int )sh->qd_idx) || (unsigned long )dev->written != (unsigned long )((struct bio *)0))) { { descriptor___1.modname = "raid456"; descriptor___1.function = "handle_stripe"; descriptor___1.filename = "drivers/md/raid5.c"; descriptor___1.format = "Writing block %d\n"; descriptor___1.lineno = 3887U; descriptor___1.flags = 0U; tmp___18 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___18 != 0L) { { __dynamic_pr_debug(& descriptor___1, "Writing block %d\n", i); } } else { } { set_bit(6L, (unsigned long volatile *)(& dev->flags)); } if (prexor != 0) { goto ldv_40998; } else { } if (s.failed > 1) { goto ldv_40998; } else { } { tmp___19 = constant_test_bit(4L, (unsigned long const volatile *)(& dev->flags)); } if (tmp___19 == 0 || ((i == (int )sh->pd_idx || i == (int )sh->qd_idx) && s.failed == 0)) { { set_bit(4L, (unsigned long volatile *)(& sh->state)); } } else { } } else { } ldv_40998: tmp___21 = i; i = i - 1; if (tmp___21 != 0) { goto ldv_40999; } else { } { tmp___22 = test_and_set_bit(6L, (unsigned long volatile *)(& sh->state)); } if (tmp___22 != 0) { s.dec_preread_active = 1; } else { } } else { } pdev = (struct r5dev *)(& sh->dev) + (unsigned long )sh->pd_idx; s.p_failed = (s.failed > 0 && s.failed_num[0] == (int )sh->pd_idx) || (s.failed > 1 && s.failed_num[1] == (int )sh->pd_idx); qdev = (struct r5dev *)(& sh->dev) + (unsigned long )sh->qd_idx; s.q_failed = ((s.failed > 0 && s.failed_num[0] == (int )sh->qd_idx) || (s.failed > 1 && s.failed_num[1] == (int )sh->qd_idx)) || conf->level <= 5; if (s.written != 0) { if (s.p_failed != 0) { goto _L___0; } else { { tmp___23 = constant_test_bit(4L, (unsigned long const volatile *)(& pdev->flags)); } if (tmp___23 != 0) { { tmp___24 = constant_test_bit(1L, (unsigned long const volatile *)(& pdev->flags)); } if (tmp___24 == 0) { { tmp___25 = constant_test_bit(0L, (unsigned long const volatile *)(& pdev->flags)); } if (tmp___25 != 0) { goto _L___0; } else { { tmp___26 = constant_test_bit(23L, (unsigned long const volatile *)(& pdev->flags)); } if (tmp___26 != 0) { _L___0: /* CIL Label */ if (s.q_failed != 0) { { handle_stripe_clean_event(conf, sh, disks, & s.return_bi); } } else { { tmp___27 = constant_test_bit(4L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___27 != 0) { { tmp___28 = constant_test_bit(1L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___28 == 0) { { tmp___29 = constant_test_bit(0L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___29 != 0) { { handle_stripe_clean_event(conf, sh, disks, & s.return_bi); } } else { { tmp___30 = constant_test_bit(23L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___30 != 0) { { handle_stripe_clean_event(conf, sh, disks, & s.return_bi); } } else { } } } else { } } else { } } } else { } } } else { } } else { } } } else { } if (((((s.to_read != 0 || s.non_overwrite != 0) || ((conf->level == 6 && s.to_write != 0) && s.failed != 0)) || (s.syncing != 0 && s.uptodate + s.compute < disks)) || s.replacing != 0) || s.expanding != 0) { { handle_stripe_fill(sh, & s, disks); } } else { } if ((s.to_write != 0 && (unsigned int )sh->reconstruct_state == 0U) && (unsigned int )sh->check_state == 0U) { { handle_stripe_dirtying(conf, sh, & s, disks); } } else { } if ((unsigned int )sh->check_state != 0U) { goto _L___1; } else if (s.syncing != 0 && s.locked == 0) { { tmp___31 = constant_test_bit(16L, (unsigned long const volatile *)(& sh->state)); } if (tmp___31 == 0) { { tmp___32 = constant_test_bit(4L, (unsigned long const volatile *)(& sh->state)); } if (tmp___32 == 0) { _L___1: /* CIL Label */ if (conf->level == 6) { { handle_parity_checks6(conf, sh, & s, disks); } } else { { handle_parity_checks5(conf, sh, & s, disks); } } } else { } } else { } } else { } if ((s.replacing != 0 || s.syncing != 0) && s.locked == 0) { { tmp___36 = constant_test_bit(16L, (unsigned long const volatile *)(& sh->state)); } if (tmp___36 == 0) { { tmp___37 = constant_test_bit(5L, (unsigned long const volatile *)(& sh->state)); } if (tmp___37 == 0) { i = 0; goto ldv_41004; ldv_41003: { tmp___35 = constant_test_bit(21L, (unsigned long const volatile *)(& sh->dev[i].flags)); } if (tmp___35 != 0) { { tmp___33 = constant_test_bit(0L, (unsigned long const volatile *)(& sh->dev[i].flags)); __ret_warn_on = tmp___33 == 0; tmp___34 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___34 != 0L) { { warn_slowpath_null("drivers/md/raid5.c", 3967); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); set_bit(22L, (unsigned long volatile *)(& sh->dev[i].flags)); set_bit(1L, (unsigned long volatile *)(& sh->dev[i].flags)); s.locked = s.locked + 1; } } else { } i = i + 1; ldv_41004: ; if (i < conf->raid_disks) { goto ldv_41003; } else { } if (s.replacing != 0) { { set_bit(4L, (unsigned long volatile *)(& sh->state)); } } else { } { set_bit(5L, (unsigned long volatile *)(& sh->state)); } } else { } } else { } } else { } if ((s.syncing != 0 || s.replacing != 0) && s.locked == 0) { { tmp___39 = constant_test_bit(16L, (unsigned long const volatile *)(& sh->state)); } if (tmp___39 == 0) { { tmp___40 = constant_test_bit(4L, (unsigned long const volatile *)(& sh->state)); } if (tmp___40 != 0) { { md_done_sync(conf->mddev, 8, 1); clear_bit(3L, (unsigned long volatile *)(& sh->state)); tmp___38 = test_and_set_bit(7L, (unsigned long volatile *)(& sh->dev[(int )sh->pd_idx].flags)); } if (tmp___38 != 0) { { __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); } } else { } } else { } } else { } } else { } if (s.failed <= conf->max_degraded && (conf->mddev)->ro == 0) { i = 0; goto ldv_41008; ldv_41007: { dev___0 = (struct r5dev *)(& sh->dev) + (unsigned long )s.failed_num[i]; tmp___42 = constant_test_bit(9L, (unsigned long const volatile *)(& dev___0->flags)); } if (tmp___42 != 0) { { tmp___43 = constant_test_bit(1L, (unsigned long const volatile *)(& dev___0->flags)); } if (tmp___43 == 0) { { tmp___44 = constant_test_bit(0L, (unsigned long const volatile *)(& dev___0->flags)); } if (tmp___44 != 0) { { tmp___41 = constant_test_bit(10L, (unsigned long const volatile *)(& dev___0->flags)); } if (tmp___41 == 0) { { set_bit(6L, (unsigned long volatile *)(& dev___0->flags)); set_bit(10L, (unsigned long volatile *)(& dev___0->flags)); set_bit(1L, (unsigned long volatile *)(& dev___0->flags)); s.locked = s.locked + 1; } } else { { set_bit(5L, (unsigned long volatile *)(& dev___0->flags)); set_bit(1L, (unsigned long volatile *)(& dev___0->flags)); s.locked = s.locked + 1; } } } else { } } else { } } else { } i = i + 1; ldv_41008: ; if (i < s.failed) { goto ldv_41007; } else { } } else { } if ((unsigned int )sh->reconstruct_state == 6U) { { tmp___45 = get_active_stripe(conf, sh->sector, 1, 1, 1); sh_src = tmp___45; } if ((unsigned long )sh_src != (unsigned long )((struct stripe_head *)0)) { { tmp___47 = constant_test_bit(11L, (unsigned long const volatile *)(& sh_src->state)); } if (tmp___47 != 0) { { set_bit(7L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& sh->state)); tmp___46 = test_and_set_bit(6L, (unsigned long volatile *)(& sh_src->state)); } if (tmp___46 == 0) { { atomic_inc(& conf->preread_active_stripes); } } else { } { release_stripe(sh_src); } goto finish; } else { } } else { } if ((unsigned long )sh_src != (unsigned long )((struct stripe_head *)0)) { { release_stripe(sh_src); } } else { } { sh->reconstruct_state = 0; clear_bit(10L, (unsigned long volatile *)(& sh->state)); i = conf->raid_disks; } goto ldv_41012; ldv_41011: { set_bit(6L, (unsigned long volatile *)(& sh->dev[i].flags)); set_bit(1L, (unsigned long volatile *)(& sh->dev[i].flags)); s.locked = s.locked + 1; } ldv_41012: tmp___48 = i; i = i - 1; if (tmp___48 != 0) { goto ldv_41011; } else { } } else { } if (s.expanded != 0) { { tmp___49 = constant_test_bit(10L, (unsigned long const volatile *)(& sh->state)); } if (tmp___49 != 0) { if ((unsigned int )sh->reconstruct_state == 0U) { { sh->disks = conf->raid_disks; stripe_set_idx(sh->sector, conf, 0, sh); schedule_reconstruction(sh, & s, 1, 1); } } else { goto _L___3; } } else { goto _L___3; } } else _L___3: /* CIL Label */ if ((s.expanded != 0 && (unsigned int )sh->reconstruct_state == 0U) && s.locked == 0) { { clear_bit(12L, (unsigned long volatile *)(& sh->state)); atomic_dec(& conf->reshape_stripes); __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); md_done_sync(conf->mddev, 8, 1); } } else { } if (s.expanding != 0 && s.locked == 0) { { tmp___50 = constant_test_bit(16L, (unsigned long const volatile *)(& sh->state)); } if (tmp___50 == 0) { { handle_stripe_expansion(conf, sh); } } else { } } else { } finish: { tmp___51 = ldv__builtin_expect((unsigned long )s.blocked_rdev != (unsigned long )((struct md_rdev *)0), 0L); } if (tmp___51 != 0L) { if ((conf->mddev)->external != 0) { { md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev); } } else { { rdev_dec_pending(s.blocked_rdev, conf->mddev); } } } else { } if (s.handle_bad_blocks != 0) { i = disks; goto ldv_41017; ldv_41016: { dev___1 = (struct r5dev *)(& sh->dev) + (unsigned long )i; tmp___53 = test_and_set_bit(17L, (unsigned long volatile *)(& dev___1->flags)); } if (tmp___53 != 0) { { rdev = (conf->disks + (unsigned long )i)->rdev; tmp___52 = rdev_set_badblocks(rdev, sh->sector, 8, 0); } if (tmp___52 == 0) { { md_error(conf->mddev, rdev); } } else { } { rdev_dec_pending(rdev, conf->mddev); } } else { } { tmp___54 = test_and_set_bit(18L, (unsigned long volatile *)(& dev___1->flags)); } if (tmp___54 != 0) { { rdev = (conf->disks + (unsigned long )i)->rdev; rdev_clear_badblocks(rdev, sh->sector, 8, 0); rdev_dec_pending(rdev, conf->mddev); } } else { } { tmp___55 = test_and_set_bit(20L, (unsigned long volatile *)(& dev___1->flags)); } if (tmp___55 != 0) { rdev = (conf->disks + (unsigned long )i)->replacement; if ((unsigned long )rdev == (unsigned long )((struct md_rdev *)0)) { rdev = (conf->disks + (unsigned long )i)->rdev; } else { } { rdev_clear_badblocks(rdev, sh->sector, 8, 0); rdev_dec_pending(rdev, conf->mddev); } } else { } ldv_41017: tmp___56 = i; i = i - 1; if (tmp___56 != 0) { goto ldv_41016; } else { } } else { } if (s.ops_request != 0UL) { { raid_run_ops(sh, s.ops_request); } } else { } { ops_run_io(sh, & s); } if (s.dec_preread_active != 0) { { atomic_dec(& conf->preread_active_stripes); tmp___57 = atomic_read((atomic_t const *)(& conf->preread_active_stripes)); } if (tmp___57 <= 0) { { md_wakeup_thread((conf->mddev)->thread); } } else { } } else { } { return_io(s.return_bi); clear_bit_unlock(0L, (unsigned long volatile *)(& sh->state)); } return; } } static void raid5_activate_delayed(struct r5conf *conf ) { struct list_head *l ; struct stripe_head *sh ; struct list_head const *__mptr ; int tmp ; int tmp___0 ; int tmp___1 ; { { tmp___1 = atomic_read((atomic_t const *)(& conf->preread_active_stripes)); } if (tmp___1 <= 0) { goto ldv_41027; ldv_41026: { l = conf->delayed_list.next; __mptr = (struct list_head const *)l; sh = (struct stripe_head *)__mptr + 0xfffffffffffffff0UL; list_del_init(l); clear_bit(7L, (unsigned long volatile *)(& sh->state)); tmp = test_and_set_bit(6L, (unsigned long volatile *)(& sh->state)); } if (tmp == 0) { { atomic_inc(& conf->preread_active_stripes); } } else { } { list_add_tail(& sh->lru, & conf->hold_list); raid5_wakeup_stripe_thread(sh); } ldv_41027: { tmp___0 = list_empty((struct list_head const *)(& conf->delayed_list)); } if (tmp___0 == 0) { goto ldv_41026; } else { } } else { } return; } } static void activate_bit_delay(struct r5conf *conf , struct list_head *temp_inactive_list ) { struct list_head head ; struct stripe_head *sh ; struct list_head const *__mptr ; int hash ; int tmp ; { { list_add(& head, & conf->bitmap_list); list_del_init(& conf->bitmap_list); } goto ldv_41039; ldv_41038: { __mptr = (struct list_head const *)head.next; sh = (struct stripe_head *)__mptr + 0xfffffffffffffff0UL; list_del_init(& sh->lru); atomic_inc(& sh->count); hash = (int )sh->hash_lock_index; __release_stripe(conf, sh, temp_inactive_list + (unsigned long )hash); } ldv_41039: { tmp = list_empty((struct list_head const *)(& head)); } if (tmp == 0) { goto ldv_41038; } else { } return; } } static int raid5_congested(struct mddev *mddev , int bits ) { struct r5conf *conf ; int tmp ; { conf = (struct r5conf *)mddev->private; if (conf->inactive_blocked != 0) { return (1); } else { } if (conf->quiesce != 0) { return (1); } else { } { tmp = atomic_read((atomic_t const *)(& conf->empty_inactive_list_nr)); } if (tmp != 0) { return (1); } else { } return (0); } } static int raid5_mergeable_bvec(struct mddev *mddev , struct bvec_merge_data *bvm , struct bio_vec *biovec ) { sector_t sector ; sector_t tmp ; int max ; unsigned int chunk_sectors ; unsigned int bio_sectors ; { { tmp = get_start_sect(bvm->bi_bdev); sector = bvm->bi_sector + tmp; chunk_sectors = (unsigned int )mddev->chunk_sectors; bio_sectors = bvm->bi_size >> 9; } if ((int )bvm->bi_rw & 1) { return ((int )biovec->bv_len); } else { } if (mddev->new_chunk_sectors < mddev->chunk_sectors) { chunk_sectors = (unsigned int )mddev->new_chunk_sectors; } else { } max = (int )(((sector_t )chunk_sectors - ((sector & (sector_t )(chunk_sectors - 1U)) + (sector_t )bio_sectors)) << 9); if (max < 0) { max = 0; } else { } if ((unsigned int )max <= biovec->bv_len && bio_sectors == 0U) { return ((int )biovec->bv_len); } else { return (max); } } } static int in_chunk_boundary(struct mddev *mddev , struct bio *bio ) { sector_t sector ; sector_t tmp ; unsigned int chunk_sectors ; unsigned int bio_sectors ; { { tmp = get_start_sect(bio->bi_bdev); sector = bio->bi_iter.bi_sector + tmp; chunk_sectors = (unsigned int )mddev->chunk_sectors; bio_sectors = bio->bi_iter.bi_size >> 9; } if (mddev->new_chunk_sectors < mddev->chunk_sectors) { chunk_sectors = (unsigned int )mddev->new_chunk_sectors; } else { } return ((sector_t )chunk_sectors >= (sector & (sector_t )(chunk_sectors - 1U)) + (sector_t )bio_sectors); } } static void add_bio_to_retry(struct bio *bi , struct r5conf *conf ) { unsigned long flags ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_140(& conf->device_lock); bi->bi_next = conf->retry_read_aligned_list; conf->retry_read_aligned_list = bi; ldv_spin_unlock_irqrestore_128(& conf->device_lock, flags); md_wakeup_thread((conf->mddev)->thread); } return; } } static struct bio *remove_bio_from_retry(struct r5conf *conf ) { struct bio *bi ; { bi = conf->retry_read_aligned; if ((unsigned long )bi != (unsigned long )((struct bio *)0)) { conf->retry_read_aligned = (struct bio *)0; return (bi); } else { } bi = conf->retry_read_aligned_list; if ((unsigned long )bi != (unsigned long )((struct bio *)0)) { { conf->retry_read_aligned_list = bi->bi_next; bi->bi_next = (struct bio *)0; raid5_set_bi_stripes(bi, 1U); } } else { } return (bi); } } static void raid5_align_endio(struct bio *bi , int error___0 ) { struct bio *raid_bi ; struct mddev *mddev ; struct r5conf *conf ; int uptodate ; int tmp ; struct md_rdev *rdev ; struct request_queue *tmp___0 ; int tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; { { raid_bi = (struct bio *)bi->bi_private; tmp = constant_test_bit(0L, (unsigned long const volatile *)(& bi->bi_flags)); uptodate = tmp; bio_put(bi); rdev = (struct md_rdev *)raid_bi->bi_next; raid_bi->bi_next = (struct bio *)0; mddev = rdev->mddev; conf = (struct r5conf *)mddev->private; rdev_dec_pending(rdev, conf->mddev); } if (error___0 == 0 && uptodate != 0) { { tmp___0 = bdev_get_queue(raid_bi->bi_bdev); trace_block_bio_complete(tmp___0, raid_bi, 0); bio_endio(raid_bi, 0); tmp___1 = atomic_dec_and_test(& conf->active_aligned_reads); } if (tmp___1 != 0) { { __wake_up(& conf->wait_for_stripe, 3U, 1, (void *)0); } } else { } return; } else { } { descriptor.modname = "raid456"; descriptor.function = "raid5_align_endio"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "raid5_align_endio : io error...handing IO for a retry\n"; descriptor.lineno = 4280U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor, "raid5_align_endio : io error...handing IO for a retry\n"); } } else { } { add_bio_to_retry(raid_bi, conf); } return; } } static int bio_fits_rdev(struct bio *bi ) { struct request_queue *q ; struct request_queue *tmp ; unsigned int tmp___0 ; unsigned short tmp___1 ; { { tmp = bdev_get_queue(bi->bi_bdev); q = tmp; tmp___0 = queue_max_sectors(q); } if (bi->bi_iter.bi_size >> 9 > tmp___0) { return (0); } else { } { blk_recount_segments(q, bi); tmp___1 = queue_max_segments(q); } if (bi->bi_phys_segments > (unsigned int )tmp___1) { return (0); } else { } if ((unsigned long )q->merge_bvec_fn != (unsigned long )((merge_bvec_fn *)0)) { return (0); } else { } return (1); } } static int chunk_aligned_read(struct mddev *mddev , struct bio *raid_bio ) { struct r5conf *conf ; int dd_idx ; struct bio *align_bi ; struct md_rdev *rdev ; sector_t end_sector ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; struct md_rdev *________p1 ; struct md_rdev *_________p1 ; struct md_rdev *__var ; bool __warned ; int tmp___1 ; int tmp___2 ; struct md_rdev *________p1___0 ; struct md_rdev *_________p1___0 ; struct md_rdev *__var___0 ; bool __warned___0 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; sector_t first_bad ; int bad_sectors ; int tmp___8 ; int tmp___9 ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___10 ; dev_t tmp___11 ; struct request_queue *tmp___12 ; { { conf = (struct r5conf *)mddev->private; tmp___0 = in_chunk_boundary(mddev, raid_bio); } if (tmp___0 == 0) { { descriptor.modname = "raid456"; descriptor.function = "chunk_aligned_read"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "chunk_aligned_read : non aligned\n"; descriptor.lineno = 4313U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "chunk_aligned_read : non aligned\n"); } } else { } return (0); } else { } { align_bi = bio_clone_mddev(raid_bio, 16U, mddev); } if ((unsigned long )align_bi == (unsigned long )((struct bio *)0)) { return (0); } else { } { align_bi->bi_end_io = & raid5_align_endio; align_bi->bi_private = (void *)raid_bio; align_bi->bi_iter.bi_sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, & dd_idx, (struct stripe_head *)0); end_sector = align_bi->bi_iter.bi_sector + (sector_t )(align_bi->bi_iter.bi_size >> 9); rcu_read_lock(); __var = (struct md_rdev *)0; _________p1 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )dd_idx)->replacement)); ________p1 = _________p1; tmp___1 = debug_lockdep_rcu_enabled(); } if (tmp___1 != 0 && ! __warned) { { tmp___2 = rcu_read_lock_held(); } if (tmp___2 == 0) { { __warned = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 4337, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev = ________p1; if ((unsigned long )rdev == (unsigned long )((struct md_rdev *)0)) { goto _L; } else { { tmp___7 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___7 != 0) { goto _L; } else if (rdev->recovery_offset < end_sector) { _L: /* CIL Label */ { __var___0 = (struct md_rdev *)0; _________p1___0 = *((struct md_rdev * volatile *)(& (conf->disks + (unsigned long )dd_idx)->rdev)); ________p1___0 = _________p1___0; tmp___3 = debug_lockdep_rcu_enabled(); } if (tmp___3 != 0 && ! __warned___0) { { tmp___4 = rcu_read_lock_held(); } if (tmp___4 == 0) { { __warned___0 = 1; lockdep_rcu_suspicious("drivers/md/raid5.c", 4340, "suspicious rcu_dereference_check() usage"); } } else { } } else { } rdev = ________p1___0; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___5 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___5 != 0) { rdev = (struct md_rdev *)0; } else { { tmp___6 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___6 == 0 && rdev->recovery_offset < end_sector) { rdev = (struct md_rdev *)0; } else { } } } else { } } else { } } if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { atomic_inc(& rdev->nr_pending); rcu_read_unlock(); raid_bio->bi_next = (struct bio *)rdev; align_bi->bi_bdev = rdev->bdev; __clear_bit(3L, (unsigned long volatile *)(& align_bi->bi_flags)); tmp___8 = bio_fits_rdev(align_bi); } if (tmp___8 == 0) { { bio_put(align_bi); rdev_dec_pending(rdev, mddev); } return (0); } else { { tmp___9 = is_badblock(rdev, align_bi->bi_iter.bi_sector, (int )(align_bi->bi_iter.bi_size >> 9), & first_bad, & bad_sectors); } if (tmp___9 != 0) { { bio_put(align_bi); rdev_dec_pending(rdev, mddev); } return (0); } else { } } { align_bi->bi_iter.bi_sector = align_bi->bi_iter.bi_sector + rdev->data_offset; ldv_spin_lock_irq_136(& conf->device_lock); } if (conf->quiesce == 0) { goto ldv_41113; } else { } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_41119: { tmp___10 = prepare_to_wait_event(& conf->wait_for_stripe, & __wait, 2); __int = tmp___10; } if (conf->quiesce == 0) { goto ldv_41118; } else { } { ldv_spin_unlock_irq_137(& conf->device_lock); schedule(); ldv_spin_lock_irq_136(& conf->device_lock); } goto ldv_41119; ldv_41118: { finish_wait(& conf->wait_for_stripe, & __wait); } ldv_41113: { atomic_inc(& conf->active_aligned_reads); ldv_spin_unlock_irq_137(& conf->device_lock); } if ((unsigned long )mddev->gendisk != (unsigned long )((struct gendisk *)0)) { { tmp___11 = disk_devt(mddev->gendisk); tmp___12 = bdev_get_queue(align_bi->bi_bdev); trace_block_bio_remap(tmp___12, align_bi, tmp___11, raid_bio->bi_iter.bi_sector); } } else { } { generic_make_request(align_bi); } return (1); } else { { rcu_read_unlock(); bio_put(align_bi); } return (0); } } } static struct stripe_head *__get_priority_stripe(struct r5conf *conf , int group ) { struct stripe_head *sh ; struct stripe_head *tmp ; struct list_head *handle_list ; struct r5worker_group *wg ; int i ; int tmp___0 ; struct _ddebug descriptor ; int tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; struct list_head const *__mptr ; int tmp___5 ; int tmp___6 ; struct list_head const *__mptr___0 ; unsigned int tmp___7 ; int tmp___8 ; int tmp___9 ; struct list_head const *__mptr___1 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; { sh = (struct stripe_head *)0; handle_list = (struct list_head *)0; wg = (struct r5worker_group *)0; if (conf->worker_cnt_per_group == 0) { handle_list = & conf->handle_list; } else if (group != -1) { handle_list = & (conf->worker_groups + (unsigned long )group)->handle_list; wg = conf->worker_groups + (unsigned long )group; } else { i = 0; goto ldv_41132; ldv_41131: { handle_list = & (conf->worker_groups + (unsigned long )i)->handle_list; wg = conf->worker_groups + (unsigned long )i; tmp___0 = list_empty((struct list_head const *)handle_list); } if (tmp___0 == 0) { goto ldv_41130; } else { } i = i + 1; ldv_41132: ; if (i < conf->group_cnt) { goto ldv_41131; } else { } ldv_41130: ; } { descriptor.modname = "raid456"; descriptor.function = "__get_priority_stripe"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n"; descriptor.lineno = 4425U; descriptor.