/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; struct request; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct timespec; struct compat_timespec; struct __anonstruct_futex_31 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_32 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_33 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_30 { struct __anonstruct_futex_31 futex ; struct __anonstruct_nanosleep_32 nanosleep ; struct __anonstruct_poll_33 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_30 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_46 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_46 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct __anonstruct_nodemask_t_47 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_47 nodemask_t; struct optimistic_spin_queue { atomic_t tail ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct vm_area_struct; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_53 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_54 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_52 { struct __anonstruct____missing_field_name_53 __annonCompField22 ; struct __anonstruct____missing_field_name_54 __annonCompField23 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_52 __annonCompField24 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct __anonstruct_mm_context_t_55 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_55 mm_context_t; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_56 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_58 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_62 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_61 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_62 __annonCompField27 ; int units ; }; struct __anonstruct____missing_field_name_60 { union __anonunion____missing_field_name_61 __annonCompField28 ; atomic_t _count ; }; union __anonunion____missing_field_name_59 { unsigned long counters ; struct __anonstruct____missing_field_name_60 __annonCompField29 ; unsigned int active ; }; struct __anonstruct____missing_field_name_57 { union __anonunion____missing_field_name_58 __annonCompField26 ; union __anonunion____missing_field_name_59 __annonCompField30 ; }; struct __anonstruct____missing_field_name_64 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_65 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_63 { struct list_head lru ; struct __anonstruct____missing_field_name_64 __annonCompField32 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_65 __annonCompField33 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_66 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_56 __annonCompField25 ; struct __anonstruct____missing_field_name_57 __annonCompField31 ; union __anonunion____missing_field_name_63 __annonCompField34 ; union __anonunion____missing_field_name_66 __annonCompField35 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_67 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_67 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct bio_vec; struct device_node; struct __anonstruct_kuid_t_159 { uid_t val ; }; typedef struct __anonstruct_kuid_t_159 kuid_t; struct __anonstruct_kgid_t_160 { gid_t val ; }; typedef struct __anonstruct_kgid_t_160 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_161 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_161 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_163 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_164 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_166 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_168 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_167 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_168 _addr_bnd ; }; struct __anonstruct__sigpoll_169 { long _band ; int _fd ; }; struct __anonstruct__sigsys_170 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_162 { int _pad[28U] ; struct __anonstruct__kill_163 _kill ; struct __anonstruct__timer_164 _timer ; struct __anonstruct__rt_165 _rt ; struct __anonstruct__sigchld_166 _sigchld ; struct __anonstruct__sigfault_167 _sigfault ; struct __anonstruct__sigpoll_169 _sigpoll ; struct __anonstruct__sigsys_170 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_162 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_175 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_176 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_178 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_177 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_178 __annonCompField50 ; }; union __anonunion_type_data_179 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_181 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_180 { union __anonunion_payload_181 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_175 __annonCompField48 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_176 __annonCompField49 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_177 __annonCompField51 ; union __anonunion_type_data_179 type_data ; union __anonunion____missing_field_name_180 __annonCompField52 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct device_type; struct kobject; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField56 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_187 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_187 __annonCompField57 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_189 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_188 { struct __anonstruct____missing_field_name_189 __annonCompField58 ; }; struct lockref { union __anonunion____missing_field_name_188 __annonCompField59 ; }; struct vfsmount; struct __anonstruct____missing_field_name_191 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_190 { struct __anonstruct____missing_field_name_191 __annonCompField60 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_190 __annonCompField61 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_192 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_192 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_194 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_193 { struct __anonstruct____missing_field_name_194 __annonCompField62 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_193 __annonCompField63 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_195 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_195 __annonCompField64 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_196 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_196 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_197 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_197 __annonCompField65 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_200 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_201 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_202 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_200 __annonCompField66 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_201 __annonCompField67 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_202 __annonCompField68 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_203 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_203 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_205 { struct list_head link ; int state ; }; union __anonunion_fl_u_204 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_205 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_204 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_210 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_211 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_210 __annonCompField72 ; union __anonunion____missing_field_name_211 __annonCompField73 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct elevator_queue; struct blk_trace; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_212 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_213 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_214 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_216 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_217 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_215 { struct __anonstruct_elv_216 elv ; struct __anonstruct_flush_217 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_212 __annonCompField74 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_213 __annonCompField75 ; union __anonunion____missing_field_name_214 __annonCompField76 ; union __anonunion____missing_field_name_215 __annonCompField77 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct hd_geometry { unsigned char heads ; unsigned char sectors ; unsigned short cylinders ; unsigned long start ; }; struct mspro_param_register { unsigned char system ; __be16 data_count ; __be32 data_address ; unsigned char tpc_param ; }; struct ms_register_addr { unsigned char r_offset ; unsigned char r_length ; unsigned char w_offset ; unsigned char w_length ; }; enum memstick_param { MEMSTICK_POWER = 1, MEMSTICK_INTERFACE = 2 } ; struct memstick_host; struct memstick_driver; struct memstick_device_id { unsigned char match_flags ; unsigned char type ; unsigned char category ; unsigned char class ; }; struct __anonstruct____missing_field_name_221 { unsigned char data_len ; unsigned char data[15U] ; }; union __anonunion____missing_field_name_220 { struct scatterlist sg ; struct __anonstruct____missing_field_name_221 __annonCompField78 ; }; struct memstick_request { unsigned char tpc ; unsigned char data_dir : 1 ; unsigned char need_card_int : 1 ; unsigned char long_data : 1 ; unsigned char int_reg ; int error ; union __anonunion____missing_field_name_220 __annonCompField79 ; }; struct memstick_dev { struct memstick_device_id id ; struct memstick_host *host ; struct ms_register_addr reg_addr ; struct completion mrq_complete ; struct memstick_request current_mrq ; int (*check)(struct memstick_dev * ) ; int (*next_request)(struct memstick_dev * , struct memstick_request ** ) ; void (*stop)(struct memstick_dev * ) ; void (*start)(struct memstick_dev * ) ; struct device dev ; }; struct memstick_host { struct mutex lock ; unsigned int id ; unsigned int caps ; struct work_struct media_checker ; struct device dev ; struct memstick_dev *card ; unsigned int retries ; void (*request)(struct memstick_host * ) ; int (*set_param)(struct memstick_host * , enum memstick_param , int ) ; unsigned long private[0U] ; }; struct memstick_driver { struct memstick_device_id *id_table ; int (*probe)(struct memstick_dev * ) ; void (*remove)(struct memstick_dev * ) ; int (*suspend)(struct memstick_dev * , pm_message_t ) ; int (*resume)(struct memstick_dev * ) ; struct device_driver driver ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_226 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_226 __annonCompField80 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct mspro_sys_attr { size_t size ; void *data ; unsigned char id ; char name[32U] ; struct device_attribute dev_attr ; }; struct mspro_attr_entry { __be32 address ; __be32 size ; unsigned char id ; unsigned char reserved[3U] ; }; struct mspro_attribute { __be16 signature ; unsigned short version ; unsigned char count ; unsigned char reserved[11U] ; struct mspro_attr_entry entries[] ; }; struct mspro_sys_info { unsigned char class ; unsigned char reserved0 ; __be16 block_size ; __be16 block_count ; __be16 user_block_count ; __be16 page_size ; unsigned char reserved1[2U] ; unsigned char assembly_date[8U] ; __be32 serial_number ; unsigned char assembly_maker_code ; unsigned char assembly_model_code[3U] ; __be16 memory_maker_code ; __be16 memory_model_code ; unsigned char reserved2[4U] ; unsigned char vcc ; unsigned char vpp ; __be16 controller_number ; __be16 controller_function ; __be16 start_sector ; __be16 unit_size ; unsigned char ms_sub_class ; unsigned char reserved3[4U] ; unsigned char interface_type ; __be16 controller_code ; unsigned char format_type ; unsigned char reserved4 ; unsigned char device_type ; unsigned char reserved5[7U] ; unsigned char mspro_id[16U] ; unsigned char reserved6[16U] ; }; struct