/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct urb; struct device; struct completion; struct usb_device; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct net_device; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; typedef unsigned long kernel_ulong_t; struct usb_device_id { __u16 match_flags ; __u16 idVendor ; __u16 idProduct ; __u16 bcdDevice_lo ; __u16 bcdDevice_hi ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 bInterfaceNumber ; kernel_ulong_t driver_info ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct vm_area_struct; struct llist_node; struct llist_node { struct llist_node *next ; }; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct __anonstruct_nodemask_t_113 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_113 nodemask_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct __anonstruct_mm_context_t_114 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_114 mm_context_t; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct bio_vec; struct notifier_block; struct device_node; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct proc_dir_entry; struct exception_table_entry { int insn ; int fixup ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct kref { atomic_t refcount ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; union __anonunion____missing_field_name_145 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_145 __annonCompField33 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_146 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_146 __annonCompField34 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_147 { uid_t val ; }; typedef struct __anonstruct_kuid_t_147 kuid_t; struct __anonstruct_kgid_t_148 { gid_t val ; }; typedef struct __anonstruct_kgid_t_148 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_150 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_149 { struct __anonstruct____missing_field_name_150 __annonCompField35 ; }; struct lockref { union __anonunion____missing_field_name_149 __annonCompField36 ; }; struct vfsmount; struct __anonstruct____missing_field_name_152 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_151 { struct __anonstruct____missing_field_name_152 __annonCompField37 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_151 __annonCompField38 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_153 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_153 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct mem_cgroup; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_155 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_154 { struct __anonstruct____missing_field_name_155 __annonCompField39 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_154 __annonCompField40 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct backing_dev_info; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_158 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_158 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_159 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_159 __annonCompField42 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_162 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_163 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_164 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_162 __annonCompField43 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_163 __annonCompField44 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_164 __annonCompField45 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_165 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_165 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_167 { struct list_head link ; int state ; }; union __anonunion_fl_u_166 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_167 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_166 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_173 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_174 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_172 { struct __anonstruct____missing_field_name_173 __annonCompField48 ; struct __anonstruct____missing_field_name_174 __annonCompField49 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_172 __annonCompField50 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_175 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_177 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_181 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_180 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_181 __annonCompField53 ; int units ; }; struct __anonstruct____missing_field_name_179 { union __anonunion____missing_field_name_180 __annonCompField54 ; atomic_t _count ; }; union __anonunion____missing_field_name_178 { unsigned long counters ; struct __anonstruct____missing_field_name_179 __annonCompField55 ; unsigned int active ; }; struct __anonstruct____missing_field_name_176 { union __anonunion____missing_field_name_177 __annonCompField52 ; union __anonunion____missing_field_name_178 __annonCompField56 ; }; struct __anonstruct____missing_field_name_183 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_184 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_182 { struct list_head lru ; struct __anonstruct____missing_field_name_183 __annonCompField58 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_184 __annonCompField59 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_185 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_175 __annonCompField51 ; struct __anonstruct____missing_field_name_176 __annonCompField57 ; union __anonunion____missing_field_name_182 __annonCompField60 ; union __anonunion____missing_field_name_185 __annonCompField61 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_186 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_186 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_188 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_188 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_190 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_191 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_192 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_193 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_195 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_194 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_195 _addr_bnd ; }; struct __anonstruct__sigpoll_196 { long _band ; int _fd ; }; struct __anonstruct__sigsys_197 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_189 { int _pad[28U] ; struct __anonstruct__kill_190 _kill ; struct __anonstruct__timer_191 _timer ; struct __anonstruct__rt_192 _rt ; struct __anonstruct__sigchld_193 _sigchld ; struct __anonstruct__sigfault_194 _sigfault ; struct __anonstruct__sigpoll_196 _sigpoll ; struct __anonstruct__sigsys_197 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_189 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_201 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_200 { struct __anonstruct____missing_field_name_201 __annonCompField62 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_200 __annonCompField63 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_202 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_203 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_205 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_204 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_205 __annonCompField66 ; }; union __anonunion_type_data_206 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_208 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_207 { union __anonunion_payload_208 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_202 __annonCompField64 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_203 __annonCompField65 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_204 __annonCompField67 ; union __anonunion_type_data_206 type_data ; union __anonunion____missing_field_name_207 __annonCompField68 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct usb_driver; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; int streams ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned char sysfs_files_created : 1 ; unsigned char ep_devs_created : 1 ; unsigned char unregistering : 1 ; unsigned char needs_remote_wakeup : 1 ; unsigned char needs_altsetting0 : 1 ; unsigned char needs_binding : 1 ; unsigned char resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned char is_b_host : 1 ; unsigned char b_hnp_enable : 1 ; unsigned char no_stop_on_short : 1 ; unsigned char no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; struct mutex usb_address0_mutex ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned char can_submit : 1 ; unsigned char persist_enabled : 1 ; unsigned char have_langid : 1 ; unsigned char authorized : 1 ; unsigned char authenticated : 1 ; unsigned char wusb : 1 ; unsigned char lpm_capable : 1 ; unsigned char usb2_hw_lpm_capable : 1 ; unsigned char usb2_hw_lpm_besl_capable : 1 ; unsigned char usb2_hw_lpm_enabled : 1 ; unsigned char usb2_hw_lpm_allowed : 1 ; unsigned char usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned char do_remote_wakeup : 1 ; unsigned char reset_resume : 1 ; unsigned char port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_dynids { spinlock_t lock ; struct list_head list ; }; struct usbdrv_wrap { struct device_driver driver ; int for_devices ; }; struct usb_driver { char const *name ; int (*probe)(struct usb_interface * , struct usb_device_id const * ) ; void (*disconnect)(struct usb_interface * ) ; int (*unlocked_ioctl)(struct usb_interface * , unsigned int , void * ) ; int (*suspend)(struct usb_interface * , pm_message_t ) ; int (*resume)(struct usb_interface * ) ; int (*reset_resume)(struct usb_interface * ) ; int (*pre_reset)(struct usb_interface * ) ; int (*post_reset)(struct usb_interface * ) ; struct usb_device_id const *id_table ; struct usb_dynids dynids ; struct usbdrv_wrap drvwrap ; unsigned char no_dynamic_id : 1 ; unsigned char supports_autosuspend : 1 ; unsigned char disable_hub_initiated_lpm : 1 ; unsigned char soft_unbind : 1 ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned char poisoned : 1 ; }; struct scatterlist; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_211 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_211 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_212 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_212 __annonCompField70 ; unsigned long nr_segs ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_214 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_214 sync_serial_settings; struct __anonstruct_te1_settings_215 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_215 te1_settings; struct __anonstruct_raw_hdlc_proto_216 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_216 raw_hdlc_proto; struct __anonstruct_fr_proto_217 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_217 fr_proto; struct __anonstruct_fr_proto_pvc_218 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_218 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_219 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_219 fr_proto_pvc_info; struct __anonstruct_cisco_proto_220 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_220 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_221 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_221 ifs_ifsu ; }; union __anonunion_ifr_ifrn_222 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_223 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_222 ifr_ifrn ; union __anonunion_ifr_ifru_223 ifr_ifru ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_25053 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_25053 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_244 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_243 { u64 v64 ; struct __anonstruct____missing_field_name_244 __annonCompField74 ; }; struct skb_mstamp { union __anonunion____missing_field_name_243 __annonCompField75 ; }; union __anonunion____missing_field_name_247 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_246 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_247 __annonCompField76 ; }; union __anonunion____missing_field_name_245 { struct __anonstruct____missing_field_name_246 __annonCompField77 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_249 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_248 { __wsum csum ; struct __anonstruct____missing_field_name_249 __annonCompField79 ; }; union __anonunion____missing_field_name_250 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_251 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_252 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_245 __annonCompField78 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_248 __annonCompField80 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_250 __annonCompField81 ; __u32 secmark ; union __anonunion____missing_field_name_251 __annonCompField82 ; union __anonunion____missing_field_name_252 __annonCompField83 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; enum ldv_28050 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_28050 phy_interface_t; enum ldv_28103 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_28103 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_264 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_265 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_266 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_264 