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___1 = atomic_read((atomic_t const *)(& conf->pending_full_writes)); tmp___2 = list_empty((struct list_head const *)(& conf->hold_list)); tmp___3 = list_empty((struct list_head const *)handle_list); __dynamic_pr_debug(& descriptor, "%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", "__get_priority_stripe", tmp___3 != 0 ? (char *)"empty" : (char *)"busy", tmp___2 != 0 ? (char *)"empty" : (char *)"busy", tmp___1, conf->bypass_count); } } else { } { tmp___12 = list_empty((struct list_head const *)handle_list); } if (tmp___12 == 0) { { __mptr = (struct list_head const *)handle_list->next; sh = (struct stripe_head *)__mptr + 0xfffffffffffffff0UL; tmp___6 = list_empty((struct list_head const *)(& conf->hold_list)); } if (tmp___6 != 0) { conf->bypass_count = 0; } else { { tmp___5 = constant_test_bit(13L, (unsigned long const volatile *)(& sh->state)); } if (tmp___5 == 0) { if ((unsigned long )conf->hold_list.next == (unsigned long )conf->last_hold) { conf->bypass_count = conf->bypass_count + 1; } else { conf->last_hold = conf->hold_list.next; conf->bypass_count = conf->bypass_count - conf->bypass_threshold; if (conf->bypass_count < 0) { conf->bypass_count = 0; } else { } } } else { } } } else { { tmp___10 = list_empty((struct list_head const *)(& conf->hold_list)); } if (tmp___10 == 0) { if (conf->bypass_threshold != 0 && conf->bypass_count > conf->bypass_threshold) { goto _L; } else { { tmp___11 = atomic_read((atomic_t const *)(& conf->pending_full_writes)); } if (tmp___11 == 0) { _L: /* CIL Label */ __mptr___0 = (struct list_head const *)conf->hold_list.next; tmp = (struct stripe_head *)__mptr___0 + 0xfffffffffffffff0UL; goto ldv_41143; ldv_41142: ; if (conf->worker_cnt_per_group == 0 || group == -1) { sh = tmp; goto ldv_41141; } else { { tmp___7 = cpumask_check((unsigned int )tmp->cpu); tmp___8 = variable_test_bit((long )tmp___7, (unsigned long const volatile *)(& cpu_online_mask->bits)); } if (tmp___8 == 0) { sh = tmp; goto ldv_41141; } else { { tmp___9 = __cpu_to_node(tmp->cpu); } if (tmp___9 == group) { sh = tmp; goto ldv_41141; } else { } } } __mptr___1 = (struct list_head const *)tmp->lru.next; tmp = (struct stripe_head *)__mptr___1 + 0xfffffffffffffff0UL; ldv_41143: ; if ((unsigned long )(& tmp->lru) != (unsigned long )(& conf->hold_list)) { goto ldv_41142; } else { } ldv_41141: ; if ((unsigned long )sh != (unsigned long )((struct stripe_head *)0)) { conf->bypass_count = conf->bypass_count - conf->bypass_threshold; if (conf->bypass_count < 0) { conf->bypass_count = 0; } else { } } else { } wg = (struct r5worker_group *)0; } else { } } } else { } } if ((unsigned long )sh == (unsigned long )((struct stripe_head *)0)) { return ((struct stripe_head *)0); } else { } if ((unsigned long )wg != (unsigned long )((struct r5worker_group *)0)) { wg->stripes_cnt = wg->stripes_cnt - 1; sh->group = (struct r5worker_group *)0; } else { } { list_del_init(& sh->lru); tmp___13 = atomic_add_return(1, & sh->count); tmp___14 = ldv__builtin_expect(tmp___13 != 1, 0L); } if (tmp___14 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (4473), "i" (12UL)); __builtin_unreachable(); } } else { } return (sh); } } static void raid5_unplug(struct blk_plug_cb *blk_cb , bool from_schedule ) { struct raid5_plug_cb *cb ; struct blk_plug_cb const *__mptr ; struct stripe_head *sh ; struct mddev *mddev ; struct r5conf *conf ; int cnt ; int hash ; struct list_head const *__mptr___0 ; int tmp ; int tmp___0 ; { __mptr = (struct blk_plug_cb const *)blk_cb; cb = (struct raid5_plug_cb *)__mptr; mddev = (struct mddev *)cb->cb.data; conf = (struct r5conf *)mddev->private; cnt = 0; if ((unsigned long )cb->list.next != (unsigned long )((struct list_head *)0)) { { tmp___0 = list_empty((struct list_head const *)(& cb->list)); } if (tmp___0 == 0) { { ldv_spin_lock_irq_136(& conf->device_lock); } goto ldv_41163; ldv_41162: { __mptr___0 = (struct list_head const *)cb->list.next; sh = (struct stripe_head *)__mptr___0 + 0xfffffffffffffff0UL; list_del_init(& sh->lru); __asm__ volatile ("": : : "memory"); clear_bit(18L, (unsigned long volatile *)(& sh->state)); hash = (int )sh->hash_lock_index; __release_stripe(conf, sh, (struct list_head *)(& cb->temp_inactive_list) + (unsigned long )hash); cnt = cnt + 1; } ldv_41163: { tmp = list_empty((struct list_head const *)(& cb->list)); } if (tmp == 0) { goto ldv_41162; } else { } { ldv_spin_unlock_irq_137(& conf->device_lock); } } else { } } else { } { release_inactive_stripe_list(conf, (struct list_head *)(& cb->temp_inactive_list), 8); } if ((unsigned long )mddev->queue != (unsigned long )((struct request_queue *)0)) { { trace_block_unplug(mddev->queue, (unsigned int )cnt, (int )((bool )(! ((int )from_schedule != 0)))); } } else { } { kfree((void const *)cb); } return; } } static void release_stripe_plug(struct mddev *mddev , struct stripe_head *sh ) { struct blk_plug_cb *blk_cb ; struct blk_plug_cb *tmp ; struct raid5_plug_cb *cb ; struct blk_plug_cb const *__mptr ; int i ; int tmp___0 ; { { tmp = blk_check_plugged(& raid5_unplug, (void *)mddev, 176); blk_cb = tmp; } if ((unsigned long )blk_cb == (unsigned long )((struct blk_plug_cb *)0)) { { release_stripe(sh); } return; } else { } __mptr = (struct blk_plug_cb const *)blk_cb; cb = (struct raid5_plug_cb *)__mptr; if ((unsigned long )cb->list.next == (unsigned long )((struct list_head *)0)) { { INIT_LIST_HEAD(& cb->list); i = 0; } goto ldv_41175; ldv_41174: { INIT_LIST_HEAD((struct list_head *)(& cb->temp_inactive_list) + (unsigned long )i); i = i + 1; } ldv_41175: ; if (i <= 7) { goto ldv_41174; } else { } } else { } { tmp___0 = test_and_set_bit(18L, (unsigned long volatile *)(& sh->state)); } if (tmp___0 == 0) { { list_add_tail(& sh->lru, & cb->list); } } else { { release_stripe(sh); } } return; } } static void make_discard_request(struct mddev *mddev , struct bio *bi ) { struct r5conf *conf ; sector_t logical_sector ; sector_t last_sector ; struct stripe_head *sh ; int remaining ; int stripe_sectors ; int _res ; wait_queue_t w ; struct task_struct *tmp ; int d ; int tmp___0 ; int tmp___1 ; { conf = (struct r5conf *)mddev->private; if (mddev->reshape_position != 0xffffffffffffffffUL) { return; } else { } logical_sector = bi->bi_iter.bi_sector & 0xfffffffffffffff8UL; last_sector = bi->bi_iter.bi_sector + (sector_t )(bi->bi_iter.bi_size >> 9); bi->bi_next = (struct bio *)0; bi->bi_phys_segments = 1U; stripe_sectors = conf->chunk_sectors * (conf->raid_disks - conf->max_degraded); logical_sector = ((logical_sector + (sector_t )stripe_sectors) - 1UL) / (sector_t )stripe_sectors; _res = (int )(last_sector % (sector_t )stripe_sectors); last_sector = last_sector / (sector_t )stripe_sectors; logical_sector = logical_sector * (sector_t )conf->chunk_sectors; last_sector = last_sector * (sector_t )conf->chunk_sectors; goto ldv_41204; ldv_41203: { tmp = get_current(); w.flags = 0U; w.private = (void *)tmp; w.func = & autoremove_wake_function; w.task_list.next = & w.task_list; w.task_list.prev = & w.task_list; } again: { sh = get_active_stripe(conf, logical_sector, 0, 0, 0); prepare_to_wait(& conf->wait_for_overlap, & w, 2); set_bit(7L, (unsigned long volatile *)(& sh->dev[(int )sh->pd_idx].flags)); tmp___0 = constant_test_bit(3L, (unsigned long const volatile *)(& sh->state)); } if (tmp___0 != 0) { { release_stripe(sh); schedule(); } goto again; } else { } { clear_bit(7L, (unsigned long volatile *)(& sh->dev[(int )sh->pd_idx].flags)); ldv_spin_lock_irq_121(& sh->stripe_lock); d = 0; } goto ldv_41194; ldv_41193: ; if (d == (int )sh->pd_idx || d == (int )sh->qd_idx) { goto ldv_41192; } else { } if ((unsigned long )sh->dev[d].towrite != (unsigned long )((struct bio *)0) || (unsigned long )sh->dev[d].toread != (unsigned long )((struct bio *)0)) { { set_bit(7L, (unsigned long volatile *)(& sh->dev[d].flags)); ldv_spin_unlock_irq_122(& sh->stripe_lock); release_stripe(sh); schedule(); } goto again; } else { } ldv_41192: d = d + 1; ldv_41194: ; if (d < conf->raid_disks) { goto ldv_41193; } else { } { set_bit(19L, (unsigned long volatile *)(& sh->state)); finish_wait(& conf->wait_for_overlap, & w); d = 0; } goto ldv_41198; ldv_41197: ; if (d == (int )sh->pd_idx || d == (int )sh->qd_idx) { goto ldv_41196; } else { } { sh->dev[d].towrite = bi; set_bit(3L, (unsigned long volatile *)(& sh->dev[d].flags)); raid5_inc_bi_active_stripes(bi); } ldv_41196: d = d + 1; ldv_41198: ; if (d < conf->raid_disks) { goto ldv_41197; } else { } { ldv_spin_unlock_irq_122(& sh->stripe_lock); } if ((unsigned long )(conf->mddev)->bitmap != (unsigned long )((struct bitmap *)0)) { d = 0; goto ldv_41201; ldv_41200: { bitmap_startwrite(mddev->bitmap, sh->sector, 8UL, 0); d = d + 1; } ldv_41201: ; if (d < conf->raid_disks - conf->max_degraded) { goto ldv_41200; } else { } { sh->bm_seq = conf->seq_flush + 1; set_bit(9L, (unsigned long volatile *)(& sh->state)); } } else { } { set_bit(1L, (unsigned long volatile *)(& sh->state)); clear_bit(7L, (unsigned long volatile *)(& sh->state)); tmp___1 = test_and_set_bit(6L, (unsigned long volatile *)(& sh->state)); } if (tmp___1 == 0) { { atomic_inc(& conf->preread_active_stripes); } } else { } { release_stripe_plug(mddev, sh); logical_sector = logical_sector + 8UL; } ldv_41204: ; if (logical_sector < last_sector) { goto ldv_41203; } else { } { remaining = raid5_dec_bi_active_stripes(bi); } if (remaining == 0) { { md_write_end(mddev); bio_endio(bi, 0); } } else { } return; } } static void make_request(struct mddev *mddev , struct bio *bi ) { struct r5conf *conf ; int dd_idx ; sector_t new_sector ; sector_t logical_sector ; sector_t last_sector ; struct stripe_head *sh ; int rw ; int remaining ; wait_queue_t w ; struct task_struct *tmp ; bool do_prepare ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int previous ; int seq ; unsigned int tmp___3 ; long tmp___4 ; struct _ddebug descriptor ; long tmp___5 ; int must_retry ; long tmp___6 ; int tmp___7 ; struct task_struct *tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; struct request_queue *tmp___12 ; { { conf = (struct r5conf *)mddev->private; rw = (int const )bi->bi_rw & 1; tmp = get_current(); w.flags = 0U; w.private = (void *)tmp; w.func = & autoremove_wake_function; w.task_list.next = & w.task_list; w.task_list.prev = & w.task_list; tmp___0 = ldv__builtin_expect(((unsigned long long )bi->bi_rw & 8192ULL) != 0ULL, 0L); } if (tmp___0 != 0L) { { md_flush_request(mddev, bi); } return; } else { } { md_write_start(mddev, bi); } if (rw == 0 && mddev->reshape_position == 0xffffffffffffffffUL) { { tmp___1 = chunk_aligned_read(mddev, bi); } if (tmp___1 != 0) { return; } else { } } else { } { tmp___2 = ldv__builtin_expect(((unsigned long long )bi->bi_rw & 128ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { make_discard_request(mddev, bi); } return; } else { } { logical_sector = bi->bi_iter.bi_sector & 0xfffffffffffffff8UL; last_sector = bi->bi_iter.bi_sector + (sector_t )(bi->bi_iter.bi_size >> 9); bi->bi_next = (struct bio *)0; bi->bi_phys_segments = 1U; prepare_to_wait(& conf->wait_for_overlap, & w, 2); } goto ldv_41228; ldv_41227: do_prepare = 0; retry: { tmp___3 = read_seqcount_begin((seqcount_t const *)(& conf->gen_lock)); seq = (int )tmp___3; previous = 0; } if ((int )do_prepare) { { prepare_to_wait(& conf->wait_for_overlap, & w, 2); } } else { } { tmp___4 = ldv__builtin_expect(conf->reshape_progress != 0xffffffffffffffffUL, 0L); } if (tmp___4 != 0L) { { ldv_spin_lock_irq_136(& conf->device_lock); } if (mddev->reshape_backwards != 0 ? logical_sector < conf->reshape_progress : logical_sector >= conf->reshape_progress) { previous = 1; } else if (mddev->reshape_backwards != 0 ? logical_sector < conf->reshape_safe : logical_sector >= conf->reshape_safe) { { ldv_spin_unlock_irq_137(& conf->device_lock); schedule(); do_prepare = 1; } goto retry; } else { } { ldv_spin_unlock_irq_137(& conf->device_lock); } } else { } { new_sector = raid5_compute_sector(conf, logical_sector, previous, & dd_idx, (struct stripe_head *)0); descriptor.modname = "raid456"; descriptor.function = "make_request"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "raid456: make_request, sector %llu logical %llu\n"; descriptor.lineno = 4718U; descriptor.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_pr_debug(& descriptor, "raid456: make_request, sector %llu logical %llu\n", (unsigned long long )new_sector, (unsigned long long )logical_sector); } } else { } { sh = get_active_stripe(conf, new_sector, previous, (int )bi->bi_rw & 16384, 0); } if ((unsigned long )sh != (unsigned long )((struct stripe_head *)0)) { { tmp___6 = ldv__builtin_expect(previous != 0, 0L); } if (tmp___6 != 0L) { { must_retry = 0; ldv_spin_lock_irq_136(& conf->device_lock); } if (mddev->reshape_backwards != 0 ? logical_sector >= conf->reshape_progress : logical_sector < conf->reshape_progress) { must_retry = 1; } else { } { ldv_spin_unlock_irq_137(& conf->device_lock); } if (must_retry != 0) { { release_stripe(sh); schedule(); do_prepare = 1; } goto retry; } else { } } else { } { tmp___7 = read_seqcount_retry((seqcount_t const *)(& conf->gen_lock), (unsigned int )seq); } if (tmp___7 != 0) { { release_stripe(sh); } goto retry; } else { } if ((rw == 1 && logical_sector >= mddev->suspend_lo) && logical_sector < mddev->suspend_hi) { { release_stripe(sh); tmp___8 = get_current(); flush_signals(tmp___8); prepare_to_wait(& conf->wait_for_overlap, & w, 1); } if (logical_sector >= mddev->suspend_lo && logical_sector < mddev->suspend_hi) { { schedule(); do_prepare = 1; } } else { } goto retry; } else { } { tmp___9 = constant_test_bit(10L, (unsigned long const volatile *)(& sh->state)); } if (tmp___9 != 0) { { md_wakeup_thread(mddev->thread); release_stripe(sh); schedule(); do_prepare = 1; } goto retry; } else { { tmp___10 = add_stripe_bio(sh, bi, dd_idx, rw); } if (tmp___10 == 0) { { md_wakeup_thread(mddev->thread); release_stripe(sh); schedule(); do_prepare = 1; } goto retry; } else { } } { set_bit(1L, (unsigned long volatile *)(& sh->state)); clear_bit(7L, (unsigned long volatile *)(& sh->state)); } if (((unsigned long long )bi->bi_rw & 16ULL) != 0ULL) { { tmp___11 = test_and_set_bit(6L, (unsigned long volatile *)(& sh->state)); } if (tmp___11 == 0) { { atomic_inc(& conf->preread_active_stripes); } } else { } } else { } { release_stripe_plug(mddev, sh); } } else { { clear_bit(0L, (unsigned long volatile *)(& bi->bi_flags)); } goto ldv_41226; } logical_sector = logical_sector + 8UL; ldv_41228: ; if (logical_sector < last_sector) { goto ldv_41227; } else { } ldv_41226: { finish_wait(& conf->wait_for_overlap, & w); remaining = raid5_dec_bi_active_stripes(bi); } if (remaining == 0) { if (rw == 1) { { md_write_end(mddev); } } else { } { tmp___12 = bdev_get_queue(bi->bi_bdev); trace_block_bio_complete(tmp___12, bi, 0); bio_endio(bi, 0); } } else { } return; } } static sector_t raid5_size(struct mddev *mddev , sector_t sectors , int raid_disks ) ; static sector_t reshape_request(struct mddev *mddev , sector_t sector_nr , int *skipped ) { struct r5conf *conf ; struct stripe_head *sh ; sector_t first_sector ; sector_t last_sector ; int raid_disks ; int data_disks ; int new_data_disks ; int i ; int dd_idx ; sector_t writepos ; sector_t readpos ; sector_t safepos ; sector_t stripe_addr ; int reshape_sectors ; struct list_head stripes ; sector_t tmp ; sector_t tmp___0 ; int _res ; int _res___0 ; int _res___1 ; int _res___2 ; sector_t __min1 ; sector_t __min2 ; sector_t __min1___0 ; sector_t __min2___0 ; sector_t __min1___1 ; sector_t __min2___1 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; wait_queue_t __wait___0 ; long __ret___0 ; long __int___0 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; int j ; int skipped_disk ; sector_t s ; sector_t tmp___14 ; void *tmp___15 ; int tmp___16 ; struct list_head const *__mptr ; int tmp___17 ; int tmp___18 ; int tmp___19 ; wait_queue_t __wait___1 ; long __ret___1 ; long __int___1 ; long tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; wait_queue_t __wait___2 ; long __ret___2 ; long __int___2 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; int tmp___29 ; { conf = (struct r5conf *)mddev->private; raid_disks = conf->previous_raid_disks; data_disks = raid_disks - conf->max_degraded; new_data_disks = conf->raid_disks - conf->max_degraded; if (sector_nr == 0UL) { if (mddev->reshape_backwards != 0) { { tmp___0 = raid5_size(mddev, 0UL, 0); } if (conf->reshape_progress < tmp___0) { { tmp = raid5_size(mddev, 0UL, 0); sector_nr = tmp - conf->reshape_progress; } } else { goto _L; } } else _L: /* CIL Label */ if (mddev->reshape_backwards == 0 && conf->reshape_progress != 0UL) { sector_nr = conf->reshape_progress; } else { } _res = (int )(sector_nr % (sector_t )new_data_disks); sector_nr = sector_nr / (sector_t )new_data_disks; if (sector_nr != 0UL) { { mddev->curr_resync_completed = sector_nr; sysfs_notify(& mddev->kobj, (char const *)0, "sync_completed"); *skipped = 1; } return (sector_nr); } else { } } else { } if (mddev->new_chunk_sectors > mddev->chunk_sectors) { reshape_sectors = mddev->new_chunk_sectors; } else { reshape_sectors = mddev->chunk_sectors; } writepos = conf->reshape_progress; _res___0 = (int )(writepos % (sector_t )new_data_disks); writepos = writepos / (sector_t )new_data_disks; readpos = conf->reshape_progress; _res___1 = (int )(readpos % (sector_t )data_disks); readpos = readpos / (sector_t )data_disks; safepos = conf->reshape_safe; _res___2 = (int )(safepos % (sector_t )data_disks); safepos = safepos / (sector_t )data_disks; if (mddev->reshape_backwards != 0) { __min1 = (sector_t )reshape_sectors; __min2 = writepos; writepos = writepos - (__min1 < __min2 ? __min1 : __min2); readpos = readpos + (sector_t )reshape_sectors; safepos = safepos + (sector_t )reshape_sectors; } else { writepos = writepos + (sector_t )reshape_sectors; __min1___0 = (sector_t )reshape_sectors; __min2___0 = readpos; readpos = readpos - (__min1___0 < __min2___0 ? __min1___0 : __min2___0); __min1___1 = (sector_t )reshape_sectors; __min2___1 = safepos; safepos = safepos - (__min1___1 < __min2___1 ? __min1___1 : __min2___1); } if (mddev->reshape_backwards != 0) { { tmp___1 = ldv__builtin_expect(conf->reshape_progress == 0UL, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (4891), "i" (12UL)); __builtin_unreachable(); } } else { } { stripe_addr = writepos; tmp___2 = ldv__builtin_expect(((mddev->dev_sectors & - ((unsigned long )reshape_sectors)) - (unsigned long )reshape_sectors) - stripe_addr != sector_nr, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (4896), "i" (12UL)); __builtin_unreachable(); } } else { } } else { { tmp___3 = ldv__builtin_expect(writepos != sector_nr + (sector_t )reshape_sectors, 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (4898), "i" (12UL)); __builtin_unreachable(); } } else { } stripe_addr = sector_nr; } if (conf->min_offset_diff < 0LL) { safepos = (sector_t )((unsigned long long )safepos - (unsigned long long )conf->min_offset_diff); readpos = (sector_t )((unsigned long long )readpos - (unsigned long long )conf->min_offset_diff); } else { writepos = (sector_t )((unsigned long long )writepos + (unsigned long long )conf->min_offset_diff); } if ((mddev->reshape_backwards != 0 ? safepos > writepos && readpos < writepos : safepos < writepos && readpos > writepos) || (long )((conf->reshape_checkpoint - (unsigned long )jiffies) + 2500UL) < 0L) { { __might_sleep("drivers/md/raid5.c", 4935, 0); tmp___4 = atomic_read((atomic_t const *)(& conf->reshape_stripes)); } if (tmp___4 == 0) { goto ldv_41276; } else { { tmp___5 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___5 != 0) { goto ldv_41276; } else { } } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_41282: { tmp___6 = prepare_to_wait_event(& conf->wait_for_overlap, & __wait, 2); __int = tmp___6; tmp___7 = atomic_read((atomic_t const *)(& conf->reshape_stripes)); } if (tmp___7 == 0) { goto ldv_41281; } else { { tmp___8 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___8 != 0) { goto ldv_41281; } else { } } { schedule(); } goto ldv_41282; ldv_41281: { finish_wait(& conf->wait_for_overlap, & __wait); } ldv_41276: { tmp___9 = atomic_read((atomic_t const *)(& conf->reshape_stripes)); } if (tmp___9 != 0) { return (0UL); } else { } { mddev->reshape_position = conf->reshape_progress; mddev->curr_resync_completed = sector_nr; conf->reshape_checkpoint = jiffies; set_bit(0L, (unsigned long volatile *)(& mddev->flags)); md_wakeup_thread(mddev->thread); __might_sleep("drivers/md/raid5.c", 4944, 0); } if (mddev->flags == 0UL) { goto ldv_41284; } else { { tmp___10 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___10 != 0) { goto ldv_41284; } else { } } { __ret___0 = 0L; INIT_LIST_HEAD(& __wait___0.task_list); __wait___0.flags = 0U; } ldv_41290: { tmp___11 = prepare_to_wait_event(& mddev->sb_wait, & __wait___0, 2); __int___0 = tmp___11; } if (mddev->flags == 0UL) { goto ldv_41289; } else { { tmp___12 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___12 != 0) { goto ldv_41289; } else { } } { schedule(); } goto ldv_41290; ldv_41289: { finish_wait(& mddev->sb_wait, & __wait___0); } ldv_41284: { tmp___13 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___13 != 0) { return (0UL); } else { } { ldv_spin_lock_irq_136(& conf->device_lock); conf->reshape_safe = mddev->reshape_position; ldv_spin_unlock_irq_137(& conf->device_lock); __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); sysfs_notify(& mddev->kobj, (char const *)0, "sync_completed"); } } else { } { INIT_LIST_HEAD(& stripes); i = 0; } goto ldv_41299; ldv_41298: { skipped_disk = 0; sh = get_active_stripe(conf, stripe_addr + (sector_t )i, 0, 0, 1); set_bit(10L, (unsigned long volatile *)(& sh->state)); atomic_inc(& conf->reshape_stripes); j = sh->disks; } goto ldv_41295; ldv_41296: ; if (j == (int )sh->pd_idx) { goto ldv_41295; } else { } if (conf->level == 6 && j == (int )sh->qd_idx) { goto ldv_41295; } else { } { s = compute_blocknr(sh, j, 0); tmp___14 = raid5_size(mddev, 0UL, 0); } if (s < tmp___14) { skipped_disk = 1; goto ldv_41295; } else { } { tmp___15 = lowmem_page_address((struct page const *)sh->dev[j].page); memset(tmp___15, 0, 4096UL); set_bit(11L, (unsigned long volatile *)(& sh->dev[j].flags)); set_bit(0L, (unsigned long volatile *)(& sh->dev[j].flags)); } ldv_41295: tmp___16 = j; j = j - 1; if (tmp___16 != 0) { goto ldv_41296; } else { } if (skipped_disk == 0) { { set_bit(12L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& sh->state)); } } else { } { list_add(& sh->lru, & stripes); i = (int )((unsigned int )i + 8U); } ldv_41299: ; if (i < reshape_sectors) { goto ldv_41298; } else { } { ldv_spin_lock_irq_136(& conf->device_lock); } if (mddev->reshape_backwards != 0) { conf->reshape_progress = conf->reshape_progress - (sector_t )(reshape_sectors * new_data_disks); } else { conf->reshape_progress = conf->reshape_progress + (sector_t )(reshape_sectors * new_data_disks); } { ldv_spin_unlock_irq_137(& conf->device_lock); first_sector = raid5_compute_sector(conf, stripe_addr * (sector_t )new_data_disks, 1, & dd_idx, (struct stripe_head *)0); last_sector = raid5_compute_sector(conf, (stripe_addr + (sector_t )reshape_sectors) * (sector_t )new_data_disks - 1UL, 1, & dd_idx, (struct stripe_head *)0); } if (last_sector >= mddev->dev_sectors) { last_sector = mddev->dev_sectors - 1UL; } else { } goto ldv_41302; ldv_41301: { sh = get_active_stripe(conf, first_sector, 1, 0, 1); set_bit(11L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& sh->state)); release_stripe(sh); first_sector = first_sector + 8UL; } ldv_41302: ; if (first_sector <= last_sector) { goto ldv_41301; } else { } goto ldv_41307; ldv_41306: { __mptr = (struct list_head const *)stripes.next; sh = (struct stripe_head *)__mptr + 0xfffffffffffffff0UL; list_del_init(& sh->lru); release_stripe(sh); } ldv_41307: { tmp___17 = list_empty((struct list_head const *)(& stripes)); } if (tmp___17 == 0) { goto ldv_41306; } else { } sector_nr = sector_nr + (sector_t )reshape_sectors; if ((sector_nr - mddev->curr_resync_completed) * 2UL >= mddev->resync_max - mddev->curr_resync_completed) { { __might_sleep("drivers/md/raid5.c", 5030, 0); tmp___18 = atomic_read((atomic_t const *)(& conf->reshape_stripes)); } if (tmp___18 == 0) { goto ldv_41309; } else { { tmp___19 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___19 != 0) { goto ldv_41309; } else { } } { __ret___1 = 0L; INIT_LIST_HEAD(& __wait___1.task_list); __wait___1.flags = 0U; } ldv_41315: { tmp___20 = prepare_to_wait_event(& conf->wait_for_overlap, & __wait___1, 2); __int___1 = tmp___20; tmp___21 = atomic_read((atomic_t const *)(& conf->reshape_stripes)); } if (tmp___21 == 0) { goto ldv_41314; } else { { tmp___22 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___22 != 0) { goto ldv_41314; } else { } } { schedule(); } goto ldv_41315; ldv_41314: { finish_wait(& conf->wait_for_overlap, & __wait___1); } ldv_41309: { tmp___23 = atomic_read((atomic_t const *)(& conf->reshape_stripes)); } if (tmp___23 != 0) { goto ret; } else { } { mddev->reshape_position = conf->reshape_progress; mddev->curr_resync_completed = sector_nr; conf->reshape_checkpoint = jiffies; set_bit(0L, (unsigned long volatile *)(& mddev->flags)); md_wakeup_thread(mddev->thread); __might_sleep("drivers/md/raid5.c", 5040, 0); tmp___24 = constant_test_bit(0L, (unsigned long const volatile *)(& mddev->flags)); } if (tmp___24 == 0) { goto ldv_41318; } else { { tmp___25 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___25 != 0) { goto ldv_41318; } else { } } { __ret___2 = 0L; INIT_LIST_HEAD(& __wait___2.task_list); __wait___2.flags = 0U; } ldv_41324: { tmp___26 = prepare_to_wait_event(& mddev->sb_wait, & __wait___2, 2); __int___2 = tmp___26; tmp___27 = constant_test_bit(0L, (unsigned long const volatile *)(& mddev->flags)); } if (tmp___27 == 0) { goto ldv_41323; } else { { tmp___28 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___28 != 0) { goto ldv_41323; } else { } } { schedule(); } goto ldv_41324; ldv_41323: { finish_wait(& mddev->sb_wait, & __wait___2); } ldv_41318: { tmp___29 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___29 != 0) { goto ret; } else { } { ldv_spin_lock_irq_136(& conf->device_lock); conf->reshape_safe = mddev->reshape_position; ldv_spin_unlock_irq_137(& conf->device_lock); __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); sysfs_notify(& mddev->kobj, (char const *)0, "sync_completed"); } } else { } ret: ; return ((sector_t )reshape_sectors); } } __inline static sector_t sync_request(struct mddev *mddev , sector_t sector_nr , int *skipped , int go_faster ) { struct r5conf *conf ; struct stripe_head *sh ; sector_t max_sector ; sector_t sync_blocks ; int still_degraded ; int i ; int tmp ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___0 ; sector_t tmp___1 ; int tmp___2 ; sector_t rv ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { conf = (struct r5conf *)mddev->private; max_sector = mddev->dev_sectors; still_degraded = 0; if (sector_nr >= max_sector) { { tmp = constant_test_bit(8L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp != 0) { { end_reshape(conf); } return (0UL); } else { } if (mddev->curr_resync < max_sector) { { bitmap_end_sync(mddev->bitmap, mddev->curr_resync, & sync_blocks, 1); } } else { conf->fullsync = 0; } { bitmap_close_sync(mddev->bitmap); } return (0UL); } else { } { __might_sleep("drivers/md/raid5.c", 5082, 0); } if (conf->quiesce != 2) { goto ldv_41338; } else { } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_41344: { tmp___0 = prepare_to_wait_event(& conf->wait_for_overlap, & __wait, 2); __int = tmp___0; } if (conf->quiesce != 2) { goto ldv_41343; } else { } { schedule(); } goto ldv_41344; ldv_41343: { finish_wait(& conf->wait_for_overlap, & __wait); } ldv_41338: { tmp___2 = constant_test_bit(8L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___2 != 0) { { tmp___1 = reshape_request(mddev, sector_nr, skipped); } return (tmp___1); } else { } if (mddev->degraded >= conf->max_degraded) { { tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___3 != 0) { rv = mddev->dev_sectors - sector_nr; *skipped = 1; return (rv); } else { } } else { } { tmp___4 = constant_test_bit(6L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___4 == 0 && conf->fullsync == 0) { { tmp___5 = bitmap_start_sync(mddev->bitmap, sector_nr, & sync_blocks, 1); } if (tmp___5 == 0) { if (sync_blocks > 7UL) { sync_blocks = sync_blocks / 8UL; *skipped = 1; return (sync_blocks * 8UL); } else { } } else { } } else { } { bitmap_cond_end_sync(mddev->bitmap, sector_nr); sh = get_active_stripe(conf, sector_nr, 0, 1, 0); } if ((unsigned long )sh == (unsigned long )((struct stripe_head *)0)) { { sh = get_active_stripe(conf, sector_nr, 0, 0, 0); schedule_timeout_uninterruptible(1L); } } else { } i = 0; goto ldv_41348; ldv_41347: ; if ((unsigned long )(conf->disks + (unsigned long )i)->rdev == (unsigned long )((struct md_rdev *)0)) { still_degraded = 1; } else { } i = i + 1; ldv_41348: ; if (i < conf->raid_disks) { goto ldv_41347; } else { } { bitmap_start_sync(mddev->bitmap, sector_nr, & sync_blocks, still_degraded); set_bit(2L, (unsigned long volatile *)(& sh->state)); set_bit(1L, (unsigned long volatile *)(& sh->state)); release_stripe(sh); } return (8UL); } } static int retry_aligned_read(struct r5conf *conf , struct bio *raid_bio ) { struct stripe_head *sh ; int dd_idx ; sector_t sector ; sector_t logical_sector ; sector_t last_sector ; int scnt ; int remaining ; int handled ; int tmp ; int tmp___0 ; struct request_queue *tmp___1 ; int tmp___2 ; { { scnt = 0; handled = 0; logical_sector = raid_bio->bi_iter.bi_sector & 0xfffffffffffffff8UL; sector = raid5_compute_sector(conf, logical_sector, 0, & dd_idx, (struct stripe_head *)0); last_sector = raid_bio->bi_iter.bi_sector + (sector_t )(raid_bio->bi_iter.bi_size >> 9); } goto ldv_41364; ldv_41363: { tmp = raid5_bi_processed_stripes(raid_bio); } if (scnt < tmp) { goto ldv_41362; } else { } { sh = get_active_stripe(conf, sector, 0, 1, 1); } if ((unsigned long )sh == (unsigned long )((struct stripe_head *)0)) { { raid5_set_bi_processed_stripes(raid_bio, (unsigned int )scnt); conf->retry_read_aligned = raid_bio; } return (handled); } else { } { tmp___0 = add_stripe_bio(sh, raid_bio, dd_idx, 0); } if (tmp___0 == 0) { { release_stripe(sh); raid5_set_bi_processed_stripes(raid_bio, (unsigned int )scnt); conf->retry_read_aligned = raid_bio; } return (handled); } else { } { set_bit(8L, (unsigned long volatile *)(& sh->dev[dd_idx].flags)); handle_stripe(sh); release_stripe(sh); handled = handled + 1; } ldv_41362: logical_sector = logical_sector + 8UL; sector = sector + 8UL; scnt = scnt + 1; ldv_41364: ; if (logical_sector < last_sector) { goto ldv_41363; } else { } { remaining = raid5_dec_bi_active_stripes(raid_bio); } if (remaining == 0) { { tmp___1 = bdev_get_queue(raid_bio->bi_bdev); trace_block_bio_complete(tmp___1, raid_bio, 0); bio_endio(raid_bio, 0); } } else { } { tmp___2 = atomic_dec_and_test(& conf->active_aligned_reads); } if (tmp___2 != 0) { { __wake_up(& conf->wait_for_stripe, 3U, 1, (void *)0); } } else { } return (handled); } } static int handle_active_stripes(struct r5conf *conf , int group , struct r5worker *worker , struct list_head *temp_inactive_list ) { struct stripe_head *batch[8U] ; struct stripe_head *sh ; int i ; int batch_size ; int hash ; bool release_inactive ; int tmp ; int tmp___0 ; { batch_size = 0; release_inactive = 0; goto ldv_41379; ldv_41378: tmp = batch_size; batch_size = batch_size + 1; batch[tmp] = sh; ldv_41379: ; if (batch_size <= 7) { { sh = __get_priority_stripe(conf, group); } if ((unsigned long )sh != (unsigned long )((struct stripe_head *)0)) { goto ldv_41378; } else { goto ldv_41380; } } else { } ldv_41380: ; if (batch_size == 0) { i = 0; goto ldv_41383; ldv_41382: { tmp___0 = list_empty((struct list_head const *)temp_inactive_list + (unsigned long )i); } if (tmp___0 == 0) { goto ldv_41381; } else { } i = i + 1; ldv_41383: ; if (i <= 7) { goto ldv_41382; } else { } ldv_41381: ; if (i == 8) { return (batch_size); } else { } release_inactive = 1; } else { } { ldv_spin_unlock_irq_137(& conf->device_lock); release_inactive_stripe_list(conf, temp_inactive_list, 8); } if ((int )release_inactive) { { ldv_spin_lock_irq_136(& conf->device_lock); } return (0); } else { } i = 0; goto ldv_41385; ldv_41384: { handle_stripe(batch[i]); i = i + 1; } ldv_41385: ; if (i < batch_size) { goto ldv_41384; } else { } { ___might_sleep("drivers/md/raid5.c", 5240, 0); _cond_resched(); ldv_spin_lock_irq_136(& conf->device_lock); i = 0; } goto ldv_41389; ldv_41388: { hash = (int )(batch[i])->hash_lock_index; __release_stripe(conf, batch[i], temp_inactive_list + (unsigned long )hash); i = i + 1; } ldv_41389: ; if (i < batch_size) { goto ldv_41388; } else { } return (batch_size); } } static void raid5_do_work(struct work_struct *work ) { struct r5worker *worker ; struct work_struct const *__mptr ; struct r5worker_group *group ; struct r5conf *conf ; int group_id ; int handled ; struct blk_plug plug ; struct _ddebug descriptor ; long tmp ; int batch_size ; int released ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { { __mptr = (struct work_struct const *)work; worker = (struct r5worker *)__mptr; group = worker->group; conf = group->conf; group_id = (int )(((long )group - (long )conf->worker_groups) / 40L); descriptor.modname = "raid456"; descriptor.function = "raid5_do_work"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "+++ raid5worker active\n"; descriptor.lineno = 5259U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "+++ raid5worker active\n"); } } else { } { blk_start_plug(& plug); handled = 0; ldv_spin_lock_irq_136(& conf->device_lock); } ldv_41407: { released = release_stripe_list(conf, (struct list_head *)(& worker->temp_inactive_list)); batch_size = handle_active_stripes(conf, group_id, worker, (struct list_head *)(& worker->temp_inactive_list)); worker->working = 0; } if ((batch_size | released) == 0) { goto ldv_41406; } else { } handled = handled + batch_size; goto ldv_41407; ldv_41406: { descriptor___0.modname = "raid456"; descriptor___0.function = "raid5_do_work"; descriptor___0.filename = "drivers/md/raid5.c"; descriptor___0.format = "%d stripes handled\n"; descriptor___0.lineno = 5276U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "%d stripes handled\n", handled); } } else { } { ldv_spin_unlock_irq_137(& conf->device_lock); blk_finish_plug(& plug); descriptor___1.modname = "raid456"; descriptor___1.function = "raid5_do_work"; descriptor___1.filename = "drivers/md/raid5.c"; descriptor___1.format = "--- raid5worker inactive\n"; descriptor___1.lineno = 5281U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___1, "--- raid5worker inactive\n"); } } else { } return; } } static void raid5d(struct md_thread *thread ) { struct mddev *mddev ; struct r5conf *conf ; int handled ; struct blk_plug plug ; struct _ddebug descriptor ; long tmp ; struct bio *bio ; int batch_size ; int released ; int tmp___0 ; int ok ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; { { mddev = thread->mddev; conf = (struct r5conf *)mddev->private; descriptor.modname = "raid456"; descriptor.function = "raid5d"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "+++ raid5d active\n"; descriptor.lineno = 5298U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "+++ raid5d active\n"); } } else { } { md_check_recovery(mddev); blk_start_plug(& plug); handled = 0; ldv_spin_lock_irq_136(& conf->device_lock); } ldv_41427: { released = release_stripe_list(conf, (struct list_head *)(& conf->temp_inactive_list)); tmp___0 = list_empty((struct list_head const *)(& conf->bitmap_list)); } if (tmp___0 == 0) { { conf->seq_flush = conf->seq_flush + 1; ldv_spin_unlock_irq_137(& conf->device_lock); bitmap_unplug(mddev->bitmap); ldv_spin_lock_irq_136(& conf->device_lock); conf->seq_write = conf->seq_flush; activate_bit_delay(conf, (struct list_head *)(& conf->temp_inactive_list)); } } else { } { raid5_activate_delayed(conf); } goto ldv_41425; ldv_41424: { ldv_spin_unlock_irq_137(& conf->device_lock); ok = retry_aligned_read(conf, bio); ldv_spin_lock_irq_136(& conf->device_lock); } if (ok == 0) { goto ldv_41423; } else { } handled = handled + 1; ldv_41425: { bio = remove_bio_from_retry(conf); } if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_41424; } else { } ldv_41423: { batch_size = handle_active_stripes(conf, -1, (struct r5worker *)0, (struct list_head *)(& conf->temp_inactive_list)); } if ((batch_size | released) == 0) { goto ldv_41426; } else { } handled = handled + batch_size; if ((mddev->flags & 0xfffffffffffffffbUL) != 0UL) { { ldv_spin_unlock_irq_137(& conf->device_lock); md_check_recovery(mddev); ldv_spin_lock_irq_136(& conf->device_lock); } } else { } goto ldv_41427; ldv_41426: { descriptor___0.modname = "raid456"; descriptor___0.function = "raid5d"; descriptor___0.filename = "drivers/md/raid5.c"; descriptor___0.format = "%d stripes handled\n"; descriptor___0.lineno = 5345U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___0, "%d stripes handled\n", handled); } } else { } { ldv_spin_unlock_irq_137(& conf->device_lock); dma_issue_pending_all(); blk_finish_plug(& plug); descriptor___1.modname = "raid456"; descriptor___1.function = "raid5d"; descriptor___1.filename = "drivers/md/raid5.c"; descriptor___1.format = "--- raid5d inactive\n"; descriptor___1.lineno = 5352U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___1, "--- raid5d inactive\n"); } } else { } return; } } static ssize_t raid5_show_stripe_cache_size(struct mddev *mddev , char *page ) { struct r5conf *conf ; int ret ; { { ret = 0; ldv_spin_lock_175(& mddev->lock); conf = (struct r5conf *)mddev->private; } if ((unsigned long )conf != (unsigned long )((struct r5conf *)0)) { { ret = sprintf(page, "%d\n", conf->max_nr_stripes); } } else { } { ldv_spin_unlock_176(& mddev->lock); } return ((ssize_t )ret); } } int raid5_set_cache_size(struct mddev *mddev , int size ) { struct r5conf *conf ; int err ; int hash ; int tmp ; int tmp___0 ; { conf = (struct r5conf *)mddev->private; if ((unsigned int )size - 17U > 32751U) { return (-22); } else { } hash = (conf->max_nr_stripes + -1) % 8; goto ldv_41445; ldv_41444: { tmp = drop_one_stripe(conf, hash); } if (tmp != 0) { conf->max_nr_stripes = conf->max_nr_stripes - 1; } else { goto ldv_41443; } hash = hash - 1; if (hash < 0) { hash = 7; } else { } ldv_41445: ; if (size < conf->max_nr_stripes) { goto ldv_41444; } else { } ldv_41443: { err = md_allow_write(mddev); } if (err != 0) { return (err); } else { } hash = conf->max_nr_stripes % 8; goto ldv_41448; ldv_41447: { tmp___0 = grow_one_stripe(conf, hash); } if (tmp___0 != 0) { conf->max_nr_stripes = conf->max_nr_stripes + 1; } else { goto ldv_41446; } hash = (hash + 1) % 8; ldv_41448: ; if (size > conf->max_nr_stripes) { goto ldv_41447; } else { } ldv_41446: ; return (0); } } static char const __kstrtab_raid5_set_cache_size[21U] = { 'r', 'a', 'i', 'd', '5', '_', 's', 'e', 't', '_', 'c', 'a', 'c', 'h', 'e', '_', 's', 'i', 'z', 'e', '\000'}; struct kernel_symbol const __ksymtab_raid5_set_cache_size ; struct kernel_symbol const __ksymtab_raid5_set_cache_size = {(unsigned long )(& raid5_set_cache_size), (char const *)(& __kstrtab_raid5_set_cache_size)}; static ssize_t raid5_store_stripe_cache_size(struct mddev *mddev , char const *page , size_t len ) { struct r5conf *conf ; unsigned long new ; int err ; int tmp ; { if (len > 4095UL) { return (-22L); } else { } { tmp = kstrtoul(page, 10U, & new); } if (tmp != 0) { return (-22L); } else { } { err = mddev_lock(mddev); } if (err != 0) { return ((ssize_t )err); } else { } conf = (struct r5conf *)mddev->private; if ((unsigned long )conf == (unsigned long )((struct r5conf *)0)) { err = -19; } else { { err = raid5_set_cache_size(mddev, (int )new); } } { mddev_unlock(mddev); } return ((ssize_t )(err != 0 ? (size_t )err : len)); } } static struct md_sysfs_entry raid5_stripecache_size = {{"stripe_cache_size", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & raid5_show_stripe_cache_size, & raid5_store_stripe_cache_size}; static ssize_t raid5_show_preread_threshold(struct mddev *mddev , char *page ) { struct r5conf *conf ; int ret ; { { ret = 0; ldv_spin_lock_175(& mddev->lock); conf = (struct r5conf *)mddev->private; } if ((unsigned long )conf != (unsigned long )((struct r5conf *)0)) { { ret = sprintf(page, "%d\n", conf->bypass_threshold); } } else { } { ldv_spin_unlock_176(& mddev->lock); } return ((ssize_t )ret); } } static ssize_t raid5_store_preread_threshold(struct mddev *mddev , char const *page , size_t len ) { struct r5conf *conf ; unsigned long new ; int err ; int tmp ; { if (len > 4095UL) { return (-22L); } else { } { tmp = kstrtoul(page, 10U, & new); } if (tmp != 0) { return (-22L); } else { } { err = mddev_lock(mddev); } if (err != 0) { return ((ssize_t )err); } else { } conf = (struct r5conf *)mddev->private; if ((unsigned long )conf == (unsigned long )((struct r5conf *)0)) { err = -19; } else if (new > (unsigned long )conf->max_nr_stripes) { err = -22; } else { conf->bypass_threshold = (int )new; } { mddev_unlock(mddev); } return ((ssize_t )(err != 0 ? (size_t )err : len)); } } static struct md_sysfs_entry raid5_preread_bypass_threshold = {{"preread_bypass_threshold", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & raid5_show_preread_threshold, & raid5_store_preread_threshold}; static ssize_t raid5_show_skip_copy(struct mddev *mddev , char *page ) { struct r5conf *conf ; int ret ; { { ret = 0; ldv_spin_lock_175(& mddev->lock); conf = (struct r5conf *)mddev->private; } if ((unsigned long )conf != (unsigned long )((struct r5conf *)0)) { { ret = sprintf(page, "%d\n", conf->skip_copy); } } else { } { ldv_spin_unlock_176(& mddev->lock); } return ((ssize_t )ret); } } static ssize_t raid5_store_skip_copy(struct mddev *mddev , char const *page , size_t len ) { struct r5conf *conf ; unsigned long new ; int err ; int tmp ; { if (len > 4095UL) { return (-22L); } else { } { tmp = kstrtoul(page, 10U, & new); } if (tmp != 0) { return (-22L); } else { } { new = new != 0UL; err = mddev_lock(mddev); } if (err != 0) { return ((ssize_t )err); } else { } conf = (struct r5conf *)mddev->private; if ((unsigned long )conf == (unsigned long )((struct r5conf *)0)) { err = -19; } else if (new != (unsigned long )conf->skip_copy) { { mddev_suspend(mddev); conf->skip_copy = (int )new; } if (new != 0UL) { (mddev->queue)->backing_dev_info.capabilities = (mddev->queue)->backing_dev_info.capabilities | 8U; } else { (mddev->queue)->backing_dev_info.capabilities = (mddev->queue)->backing_dev_info.capabilities & 4294967287U; } { mddev_resume(mddev); } } else { } { mddev_unlock(mddev); } return ((ssize_t )(err != 0 ? (size_t )err : len)); } } static struct md_sysfs_entry raid5_skip_copy = {{"skip_copy", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & raid5_show_skip_copy, & raid5_store_skip_copy}; static ssize_t stripe_cache_active_show(struct mddev *mddev , char *page ) { struct r5conf *conf ; int tmp ; int tmp___0 ; { conf = (struct r5conf *)mddev->private; if ((unsigned long )conf != (unsigned long )((struct r5conf *)0)) { { tmp = atomic_read((atomic_t const *)(& conf->active_stripes)); tmp___0 = sprintf(page, "%d\n", tmp); } return ((ssize_t )tmp___0); } else { return (0L); } } } static struct md_sysfs_entry raid5_stripecache_active = {{"stripe_cache_active", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & stripe_cache_active_show, 0}; static ssize_t raid5_show_group_thread_cnt(struct mddev *mddev , char *page ) { struct r5conf *conf ; int ret ; { { ret = 0; ldv_spin_lock_175(& mddev->lock); conf = (struct r5conf *)mddev->private; } if ((unsigned long )conf != (unsigned long )((struct r5conf *)0)) { { ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); } } else { } { ldv_spin_unlock_176(& mddev->lock); } return ((ssize_t )ret); } } static int alloc_thread_groups(struct r5conf *conf , int cnt , int *group_cnt , int *worker_cnt_per_group , struct r5worker_group **worker_groups ) ; static ssize_t raid5_store_group_thread_cnt(struct mddev *mddev , char const *page , size_t len ) { struct r5conf *conf ; unsigned long new ; int err ; struct r5worker_group *new_groups ; struct r5worker_group *old_groups ; int group_cnt ; int worker_cnt_per_group ; int tmp ; { if (len > 4095UL) { return (-22L); } else { } { tmp = kstrtoul(page, 10U, & new); } if (tmp != 0) { return (-22L); } else { } { err = mddev_lock(mddev); } if (err != 0) { return ((ssize_t )err); } else { } conf = (struct r5conf *)mddev->private; if ((unsigned long )conf == (unsigned long )((struct r5conf *)0)) { err = -19; } else if (new != (unsigned long )conf->worker_cnt_per_group) { { mddev_suspend(mddev); old_groups = conf->worker_groups; } if ((unsigned long )old_groups != (unsigned long )((struct r5worker_group *)0)) { { flush_workqueue(raid5_wq); } } else { } { err = alloc_thread_groups(conf, (int )new, & group_cnt, & worker_cnt_per_group, & new_groups); } if (err == 0) { { ldv_spin_lock_irq_136(& conf->device_lock); conf->group_cnt = group_cnt; conf->worker_cnt_per_group = worker_cnt_per_group; conf->worker_groups = new_groups; ldv_spin_unlock_irq_137(& conf->device_lock); } if ((unsigned long )old_groups != (unsigned long )((struct r5worker_group *)0)) { { kfree((void const *)old_groups->workers); } } else { } { kfree((void const *)old_groups); } } else { } { mddev_resume(mddev); } } else { } { mddev_unlock(mddev); } return ((ssize_t )(err != 0 ? (size_t )err : len)); } } static struct md_sysfs_entry raid5_group_thread_cnt = {{"group_thread_cnt", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & raid5_show_group_thread_cnt, & raid5_store_group_thread_cnt}; static struct attribute *raid5_attrs[6U] = { & raid5_stripecache_size.attr, & raid5_stripecache_active.attr, & raid5_preread_bypass_threshold.attr, & raid5_group_thread_cnt.attr, & raid5_skip_copy.attr, (struct attribute *)0}; static struct attribute_group raid5_attrs_group = {(char const *)0, 0, (struct attribute **)(& raid5_attrs), 0}; static int alloc_thread_groups(struct r5conf *conf , int cnt , int *group_cnt , int *worker_cnt_per_group , struct r5worker_group **worker_groups ) { int i ; int j ; int k ; ssize_t size ; struct r5worker *workers ; void *tmp ; void *tmp___0 ; struct r5worker_group *group ; struct r5worker *worker ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; { *worker_cnt_per_group = cnt; if (cnt == 0) { *group_cnt = 0; *worker_groups = (struct r5worker_group *)0; return (0); } else { } { *group_cnt = num_node_state(0); size = (ssize_t )((unsigned long )cnt * 224UL); tmp = kzalloc((size_t )(size * (ssize_t )*group_cnt), 16U); workers = (struct r5worker *)tmp; tmp___0 = kzalloc((unsigned long )*group_cnt * 40UL, 16U); *worker_groups = (struct r5worker_group *)tmp___0; } if ((unsigned long )*worker_groups == (unsigned long )((struct r5worker_group *)0) || (unsigned long )workers == (unsigned long )((struct r5worker *)0)) { { kfree((void const *)workers); kfree((void const *)*worker_groups); } return (-12); } else { } i = 0; goto ldv_41592; ldv_41591: { group = *worker_groups + (unsigned long )i; INIT_LIST_HEAD(& group->handle_list); group->conf = conf; group->workers = workers + (unsigned long )(i * cnt); j = 0; } goto ldv_41589; ldv_41588: { worker = group->workers + (unsigned long )j; worker->group = group; __init_work(& worker->work, 0); __constr_expr_0.counter = 137438953408L; worker->work.data = __constr_expr_0; lockdep_init_map(& worker->work.lockdep_map, "(&worker->work)", & __key, 0); INIT_LIST_HEAD(& worker->work.entry); worker->work.func = & raid5_do_work; k = 0; } goto ldv_41586; ldv_41585: { INIT_LIST_HEAD((struct list_head *)(& worker->temp_inactive_list) + (unsigned long )k); k = k + 1; } ldv_41586: ; if (k <= 7) { goto ldv_41585; } else { } j = j + 1; ldv_41589: ; if (j < cnt) { goto ldv_41588; } else { } i = i + 1; ldv_41592: ; if (i < *group_cnt) { goto ldv_41591; } else { } return (0); } } static void free_thread_groups(struct r5conf *conf ) { { if ((unsigned long )conf->worker_groups != (unsigned long )((struct r5worker_group *)0)) { { kfree((void const *)(conf->worker_groups)->workers); } } else { } { kfree((void const *)conf->worker_groups); conf->worker_groups = (struct r5worker_group *)0; } return; } } static sector_t raid5_size(struct mddev *mddev , sector_t sectors , int raid_disks ) { struct r5conf *conf ; int _min1 ; int _min2 ; { conf = (struct r5conf *)mddev->private; if (sectors == 0UL) { sectors = mddev->dev_sectors; } else { } if (raid_disks == 0) { _min1 = conf->raid_disks; _min2 = conf->previous_raid_disks; raid_disks = _min1 < _min2 ? _min1 : _min2; } else { } sectors = sectors & - ((unsigned long )mddev->chunk_sectors); sectors = sectors & - ((unsigned long )mddev->new_chunk_sectors); return (sectors * (sector_t )(raid_disks - conf->max_degraded)); } } static void free_scratch_buffer(struct r5conf *conf , struct raid5_percpu *percpu ) { { { safe_put_page(percpu->spare_page); kfree((void const *)percpu->scribble); percpu->spare_page = (struct page *)0; percpu->scribble = (void *)0; } return; } } static int alloc_scratch_buffer(struct r5conf *conf , struct raid5_percpu *percpu ) { { if (conf->level == 6 && (unsigned long )percpu->spare_page == (unsigned long )((struct page *)0)) { { percpu->spare_page = alloc_pages(208U, 0U); } } else { } if ((unsigned long )percpu->scribble == (unsigned long )((void *)0)) { { percpu->scribble = kmalloc(conf->scribble_len, 208U); } } else { } if ((unsigned long )percpu->scribble == (unsigned long )((void *)0) || (conf->level == 6 && (unsigned long )percpu->spare_page == (unsigned long )((struct page *)0))) { { free_scratch_buffer(conf, percpu); } return (-12); } else { } return (0); } } static void raid5_free_percpu(struct r5conf *conf ) { unsigned long cpu ; void const *__vpp_verify ; unsigned long __ptr ; unsigned int tmp ; { if ((unsigned long )conf->percpu == (unsigned long )((struct raid5_percpu *)0)) { return; } else { } { unregister_cpu_notifier(& conf->cpu_notify); get_online_cpus(); cpu = 0xffffffffffffffffUL; } goto ldv_41623; ldv_41622: { __vpp_verify = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (conf->percpu)); free_scratch_buffer(conf, (struct raid5_percpu *)(__ptr + __per_cpu_offset[cpu])); } ldv_41623: { tmp = cpumask_next((int )cpu, cpu_possible_mask); cpu = (unsigned long )tmp; } if (cpu < (unsigned long )nr_cpu_ids) { goto ldv_41622; } else { } { put_online_cpus(); free_percpu((void *)conf->percpu); } return; } } static void free_conf(struct r5conf *conf ) { { { free_thread_groups(conf); shrink_stripes(conf); raid5_free_percpu(conf); kfree((void const *)conf->disks); kfree((void const *)conf->stripe_hashtbl); kfree((void const *)conf); } return; } } static int raid456_cpu_notify(struct notifier_block *nfb , unsigned long action , void *hcpu ) { struct r5conf *conf ; struct notifier_block const *__mptr ; long cpu ; struct raid5_percpu *percpu ; void const *__vpp_verify ; unsigned long __ptr ; int tmp ; int tmp___0 ; void const *__vpp_verify___0 ; unsigned long __ptr___0 ; { __mptr = (struct notifier_block const *)nfb; conf = (struct r5conf *)__mptr + 0xfffffffffffffc48UL; cpu = (long )hcpu; __vpp_verify = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (conf->percpu)); percpu = (struct raid5_percpu *)(__ptr + __per_cpu_offset[cpu]); { if (action == 3UL) { goto case_3; } else { } if (action == 19UL) { goto case_19; } else { } if (action == 7UL) { goto case_7; } else { } if (action == 23UL) { goto case_23; } else { } goto switch_default; case_3: /* CIL Label */ ; case_19: /* CIL Label */ { tmp___0 = alloc_scratch_buffer(conf, percpu); } if (tmp___0 != 0) { { printk("\v%s: failed memory allocation for cpu%ld\n", "raid456_cpu_notify", cpu); tmp = notifier_from_errno(-12); } return (tmp); } else { } goto ldv_41645; case_7: /* CIL Label */ ; case_23: /* CIL Label */ { __vpp_verify___0 = (void const *)0; __asm__ ("": "=r" (__ptr___0): "0" (conf->percpu)); free_scratch_buffer(conf, (struct raid5_percpu *)(__ptr___0 + __per_cpu_offset[cpu])); } goto ldv_41645; switch_default: /* CIL Label */ ; goto ldv_41645; switch_break: /* CIL Label */ ; } ldv_41645: ; return (1); } } static int raid5_alloc_percpu(struct r5conf *conf ) { unsigned long cpu ; int err ; void *tmp ; void const *__vpp_verify ; unsigned long __ptr ; unsigned int tmp___0 ; { { err = 0; tmp = __alloc_percpu(16UL, 8UL); conf->percpu = (struct raid5_percpu *)tmp; } if ((unsigned long )conf->percpu == (unsigned long )((struct raid5_percpu *)0)) { return (-12); } else { } { conf->cpu_notify.notifier_call = & raid456_cpu_notify; conf->cpu_notify.priority = 0; err = register_cpu_notifier(& conf->cpu_notify); } if (err != 0) { return (err); } else { } { get_online_cpus(); cpu = 0xffffffffffffffffUL; } goto ldv_41665; ldv_41664: { __vpp_verify = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (conf->percpu)); err = alloc_scratch_buffer(conf, (struct raid5_percpu *)(__ptr + __per_cpu_offset[cpu])); } if (err != 0) { { printk("\v%s: failed memory allocation for cpu%ld\n", "raid5_alloc_percpu", cpu); } goto ldv_41663; } else { } ldv_41665: { tmp___0 = cpumask_next((int )cpu, cpu_present_mask); cpu = (unsigned long )tmp___0; } if (cpu < (unsigned long )nr_cpu_ids) { goto ldv_41664; } else { } ldv_41663: { put_online_cpus(); } return (err); } } static struct r5conf *setup_conf(struct mddev *mddev ) { struct r5conf *conf ; int raid_disk ; int memory ; int max_disks ; struct md_rdev *rdev ; struct disk_info *disk ; char pers_name[6U] ; int i ; int group_cnt ; int worker_cnt_per_group ; struct r5worker_group *new_group ; char *tmp ; void *tmp___0 ; char *tmp___1 ; void *tmp___2 ; int tmp___3 ; int tmp___4 ; char *tmp___5 ; void *tmp___6 ; char *tmp___7 ; void *tmp___8 ; bool tmp___9 ; int tmp___10 ; void *tmp___11 ; int tmp___12 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; int _max1 ; int _max2 ; void *tmp___13 ; struct hlist_head *tmp___14 ; void *tmp___15 ; struct lock_class_key __key___3 ; struct lock_class_key __key___4 ; int tmp___16 ; struct _ddebug descriptor ; char *tmp___17 ; long tmp___18 ; struct list_head const *__mptr ; int tmp___19 ; char b[32U] ; char const *tmp___20 ; char *tmp___21 ; int tmp___22 ; struct list_head const *__mptr___0 ; char *tmp___23 ; char *tmp___24 ; int tmp___25 ; char *tmp___26 ; void *tmp___27 ; void *tmp___28 ; { if ((unsigned int )mddev->new_level - 4U > 2U) { { tmp = mdname(mddev); printk("\vmd/raid:%s: raid level not set to 4/5/6 (%d)\n", tmp, mddev->new_level); tmp___0 = ERR_PTR(-5L); } return ((struct r5conf *)tmp___0); } else { } if (mddev->new_level == 5) { { tmp___3 = algorithm_valid_raid5(mddev->new_layout); } if (tmp___3 == 0) { { tmp___1 = mdname(mddev); printk("\vmd/raid:%s: layout %d not supported\n", tmp___1, mddev->new_layout); tmp___2 = ERR_PTR(-5L); } return ((struct r5conf *)tmp___2); } else { goto _L; } } else _L: /* CIL Label */ if (mddev->new_level == 6) { { tmp___4 = algorithm_valid_raid6(mddev->new_layout); } if (tmp___4 == 0) { { tmp___1 = mdname(mddev); printk("\vmd/raid:%s: layout %d not supported\n", tmp___1, mddev->new_layout); tmp___2 = ERR_PTR(-5L); } return ((struct r5conf *)tmp___2); } else { } } else { } if (mddev->new_level == 6 && mddev->raid_disks <= 3) { { tmp___5 = mdname(mddev); printk("\vmd/raid:%s: not enough configured devices (%d, minimum 4)\n", tmp___5, mddev->raid_disks); tmp___6 = ERR_PTR(-22L); } return ((struct r5conf *)tmp___6); } else { } if (mddev->new_chunk_sectors == 0 || ((unsigned long )(mddev->new_chunk_sectors << 9) & 4095UL) != 0UL) { { tmp___7 = mdname(mddev); printk("\vmd/raid:%s: invalid chunk size %d\n", tmp___7, mddev->new_chunk_sectors << 9); tmp___8 = ERR_PTR(-22L); } return ((struct r5conf *)tmp___8); } else { { tmp___9 = is_power_of_2((unsigned long )mddev->new_chunk_sectors); } if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { { tmp___7 = mdname(mddev); printk("\vmd/raid:%s: invalid chunk size %d\n", tmp___7, mddev->new_chunk_sectors << 9); tmp___8 = ERR_PTR(-22L); } return ((struct r5conf *)tmp___8); } else { } } { tmp___11 = kzalloc(1544UL, 208U); conf = (struct r5conf *)tmp___11; } if ((unsigned long )conf == (unsigned long )((struct r5conf *)0)) { goto abort; } else { } { tmp___12 = alloc_thread_groups(conf, 0, & group_cnt, & worker_cnt_per_group, & new_group); } if (tmp___12 == 0) { conf->group_cnt = group_cnt; conf->worker_cnt_per_group = worker_cnt_per_group; conf->worker_groups = new_group; } else { goto abort; } { spinlock_check(& conf->device_lock); __raw_spin_lock_init(& conf->device_lock.__annonCompField18.rlock, "&(&conf->device_lock)->rlock", & __key); __seqcount_init(& conf->gen_lock, "&conf->gen_lock", & __key___0); __init_waitqueue_head(& conf->wait_for_stripe, "&conf->wait_for_stripe", & __key___1); __init_waitqueue_head(& conf->wait_for_overlap, "&conf->wait_for_overlap", & __key___2); INIT_LIST_HEAD(& conf->handle_list); INIT_LIST_HEAD(& conf->hold_list); INIT_LIST_HEAD(& conf->delayed_list); INIT_LIST_HEAD(& conf->bitmap_list); init_llist_head(& conf->released_stripes); atomic_set(& conf->active_stripes, 0); atomic_set(& conf->preread_active_stripes, 0); atomic_set(& conf->active_aligned_reads, 0); conf->bypass_threshold = 1; conf->recovery_disabled = mddev->recovery_disabled + -1; conf->raid_disks = mddev->raid_disks; } if (mddev->reshape_position == 0xffffffffffffffffUL) { conf->previous_raid_disks = mddev->raid_disks; } else { conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; } { _max1 = conf->raid_disks; _max2 = conf->previous_raid_disks; max_disks = _max1 > _max2 ? _max1 : _max2; conf->scribble_len = scribble_len(max_disks); tmp___13 = kzalloc((unsigned long )max_disks * 16UL, 208U); conf->disks = (struct disk_info *)tmp___13; } if ((unsigned long )conf->disks == (unsigned long )((struct disk_info *)0)) { goto abort; } else { } { conf->mddev = mddev; tmp___15 = kzalloc(4096UL, 208U); tmp___14 = (struct hlist_head *)tmp___15; conf->stripe_hashtbl = tmp___14; } if ((unsigned long )tmp___14 == (unsigned long )((struct hlist_head *)0)) { goto abort; } else { } { spinlock_check((spinlock_t *)(& conf->hash_locks)); __raw_spin_lock_init(& ((spinlock_t *)(& conf->hash_locks))->__annonCompField18.rlock, "&(conf->hash_locks)->rlock", & __key___3); i = 1; } goto ldv_41691; ldv_41690: { spinlock_check((spinlock_t *)(& conf->hash_locks) + (unsigned long )i); __raw_spin_lock_init(& ((spinlock_t *)(& conf->hash_locks) + (unsigned long )i)->__annonCompField18.rlock, "&(conf->hash_locks + i)->rlock", & __key___4); i = i + 1; } ldv_41691: ; if (i <= 7) { goto ldv_41690; } else { } i = 0; goto ldv_41694; ldv_41693: { INIT_LIST_HEAD((struct list_head *)(& conf->inactive_list) + (unsigned long )i); i = i + 1; } ldv_41694: ; if (i <= 7) { goto ldv_41693; } else { } i = 0; goto ldv_41697; ldv_41696: { INIT_LIST_HEAD((struct list_head *)(& conf->temp_inactive_list) + (unsigned long )i); i = i + 1; } ldv_41697: ; if (i <= 7) { goto ldv_41696; } else { } { conf->level = mddev->new_level; tmp___16 = raid5_alloc_percpu(conf); } if (tmp___16 != 0) { goto abort; } else { } { descriptor.modname = "raid456"; descriptor.function = "setup_conf"; descriptor.filename = "drivers/md/raid5.c"; descriptor.format = "raid456: run(%s) called.\n"; descriptor.lineno = 5908U; descriptor.flags = 0U; tmp___18 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___18 != 0L) { { tmp___17 = mdname(mddev); __dynamic_pr_debug(& descriptor, "raid456: run(%s) called.\n", tmp___17); } } else { } __mptr = (struct list_head const *)mddev->disks.next; rdev = (struct md_rdev *)__mptr; goto ldv_41708; ldv_41707: raid_disk = rdev->raid_disk; if (raid_disk >= max_disks || raid_disk < 0) { goto ldv_41705; } else { } { disk = conf->disks + (unsigned long )raid_disk; tmp___19 = constant_test_bit(11L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___19 != 0) { if ((unsigned long )disk->replacement != (unsigned long )((struct md_rdev *)0)) { goto abort; } else { } disk->replacement = rdev; } else { if ((unsigned long )disk->rdev != (unsigned long )((struct md_rdev *)0)) { goto abort; } else { } disk->rdev = rdev; } { tmp___22 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___22 != 0) { { tmp___20 = bdevname(rdev->bdev, (char *)(& b)); tmp___21 = mdname(mddev); printk("\016md/raid:%s: device %s operational as raid disk %d\n", tmp___21, tmp___20, raid_disk); } } else if (rdev->saved_raid_disk != raid_disk) { conf->fullsync = 1; } else { } ldv_41705: __mptr___0 = (struct list_head const *)rdev->same_set.next; rdev = (struct md_rdev *)__mptr___0; ldv_41708: ; if ((unsigned long )(& rdev->same_set) != (unsigned long )(& mddev->disks)) { goto ldv_41707; } else { } conf->chunk_sectors = mddev->new_chunk_sectors; conf->level = mddev->new_level; if (conf->level == 6) { conf->max_degraded = 2; } else { conf->max_degraded = 1; } conf->algorithm = mddev->new_layout; conf->reshape_progress = mddev->reshape_position; if (conf->reshape_progress != 0xffffffffffffffffUL) { conf->prev_chunk_sectors = mddev->chunk_sectors; conf->prev_algo = mddev->layout; } else { } { memory = (int )(((unsigned long )conf->max_nr_stripes * ((unsigned long )max_disks * 4232UL + 576UL)) / 1024UL); atomic_set(& conf->empty_inactive_list_nr, 8); tmp___25 = grow_stripes(conf, 256); } if (tmp___25 != 0) { { tmp___23 = mdname(mddev); printk("\vmd/raid:%s: couldn\'t allocate %dkB for buffers\n", tmp___23, memory); } goto abort; } else { { tmp___24 = mdname(mddev); printk("\016md/raid:%s: allocated %dkB\n", tmp___24, memory); } } { sprintf((char *)(& pers_name), "raid%d", mddev->new_level); conf->thread = ldv_md_register_thread_185(& raid5d, mddev, (char const *)(& pers_name)); } if ((unsigned long )conf->thread == (unsigned long )((struct md_thread *)0)) { { tmp___26 = mdname(mddev); printk("\vmd/raid:%s: couldn\'t allocate thread.\n", tmp___26); } goto abort; } else { } return (conf); abort: ; if ((unsigned long )conf != (unsigned long )((struct r5conf *)0)) { { free_conf(conf); tmp___27 = ERR_PTR(-5L); } return ((struct r5conf *)tmp___27); } else { { tmp___28 = ERR_PTR(-12L); } return ((struct r5conf *)tmp___28); } } } static int only_parity(int raid_disk , int algo , int raid_disks , int max_degraded ) { { { if (algo == 4) { goto case_4; } else { } if (algo == 5) { goto case_5; } else { } if (algo == 20) { goto case_20; } else { } if (algo == 16) { goto case_16; } else { } if (algo == 17) { goto case_17; } else { } if (algo == 18) { goto case_18; } else { } if (algo == 19) { goto case_19; } else { } goto switch_break; case_4: /* CIL Label */ ; if (raid_disk < max_degraded) { return (1); } else { } goto ldv_41717; case_5: /* CIL Label */ ; if (raid_disk >= raid_disks - max_degraded) { return (1); } else { } goto ldv_41717; case_20: /* CIL Label */ ; if (raid_disk == 0 || raid_disk == raid_disks + -1) { return (1); } else { } goto ldv_41717; case_16: /* CIL Label */ ; case_17: /* CIL Label */ ; case_18: /* CIL Label */ ; case_19: /* CIL Label */ ; if (raid_disk == raid_disks + -1) { return (1); } else { } switch_break: /* CIL Label */ ; } ldv_41717: ; return (0); } } static int run(struct mddev *mddev ) { struct r5conf *conf ; int working_disks ; int dirty_parity_disks ; struct md_rdev *rdev ; sector_t reshape_offset ; int i ; long long min_offset_diff ; int first ; char *tmp ; struct list_head const *__mptr ; long long diff ; struct list_head const *__mptr___0 ; sector_t here_new ; sector_t here_old ; int old_disks ; int max_degraded ; char *tmp___0 ; char *tmp___1 ; int _res ; int _res___0 ; char *tmp___2 ; char *tmp___3 ; long ret ; long __x ; long ret___0 ; long __x___1 ; char *tmp___4 ; char *tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; bool tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; char *tmp___15 ; int tmp___16 ; char *tmp___17 ; char *tmp___18 ; char *tmp___19 ; char *tmp___20 ; char *tmp___21 ; int tmp___22 ; sector_t tmp___23 ; int chunk_size ; bool discard_supported ; int data_disks ; int stripe ; struct list_head const *__mptr___1 ; struct request_queue *tmp___24 ; int tmp___25 ; struct request_queue *tmp___26 ; struct list_head const *__mptr___2 ; char *tmp___27 ; { working_disks = 0; dirty_parity_disks = 0; reshape_offset = 0UL; min_offset_diff = 0LL; first = 1; if (mddev->recovery_cp != 0xffffffffffffffffUL) { { tmp = mdname(mddev); printk("\rmd/raid:%s: not clean -- starting background reconstruction\n", tmp); } } else { } __mptr = (struct list_head const *)mddev->disks.next; rdev = (struct md_rdev *)__mptr; goto ldv_41742; ldv_41741: ; if (rdev->raid_disk < 0) { goto ldv_41740; } else { } diff = (long long )(rdev->new_data_offset - rdev->data_offset); if (first != 0) { min_offset_diff = diff; first = 0; } else if (mddev->reshape_backwards != 0 && diff < min_offset_diff) { min_offset_diff = diff; } else if (mddev->reshape_backwards == 0 && diff > min_offset_diff) { min_offset_diff = diff; } else { } ldv_41740: __mptr___0 = (struct list_head const *)rdev->same_set.next; rdev = (struct md_rdev *)__mptr___0; ldv_41742: ; if ((unsigned long )(& rdev->same_set) != (unsigned long )(& mddev->disks)) { goto ldv_41741; } else { } if (mddev->reshape_position != 0xffffffffffffffffUL) { max_degraded = mddev->level == 6 ? 2 : 1; if (mddev->new_level != mddev->level) { { tmp___0 = mdname(mddev); printk("\vmd/raid:%s: unsupported reshape required - aborting.\n", tmp___0); } return (-22); } else { } old_disks = mddev->raid_disks - mddev->delta_disks; here_new = mddev->reshape_position; _res = (int )(here_new % (sector_t )(mddev->new_chunk_sectors * (mddev->raid_disks - max_degraded))); here_new = here_new / (sector_t )(mddev->new_chunk_sectors * (mddev->raid_disks - max_degraded)); if (_res != 0) { { tmp___1 = mdname(mddev); printk("\vmd/raid:%s: reshape_position not on a stripe boundary\n", tmp___1); } return (-22); } else { } reshape_offset = here_new * (sector_t )mddev->new_chunk_sectors; here_old = mddev->reshape_position; _res___0 = (int )(here_old % (sector_t )(mddev->chunk_sectors * (old_disks - max_degraded))); here_old = here_old / (sector_t )(mddev->chunk_sectors * (old_disks - max_degraded)); if (mddev->delta_disks == 0) { if (here_new * (sector_t )mddev->new_chunk_sectors != here_old * (sector_t )mddev->chunk_sectors) { { tmp___2 = mdname(mddev); printk("\vmd/raid:%s: reshape position is confused - aborting\n", tmp___2); } return (-22); } else { } __x = (long )min_offset_diff; ret = __x < 0L ? - __x : __x; if (ret >= (long )mddev->chunk_sectors) { __x___1 = (long )min_offset_diff; ret___0 = __x___1 < 0L ? - __x___1 : __x___1; if (ret___0 >= (long )mddev->new_chunk_sectors) { } else { goto _L; } } else _L: /* CIL Label */ if (mddev->ro == 0) { { tmp___3 = mdname(mddev); printk("\vmd/raid:%s: in-place reshape must be started in read-only mode - aborting\n", tmp___3); } return (-22); } else { } } else if (mddev->reshape_backwards != 0 ? (unsigned long long )(here_new * (sector_t )mddev->new_chunk_sectors) + (unsigned long long )min_offset_diff <= (unsigned long long )(here_old * (sector_t )mddev->chunk_sectors) : (unsigned long long )(here_new * (sector_t )mddev->new_chunk_sectors) >= (unsigned long long )(here_old * (sector_t )mddev->chunk_sectors) - (unsigned long long )min_offset_diff) { { tmp___4 = mdname(mddev); printk("\vmd/raid:%s: reshape_position too early for auto-recovery - aborting.\n", tmp___4); } return (-22); } else { } { tmp___5 = mdname(mddev); printk("\016md/raid:%s: reshape will continue\n", tmp___5); } } else { { tmp___6 = ldv__builtin_expect(mddev->level != mddev->new_level, 0L); } if (tmp___6 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (6120), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___7 = ldv__builtin_expect(mddev->layout != mddev->new_layout, 0L); } if (tmp___7 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (6121), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___8 = ldv__builtin_expect(mddev->chunk_sectors != mddev->new_chunk_sectors, 0L); } if (tmp___8 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (6122), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___9 = ldv__builtin_expect(mddev->delta_disks != 0, 0L); } if (tmp___9 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/md/raid5.c"), "i" (6123), "i" (12UL)); __builtin_unreachable(); } } else { } } if ((unsigned long )mddev->private == (unsigned long )((void *)0)) { { conf = setup_conf(mddev); } } else { conf = (struct r5conf *)mddev->private; } { tmp___11 = IS_ERR((void const *)conf); } if ((int )tmp___11) { { tmp___10 = PTR_ERR((void const *)conf); } return ((int )tmp___10); } else { } conf->min_offset_diff = min_offset_diff; mddev->thread = conf->thread; conf->thread = (struct md_thread *)0; mddev->private = (void *)conf; i = 0; goto ldv_41763; ldv_41762: rdev = (conf->disks + (unsigned long )i)->rdev; if ((unsigned long )rdev == (unsigned long )((struct md_rdev *)0) && (unsigned long )(conf->disks + (unsigned long )i)->replacement != (unsigned long )((struct md_rdev *)0)) { { rdev = (conf->disks + (unsigned long )i)->replacement; (conf->disks + (unsigned long )i)->replacement = (struct md_rdev *)0; clear_bit(11L, (unsigned long volatile *)(& rdev->flags)); (conf->disks + (unsigned long )i)->rdev = rdev; } } else { } if ((unsigned long )rdev == (unsigned long )((struct md_rdev *)0)) { goto ldv_41760; } else { } if ((unsigned long )(conf->disks + (unsigned long )i)->replacement != (unsigned long )((struct md_rdev *)0) && conf->reshape_progress != 0xffffffffffffffffUL) { { printk("\vmd: cannot handle concurrent replacement and reshape.\n"); } goto abort; } else { } { tmp___12 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___12 != 0) { working_disks = working_disks + 1; goto ldv_41760; } else { } if (mddev->major_version == 0 && mddev->minor_version > 90) { rdev->recovery_offset = reshape_offset; } else { } if (rdev->recovery_offset < reshape_offset) { { tmp___13 = only_parity(rdev->raid_disk, conf->algorithm, conf->raid_disks, conf->max_degraded); } if (tmp___13 == 0) { goto ldv_41760; } else { } } else { } { tmp___14 = only_parity(rdev->raid_disk, conf->prev_algo, conf->previous_raid_disks, conf->max_degraded); } if (tmp___14 == 0) { goto ldv_41760; } else { } dirty_parity_disks = dirty_parity_disks + 1; ldv_41760: i = i + 1; ldv_41763: ; if (i < conf->raid_disks && conf->previous_raid_disks != 0) { goto ldv_41762; } else { } { mddev->degraded = calc_degraded(conf); tmp___16 = has_failed(conf); } if (tmp___16 != 0) { { tmp___15 = mdname(mddev); printk("\vmd/raid:%s: not enough operational devices (%d/%d failed)\n", tmp___15, mddev->degraded, conf->raid_disks); } goto abort; } else { } mddev->dev_sectors = mddev->dev_sectors & (sector_t )(- mddev->chunk_sectors); mddev->resync_max_sectors = mddev->dev_sectors; if (mddev->degraded > dirty_parity_disks && mddev->recovery_cp != 0xffffffffffffffffUL) { if (mddev->ok_start_degraded != 0) { { tmp___17 = mdname(mddev); printk("\fmd/raid:%s: starting dirty degraded array - data corruption possible.\n", tmp___17); } } else { { tmp___18 = mdname(mddev); printk("\vmd/raid:%s: cannot start dirty degraded array.\n", tmp___18); } goto abort; } } else { } if (mddev->degraded == 0) { { tmp___19 = mdname(mddev); printk("\016md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", tmp___19, conf->level, mddev->raid_disks - mddev->degraded, mddev->raid_disks, mddev->new_layout); } } else { { tmp___20 = mdname(mddev); printk("\tmd/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", tmp___20, conf->level, mddev->raid_disks - mddev->degraded, mddev->raid_disks, mddev->new_layout); } } { print_raid5_conf(conf); } if (conf->reshape_progress != 0xffffffffffffffffUL) { { conf->reshape_safe = conf->reshape_progress; atomic_set(& conf->reshape_stripes, 0); clear_bit(1L, (unsigned long volatile *)(& mddev->recovery)); clear_bit(7L, (unsigned long volatile *)(& mddev->recovery)); set_bit(8L, (unsigned long volatile *)(& mddev->recovery)); set_bit(0L, (unsigned long volatile *)(& mddev->recovery)); mddev->sync_thread = ldv_md_register_thread_186(& md_do_sync, mddev, "reshape"); } } else { } if ((unsigned long )mddev->to_remove == (unsigned long )(& raid5_attrs_group)) { mddev->to_remove = (struct attribute_group *)0; } else if ((unsigned long )mddev->kobj.sd != (unsigned long )((struct kernfs_node *)0)) { { tmp___22 = ldv_sysfs_create_group_187(& mddev->kobj, (struct attribute_group const *)(& raid5_attrs_group)); } if (tmp___22 != 0) { { tmp___21 = mdname(mddev); printk("\fraid5: failed to create sysfs attributes for %s\n", tmp___21); } } else { } } else { } { tmp___23 = raid5_size(mddev, 0UL, 0); md_set_array_sectors(mddev, tmp___23); } if ((unsigned long )mddev->queue != (unsigned long )((struct request_queue *)0)) { discard_supported = 1; data_disks = conf->previous_raid_disks - conf->max_degraded; stripe = (int )((unsigned int )((unsigned long )data_disks) * (unsigned int )((unsigned long )(mddev->chunk_sectors << 9) / 4096UL)); if ((mddev->queue)->backing_dev_info.ra_pages < (unsigned long )(stripe * 2)) { (mddev->queue)->backing_dev_info.ra_pages = (unsigned long )(stripe * 2); } else { } { chunk_size = mddev->chunk_sectors << 9; blk_queue_io_min(mddev->queue, (unsigned int )chunk_size); blk_queue_io_opt(mddev->queue, (unsigned int )(chunk_size * (conf->raid_disks - conf->max_degraded))); (mddev->queue)->limits.raid_partial_stripes_expensive = 1U; stripe = (int )((unsigned int )stripe * 4096U); } goto ldv_41770; ldv_41769: stripe = (stripe | (stripe + -1)) + 1; ldv_41770: ; if (((stripe + -1) & stripe) != 0) { goto ldv_41769; } else { } { (mddev->queue)->limits.discard_alignment = (unsigned int )stripe; (mddev->queue)->limits.discard_granularity = (unsigned int )stripe; (mddev->queue)->limits.discard_zeroes_data = 0U; blk_queue_max_write_same_sectors(mddev->queue, 0U); __mptr___1 = (struct list_head const *)mddev->disks.next; rdev = (struct md_rdev *)__mptr___1; } goto ldv_41777; ldv_41776: { disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->data_offset << 9); disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->new_data_offset << 9); tmp___24 = bdev_get_queue(rdev->bdev); tmp___25 = constant_test_bit(14L, (unsigned long const volatile *)(& tmp___24->queue_flags)); } if (tmp___25 == 0) { discard_supported = 0; } else { { tmp___26 = bdev_get_queue(rdev->bdev); } if ((unsigned int )tmp___26->limits.discard_zeroes_data == 0U) { discard_supported = 0; } else { } } if (! devices_handle_discard_safely) { if ((int )discard_supported) { { printk("\016md/raid456: discard support disabled due to uncertainty.