mspro_mbr { unsigned char boot_partition ; unsigned char start_head ; unsigned char start_sector ; unsigned char start_cylinder ; unsigned char partition_type ; unsigned char end_head ; unsigned char end_sector ; unsigned char end_cylinder ; unsigned int start_sectors ; unsigned int sectors_per_partition ; }; struct mspro_specfile { char name[8U] ; char ext[3U] ; unsigned char attr ; unsigned char reserved[10U] ; unsigned short time ; unsigned short date ; unsigned short cluster ; unsigned int size ; }; struct mspro_devinfo { __be16 cylinders ; __be16 heads ; __be16 bytes_per_track ; __be16 bytes_per_sector ; __be16 sectors_per_track ; unsigned char reserved[6U] ; }; struct mspro_block_data { struct memstick_dev *card ; unsigned int usage_count ; unsigned int caps ; struct gendisk *disk ; struct request_queue *queue ; struct request *block_req ; spinlock_t q_lock ; unsigned short page_size ; unsigned short cylinders ; unsigned short heads ; unsigned short sectors_per_track ; unsigned char system ; unsigned char read_only : 1 ; unsigned char eject : 1 ; unsigned char has_request : 1 ; unsigned char data_dir : 1 ; unsigned char active : 1 ; unsigned char transfer_cmd ; int (*mrq_handler)(struct memstick_dev * , struct memstick_request ** ) ; void (*setup_transfer)(struct memstick_dev * , u64 , size_t ) ; struct attribute_group attr_group ; struct scatterlist req_sg[32U] ; unsigned int seg_count ; unsigned int current_seg ; unsigned int current_page ; }; typedef ssize_t (*sysfs_show_t)(struct device * , struct device_attribute * , char * ); struct ldv_struct_io_instance_0 { struct memstick_driver *arg0 ; int signal_pending ; }; typedef struct gendisk *ldv_func_ret_type___0; typedef struct request_queue *ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void *is_got ) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(res1); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; void ldv_linux_kernel_sched_completion_wait_for_completion_mrq_complete_of_memstick_dev(void) ; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) ; void ldv_linux_block_genhd_add_disk(void) ; void ldv_linux_block_genhd_del_gendisk(void) ; void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) ; int ldv_undef_int(void) ; void ldv_linux_lib_idr_idr_alloc_mspro_block_disk_idr(void) ; void ldv_linux_lib_idr_idr_remove_mspro_block_disk_idr(void) ; void ldv_linux_lib_idr_idr_destroy_mspro_block_disk_idr(void) ; static void ldv_ldv_initialize_145(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_142(int ldv_func_arg1 ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_143(void) ; static void ldv_ldv_check_final_state_144(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void ldv_after_alloc(void * ) ; static void ldv_mutex_lock_95(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_97(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_114(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_121(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_131(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_135(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_memstick_host(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_memstick_host(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mspro_block_disk_lock(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mspro_block_disk_lock(struct mutex *lock ) ; struct request_queue *ldv_linux_block_queue_request_queue(void) ; void ldv_linux_block_queue_blk_cleanup_queue(void) ; extern struct module __this_module ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static __u16 __swab16p(__u16 const *p ) { __u16 tmp ; { { tmp = __fswab16((int )*p); } return (tmp); } } __inline static __u16 __be16_to_cpup(__be16 const *p ) { __u16 tmp ; { { tmp = __swab16p(p); } return (tmp); } } extern int printk(char const * , ...) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int scnprintf(char * , size_t , char const * , ...) ; extern void *memcpy(void * , void const * , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_101(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_103(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_137(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_mspro_block_data(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_mspro_block_data(void) ; int ldv_linux_fs_sysfs_sysfs_create_group(void) ; void ldv_linux_fs_sysfs_sysfs_remove_group(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_102(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_102(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_102(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_102(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_102(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_102(spinlock_t *lock , unsigned long flags ) ; extern void wait_for_completion(struct completion * ) ; static void ldv_wait_for_completion_105(struct completion *ldv_func_arg1 ) ; static void ldv_wait_for_completion_108(struct completion *ldv_func_arg1 ) ; static void ldv_wait_for_completion_109(struct completion *ldv_func_arg1 ) ; static void ldv_wait_for_completion_110(struct completion *ldv_func_arg1 ) ; static void ldv_wait_for_completion_111(struct completion *ldv_func_arg1 ) ; static void ldv_wait_for_completion_112(struct completion *ldv_func_arg1 ) ; static void ldv_wait_for_completion_113(struct completion *ldv_func_arg1 ) ; extern void complete_all(struct completion * ) ; static void ldv_mutex_unlock_96(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_100(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_116(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_132(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_136(struct mutex *ldv_func_arg1 ) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; static int ldv_idr_alloc_115(struct idr *ldv_func_arg1 , void *ldv_func_arg2 , int ldv_func_arg3 , int ldv_func_arg4 , gfp_t ldv_func_arg5 ) ; static void ldv_idr_remove_98(struct idr *ldv_func_arg1 , int ldv_func_arg2 ) ; static void ldv_idr_remove_122(struct idr *ldv_func_arg1 , int ldv_func_arg2 ) ; static void ldv_idr_destroy_141(struct idr *ldv_func_arg1 ) ; static int ldv_sysfs_create_group_124(struct kobject *ldv_func_arg1 , struct attribute_group const *ldv_func_arg2 ) ; static void ldv_sysfs_remove_group_125(struct kobject *ldv_func_arg1 , struct attribute_group const *ldv_func_arg2 ) ; static void ldv_sysfs_remove_group_130(struct kobject *ldv_func_arg1 , struct attribute_group const *ldv_func_arg2 ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern int register_blkdev(unsigned int , char const * ) ; extern void unregister_blkdev(unsigned int , char const * ) ; __inline static dev_t disk_devt(struct gendisk *disk ) { { return (disk->part0.__dev.devt); } } extern void add_disk(struct gendisk * ) ; static void ldv_add_disk_119(struct gendisk *disk ) ; extern void del_gendisk(struct gendisk * ) ; static void ldv_del_gendisk_128(struct gendisk *gp ) ; __inline static void set_capacity(struct gendisk *disk , sector_t size ) { { disk->part0.nr_sects = size; return; } } extern struct gendisk *alloc_disk(int ) ; static struct gendisk *ldv_alloc_disk_117(int minors ) ; extern void put_disk(struct gendisk * ) ; static void ldv_put_disk_99(struct gendisk *disk ) ; static void ldv_put_disk_120(struct gendisk *disk ) ; __inline static bool bio_has_data(struct bio *bio ) { { if (((unsigned long )bio != (unsigned long )((struct bio *)0) && bio->bi_iter.bi_size != 0U) && ((unsigned long long )bio->bi_rw & 128ULL) == 0ULL) { return (1); } else { } return (0); } } __inline static unsigned int bio_cur_bytes(struct bio *bio ) { struct bio_vec __constr_expr_0 ; unsigned int _min1 ; unsigned int _min2 ; bool tmp ; { { tmp = bio_has_data(bio); } if ((int )tmp) { _min1 = bio->bi_iter.bi_size; _min2 = (bio->bi_io_vec + (unsigned long )bio->bi_iter.bi_idx)->bv_len - bio->bi_iter.bi_bvec_done; __constr_expr_0.bv_page = (bio->bi_io_vec + (unsigned long )bio->bi_iter.bi_idx)->bv_page; __constr_expr_0.bv_len = _min1 < _min2 ? _min1 : _min2; __constr_expr_0.bv_offset = (bio->bi_io_vec + (unsigned long )bio->bi_iter.bi_idx)->bv_offset + bio->bi_iter.bi_bvec_done; return (__constr_expr_0.bv_len); } else { return (bio->bi_iter.bi_size); } } } extern void blk_start_queue(struct request_queue * ) ; extern void blk_stop_queue(struct request_queue * ) ; __inline static sector_t blk_rq_pos(struct request const *rq ) { { return ((sector_t )rq->__sector); } } __inline static unsigned int blk_rq_bytes(struct request const *rq ) { { return ((unsigned int )rq->__data_len); } } __inline static int blk_rq_cur_bytes(struct request const *rq ) { unsigned int tmp ; int tmp___0 ; { if ((unsigned long )rq->bio != (unsigned long )((struct bio */* const */)0)) { { tmp = bio_cur_bytes(rq->bio); tmp___0 = (int )tmp; } } else { tmp___0 = 0; } return (tmp___0); } } extern struct request *blk_fetch_request(struct request_queue * ) ; extern bool __blk_end_request(struct request * , int , unsigned int ) ; extern void __blk_end_request_all(struct request * , int ) ; extern bool __blk_end_request_cur(struct request * , int ) ; extern struct request_queue *blk_init_queue(void (*)(struct request_queue * ) , spinlock_t * ) ; static struct request_queue *ldv_blk_init_queue_118(void (*ldv_func_arg1)(struct request_queue * ) , spinlock_t *ldv_func_arg2 ) ; extern void blk_cleanup_queue(struct request_queue * ) ; static void ldv_blk_cleanup_queue_129(struct request_queue *ldv_func_arg1 ) ; extern void blk_queue_bounce_limit(struct request_queue * , u64 ) ; extern void blk_queue_max_hw_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_max_segments(struct request_queue * , unsigned short ) ; extern void blk_queue_max_segment_size(struct request_queue * , unsigned int ) ; extern void blk_queue_logical_block_size(struct request_queue * , unsigned short ) ; extern void blk_queue_prep_rq(struct request_queue * , prep_rq_fn * ) ; extern int blk_rq_map_sg(struct request_queue * , struct request * , struct scatterlist * ) ; extern void blk_dump_rq_flags(struct request * , char * ) ; extern void msleep(unsigned int ) ; __inline static void sg_assign_page(struct scatterlist *sg , struct page *page ) { unsigned long page_link ; long tmp ; long tmp___0 ; long tmp___1 ; { { page_link = sg->page_link & 3UL; tmp = ldv__builtin_expect(((unsigned long )page & 3UL) != 0UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (65), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (67), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (68), "i" (12UL)); __builtin_unreachable(); } } else { } sg->page_link = page_link | (unsigned long )page; return; } } __inline static void sg_set_page(struct scatterlist *sg , struct page *page , unsigned int len , unsigned int offset ) { { { sg_assign_page(sg, page); sg->offset = offset; sg->length = len; } return; } } __inline static struct page *sg_page(struct scatterlist *sg ) { long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (98), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (99), "i" (12UL)); __builtin_unreachable(); } } else { } return ((struct page *)(sg->page_link & 0xfffffffffffffffcUL)); } } extern void sg_init_one(struct scatterlist * , void const * , unsigned int ) ; extern int memstick_register_driver(struct memstick_driver * ) ; static int ldv_memstick_register_driver_139(struct memstick_driver *ldv_func_arg1 ) ; extern void memstick_unregister_driver(struct memstick_driver * ) ; static void ldv_memstick_unregister_driver_140(struct memstick_driver *ldv_func_arg1 ) ; extern void memstick_init_req_sg(struct memstick_request * , unsigned char , struct scatterlist const * ) ; extern void memstick_init_req(struct memstick_request * , unsigned char , void const * , size_t ) ; extern void memstick_new_req(struct memstick_host * ) ; extern int memstick_set_rw_addr(struct memstick_dev * ) ; __inline static void *memstick_get_drvdata(struct memstick_dev *card ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& card->dev)); } return (tmp); } } __inline