adj_list ; struct __anonstruct_all_adj_list_265 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_266 __annonCompField86 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_274 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_274 __annonCompField87 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NL80211_IFTYPE_OCB = 11, NUM_NL80211_IFTYPES = 12, NL80211_IFTYPE_MAX = 11 } ; struct nl80211_sta_flag_update { __u32 mask ; __u32 set ; }; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1, NL80211_USER_REG_HINT_INDOOR = 2 } ; enum nl80211_mesh_power_mode { NL80211_MESH_POWER_UNKNOWN = 0, NL80211_MESH_POWER_ACTIVE = 1, NL80211_MESH_POWER_LIGHT_SLEEP = 2, NL80211_MESH_POWER_DEEP_SLEEP = 3, __NL80211_MESH_POWER_AFTER_LAST = 4, NL80211_MESH_POWER_MAX = 3 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_bss_scan_width { NL80211_BSS_CHAN_WIDTH_20 = 0, NL80211_BSS_CHAN_WIDTH_10 = 1, NL80211_BSS_CHAN_WIDTH_5 = 2 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; enum nl80211_txrate_gi { NL80211_TXRATE_DEFAULT_GI = 0, NL80211_TXRATE_FORCE_SGI = 1, NL80211_TXRATE_FORCE_LGI = 2 } ; enum nl80211_tx_power_setting { NL80211_TX_POWER_AUTOMATIC = 0, NL80211_TX_POWER_LIMITED = 1, NL80211_TX_POWER_FIXED = 2 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; u32 dfs_cac_ms ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[3U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; unsigned int dfs_cac_ms ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct survey_info { struct ieee80211_channel *channel ; u64 time ; u64 time_busy ; u64 time_ext_busy ; u64 time_rx ; u64 time_tx ; u64 time_scan ; u32 filled ; s8 noise ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; struct rate_info { u8 flags ; u8 mcs ; u16 legacy ; u8 nss ; u8 bw ; }; struct sta_bss_parameters { u8 flags ; u8 dtim_period ; u16 beacon_interval ; }; struct cfg80211_tid_stats { u32 filled ; u64 rx_msdu ; u64 tx_msdu ; u64 tx_msdu_retries ; u64 tx_msdu_failed ; }; struct station_info { u32 filled ; u32 connected_time ; u32 inactive_time ; u64 rx_bytes ; u64 tx_bytes ; u16 llid ; u16 plid ; u8 plink_state ; s8 signal ; s8 signal_avg ; u8 chains ; s8 chain_signal[4U] ; s8 chain_signal_avg[4U] ; struct rate_info txrate ; struct rate_info rxrate ; u32 rx_packets ; u32 tx_packets ; u32 tx_retries ; u32 tx_failed ; u32 rx_dropped_misc ; struct sta_bss_parameters bss_param ; struct nl80211_sta_flag_update sta_flags ; int generation ; u8 const *assoc_req_ies ; size_t assoc_req_ies_len ; u32 beacon_loss_count ; s64 t_offset ; enum nl80211_mesh_power_mode local_pm ; enum nl80211_mesh_power_mode peer_pm ; enum nl80211_mesh_power_mode nonpeer_pm ; u32 expected_throughput ; u64 rx_beacon ; u8 rx_beacon_signal_avg ; struct cfg80211_tid_stats pertid[17U] ; }; struct cfg80211_ssid { u8 ssid[32U] ; u8 ssid_len ; }; struct cfg80211_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u8 const *ie ; size_t ie_len ; u32 flags ; u32 rates[3U] ; struct wireless_dev *wdev ; u8 mac_addr[6U] ; u8 mac_addr_mask[6U] ; struct wiphy *wiphy ; unsigned long scan_start ; bool aborted ; bool notified ; bool no_cck ; struct ieee80211_channel *channels[0U] ; }; struct cfg80211_match_set { struct cfg80211_ssid ssid ; s32 rssi_thold ; }; struct cfg80211_sched_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u32 interval ; u8 const *ie ; size_t ie_len ; u32 flags ; struct cfg80211_match_set *match_sets ; int n_match_sets ; s32 min_rssi_thold ; u32 delay ; u8 mac_addr[6U] ; u8 mac_addr_mask[6U] ; struct wiphy *wiphy ; struct net_device *dev ; unsigned long scan_start ; struct callback_head callback_head ; u32 owner_nlportid ; struct ieee80211_channel *channels[0U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 const *ssid ; u8 const *bssid ; struct cfg80211_chan_def chandef ; u8 const *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; struct ieee80211_channel *channel_hint ; u8 const *bssid ; u8 const *bssid_hint ; u8 const *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 const *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct __anonstruct_control_314 { u32 legacy ; u8 ht_mcs[10U] ; u16 vht_mcs[8U] ; enum nl80211_txrate_gi gi ; }; struct cfg80211_bitrate_mask { struct __anonstruct_control_314 control[3U] ; }; struct cfg80211_pkt_pattern { u8 const *mask ; u8 const *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; struct cfg80211_sched_scan_request *nd_config ; }; struct cfg80211_gtk_rekey_data { u8 const *kek ; u8 const *kck ; u8 const *replay_ctr ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; u8 radar_detect_regions ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; int max_nd_match_sets ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u8 ext_features[0U] ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; u16 max_ap_assoc_sta ; u8 max_num_csa_counters ; u8 max_adj_channel_rssi_comp ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_315 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 const *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct cfg80211_chan_def chandef ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; unsigned int cac_time_ms ; u32 owner_nlportid ; struct __anonstruct_wext_315 wext ; }; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool acm ; bool uapsd ; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount ; unsigned int dot11RTSFailureCount ; unsigned int dot11FCSErrorCount ; unsigned int dot11RTSSuccessCount ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; enum ieee80211_chanctx_switch_mode { CHANCTX_SWMODE_REASSIGN_VIF = 0, CHANCTX_SWMODE_SWAP_CONTEXTS = 1 } ; struct ieee80211_vif; struct ieee80211_vif_chanctx_switch { struct ieee80211_vif *vif ; struct ieee80211_chanctx_conf *old_ctx ; struct ieee80211_chanctx_conf *new_ctx ; }; enum ieee80211_rssi_event { RSSI_EVENT_HIGH = 0, RSSI_EVENT_LOW = 1 } ; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; enum nl80211_tx_power_setting txpower_type ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_tx_rate { s8 idx ; unsigned char count : 5 ; unsigned short flags : 11 ; }; struct __anonstruct____missing_field_name_319 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; unsigned char use_rts : 1 ; unsigned char use_cts_prot : 1 ; unsigned char short_preamble : 1 ; unsigned char skip_table : 1 ; }; union __anonunion____missing_field_name_318 { struct __anonstruct____missing_field_name_319 __annonCompField89 ; unsigned long jiffies ; }; struct ieee80211_key_conf; struct __anonstruct_control_317 { union __anonunion____missing_field_name_318 __annonCompField90 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_320 { struct ieee80211_tx_rate rates[4U] ; s32 ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; u16 tx_time ; void *status_driver_data[2U] ; }; struct __anonstruct____missing_field_name_321 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion____missing_field_name_316 { struct __anonstruct_control_317 control ; struct __anonstruct_status_320 status ; struct __anonstruct____missing_field_name_321 __annonCompField91 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion____missing_field_name_316 __annonCompField92 ; }; struct ieee80211_scan_ies { u8 const *ies[3U] ; size_t len[3U] ; u8 const *common_ies ; size_t common_ie_len ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u16 freq ; u8 vht_flag ; u8 rate_idx ; u8 vht_nss ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 chains ; s8 chain_signal[4U] ; u8 ampdu_delimiter_crc ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_channel_switch { u64 timestamp ; u32 device_timestamp ; bool block_tx ; struct cfg80211_chan_def chandef ; u8 count ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; enum set_key_cmd { SET_KEY = 0, DISABLE_KEY = 1 } ; enum ieee80211_sta_state { IEEE80211_STA_NOTEXIST = 0, IEEE80211_STA_NONE = 1, IEEE80211_STA_AUTH = 2, IEEE80211_STA_ASSOC = 3, IEEE80211_STA_AUTHORIZED = 4 } ; enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40 = 1, IEEE80211_STA_RX_BW_80 = 2, IEEE80211_STA_RX_BW_160 = 3 } ; struct __anonstruct_rate_322 { s8 idx ; u8 count ; u8 count_cts ; u8 count_rts ; u16 flags ; }; struct ieee80211_sta_rates { struct callback_head callback_head ; struct __anonstruct_rate_322 rate[4U] ; }; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 rx_nss ; enum ieee80211_sta_rx_bandwidth bandwidth ; enum ieee80211_smps_mode smps_mode ; struct ieee80211_sta_rates *rates ; bool tdls ; bool tdls_initiator ; u8 drv_priv[0U] ; }; enum sta_notify_cmd { STA_NOTIFY_SLEEP = 0, STA_NOTIFY_AWAKE = 1 } ; struct ieee80211_tx_control { struct ieee80211_sta *sta ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; struct ieee80211_scan_request { struct ieee80211_scan_ies ies ; struct cfg80211_scan_request req ; }; struct ieee80211_tdls_ch_sw_params { struct ieee80211_sta *sta ; struct cfg80211_chan_def *chandef ; u8 action_code ; u32 status ; u32 timestamp ; u16 switch_time ; u16 switch_timeout ; struct sk_buff *tmpl_skb ; u32 ch_sw_tm_ie ; }; enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START = 0, IEEE80211_AMPDU_RX_STOP = 1, IEEE80211_AMPDU_TX_START = 2, IEEE80211_AMPDU_TX_STOP_CONT = 3, IEEE80211_AMPDU_TX_STOP_FLUSH = 4, IEEE80211_AMPDU_TX_STOP_FLUSH_CONT = 5, IEEE80211_AMPDU_TX_OPERATIONAL = 6 } ; enum ieee80211_frame_release_type { IEEE80211_FRAME_RELEASE_PSPOLL = 0, IEEE80211_FRAME_RELEASE_UAPSD = 1 } ; enum ieee80211_roc_type { IEEE80211_ROC_TYPE_NORMAL = 0, IEEE80211_ROC_TYPE_MGMT_TX = 1 } ; enum ieee80211_reconfig_type { IEEE80211_RECONFIG_TYPE_RESTART = 0, IEEE80211_RECONFIG_TYPE_SUSPEND = 1 } ; struct ieee80211_ops { void (*tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; int (*start)(struct ieee80211_hw * ) ; void (*stop)(struct ieee80211_hw * ) ; int (*suspend)(struct ieee80211_hw * , struct cfg80211_wowlan * ) ; int (*resume)(struct ieee80211_hw * ) ; void (*set_wakeup)(struct ieee80211_hw * , bool ) ; int (*add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*change_interface)(struct ieee80211_hw * , struct ieee80211_vif * , enum nl80211_iftype , bool ) ; void (*remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*config)(struct ieee80211_hw * , u32 ) ; void (*bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , u32 ) ; int (*start_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*stop_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u64 (*prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , u64 ) ; int (*set_tim)(struct ieee80211_hw * , struct ieee80211_sta * , bool ) ; int (*set_key)(struct ieee80211_hw * , enum set_key_cmd , struct ieee80211_vif * , struct ieee80211_sta * , struct ieee80211_key_conf * ) ; void (*update_tkip_key)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_key_conf * , struct ieee80211_sta * , u32 , u16 * ) ; void (*set_rekey_data)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_gtk_rekey_data * ) ; void (*set_default_unicast_key)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; int (*hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_scan_request * ) ; void (*cancel_hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*sched_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_sched_scan_request * , struct ieee80211_scan_ies * ) ; int (*sched_scan_stop)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*sw_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , u8 const * ) ; void (*sw_scan_complete)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; void (*get_tkip_seq)(struct ieee80211_hw * , u8 , u32 * , u16 * ) ; int (*set_frag_threshold)(struct ieee80211_hw * , u32 ) ; int (*set_rts_threshold)(struct ieee80211_hw * , u32 ) ; int (*sta_add)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; int (*sta_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_add_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_remove_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_notify)(struct ieee80211_hw * , struct ieee80211_vif * , enum sta_notify_cmd , struct ieee80211_sta * ) ; int (*sta_state)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , enum ieee80211_sta_state , enum ieee80211_sta_state ) ; void (*sta_pre_rcu_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_rc_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u32 ) ; void (*sta_rate_tbl_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_statistics)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct station_info * ) ; int (*conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , u16 , struct ieee80211_tx_queue_params const * ) ; u64 (*get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*set_tsf)(struct ieee80211_hw * , struct ieee80211_vif * , u64 ) ; void (*reset_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*tx_last_beacon)(struct ieee80211_hw * ) ; int (*ampdu_action)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_ampdu_mlme_action , struct ieee80211_sta * , u16 , u16 * , u8 ) ; int (*get_survey)(struct ieee80211_hw * , int , struct survey_info * ) ; void (*rfkill_poll)(struct ieee80211_hw * ) ; void (*set_coverage_class)(struct ieee80211_hw * , s16 ) ; int (*testmode_cmd)(struct ieee80211_hw * , struct ieee80211_vif * , void * , int ) ; int (*testmode_dump)(struct ieee80211_hw * , struct sk_buff * , struct netlink_callback * , void * , int ) ; void (*flush)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , bool ) ; void (*channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel_switch * ) ; int (*set_antenna)(struct ieee80211_hw * , u32 , u32 ) ; int (*get_antenna)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*remain_on_channel)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel * , int , enum ieee80211_roc_type ) ; int (*cancel_remain_on_channel)(struct ieee80211_hw * ) ; int (*set_ringparam)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_ringparam)(struct ieee80211_hw * , u32 * , u32 * , u32 * , u32 * ) ; bool (*tx_frames_pending)(struct ieee80211_hw * ) ; int (*set_bitrate_mask)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_bitrate_mask const * ) ; void (*rssi_callback)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_rssi_event ) ; void (*allow_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; void (*release_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; int (*get_et_sset_count)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; void (*get_et_stats)(struct ieee80211_hw * , struct ieee80211_vif * , struct ethtool_stats * , u64 * ) ; void (*get_et_strings)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , u8 * ) ; void (*mgd_prepare_tx)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*mgd_protect_tdls_discover)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*add_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*remove_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*change_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * , u32 ) ; int (*assign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*unassign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; int (*switch_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif_chanctx_switch * , int , enum ieee80211_chanctx_switch_mode ) ; void (*reconfig_complete)(struct ieee80211_hw * , enum ieee80211_reconfig_type ) ; void (*ipv6_addr_change)(struct ieee80211_hw * , struct ieee80211_vif * , struct inet6_dev * ) ; void (*channel_switch_beacon)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_chan_def * ) ; int (*pre_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel_switch * ) ; int (*post_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*join_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*leave_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u32 (*get_expected_throughput)(struct ieee80211_sta * ) ; int (*get_txpower)(struct ieee80211_hw * , struct ieee80211_vif * , int * ) ; int (*tdls_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u8 , struct cfg80211_chan_def * , struct sk_buff * , u32 ) ; void (*tdls_cancel_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*tdls_recv_channel_switch)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_tdls_ch_sw_params * ) ; }; struct ar5523; struct ar5523_tx_cmd { struct ar5523 *ar ; struct urb *urb_tx ; void *buf_tx ; void *odata ; int olen ; int flags ; int res ; struct completion done ; }; struct ar5523_tx_data { struct list_head list ; struct ar5523 *ar ; struct sk_buff *skb ; struct urb *urb ; }; struct ar5523_rx_data { struct list_head list ; struct ar5523 *ar ; struct urb *urb ; struct sk_buff *skb ; }; struct ar5523 { struct usb_device *dev ; struct ieee80211_hw *hw ; unsigned long flags ; struct mutex mutex ; struct workqueue_struct *wq ; struct ar5523_tx_cmd tx_cmd ; struct delayed_work stat_work ; struct timer_list tx_wd_timer ; struct work_struct tx_wd_work ; struct work_struct tx_work ; struct list_head tx_queue_pending ; struct list_head tx_queue_submitted ; spinlock_t tx_data_list_lock ; wait_queue_head_t tx_flush_waitq ; atomic_t tx_nr_total ; atomic_t tx_nr_pending ; void *rx_cmd_buf ; struct urb *rx_cmd_urb ; struct ar5523_rx_data rx_data[16U] ; spinlock_t rx_data_list_lock ; struct list_head rx_data_free ; struct list_head rx_data_used ; atomic_t rx_data_free_cnt ; struct work_struct rx_refill_work ; unsigned int rxbufsz ; u8 serial[16U] ; struct ieee80211_channel channels[14U] ; struct ieee80211_rate rates[12U] ; struct ieee80211_supported_band band ; struct ieee80211_vif *vif ; }; struct ar5523_fwblock { __be32 flags ; __be32 len ; __be32 total ; __be32 remain ; __be32 rxtotal ; __be32 pad[123U] ; }; struct ar5523_cmd_hdr { __be32 len ; __be32 code ; __u32 priv ; __be32 magic ; __be32 reserved2[4U] ; }; struct ar5523_cmd_host_available { __be32 sw_ver_major ; __be32 sw_ver_minor ; __be32 sw_ver_patch ; __be32 sw_ver_build ; }; struct ar5523_chunk { u8 seqnum ; u8 flags ; __be16 length ; }; struct ar5523_rx_desc { __be32 len ; __be32 code ; __be32 gennum ; __be32 status ; __be32 tstamp_low ; __be32 tstamp_high ; __be32 framelen ; __be32 rate ; __be32 antenna ; __be32 rssi ; __be32 channel ; __be32 phyerror ; __be32 connix ; __be32 decrypterror ; __be32 keycachemiss ; __be32 pad ; }; struct ar5523_tx_desc { __be32 msglen ; u32 msgid ; __be32 type ; __be32 txqid ; __be32 connid ; __be32 flags ; __be32 buflen ; }; struct ar5523_write_mac { __be32 reg ; __be32 len ; u8 data[32U] ; }; struct ar5523_cmd_rateset { __u8 length ; __u8 set[32U] ; }; struct ar5523_cmd_set_associd { __be32 defaultrateix ; __be32 associd ; __be32 timoffset ; __be32 turboprime ; __u8 bssid[6U] ; }; struct ar5523_cmd_reset { __be32 flags ; __be32 freq ; __be32 maxrdpower ; __be32 cfgctl ; __be32 twiceantennareduction ; __be32 channelchange ; __be32 keeprccontent ; }; struct ar5523_cmd_rates { __be32 connid ; __be32 keeprccontent ; __be32 size ; struct ar5523_cmd_rateset rateset ; }; struct ar5523_cmd_connection_attr { __be32 longpreambleonly ; struct ar5523_cmd_rateset rateset ; __be32 wlanmode ; }; struct ar5523_cmd_create_connection { __be32 connid ; __be32 bssid ; __be32 size ; struct ar5523_cmd_connection_attr connattr ; }; struct ar5523_cmd_ledsteady { __be32 lednum ; __be32 ledmode ; }; struct ar5523_cmd_txq_attr { __be32 priority ; __be32 aifs ; __be32 logcwmin ; __be32 logcwmax ; __be32 bursttime ; __be32 mode ; __be32 qflags ; }; struct ar5523_cmd_txq_setup { __be32 qid ; __be32 len ; struct ar5523_cmd_txq_attr attr ; }; struct ar5523_cmd_rx_filter { __be32 bits ; __be32 op ; }; struct ldv_struct_ieee80211_free_hw_7 { struct ieee80211_hw *arg0 ; int signal_pending ; }; struct ldv_struct_ieee80211_instance_0 { struct ieee80211_bss_conf *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_1 { struct timer_list *arg0 ; int signal_pending ; }; struct ldv_struct_usb_instance_2 { struct usb_driver *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef struct ieee80211_hw *ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; struct request; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void *is_got ) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(res1); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } long ldv_is_err(void const *ptr ) ; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) ; int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) ; void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) ; void ldv_linux_kernel_sched_completion_init_completion_done_of_ar5523_tx_cmd(void) ; void ldv_linux_kernel_sched_completion_wait_for_completion_done_of_ar5523_tx_cmd(void) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_191(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_188(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_196(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_197(int retval ) ; int ldv_filter_err_code(int ret_val ) ; int ldv_pre_usb_register_driver(void) ; static void ldv_ldv_check_final_state_189(void) ; static void ldv_ldv_check_final_state_190(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void ldv_after_alloc(void * ) ; static void ldv_mutex_lock_157(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_159(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_167(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_169(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_171(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_174(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_176(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_178(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_180(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(struct mutex *lock ) ; void ldv_linux_net_rtnetlink_past_rtnl_lock(void) ; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) ; void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) ; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static void list_move(struct list_head *list , struct list_head *head ) { { { __list_del_entry(list); list_add(list, head); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void *memmove(void * , void const * , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) ; __inline static void atomic_dec(atomic_t *v ) ; __inline static int atomic_add_return(int i , atomic_t *v ) ; __inline static int atomic_sub_return(int i , atomic_t *v ) { int tmp ; { { tmp = atomic_add_return(- i, v); } return (tmp); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_130(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_132(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_134(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_137(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_142(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_145(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_147(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_150(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_154(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_rx_data_list_lock_of_ar5523(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_rx_data_list_lock_of_ar5523(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_data_list_lock_of_ar5523(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_data_list_lock_of_ar5523(void) ; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_131(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_131(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_131(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_131(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_143(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_143(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_143(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_143(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_143(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int del_timer(struct timer_list * ) ; static int ldv_del_timer_141(struct timer_list *ldv_func_arg1 ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_121(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_152(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_172(struct timer_list *ldv_func_arg1 ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; extern bool cancel_delayed_work(struct delayed_work * ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; __inline static void ldv_init_completion_163(struct completion *x ) ; extern unsigned long wait_for_completion_timeout(struct completion * , unsigned long ) ; static unsigned long ldv_wait_for_completion_timeout_129(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern void complete(struct completion * ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_158(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_160(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_168(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_170(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_173(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_175(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_177(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_179(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_181(struct mutex *ldv_func_arg1 ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern long schedule_timeout(long ) ; __inline static void *usb_get_intfdata(struct usb_interface *intf ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& intf->dev)); } return (tmp); } } __inline static void usb_set_intfdata(struct usb_interface *intf , void *data ) { { { dev_set_drvdata(& intf->dev, data); } return; } } __inline static struct usb_device *interface_to_usbdev(struct usb_interface *intf ) { struct device const *__mptr ; { __mptr = (struct device const *)intf->dev.parent; return ((struct usb_device *)__mptr + 0xffffffffffffff70UL); } } extern int usb_register_driver(struct usb_driver * , struct module * , char const * ) ; static int ldv_usb_register_driver_186(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void usb_deregister(struct usb_driver * ) ; static void ldv_usb_deregister_187(struct usb_driver *ldv_func_arg1 ) ; __inline static void usb_fill_bulk_urb(struct urb *urb , struct usb_device *dev , unsigned int pipe , void *transfer_buffer , int buffer_length , void (*complete_fn)(struct urb * ) , void *context ) { { urb->dev = dev; urb->pipe = pipe; urb->transfer_buffer = transfer_buffer; urb->transfer_buffer_length = (u32 )buffer_length; urb->complete = complete_fn; urb->context = context; return; } } static struct urb *ldv_usb_alloc_urb_122(int ldv_func_arg1 , gfp_t flags ) ; static struct urb *ldv_usb_alloc_urb_140(int ldv_func_arg1 , gfp_t flags ) ; static struct urb *ldv_usb_alloc_urb_149(int ldv_func_arg1 , gfp_t flags ) ; static struct urb *ldv_usb_alloc_urb_164(int ldv_func_arg1 , gfp_t flags ) ; static void ldv_usb_free_urb_124(struct urb *urb ) ; static void ldv_usb_free_urb_126(struct urb *urb ) ; static void ldv_usb_free_urb_139(struct urb *urb ) ; static void ldv_usb_free_urb_144(struct urb *urb ) ; static void ldv_usb_free_urb_156(struct urb *urb ) ; static void