\n"); printk("\016Set raid456.devices_handle_discard_safely=Y to override.\n"); } } else { } discard_supported = 0; } else { } __mptr___2 = (struct list_head const *)rdev->same_set.next; rdev = (struct md_rdev *)__mptr___2; ldv_41777: ; if ((unsigned long )(& rdev->same_set) != (unsigned long )(& mddev->disks)) { goto ldv_41776; } else { } if (((int )discard_supported && (mddev->queue)->limits.max_discard_sectors >= (unsigned int )stripe) && (mddev->queue)->limits.discard_granularity >= (unsigned int )stripe) { { queue_flag_set_unlocked(14U, mddev->queue); } } else { { queue_flag_clear_unlocked(14U, mddev->queue); } } } else { } return (0); abort: { md_unregister_thread(& mddev->thread); print_raid5_conf(conf); free_conf(conf); mddev->private = (void *)0; tmp___27 = mdname(mddev); printk("\tmd/raid:%s: failed to run raid set.\n", tmp___27); } return (-5); } } static void raid5_free(struct mddev *mddev , void *priv ) { struct r5conf *conf ; { { conf = (struct r5conf *)priv; free_conf(conf); mddev->to_remove = & raid5_attrs_group; } return; } } static void status(struct seq_file *seq , struct mddev *mddev ) { struct r5conf *conf ; int i ; char *tmp___0 ; int tmp___1 ; { { conf = (struct r5conf *)mddev->private; seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_sectors / 2, mddev->layout); seq_printf(seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); i = 0; } goto ldv_41791; ldv_41790: ; if ((unsigned long )(conf->disks + (unsigned long )i)->rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ((conf->disks + (unsigned long )i)->rdev)->flags)); } if (tmp___1 != 0) { tmp___0 = (char *)"U"; } else { tmp___0 = (char *)"_"; } } else { tmp___0 = (char *)"_"; } { seq_printf(seq, "%s", tmp___0); i = i + 1; } ldv_41791: ; if (i < conf->raid_disks) { goto ldv_41790; } else { } { seq_printf(seq, "]"); } return; } } static void print_raid5_conf(struct r5conf *conf ) { int i ; struct disk_info *tmp ; char b[32U] ; char const *tmp___0 ; int tmp___1 ; { { printk("\017RAID conf printout:\n"); } if ((unsigned long )conf == (unsigned long )((struct r5conf *)0)) { { printk("(conf==NULL)\n"); } return; } else { } { printk("\017 --- level:%d rd:%d wd:%d\n", conf->level, conf->raid_disks, conf->raid_disks - (conf->mddev)->degraded); i = 0; } goto ldv_41800; ldv_41799: tmp = conf->disks + (unsigned long )i; if ((unsigned long )tmp->rdev != (unsigned long )((struct md_rdev *)0)) { { tmp___0 = bdevname((tmp->rdev)->bdev, (char *)(& b)); tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& (tmp->rdev)->flags)); printk("\017 disk %d, o:%d, dev:%s\n", i, tmp___1 == 0, tmp___0); } } else { } i = i + 1; ldv_41800: ; if (i < conf->raid_disks) { goto ldv_41799; } else { } return; } } static int raid5_spare_active(struct mddev *mddev ) { int i ; struct r5conf *conf ; struct disk_info *tmp ; int count ; unsigned long flags ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { conf = (struct r5conf *)mddev->private; count = 0; i = 0; goto ldv_41811; ldv_41810: tmp = conf->disks + (unsigned long )i; if ((unsigned long )tmp->replacement != (unsigned long )((struct md_rdev *)0) && (tmp->replacement)->recovery_offset == 0xffffffffffffffffUL) { { tmp___3 = constant_test_bit(0L, (unsigned long const volatile *)(& (tmp->replacement)->flags)); } if (tmp___3 == 0) { { tmp___4 = test_and_set_bit(1L, (unsigned long volatile *)(& (tmp->replacement)->flags)); } if (tmp___4 == 0) { if ((unsigned long )tmp->rdev == (unsigned long )((struct md_rdev *)0)) { count = count + 1; } else { { tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& (tmp->rdev)->flags)); } if (tmp___0 == 0) { count = count + 1; } else { } } if ((unsigned long )tmp->rdev != (unsigned long )((struct md_rdev *)0)) { { set_bit(0L, (unsigned long volatile *)(& (tmp->rdev)->flags)); sysfs_notify_dirent_safe((tmp->rdev)->sysfs_state); } } else { } { sysfs_notify_dirent_safe((tmp->replacement)->sysfs_state); } } else { goto _L___0; } } else { goto _L___0; } } else _L___0: /* CIL Label */ if ((unsigned long )tmp->rdev != (unsigned long )((struct md_rdev *)0) && (tmp->rdev)->recovery_offset == 0xffffffffffffffffUL) { { tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& (tmp->rdev)->flags)); } if (tmp___1 == 0) { { tmp___2 = test_and_set_bit(1L, (unsigned long volatile *)(& (tmp->rdev)->flags)); } if (tmp___2 == 0) { { count = count + 1; sysfs_notify_dirent_safe((tmp->rdev)->sysfs_state); } } else { } } else { } } else { } i = i + 1; ldv_41811: ; if (i < conf->raid_disks) { goto ldv_41810; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_188(& conf->device_lock); mddev->degraded = calc_degraded(conf); ldv_spin_unlock_irqrestore_128(& conf->device_lock, flags); print_raid5_conf(conf); } return (count); } } static int raid5_remove_disk(struct mddev *mddev , struct md_rdev *rdev ) { struct r5conf *conf ; int err ; int number ; struct md_rdev **rdevp ; struct disk_info *p ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { conf = (struct r5conf *)mddev->private; err = 0; number = rdev->raid_disk; p = conf->disks + (unsigned long )number; print_raid5_conf(conf); } if ((unsigned long )rdev == (unsigned long )p->rdev) { rdevp = & p->rdev; } else if ((unsigned long )rdev == (unsigned long )p->replacement) { rdevp = & p->replacement; } else { return (0); } if (number >= conf->raid_disks && conf->reshape_progress == 0xffffffffffffffffUL) { { clear_bit(1L, (unsigned long volatile *)(& rdev->flags)); } } else { } { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp != 0) { err = -16; goto abort; } else { { tmp___0 = atomic_read((atomic_t const *)(& rdev->nr_pending)); } if (tmp___0 != 0) { err = -16; goto abort; } else { } } { tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___1 == 0 && mddev->recovery_disabled != conf->recovery_disabled) { { tmp___2 = has_failed(conf); } if (tmp___2 == 0) { if ((unsigned long )p->replacement == (unsigned long )((struct md_rdev *)0) || (unsigned long )p->replacement == (unsigned long )rdev) { if (number < conf->raid_disks) { err = -16; goto abort; } else { } } else { } } else { } } else { } { *rdevp = (struct md_rdev *)0; synchronize_rcu(); tmp___3 = atomic_read((atomic_t const *)(& rdev->nr_pending)); } if (tmp___3 != 0) { err = -16; *rdevp = rdev; } else if ((unsigned long )p->replacement != (unsigned long )((struct md_rdev *)0)) { { p->rdev = p->replacement; clear_bit(11L, (unsigned long volatile *)(& (p->replacement)->flags)); __asm__ volatile ("mfence": : : "memory"); p->replacement = (struct md_rdev *)0; clear_bit(10L, (unsigned long volatile *)(& rdev->flags)); } } else { { clear_bit(10L, (unsigned long volatile *)(& rdev->flags)); } } abort: { print_raid5_conf(conf); } return (err); } } static int raid5_add_disk(struct mddev *mddev , struct md_rdev *rdev ) { struct r5conf *conf ; int err ; int disk ; struct disk_info *p ; int first ; int last ; int tmp ; int tmp___2 ; { conf = (struct r5conf *)mddev->private; err = -17; first = 0; last = conf->raid_disks + -1; if (mddev->recovery_disabled == conf->recovery_disabled) { return (-16); } else { } if (rdev->saved_raid_disk < 0) { { tmp = has_failed(conf); } if (tmp != 0) { return (-22); } else { } } else { } if (rdev->raid_disk >= 0) { last = rdev->raid_disk; first = last; } else { } if ((rdev->saved_raid_disk >= 0 && rdev->saved_raid_disk >= first) && (unsigned long )(conf->disks + (unsigned long )rdev->saved_raid_disk)->rdev == (unsigned long )((struct md_rdev *)0)) { first = rdev->saved_raid_disk; } else { } disk = first; goto ldv_41836; ldv_41835: p = conf->disks + (unsigned long )disk; if ((unsigned long )p->rdev == (unsigned long )((struct md_rdev *)0)) { { clear_bit(1L, (unsigned long volatile *)(& rdev->flags)); rdev->raid_disk = disk; err = 0; } if (rdev->saved_raid_disk != disk) { conf->fullsync = 1; } else { } { ldv_check_for_read_section(); p->rdev = ldv_malloc(sizeof(struct md_rdev)); } goto out; } else { } disk = disk + 1; ldv_41836: ; if (disk <= last) { goto ldv_41835; } else { } disk = first; goto ldv_41841; ldv_41840: { p = conf->disks + (unsigned long )disk; tmp___2 = constant_test_bit(10L, (unsigned long const volatile *)(& (p->rdev)->flags)); } if (tmp___2 != 0 && (unsigned long )p->replacement == (unsigned long )((struct md_rdev *)0)) { { clear_bit(1L, (unsigned long volatile *)(& rdev->flags)); set_bit(11L, (unsigned long volatile *)(& rdev->flags)); rdev->raid_disk = disk; err = 0; conf->fullsync = 1; ldv_check_for_read_section(); p->replacement = ldv_malloc(sizeof(struct md_rdev)); } goto ldv_41839; } else { } disk = disk + 1; ldv_41841: ; if (disk <= last) { goto ldv_41840; } else { } ldv_41839: ; out: { print_raid5_conf(conf); } return (err); } } static int raid5_resize(struct mddev *mddev , sector_t sectors ) { sector_t newsize ; int ret ; int tmp ; { { sectors = sectors & - ((unsigned long )mddev->chunk_sectors); newsize = raid5_size(mddev, sectors, mddev->raid_disks); } if (mddev->external_size != 0 && mddev->array_sectors > newsize) { return (-22); } else { } if ((unsigned long )mddev->bitmap != (unsigned long )((struct bitmap *)0)) { { tmp = bitmap_resize(mddev->bitmap, sectors, 0, 0); ret = tmp; } if (ret != 0) { return (ret); } else { } } else { } { md_set_array_sectors(mddev, newsize); set_capacity(mddev->gendisk, mddev->array_sectors); revalidate_disk(mddev->gendisk); } if (sectors > mddev->dev_sectors && mddev->recovery_cp > mddev->dev_sectors) { { mddev->recovery_cp = mddev->dev_sectors; set_bit(5L, (unsigned long volatile *)(& mddev->recovery)); } } else { } mddev->dev_sectors = sectors; mddev->resync_max_sectors = sectors; return (0); } } static int check_stripe_cache(struct mddev *mddev ) { struct r5conf *conf ; int _max1 ; int _max2 ; char *tmp ; { conf = (struct r5conf *)mddev->private; if (((unsigned long )(mddev->chunk_sectors << 9) / 4096UL) * 4UL > (unsigned long )conf->max_nr_stripes || ((unsigned long )(mddev->new_chunk_sectors << 9) / 4096UL) * 4UL > (unsigned long )conf->max_nr_stripes) { { _max1 = mddev->chunk_sectors; _max2 = mddev->new_chunk_sectors; tmp = mdname(mddev); printk("\fmd/raid:%s: reshape: not enough stripes. Needed %lu\n", tmp, ((unsigned long )((_max1 > _max2 ? _max1 : _max2) << 9) / 4096UL) * 4UL); } return (0); } else { } return (1); } } static int check_reshape(struct mddev *mddev ) { struct r5conf *conf ; int tmp ; int min ; int tmp___0 ; int tmp___1 ; { conf = (struct r5conf *)mddev->private; if ((mddev->delta_disks == 0 && mddev->new_layout == mddev->layout) && mddev->new_chunk_sectors == mddev->chunk_sectors) { return (0); } else { } { tmp = has_failed(conf); } if (tmp != 0) { return (-22); } else { } if (mddev->delta_disks < 0 && mddev->reshape_position == 0xffffffffffffffffUL) { min = 2; if (mddev->level == 6) { min = 4; } else { } if (mddev->raid_disks + mddev->delta_disks < min) { return (-22); } else { } } else { } { tmp___0 = check_stripe_cache(mddev); } if (tmp___0 == 0) { return (-28); } else { } { tmp___1 = resize_stripes(conf, conf->previous_raid_disks + mddev->delta_disks); } return (tmp___1); } } static int raid5_start_reshape(struct mddev *mddev ) { struct r5conf *conf ; struct md_rdev *rdev ; int spares ; unsigned long flags ; int tmp ; int tmp___0 ; int tmp___1 ; struct list_head const *__mptr ; int tmp___2 ; int tmp___3 ; struct list_head const *__mptr___0 ; char *tmp___4 ; sector_t tmp___5 ; struct list_head const *__mptr___1 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; struct list_head const *__mptr___2 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; { { conf = (struct r5conf *)mddev->private; spares = 0; tmp = constant_test_bit(0L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp != 0) { return (-16); } else { } { tmp___0 = check_stripe_cache(mddev); } if (tmp___0 == 0) { return (-28); } else { } { tmp___1 = has_failed(conf); } if (tmp___1 != 0) { return (-22); } else { } __mptr = (struct list_head const *)mddev->disks.next; rdev = (struct md_rdev *)__mptr; goto ldv_41872; ldv_41871: { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___2 == 0) { { tmp___3 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___3 == 0) { spares = spares + 1; } else { } } else { } __mptr___0 = (struct list_head const *)rdev->same_set.next; rdev = (struct md_rdev *)__mptr___0; ldv_41872: ; if ((unsigned long )(& rdev->same_set) != (unsigned long )(& mddev->disks)) { goto ldv_41871; } else { } if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) { return (-22); } else { } { tmp___5 = raid5_size(mddev, 0UL, conf->raid_disks + mddev->delta_disks); } if (tmp___5 < mddev->array_sectors) { { tmp___4 = mdname(mddev); printk("\vmd/raid:%s: array size must be reduced before number of disks\n", tmp___4); } return (-22); } else { } { atomic_set(& conf->reshape_stripes, 0); ldv_spin_lock_irq_136(& conf->device_lock); write_seqcount_begin(& conf->gen_lock); conf->previous_raid_disks = conf->raid_disks; conf->raid_disks = conf->raid_disks + mddev->delta_disks; conf->prev_chunk_sectors = conf->chunk_sectors; conf->chunk_sectors = mddev->new_chunk_sectors; conf->prev_algo = conf->algorithm; conf->algorithm = mddev->new_layout; conf->generation = (short )((int )conf->generation + 1); __asm__ volatile ("mfence": : : "memory"); } if (mddev->reshape_backwards != 0) { { conf->reshape_progress = raid5_size(mddev, 0UL, 0); } } else { conf->reshape_progress = 0UL; } { conf->reshape_safe = conf->reshape_progress; write_seqcount_end(& conf->gen_lock); ldv_spin_unlock_irq_137(& conf->device_lock); mddev_suspend(mddev); mddev_resume(mddev); } if (mddev->delta_disks >= 0) { __mptr___1 = (struct list_head const *)mddev->disks.next; rdev = (struct md_rdev *)__mptr___1; goto ldv_41879; ldv_41878: ; if (rdev->raid_disk < 0) { { tmp___9 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___9 == 0) { { tmp___7 = raid5_add_disk(mddev, rdev); } if (tmp___7 == 0) { if (rdev->raid_disk >= conf->previous_raid_disks) { { set_bit(1L, (unsigned long volatile *)(& rdev->flags)); } } else { rdev->recovery_offset = 0UL; } { tmp___6 = sysfs_link_rdev(mddev, rdev); } } else { } } else { goto _L; } } else _L: /* CIL Label */ if (rdev->raid_disk >= conf->previous_raid_disks) { { tmp___8 = constant_test_bit(0L, (unsigned long const volatile *)(& rdev->flags)); } if (tmp___8 == 0) { { set_bit(1L, (unsigned long volatile *)(& rdev->flags)); } } else { } } else { } __mptr___2 = (struct list_head const *)rdev->same_set.next; rdev = (struct md_rdev *)__mptr___2; ldv_41879: ; if ((unsigned long )(& rdev->same_set) != (unsigned long )(& mddev->disks)) { goto ldv_41878; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_192(& conf->device_lock); mddev->degraded = calc_degraded(conf); ldv_spin_unlock_irqrestore_128(& conf->device_lock, flags); } } else { } { mddev->raid_disks = conf->raid_disks; mddev->reshape_position = conf->reshape_progress; set_bit(0L, (unsigned long volatile *)(& mddev->flags)); clear_bit(1L, (unsigned long volatile *)(& mddev->recovery)); clear_bit(7L, (unsigned long volatile *)(& mddev->recovery)); set_bit(8L, (unsigned long volatile *)(& mddev->recovery)); set_bit(0L, (unsigned long volatile *)(& mddev->recovery)); mddev->sync_thread = ldv_md_register_thread_194(& md_do_sync, mddev, "reshape"); } if ((unsigned long )mddev->sync_thread == (unsigned long )((struct md_thread *)0)) { { mddev->recovery = 0UL; ldv_spin_lock_irq_136(& conf->device_lock); write_seqcount_begin(& conf->gen_lock); tmp___10 = conf->previous_raid_disks; conf->raid_disks = tmp___10; mddev->raid_disks = tmp___10; tmp___11 = conf->prev_chunk_sectors; conf->chunk_sectors = tmp___11; mddev->new_chunk_sectors = tmp___11; tmp___12 = conf->prev_algo; conf->algorithm = tmp___12; mddev->new_layout = tmp___12; __mptr___3 = (struct list_head const *)mddev->disks.next; rdev = (struct md_rdev *)__mptr___3; } goto ldv_41886; ldv_41885: rdev->new_data_offset = rdev->data_offset; __mptr___4 = (struct list_head const *)rdev->same_set.next; rdev = (struct md_rdev *)__mptr___4; ldv_41886: ; if ((unsigned long )(& rdev->same_set) != (unsigned long )(& mddev->disks)) { goto ldv_41885; } else { } { __asm__ volatile ("": : : "memory"); conf->generation = (short )((int )conf->generation - 1); conf->reshape_progress = 0xffffffffffffffffUL; mddev->reshape_position = 0xffffffffffffffffUL; write_seqcount_end(& conf->gen_lock); ldv_spin_unlock_irq_137(& conf->device_lock); } return (-11); } else { } { conf->reshape_checkpoint = jiffies; md_wakeup_thread(mddev->sync_thread); md_new_event(mddev); } return (0); } } static void end_reshape(struct r5conf *conf ) { struct md_rdev *rdev ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int data_disks ; int stripe ; int tmp ; { { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& (conf->mddev)->recovery)); } if (tmp == 0) { { ldv_spin_lock_irq_136(& conf->device_lock); conf->previous_raid_disks = conf->raid_disks; __mptr = (struct list_head const *)(conf->mddev)->disks.next; rdev = (struct md_rdev *)__mptr; } goto ldv_41897; ldv_41896: rdev->data_offset = rdev->new_data_offset; __mptr___0 = (struct list_head const *)rdev->same_set.next; rdev = (struct md_rdev *)__mptr___0; ldv_41897: ; if ((unsigned long )(& rdev->same_set) != (unsigned long )(& (conf->mddev)->disks)) { goto ldv_41896; } else { } { __asm__ volatile ("": : : "memory"); conf->reshape_progress = 0xffffffffffffffffUL; ldv_spin_unlock_irq_137(& conf->device_lock); __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); } if ((unsigned long )(conf->mddev)->queue != (unsigned long )((struct request_queue *)0)) { data_disks = conf->raid_disks - conf->max_degraded; stripe = (int )((unsigned int )((unsigned long )data_disks) * (unsigned int )((unsigned long )(conf->chunk_sectors << 9) / 4096UL)); if (((conf->mddev)->queue)->backing_dev_info.ra_pages < (unsigned long )(stripe * 2)) { ((conf->mddev)->queue)->backing_dev_info.ra_pages = (unsigned long )(stripe * 2); } else { } } else { } } else { } return; } } static void raid5_finish_reshape(struct mddev *mddev ) { struct r5conf *conf ; sector_t tmp ; int d ; struct md_rdev *rdev ; int tmp___0 ; { { conf = (struct r5conf *)mddev->private; tmp___0 = constant_test_bit(3L, (unsigned long const volatile *)(& mddev->recovery)); } if (tmp___0 == 0) { if (mddev->delta_disks > 0) { { tmp = raid5_size(mddev, 0UL, 0); md_set_array_sectors(mddev, tmp); set_capacity(mddev->gendisk, mddev->array_sectors); revalidate_disk(mddev->gendisk); } } else { { ldv_spin_lock_irq_136(& conf->device_lock); mddev->degraded = calc_degraded(conf); ldv_spin_unlock_irq_137(& conf->device_lock); d = conf->raid_disks; } goto ldv_41908; ldv_41907: rdev = (conf->disks + (unsigned long )d)->rdev; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { clear_bit(1L, (unsigned long volatile *)(& rdev->flags)); } } else { } rdev = (conf->disks + (unsigned long )d)->replacement; if ((unsigned long )rdev != (unsigned long )((struct md_rdev *)0)) { { clear_bit(1L, (unsigned long volatile *)(& rdev->flags)); } } else { } d = d + 1; ldv_41908: ; if (d < conf->raid_disks - mddev->delta_disks) { goto ldv_41907; } else { } } mddev->layout = conf->algorithm; mddev->chunk_sectors = conf->chunk_sectors; mddev->reshape_position = 0xffffffffffffffffUL; mddev->delta_disks = 0; mddev->reshape_backwards = 0; } else { } return; } } static void raid5_quiesce(struct mddev *mddev , int state ) { struct r5conf *conf ; int tmp ; int tmp___0 ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___1 ; int tmp___2 ; int tmp___3 ; { conf = (struct r5conf *)mddev->private; { if (state == 2) { goto case_2; } else { } if (state == 1) { goto case_1; } else { } if (state == 0) { goto case_0; } else { } goto switch_break; case_2: /* CIL Label */ { __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); } goto ldv_41916; case_1: /* CIL Label */ { lock_all_device_hash_locks_irq(conf); conf->quiesce = 2; tmp = atomic_read((atomic_t const *)(& conf->active_stripes)); } if (tmp == 0) { { tmp___0 = atomic_read((atomic_t const *)(& conf->active_aligned_reads)); } if (tmp___0 == 0) { goto ldv_41918; } else { } } else { } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_41924: { tmp___1 = prepare_to_wait_event(& conf->wait_for_stripe, & __wait, 2); __int = tmp___1; tmp___2 = atomic_read((atomic_t const *)(& conf->active_stripes)); } if (tmp___2 == 0) { { tmp___3 = atomic_read((atomic_t const *)(& conf->active_aligned_reads)); } if (tmp___3 == 0) { goto ldv_41923; } else { } } else { } { unlock_all_device_hash_locks_irq(conf); schedule(); lock_all_device_hash_locks_irq(conf); } goto ldv_41924; ldv_41923: { finish_wait(& conf->wait_for_stripe, & __wait); } ldv_41918: { conf->quiesce = 1; unlock_all_device_hash_locks_irq(conf); __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); } goto ldv_41916; case_0: /* CIL Label */ { lock_all_device_hash_locks_irq(conf); conf->quiesce = 0; __wake_up(& conf->wait_for_stripe, 3U, 1, (void *)0); __wake_up(& conf->wait_for_overlap, 3U, 1, (void *)0); unlock_all_device_hash_locks_irq(conf); } goto ldv_41916; switch_break: /* CIL Label */ ; } ldv_41916: ; return; } } static void *raid45_takeover_raid0(struct mddev *mddev , int level ) { struct r0conf *raid0_conf ; sector_t sectors ; char *tmp ; void *tmp___0 ; int _res ; struct r5conf *tmp___1 ; { raid0_conf = (struct r0conf *)mddev->private; if (raid0_conf->nr_strip_zones > 1) { { tmp = mdname(mddev); printk("\vmd/raid:%s: cannot takeover raid0 with more than one zone.