static void memstick_set_drvdata(struct memstick_dev *card , void *data ) { { { dev_set_drvdata(& card->dev, data); } return; } } static int major ; static struct idr mspro_block_disk_idr = {0, 0, 0, 0, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "mspro_block_disk_idr.lock", 0, 0UL}}}}, 0, 0}; static struct mutex mspro_block_disk_lock = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "mspro_block_disk_lock.wait_lock", 0, 0UL}}}}, {& mspro_block_disk_lock.wait_list, & mspro_block_disk_lock.wait_list}, 0, (void *)(& mspro_block_disk_lock), {0, {0, 0}, "mspro_block_disk_lock", 0, 0UL}}; static int mspro_block_complete_req(struct memstick_dev *card , int error ) ; static int mspro_block_bd_open(struct block_device *bdev , fmode_t mode ) { struct gendisk *disk ; struct mspro_block_data *msb ; int rc ; { { disk = bdev->bd_disk; msb = (struct mspro_block_data *)disk->private_data; rc = -6; ldv_mutex_lock_95(& mspro_block_disk_lock); } if ((unsigned long )msb != (unsigned long )((struct mspro_block_data *)0) && (unsigned long )msb->card != (unsigned long )((struct memstick_dev *)0)) { msb->usage_count = msb->usage_count + 1U; if ((mode & 2U) != 0U && (unsigned int )*((unsigned char *)msb + 121UL) != 0U) { rc = -30; } else { rc = 0; } } else { } { ldv_mutex_unlock_96(& mspro_block_disk_lock); } return (rc); } } static void mspro_block_disk_release(struct gendisk *disk ) { struct mspro_block_data *msb ; int disk_id ; dev_t tmp ; { { msb = (struct mspro_block_data *)disk->private_data; tmp = disk_devt(disk); disk_id = (int )((tmp & 1048575U) >> 3); ldv_mutex_lock_97(& mspro_block_disk_lock); } if ((unsigned long )msb != (unsigned long )((struct mspro_block_data *)0)) { if (msb->usage_count != 0U) { msb->usage_count = msb->usage_count - 1U; } else { } if (msb->usage_count == 0U) { { kfree((void const *)msb); disk->private_data = (void *)0; ldv_idr_remove_98(& mspro_block_disk_idr, disk_id); ldv_put_disk_99(disk); } } else { } } else { } { ldv_mutex_unlock_100(& mspro_block_disk_lock); } return; } } static void mspro_block_bd_release(struct gendisk *disk , fmode_t mode ) { { { mspro_block_disk_release(disk); } return; } } static int mspro_block_bd_getgeo(struct block_device *bdev , struct hd_geometry *geo ) { struct mspro_block_data *msb ; { msb = (struct mspro_block_data *)(bdev->bd_disk)->private_data; geo->heads = (unsigned char )msb->heads; geo->sectors = (unsigned char )msb->sectors_per_track; geo->cylinders = msb->cylinders; return (0); } } static struct block_device_operations const ms_block_bdops = {& mspro_block_bd_open, & mspro_block_bd_release, 0, 0, 0, 0, 0, 0, 0, 0, & mspro_block_bd_getgeo, 0, & __this_module}; static struct mspro_sys_attr *mspro_from_sysfs_attr(struct attribute *attr ) { struct device_attribute *dev_attr ; struct attribute const *__mptr ; struct device_attribute const *__mptr___0 ; { __mptr = (struct attribute const *)attr; dev_attr = (struct device_attribute *)__mptr; __mptr___0 = (struct device_attribute const *)dev_attr; return ((struct mspro_sys_attr *)__mptr___0 + 0xffffffffffffffc8UL); } } static char const *mspro_block_attr_name(unsigned char tag ) { { { if ((int )tag == 16) { goto case_16; } else { } if ((int )tag == 21) { goto case_21; } else { } if ((int )tag == 32) { goto case_32; } else { } if ((int )tag == 33) { goto case_33; } else { } if ((int )tag == 34) { goto case_34; } else { } if ((int )tag == 37) { goto case_37; } else { } if ((int )tag == 38) { goto case_38; } else { } if ((int )tag == 48) { goto case_48; } else { } goto switch_default; case_16: /* CIL Label */ ; return ("attr_sysinfo"); case_21: /* CIL Label */ ; return ("attr_modelname"); case_32: /* CIL Label */ ; return ("attr_mbr"); case_33: /* CIL Label */ ; return ("attr_pbr16"); case_34: /* CIL Label */ ; return ("attr_pbr32"); case_37: /* CIL Label */ ; return ("attr_specfilevalues1"); case_38: /* CIL Label */ ; return ("attr_specfilevalues2"); case_48: /* CIL Label */ ; return ("attr_devinfo"); switch_default: /* CIL Label */ ; return ((char const *)0); switch_break: /* CIL Label */ ; } } } static ssize_t mspro_block_attr_show_default(struct device *dev , struct device_attribute *attr , char *buffer ) { struct mspro_sys_attr *s_attr ; struct device_attribute const *__mptr ; ssize_t cnt ; ssize_t rc ; ssize_t tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)attr; s_attr = (struct mspro_sys_attr *)__mptr + 0xffffffffffffffc8UL; rc = 0L; cnt = 0L; goto ldv_34275; ldv_34274: ; if (cnt != 0L && ((unsigned long )cnt & 15UL) == 0UL) { if (rc != 4096L) { tmp = rc; rc = rc + 1L; *(buffer + (unsigned long )tmp) = 10; } else { } } else { } { tmp___0 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "%02x ", (int )*((unsigned char *)s_attr->data + (unsigned long )cnt)); rc = rc + (ssize_t )tmp___0; cnt = cnt + 1L; } ldv_34275: ; if ((unsigned long )cnt < s_attr->size) { goto ldv_34274; } else { } return (rc); } } static ssize_t mspro_block_attr_show_sysinfo(struct device *dev , struct device_attribute *attr , char *buffer ) { struct mspro_sys_attr *x_attr ; struct device_attribute const *__mptr ; struct mspro_sys_info *x_sys ; ssize_t rc ; int date_tz ; int date_tz_f ; int tmp ; __u16 tmp___0 ; int tmp___1 ; __u16 tmp___2 ; int tmp___3 ; __u16 tmp___4 ; int tmp___5 ; __u16 tmp___6 ; int tmp___7 ; __u16 tmp___8 ; int tmp___9 ; __u32 tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; __u16 tmp___14 ; int tmp___15 ; __u16 tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; __u16 tmp___20 ; int tmp___21 ; __u16 tmp___22 ; int tmp___23 ; __u16 tmp___24 ; int tmp___25 ; __u16 tmp___26 ; int tmp___27 ; int tmp___28 ; int tmp___29 ; __u16 tmp___30 ; int tmp___31 ; int tmp___32 ; int tmp___33 ; int tmp___34 ; { __mptr = (struct device_attribute const *)attr; x_attr = (struct mspro_sys_attr *)__mptr + 0xffffffffffffffc8UL; x_sys = (struct mspro_sys_info *)x_attr->data; rc = 0L; date_tz = 0; date_tz_f = 0; if ((unsigned int )x_sys->assembly_date[0] > 128U) { date_tz = - ((int )x_sys->assembly_date[0]); date_tz_f = date_tz & 3; date_tz = date_tz >> 2; date_tz = - date_tz; date_tz_f = date_tz_f * 15; } else if ((int )((signed char )x_sys->assembly_date[0]) >= 0) { date_tz = (int )x_sys->assembly_date[0]; date_tz_f = date_tz & 3; date_tz = date_tz >> 2; date_tz_f = date_tz_f * 15; } else { } { tmp = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "class: %x\n", (int )x_sys->class); rc = rc + (ssize_t )tmp; tmp___0 = __fswab16((int )x_sys->block_size); tmp___1 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "block size: %x\n", (int )tmp___0); rc = rc + (ssize_t )tmp___1; tmp___2 = __fswab16((int )x_sys->block_count); tmp___3 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "block count: %x\n", (int )tmp___2); rc = rc + (ssize_t )tmp___3; tmp___4 = __fswab16((int )x_sys->user_block_count); tmp___5 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "user block count: %x\n", (int )tmp___4); rc = rc + (ssize_t )tmp___5; tmp___6 = __fswab16((int )x_sys->page_size); tmp___7 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "page size: %x\n", (int )tmp___6); rc = rc + (ssize_t )tmp___7; tmp___8 = __be16_to_cpup((__be16 const *)(& x_sys->assembly_date) + 1U); tmp___9 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "assembly date: GMT%+d:%d %04u-%02u-%02u %02u:%02u:%02u\n", date_tz, date_tz_f, (int )tmp___8, (int )x_sys->assembly_date[3], (int )x_sys->assembly_date[4], (int )x_sys->assembly_date[5], (int )x_sys->assembly_date[6], (int )x_sys->assembly_date[7]); rc = rc + (ssize_t )tmp___9; tmp___10 = __fswab32(x_sys->serial_number); tmp___11 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "serial number: %x\n", tmp___10); rc = rc + (ssize_t )tmp___11; tmp___12 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "assembly maker code: %x\n", (int )x_sys->assembly_maker_code); rc = rc + (ssize_t )tmp___12; tmp___13 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "assembly model code: %02x%02x%02x\n", (int )x_sys->assembly_model_code[0], (int )x_sys->assembly_model_code[1], (int )x_sys->assembly_model_code[2]); rc = rc + (ssize_t )tmp___13; tmp___14 = __fswab16((int )x_sys->memory_maker_code); tmp___15 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "memory maker code: %x\n", (int )tmp___14); rc = rc + (ssize_t )tmp___15; tmp___16 = __fswab16((int )x_sys->memory_model_code); tmp___17 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "memory model code: %x\n", (int )tmp___16); rc = rc + (ssize_t )tmp___17; tmp___18 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "vcc: %x\n", (int )x_sys->vcc); rc = rc + (ssize_t )tmp___18; tmp___19 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "vpp: %x\n", (int )x_sys->vpp); rc = rc + (ssize_t )tmp___19; tmp___20 = __fswab16((int )x_sys->controller_number); tmp___21 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "controller number: %x\n", (int )tmp___20); rc = rc + (ssize_t )tmp___21; tmp___22 = __fswab16((int )x_sys->controller_function); tmp___23 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "controller function: %x\n", (int )tmp___22); rc = rc + (ssize_t )tmp___23; tmp___24 = __fswab16((int )x_sys->start_sector); tmp___25 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "start sector: %x\n", (int )tmp___24); rc = rc + (ssize_t )tmp___25; tmp___26 = __fswab16((int )x_sys->unit_size); tmp___27 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "unit size: %x\n", (int )tmp___26); rc = rc + (ssize_t )tmp___27; tmp___28 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "sub class: %x\n", (int )x_sys->ms_sub_class); rc = rc + (ssize_t )tmp___28; tmp___29 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "interface type: %x\n", (int )x_sys->interface_type); rc = rc + (ssize_t )tmp___29; tmp___30 = __fswab16((int )x_sys->controller_code); tmp___31 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "controller code: %x\n", (int )tmp___30); rc = rc + (ssize_t )tmp___31; tmp___32 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "format type: %x\n", (int )x_sys->format_type); rc = rc + (ssize_t )tmp___32; tmp___33 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "device type: %x\n", (int )x_sys->device_type); rc = rc + (ssize_t )tmp___33; tmp___34 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "mspro id: %s\n", (unsigned char *)(& x_sys->mspro_id)); rc = rc + (ssize_t )tmp___34; } return (rc); } } static ssize_t mspro_block_attr_show_modelname(struct device *dev , struct device_attribute *attr , char *buffer ) { struct mspro_sys_attr *s_attr ; struct device_attribute const *__mptr ; int tmp ; { { __mptr = (struct device_attribute const *)attr; s_attr = (struct mspro_sys_attr *)__mptr + 0xffffffffffffffc8UL; tmp = scnprintf(buffer, 4096UL, "%s", (char *)s_attr->data); } return ((ssize_t )tmp); } } static ssize_t mspro_block_attr_show_mbr(struct device *dev , struct device_attribute *attr , char *buffer ) { struct mspro_sys_attr *x_attr ; struct device_attribute const *__mptr ; struct mspro_mbr *x_mbr ; ssize_t rc ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { { __mptr = (struct device_attribute const *)attr; x_attr = (struct mspro_sys_attr *)__mptr + 0xffffffffffffffc8UL; x_mbr = (struct mspro_mbr *)x_attr->data; rc = 0L; tmp = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "boot partition: %x\n", (int )x_mbr->boot_partition); rc = rc + (ssize_t )tmp; tmp___0 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "start head: %x\n", (int )x_mbr->start_head); rc = rc + (ssize_t )tmp___0; tmp___1 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "start sector: %x\n", (int )x_mbr->start_sector); rc = rc + (ssize_t )tmp___1; tmp___2 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "start cylinder: %x\n", (int )x_mbr->start_cylinder); rc = rc + (ssize_t )tmp___2; tmp___3 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "partition type: %x\n", (int )x_mbr->partition_type); rc = rc + (ssize_t )tmp___3; tmp___4 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "end head: %x\n", (int )x_mbr->end_head); rc = rc + (ssize_t )tmp___4; tmp___5 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "end sector: %x\n", (int )x_mbr->end_sector); rc = rc + (ssize_t )tmp___5; tmp___6 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "end cylinder: %x\n", (int )x_mbr->end_cylinder); rc = rc + (ssize_t )tmp___6; tmp___7 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "start sectors: %x\n", x_mbr->start_sectors); rc = rc + (ssize_t )tmp___7; tmp___8 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "sectors per partition: %x\n", x_mbr->sectors_per_partition); rc = rc + (ssize_t )tmp___8; } return (rc); } } static ssize_t mspro_block_attr_show_specfile(struct device *dev , struct device_attribute *attr , char *buffer ) { struct mspro_sys_attr *x_attr ; struct device_attribute const *__mptr ; struct mspro_specfile *x_spfile ; char name[9U] ; char ext[4U] ; ssize_t rc ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { __mptr = (struct device_attribute const *)attr; x_attr = (struct mspro_sys_attr *)__mptr + 0xffffffffffffffc8UL; x_spfile = (struct mspro_specfile *)x_attr->data; rc = 0L; memcpy((void *)(& name), (void const *)(& x_spfile->name), 8UL); name[8] = 0; memcpy((void *)(& ext), (void const *)(& x_spfile->ext), 3UL); ext[3] = 0; tmp = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "name: %s\n", (char *)(& name)); rc = rc + (ssize_t )tmp; tmp___0 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "ext: %s\n", (char *)(& ext)); rc = rc + (ssize_t )tmp___0; tmp___1 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "attribute: %x\n", (int )x_spfile->attr); rc = rc + (ssize_t )tmp___1; tmp___2 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "time: %d:%d:%d\n", (int )x_spfile->time >> 11, ((int )x_spfile->time >> 5) & 63, ((int )x_spfile->time & 31) * 2); rc = rc + (ssize_t )tmp___2; tmp___3 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "date: %d-%d-%d\n", ((int )x_spfile->date >> 9) + 1980, ((int )x_spfile->date >> 5) & 15, (int )x_spfile->date & 31); rc = rc + (ssize_t )tmp___3; tmp___4 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "start cluster: %x\n", (int )x_spfile->cluster); rc = rc + (ssize_t )tmp___4; tmp___5 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "size: %x\n", x_spfile->size); rc = rc + (ssize_t )tmp___5; } return (rc); } } static ssize_t mspro_block_attr_show_devinfo(struct device *dev , struct device_attribute *attr , char *buffer ) { struct mspro_sys_attr *x_attr ; struct device_attribute const *__mptr ; struct mspro_devinfo *x_devinfo ; ssize_t rc ; __u16 tmp ; int tmp___0 ; __u16 tmp___1 ; int tmp___2 ; __u16 tmp___3 ; int tmp___4 ; __u16 tmp___5 ; int tmp___6 ; __u16 tmp___7 ; int tmp___8 ; { { __mptr = (struct device_attribute const *)attr; x_attr = (struct mspro_sys_attr *)__mptr + 0xffffffffffffffc8UL; x_devinfo = (struct mspro_devinfo *)x_attr->data; rc = 0L; tmp = __fswab16((int )x_devinfo->cylinders); tmp___0 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "cylinders: %x\n", (int )tmp); rc = rc + (ssize_t )tmp___0; tmp___1 = __fswab16((int )x_devinfo->heads); tmp___2 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "heads: %x\n", (int )tmp___1); rc = rc + (ssize_t )tmp___2; tmp___3 = __fswab16((int )x_devinfo->bytes_per_track); tmp___4 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "bytes per track: %x\n", (int )tmp___3); rc = rc + (ssize_t )tmp___4; tmp___5 = __fswab16((int )x_devinfo->bytes_per_sector); tmp___6 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "bytes per sector: %x\n", (int )tmp___5); rc = rc + (ssize_t )tmp___6; tmp___7 = __fswab16((int )x_devinfo->sectors_per_track); tmp___8 = scnprintf(buffer + (unsigned long )rc, 4096UL - (unsigned long )rc, "sectors per track: %x\n", (int )tmp___7); rc = rc + (ssize_t )tmp___8; } return (rc); } } static sysfs_show_t mspro_block_attr_show(unsigned char tag ) { { { if ((int )tag == 16) { goto case_16; } else { } if ((int )tag == 21) { goto case_21; } else { } if ((int )tag == 32) { goto case_32; } else { } if ((int )tag == 37) { goto case_37; } else { } if ((int )tag == 38) { goto case_38; } else { } if ((int )tag == 48) { goto case_48; } else { } goto switch_default; case_16: /* CIL Label */ ; return (& mspro_block_attr_show_sysinfo); case_21: /* CIL Label */ ; return (& mspro_block_attr_show_modelname); case_32: /* CIL Label */ ; return (& mspro_block_attr_show_mbr); case_37: /* CIL Label */ ; case_38: /* CIL Label */ ; return (& mspro_block_attr_show_specfile); case_48: /* CIL Label */ ; return (& mspro_block_attr_show_devinfo); switch_default: /* CIL Label */ ; return (& mspro_block_attr_show_default); switch_break: /* CIL Label */ ; } } } static int h_mspro_block_req_init(struct memstick_dev *card , struct memstick_request **mrq ) { struct mspro_block_data *msb ; void *tmp ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; *mrq = & card->current_mrq; card->next_request = msb->mrq_handler; } return (0); } } static int h_mspro_block_default(struct memstick_dev *card , struct memstick_request **mrq ) { int tmp ; { { tmp = mspro_block_complete_req(card, (*mrq)->error); } return (tmp); } } static int h_mspro_block_default_bad(struct memstick_dev *card , struct memstick_request **mrq ) { { return (-6); } } static int h_mspro_block_get_ro(struct memstick_dev *card , struct memstick_request **mrq ) { struct mspro_block_data *msb ; void *tmp ; int tmp___0 ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; } if ((*mrq)->error == 0) { if ((int )(*mrq)->__annonCompField79.__annonCompField78.data[2UL] & 1) { msb->read_only = 1U; } else { msb->read_only = 0U; } } else { } { tmp___0 = mspro_block_complete_req(card, (*mrq)->error); } return (tmp___0); } } static int h_mspro_block_wait_for_ced(struct memstick_dev *card , struct memstick_request **mrq ) { struct _ddebug descriptor ; long tmp ; int tmp___0 ; { { descriptor.modname = "mspro_block"; descriptor.function = "h_mspro_block_wait_for_ced"; descriptor.filename = "drivers/memstick/core/mspro_block.c"; descriptor.format = "wait for ced: value %x\n"; descriptor.lineno = 566U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& card->dev), "wait for ced: value %x\n", (int )(*mrq)->__annonCompField79.__annonCompField78.data[0]); } } else { } if ((*mrq)->error == 0) { if (((int )(*mrq)->__annonCompField79.__annonCompField78.data[0] & 65) != 0) { (*mrq)->error = -14; } else if ((int )((signed char )(*mrq)->__annonCompField79.__annonCompField78.data[0]) >= 0) { return (0); } else { } } else { } { tmp___0 = mspro_block_complete_req(card, (*mrq)->error); } return (tmp___0); } } static int h_mspro_block_transfer_data(struct memstick_dev *card , struct memstick_request **mrq ) { struct mspro_block_data *msb ; void *tmp ; unsigned char t_val ; struct scatterlist t_sg ; size_t t_offset ; int tmp___0 ; int tmp___1 ; struct page *tmp___2 ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; t_val = 0U; t_sg.sg_magic = 0UL; t_sg.page_link = 0UL; t_sg.offset = 0U; t_sg.length = 0U; t_sg.dma_address = 0ULL; t_sg.dma_length = 0U; } if ((*mrq)->error != 0) { { tmp___0 = mspro_block_complete_req(card, (*mrq)->error); } return (tmp___0); } else { } { if ((int )(*mrq)->tpc == 11) { goto case_11; } else { } if ((int )(*mrq)->tpc == 14) { goto case_14; } else { } if ((int )(*mrq)->tpc == 7) { goto case_7; } else { } if ((int )(*mrq)->tpc == 2) { goto case_2; } else { } if ((int )(*mrq)->tpc == 13) { goto case_13; } else { } goto switch_default; case_11: /* CIL Label */ { memstick_init_req(*mrq, 14, (void const *)(& msb->transfer_cmd), 1UL); (*mrq)->need_card_int = 1U; } return (0); case_14: /* CIL Label */ { t_val = (*mrq)->int_reg; memstick_init_req(*mrq, 7, (void const *)0, 1UL); } if ((int )msb->caps & 1) { goto has_int_reg; } else { } return (0); case_7: /* CIL Label */ t_val = (*mrq)->__annonCompField79.__annonCompField78.data[0]; has_int_reg: ; if (((int )t_val & 65) != 0) { { t_val = 37U; memstick_init_req(*mrq, 14, (void const *)(& t_val), 1UL); card->next_request = & h_mspro_block_default; } return (0); } else { } if (msb->current_page == msb->req_sg[msb->current_seg].length / (unsigned int )msb->page_size) { msb->current_page = 0U; msb->current_seg = msb->current_seg + 1U; if (msb->current_seg == msb->seg_count) { if ((int )((signed char )t_val) < 0) { { tmp___1 = mspro_block_complete_req(card, 0); } return (tmp___1); } else { { card->next_request = & h_mspro_block_wait_for_ced; memstick_init_req(*mrq, 7, (void const *)0, 1UL); } return (0); } } else { } } else { } if (((int )t_val & 32) == 0) { { memstick_init_req(*mrq, 7, (void const *)0, 1UL); } return (0); } else { } { t_offset = (size_t )msb->req_sg[msb->current_seg].offset; t_offset = t_offset + (size_t )(msb->current_page * (unsigned int )msb->page_size); tmp___2 = sg_page((struct scatterlist *)(& msb->req_sg) + (unsigned long )msb->current_seg); sg_set_page(& t_sg, (struct page *)-24189255811072L + ((unsigned long )(((long )tmp___2 + 24189255811072L) / 64L) + (t_offset >> 12)), (unsigned int )msb->page_size, (unsigned int )t_offset & 4095U); memstick_init_req_sg(*mrq, (unsigned int )*((unsigned char *)msb + 121UL) == 0U ? 2 : 13, (struct scatterlist const *)(& t_sg)); (*mrq)->need_card_int = 1U; } return (0); case_2: /* CIL Label */ ; case_13: /* CIL Label */ msb->current_page = msb->current_page + 1U; if ((int )msb->caps & 1) { t_val = (*mrq)->int_reg; goto has_int_reg; } else { { memstick_init_req(*mrq, 7, (void const *)0, 1UL); } return (0); } switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/memstick/core/mspro_block.c"), "i" (661), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } return (0); } } static void h_mspro_block_setup_cmd(struct memstick_dev *card , u64 offset , size_t length ) { struct mspro_block_data *msb ; void *tmp ; struct mspro_param_register param ; __u16 tmp___0 ; uint32_t __base ; uint32_t __rem ; __u32 tmp___1 ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; tmp___0 = __fswab16((int )((unsigned short )(length / (size_t )msb->page_size))); param.system = msb->system; param.data_count = tmp___0; param.data_address = 0U; param.tpc_param = 0U; __base = (uint32_t )msb->page_size; __rem = (uint32_t )(offset % (u64 )__base); offset = offset / (u64 )__base; tmp___1 = __fswab32((unsigned int )offset); param.data_address = tmp___1; card->next_request = & h_mspro_block_req_init; msb->mrq_handler = & h_mspro_block_transfer_data; memstick_init_req(& card->current_mrq, 11, (void const *)(& param), 8UL); } return; } } static int mspro_block_issue_req(struct memstick_dev *card , int chunk ) { struct mspro_block_data *msb ; void *tmp ; u64 t_off ; unsigned int count ; int tmp___0 ; bool tmp___1 ; sector_t tmp___2 ; struct _ddebug descriptor ; long tmp___3 ; struct _ddebug descriptor___0 ; long tmp___4 ; struct _ddebug descriptor___1 ; long tmp___5 ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; } try_again: ; goto ldv_34396; ldv_34397: { msb->current_page = 0U; msb->current_seg = 0U; tmp___0 = blk_rq_map_sg((msb->block_req)->q, msb->block_req, (struct scatterlist *)(& msb->req_sg)); msb->seg_count = (unsigned int )tmp___0; } if (msb->seg_count == 0U) { { tmp___1 = __blk_end_request_cur(msb->block_req, -12); chunk = (int )tmp___1; } goto ldv_34396; } else { } { tmp___2 = blk_rq_pos((struct request const *)msb->block_req); t_off = (u64 )tmp___2; t_off = t_off << 9; count = blk_rq_bytes((struct request const *)msb->block_req); (*(msb->setup_transfer))(card, t_off, (size_t )count); msb->data_dir = (unsigned int )((unsigned char )(msb->block_req)->cmd_flags) & 1U; msb->transfer_cmd = (unsigned int )*((unsigned char *)msb + 121UL) == 0U ? 