ldv_usb_free_urb_162(struct urb *urb ) ; static void ldv_usb_free_urb_166(struct urb *urb ) ; static int ldv_usb_submit_urb_127(struct urb *ldv_func_arg1 , gfp_t flags ) ; static int ldv_usb_submit_urb_128(struct urb *ldv_func_arg1 , gfp_t flags ) ; static int ldv_usb_submit_urb_136(struct urb *ldv_func_arg1 , gfp_t flags ) ; static int ldv_usb_submit_urb_153(struct urb *ldv_func_arg1 , gfp_t flags ) ; extern void usb_kill_urb(struct urb * ) ; static void *ldv_usb_alloc_coherent_123(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) ; static void *ldv_usb_alloc_coherent_165(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) ; static void ldv_usb_free_coherent_125(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) ; static void ldv_usb_free_coherent_161(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) ; extern int usb_bulk_msg(struct usb_device * , unsigned int , void * , int , int * , int ) ; __inline static unsigned int __create_pipe(struct usb_device *dev , unsigned int endpoint ) { { return ((unsigned int )(dev->devnum << 8) | (endpoint << 15)); } } extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; extern void kfree_skb(struct sk_buff * ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) ; extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } extern void rtnl_lock(void) ; static void ldv_rtnl_lock_192(void) ; static void ldv_rtnl_lock_194(void) ; extern void rtnl_unlock(void) ; static void ldv_rtnl_unlock_193(void) ; static void ldv_rtnl_unlock_195(void) ; extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; __inline static void set_wiphy_dev(struct wiphy *wiphy , struct device *dev ) { { wiphy->dev.parent = dev; return; } } extern unsigned int ieee80211_get_hdrlen_from_skb(struct sk_buff const * ) ; __inline static struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb ) { { return ((struct ieee80211_tx_info *)(& skb->cb)); } } __inline static struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb ) { { return ((struct ieee80211_rx_status *)(& skb->cb)); } } __inline static void SET_IEEE80211_DEV(struct ieee80211_hw *hw , struct device *dev ) { { { set_wiphy_dev(hw->wiphy, dev); } return; } } __inline static void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw , u8 *addr ) { { { memcpy((void *)(& (hw->wiphy)->perm_addr), (void const *)addr, 6UL); } return; } } extern void ieee80211_free_txskb(struct ieee80211_hw * , struct sk_buff * ) ; extern struct ieee80211_hw *ieee80211_alloc_hw_nm(size_t , struct ieee80211_ops const * , char const * ) ; __inline static struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len , struct ieee80211_ops const *ops ) { struct ieee80211_hw *tmp ; { { tmp = ieee80211_alloc_hw_nm(priv_data_len, ops, (char const *)0); } return (tmp); } } __inline static struct ieee80211_hw *ldv_ieee80211_alloc_hw_182(size_t priv_data_len , struct ieee80211_ops const *ops ) ; extern int ieee80211_register_hw(struct ieee80211_hw * ) ; extern void ieee80211_unregister_hw(struct ieee80211_hw * ) ; static void ldv_ieee80211_unregister_hw_184(struct ieee80211_hw *ldv_func_arg1 ) ; extern void ieee80211_free_hw(struct ieee80211_hw * ) ; static void ldv_ieee80211_free_hw_183(struct ieee80211_hw *ldv_func_arg1 ) ; static void ldv_ieee80211_free_hw_185(struct ieee80211_hw *ldv_func_arg1 ) ; extern void ieee80211_rx_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern void ieee80211_tx_status_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern void ieee80211_stop_queues(struct ieee80211_hw * ) ; extern void ieee80211_wake_queues(struct ieee80211_hw * ) ; extern void ieee80211_queue_work(struct ieee80211_hw * , struct work_struct * ) ; extern void ieee80211_queue_delayed_work(struct ieee80211_hw * , struct delayed_work * , unsigned long ) ; extern struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif * , u8 const * ) ; static int ar5523_submit_rx_cmd(struct ar5523 *ar ) ; static void ar5523_data_tx_pkt_put(struct ar5523 *ar ) ; static void ar5523_read_reply(struct ar5523 *ar , struct ar5523_cmd_hdr *hdr , struct ar5523_tx_cmd *cmd ) { int dlen ; int olen ; __be32 *rp ; __u32 tmp ; int __ret_warn_on ; long tmp___0 ; struct _ddebug descriptor ; __u32 tmp___1 ; long tmp___2 ; __u32 tmp___3 ; int tmp___4 ; { { tmp = __fswab32(hdr->len); dlen = (int )(tmp - 32U); } if (dlen < 0) { { __ret_warn_on = 1; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/ath/ar5523/ar5523.c", 57); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } goto out; } else { } { descriptor.modname = "ar5523"; descriptor.function = "ar5523_read_reply"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "Code = %d len = %d\n"; descriptor.lineno = 62U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = __fswab32(hdr->code); __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "Code = %d len = %d\n", tmp___1 & 255U, dlen); } } else { } rp = (__be32 *)hdr + 1U; if ((unsigned int )dlen > 3U) { { tmp___3 = __fswab32(*rp); olen = (int )tmp___3; dlen = (int )((unsigned int )dlen - 4U); } if (olen == 0) { olen = 4; } else { } } else { olen = 0; } if ((unsigned long )cmd->odata != (unsigned long )((void *)0)) { if (cmd->olen < olen) { { tmp___4 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___4 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "olen to small %d < %d\n", cmd->olen, olen); } } else { } cmd->olen = 0; cmd->res = -75; } else { { cmd->olen = olen; memcpy(cmd->odata, (void const *)rp + 1U, (size_t )olen); cmd->res = 0; } } } else { } out: { complete(& cmd->done); } return; } } static void ar5523_cmd_rx_cb(struct urb *urb ) { struct ar5523 *ar ; struct ar5523_tx_cmd *cmd ; struct ar5523_cmd_hdr *hdr ; int dlen ; u32 code ; u32 hdrlen ; int tmp ; int tmp___0 ; struct _ddebug descriptor ; __u32 tmp___1 ; long tmp___2 ; __u32 tmp___3 ; __u32 tmp___4 ; int tmp___5 ; struct _ddebug descriptor___0 ; long tmp___6 ; struct _ddebug descriptor___1 ; int tmp___7 ; long tmp___8 ; struct _ddebug descriptor___2 ; long tmp___9 ; int tmp___10 ; int tmp___11 ; struct _ddebug descriptor___3 ; long tmp___12 ; { ar = (struct ar5523 *)urb->context; cmd = & ar->tx_cmd; hdr = (struct ar5523_cmd_hdr *)ar->rx_cmd_buf; if (urb->status != 0) { if (urb->status != -108) { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "RX USB error %d.\n", urb->status); } } else { } } else { } goto skip; } else { } if (urb->actual_length <= 31U) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___0 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "RX USB to short.\n"); } } else { } goto skip; } else { } { descriptor.modname = "ar5523"; descriptor.function = "ar5523_cmd_rx_cb"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "%s code %02x priv %d\n"; descriptor.lineno = 112U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = __fswab32(hdr->code); __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "%s code %02x priv %d\n", "ar5523_cmd_rx_cb", tmp___1 & 255U, hdr->priv); } } else { } { tmp___3 = __fswab32(hdr->code); code = tmp___3; tmp___4 = __fswab32(hdr->len); hdrlen = tmp___4; } { if ((code & 255U) == 19U) { goto case_19; } else { } if ((code & 255U) == 20U) { goto case_20; } else { } if ((code & 255U) == 8U) { goto case_8; } else { } if ((code & 255U) == 17U) { goto case_17; } else { } goto switch_default; switch_default: /* CIL Label */ ; if (hdr->priv != 1U) { { tmp___5 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___5 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Unexpected command id: %02x\n", code & 255U); } } else { } goto skip; } else { } { ar5523_read_reply(ar, hdr, cmd); } goto ldv_52899; case_19: /* CIL Label */ { descriptor___0.modname = "ar5523"; descriptor___0.function = "ar5523_cmd_rx_cb"; descriptor___0.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___0.format = "WDCMSG_DEVICE_AVAIL\n"; descriptor___0.lineno = 129U; descriptor___0.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (ar->dev)->dev), "WDCMSG_DEVICE_AVAIL\n"); } } else { } { cmd->res = 0; cmd->olen = 0; complete(& cmd->done); } goto ldv_52899; case_20: /* CIL Label */ { descriptor___1.modname = "ar5523"; descriptor___1.function = "ar5523_cmd_rx_cb"; descriptor___1.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___1.format = "WDCMSG_SEND_COMPLETE: %d pending\n"; descriptor___1.lineno = 137U; descriptor___1.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = atomic_read((atomic_t const *)(& ar->tx_nr_pending)); __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (ar->dev)->dev), "WDCMSG_SEND_COMPLETE: %d pending\n", tmp___7); } } else { } { tmp___10 = constant_test_bit(0L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___10 == 0) { { descriptor___2.modname = "ar5523"; descriptor___2.function = "ar5523_cmd_rx_cb"; descriptor___2.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___2.format = "Unexpected WDCMSG_SEND_COMPLETE\n"; descriptor___2.lineno = 139U; descriptor___2.flags = 0U; tmp___9 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___9 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(& (ar->dev)->dev), "Unexpected WDCMSG_SEND_COMPLETE\n"); } } else { } } else { { ldv_mod_timer_121(& ar->tx_wd_timer, (unsigned long )jiffies + 500UL); ar5523_data_tx_pkt_put(ar); } } goto ldv_52899; case_8: /* CIL Label */ dlen = (int )(hdrlen - 32U); if (dlen != 4) { { tmp___11 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___11 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Invalid reply to WDCMSG_TARGET_START"); } } else { } return; } else { } { memcpy(cmd->odata, (void const *)hdr + 1U, 4UL); cmd->olen = 4; cmd->res = 0; complete(& cmd->done); } goto ldv_52899; case_17: /* CIL Label */ { descriptor___3.modname = "ar5523"; descriptor___3.function = "ar5523_cmd_rx_cb"; descriptor___3.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___3.format = "WDCMSG_STATS_UPDATE\n"; descriptor___3.lineno = 163U; descriptor___3.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___12 != 0L) { { __dynamic_dev_dbg(& descriptor___3, (struct device const *)(& (ar->dev)->dev), "WDCMSG_STATS_UPDATE\n"); } } else { } goto ldv_52899; switch_break: /* CIL Label */ ; } ldv_52899: ; skip: { ar5523_submit_rx_cmd(ar); } return; } } static int ar5523_alloc_rx_cmd(struct ar5523 *ar ) { { { ar->rx_cmd_urb = ldv_usb_alloc_urb_122(0, 208U); } if ((unsigned long )ar->rx_cmd_urb == (unsigned long )((struct urb *)0)) { return (-12); } else { } { ar->rx_cmd_buf = ldv_usb_alloc_coherent_123(ar->dev, 1024UL, 208U, & (ar->rx_cmd_urb)->transfer_dma); } if ((unsigned long )ar->rx_cmd_buf == (unsigned long )((void *)0)) { { ldv_usb_free_urb_124(ar->rx_cmd_urb); } return (-12); } else { } return (0); } } static void ar5523_cancel_rx_cmd(struct ar5523 *ar ) { { { usb_kill_urb(ar->rx_cmd_urb); } return; } } static void ar5523_free_rx_cmd(struct ar5523 *ar ) { { { ldv_usb_free_coherent_125(ar->dev, 1024UL, ar->rx_cmd_buf, (ar->rx_cmd_urb)->transfer_dma); ldv_usb_free_urb_126(ar->rx_cmd_urb); } return; } } static int ar5523_submit_rx_cmd(struct ar5523 *ar ) { int error ; unsigned int tmp ; int tmp___0 ; { { tmp = __create_pipe(ar->dev, 129U); usb_fill_bulk_urb(ar->rx_cmd_urb, ar->dev, tmp | 3221225600U, ar->rx_cmd_buf, 1024, & ar5523_cmd_rx_cb, (void *)ar); (ar->rx_cmd_urb)->transfer_flags = (ar->rx_cmd_urb)->transfer_flags | 4U; error = ldv_usb_submit_urb_127(ar->rx_cmd_urb, 32U); } if (error != 0) { if (error != -19) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___0 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "error %d when submitting rx urb\n", error); } } else { } } else { } return (error); } else { } return (0); } } static void ar5523_cmd_tx_cb(struct urb *urb ) { struct ar5523_tx_cmd *cmd ; struct ar5523 *ar ; int tmp ; { cmd = (struct ar5523_tx_cmd *)urb->context; ar = cmd->ar; if (urb->status != 0) { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Failed to TX command. Status = %d\n", urb->status); } } else { } { cmd->res = urb->status; complete(& cmd->done); } return; } else { } if ((cmd->flags & 2) == 0) { { cmd->res = 0; complete(& cmd->done); } } else { } return; } } static int ar5523_cmd(struct ar5523 *ar , u32 code , void const *idata , int ilen , void *odata , int olen , int flags ) { struct ar5523_cmd_hdr *hdr ; struct ar5523_tx_cmd *cmd ; int xferlen ; int error ; __u32 tmp ; __u32 tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; unsigned int tmp___2 ; int tmp___3 ; int tmp___4 ; unsigned long tmp___5 ; { { cmd = & ar->tx_cmd; xferlen = (int )((unsigned int )ilen + 35U) & -4; hdr = (struct ar5523_cmd_hdr *)cmd->buf_tx; memset((void *)hdr, 0, 32UL); tmp = __fswab32((__u32 )xferlen); hdr->len = tmp; tmp___0 = __fswab32(code); hdr->code = tmp___0; hdr->priv = 1U; } if ((flags & 4) != 0) { hdr->magic = 1U; } else { } { memcpy((void *)hdr + 1U, idata, (size_t )ilen); cmd->odata = odata; cmd->olen = olen; cmd->flags = flags; descriptor.modname = "ar5523"; descriptor.function = "ar5523_cmd"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "do cmd %02x\n"; descriptor.lineno = 264U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "do cmd %02x\n", code); } } else { } { tmp___2 = __create_pipe(ar->dev, 1U); usb_fill_bulk_urb(cmd->urb_tx, ar->dev, tmp___2 | 3221225472U, cmd->buf_tx, xferlen, & ar5523_cmd_tx_cb, (void *)cmd); (cmd->urb_tx)->transfer_flags = (cmd->urb_tx)->transfer_flags | 4U; error = ldv_usb_submit_urb_128(cmd->urb_tx, 208U); } if (error != 0) { { tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___3 