\n", tmp); tmp___0 = ERR_PTR(-22L); } return (tmp___0); } else { } { sectors = (raid0_conf->strip_zone)->zone_end; _res = (int )(sectors % (sector_t )(raid0_conf->strip_zone)->nb_dev); sectors = sectors / (sector_t )(raid0_conf->strip_zone)->nb_dev; mddev->dev_sectors = sectors; mddev->new_level = level; mddev->new_layout = 5; mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->raid_disks = mddev->raid_disks + 1; mddev->delta_disks = 1; mddev->recovery_cp = 0xffffffffffffffffUL; tmp___1 = setup_conf(mddev); } return ((void *)tmp___1); } } static void *raid5_takeover_raid1(struct mddev *mddev ) { int chunksect ; void *tmp ; void *tmp___0 ; struct r5conf *tmp___1 ; { if (mddev->raid_disks != 2 || mddev->degraded > 1) { { tmp = ERR_PTR(-22L); } return (tmp); } else { } chunksect = 128; goto ldv_41940; ldv_41939: chunksect = chunksect >> 1; ldv_41940: ; if (chunksect != 0 && (mddev->array_sectors & (sector_t )(chunksect + -1)) != 0UL) { goto ldv_41939; } else { } if ((unsigned int )(chunksect << 9) <= 4095U) { { tmp___0 = ERR_PTR(-22L); } return (tmp___0); } else { } { mddev->new_level = 5; mddev->new_layout = 2; mddev->new_chunk_sectors = chunksect; tmp___1 = setup_conf(mddev); } return ((void *)tmp___1); } } static void *raid5_takeover_raid6(struct mddev *mddev ) { int new_layout ; void *tmp ; struct r5conf *tmp___0 ; { { if (mddev->layout == 16) { goto case_16; } else { } if (mddev->layout == 17) { goto case_17; } else { } if (mddev->layout == 18) { goto case_18; } else { } if (mddev->layout == 19) { goto case_19; } else { } if (mddev->layout == 20) { goto case_20; } else { } if (mddev->layout == 5) { goto case_5; } else { } goto switch_default; case_16: /* CIL Label */ new_layout = 0; goto ldv_41947; case_17: /* CIL Label */ new_layout = 1; goto ldv_41947; case_18: /* CIL Label */ new_layout = 2; goto ldv_41947; case_19: /* CIL Label */ new_layout = 3; goto ldv_41947; case_20: /* CIL Label */ new_layout = 4; goto ldv_41947; case_5: /* CIL Label */ new_layout = 5; goto ldv_41947; switch_default: /* CIL Label */ { tmp = ERR_PTR(-22L); } return (tmp); switch_break: /* CIL Label */ ; } ldv_41947: { mddev->new_level = 5; mddev->new_layout = new_layout; mddev->delta_disks = -1; mddev->raid_disks = mddev->raid_disks + -1; tmp___0 = setup_conf(mddev); } return ((void *)tmp___0); } } static int raid5_check_reshape(struct mddev *mddev ) { struct r5conf *conf ; int new_chunk ; int tmp ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; { conf = (struct r5conf *)mddev->private; new_chunk = mddev->new_chunk_sectors; if (mddev->new_layout >= 0) { { tmp = algorithm_valid_raid5(mddev->new_layout); } if (tmp == 0) { return (-22); } else { } } else { } if (new_chunk > 0) { { tmp___0 = is_power_of_2((unsigned long )new_chunk); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-22); } else { } if ((unsigned int )new_chunk <= 7U) { return (-22); } else { } if ((mddev->array_sectors & (sector_t )(new_chunk + -1)) != 0UL) { return (-22); } else { } } else { } if (mddev->raid_disks == 2) { if (mddev->new_layout >= 0) { conf->algorithm = mddev->new_layout; mddev->layout = mddev->new_layout; } else { } if (new_chunk > 0) { conf->chunk_sectors = new_chunk; mddev->chunk_sectors = new_chunk; } else { } { set_bit(0L, (unsigned long volatile *)(& mddev->flags)); md_wakeup_thread(mddev->thread); } } else { } { tmp___2 = check_reshape(mddev); } return (tmp___2); } } static int raid6_check_reshape(struct mddev *mddev ) { int new_chunk ; int tmp ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; { new_chunk = mddev->new_chunk_sectors; if (mddev->new_layout >= 0) { { tmp = algorithm_valid_raid6(mddev->new_layout); } if (tmp == 0) { return (-22); } else { } } else { } if (new_chunk > 0) { { tmp___0 = is_power_of_2((unsigned long )new_chunk); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-22); } else { } if ((unsigned int )new_chunk <= 7U) { return (-22); } else { } if ((mddev->array_sectors & (sector_t )(new_chunk + -1)) != 0UL) { return (-22); } else { } } else { } { tmp___2 = check_reshape(mddev); } return (tmp___2); } } static void *raid5_takeover(struct mddev *mddev ) { void *tmp ; void *tmp___0 ; struct r5conf *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { if (mddev->level == 0) { { tmp = raid45_takeover_raid0(mddev, 5); } return (tmp); } else { } if (mddev->level == 1) { { tmp___0 = raid5_takeover_raid1(mddev); } return (tmp___0); } else { } if (mddev->level == 4) { { mddev->new_layout = 5; mddev->new_level = 5; tmp___1 = setup_conf(mddev); } return ((void *)tmp___1); } else { } if (mddev->level == 6) { { tmp___2 = raid5_takeover_raid6(mddev); } return (tmp___2); } else { } { tmp___3 = ERR_PTR(-22L); } return (tmp___3); } } static void *raid4_takeover(struct mddev *mddev ) { void *tmp ; struct r5conf *tmp___0 ; void *tmp___1 ; { if (mddev->level == 0) { { tmp = raid45_takeover_raid0(mddev, 4); } return (tmp); } else { } if (((unsigned long )*((long *)mddev + 55UL) & 0xffffffffffffffffUL) == 21474836485UL) { { mddev->new_layout = 0; mddev->new_level = 4; tmp___0 = setup_conf(mddev); } return ((void *)tmp___0); } else { } { tmp___1 = ERR_PTR(-22L); } return (tmp___1); } } static struct md_personality raid5_personality ; static void *raid6_takeover(struct mddev *mddev ) { int new_layout ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; struct r5conf *tmp___4 ; { if ((unsigned long )mddev->pers != (unsigned long )(& raid5_personality)) { { tmp = ERR_PTR(-22L); } return (tmp); } else { } if (mddev->degraded > 1) { { tmp___0 = ERR_PTR(-22L); } return (tmp___0); } else { } if (mddev->raid_disks > 253) { { tmp___1 = ERR_PTR(-22L); } return (tmp___1); } else { } if (mddev->raid_disks <= 2) { { tmp___2 = ERR_PTR(-22L); } return (tmp___2); } else { } { if (mddev->layout == 0) { goto case_0; } else { } if (mddev->layout == 1) { goto case_1; } else { } if (mddev->layout == 2) { goto case_2; } else { } if (mddev->layout == 3) { goto case_3; } else { } if (mddev->layout == 4) { goto case_4; } else { } if (mddev->layout == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ new_layout = 16; goto ldv_41975; case_1: /* CIL Label */ new_layout = 17; goto ldv_41975; case_2: /* CIL Label */ new_layout = 18; goto ldv_41975; case_3: /* CIL Label */ new_layout = 19; goto ldv_41975; case_4: /* CIL Label */ new_layout = 20; goto ldv_41975; case_5: /* CIL Label */ new_layout = 5; goto ldv_41975; switch_default: /* CIL Label */ { tmp___3 = ERR_PTR(-22L); } return (tmp___3); switch_break: /* CIL Label */ ; } ldv_41975: { mddev->new_level = 6; mddev->new_layout = new_layout; mddev->delta_disks = 1; mddev->raid_disks = mddev->raid_disks + 1; tmp___4 = setup_conf(mddev); } return ((void *)tmp___4); } } static struct md_personality raid6_personality = {(char *)"raid6", 6, {0, 0}, & __this_module, & make_request, & run, & raid5_free, & status, & error, & raid5_add_disk, & raid5_remove_disk, & raid5_spare_active, & sync_request, & raid5_resize, & raid5_size, & raid6_check_reshape, & raid5_start_reshape, & raid5_finish_reshape, & raid5_quiesce, & raid6_takeover, & raid5_congested, & raid5_mergeable_bvec}; static struct md_personality raid5_personality = {(char *)"raid5", 5, {0, 0}, & __this_module, & make_request, & run, & raid5_free, & status, & error, & raid5_add_disk, & raid5_remove_disk, & raid5_spare_active, & sync_request, & raid5_resize, & raid5_size, & raid5_check_reshape, & raid5_start_reshape, & raid5_finish_reshape, & raid5_quiesce, & raid5_takeover, & raid5_congested, & raid5_mergeable_bvec}; static struct md_personality raid4_personality = {(char *)"raid4", 4, {0, 0}, & __this_module, & make_request, & run, & raid5_free, & status, & error, & raid5_add_disk, & raid5_remove_disk, & raid5_spare_active, & sync_request, & raid5_resize, & raid5_size, & raid5_check_reshape, & raid5_start_reshape, & raid5_finish_reshape, & raid5_quiesce, & raid4_takeover, & raid5_congested, & raid5_mergeable_bvec}; static int raid5_init(void) { struct lock_class_key __key ; char const *__lock_name ; struct workqueue_struct *tmp ; { { __lock_name = "\"raid5wq\""; tmp = __alloc_workqueue_key("raid5wq", 106U, 0, & __key, __lock_name); raid5_wq = tmp; } if ((unsigned long )raid5_wq == (unsigned long )((struct workqueue_struct *)0)) { return (-12); } else { } { ldv_register_md_personality_201(& raid6_personality); ldv_register_md_personality_202(& raid5_personality); ldv_register_md_personality_203(& raid4_personality); } return (0); } } static void raid5_exit(void) { { { ldv_unregister_md_personality_204(& raid6_personality); ldv_unregister_md_personality_205(& raid5_personality); ldv_unregister_md_personality_206(& raid4_personality); destroy_workqueue(raid5_wq); } return; } } void ldv_EMGentry_exit_raid5_exit_11_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_raid5_init_11_8(int (*arg0)(void) ) ; void ldv_dispatch_deregister_8_1(struct md_personality *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_4_11_4(void) ; void ldv_dispatch_register_10_1(struct mddev *arg0 ) ; void ldv_dispatch_register_9_2(struct md_personality *arg0 ) ; void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct mddev * , char * ) , struct mddev *arg1 , char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct mddev * , char * , unsigned long ) , struct mddev *arg1 , char *arg2 , unsigned long arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct mddev * , char * ) , struct mddev *arg1 , char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct mddev * , char * , unsigned long ) , struct mddev *arg1 , char *arg2 , unsigned long arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct mddev * , char * ) , struct mddev *arg1 , char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct mddev * , char * , unsigned long ) , struct mddev *arg1 , char *arg2 , unsigned long arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct mddev * , char * ) , struct mddev *arg1 , char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct mddev * , char * , unsigned long ) , struct mddev *arg1 , char *arg2 , unsigned long arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct mddev * , char * ) , struct mddev *arg1 , char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct mddev * , char * , unsigned long ) , struct mddev *arg1 , char *arg2 , unsigned long arg3 ) ; void ldv_entry_EMGentry_11(void *arg0 ) ; int main(void) ; void ldv_io_instance_callback_0_17(int (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) ; void ldv_io_instance_callback_0_20(void (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) ; void ldv_io_instance_callback_0_21(void (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_0_22(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) ; void ldv_io_instance_callback_0_23(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) ; void ldv_io_instance_callback_0_24(void (*arg0)(struct mddev * , struct bio * ) , struct mddev *arg1 , struct bio *arg2 ) ; void ldv_io_instance_callback_0_25(int (*arg0)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) , struct mddev *arg1 , struct bvec_merge_data *arg2 , struct bio_vec *arg3 ) ; void ldv_io_instance_callback_0_26(void (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) ; void ldv_io_instance_callback_0_29(int (*arg0)(struct mddev * , unsigned long ) , struct mddev *arg1 , unsigned long arg2 ) ; void ldv_io_instance_callback_0_32(unsigned long (*arg0)(struct mddev * , unsigned long , int ) , struct mddev *arg1 , unsigned long arg2 , int arg3 ) ; void ldv_io_instance_callback_0_35(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_0_36(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_0_37(void (*arg0)(struct seq_file * , struct mddev * ) , struct seq_file *arg1 , struct mddev *arg2 ) ; void ldv_io_instance_callback_0_38(unsigned long (*arg0)(struct mddev * , unsigned long , int * , int ) , struct mddev *arg1 , unsigned long arg2 , int *arg3 , int arg4 ) ; void ldv_io_instance_callback_0_4(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_0_41(void *(*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_1_17(int (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) ; void ldv_io_instance_callback_1_20(void (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) ; void ldv_io_instance_callback_1_21(void (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_1_22(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) ; void ldv_io_instance_callback_1_23(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) ; void ldv_io_instance_callback_1_24(void (*arg0)(struct mddev * , struct bio * ) , struct mddev *arg1 , struct bio *arg2 ) ; void ldv_io_instance_callback_1_25(int (*arg0)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) , struct mddev *arg1 , struct bvec_merge_data *arg2 , struct bio_vec *arg3 ) ; void ldv_io_instance_callback_1_26(void (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) ; void ldv_io_instance_callback_1_29(int (*arg0)(struct mddev * , unsigned long ) , struct mddev *arg1 , unsigned long arg2 ) ; void ldv_io_instance_callback_1_32(unsigned long (*arg0)(struct mddev * , unsigned long , int ) , struct mddev *arg1 , unsigned long arg2 , int arg3 ) ; void ldv_io_instance_callback_1_35(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_1_36(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_1_37(void (*arg0)(struct seq_file * , struct mddev * ) , struct seq_file *arg1 , struct mddev *arg2 ) ; void ldv_io_instance_callback_1_38(unsigned long (*arg0)(struct mddev * , unsigned long , int * , int ) , struct mddev *arg1 , unsigned long arg2 , int *arg3 , int arg4 ) ; void ldv_io_instance_callback_1_4(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_1_41(void *(*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_2_17(int (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) ; void ldv_io_instance_callback_2_20(void (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) ; void ldv_io_instance_callback_2_21(void (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_2_22(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) ; void ldv_io_instance_callback_2_23(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) ; void ldv_io_instance_callback_2_24(void (*arg0)(struct mddev * , struct bio * ) , struct mddev *arg1 , struct bio *arg2 ) ; void ldv_io_instance_callback_2_25(int (*arg0)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) , struct mddev *arg1 , struct bvec_merge_data *arg2 , struct bio_vec *arg3 ) ; void ldv_io_instance_callback_2_26(void (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) ; void ldv_io_instance_callback_2_29(int (*arg0)(struct mddev * , unsigned long ) , struct mddev *arg1 , unsigned long arg2 ) ; void ldv_io_instance_callback_2_32(unsigned long (*arg0)(struct mddev * , unsigned long , int ) , struct mddev *arg1 , unsigned long arg2 , int arg3 ) ; void ldv_io_instance_callback_2_35(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_2_36(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_2_37(void (*arg0)(struct seq_file * , struct mddev * ) , struct seq_file *arg1 , struct mddev *arg2 ) ; void ldv_io_instance_callback_2_38(unsigned long (*arg0)(struct mddev * , unsigned long , int * , int ) , struct mddev *arg1 , unsigned long arg2 , int *arg3 , int arg4 ) ; void ldv_io_instance_callback_2_4(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_callback_2_41(void *(*arg0)(struct mddev * ) , struct mddev *arg1 ) ; int ldv_io_instance_probe_0_11(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; int ldv_io_instance_probe_1_11(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; int ldv_io_instance_probe_2_11(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) ; void ldv_io_instance_release_0_2(void (*arg0)(struct mddev * , void * ) , struct mddev *arg1 , void *arg2 ) ; void ldv_io_instance_release_1_2(void (*arg0)(struct mddev * , void * ) , struct mddev *arg1 , void *arg2 ) ; void ldv_io_instance_release_2_2(void (*arg0)(struct mddev * , void * ) , struct mddev *arg1 , void *arg2 ) ; struct md_thread *ldv_md_register_thread(struct md_thread *arg0 , void (*arg1)(struct md_thread * ) , struct mddev *arg2 , char *arg3 ) ; int ldv_register_md_personality(int arg0 , struct md_personality *arg1 ) ; void ldv_struct_md_personality_io_instance_0(void *arg0 ) ; void ldv_struct_md_personality_io_instance_1(void *arg0 ) ; void ldv_struct_md_personality_io_instance_2(void *arg0 ) ; void ldv_struct_md_sysfs_entry_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_md_sysfs_entry_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_md_sysfs_entry_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_md_sysfs_entry_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_md_sysfs_entry_dummy_resourceless_instance_7(void *arg0 ) ; int ldv_unregister_md_personality(int arg0 , struct md_personality *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; void ldv_EMGentry_exit_raid5_exit_11_2(void (*arg0)(void) ) { { { raid5_exit(); } return; } } int ldv_EMGentry_init_raid5_init_11_8(int (*arg0)(void) ) { int tmp ; { { tmp = raid5_init(); } return (tmp); } } void ldv_dispatch_deregister_8_1(struct md_personality *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_42477; case_1: /* CIL Label */ ; goto ldv_42477; case_2: /* CIL Label */ ; goto ldv_42477; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_42477: ; return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_4_11_4(void) { { return; } } void ldv_dispatch_register_10_1(struct mddev *arg0 ) { struct ldv_struct_dummy_resourceless_instance_3 *cf_arg_3 ; struct ldv_struct_dummy_resourceless_instance_3 *cf_arg_4 ; struct ldv_struct_dummy_resourceless_instance_3 *cf_arg_5 ; struct ldv_struct_dummy_resourceless_instance_3 *cf_arg_6 ; struct ldv_struct_dummy_resourceless_instance_3 *cf_arg_7 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_dummy_resourceless_instance_3 *)tmp___0; cf_arg_3->arg0 = arg0; ldv_struct_md_sysfs_entry_dummy_resourceless_instance_3((void *)cf_arg_3); } goto ldv_42499; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_dummy_resourceless_instance_3 *)tmp___1; cf_arg_4->arg0 = arg0; ldv_struct_md_sysfs_entry_dummy_resourceless_instance_4((void *)cf_arg_4); } goto ldv_42499; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_dummy_resourceless_instance_3 *)tmp___2; cf_arg_5->arg0 = arg0; ldv_struct_md_sysfs_entry_dummy_resourceless_instance_5((void *)cf_arg_5); } goto ldv_42499; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(16UL); cf_arg_6 = (struct ldv_struct_dummy_resourceless_instance_3 *)tmp___3; cf_arg_6->arg0 = arg0; ldv_struct_md_sysfs_entry_dummy_resourceless_instance_6((void *)cf_arg_6); } goto ldv_42499; case_4: /* CIL Label */ { tmp___4 = ldv_xmalloc(16UL); cf_arg_7 = (struct ldv_struct_dummy_resourceless_instance_3 *)tmp___4; cf_arg_7->arg0 = arg0; ldv_struct_md_sysfs_entry_dummy_resourceless_instance_7((void *)cf_arg_7); } goto ldv_42499; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_42499: ; return; } } void ldv_dispatch_register_9_2(struct md_personality *arg0 ) { struct ldv_struct_io_instance_0 *cf_arg_0 ; struct ldv_struct_io_instance_0 *cf_arg_1 ; struct ldv_struct_io_instance_0 *cf_arg_2 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_io_instance_0 *)tmp___0; cf_arg_0->arg0 = arg0; ldv_struct_md_personality_io_instance_0((void *)cf_arg_0); } goto ldv_42513; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_io_instance_0 *)tmp___1; cf_arg_1->arg0 = arg0; ldv_struct_md_personality_io_instance_1((void *)cf_arg_1); } goto ldv_42513; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_io_instance_0 *)tmp___2; cf_arg_2->arg0 = arg0; ldv_struct_md_personality_io_instance_2((void *)cf_arg_2); } goto ldv_42513; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_42513: ; return; } } void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct mddev * , char * ) , struct mddev *arg1 , char *arg2 ) { { { raid5_show_group_thread_cnt(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct mddev * , char * , unsigned long ) , struct mddev *arg1 , char *arg2 , unsigned long arg3 ) { { { raid5_store_group_thread_cnt(arg1, (char const *)arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct mddev * , char * ) , struct mddev *arg1 , char *arg2 ) { { { raid5_show_preread_threshold(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct mddev * , char * , unsigned long ) , struct mddev *arg1 , char *arg2 , unsigned long arg3 ) { { { raid5_store_preread_threshold(arg1, (char const *)arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct mddev * , char * ) , struct mddev *arg1 , char *arg2 ) { { { raid5_show_skip_copy(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct mddev * , char * , unsigned long ) , struct mddev *arg1 , char *arg2 , unsigned long arg3 ) { { { raid5_store_skip_copy(arg1, (char const *)arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct mddev * , char * ) , struct mddev *arg1 , char *arg2 ) { { { raid5_show_stripe_cache_size(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct mddev * , char * , unsigned long ) , struct mddev *arg1 , char *arg2 , unsigned long arg3 ) { { { raid5_store_stripe_cache_size(arg1, (char const *)arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct mddev * , char * ) , struct mddev *arg1 , char *arg2 ) { { { stripe_cache_active_show(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct mddev * , char * , unsigned long ) , struct mddev *arg1 , char *arg2 , unsigned long arg3 ) { { { raid5_store_stripe_cache_size(arg1, (char const *)arg2, arg3); } return; } } void ldv_entry_EMGentry_11(void *arg0 ) { void (*ldv_11_exit_raid5_exit_default)(void) ; int (*ldv_11_init_raid5_init_default)(void) ; int ldv_11_ret_default ; int tmp ; int tmp___0 ; { { ldv_11_ret_default = ldv_EMGentry_init_raid5_init_11_8(ldv_11_init_raid5_init_default); ldv_11_ret_default = ldv_ldv_post_init_207(ldv_11_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_11_ret_default != 0); ldv_ldv_check_final_state_208(); ldv_stop(); } return; } else { { ldv_assume(ldv_11_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_deregister_dummy_resourceless_instance_4_11_4(); } } else { } { ldv_EMGentry_exit_raid5_exit_11_2(ldv_11_exit_raid5_exit_default); ldv_ldv_check_final_state_209(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_210(); ldv_entry_EMGentry_11((void *)0); } return 0; } } void ldv_io_instance_callback_0_17(int (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) { { { raid5_congested(arg1, arg2); } return; } } void ldv_io_instance_callback_0_20(void (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) { { { error(arg1, arg2); } return; } } void ldv_io_instance_callback_0_21(void (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_finish_reshape(arg1); } return; } } void ldv_io_instance_callback_0_22(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) { { { raid5_add_disk(arg1, arg2); } return; } } void ldv_io_instance_callback_0_23(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) { { { raid5_remove_disk(arg1, arg2); } return; } } void ldv_io_instance_callback_0_24(void (*arg0)(struct mddev * , struct bio * ) , struct mddev *arg1 , struct bio *arg2 ) { { { make_request(arg1, arg2); } return; } } void ldv_io_instance_callback_0_25(int (*arg0)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) , struct mddev *arg1 , struct bvec_merge_data *arg2 , struct bio_vec *arg3 ) { { { raid5_mergeable_bvec(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_0_26(void (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) { { { raid5_quiesce(arg1, arg2); } return; } } void ldv_io_instance_callback_0_29(int (*arg0)(struct mddev * , unsigned long ) , struct mddev *arg1 , unsigned long arg2 ) { { { raid5_resize(arg1, arg2); } return; } } void ldv_io_instance_callback_0_32(unsigned long (*arg0)(struct mddev * , unsigned long , int ) , struct mddev *arg1 , unsigned long arg2 , int arg3 ) { { { raid5_size(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_0_35(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_spare_active(arg1); } return; } } void ldv_io_instance_callback_0_36(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_start_reshape(arg1); } return; } } void ldv_io_instance_callback_0_37(void (*arg0)(struct seq_file * , struct mddev * ) , struct seq_file *arg1 , struct mddev *arg2 ) { { { status(arg1, arg2); } return; } } void ldv_io_instance_callback_0_38(unsigned long (*arg0)(struct mddev * , unsigned long , int * , int ) , struct mddev *arg1 , unsigned long arg2 , int *arg3 , int arg4 ) { { { sync_request(arg1, arg2, arg3, arg4); } return; } } void ldv_io_instance_callback_0_4(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_check_reshape(arg1); } return; } } void ldv_io_instance_callback_0_41(void *(*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid4_takeover(arg1); } return; } } void ldv_io_instance_callback_1_17(int (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) { { { raid5_congested(arg1, arg2); } return; } } void ldv_io_instance_callback_1_20(void (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) { { { error(arg1, arg2); } return; } } void ldv_io_instance_callback_1_21(void (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_finish_reshape(arg1); } return; } } void ldv_io_instance_callback_1_22(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) { { { raid5_add_disk(arg1, arg2); } return; } } void