32U : 33U; memstick_new_req(card->host); } return (0); ldv_34396: ; if (chunk != 0) { goto ldv_34397; } else { } { descriptor.modname = "mspro_block"; descriptor.function = "mspro_block_issue_req"; descriptor.filename = "drivers/memstick/core/mspro_block.c"; descriptor.format = "blk_fetch\n"; descriptor.lineno = 731U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& card->dev), "blk_fetch\n"); } } else { } { msb->block_req = blk_fetch_request(msb->queue); } if ((unsigned long )msb->block_req == (unsigned long )((struct request *)0)) { { descriptor___0.modname = "mspro_block"; descriptor___0.function = "mspro_block_issue_req"; descriptor___0.filename = "drivers/memstick/core/mspro_block.c"; descriptor___0.format = "issue end\n"; descriptor___0.lineno = 734U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& card->dev), "issue end\n"); } } else { } return (-11); } else { } { descriptor___1.modname = "mspro_block"; descriptor___1.function = "mspro_block_issue_req"; descriptor___1.filename = "drivers/memstick/core/mspro_block.c"; descriptor___1.format = "trying again\n"; descriptor___1.lineno = 738U; descriptor___1.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& card->dev), "trying again\n"); } } else { } chunk = 1; goto try_again; } } static int mspro_block_complete_req(struct memstick_dev *card , int error ) { struct mspro_block_data *msb ; void *tmp ; int chunk ; int cnt ; unsigned int t_len ; unsigned long flags ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; int tmp___2 ; bool tmp___3 ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; t_len = 0U; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_101(& msb->q_lock); descriptor.modname = "mspro_block"; descriptor.function = "mspro_block_complete_req"; descriptor.filename = "drivers/memstick/core/mspro_block.c"; descriptor.format = "complete %d, %d\n"; descriptor.lineno = 752U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& card->dev), "complete %d, %d\n", (unsigned int )*((unsigned char *)msb + 121UL) != 0U, error); } } else { } if ((unsigned int )*((unsigned char *)msb + 121UL) != 0U) { if (error == -11) { error = 0; } else { } if (error != 0 || (unsigned int )card->current_mrq.tpc == 37U) { if ((unsigned int )*((unsigned char *)msb + 121UL) == 0U) { cnt = 0; goto ldv_34415; ldv_34414: t_len = t_len + msb->req_sg[cnt].length / (unsigned int )msb->page_size; cnt = cnt + 1; ldv_34415: ; if ((unsigned int )cnt < msb->current_seg) { goto ldv_34414; } else { } if (msb->current_page != 0U) { t_len = (t_len + msb->current_page) - 1U; } else { } t_len = t_len * (unsigned int )msb->page_size; } else { } } else { { t_len = blk_rq_bytes((struct request const *)msb->block_req); } } { descriptor___0.modname = "mspro_block"; descriptor___0.function = "mspro_block_complete_req"; descriptor___0.filename = "drivers/memstick/core/mspro_block.c"; descriptor___0.format = "transferred %x (%d)\n"; descriptor___0.lineno = 773U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& card->dev), "transferred %x (%d)\n", t_len, error); } } else { } if (error != 0 && t_len == 0U) { { tmp___2 = blk_rq_cur_bytes((struct request const *)msb->block_req); t_len = (unsigned int )tmp___2; } } else { } { tmp___3 = __blk_end_request(msb->block_req, error, t_len); chunk = (int )tmp___3; error = mspro_block_issue_req(card, chunk); } if (error == 0) { goto out; } else { msb->has_request = 0U; } } else if (error == 0) { error = -11; } else { } { card->next_request = & h_mspro_block_default_bad; complete_all(& card->mrq_complete); } out: { ldv_spin_unlock_irqrestore_102(& msb->q_lock, flags); } return (error); } } static void mspro_block_stop(struct memstick_dev *card ) { struct mspro_block_data *msb ; void *tmp ; int rc ; unsigned long flags ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; rc = 0; } ldv_34426: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_103(& msb->q_lock); } if ((unsigned int )*((unsigned char *)msb + 121UL) == 0U) { { blk_stop_queue(msb->queue); rc = 1; } } else { } { ldv_spin_unlock_irqrestore_102(& msb->q_lock, flags); } if (rc != 0) { goto ldv_34425; } else { } { ldv_wait_for_completion_105(& card->mrq_complete); } goto ldv_34426; ldv_34425: ; return; } } static void mspro_block_start(struct memstick_dev *card ) { struct mspro_block_data *msb ; void *tmp ; unsigned long flags ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(& msb->q_lock); blk_start_queue(msb->queue); ldv_spin_unlock_irqrestore_102(& msb->q_lock, flags); } return; } } static int mspro_block_prepare_req(struct request_queue *q , struct request *req ) { { if ((unsigned int )req->cmd_type - 1U > 1U) { { blk_dump_rq_flags(req, (char *)"MSPro unsupported request"); } return (1); } else { } req->cmd_flags = req->cmd_flags | 1048576ULL; return (0); } } static void mspro_block_submit_req(struct request_queue *q ) { struct memstick_dev *card ; struct mspro_block_data *msb ; void *tmp ; struct request *req ; int tmp___0 ; { { card = (struct memstick_dev *)q->queuedata; tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; req = (struct request *)0; } if ((unsigned int )*((unsigned char *)msb + 121UL) != 0U) { return; } else { } if ((unsigned int )*((unsigned char *)msb + 121UL) != 0U) { goto ldv_34443; ldv_34442: { __blk_end_request_all(req, -19); } ldv_34443: { req = blk_fetch_request(q); } if ((unsigned long )req != (unsigned long )((struct request *)0)) { goto ldv_34442; } else { } return; } else { } { msb->has_request = 1U; tmp___0 = mspro_block_issue_req(card, 0); } if (tmp___0 != 0) { msb->has_request = 0U; } else { } return; } } static int mspro_block_wait_for_ced(struct memstick_dev *card ) { struct mspro_block_data *msb ; void *tmp ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; card->next_request = & h_mspro_block_req_init; msb->mrq_handler = & h_mspro_block_wait_for_ced; memstick_init_req(& card->current_mrq, 7, (void const *)0, 1UL); memstick_new_req(card->host); ldv_wait_for_completion_108(& card->mrq_complete); } return (card->current_mrq.error); } } static int mspro_block_set_interface(struct memstick_dev *card , unsigned char sys_reg ) { struct memstick_host *host ; struct mspro_block_data *msb ; void *tmp ; struct mspro_param_register param ; { { host = card->host; tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; param.system = sys_reg; param.data_count = 0U; param.data_address = 0U; param.tpc_param = 0U; card->next_request = & h_mspro_block_req_init; msb->mrq_handler = & h_mspro_block_default; memstick_init_req(& card->current_mrq, 11, (void const *)(& param), 8UL); memstick_new_req(host); ldv_wait_for_completion_109(& card->mrq_complete); } return (card->current_mrq.error); } } static int mspro_block_switch_interface(struct memstick_dev *card ) { struct memstick_host *host ; struct mspro_block_data *msb ; void *tmp ; int rc ; char const *tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; char const *tmp___3 ; char const *tmp___4 ; { { host = card->host; tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; rc = 0; } try_again: ; if ((msb->caps & 2U) != 0U) { { rc = mspro_block_set_interface(card, 0); } } else { return (0); } if (rc != 0) { { tmp___0 = dev_name((struct device const *)(& card->dev)); printk("\f%s: could not switch to 4-bit mode, error %d\n", tmp___0, rc); } return (0); } else { } { msb->system = 0U; (*(host->set_param))(host, 2, 1); tmp___1 = dev_name((struct device const *)(& card->dev)); printk("\016%s: switching to 4-bit parallel mode\n", tmp___1); } if ((msb->caps & 4U) != 0U) { { rc = mspro_block_set_interface(card, 64); } if (rc == 0) { { msb->system = 64U; (*(host->set_param))(host, 2, 2); tmp___2 = dev_name((struct device const *)(& card->dev)); printk("\016%s: switching to 8-bit parallel mode\n", tmp___2); } } else { { tmp___3 = dev_name((struct device const *)(& card->dev)); printk("\f%s: could not switch to 8-bit mode, error %d\n", tmp___3, rc); } } } else { } { card->next_request = & h_mspro_block_req_init; msb->mrq_handler = & h_mspro_block_default; memstick_init_req(& card->current_mrq, 7, (void const *)0, 1UL); memstick_new_req(card->host); ldv_wait_for_completion_110(& card->mrq_complete); rc = card->current_mrq.error; } if (rc != 0) { { tmp___4 = dev_name((struct device const *)(& card->dev)); printk("\f%s: interface error, trying to fall back to serial\n", tmp___4); msb->system = 128U; (*(host->set_param))(host, 1, 0); msleep(10U); (*(host->set_param))(host, 1, 1); (*(host->set_param))(host, 2, 0); rc = memstick_set_rw_addr(card); } if (rc == 0) { { rc = mspro_block_set_interface(card, (int )msb->system); } } else { } if (rc == 0) { { msleep(150U); rc = mspro_block_wait_for_ced(card); } if (rc != 0) { return (rc); } else { } if ((msb->caps & 4U) != 0U) { msb->caps = msb->caps & 4294967291U; goto try_again; } else { } } else { } } else { } return (rc); } } static int mspro_block_read_attributes(struct memstick_dev *card ) { struct mspro_block_data *msb ; void *tmp ; struct mspro_attribute *attr ; struct mspro_sys_attr *s_attr ; unsigned char *buffer ; int cnt ; int rc ; int attr_count ; unsigned int addr ; unsigned int attr_offset ; unsigned int attr_len ; void *tmp___0 ; __u16 tmp___1 ; char const *tmp___2 ; __u16 tmp___3 ; char const *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; __u32 tmp___8 ; __u32 tmp___9 ; struct _ddebug descriptor ; long tmp___10 ; char const *tmp___11 ; char const *tmp___12 ; struct lock_class_key __key ; void *tmp___13 ; struct _ddebug descriptor___0 ; long tmp___14 ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; attr = (struct mspro_attribute *)0; s_attr = (struct mspro_sys_attr *)0; buffer = (unsigned char *)0U; attr_offset = 0U; attr_len = (unsigned int )msb->page_size; tmp___0 = kmalloc((size_t )msb->page_size, 208U); attr = (struct mspro_attribute *)tmp___0; } if ((unsigned long )attr == (unsigned long )((struct mspro_attribute *)0)) { return (-12); } else { } { sg_init_one((struct scatterlist *)(& msb->req_sg), (void const *)attr, (unsigned int )msb->page_size); msb->seg_count = 1U; msb->current_seg = 0U; msb->current_page = 0U; msb->data_dir = 0U; msb->transfer_cmd = 36U; (*(msb->setup_transfer))(card, (u64 )attr_offset, (size_t )attr_len); memstick_new_req(card->host); ldv_wait_for_completion_111(& card->mrq_complete); } if (card->current_mrq.error != 0) { rc = card->current_mrq.error; goto out_free_attr; } else { } { tmp___3 = __fswab16((int )attr->signature); } if ((unsigned int )tmp___3 != 42435U) { { tmp___1 = __fswab16((int )attr->signature); tmp___2 = dev_name((struct device const *)(& card->dev)); printk("\v%s: unrecognized device signature %x\n", tmp___2, (int )tmp___1); rc = -19; } goto out_free_attr; } else { } if ((unsigned int )attr->count > 41U) { { tmp___4 = dev_name((struct device const *)(& card->dev)); printk("\f%s: way too many attribute entries\n", tmp___4); attr_count = 41; } } else { attr_count = (int )attr->count; } { tmp___5 = kcalloc((size_t )(attr_count + 1), 8UL, 208U); msb->attr_group.attrs = (struct attribute **)tmp___5; } if ((unsigned long )msb->attr_group.attrs == (unsigned long )((struct attribute **)0)) { rc = -12; goto out_free_attr; } else { } { msb->attr_group.name = "media_attributes"; tmp___6 = kmalloc((size_t )attr_len, 208U); buffer = (unsigned char *)tmp___6; } if ((unsigned long )buffer == (unsigned long )((unsigned char *)0U)) { rc = -12; goto out_free_attr; } else { } { memcpy((void *)buffer, (void const *)attr, (size_t )attr_len); cnt = 0; } goto ldv_34484; ldv_34483: { tmp___7 = kzalloc(104UL, 208U); s_attr = (struct mspro_sys_attr *)tmp___7; } if ((unsigned long )s_attr == (unsigned long )((struct mspro_sys_attr *)0)) { rc = -12; goto out_free_buffer; } else { } { *(msb->attr_group.attrs + (unsigned long )cnt) = & s_attr->dev_attr.attr; tmp___8 = __fswab32(attr->entries[cnt].address); addr = tmp___8; tmp___9 = __fswab32(attr->entries[cnt].size); s_attr->size = (size_t )tmp___9; descriptor.modname = "mspro_block"; descriptor.function = "mspro_block_read_attributes"; descriptor.filename = "drivers/memstick/core/mspro_block.c"; descriptor.format = "adding attribute %d: id %x, address %x, size %zx\n"; descriptor.lineno = 1054U; descriptor.