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not send command 0x%x, error=%d\n", code, error); } } else { } return (error); } else { } { tmp___5 = ldv_wait_for_completion_timeout_129(& cmd->done, 500UL); } if (tmp___5 == 0UL) { { cmd->odata = (void *)0; tmp___4 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___4 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "timeout waiting for command %02x reply\n", code); } } else { } cmd->res = -110; } else { } return (cmd->res); } } static int ar5523_cmd_write(struct ar5523 *ar , u32 code , void const *data , int len , int flags ) { int tmp ; { { flags = flags & -3; tmp = ar5523_cmd(ar, code, data, len, (void *)0, 0, flags); } return (tmp); } } static int ar5523_cmd_read(struct ar5523 *ar , u32 code , void const *idata , int ilen , void *odata , int olen , int flags ) { int tmp ; { { flags = flags | 2; tmp = ar5523_cmd(ar, code, idata, ilen, odata, olen, flags); } return (tmp); } } static int ar5523_config(struct ar5523 *ar , u32 reg , u32 val ) { struct ar5523_write_mac write ; int error ; __u32 tmp ; __u32 tmp___0 ; int tmp___1 ; { { tmp = __fswab32(reg); write.reg = tmp; write.len = 0U; tmp___0 = __fswab32(val); *((__be32 *)(& write.data)) = tmp___0; error = ar5523_cmd_write(ar, 5U, (void const *)(& write), 12, 0); } if (error != 0) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___1 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not write register 0x%02x\n", reg); } } else { } } else { } return (error); } } static int ar5523_config_multi(struct ar5523 *ar , u32 reg , void const *data , int len ) { struct ar5523_write_mac write ; int error ; __u32 tmp ; __u32 tmp___0 ; int tmp___1 ; { { tmp = __fswab32(reg); write.reg = tmp; tmp___0 = __fswab32((__u32 )len); write.len = tmp___0; memcpy((void *)(& write.data), data, (size_t )len); error = ar5523_cmd_write(ar, 5U, (void const *)(& write), len != 0 ? (int )((unsigned int )len + 8U) : 4, 0); } if (error != 0) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___1 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not write %d bytes to register 0x%02x\n", len, reg); } } else { } } else { } return (error); } } static int ar5523_get_status(struct ar5523 *ar , u32 which , void *odata , int olen ) { int error ; __be32 which_be ; __u32 tmp ; int tmp___0 ; { { tmp = __fswab32(which); which_be = tmp; error = ar5523_cmd_read(ar, 6U, (void const *)(& which_be), 4, odata, olen, 4); } if (error != 0) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___0 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not read EEPROM offset 0x%02x\n", which); } } else { } } else { } return (error); } } static int ar5523_get_capability(struct ar5523 *ar , u32 cap , u32 *val ) { int error ; __be32 cap_be ; __be32 val_be ; __u32 tmp ; int tmp___0 ; __u32 tmp___1 ; { { tmp = __fswab32(cap); cap_be = tmp; error = ar5523_cmd_read(ar, 4U, (void const *)(& cap_be), 4, (void *)(& val_be), 4, 4); } if (error != 0) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___0 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not read capability %u\n", cap); } } else { } return (error); } else { } { tmp___1 = __fswab32(val_be); *val = tmp___1; } return (error); } } static int ar5523_get_devcap(struct ar5523 *ar ) { int error ; u32 cap ; { { error = ar5523_get_capability(ar, 2U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_TARGET_VERSION", cap); error = ar5523_get_capability(ar, 3U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_TARGET_REVISION", cap); error = ar5523_get_capability(ar, 4U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_MAC_VERSION", cap); error = ar5523_get_capability(ar, 5U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_MAC_REVISION", cap); error = ar5523_get_capability(ar, 6U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_PHY_REVISION", cap); error = ar5523_get_capability(ar, 7U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_ANALOG_5GHz_REVISION", cap); error = ar5523_get_capability(ar, 8U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_ANALOG_2GHz_REVISION", cap); error = ar5523_get_capability(ar, 10U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_REG_DOMAIN", cap); error = ar5523_get_capability(ar, 12U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_REG_CAP_BITS", cap); error = ar5523_get_capability(ar, 13U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_WIRELESS_MODES", cap); error = ar5523_get_capability(ar, 14U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_CHAN_SPREAD_SUPPORT", cap); error = ar5523_get_capability(ar, 16U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_COMPRESS_SUPPORT", cap); error = ar5523_get_capability(ar, 17U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_BURST_SUPPORT", cap); error = ar5523_get_capability(ar, 18U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_FAST_FRAMES_SUPPORT", cap); error = ar5523_get_capability(ar, 19U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_CHAP_TUNING_SUPPORT", cap); error = ar5523_get_capability(ar, 20U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_TURBOG_SUPPORT", cap); error = ar5523_get_capability(ar, 21U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_TURBO_PRIME_SUPPORT", cap); error = ar5523_get_capability(ar, 22U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_DEVICE_TYPE", cap); error = ar5523_get_capability(ar, 24U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_WME_SUPPORT", cap); error = ar5523_get_capability(ar, 25U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_TOTAL_QUEUES", cap); error = ar5523_get_capability(ar, 26U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_CONNECTION_ID_MAX", cap); error = ar5523_get_capability(ar, 27U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_LOW_5GHZ_CHAN", cap); error = ar5523_get_capability(ar, 28U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_HIGH_5GHZ_CHAN", cap); error = ar5523_get_capability(ar, 29U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_LOW_2GHZ_CHAN", cap); error = ar5523_get_capability(ar, 30U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_HIGH_2GHZ_CHAN", cap); error = ar5523_get_capability(ar, 38U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_TWICE_ANTENNAGAIN_5G", cap); error = ar5523_get_capability(ar, 39U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_TWICE_ANTENNAGAIN_2G", cap); error = ar5523_get_capability(ar, 35U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_CIPHER_AES_CCM", cap); error = ar5523_get_capability(ar, 37U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_CIPHER_TKIP", cap); error = ar5523_get_capability(ar, 33U, & cap); } if (error != 0) { return (error); } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Cap: %s=0x%08x\n", (char *)"CAP_MIC_TKIP", cap); } return (0); } } static int ar5523_set_ledsteady(struct ar5523 *ar , int lednum , int ledmode ) { struct ar5523_cmd_ledsteady led ; __u32 tmp ; __u32 tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; int tmp___2 ; { { tmp = __fswab32((__u32 )lednum); led.lednum = tmp; tmp___0 = __fswab32((__u32 )ledmode); led.ledmode = tmp___0; descriptor.modname = "ar5523"; descriptor.function = "ar5523_set_ledsteady"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "set %s led %s (steady)\n"; descriptor.lineno = 424U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "set %s led %s (steady)\n", lednum == 0 ? (char *)"link" : (char *)"activity", ledmode != 0 ? (char *)"on" : (char *)"off"); } } else { } { tmp___2 = ar5523_cmd_write(ar, 24U, (void const *)(& led), 8, 0); } return (tmp___2); } } static int ar5523_set_rxfilter(struct ar5523 *ar , u32 bits , u32 op ) { struct ar5523_cmd_rx_filter rxfilter ; __u32 tmp ; __u32 tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; int tmp___2 ; { { tmp = __fswab32(bits); rxfilter.bits = tmp; tmp___0 = __fswab32(op); rxfilter.op = tmp___0; descriptor.modname = "ar5523"; descriptor.function = "ar5523_set_rxfilter"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "setting Rx filter=0x%x flags=0x%x\n"; descriptor.lineno = 436U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "setting Rx filter=0x%x flags=0x%x\n", bits, op); } } else { } { tmp___2 = ar5523_cmd_write(ar, 51U, (void const *)(& rxfilter), 8, 0); } return (tmp___2); } } static int ar5523_reset_tx_queues(struct ar5523 *ar ) { __be32 qid ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { { qid = 0U; descriptor.modname = "ar5523"; descriptor.function = "ar5523_reset_tx_queues"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "resetting Tx queue\n"; descriptor.lineno = 445U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "resetting Tx queue\n"); } } else { } { tmp___0 = ar5523_cmd_write(ar, 59U, (void const *)(& qid), 4, 0); } return (tmp___0); } } static int ar5523_set_chan(struct ar5523 *ar ) { struct ieee80211_conf *conf ; struct ar5523_cmd_reset reset ; __u32 tmp ; struct _ddebug descriptor ; __u32 tmp___0 ; long tmp___1 ; int tmp___2 ; { { conf = & (ar->hw)->conf; memset((void *)(& reset), 0, 28UL); reset.flags = reset.flags | 1048576U; reset.flags = reset.flags | 262144U; tmp = __fswab32((__u32 )(conf->chandef.chan)->center_freq); reset.freq = tmp; reset.maxrdpower = 838860800U; reset.channelchange = 16777216U; reset.keeprccontent = 0U; descriptor.modname = "ar5523"; descriptor.function = "ar5523_set_chan"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "set chan flags 0x%x freq %d\n"; descriptor.lineno = 466U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = __fswab32(reset.flags); __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "set chan flags 0x%x freq %d\n", tmp___0, (int )(conf->chandef.chan)->center_freq); } } else { } { tmp___2 = ar5523_cmd_write(ar, 53U, (void const *)(& reset), 28, 0); } return (tmp___2); } } static int ar5523_queue_init(struct ar5523 *ar ) { struct ar5523_cmd_txq_setup qinfo ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { { descriptor.modname = "ar5523"; descriptor.function = "ar5523_queue_init"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "setting up Tx queue\n"; descriptor.lineno = 474U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "setting up Tx queue\n"); } } else { } { qinfo.qid = 0U; qinfo.len = 469762048U; qinfo.attr.priority = 0U; qinfo.attr.aifs = 50331648U; qinfo.attr.logcwmin = 67108864U; qinfo.attr.logcwmax = 167772160U; qinfo.attr.bursttime = 0U; qinfo.attr.mode = 0U; qinfo.attr.qflags = 16777216U; tmp___0 = ar5523_cmd_write(ar, 58U, (void const *)(& qinfo), 36, 0); } return (tmp___0); } } static int ar5523_switch_chan(struct ar5523 *ar ) { int error ; int tmp ; int tmp___0 ; int tmp___1 ; { { error = ar5523_set_chan(ar); } if (error != 0) { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not set chan, error %d\n", error); } } else { } goto out_err; } else { } { error = ar5523_reset_tx_queues(ar); } if (error != 0) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___0 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not reset Tx queues, error %d\n", error); } } else { } goto out_err; } else { } { error = ar5523_queue_init(ar); } if (error != 0) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___1 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not init wme, error %d\n", error); } } else { } } else { } out_err: ; return (error); } } static void ar5523_rx_data_put(struct ar5523 *ar , struct ar5523_rx_data *data ) { unsigned long flags ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_130(& ar->rx_data_list_lock); list_move(& data->list, & ar->rx_data_free); ldv_spin_unlock_irqrestore_131(& ar->rx_data_list_lock, flags); } return; } } static void ar5523_data_rx_cb(struct urb *urb ) { struct ar5523_rx_data *data ; struct ar5523 *ar ; struct ar5523_rx_desc *desc ; struct ar5523_chunk *chunk ; struct ieee80211_hw *hw ; struct ieee80211_rx_status *rx_status ; u32 rxlen ; int usblen ; int hdrlen ; int pad ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; struct _ddebug descriptor___0 ; __u16 tmp___2 ; long tmp___3 ; __u32 tmp___4 ; struct _ddebug descriptor___1 ; __u32 tmp___5 ; long tmp___6 ; struct _ddebug descriptor___2 ; long tmp___7 ; struct _ddebug descriptor___3 ; __u32 tmp___8 ; __u32 tmp___9 ; long tmp___10 ; __u32 tmp___11 ; unsigned int tmp___12 ; struct _ddebug descriptor___4 ; long tmp___13 ; __u32 tmp___14 ; __u32 tmp___15 ; int tmp___16 ; int tmp___17 ; { { data = (struct ar5523_rx_data *)urb->context; ar = data->ar; hw = ar->hw; usblen = (int )urb->actual_length; descriptor.modname = "ar5523"; descriptor.function = "ar5523_data_rx_cb"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "%s\n"; descriptor.lineno = 535U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "%s\n", "ar5523_data_rx_cb"); } } else { } if (urb->status != 0) { if (urb->status != -108) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___0 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "%s: USB err: %d\n", "ar5523_data_rx_cb", urb->status); } } else { } } else { } goto skip; } else { } if ((unsigned int )usblen <= 83U) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___1 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "RX: wrong xfer size (usblen=%d)\n", usblen); } } else { } goto skip; } else { } chunk = (struct ar5523_chunk *)(data->skb)->data; if (((int )chunk->flags & 1) == 0 || (unsigned int )chunk->seqnum != 0U) { { descriptor___0.modname = "ar5523"; descriptor___0.function = "ar5523_data_rx_cb"; descriptor___0.