ldv_io_instance_callback_1_23(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) { { { raid5_remove_disk(arg1, arg2); } return; } } void ldv_io_instance_callback_1_24(void (*arg0)(struct mddev * , struct bio * ) , struct mddev *arg1 , struct bio *arg2 ) { { { make_request(arg1, arg2); } return; } } void ldv_io_instance_callback_1_25(int (*arg0)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) , struct mddev *arg1 , struct bvec_merge_data *arg2 , struct bio_vec *arg3 ) { { { raid5_mergeable_bvec(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_1_26(void (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) { { { raid5_quiesce(arg1, arg2); } return; } } void ldv_io_instance_callback_1_29(int (*arg0)(struct mddev * , unsigned long ) , struct mddev *arg1 , unsigned long arg2 ) { { { raid5_resize(arg1, arg2); } return; } } void ldv_io_instance_callback_1_32(unsigned long (*arg0)(struct mddev * , unsigned long , int ) , struct mddev *arg1 , unsigned long arg2 , int arg3 ) { { { raid5_size(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_1_35(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_spare_active(arg1); } return; } } void ldv_io_instance_callback_1_36(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_start_reshape(arg1); } return; } } void ldv_io_instance_callback_1_37(void (*arg0)(struct seq_file * , struct mddev * ) , struct seq_file *arg1 , struct mddev *arg2 ) { { { status(arg1, arg2); } return; } } void ldv_io_instance_callback_1_38(unsigned long (*arg0)(struct mddev * , unsigned long , int * , int ) , struct mddev *arg1 , unsigned long arg2 , int *arg3 , int arg4 ) { { { sync_request(arg1, arg2, arg3, arg4); } return; } } void ldv_io_instance_callback_1_4(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_check_reshape(arg1); } return; } } void ldv_io_instance_callback_1_41(void *(*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_takeover(arg1); } return; } } void ldv_io_instance_callback_2_17(int (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) { { { raid5_congested(arg1, arg2); } return; } } void ldv_io_instance_callback_2_20(void (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) { { { error(arg1, arg2); } return; } } void ldv_io_instance_callback_2_21(void (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_finish_reshape(arg1); } return; } } void ldv_io_instance_callback_2_22(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) { { { raid5_add_disk(arg1, arg2); } return; } } void ldv_io_instance_callback_2_23(int (*arg0)(struct mddev * , struct md_rdev * ) , struct mddev *arg1 , struct md_rdev *arg2 ) { { { raid5_remove_disk(arg1, arg2); } return; } } void ldv_io_instance_callback_2_24(void (*arg0)(struct mddev * , struct bio * ) , struct mddev *arg1 , struct bio *arg2 ) { { { make_request(arg1, arg2); } return; } } void ldv_io_instance_callback_2_25(int (*arg0)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) , struct mddev *arg1 , struct bvec_merge_data *arg2 , struct bio_vec *arg3 ) { { { raid5_mergeable_bvec(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_2_26(void (*arg0)(struct mddev * , int ) , struct mddev *arg1 , int arg2 ) { { { raid5_quiesce(arg1, arg2); } return; } } void ldv_io_instance_callback_2_29(int (*arg0)(struct mddev * , unsigned long ) , struct mddev *arg1 , unsigned long arg2 ) { { { raid5_resize(arg1, arg2); } return; } } void ldv_io_instance_callback_2_32(unsigned long (*arg0)(struct mddev * , unsigned long , int ) , struct mddev *arg1 , unsigned long arg2 , int arg3 ) { { { raid5_size(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_2_35(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_spare_active(arg1); } return; } } void ldv_io_instance_callback_2_36(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid5_start_reshape(arg1); } return; } } void ldv_io_instance_callback_2_37(void (*arg0)(struct seq_file * , struct mddev * ) , struct seq_file *arg1 , struct mddev *arg2 ) { { { status(arg1, arg2); } return; } } void ldv_io_instance_callback_2_38(unsigned long (*arg0)(struct mddev * , unsigned long , int * , int ) , struct mddev *arg1 , unsigned long arg2 , int *arg3 , int arg4 ) { { { sync_request(arg1, arg2, arg3, arg4); } return; } } void ldv_io_instance_callback_2_4(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid6_check_reshape(arg1); } return; } } void ldv_io_instance_callback_2_41(void *(*arg0)(struct mddev * ) , struct mddev *arg1 ) { { { raid6_takeover(arg1); } return; } } int ldv_io_instance_probe_0_11(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { int tmp ; { { tmp = run(arg1); } return (tmp); } } int ldv_io_instance_probe_1_11(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { int tmp ; { { tmp = run(arg1); } return (tmp); } } int ldv_io_instance_probe_2_11(int (*arg0)(struct mddev * ) , struct mddev *arg1 ) { int tmp ; { { tmp = run(arg1); } return (tmp); } } void ldv_io_instance_release_0_2(void (*arg0)(struct mddev * , void * ) , struct mddev *arg1 , void *arg2 ) { { { raid5_free(arg1, arg2); } return; } } void ldv_io_instance_release_1_2(void (*arg0)(struct mddev * , void * ) , struct mddev *arg1 , void *arg2 ) { { { raid5_free(arg1, arg2); } return; } } void ldv_io_instance_release_2_2(void (*arg0)(struct mddev * , void * ) , struct mddev *arg1 , void *arg2 ) { { { raid5_free(arg1, arg2); } return; } } struct md_thread *ldv_md_register_thread(struct md_thread *arg0 , void (*arg1)(struct md_thread * ) , struct mddev *arg2 , char *arg3 ) { struct mddev *ldv_10_struct_mddev_ptr_struct_mddev_ptr ; { { ldv_10_struct_mddev_ptr_struct_mddev_ptr = arg2; ldv_dispatch_register_10_1(ldv_10_struct_mddev_ptr_struct_mddev_ptr); } return (arg0); return (arg0); } } int ldv_register_md_personality(int arg0 , struct md_personality *arg1 ) { struct md_personality *ldv_9_struct_md_personality_struct_md_personality ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_9_struct_md_personality_struct_md_personality = arg1; ldv_dispatch_register_9_2(ldv_9_struct_md_personality_struct_md_personality); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_md_personality_io_instance_0(void *arg0 ) { int (*ldv_0_callback_check_reshape)(struct mddev * ) ; int (*ldv_0_callback_congested)(struct mddev * , int ) ; void (*ldv_0_callback_error_handler)(struct mddev * , struct md_rdev * ) ; void (*ldv_0_callback_finish_reshape)(struct mddev * ) ; int (*ldv_0_callback_hot_add_disk)(struct mddev * , struct md_rdev * ) ; int (*ldv_0_callback_hot_remove_disk)(struct mddev * , struct md_rdev * ) ; void (*ldv_0_callback_make_request)(struct mddev * , struct bio * ) ; int (*ldv_0_callback_mergeable_bvec)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) ; void (*ldv_0_callback_quiesce)(struct mddev * , int ) ; int (*ldv_0_callback_resize)(struct mddev * , unsigned long ) ; unsigned long (*ldv_0_callback_size)(struct mddev * , unsigned long , int ) ; int (*ldv_0_callback_spare_active)(struct mddev * ) ; int (*ldv_0_callback_start_reshape)(struct mddev * ) ; void (*ldv_0_callback_status)(struct seq_file * , struct mddev * ) ; unsigned long (*ldv_0_callback_sync_request)(struct mddev * , unsigned long , int * , int ) ; void *(*ldv_0_callback_takeover)(struct mddev * ) ; struct md_personality *ldv_0_container_struct_md_personality ; int ldv_0_ldv_param_17_1_default ; int ldv_0_ldv_param_26_1_default ; unsigned long ldv_0_ldv_param_29_1_default ; unsigned long ldv_0_ldv_param_32_1_default ; int ldv_0_ldv_param_32_2_default ; unsigned long ldv_0_ldv_param_38_1_default ; int *ldv_0_ldv_param_38_2_default ; int ldv_0_ldv_param_38_3_default ; struct bio *ldv_0_resource_struct_bio_ptr ; struct bio_vec *ldv_0_resource_struct_bio_vec_ptr ; struct bvec_merge_data *ldv_0_resource_struct_bvec_merge_data_ptr ; struct md_rdev *ldv_0_resource_struct_md_rdev_ptr ; struct mddev *ldv_0_resource_struct_mddev_ptr ; struct seq_file *ldv_0_resource_struct_seq_file_ptr ; int ldv_0_ret_default ; struct ldv_struct_io_instance_0 *data ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; void *tmp___8 ; { data = (struct ldv_struct_io_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_io_instance_0 *)0)) { { ldv_0_container_struct_md_personality = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(136UL); ldv_0_resource_struct_bio_ptr = (struct bio *)tmp; tmp___0 = ldv_xmalloc(16UL); ldv_0_resource_struct_bio_vec_ptr = (struct bio_vec *)tmp___0; tmp___1 = ldv_xmalloc(32UL); ldv_0_resource_struct_bvec_merge_data_ptr = (struct bvec_merge_data *)tmp___1; tmp___2 = ldv_xmalloc(832UL); ldv_0_resource_struct_md_rdev_ptr = (struct md_rdev *)tmp___2; tmp___3 = ldv_xmalloc(2024UL); ldv_0_resource_struct_mddev_ptr = (struct mddev *)tmp___3; tmp___4 = ldv_xmalloc(256UL); ldv_0_resource_struct_seq_file_ptr = (struct seq_file *)tmp___4; } goto ldv_main_0; return; ldv_main_0: { tmp___6 = ldv_undef_int(); } if (tmp___6 != 0) { { ldv_0_ret_default = ldv_io_instance_probe_0_11(ldv_0_container_struct_md_personality->run, ldv_0_resource_struct_mddev_ptr); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_struct_bio_ptr); ldv_free((void *)ldv_0_resource_struct_bio_vec_ptr); ldv_free((void *)ldv_0_resource_struct_bvec_merge_data_ptr); ldv_free((void *)ldv_0_resource_struct_md_rdev_ptr); ldv_free((void *)ldv_0_resource_struct_mddev_ptr); ldv_free((void *)ldv_0_resource_struct_seq_file_ptr); } return; } return; ldv_call_0: { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1; } else { } if (tmp___7 == 2) { goto case_2; } else { } if (tmp___7 == 3) { goto case_3; } else { } if (tmp___7 == 4) { goto case_4; } else { } if (tmp___7 == 5) { goto case_5; } else { } if (tmp___7 == 6) { goto case_6; } else { } if (tmp___7 == 7) { goto case_7; } else { } if (tmp___7 == 8) { goto case_8; } else { } if (tmp___7 == 9) { goto case_9; } else { } if (tmp___7 == 10) { goto case_10; } else { } if (tmp___7 == 11) { goto case_11; } else { } if (tmp___7 == 12) { goto case_12; } else { } if (tmp___7 == 13) { goto case_13; } else { } if (tmp___7 == 14) { goto case_14; } else { } if (tmp___7 == 15) { goto case_15; } else { } if (tmp___7 == 16) { goto case_16; } else { } if (tmp___7 == 17) { goto case_17; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_0_41(ldv_0_callback_takeover, ldv_0_resource_struct_mddev_ptr); } goto ldv_call_0; case_2: /* CIL Label */ { tmp___8 = ldv_xmalloc(4UL); ldv_0_ldv_param_38_2_default = (int *)tmp___8; ldv_io_instance_callback_0_38(ldv_0_callback_sync_request, ldv_0_resource_struct_mddev_ptr, ldv_0_ldv_param_38_1_default, ldv_0_ldv_param_38_2_default, ldv_0_ldv_param_38_3_default); ldv_free((void *)ldv_0_ldv_param_38_2_default); } goto ldv_call_0; goto ldv_call_0; case_3: /* CIL Label */ { ldv_io_instance_callback_0_37(ldv_0_callback_status, ldv_0_resource_struct_seq_file_ptr, ldv_0_resource_struct_mddev_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_4: /* CIL Label */ { ldv_io_instance_callback_0_36(ldv_0_callback_start_reshape, ldv_0_resource_struct_mddev_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_5: /* CIL Label */ { ldv_io_instance_callback_0_35(ldv_0_callback_spare_active, ldv_0_resource_struct_mddev_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_6: /* CIL Label */ { ldv_io_instance_callback_0_32(ldv_0_callback_size, ldv_0_resource_struct_mddev_ptr, ldv_0_ldv_param_32_1_default, ldv_0_ldv_param_32_2_default); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_7: /* CIL Label */ { ldv_io_instance_callback_0_29(ldv_0_callback_resize, ldv_0_resource_struct_mddev_ptr, ldv_0_ldv_param_29_1_default); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_8: /* CIL Label */ { ldv_io_instance_callback_0_26(ldv_0_callback_quiesce, ldv_0_resource_struct_mddev_ptr, ldv_0_ldv_param_26_1_default); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_9: /* CIL Label */ { ldv_io_instance_callback_0_25(ldv_0_callback_mergeable_bvec, ldv_0_resource_struct_mddev_ptr, ldv_0_resource_struct_bvec_merge_data_ptr, ldv_0_resource_struct_bio_vec_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_10: /* CIL Label */ { ldv_io_instance_callback_0_24(ldv_0_callback_make_request, ldv_0_resource_struct_mddev_ptr, ldv_0_resource_struct_bio_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_11: /* CIL Label */ { ldv_io_instance_callback_0_23(ldv_0_callback_hot_remove_disk, ldv_0_resource_struct_mddev_ptr, ldv_0_resource_struct_md_rdev_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_12: /* CIL Label */ { ldv_io_instance_callback_0_22(ldv_0_callback_hot_add_disk, ldv_0_resource_struct_mddev_ptr, ldv_0_resource_struct_md_rdev_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_13: /* CIL Label */ { ldv_io_instance_callback_0_21(ldv_0_callback_finish_reshape, ldv_0_resource_struct_mddev_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_14: /* CIL Label */ { ldv_io_instance_callback_0_20(ldv_0_callback_error_handler, ldv_0_resource_struct_mddev_ptr, ldv_0_resource_struct_md_rdev_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_15: /* CIL Label */ { ldv_io_instance_callback_0_17(ldv_0_callback_congested, ldv_0_resource_struct_mddev_ptr, ldv_0_ldv_param_17_1_default); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_16: /* CIL Label */ { ldv_io_instance_callback_0_4(ldv_0_callback_check_reshape, ldv_0_resource_struct_mddev_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_17: /* CIL Label */ { ldv_io_instance_release_0_2(ldv_0_container_struct_md_personality->free, ldv_0_resource_struct_mddev_ptr, (void *)ldv_0_resource_struct_bio_ptr); } goto ldv_main_0; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_md_personality_io_instance_1(void *arg0 ) { int (*ldv_1_callback_check_reshape)(struct mddev * ) ; int (*ldv_1_callback_congested)(struct mddev * , int ) ; void (*ldv_1_callback_error_handler)(struct mddev * , struct md_rdev * ) ; void (*ldv_1_callback_finish_reshape)(struct mddev * ) ; int (*ldv_1_callback_hot_add_disk)(struct mddev * , struct md_rdev * ) ; int (*ldv_1_callback_hot_remove_disk)(struct mddev * , struct md_rdev * ) ; void (*ldv_1_callback_make_request)(struct mddev * , struct bio * ) ; int (*ldv_1_callback_mergeable_bvec)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) ; void (*ldv_1_callback_quiesce)(struct mddev * , int ) ; int (*ldv_1_callback_resize)(struct mddev * , unsigned long ) ; unsigned long (*ldv_1_callback_size)(struct mddev * , unsigned long , int ) ; int (*ldv_1_callback_spare_active)(struct mddev * ) ; int (*ldv_1_callback_start_reshape)(struct mddev * ) ; void (*ldv_1_callback_status)(struct seq_file * , struct mddev * ) ; unsigned long (*ldv_1_callback_sync_request)(struct mddev * , unsigned long , int * , int ) ; void *(*ldv_1_callback_takeover)(struct mddev * ) ; struct md_personality *ldv_1_container_struct_md_personality ; int ldv_1_ldv_param_17_1_default ; int ldv_1_ldv_param_26_1_default ; unsigned long ldv_1_ldv_param_29_1_default ; unsigned long ldv_1_ldv_param_32_1_default ; int ldv_1_ldv_param_32_2_default ; unsigned long ldv_1_ldv_param_38_1_default ; int *ldv_1_ldv_param_38_2_default ; int ldv_1_ldv_param_38_3_default ; struct bio *ldv_1_resource_struct_bio_ptr ; struct bio_vec *ldv_1_resource_struct_bio_vec_ptr ; struct bvec_merge_data *ldv_1_resource_struct_bvec_merge_data_ptr ; struct md_rdev *ldv_1_resource_struct_md_rdev_ptr ; struct mddev *ldv_1_resource_struct_mddev_ptr ; struct seq_file *ldv_1_resource_struct_seq_file_ptr ; int ldv_1_ret_default ; struct ldv_struct_io_instance_0 *data ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; void *tmp___8 ; { data = (struct ldv_struct_io_instance_0 *)arg0; ldv_1_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_io_instance_0 *)0)) { { ldv_1_container_struct_md_personality = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(136UL); ldv_1_resource_struct_bio_ptr = (struct bio *)tmp; tmp___0 = ldv_xmalloc(16UL); ldv_1_resource_struct_bio_vec_ptr = (struct bio_vec *)tmp___0; tmp___1 = ldv_xmalloc(32UL); ldv_1_resource_struct_bvec_merge_data_ptr = (struct bvec_merge_data *)tmp___1; tmp___2 = ldv_xmalloc(832UL); ldv_1_resource_struct_md_rdev_ptr = (struct md_rdev *)tmp___2; tmp___3 = ldv_xmalloc(2024UL); ldv_1_resource_struct_mddev_ptr = (struct mddev *)tmp___3; tmp___4 = ldv_xmalloc(256UL); ldv_1_resource_struct_seq_file_ptr = (struct seq_file *)tmp___4; } goto ldv_main_1; return; ldv_main_1: { tmp___6 = ldv_undef_int(); } if (tmp___6 != 0) { { ldv_1_ret_default = ldv_io_instance_probe_1_11(ldv_1_container_struct_md_personality->run, ldv_1_resource_struct_mddev_ptr); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_struct_bio_ptr); ldv_free((void *)ldv_1_resource_struct_bio_vec_ptr); ldv_free((void *)ldv_1_resource_struct_bvec_merge_data_ptr); ldv_free((void *)ldv_1_resource_struct_md_rdev_ptr); ldv_free((void *)ldv_1_resource_struct_mddev_ptr); ldv_free((void *)ldv_1_resource_struct_seq_file_ptr); } return; } return; ldv_call_1: { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1; } else { } if (tmp___7 == 2) { goto case_2; } else { } if (tmp___7 == 3) { goto case_3; } else { } if (tmp___7 == 4) { goto case_4; } else { } if (tmp___7 == 5) { goto case_5; } else { } if (tmp___7 == 6) { goto case_6; } else { } if (tmp___7 == 7) { goto case_7; } else { } if (tmp___7 == 8) { goto case_8; } else { } if (tmp___7 == 9) { goto case_9; } else { } if (tmp___7 == 10) { goto case_10; } else { } if (tmp___7 == 11) { goto case_11; } else { } if (tmp___7 == 12) { goto case_12; } else { } if (tmp___7 == 13) { goto case_13; } else { } if (tmp___7 == 14) { goto case_14; } else { } if (tmp___7 == 15) { goto case_15; } else { } if (tmp___7 == 16) { goto case_16; } else { } if (tmp___7 == 17) { goto case_17; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_1_41(ldv_1_callback_takeover, ldv_1_resource_struct_mddev_ptr); } goto ldv_call_1; case_2: /* CIL Label */ { tmp___8 = ldv_xmalloc(4UL); ldv_1_ldv_param_38_2_default = (int *)tmp___8; ldv_io_instance_callback_1_38(ldv_1_callback_sync_request, ldv_1_resource_struct_mddev_ptr, ldv_1_ldv_param_38_1_default, ldv_1_ldv_param_38_2_default, ldv_1_ldv_param_38_3_default); ldv_free((void *)ldv_1_ldv_param_38_2_default); } goto ldv_call_1; goto ldv_call_1; case_3: /* CIL Label */ { ldv_io_instance_callback_1_37(ldv_1_callback_status, ldv_1_resource_struct_seq_file_ptr, ldv_1_resource_struct_mddev_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_4: /* CIL Label */ { ldv_io_instance_callback_1_36(ldv_1_callback_start_reshape, ldv_1_resource_struct_mddev_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_5: /* CIL Label */ { ldv_io_instance_callback_1_35(ldv_1_callback_spare_active, ldv_1_resource_struct_mddev_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_6: /* CIL Label */ { ldv_io_instance_callback_1_32(ldv_1_callback_size, ldv_1_resource_struct_mddev_ptr, ldv_1_ldv_param_32_1_default, ldv_1_ldv_param_32_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_7: /* CIL Label */ { ldv_io_instance_callback_1_29(ldv_1_callback_resize, ldv_1_resource_struct_mddev_ptr, ldv_1_ldv_param_29_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_8: /* CIL Label */ { ldv_io_instance_callback_1_26(ldv_1_callback_quiesce, ldv_1_resource_struct_mddev_ptr, ldv_1_ldv_param_26_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_9: /* CIL Label */ { ldv_io_instance_callback_1_25(ldv_1_callback_mergeable_bvec, ldv_1_resource_struct_mddev_ptr, ldv_1_resource_struct_bvec_merge_data_ptr, ldv_1_resource_struct_bio_vec_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_10: /* CIL Label */ { ldv_io_instance_callback_1_24(ldv_1_callback_make_request, ldv_1_resource_struct_mddev_ptr, ldv_1_resource_struct_bio_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_11: /* CIL Label */ { ldv_io_instance_callback_1_23(ldv_1_callback_hot_remove_disk, ldv_1_resource_struct_mddev_ptr, ldv_1_resource_struct_md_rdev_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_12: /* CIL Label */ { ldv_io_instance_callback_1_22(ldv_1_callback_hot_add_disk, ldv_1_resource_struct_mddev_ptr, ldv_1_resource_struct_md_rdev_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_13: /* CIL Label */ { ldv_io_instance_callback_1_21(ldv_1_callback_finish_reshape, ldv_1_resource_struct_mddev_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_14: /* CIL Label */ { ldv_io_instance_callback_1_20(ldv_1_callback_error_handler, ldv_1_resource_struct_mddev_ptr, ldv_1_resource_struct_md_rdev_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_15: /* CIL Label */ { ldv_io_instance_callback_1_17(ldv_1_callback_congested, ldv_1_resource_struct_mddev_ptr, ldv_1_ldv_param_17_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_16: /* CIL Label */ { ldv_io_instance_callback_1_4(ldv_1_callback_check_reshape, ldv_1_resource_struct_mddev_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_17: /* CIL Label */ { ldv_io_instance_release_1_2(ldv_1_container_struct_md_personality->free, ldv_1_resource_struct_mddev_ptr, (void *)ldv_1_resource_struct_bio_ptr); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_md_personality_io_instance_2(void *arg0 ) { int (*ldv_2_callback_check_reshape)(struct mddev * ) ; int (*ldv_2_callback_congested)(struct mddev * , int ) ; void (*ldv_2_callback_error_handler)(struct mddev * , struct md_rdev * ) ; void (*ldv_2_callback_finish_reshape)(struct mddev * ) ; int (*ldv_2_callback_hot_add_disk)(struct mddev * , struct md_rdev * ) ; int (*ldv_2_callback_hot_remove_disk)(struct mddev * , struct md_rdev * ) ; void (*ldv_2_callback_make_request)(struct mddev * , struct bio * ) ; int (*ldv_2_callback_mergeable_bvec)(struct mddev * , struct bvec_merge_data * , struct bio_vec * ) ; void (*ldv_2_callback_quiesce)(struct mddev * , int ) ; int (*ldv_2_callback_resize)(struct mddev * , unsigned long ) ; unsigned long (*ldv_2_callback_size)(struct mddev * , unsigned long , int ) ; int (*ldv_2_callback_spare_active)(struct mddev * ) ; int (*ldv_2_callback_start_reshape)(struct mddev * ) ; void (*ldv_2_callback_status)(struct seq_file * , struct mddev * ) ; unsigned long (*ldv_2_callback_sync_request)(struct mddev * , unsigned long , int * , int ) ; void *(*ldv_2_callback_takeover)(struct mddev * ) ; struct md_personality *ldv_2_container_struct_md_personality ; int ldv_2_ldv_param_17_1_default ; int ldv_2_ldv_param_26_1_default ; unsigned long ldv_2_ldv_param_29_1_default ; unsigned long ldv_2_ldv_param_32_1_default ; int ldv_2_ldv_param_32_2_default ; unsigned long ldv_2_ldv_param_38_1_default ; int *ldv_2_ldv_param_38_2_default ; int ldv_2_ldv_param_38_3_default ; struct bio *ldv_2_resource_struct_bio_ptr ; struct bio_vec *ldv_2_resource_struct_bio_vec_ptr ; struct bvec_merge_data *ldv_2_resource_struct_bvec_merge_data_ptr ; struct md_rdev *ldv_2_resource_struct_md_rdev_ptr ; struct mddev *ldv_2_resource_struct_mddev_ptr ; struct seq_file *ldv_2_resource_struct_seq_file_ptr ; int ldv_2_ret_default ; struct ldv_struct_io_instance_0 *data ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; void *tmp___8 ; { data = (struct ldv_struct_io_instance_0 *)arg0; ldv_2_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_io_instance_0 *)0)) { { ldv_2_container_struct_md_personality = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(136UL); ldv_2_resource_struct_bio_ptr = (struct bio *)tmp; tmp___0 = ldv_xmalloc(16UL); ldv_2_resource_struct_bio_vec_ptr = (struct bio_vec *)tmp___0; tmp___1 = ldv_xmalloc(32UL); ldv_2_resource_struct_bvec_merge_data_ptr = (struct bvec_merge_data *)tmp___1; tmp___2 = ldv_xmalloc(832UL); ldv_2_resource_struct_md_rdev_ptr = (struct md_rdev *)tmp___2; tmp___3 = ldv_xmalloc(2024UL); ldv_2_resource_struct_mddev_ptr = (struct mddev *)tmp___3; tmp___4 = ldv_xmalloc(256UL); ldv_2_resource_struct_seq_file_ptr = (struct seq_file *)tmp___4; } goto ldv_main_2; return; ldv_main_2: { tmp___6 = ldv_undef_int(); } if (tmp___6 != 0) { { ldv_2_ret_default = ldv_io_instance_probe_2_11(ldv_2_container_struct_md_personality->run, ldv_2_resource_struct_mddev_ptr); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_struct_bio_ptr); ldv_free((void *)ldv_2_resource_struct_bio_vec_ptr); ldv_free((void *)ldv_2_resource_struct_bvec_merge_data_ptr); ldv_free((void *)ldv_2_resource_struct_md_rdev_ptr); ldv_free((void *)ldv_2_resource_struct_mddev_ptr); ldv_free((void *)ldv_2_resource_struct_seq_file_ptr); } return; } return; ldv_call_2: { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1; } else { } if (tmp___7 == 2) { goto case_2; } else { } if (tmp___7 == 3) { goto case_3; } else { } if (tmp___7 == 4) { goto case_4; } else { } if (tmp___7 == 5) { goto case_5; } else { } if (tmp___7 == 6) { goto case_6; } else { } if (tmp___7 == 7) { goto case_7; } else { } if (tmp___7 == 8) { goto case_8; } else { } if (tmp___7 == 9) { goto case_9; } else { } if (tmp___7 == 10) { goto case_10; } else { } if (tmp___7 == 11) { goto case_11; } else { } if (tmp___7 == 12) { goto case_12; } else { } if (tmp___7 == 13) { goto case_13; } else { } if (tmp___7 == 14) { goto case_14; } else { } if (tmp___7 == 15) { goto case_15; } else { } if (tmp___7 == 16) { goto case_16; } else { } if (tmp___7 == 17) { goto case_17; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_2_41(ldv_2_callback_takeover, ldv_2_resource_struct_mddev_ptr); } goto ldv_call_2; case_2: /* CIL Label */ { tmp___8 = ldv_xmalloc(4UL); ldv_2_ldv_param_38_2_default = (int *)tmp___8; ldv_io_instance_callback_2_38(ldv_2_callback_sync_request, ldv_2_resource_struct_mddev_ptr, ldv_2_ldv_param_38_1_default, ldv_2_ldv_param_38_2_default, ldv_2_ldv_param_38_3_default); ldv_free((void *)ldv_2_ldv_param_38_2_default); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { ldv_io_instance_callback_2_37(ldv_2_callback_status, ldv_2_resource_struct_seq_file_ptr, ldv_2_resource_struct_mddev_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_4: /* CIL Label */ { ldv_io_instance_callback_2_36(ldv_2_callback_start_reshape, ldv_2_resource_struct_mddev_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_5: /* CIL Label */ { ldv_io_instance_callback_2_35(ldv_2_callback_spare_active, ldv_2_resource_struct_mddev_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_6: /* CIL Label */ { ldv_io_instance_callback_2_32(ldv_2_callback_size, ldv_2_resource_struct_mddev_ptr, ldv_2_ldv_param_32_1_default, ldv_2_ldv_param_32_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_7: /* CIL Label */ { ldv_io_instance_callback_2_29(ldv_2_callback_resize, ldv_2_resource_struct_mddev_ptr, ldv_2_ldv_param_29_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_8: /* CIL Label */ { ldv_io_instance_callback_2_26(ldv_2_callback_quiesce, ldv_2_resource_struct_mddev_ptr, ldv_2_ldv_param_26_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_9: /* CIL Label */ { ldv_io_instance_callback_2_25(ldv_2_callback_mergeable_bvec, ldv_2_resource_struct_mddev_ptr, ldv_2_resource_struct_bvec_merge_data_ptr, ldv_2_resource_struct_bio_vec_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_10: /* CIL Label */ { ldv_io_instance_callback_2_24(ldv_2_callback_make_request, ldv_2_resource_struct_mddev_ptr, ldv_2_resource_struct_bio_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_11: /* CIL Label */ { ldv_io_instance_callback_2_23(ldv_2_callback_hot_remove_disk, ldv_2_resource_struct_mddev_ptr, ldv_2_resource_struct_md_rdev_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_12: /* CIL Label */ { ldv_io_instance_callback_2_22(ldv_2_callback_hot_add_disk, ldv_2_resource_struct_mddev_ptr, ldv_2_resource_struct_md_rdev_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_13: /* CIL Label */ { ldv_io_instance_callback_2_21(ldv_2_callback_finish_reshape, ldv_2_resource_struct_mddev_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_14: /* CIL Label */ { ldv_io_instance_callback_2_20(ldv_2_callback_error_handler, ldv_2_resource_struct_mddev_ptr, ldv_2_resource_struct_md_rdev_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_15: /* CIL Label */ { ldv_io_instance_callback_2_17(ldv_2_callback_congested, ldv_2_resource_struct_mddev_ptr, ldv_2_ldv_param_17_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_16: /* CIL Label */ { ldv_io_instance_callback_2_4(ldv_2_callback_check_reshape, ldv_2_resource_struct_mddev_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_17: /* CIL Label */ { ldv_io_instance_release_2_2(ldv_2_container_struct_md_personality->free, ldv_2_resource_struct_mddev_ptr, (void *)ldv_2_resource_struct_bio_ptr); } goto ldv_main_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_md_sysfs_entry_dummy_resourceless_instance_3(void *arg0 ) { long (*ldv_3_callback_show)(struct mddev * , char * ) ; long (*ldv_3_callback_store)(struct mddev * , char * , unsigned long ) ; struct mddev *ldv_3_container_struct_mddev_ptr ; char *ldv_3_ldv_param_3_1_default ; char *ldv_3_ldv_param_9_1_default ; unsigned long ldv_3_ldv_param_9_2_default ; struct ldv_struct_dummy_resourceless_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { data = (struct ldv_struct_dummy_resourceless_instance_3 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_3 *)0)) { { ldv_3_container_struct_mddev_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_3; return; ldv_call_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_3_ldv_param_3_1_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_3_ldv_param_9_1_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_store, ldv_3_container_struct_mddev_ptr, ldv_3_ldv_param_9_1_default, ldv_3_ldv_param_9_2_default); ldv_free((void *)ldv_3_ldv_param_9_1_default); } } else { { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_show, ldv_3_container_struct_mddev_ptr, ldv_3_ldv_param_3_1_default); } } { ldv_free((void *)ldv_3_ldv_param_3_1_default); } goto ldv_call_3; } else { return; } return; } } void ldv_struct_md_sysfs_entry_dummy_resourceless_instance_4(void *arg0 ) { long (*ldv_4_callback_show)(struct mddev * , char * ) ; long (*ldv_4_callback_store)(struct mddev * , char * , unsigned long ) ; struct mddev *ldv_4_container_struct_mddev_ptr ; char *ldv_4_ldv_param_3_1_default ; char *ldv_4_ldv_param_9_1_default ; unsigned long ldv_4_ldv_param_9_2_default ; struct ldv_struct_dummy_resourceless_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { data = (struct ldv_struct_dummy_resourceless_instance_3 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_3 *)0)) { { ldv_4_container_struct_mddev_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_4; return; ldv_call_4: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_4_ldv_param_3_1_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_4_ldv_param_9_1_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_store, ldv_4_container_struct_mddev_ptr, ldv_4_ldv_param_9_1_default, ldv_4_ldv_param_9_2_default); ldv_free((void *)ldv_4_ldv_param_9_1_default); } } else { { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_show, ldv_4_container_struct_mddev_ptr, ldv_4_ldv_param_3_1_default); } } { ldv_free((void *)ldv_4_ldv_param_3_1_default); } goto ldv_call_4; } else { return; } return; } } void ldv_struct_md_sysfs_entry_dummy_resourceless_instance_5(void *arg0 ) { long (*ldv_5_callback_show)(struct mddev * , char * ) ; long (*ldv_5_callback_store)(struct mddev * , char * , unsigned long ) ; struct mddev *ldv_5_container_struct_mddev_ptr ; char *ldv_5_ldv_param_3_1_default ; char *ldv_5_ldv_param_9_1_default ; unsigned long ldv_5_ldv_param_9_2_default ; struct ldv_struct_dummy_resourceless_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { data = (struct ldv_struct_dummy_resourceless_instance_3 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_3 *)0)) { { ldv_5_container_struct_mddev_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_5; return; ldv_call_5: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_5_ldv_param_3_1_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_5_ldv_param_9_1_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_store, ldv_5_container_struct_mddev_ptr, ldv_5_ldv_param_9_1_default, ldv_5_ldv_param_9_2_default); ldv_free((void *)ldv_5_ldv_param_9_1_default); } } else { { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_show, ldv_5_container_struct_mddev_ptr, ldv_5_ldv_param_3_1_default); } } { ldv_free((void *)ldv_5_ldv_param_3_1_default); } goto ldv_call_5; } else { return; } return; } } void ldv_struct_md_sysfs_entry_dummy_resourceless_instance_6(void *arg0 ) { long (*ldv_6_callback_show)(struct mddev * , char * ) ; long (*ldv_6_callback_store)(struct mddev * , char * , unsigned long ) ; struct mddev *ldv_6_container_struct_mddev_ptr ; char *ldv_6_ldv_param_3_1_default ; char *ldv_6_ldv_param_9_1_default ; unsigned long ldv_6_ldv_param_9_2_default ; struct ldv_struct_dummy_resourceless_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { data = (struct ldv_struct_dummy_resourceless_instance_3 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_3 *)0)) { { ldv_6_container_struct_mddev_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_6; return; ldv_call_6: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_6_ldv_param_3_1_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_6_ldv_param_9_1_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_6_9(ldv_6_callback_store, ldv_6_container_struct_mddev_ptr, ldv_6_ldv_param_9_1_default, ldv_6_ldv_param_9_2_default); ldv_free((void *)ldv_6_ldv_param_9_1_default); } } else { { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_show, ldv_6_container_struct_mddev_ptr, ldv_6_ldv_param_3_1_default); } } { ldv_free((void *)ldv_6_ldv_param_3_1_default); } goto ldv_call_6; } else { return; } return; } } void ldv_struct_md_sysfs_entry_dummy_resourceless_instance_7(void *arg0 ) { long (*ldv_7_callback_show)(struct mddev * , char * ) ; long (*ldv_7_callback_store)(struct mddev * , char * , unsigned long ) ; struct mddev *ldv_7_container_struct_mddev_ptr ; char *ldv_7_ldv_param_3_1_default ; char *ldv_7_ldv_param_9_1_default ; unsigned long ldv_7_ldv_param_9_2_default ; struct ldv_struct_dummy_resourceless_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { data = (struct ldv_struct_dummy_resourceless_instance_3 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_3 *)0)) { { ldv_7_container_struct_mddev_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_7; return; ldv_call_7: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_7_ldv_param_3_1_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_7_ldv_param_9_1_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_7_9(ldv_7_callback_store, ldv_7_container_struct_mddev_ptr, ldv_7_ldv_param_9_1_default, ldv_7_ldv_param_9_2_default); ldv_free((void *)ldv_7_ldv_param_9_1_default); } } else { { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_show, ldv_7_container_struct_mddev_ptr, ldv_7_ldv_param_3_1_default); } } { ldv_free((void *)ldv_7_ldv_param_3_1_default); } goto ldv_call_7; } else { return; } return; } } int ldv_unregister_md_personality(int arg0 , struct md_personality *arg1 ) { struct md_personality *ldv_8_struct_md_personality_struct_md_personality ; { { ldv_8_struct_md_personality_struct_md_personality = arg1; ldv_dispatch_deregister_8_1(ldv_8_struct_md_personality_struct_md_personality); } return (arg0); return (arg0); } } static unsigned long ldv_find_first_bit_4(unsigned long const *addr , unsigned long size ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_first_bit(size); } return (tmp); } } static unsigned long ldv_find_next_bit_5(unsigned long const *addr , unsigned long size , unsigned long offset ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_next_bit(size, offset); } return (tmp); } } __inline static void *ERR_PTR(long error___0 ) { void *tmp ; { { tmp = ldv_err_ptr(error___0); } return (tmp); } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static void atomic_add(int i , atomic_t *v ) { { { ldv_linux_usb_dev_atomic_add(i, v); } return; } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static void atomic_dec(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_dec(v); } return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_dec_and_test(v); } return (tmp); } } __inline static int atomic_add_return(int i , atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_add_return(i, v); } return (tmp); } } static void ldv_synchronize_sched_38(void) { { { ldv_check_for_read_section(); } return; } } __inline static void rcu_read_lock(void) { { { ldv_linux_kernel_rcu_update_lock_rcu_read_lock(); } return; } } __inline static void rcu_read_unlock(void) { { { ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(); } return; } } __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct page)); } return ((struct page *)tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc(size); ldv_after_alloc(res); } return (res); } } void *ldv_zalloc(size_t size ) ; __inline static void *kmem_cache_zalloc(struct kmem_cache *k , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_zalloc(sizeof(struct stripe_head)); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static int ldv_mutex_lock_interruptible_96(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_reconfig_mutex_of_mddev(ldv_func_arg1); } return (tmp); } } __inline static void ldv_spin_lock_irq_100(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_lock_101(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_device_lock_of_r5conf(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_102(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_device_lock_of_r5conf(); spin_unlock(lock); } return; } } __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(); spin_unlock_irq(lock); } return; } } __inline static void ldv_spin_lock_104(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_hash_locks_of_r5conf(); spin_lock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_105(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_108(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(); spin_unlock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_110(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(); spin_unlock_irqrestore(lock, flags); } return; } } static int ldv___ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_111(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_device_lock_of_r5conf(); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_lock_irq_121(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_stripe_lock_of_stripe_head(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_122(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_stripe_lock_of_stripe_head(); spin_unlock_irq(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_device_lock_of_r5conf(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_device_lock_of_r5conf(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_irq_136(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_device_lock_of_r5conf(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_137(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_device_lock_of_r5conf(); spin_unlock_irq(lock); } return; } } __inline static void ldv_spin_lock_138(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_stripe_lock_of_stripe_head(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_139(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_stripe_lock_of_stripe_head(); spin_unlock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_140(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_device_lock_of_r5conf(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_175(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mddev(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_176(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_mddev(); spin_unlock(lock); } return; } } static struct md_thread *ldv_md_register_thread_185(void (*ldv_func_arg1)(struct md_thread * ) , struct mddev *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; struct md_thread *tmp ; struct md_thread *tmp___0 ; { { tmp = md_register_thread(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_md_register_thread(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static struct md_thread *ldv_md_register_thread_186(void (*ldv_func_arg1)(struct md_thread * ) , struct mddev *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; struct md_thread *tmp ; struct md_thread *tmp___0 ; { { tmp = md_register_thread(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_md_register_thread(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_sysfs_create_group_187(struct kobject *ldv_func_arg1 , struct attribute_group const *ldv_func_arg2 ) { int tmp ; { { tmp = ldv_linux_fs_sysfs_sysfs_create_group(); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_188(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_device_lock_of_r5conf(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_192(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_device_lock_of_r5conf(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static struct md_thread *ldv_md_register_thread_194(void (*ldv_func_arg1)(struct md_thread * ) , struct mddev *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___3 ldv_func_res ; struct md_thread *tmp ; struct md_thread *tmp___0 ; { { tmp = md_register_thread(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_md_register_thread(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_md_personality_201(struct md_personality *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_md_personality(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_md_personality(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_md_personality_202(struct md_personality *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_md_personality(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_md_personality(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_md_personality_203(struct md_personality *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_md_personality(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_md_personality(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_unregister_md_personality_204(struct md_personality *ldv_func_arg1 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = unregister_md_personality(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_unregister_md_personality(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_unregister_md_personality_205(struct md_personality *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = unregister_md_personality(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_unregister_md_personality(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_unregister_md_personality_206(struct md_personality *ldv_func_arg1 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = unregister_md_personality(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_unregister_md_personality(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_ldv_post_init_207(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_208(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_209(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_210(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(size_t size ) { void *ptr ; void *tmp ; { { tmp = ldv_malloc(size); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_malloc(sizeof(struct gendisk)); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_malloc(sizeof(struct request_queue)); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_malloc(sizeof(struct request)); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_malloc(sizeof(struct request)); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_malloc(sizeof(struct class)); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error___0 ) { { return ((void *)(4294967295L - error___0)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(size); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void *is_got ) { long tmp ; { { ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev ; void ldv_linux_kernel_locking_mutex_mutex_lock_reconfig_mutex_of_mddev(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_reconfig_mutex_of_mddev(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_reconfig_mutex_of_mddev(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_reconfig_mutex_of_mddev(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_reconfig_mutex_of_mddev(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_reconfig_mutex_of_mddev(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_reconfig_mutex_of_mddev(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_reconfig_mutex_of_mddev(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reconfig_mutex_of_mddev); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_device_lock_of_r5conf(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 1); ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_device_lock_of_r5conf(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 2); ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_device_lock_of_r5conf(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_device_lock_of_r5conf(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_device_lock_of_r5conf(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_device_lock_of_r5conf(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_device_lock_of_r5conf(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_device_lock_of_r5conf(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_device_lock_of_r5conf(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_hash_locks_of_r5conf(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 1); ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_hash_locks_of_r5conf(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 2); ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_hash_locks_of_r5conf(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_hash_locks_of_r5conf(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_hash_locks_of_r5conf(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_hash_locks_of_r5conf(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_hash_locks_of_r5conf(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_hash_locks_of_r5conf(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_hash_locks_of_r5conf(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_mddev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_mddev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_mddev(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_mddev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_mddev(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_mddev(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_mddev(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_mddev(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_mddev(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_stripe_lock_of_stripe_head(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 1); ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_stripe_lock_of_stripe_head(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 2); ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_stripe_lock_of_stripe_head(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_stripe_lock_of_stripe_head(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_stripe_lock_of_stripe_head(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_stripe_lock_of_stripe_head(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_stripe_lock_of_stripe_head(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_stripe_lock_of_stripe_head(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_stripe_lock_of_stripe_head(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_device_lock_of_r5conf == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_hash_locks_of_r5conf == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_mddev == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_stripe_lock_of_stripe_head == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-4.0-rc1---drivers--md--raid456.ko_false-unreach-call.cil.env.c" #include "model/common.env.c"