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___10 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& card->dev), "adding attribute %d: id %x, address %x, size %zx\n", cnt, (int )attr->entries[cnt].id, addr, s_attr->size); } } else { } { s_attr->id = attr->entries[cnt].id; tmp___12 = mspro_block_attr_name((int )s_attr->id); } if ((unsigned long )tmp___12 != (unsigned long )((char const *)0)) { { tmp___11 = mspro_block_attr_name((int )attr->entries[cnt].id); snprintf((char *)(& s_attr->name), 32UL, "%s", tmp___11); } } else { { snprintf((char *)(& s_attr->name), 32UL, "attr_x%02x", (int )attr->entries[cnt].id); } } { s_attr->dev_attr.attr.key = & __key; s_attr->dev_attr.attr.name = (char const *)(& s_attr->name); s_attr->dev_attr.attr.mode = 292U; s_attr->dev_attr.show = mspro_block_attr_show((int )s_attr->id); } if (s_attr->size == 0UL) { goto ldv_34481; } else { } { s_attr->data = kmalloc(s_attr->size, 208U); } if ((unsigned long )s_attr->data == (unsigned long )((void *)0)) { rc = -12; goto out_free_buffer; } else { } if (addr / (unsigned int )msb->page_size == attr_offset / (unsigned int )msb->page_size && (((size_t )addr + s_attr->size) - 1UL) / (size_t )msb->page_size == (size_t )(attr_offset / (unsigned int )msb->page_size)) { { memcpy(s_attr->data, (void const *)buffer + (unsigned long )(addr % (unsigned int )msb->page_size), s_attr->size); } goto ldv_34481; } else { } attr_offset = (addr / (unsigned int )msb->page_size) * (unsigned int )msb->page_size; if ((size_t )(attr_offset + attr_len) < (size_t )addr + s_attr->size) { { kfree((void const *)buffer); attr_len = (unsigned int )(((size_t )addr + s_attr->size) / (size_t )msb->page_size + 1UL) * (unsigned int )msb->page_size - attr_offset; tmp___13 = kmalloc((size_t )attr_len, 208U); buffer = (unsigned char *)tmp___13; } if ((unsigned long )buffer == (unsigned long )((unsigned char *)0U)) { rc = -12; goto out_free_attr; } else { } } else { } { sg_init_one((struct scatterlist *)(& msb->req_sg), (void const *)buffer, attr_len); msb->seg_count = 1U; msb->current_seg = 0U; msb->current_page = 0U; msb->data_dir = 0U; msb->transfer_cmd = 36U; descriptor___0.modname = "mspro_block"; descriptor___0.function = "mspro_block_read_attributes"; descriptor___0.filename = "drivers/memstick/core/mspro_block.c"; descriptor___0.format = "reading attribute range %x, %x\n"; descriptor___0.lineno = 1106U; descriptor___0.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___14 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& card->dev), "reading attribute range %x, %x\n", attr_offset, attr_len); } } else { } { (*(msb->setup_transfer))(card, (u64 )attr_offset, (size_t )attr_len); memstick_new_req(card->host); ldv_wait_for_completion_112(& card->mrq_complete); } if (card->current_mrq.error != 0) { rc = card->current_mrq.error; goto out_free_buffer; } else { } { memcpy(s_attr->data, (void const *)buffer + (unsigned long )(addr % (unsigned int )msb->page_size), s_attr->size); } ldv_34481: cnt = cnt + 1; ldv_34484: ; if (cnt < attr_count) { goto ldv_34483; } else { } rc = 0; out_free_buffer: { kfree((void const *)buffer); } out_free_attr: { kfree((void const *)attr); } return (rc); } } static int mspro_block_init_card(struct memstick_dev *card ) { struct mspro_block_data *msb ; void *tmp ; struct memstick_host *host ; int rc ; int tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; struct _ddebug descriptor___0 ; long tmp___2 ; struct _ddebug descriptor___1 ; long tmp___3 ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; host = card->host; rc = 0; msb->system = 128U; msb->setup_transfer = & h_mspro_block_setup_cmd; card->reg_addr.r_offset = 0U; card->reg_addr.r_length = 4U; card->reg_addr.w_offset = 16U; card->reg_addr.w_length = 8U; tmp___0 = memstick_set_rw_addr(card); } if (tmp___0 != 0) { return (-5); } else { } { msb->caps = host->caps; msleep(150U); rc = mspro_block_wait_for_ced(card); } if (rc != 0) { return (rc); } else { } { rc = mspro_block_switch_interface(card); } if (rc != 0) { return (rc); } else { } { descriptor.modname = "mspro_block"; descriptor.function = "mspro_block_init_card"; descriptor.filename = "drivers/memstick/core/mspro_block.c"; descriptor.format = "card activated\n"; descriptor.lineno = 1156U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& card->dev), "card activated\n"); } } else { } if ((unsigned int )msb->system != 128U) { msb->caps = msb->caps | 1U; } else { } { card->next_request = & h_mspro_block_req_init; msb->mrq_handler = & h_mspro_block_get_ro; memstick_init_req(& card->current_mrq, 4, (void const *)0, 4UL); memstick_new_req(card->host); ldv_wait_for_completion_113(& card->mrq_complete); } if (card->current_mrq.error != 0) { return (card->current_mrq.error); } else { } { descriptor___0.modname = "mspro_block"; descriptor___0.function = "mspro_block_init_card"; descriptor___0.filename = "drivers/memstick/core/mspro_block.c"; descriptor___0.format = "card r/w status %d\n"; descriptor___0.lineno = 1169U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& card->dev), "card r/w status %d\n", (unsigned int )*((unsigned char *)msb + 121UL) == 0U); } } else { } { msb->page_size = 512U; rc = mspro_block_read_attributes(card); } if (rc != 0) { return (rc); } else { } { descriptor___1.modname = "mspro_block"; descriptor___1.function = "mspro_block_init_card"; descriptor___1.filename = "drivers/memstick/core/mspro_block.c"; descriptor___1.format = "attributes loaded\n"; descriptor___1.lineno = 1176U; descriptor___1.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& card->dev), "attributes loaded\n"); } } else { } return (0); } } static int mspro_block_init_disk(struct memstick_dev *card ) { struct mspro_block_data *msb ; void *tmp ; struct memstick_host *host ; struct mspro_devinfo *dev_info ; struct mspro_sys_info *sys_info ; struct mspro_sys_attr *s_attr ; int rc ; int disk_id ; u64 limit ; unsigned long capacity ; __u16 tmp___0 ; __u16 tmp___1 ; __u16 tmp___2 ; __u16 tmp___3 ; __u16 tmp___4 ; __u16 tmp___5 ; struct _ddebug descriptor ; long tmp___6 ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; host = card->host; dev_info = (struct mspro_devinfo *)0; sys_info = (struct mspro_sys_info *)0; s_attr = (struct mspro_sys_attr *)0; limit = 0xffffffffffffffffULL; } if ((unsigned long )host->dev.dma_mask != (unsigned long )((u64 *)0ULL) && *(host->dev.dma_mask) != 0ULL) { limit = *(host->dev.dma_mask); } else { } rc = 0; goto ldv_34509; ldv_34508: { s_attr = mspro_from_sysfs_attr(*(msb->attr_group.attrs + (unsigned long )rc)); } if ((unsigned int )s_attr->id == 48U) { dev_info = (struct mspro_devinfo *)s_attr->data; } else if ((unsigned int )s_attr->id == 16U) { sys_info = (struct mspro_sys_info *)s_attr->data; } else { } rc = rc + 1; ldv_34509: ; if ((unsigned long )*(msb->attr_group.attrs + (unsigned long )rc) != (unsigned long )((struct attribute *)0)) { goto ldv_34508; } else { } if ((unsigned long )dev_info == (unsigned long )((struct mspro_devinfo *)0) || (unsigned long )sys_info == (unsigned long )((struct mspro_sys_info *)0)) { return (-19); } else { } { tmp___0 = __fswab16((int )dev_info->cylinders); msb->cylinders = tmp___0; tmp___1 = __fswab16((int )dev_info->heads); msb->heads = tmp___1; tmp___2 = __fswab16((int )dev_info->sectors_per_track); msb->sectors_per_track = tmp___2; tmp___3 = __fswab16((int )sys_info->unit_size); msb->page_size = tmp___3; ldv_mutex_lock_114(& mspro_block_disk_lock); disk_id = ldv_idr_alloc_115(& mspro_block_disk_idr, (void *)card, 0, 256, 208U); ldv_mutex_unlock_116(& mspro_block_disk_lock); } if (disk_id < 0) { return (disk_id); } else { } { msb->disk = ldv_alloc_disk_117(8); } if ((unsigned long )msb->disk == (unsigned long )((struct gendisk *)0)) { rc = -12; goto out_release_id; } else { } { msb->queue = ldv_blk_init_queue_118(& mspro_block_submit_req, & msb->q_lock); } if ((unsigned long )msb->queue == (unsigned long )((struct request_queue *)0)) { rc = -12; goto out_put_disk; } else { } { (msb->queue)->queuedata = (void *)card; blk_queue_prep_rq(msb->queue, & mspro_block_prepare_req); blk_queue_bounce_limit(msb->queue, limit); blk_queue_max_hw_sectors(msb->queue, 131071U); blk_queue_max_segments(msb->queue, 32); blk_queue_max_segment_size(msb->queue, (unsigned int )((int )msb->page_size * 131071)); (msb->disk)->major = major; (msb->disk)->first_minor = disk_id << 3; (msb->disk)->fops = & ms_block_bdops; msb->usage_count = 1U; (msb->disk)->private_data = (void *)msb; (msb->disk)->queue = msb->queue; (msb->disk)->driverfs_dev = & card->dev; sprintf((char *)(& (msb->disk)->disk_name), "mspblk%d", disk_id); blk_queue_logical_block_size(msb->queue, (int )msb->page_size); tmp___4 = __fswab16((int )sys_info->user_block_count); capacity = (unsigned long )tmp___4; tmp___5 = __fswab16((int )sys_info->block_size); capacity = capacity * (unsigned long )tmp___5; capacity = capacity * (unsigned long )((int )msb->page_size >> 9); set_capacity(msb->disk, capacity); descriptor.modname = "mspro_block"; descriptor.function = "mspro_block_init_disk"; descriptor.filename = "drivers/memstick/core/mspro_block.c"; descriptor.format = "capacity set %ld\n"; descriptor.lineno = 1256U; descriptor.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& card->dev), "capacity set %ld\n", capacity); } } else { } { ldv_add_disk_119(msb->disk); msb->active = 1U; } return (0); out_put_disk: { ldv_put_disk_120(msb->disk); } out_release_id: { ldv_mutex_lock_121(& mspro_block_disk_lock); ldv_idr_remove_122(& mspro_block_disk_idr, disk_id); ldv_mutex_unlock_123(& mspro_block_disk_lock); } return (rc); } } static void mspro_block_data_clear(struct mspro_block_data *msb ) { int cnt ; struct mspro_sys_attr *s_attr ; { if ((unsigned long )msb->attr_group.attrs != (unsigned long )((struct attribute **)0)) { cnt = 0; goto ldv_34521; ldv_34520: { s_attr = mspro_from_sysfs_attr(*(msb->attr_group.attrs + (unsigned long )cnt)); kfree((void const *)s_attr->data); kfree((void const *)s_attr); cnt = cnt + 1; } ldv_34521: ; if ((unsigned long )*(msb->attr_group.attrs + (unsigned long )cnt) != (unsigned long )((struct attribute *)0)) { goto ldv_34520; } else { } { kfree((void const *)msb->attr_group.attrs); } } else { } msb->card = (struct memstick_dev *)0; return; } } static int mspro_block_check_card(struct memstick_dev *card ) { struct mspro_block_data *msb ; void *tmp ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; } return ((unsigned int )*((unsigned char *)msb + 121UL) != 0U); } } static int mspro_block_probe(struct memstick_dev *card ) { struct mspro_block_data *msb ; int rc ; void *tmp ; struct lock_class_key __key ; { { rc = 0; tmp = kzalloc(1472UL, 208U); msb = (struct mspro_block_data *)tmp; } if ((unsigned long )msb == (unsigned long )((struct mspro_block_data *)0)) { return (-12); } else { } { memstick_set_drvdata(card, (void *)msb); msb->card = card; spinlock_check(& msb->q_lock); __raw_spin_lock_init(& msb->q_lock.