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___0.format = "RX: No final flag. s: %d f: %02x l: %d\n"; descriptor___0.lineno = 555U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___3 != 0L) { { tmp___2 = __fswab16((int )chunk->length); __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (ar->dev)->dev), "RX: No final flag. s: %d f: %02x l: %d\n", (int )chunk->seqnum, (int )chunk->flags, (int )tmp___2); } } else { } goto skip; } else { } { desc = (struct ar5523_rx_desc *)((data->skb)->data + ((unsigned long )usblen + 0xffffffffffffffc0UL)); tmp___4 = __fswab32(desc->len); rxlen = tmp___4; } if (rxlen > ar->rxbufsz) { { descriptor___1.modname = "ar5523"; descriptor___1.function = "ar5523_data_rx_cb"; descriptor___1.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___1.format = "RX: Bad descriptor (len=%d)\n"; descriptor___1.lineno = 566U; descriptor___1.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = __fswab32(desc->len); __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (ar->dev)->dev), "RX: Bad descriptor (len=%d)\n", tmp___5); } } else { } goto skip; } else { } if (rxlen == 0U) { { descriptor___2.modname = "ar5523"; descriptor___2.function = "ar5523_data_rx_cb"; descriptor___2.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___2.format = "RX: rxlen is 0\n"; descriptor___2.lineno = 571U; descriptor___2.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(& (ar->dev)->dev), "RX: rxlen is 0\n"); } } else { } goto skip; } else { } { tmp___11 = __fswab32(desc->status); } if (tmp___11 != 0U) { { descriptor___3.modname = "ar5523"; descriptor___3.function = "ar5523_data_rx_cb"; descriptor___3.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___3.format = "Bad RX status (0x%x len = %d). Skip\n"; descriptor___3.lineno = 577U; descriptor___3.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___8 = __fswab32(desc->len); tmp___9 = __fswab32(desc->status); __dynamic_dev_dbg(& descriptor___3, (struct device const *)(& (ar->dev)->dev), "Bad RX status (0x%x len = %d). Skip\n", tmp___9, tmp___8); } } else { } goto skip; } else { } { skb_reserve(data->skb, 4); skb_put(data->skb, rxlen - 64U); tmp___12 = ieee80211_get_hdrlen_from_skb((struct sk_buff const *)data->skb); hdrlen = (int )tmp___12; } if ((hdrlen & 3) != 0) { { descriptor___4.modname = "ar5523"; descriptor___4.function = "ar5523_data_rx_cb"; descriptor___4.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___4.format = "eek, alignment workaround activated\n"; descriptor___4.lineno = 586U; descriptor___4.flags = 0U; tmp___13 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___13 != 0L) { { __dynamic_dev_dbg(& descriptor___4, (struct device const *)(& (ar->dev)->dev), "eek, alignment workaround activated\n"); } } else { } { pad = ((hdrlen + 3) & -4) - hdrlen; memmove((void *)(data->skb)->data + (unsigned long )pad, (void const *)(data->skb)->data, (size_t )hdrlen); skb_pull(data->skb, (unsigned int )pad); skb_put(data->skb, (unsigned int )pad); } } else { } { rx_status = IEEE80211_SKB_RXCB(data->skb); memset((void *)rx_status, 0, 40UL); tmp___14 = __fswab32(desc->channel); rx_status->freq = (u16 )tmp___14; rx_status->band = (u8 )(hw->conf.chandef.chan)->band; tmp___15 = __fswab32(desc->rssi); rx_status->signal = (s8 )((unsigned int )((unsigned char )tmp___15) + 161U); ieee80211_rx_irqsafe(hw, data->skb); data->skb = (struct sk_buff *)0; } skip: ; if ((unsigned long )data->skb != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_irq(data->skb); data->skb = (struct sk_buff *)0; } } else { } { ar5523_rx_data_put(ar, data); tmp___16 = atomic_add_return(1, & ar->rx_data_free_cnt); } if (tmp___16 > 7) { { tmp___17 = constant_test_bit(0L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___17 != 0) { { queue_work(ar->wq, & ar->rx_refill_work); } } else { } } else { } return; } } static void ar5523_rx_refill_work(struct work_struct *work ) { struct ar5523 *ar ; struct work_struct const *__mptr ; struct ar5523_rx_data *data ; unsigned long flags ; int error ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; int tmp___3 ; { { __mptr = (struct work_struct const *)work; ar = (struct ar5523 *)__mptr + 0xfffffffffffff8e8UL; descriptor.modname = "ar5523"; descriptor.function = "ar5523_rx_refill_work"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "%s\n"; descriptor.lineno = 622U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "%s\n", "ar5523_rx_refill_work"); } } else { } ldv_53071: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_132(& ar->rx_data_list_lock); tmp___0 = list_empty((struct list_head const *)(& ar->rx_data_free)); } if (tmp___0 == 0) { data = (struct ar5523_rx_data *)ar->rx_data_free.next; } else { data = (struct ar5523_rx_data *)0; } { ldv_spin_unlock_irqrestore_131(& ar->rx_data_list_lock, flags); } if ((unsigned long )data == (unsigned long )((struct ar5523_rx_data *)0)) { goto done; } else { } { data->skb = alloc_skb(ar->rxbufsz, 208U); } if ((unsigned long )data->skb == (unsigned long )((struct sk_buff *)0)) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___1 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not allocate rx skbuff\n"); } } else { } return; } else { } { tmp___2 = __create_pipe(ar->dev, 130U); usb_fill_bulk_urb(data->urb, ar->dev, tmp___2 | 3221225600U, (void *)(data->skb)->data, (int )ar->rxbufsz, & ar5523_data_rx_cb, (void *)data); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_134(& ar->rx_data_list_lock); list_move(& data->list, & ar->rx_data_used); ldv_spin_unlock_irqrestore_131(& ar->rx_data_list_lock, flags); atomic_dec(& ar->rx_data_free_cnt); error = ldv_usb_submit_urb_136(data->urb, 208U); } if (error != 0) { { kfree_skb(data->skb); } if (error != -19) { { tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___3 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Err sending rx data urb %d\n", error); } } else { } } else { } { ar5523_rx_data_put(ar, data); atomic_inc(& ar->rx_data_free_cnt); } return; } else { } goto ldv_53071; done: ; return; } } static void ar5523_cancel_rx_bufs(struct ar5523 *ar ) { struct ar5523_rx_data *data ; unsigned long flags ; int tmp ; { ldv_53078: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_137(& ar->rx_data_list_lock); tmp = list_empty((struct list_head const *)(& ar->rx_data_used)); } if (tmp == 0) { data = (struct ar5523_rx_data *)ar->rx_data_used.next; } else { data = (struct ar5523_rx_data *)0; } { ldv_spin_unlock_irqrestore_131(& ar->rx_data_list_lock, flags); } if ((unsigned long )data == (unsigned long )((struct ar5523_rx_data *)0)) { goto ldv_53077; } else { } { usb_kill_urb(data->urb); list_move(& data->list, & ar->rx_data_free); atomic_inc(& ar->rx_data_free_cnt); } if ((unsigned long )data != (unsigned long )((struct ar5523_rx_data *)0)) { goto ldv_53078; } else { } ldv_53077: ; return; } } static void ar5523_free_rx_bufs(struct ar5523 *ar ) { struct ar5523_rx_data *data ; int tmp ; { { ar5523_cancel_rx_bufs(ar); } goto ldv_53084; ldv_53083: { data = (struct ar5523_rx_data *)ar->rx_data_free.next; list_del(& data->list); ldv_usb_free_urb_139(data->urb); } ldv_53084: { tmp = list_empty((struct list_head const *)(& ar->rx_data_free)); } if (tmp == 0) { goto ldv_53083; } else { } return; } } static int ar5523_alloc_rx_bufs(struct ar5523 *ar ) { int i ; struct ar5523_rx_data *data ; int tmp ; { i = 0; goto ldv_53093; ldv_53092: { data = (struct ar5523_rx_data *)(& ar->rx_data) + (unsigned long )i; data->ar = ar; data->urb = ldv_usb_alloc_urb_140(0, 208U); } if ((unsigned long )data->urb == (unsigned long )((struct urb *)0)) { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not allocate rx data urb\n"); } } else { } goto err; } else { } { list_add_tail(& data->list, & ar->rx_data_free); atomic_inc(& ar->rx_data_free_cnt); i = i + 1; } ldv_53093: ; if (i <= 15) { goto ldv_53092; } else { } return (0); err: { ar5523_free_rx_bufs(ar); } return (-12); } } static void ar5523_data_tx_pkt_put(struct ar5523 *ar ) { int tmp ; struct _ddebug descriptor ; long tmp___0 ; int tmp___1 ; { { atomic_dec(& ar->tx_nr_total); tmp = atomic_sub_return(1, & ar->tx_nr_pending); } if (tmp == 0) { { ldv_del_timer_141(& ar->tx_wd_timer); __wake_up(& ar->tx_flush_waitq, 3U, 1, (void *)0); } } else { } { tmp___1 = atomic_read((atomic_t const *)(& ar->tx_nr_total)); } if (tmp___1 <= 1) { { descriptor.modname = "ar5523"; descriptor.function = "ar5523_data_tx_pkt_put"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "restart tx queue\n"; descriptor.lineno = 732U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "restart tx queue\n"); } } else { } { ieee80211_wake_queues(ar->hw); } } else { } return; } } static void ar5523_data_tx_cb(struct urb *urb ) { struct sk_buff *skb ; struct ieee80211_tx_info *txi ; struct ieee80211_tx_info *tmp ; struct ar5523_tx_data *data ; struct ar5523 *ar ; unsigned long flags ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; { { skb = (struct sk_buff *)urb->context; tmp = IEEE80211_SKB_CB(skb); txi = tmp; data = (struct ar5523_tx_data *)(& txi->__annonCompField92.driver_data); ar = data->ar; descriptor.modname = "ar5523"; descriptor.function = "ar5523_data_tx_cb"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "data tx urb completed: %d\n"; descriptor.lineno = 746U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "data tx urb completed: %d\n", urb->status); } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_142(& ar->tx_data_list_lock); list_del(& data->list); ldv_spin_unlock_irqrestore_143(& ar->tx_data_list_lock, flags); } if (urb->status != 0) { { descriptor___0.modname = "ar5523"; descriptor___0.function = "ar5523_data_tx_cb"; descriptor___0.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___0.format = "%s: urb status: %d\n"; descriptor___0.lineno = 753U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (ar->dev)->dev), "%s: urb status: %d\n", "ar5523_data_tx_cb", urb->status); } } else { } { ar5523_data_tx_pkt_put(ar); ieee80211_free_txskb(ar->hw, skb); } } else { { skb_pull(skb, 32U); ieee80211_tx_status_irqsafe(ar->hw, skb); } } { ldv_usb_free_urb_144(urb); } return; } } static void ar5523_tx(struct ieee80211_hw *hw , struct ieee80211_tx_control *control , struct sk_buff *skb ) { struct ieee80211_tx_info *txi ; struct ieee80211_tx_info *tmp ; struct ar5523_tx_data *data ; struct ar5523 *ar ; unsigned long flags ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; int tmp___5 ; { { tmp = IEEE80211_SKB_CB(skb); txi = tmp; data = (struct ar5523_tx_data *)(& txi->__annonCompField92.driver_data); ar = (struct ar5523 *)hw->priv; descriptor.modname = "ar5523"; descriptor.function = "ar5523_tx"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "tx called\n"; descriptor.lineno = 773U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "tx called\n"); } } else { } { tmp___5 = atomic_add_return(1, & ar->tx_nr_total); } if (tmp___5 > 7) { { descriptor___0.modname = "ar5523"; descriptor___0.function = "ar5523_tx"; descriptor___0.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___0.format = "tx queue full\n"; descriptor___0.lineno = 775U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (ar->dev)->dev), "tx queue full\n"); } } else { } { descriptor___1.modname = "ar5523"; descriptor___1.function = "ar5523_tx"; descriptor___1.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___1.format = "stop queues (tot %d pend %d)\n"; descriptor___1.lineno = 778U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___2 = atomic_read((atomic_t const *)(& ar->tx_nr_pending)); tmp___3 = atomic_read((atomic_t const *)(& ar->tx_nr_total)); __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (ar->dev)->dev), "stop queues (tot %d pend %d)\n", tmp___3, tmp___2); } } else { } { ieee80211_stop_queues(hw); } } else { } { data->skb = skb; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_145(& ar->tx_data_list_lock); list_add_tail(& data->list, & ar->tx_queue_pending); ldv_spin_unlock_irqrestore_143(& ar->tx_data_list_lock, flags); ieee80211_queue_work(ar->hw, & ar->tx_work); } return; } } extern void __compiletime_assert_804(void) ; static void ar5523_tx_work_locked(struct ar5523 *ar ) { struct ar5523_tx_data *data ; struct ar5523_tx_desc *desc ; struct ar5523_chunk *chunk ; struct ieee80211_tx_info *txi ; struct urb *urb ; struct sk_buff *skb ; int error ; int paylen ; u32 txqid ; unsigned long flags ; bool __cond ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; unsigned char *tmp___2 ; unsigned char *tmp___3 ; __u16 tmp___4 ; __u32 tmp___5 ; __u32 tmp___6 ; int tmp___7 ; __u32 tmp___8 ; unsigned int tmp___9 ; struct _ddebug descriptor___0 ; int tmp___10 ; long tmp___11 ; int tmp___12 ; { error = 0; __cond = 0; if ((int )__cond) { { __compiletime_assert_804(); } } else { } { descriptor.modname = "ar5523"; descriptor.function = "ar5523_tx_work_locked"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "%s\n"; descriptor.lineno = 806U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "%s\n", "ar5523_tx_work_locked"); } } else { } ldv_53146: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_147(& ar->tx_data_list_lock); tmp___0 = list_empty((struct list_head const *)(& ar->tx_queue_pending)); } if (tmp___0 == 0) { { data = (struct ar5523_tx_data *)ar->tx_queue_pending.next; list_del(& data->list); } } else { data = (struct ar5523_tx_data *)0; } { ldv_spin_unlock_irqrestore_143(& ar->tx_data_list_lock, flags); } if ((unsigned long )data == (unsigned long )((struct ar5523_tx_data *)0)) { goto ldv_53143; } else { } { skb = data->skb; txqid = 0U; txi = IEEE80211_SKB_CB(skb); paylen = (int )skb->len; urb = ldv_usb_alloc_urb_149(0, 208U); } if ((unsigned long )urb == (unsigned long )((struct urb *)0)) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___1 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Failed to allocate TX urb\n"); } } else { } { ieee80211_free_txskb(ar->hw, skb); } goto ldv_53144; } else { } { data->ar = ar; data->urb = urb; tmp___2 = skb_push(skb, 28U); desc = (struct ar5523_tx_desc *)tmp___2; tmp___3 = skb_push(skb, 4U); chunk = (struct ar5523_chunk *)tmp___3; chunk->seqnum = 0U; chunk->flags = 1U; tmp___4 = __fswab16((int )((__u16 )skb->len)); chunk->length = tmp___4; tmp___5 = __fswab32(skb->len); desc->msglen = tmp___5; desc->msgid = 2U; tmp___6 = __fswab32((__u32 )paylen); desc->buflen = tmp___6; desc->type = 251658240U; desc->flags = 1U; tmp___7 = constant_test_bit(2L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___7 != 0) { desc->connid = 33554432U; } else { desc->connid = 4294967295U; } if ((txi->flags & 536870912U) != 0U) { txqid = txqid | 16U; } else { } { tmp___8 = __fswab32(txqid); desc->txqid = tmp___8; urb->transfer_flags = 64U; tmp___9 = __create_pipe(ar->dev, 2U); usb_fill_bulk_urb(urb, ar->dev, tmp___9 | 3221225472U, (void *)skb->data, (int )skb->len, & ar5523_data_tx_cb, (void *)skb); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_150(& ar->tx_data_list_lock); list_add_tail(& data->list, & ar->tx_queue_submitted); ldv_spin_unlock_irqrestore_143(& ar->tx_data_list_lock, flags); ldv_mod_timer_152(& ar->tx_wd_timer, (unsigned long )jiffies + 500UL); atomic_inc(& ar->tx_nr_pending); descriptor___0.modname = "ar5523"; descriptor___0.function = "ar5523_tx_work_locked"; descriptor___0.