__annonCompField18.rlock, "&(&msb->q_lock)->rlock", & __key); rc = mspro_block_init_card(card); } if (rc != 0) { goto out_free; } else { } { rc = ldv_sysfs_create_group_124(& card->dev.kobj, (struct attribute_group const *)(& msb->attr_group)); } if (rc != 0) { goto out_free; } else { } { rc = mspro_block_init_disk(card); } if (rc == 0) { card->check = & mspro_block_check_card; card->stop = & mspro_block_stop; card->start = & mspro_block_start; return (0); } else { } { ldv_sysfs_remove_group_125(& card->dev.kobj, (struct attribute_group const *)(& msb->attr_group)); } out_free: { memstick_set_drvdata(card, (void *)0); mspro_block_data_clear(msb); kfree((void const *)msb); } return (rc); } } static void mspro_block_remove(struct memstick_dev *card ) { struct mspro_block_data *msb ; void *tmp ; unsigned long flags ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126(& msb->q_lock); msb->eject = 1U; blk_start_queue(msb->queue); ldv_spin_unlock_irqrestore_102(& msb->q_lock, flags); ldv_del_gendisk_128(msb->disk); descriptor.modname = "mspro_block"; descriptor.function = "mspro_block_remove"; descriptor.filename = "drivers/memstick/core/mspro_block.c"; descriptor.format = "mspro block remove\n"; descriptor.lineno = 1344U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& card->dev), "mspro block remove\n"); } } else { } { ldv_blk_cleanup_queue_129(msb->queue); msb->queue = (struct request_queue *)0; ldv_sysfs_remove_group_130(& card->dev.kobj, (struct attribute_group const *)(& msb->attr_group)); ldv_mutex_lock_131(& mspro_block_disk_lock); mspro_block_data_clear(msb); ldv_mutex_unlock_132(& mspro_block_disk_lock); mspro_block_disk_release(msb->disk); memstick_set_drvdata(card, (void *)0); } return; } } static int mspro_block_suspend(struct memstick_dev *card , pm_message_t state ) { struct mspro_block_data *msb ; void *tmp ; unsigned long flags ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(& msb->q_lock); blk_stop_queue(msb->queue); msb->active = 0U; ldv_spin_unlock_irqrestore_102(& msb->q_lock, flags); } return (0); } } static int mspro_block_resume(struct memstick_dev *card ) { struct mspro_block_data *msb ; void *tmp ; unsigned long flags ; int rc ; struct mspro_block_data *new_msb ; struct memstick_host *host ; struct mspro_sys_attr *s_attr ; struct mspro_sys_attr *r_attr ; unsigned char cnt ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = memstick_get_drvdata(card); msb = (struct mspro_block_data *)tmp; rc = 0; host = card->host; ldv_mutex_lock_135(& host->lock); tmp___0 = kzalloc(1472UL, 208U); new_msb = (struct mspro_block_data *)tmp___0; } if ((unsigned long )new_msb == (unsigned long )((struct mspro_block_data *)0)) { rc = -12; goto out_unlock; } else { } { new_msb->card = card; memstick_set_drvdata(card, (void *)new_msb); tmp___1 = mspro_block_init_card(card); } if (tmp___1 != 0) { goto out_free; } else { } cnt = 0U; goto ldv_34562; ldv_34561: { s_attr = mspro_from_sysfs_attr(*(new_msb->attr_group.attrs + (unsigned long )cnt)); r_attr = mspro_from_sysfs_attr(*(msb->attr_group.attrs + (unsigned long )cnt)); } if ((unsigned int )s_attr->id == 16U && (int )r_attr->id == (int )s_attr->id) { { tmp___2 = memcmp((void const *)s_attr->data, (void const *)r_attr->data, s_attr->size); } if (tmp___2 != 0) { goto ldv_34560; } else { } msb->active = 1U; goto ldv_34560; } else { } cnt = (unsigned char )((int )cnt + 1); ldv_34562: ; if ((unsigned long )*(new_msb->attr_group.attrs + (unsigned long )cnt) != (unsigned long )((struct attribute *)0) && (unsigned long )*(msb->attr_group.attrs + (unsigned long )cnt) != (unsigned long )((struct attribute *)0)) { goto ldv_34561; } else { } ldv_34560: ; out_free: { memstick_set_drvdata(card, (void *)msb); mspro_block_data_clear(new_msb); kfree((void const *)new_msb); } out_unlock: { ldv_mutex_unlock_136(& host->lock); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_137(& msb->q_lock); blk_start_queue(msb->queue); ldv_spin_unlock_irqrestore_102(& msb->q_lock, flags); } return (rc); } } static struct memstick_device_id mspro_block_id_tbl[2U] = { {1U, 1U, 0U, 0U}}; static struct memstick_driver mspro_block_driver = {(struct memstick_device_id *)(& mspro_block_id_tbl), & mspro_block_probe, & mspro_block_remove, & mspro_block_suspend, & mspro_block_resume, {"mspro_block", 0, & __this_module, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; static int mspro_block_init(void) { int rc ; { { rc = -12; rc = register_blkdev((unsigned int )major, "mspro_block"); } if (rc < 0) { { printk("\vmspro_block: failed to register major %d, error %d\n", major, rc); } return (rc); } else { } if (major == 0) { major = rc; } else { } { rc = ldv_memstick_register_driver_139(& mspro_block_driver); } if (rc != 0) { { unregister_blkdev((unsigned int )major, "mspro_block"); } } else { } return (rc); } } static void mspro_block_exit(void) { { { ldv_memstick_unregister_driver_140(& mspro_block_driver); unregister_blkdev((unsigned int )major, "mspro_block"); ldv_idr_destroy_141(& mspro_block_disk_idr); } return; } } struct memstick_device_id const __mod_memstick__mspro_block_id_tbl_device_table[2U] ; void ldv_EMGentry_exit_mspro_block_exit_3_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_mspro_block_init_3_7(int (*arg0)(void) ) ; void ldv_device_driver_io_instance_0(void *arg0 ) ; void ldv_dispatch_deregister_1_1(struct memstick_driver *arg0 ) ; void ldv_dispatch_register_2_2(struct memstick_driver *arg0 ) ; void ldv_entry_EMGentry_3(void *arg0 ) ; int main(void) ; void ldv_io_instance_callback_0_20(int (*arg0)(struct memstick_dev * ) , struct memstick_dev *arg1 ) ; void ldv_io_instance_callback_0_21(int (*arg0)(struct memstick_dev * , struct pm_message ) , struct memstick_dev *arg1 , struct pm_message arg2 ) ; void ldv_io_instance_callback_0_4(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) ; int ldv_io_instance_probe_0_11(int (*arg0)(struct block_device * , unsigned int ) , struct block_device *arg1 , unsigned int arg2 ) ; int ldv_io_instance_probe_0_24(int (*arg0)(struct memstick_dev * ) , struct memstick_dev *arg1 ) ; void ldv_io_instance_release_0_19(void (*arg0)(struct memstick_dev * ) , struct memstick_dev *arg1 ) ; void ldv_io_instance_release_0_2(void (*arg0)(struct gendisk * , unsigned int ) , struct gendisk *arg1 , unsigned int arg2 ) ; int ldv_memstick_register_driver(int arg0 , struct memstick_driver *arg1 ) ; void ldv_memstick_unregister_driver(void *arg0 , struct memstick_driver *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_3 ; void ldv_EMGentry_exit_mspro_block_exit_3_2(void (*arg0)(void) ) { { { mspro_block_exit(); } return; } } int ldv_EMGentry_init_mspro_block_init_3_7(int (*arg0)(void) ) { int tmp ; { { tmp = mspro_block_init(); } return (tmp); } } void ldv_device_driver_io_instance_0(void *arg0 ) { int (*ldv_0_callback_getgeo)(struct block_device * , struct hd_geometry * ) ; int (*ldv_0_callback_resume)(struct memstick_dev * ) ; int (*ldv_0_callback_suspend)(struct memstick_dev * , struct pm_message ) ; struct block_device_operations *ldv_0_container_struct_block_device_operations ; struct memstick_driver *ldv_0_container_struct_memstick_driver ; unsigned int ldv_0_ldv_param_11_1_default ; unsigned int ldv_0_ldv_param_2_1_default ; struct block_device *ldv_0_resource_struct_block_device_ptr ; struct gendisk *ldv_0_resource_struct_gendisk_ptr ; struct hd_geometry *ldv_0_resource_struct_hd_geometry_ptr ; struct memstick_dev *ldv_0_resource_struct_memstick_dev_ptr ; struct pm_message ldv_0_resource_struct_pm_message ; int ldv_0_ret_default ; struct ldv_struct_io_instance_0 *data ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { data = (struct ldv_struct_io_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_io_instance_0 *)0)) { { ldv_0_container_struct_memstick_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(480UL); ldv_0_resource_struct_block_device_ptr = (struct block_device *)tmp; tmp___0 = ldv_xmalloc(1736UL); ldv_0_resource_struct_gendisk_ptr = (struct gendisk *)tmp___0; tmp___1 = ldv_xmalloc(16UL); ldv_0_resource_struct_hd_geometry_ptr = (struct hd_geometry *)tmp___1; tmp___2 = ldv_xmalloc(1608UL); ldv_0_resource_struct_memstick_dev_ptr = (struct memstick_dev *)tmp___2; } goto ldv_main_0; return; ldv_main_0: { tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_io_instance_probe_0_24(ldv_0_container_struct_memstick_driver->probe, ldv_0_resource_struct_memstick_dev_ptr); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); } } else { { ldv_0_ret_default = ldv_io_instance_probe_0_11(ldv_0_container_struct_block_device_operations->open, ldv_0_resource_struct_block_device_ptr, ldv_0_ldv_param_11_1_default); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); } } { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_struct_block_device_ptr); ldv_free((void *)ldv_0_resource_struct_gendisk_ptr); ldv_free((void *)ldv_0_resource_struct_hd_geometry_ptr); ldv_free((void *)ldv_0_resource_struct_memstick_dev_ptr); } return; } return; ldv_call_0: { tmp___6 = ldv_undef_int(); } { if (tmp___6 == 1) { goto case_1; } else { } if (tmp___6 == 2) { goto case_2; } else { } if (tmp___6 == 3) { goto case_3; } else { } if (tmp___6 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_0_21(ldv_0_callback_suspend, ldv_0_resource_struct_memstick_dev_ptr, ldv_0_resource_struct_pm_message); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_io_instance_callback_0_20(ldv_0_callback_resume, ldv_0_resource_struct_memstick_dev_ptr); } goto ldv_call_0; goto ldv_call_0; case_3: /* CIL Label */ { ldv_io_instance_callback_0_4(ldv_0_callback_getgeo, ldv_0_resource_struct_block_device_ptr, ldv_0_resource_struct_hd_geometry_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_4: /* CIL Label */ { tmp___7 = ldv_undef_int(); } if (tmp___7 != 0) { { ldv_io_instance_release_0_19(ldv_0_container_struct_memstick_driver->remove, ldv_0_resource_struct_memstick_dev_ptr); } } else { { ldv_io_instance_release_0_2(ldv_0_container_struct_block_device_operations->release, ldv_0_resource_struct_gendisk_ptr, ldv_0_ldv_param_2_1_default); } } goto ldv_34685; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_34685: ; goto ldv_main_0; return; } } void ldv_dispatch_deregister_1_1(struct memstick_driver *arg0 ) { { return; } } void ldv_dispatch_register_2_2(struct memstick_driver *arg0 ) { struct ldv_struct_io_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_io_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_device_driver_io_instance_0((void *)cf_arg_0); } return; } } void ldv_entry_EMGentry_3(void *arg0 ) { void (*ldv_3_exit_mspro_block_exit_default)(void) ; int (*ldv_3_init_mspro_block_init_default)(void) ; int ldv_3_ret_default ; int tmp ; { { ldv_3_ret_default = ldv_EMGentry_init_mspro_block_init_3_7(ldv_3_init_mspro_block_init_default); ldv_3_ret_default = ldv_ldv_post_init_142(ldv_3_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_3_ret_default != 0); ldv_ldv_check_final_state_143(); ldv_stop(); } return; } else { { ldv_assume(ldv_3_ret_default == 0); ldv_EMGentry_exit_mspro_block_exit_3_2(ldv_3_exit_mspro_block_exit_default); ldv_ldv_check_final_state_144(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_145(); ldv_entry_EMGentry_3((void *)0); } return 0; } } void ldv_io_instance_callback_0_20(int (*arg0)(struct memstick_dev * ) , struct memstick_dev *arg1 ) { { { mspro_block_resume(arg1); } return; } } void ldv_io_instance_callback_0_21(int (*arg0)(struct memstick_dev * , struct pm_message ) , struct memstick_dev *arg1 , struct pm_message arg2 ) { { { mspro_block_suspend(arg1, arg2); } return; } } void ldv_io_instance_callback_0_4(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) { { { mspro_block_bd_getgeo(arg1, arg2); } return; } } int ldv_io_instance_probe_0_11(int (*arg0)(struct block_device * , unsigned int ) , struct block_device *arg1 , unsigned int arg2 ) { int tmp ; { { tmp = mspro_block_bd_open(arg1, arg2); } return (tmp); } } int ldv_io_instance_probe_0_24(int (*arg0)(struct memstick_dev * ) , struct memstick_dev *arg1 ) { int tmp ; { { tmp = mspro_block_probe(arg1); } return (tmp); } } void ldv_io_instance_release_0_19(void (*arg0)(struct memstick_dev * ) , struct memstick_dev *arg1 ) { { { mspro_block_remove(arg1); } return; } } void ldv_io_instance_release_0_2(void (*arg0)(struct gendisk * , unsigned int ) , struct gendisk *arg1 , unsigned int arg2 ) { { { mspro_block_bd_release(arg1, arg2); } return; } } int ldv_memstick_register_driver(int arg0 , struct memstick_driver *arg1 ) { struct memstick_driver *ldv_2_struct_memstick_driver_struct_memstick_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_2_struct_memstick_driver_struct_memstick_driver = arg1; ldv_dispatch_register_2_2(ldv_2_struct_memstick_driver_struct_memstick_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_memstick_unregister_driver(void *arg0 , struct memstick_driver *arg1 ) { struct memstick_driver *ldv_1_struct_memstick_driver_struct_memstick_driver ; { { ldv_1_struct_memstick_driver_struct_memstick_driver = arg1; ldv_dispatch_deregister_1_1(ldv_1_struct_memstick_driver_struct_memstick_driver); } return; return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc(size); ldv_after_alloc(res); } return (res); } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_calloc(n, size); ldv_after_alloc(res); } return (res); } } void *ldv_zalloc(size_t size ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void ldv_mutex_lock_95(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mspro_block_disk_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_96(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mspro_block_disk_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_97(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mspro_block_disk_lock(ldv_func_arg1); } return; } } static void ldv_idr_remove_98(struct idr *ldv_func_arg1 , int ldv_func_arg2 ) { { { ldv_linux_lib_idr_idr_remove_mspro_block_disk_idr(); } return; } } static void ldv_put_disk_99(struct gendisk *disk ) { { { ldv_linux_block_genhd_put_disk(disk); put_disk(disk); } return; } } static void ldv_mutex_unlock_100(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mspro_block_disk_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_101(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_mspro_block_data(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_102(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_mspro_block_data(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_103(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_mspro_block_data(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_105(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_mrq_complete_of_memstick_dev(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_mspro_block_data(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_108(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_mrq_complete_of_memstick_dev(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_109(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_mrq_complete_of_memstick_dev(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_110(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_mrq_complete_of_memstick_dev(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_111(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_mrq_complete_of_memstick_dev(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_112(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_mrq_complete_of_memstick_dev(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_113(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_mrq_complete_of_memstick_dev(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv_mutex_lock_114(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mspro_block_disk_lock(ldv_func_arg1); } return; } } static int ldv_idr_alloc_115(struct idr *ldv_func_arg1 , void *ldv_func_arg2 , int ldv_func_arg3 , int ldv_func_arg4 , gfp_t ldv_func_arg5 ) { int tmp ; { { ldv_linux_lib_idr_idr_alloc_mspro_block_disk_idr(); tmp = ldv_undef_int(); } return (tmp); } } static void ldv_mutex_unlock_116(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mspro_block_disk_lock(ldv_func_arg1); } return; } } static struct gendisk *ldv_alloc_disk_117(int minors ) { ldv_func_ret_type___0 ldv_func_res ; struct gendisk *tmp ; struct gendisk *tmp___0 ; { { tmp = alloc_disk(minors); ldv_func_res = tmp; tmp___0 = ldv_linux_block_genhd_alloc_disk(); } return (tmp___0); return (ldv_func_res); } } static struct request_queue *ldv_blk_init_queue_118(void (*ldv_func_arg1)(struct request_queue * ) , spinlock_t *ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; struct request_queue *tmp ; struct request_queue *tmp___0 ; { { tmp = blk_init_queue(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_linux_block_queue_request_queue(); } return (tmp___0); return (ldv_func_res); } } static void ldv_add_disk_119(struct gendisk *disk ) { { { ldv_linux_block_genhd_add_disk(); add_disk(disk); } return; } } static void ldv_put_disk_120(struct gendisk *disk ) { { { ldv_linux_block_genhd_put_disk(disk); put_disk(disk); } return; } } static void ldv_mutex_lock_121(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mspro_block_disk_lock(ldv_func_arg1); } return; } } static void ldv_idr_remove_122(struct idr *ldv_func_arg1 , int ldv_func_arg2 ) { { { ldv_linux_lib_idr_idr_remove_mspro_block_disk_idr(); } return; } } static void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mspro_block_disk_lock(ldv_func_arg1); } return; } } static int ldv_sysfs_create_group_124(struct kobject *ldv_func_arg1 , struct attribute_group const *ldv_func_arg2 ) { int tmp ; { { tmp = ldv_linux_fs_sysfs_sysfs_create_group(); } return (tmp); } } static void ldv_sysfs_remove_group_125(struct kobject *ldv_func_arg1 , struct attribute_group const *ldv_func_arg2 ) { { { ldv_linux_fs_sysfs_sysfs_remove_group(); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_mspro_block_data(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_del_gendisk_128(struct gendisk *gp ) { { { ldv_linux_block_genhd_del_gendisk(); del_gendisk(gp); } return; } } static void ldv_blk_cleanup_queue_129(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } static void ldv_sysfs_remove_group_130(struct kobject *ldv_func_arg1 , struct attribute_group const *ldv_func_arg2 ) { { { ldv_linux_fs_sysfs_sysfs_remove_group(); } return; } } static void ldv_mutex_lock_131(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mspro_block_disk_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_132(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mspro_block_disk_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_mspro_block_data(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_135(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_memstick_host(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_136(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_memstick_host(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_137(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_mspro_block_data(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_memstick_register_driver_139(struct memstick_driver *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = memstick_register_driver(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_memstick_register_driver(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_memstick_unregister_driver_140(struct memstick_driver *ldv_func_arg1 ) { { { memstick_unregister_driver(ldv_func_arg1); ldv_memstick_unregister_driver((void *)0, ldv_func_arg1); } return; } } static void ldv_idr_destroy_141(struct idr *ldv_func_arg1 ) { { { ldv_linux_lib_idr_idr_destroy_mspro_block_disk_idr(); } return; } } static int ldv_ldv_post_init_142(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_143(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_144(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_145(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(size_t size ) { void *ptr ; void *tmp ; { { tmp = ldv_malloc(size); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_malloc(sizeof(struct gendisk)); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_malloc(sizeof(struct request_queue)); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_malloc(sizeof(struct request)); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_malloc(sizeof(struct request)); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_malloc(sizeof(struct class)); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major___0 ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major___0 == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(size); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void *is_got ) { long tmp ; { { ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major___0 ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major___0 == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_memstick_host(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock_of_memstick_host(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_memstick_host(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock_of_memstick_host(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_memstick_host(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock_of_memstick_host(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_memstick_host(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_memstick_host(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_mspro_block_disk_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mspro_block_disk_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mspro_block_disk_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mspro_block_disk_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mspro_block_disk_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mspro_block_disk_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mspro_block_disk_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mspro_block_disk_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_memstick_host); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mspro_block_disk_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_mspro_block_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 1); ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_mspro_block_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 2); ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_q_lock_of_mspro_block_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_q_lock_of_mspro_block_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_q_lock_of_mspro_block_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_q_lock_of_mspro_block_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_q_lock_of_mspro_block_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_q_lock_of_mspro_block_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_q_lock_of_mspro_block_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_q_lock_of_mspro_block_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion_mrq_complete_of_memstick_dev = 0; void ldv_linux_kernel_sched_completion_init_completion_mrq_complete_of_memstick_dev(void) { { ldv_linux_kernel_sched_completion_completion_mrq_complete_of_memstick_dev = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro_mrq_complete_of_memstick_dev(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion_mrq_complete_of_memstick_dev != 0); ldv_linux_kernel_sched_completion_completion_mrq_complete_of_memstick_dev = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion_mrq_complete_of_memstick_dev(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion_mrq_complete_of_memstick_dev != 0); ldv_linux_kernel_sched_completion_completion_mrq_complete_of_memstick_dev = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr_mspro_block_disk_idr = 0; void ldv_linux_lib_idr_idr_init_mspro_block_disk_idr(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr_mspro_block_disk_idr == 0); ldv_linux_lib_idr_idr_mspro_block_disk_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc_mspro_block_disk_idr(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr_mspro_block_disk_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr_mspro_block_disk_idr != 3); ldv_linux_lib_idr_idr_mspro_block_disk_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find_mspro_block_disk_idr(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr_mspro_block_disk_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr_mspro_block_disk_idr != 3); ldv_linux_lib_idr_idr_mspro_block_disk_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove_mspro_block_disk_idr(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr_mspro_block_disk_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr_mspro_block_disk_idr != 3); ldv_linux_lib_idr_idr_mspro_block_disk_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy_mspro_block_disk_idr(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr_mspro_block_disk_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr_mspro_block_disk_idr != 3); ldv_linux_lib_idr_idr_mspro_block_disk_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr_mspro_block_disk_idr == 0 || ldv_linux_lib_idr_idr_mspro_block_disk_idr == 3); } return; } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-4.0-rc1---drivers--memstick--core--mspro_block.ko_false-unreach-call.cil.env.c" #include "model/common.env.c"