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___0.format = "TX Frame (%d pending)\n"; descriptor___0.lineno = 868U; descriptor___0.flags = 0U; tmp___11 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___11 != 0L) { { tmp___10 = atomic_read((atomic_t const *)(& ar->tx_nr_pending)); __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (ar->dev)->dev), "TX Frame (%d pending)\n", tmp___10); } } else { } { error = ldv_usb_submit_urb_153(urb, 208U); } if (error != 0) { { tmp___12 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___12 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "error %d when submitting tx urb\n", error); } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_154(& ar->tx_data_list_lock); list_del(& data->list); ldv_spin_unlock_irqrestore_143(& ar->tx_data_list_lock, flags); atomic_dec(& ar->tx_nr_pending); ar5523_data_tx_pkt_put(ar); ldv_usb_free_urb_156(urb); ieee80211_free_txskb(ar->hw, skb); } } else { } ldv_53144: ; goto ldv_53146; ldv_53143: ; return; } } static void ar5523_tx_work(struct work_struct *work ) { struct ar5523 *ar ; struct work_struct const *__mptr ; struct _ddebug descriptor ; long tmp ; { { __mptr = (struct work_struct const *)work; ar = (struct ar5523 *)__mptr + 0xfffffffffffffd00UL; descriptor.modname = "ar5523"; descriptor.function = "ar5523_tx_work"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "%s\n"; descriptor.lineno = 888U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "%s\n", "ar5523_tx_work"); } } else { } { ldv_mutex_lock_157(& ar->mutex); ar5523_tx_work_locked(ar); ldv_mutex_unlock_158(& ar->mutex); } return; } } static void ar5523_tx_wd_timer(unsigned long arg ) { struct ar5523 *ar ; struct _ddebug descriptor ; long tmp ; { { ar = (struct ar5523 *)arg; descriptor.modname = "ar5523"; descriptor.function = "ar5523_tx_wd_timer"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "TX watchdog timer triggered\n"; descriptor.lineno = 898U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "TX watchdog timer triggered\n"); } } else { } { ieee80211_queue_work(ar->hw, & ar->tx_wd_work); } return; } } static void ar5523_tx_wd_work(struct work_struct *work ) { struct ar5523 *ar ; struct work_struct const *__mptr ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { __mptr = (struct work_struct const *)work; ar = (struct ar5523 *)__mptr + 0xfffffffffffffd50UL; ldv_mutex_lock_159(& ar->mutex); tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___1 == 0) { { tmp = atomic_read((atomic_t const *)(& ar->tx_nr_pending)); tmp___0 = atomic_read((atomic_t const *)(& ar->tx_nr_total)); dev_err((struct device const *)(& (ar->dev)->dev), "TX queue stuck (tot %d pend %d)\n", tmp___0, tmp); } } else { } { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___2 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Will restart dongle.\n"); } } else { } { ar5523_cmd_write(ar, 3U, (void const *)0, 0, 0); ldv_mutex_unlock_160(& ar->mutex); } return; } } static void ar5523_flush_tx(struct ar5523 *ar ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; long __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___3 ; bool __cond ; int tmp___4 ; bool __cond___0 ; int tmp___5 ; { { ar5523_tx_work_locked(ar); tmp = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp != 0) { return; } else { } { __ret = 750L; __might_sleep("drivers/net/wireless/ath/ar5523/ar5523.c", 928, 0); tmp___5 = atomic_read((atomic_t const *)(& ar->tx_nr_pending)); __cond___0 = tmp___5 == 0; } if ((int )__cond___0 && __ret == 0L) { __ret = 1L; } else { } if (((int )__cond___0 || __ret == 0L) == 0) { { __ret___0 = 750L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_53180: { tmp___3 = prepare_to_wait_event(& ar->tx_flush_waitq, & __wait, 2); __int = tmp___3; tmp___4 = atomic_read((atomic_t const *)(& ar->tx_nr_pending)); __cond = tmp___4 == 0; } if ((int )__cond && __ret___0 == 0L) { __ret___0 = 1L; } else { } if (((int )__cond || __ret___0 == 0L) != 0) { goto ldv_53179; } else { } { __ret___0 = schedule_timeout(__ret___0); } goto ldv_53180; ldv_53179: { finish_wait(& ar->tx_flush_waitq, & __wait); } __ret = __ret___0; } else { } if (__ret == 0L) { { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___2 == 0) { { tmp___0 = atomic_read((atomic_t const *)(& ar->tx_nr_pending)); tmp___1 = atomic_read((atomic_t const *)(& ar->tx_nr_total)); dev_err((struct device const *)(& (ar->dev)->dev), "flush timeout (tot %d pend %d)\n", tmp___1, tmp___0); } } else { } } else { } return; } } static void ar5523_free_tx_cmd(struct ar5523 *ar ) { struct ar5523_tx_cmd *cmd ; { { cmd = & ar->tx_cmd; ldv_usb_free_coherent_161(ar->dev, 1024UL, cmd->buf_tx, (cmd->urb_tx)->transfer_dma); ldv_usb_free_urb_162(cmd->urb_tx); } return; } } static int ar5523_alloc_tx_cmd(struct ar5523 *ar ) { struct ar5523_tx_cmd *cmd ; int tmp ; { { cmd = & ar->tx_cmd; cmd->ar = ar; ldv_init_completion_163(& cmd->done); cmd->urb_tx = ldv_usb_alloc_urb_164(0, 208U); } if ((unsigned long )cmd->urb_tx == (unsigned long )((struct urb *)0)) { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not allocate urb\n"); } } else { } return (-12); } else { } { cmd->buf_tx = ldv_usb_alloc_coherent_165(ar->dev, 1024UL, 208U, & (cmd->urb_tx)->transfer_dma); } if ((unsigned long )cmd->buf_tx == (unsigned long )((void *)0)) { { ldv_usb_free_urb_166(cmd->urb_tx); } return (-12); } else { } return (0); } } static void ar5523_stat_work(struct work_struct *work ) { struct ar5523 *ar ; struct work_struct const *__mptr ; int error ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { { __mptr = (struct work_struct const *)work; ar = (struct ar5523 *)__mptr + 0xfffffffffffffeb0UL; descriptor.modname = "ar5523"; descriptor.function = "ar5523_stat_work"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "%s\n"; descriptor.lineno = 974U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "%s\n", "ar5523_stat_work"); } } else { } { ldv_mutex_lock_167(& ar->mutex); error = ar5523_cmd_write(ar, 7U, (void const *)0, 0, 0); } if (error != 0) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___0 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not query stats, error %d\n", error); } } else { } } else { } { ldv_mutex_unlock_168(& ar->mutex); ieee80211_queue_delayed_work(ar->hw, & ar->stat_work, 250UL); } return; } } static int ar5523_start(struct ieee80211_hw *hw ) { struct ar5523 *ar ; int error ; __be32 val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; __u32 tmp___1 ; long tmp___2 ; struct _ddebug descriptor___2 ; long tmp___3 ; { { ar = (struct ar5523 *)hw->priv; descriptor.modname = "ar5523"; descriptor.function = "ar5523_start"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "start called\n"; descriptor.lineno = 997U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "start called\n"); } } else { } { ldv_mutex_lock_169(& ar->mutex); val = 0U; ar5523_cmd_write(ar, 2U, (void const *)(& val), 4, 0); ar5523_config_multi(ar, 19U, (void const *)(& ((ar->hw)->wiphy)->perm_addr), 6); ar5523_config(ar, 2U, 1U); ar5523_config(ar, 24U, 1U); ar5523_config(ar, 13U, 63U); ar5523_config(ar, 16U, 0U); ar5523_config(ar, 18U, 1U); ar5523_config(ar, 25U, 0U); ar5523_config(ar, 26U, 60U); ar5523_config(ar, 27U, 60U); ar5523_config(ar, 28U, 0U); ar5523_config(ar, 30U, 0U); ar5523_config(ar, 31U, 3U); ar5523_config(ar, 11U, 0U); ar5523_config(ar, 15U, 2U); error = ar5523_cmd_read(ar, 8U, (void const *)0, 0, (void *)(& val), 4, 4); } if (error != 0) { { descriptor___0.modname = "ar5523"; descriptor___0.function = "ar5523_start"; descriptor___0.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___0.format = "could not start target, error %d\n"; descriptor___0.lineno = 1026U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (ar->dev)->dev), "could not start target, error %d\n", error); } } else { } goto err; } else { } { descriptor___1.modname = "ar5523"; descriptor___1.function = "ar5523_start"; descriptor___1.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___1.format = "WDCMSG_TARGET_START returns handle: 0x%x\n"; descriptor___1.lineno = 1030U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = __fswab32(val); __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (ar->dev)->dev), "WDCMSG_TARGET_START returns handle: 0x%x\n", tmp___1); } } else { } { ar5523_switch_chan(ar); val = 0U; ar5523_cmd_write(ar, 22U, (void const *)(& val), 4, 0); ar5523_cmd_write(ar, 28U, (void const *)0, 0, 0); set_bit(0L, (unsigned long volatile *)(& ar->flags)); queue_work(ar->wq, & ar->rx_refill_work); ar5523_set_rxfilter(ar, 0U, 0U); ar5523_set_rxfilter(ar, 23U, 1U); ar5523_set_ledsteady(ar, 1, 1); descriptor___2.modname = "ar5523"; descriptor___2.function = "ar5523_start"; descriptor___2.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___2.format = "start OK\n"; descriptor___2.lineno = 1050U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(& (ar->dev)->dev), "start OK\n"); } } else { } err: { ldv_mutex_unlock_170(& ar->mutex); } return (error); } } static void ar5523_stop(struct ieee80211_hw *hw ) { struct ar5523 *ar ; struct _ddebug descriptor ; long tmp ; { { ar = (struct ar5523 *)hw->priv; descriptor.modname = "ar5523"; descriptor.function = "ar5523_stop"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "stop called\n"; descriptor.lineno = 1061U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "stop called\n"); } } else { } { cancel_delayed_work_sync(& ar->stat_work); ldv_mutex_lock_171(& ar->mutex); clear_bit(0L, (unsigned long volatile *)(& ar->flags)); ar5523_set_ledsteady(ar, 0, 0); ar5523_set_ledsteady(ar, 1, 0); ar5523_cmd_write(ar, 9U, (void const *)0, 0, 0); ldv_del_timer_sync_172(& ar->tx_wd_timer); cancel_work_sync(& ar->tx_wd_work); cancel_work_sync(& ar->rx_refill_work); ar5523_cancel_rx_bufs(ar); ldv_mutex_unlock_173(& ar->mutex); } return; } } static int ar5523_set_rts_threshold(struct ieee80211_hw *hw , u32 value ) { struct ar5523 *ar ; int ret ; struct _ddebug descriptor ; long tmp ; { { ar = (struct ar5523 *)hw->priv; descriptor.modname = "ar5523"; descriptor.function = "ar5523_set_rts_threshold"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "set_rts_threshold called\n"; descriptor.lineno = 1084U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "set_rts_threshold called\n"); } } else { } { ldv_mutex_lock_174(& ar->mutex); ret = ar5523_config(ar, 8U, value); ldv_mutex_unlock_175(& ar->mutex); } return (ret); } } static void ar5523_flush(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u32 queues , bool drop ) { struct ar5523 *ar ; struct _ddebug descriptor ; long tmp ; { { ar = (struct ar5523 *)hw->priv; descriptor.modname = "ar5523"; descriptor.function = "ar5523_flush"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "flush called\n"; descriptor.lineno = 1098U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "flush called\n"); } } else { } { ar5523_flush_tx(ar); } return; } } static int ar5523_add_interface(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct ar5523 *ar ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { { ar = (struct ar5523 *)hw->priv; descriptor.modname = "ar5523"; descriptor.function = "ar5523_add_interface"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "add interface called\n"; descriptor.lineno = 1107U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "add interface called\n"); } } else { } if ((unsigned long )ar->vif != (unsigned long )((struct ieee80211_vif *)0)) { { descriptor___0.modname = "ar5523"; descriptor___0.function = "ar5523_add_interface"; descriptor___0.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___0.format = "invalid add_interface\n"; descriptor___0.lineno = 1110U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (ar->dev)->dev), "invalid add_interface\n"); } } else { } return (-95); } else { } { if ((unsigned int )vif->type == 2U) { goto case_2; } else { } goto switch_default; case_2: /* CIL Label */ ar->vif = vif; goto ldv_53244; switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } ldv_53244: ; return (0); } } static void ar5523_remove_interface(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct ar5523 *ar ; struct _ddebug descriptor ; long tmp ; { { ar = (struct ar5523 *)hw->priv; descriptor.modname = "ar5523"; descriptor.function = "ar5523_remove_interface"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "remove interface called\n"; descriptor.lineno = 1129U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "remove interface called\n"); } } else { } ar->vif = (struct ieee80211_vif *)0; return; } } static int ar5523_hwconfig(struct ieee80211_hw *hw , u32 changed ) { struct ar5523 *ar ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { { ar = (struct ar5523 *)hw->priv; descriptor.modname = "ar5523"; descriptor.function = "ar5523_hwconfig"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "config called\n"; descriptor.lineno = 1137U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "config called\n"); } } else { } { ldv_mutex_lock_176(& ar->mutex); } if ((changed & 64U) != 0U) { { descriptor___0.modname = "ar5523"; descriptor___0.function = "ar5523_hwconfig"; descriptor___0.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___0.format = "Do channel switch\n"; descriptor___0.lineno = 1140U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (ar->dev)->dev), "Do channel switch\n"); } } else { } { ar5523_flush_tx(ar); ar5523_switch_chan(ar); } } else { } { ldv_mutex_unlock_177(& ar->mutex); } return (0); } } static int ar5523_get_wlan_mode(struct ar5523 *ar , struct ieee80211_bss_conf *bss_conf ) { struct ieee80211_supported_band *band ; int bit ; struct ieee80211_sta *sta ; u32 sta_rate_set ; int rate ; { { band = ((ar->hw)->wiphy)->bands[(unsigned int )((ar->hw)->conf.chandef.chan)->band]; sta = ieee80211_find_sta(ar->vif, bss_conf->bssid); } if ((unsigned long )sta == (unsigned long )((struct ieee80211_sta *)0)) { { _dev_info((struct device const *)(& (ar->dev)->dev), "STA not found!\n"); } return (1); } else { } sta_rate_set = sta->supp_rates[(unsigned int )((ar->hw)->conf.chandef.chan)->band]; bit = 0; goto ldv_53279; ldv_53278: ; if ((int )sta_rate_set & 1) { rate = (int )(band->bitrates + (unsigned long )bit)->bitrate; { if (rate == 60) { goto case_60; } else { } if (rate == 90) { goto case_90; } else { } if (rate == 120) { goto case_120; } else { } if (rate == 180) { goto case_180; } else { } if (rate == 240) { goto case_240; } else { } if (rate == 360) { goto case_360; } else { } if (rate == 480) { goto case_480; } else { } if (rate == 540) { goto case_540; } else { } goto switch_break; case_60: /* CIL Label */ ; case_90: /* CIL Label */ ; case_120: /* CIL Label */ ; case_180: /* CIL Label */ ; case_240: /* CIL Label */ ; case_360: /* CIL Label */ ; case_480: /* CIL Label */ ; case_540: /* CIL Label */ ; return (3); switch_break: /* CIL Label */ ; } } else { } sta_rate_set = sta_rate_set >> 1; bit = bit + 1; ldv_53279: ; if (bit < band->n_bitrates) { goto ldv_53278; } else { } return (1); } } static void ar5523_create_rateset(struct ar5523 *ar , struct ieee80211_bss_conf *bss_conf , struct ar5523_cmd_rateset *rs , bool basic ) { struct ieee80211_supported_band *band ; struct ieee80211_sta *sta ; int bit ; int i ; u32 sta_rate_set ; u32 basic_rate_set ; struct _ddebug descriptor ; long tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; { { i = 0; sta = ieee80211_find_sta(ar->vif, bss_conf->bssid); basic_rate_set = bss_conf->basic_rates; } if ((unsigned long )sta == (unsigned long )((struct ieee80211_sta *)0)) { { _dev_info((struct device const *)(& (ar->dev)->dev), "STA not found. Cannot set rates\n"); sta_rate_set = bss_conf->basic_rates; } } else { sta_rate_set = sta->supp_rates[(unsigned int )((ar->hw)->conf.chandef.chan)->band]; } { descriptor.modname = "ar5523"; descriptor.function = "ar5523_create_rateset"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "sta rate_set = %08x\n"; descriptor.lineno = 1202U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "sta rate_set = %08x\n", sta_rate_set); } } else { } band = ((ar->hw)->wiphy)->bands[(unsigned int )((ar->hw)->conf.chandef.chan)->band]; bit = 0; goto ldv_53297; ldv_53296: { tmp___0 = ldv__builtin_expect(i > 31, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/ath/ar5523/ar5523.c"), "i" (1206), "i" (12UL)); __builtin_unreachable(); } } else { } { descriptor___0.modname = "ar5523"; descriptor___0.function = "ar5523_create_rateset"; descriptor___0.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor___0.format = "Considering rate %d : %d\n"; descriptor___0.lineno = 1208U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (ar->dev)->dev), "Considering rate %d : %d\n", (int )(band->bitrates + (unsigned long )bit)->hw_value, sta_rate_set & 1U); } } else { } if ((int )sta_rate_set & 1) { rs->set[i] = (__u8 )(band->bitrates + (unsigned long )bit)->hw_value; if ((int )basic_rate_set & 1 && (int )basic) { rs->set[i] = (__u8 )((unsigned int )rs->set[i] | 128U); } else { } i = i + 1; } else { } sta_rate_set = sta_rate_set >> 1; basic_rate_set = basic_rate_set >> 1; bit = bit + 1; ldv_53297: ; if (bit < band->n_bitrates) { goto ldv_53296; } else { } rs->length = (__u8 )i; return; } } static int ar5523_set_basic_rates(struct ar5523 *ar , struct ieee80211_bss_conf *bss ) { struct ar5523_cmd_rates rates ; int tmp ; { { memset((void *)(& rates), 0, 45UL); rates.connid = 33554432U; rates.size = 553648128U; ar5523_create_rateset(ar, bss, & rates.rateset, 1); tmp = ar5523_cmd_write(ar, 39U, (void const *)(& rates), 45, 0); } return (tmp); } } static int ar5523_create_connection(struct ar5523 *ar , struct ieee80211_vif *vif , struct ieee80211_bss_conf *bss ) { struct ar5523_cmd_create_connection create ; int wlan_mode ; __u32 tmp ; int tmp___0 ; { { memset((void *)(& create), 0, 53UL); create.connid = 33554432U; create.bssid = 0U; create.size = 553648128U; ar5523_create_rateset(ar, bss, & create.connattr.rateset, 0); wlan_mode = ar5523_get_wlan_mode(ar, bss); tmp = __fswab32((__u32 )wlan_mode); create.connattr.wlanmode = tmp; tmp___0 = ar5523_cmd_write(ar, 12U, (void const *)(& create), 53, 0); } return (tmp___0); } } static int ar5523_write_associd(struct ar5523 *ar , struct ieee80211_bss_conf *bss ) { struct ar5523_cmd_set_associd associd ; __u32 tmp ; int tmp___0 ; { { memset((void *)(& associd), 0, 22UL); associd.defaultrateix = 0U; tmp = __fswab32((__u32 )bss->aid); associd.associd = tmp; associd.timoffset = 989855744U; memcpy((void *)(& associd.bssid), (void const *)bss->bssid, 6UL); tmp___0 = ar5523_cmd_write(ar, 34U, (void const *)(& associd), 22, 0); } return (tmp___0); } } static void ar5523_bss_info_changed(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_bss_conf *bss , u32 changed ) { struct ar5523 *ar ; int error ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { ar = (struct ar5523 *)hw->priv; descriptor.modname = "ar5523"; descriptor.function = "ar5523_bss_info_changed"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "bss_info_changed called\n"; descriptor.lineno = 1280U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "bss_info_changed called\n"); } } else { } { ldv_mutex_lock_178(& ar->mutex); } if ((changed & 1U) == 0U) { goto out_unlock; } else { } if ((int )bss->assoc) { { error = ar5523_create_connection(ar, vif, bss); } if (error != 0) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___0 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not create connection\n"); } } else { } goto out_unlock; } else { } { error = ar5523_set_basic_rates(ar, bss); } if (error != 0) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___1 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not set negotiated rate set\n"); } } else { } goto out_unlock; } else { } { error = ar5523_write_associd(ar, bss); } if (error != 0) { { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___2 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not set association\n"); } } else { } goto out_unlock; } else { } { ar5523_set_ledsteady(ar, 0, 1); set_bit(2L, (unsigned long volatile *)(& ar->flags)); ieee80211_queue_delayed_work(hw, & ar->stat_work, 250UL); } } else { { cancel_delayed_work(& ar->stat_work); clear_bit(2L, (unsigned long volatile *)(& ar->flags)); ar5523_set_ledsteady(ar, 0, 0); } } out_unlock: { ldv_mutex_unlock_179(& ar->mutex); } return; } } static void ar5523_configure_filter(struct ieee80211_hw *hw , unsigned int changed_flags , unsigned int *total_flags , u64 multicast ) { struct ar5523 *ar ; u32 filter ; struct _ddebug descriptor ; long tmp ; { { ar = (struct ar5523 *)hw->priv; filter = 0U; descriptor.modname = "ar5523"; descriptor.function = "ar5523_configure_filter"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "configure_filter called\n"; descriptor.lineno = 1334U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "configure_filter called\n"); } } else { } { ldv_mutex_lock_180(& ar->mutex); ar5523_flush_tx(ar); *total_flags = *total_flags & 71U; filter = filter | 55U; ar5523_set_rxfilter(ar, 0U, 0U); ar5523_set_rxfilter(ar, filter, 1U); ldv_mutex_unlock_181(& ar->mutex); } return; } } static struct ieee80211_ops const ar5523_ops = {& ar5523_tx, & ar5523_start, & ar5523_stop, 0, 0, 0, & ar5523_add_interface, 0, & ar5523_remove_interface, & ar5523_hwconfig, & ar5523_bss_info_changed, 0, 0, 0, & ar5523_configure_filter, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ar5523_set_rts_threshold, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ar5523_flush, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int ar5523_host_available(struct ar5523 *ar ) { struct ar5523_cmd_host_available setup ; int tmp ; { { setup.sw_ver_major = 16777216U; setup.sw_ver_minor = 83886080U; setup.sw_ver_patch = 0U; setup.sw_ver_build = 254214144U; tmp = ar5523_cmd_read(ar, 1U, (void const *)(& setup), 16, (void *)0, 0, 0); } return (tmp); } } static int ar5523_get_devstatus(struct ar5523 *ar ) { u8 macaddr[6U] ; int error ; int tmp ; int tmp___0 ; { { error = ar5523_get_status(ar, 11U, (void *)(& macaddr), 6); } if (error != 0) { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not read MAC address\n"); } } else { } return (error); } else { } { SET_IEEE80211_PERM_ADDR(ar->hw, (u8 *)(& macaddr)); error = ar5523_get_status(ar, 14U, (void *)(& ar->serial), 16); } if (error != 0) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___0 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not read device serial number\n"); } } else { } return (error); } else { } return (0); } } static int ar5523_get_max_rxsz(struct ar5523 *ar ) { int error ; __be32 rxsize ; int tmp ; __u32 tmp___0 ; int tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; { { error = ar5523_get_status(ar, 15U, (void *)(& rxsize), 4); } if (error != 0) { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not read max RX size\n"); } } else { } return (error); } else { } { tmp___0 = __fswab32(rxsize); ar->rxbufsz = tmp___0; } if (ar->rxbufsz - 1U > 1999U) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___1 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Bad rxbufsz from device. Using %d instead\n", 2000); } } else { } ar->rxbufsz = 2000U; } else { } { descriptor.modname = "ar5523"; descriptor.function = "ar5523_get_max_rxsz"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "Max RX buf size: %d\n"; descriptor.lineno = 1426U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "Max RX buf size: %d\n", ar->rxbufsz); } } else { } return (0); } } static struct ieee80211_rate const ar5523_rates[12U] = { {0U, 10U, 2U, (unsigned short)0}, {0U, 20U, 4U, (unsigned short)0}, {0U, 55U, 11U, (unsigned short)0}, {0U, 110U, 22U, (unsigned short)0}, {0U, 60U, 12U, (unsigned short)0}, {0U, 90U, 18U, (unsigned short)0}, {0U, 120U, 24U, (unsigned short)0}, {0U, 180U, 36U, (unsigned short)0}, {0U, 240U, 48U, (unsigned short)0}, {0U, 360U, 72U, (unsigned short)0}, {0U, 480U, 96U, (unsigned short)0}, {0U, 540U, 108U, (unsigned short)0}}; static struct ieee80211_channel const ar5523_channels[14U] = { {0, 2412U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2417U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2422U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2427U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2432U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2437U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2442U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2447U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2452U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2457U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2462U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2467U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2472U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2484U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}}; extern void __compiletime_assert_1468(void) ; extern void __compiletime_assert_1469(void) ; static int ar5523_init_modes(struct ar5523 *ar ) { bool __cond ; bool __cond___0 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_1468(); } } else { } __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_1469(); } } else { } { memcpy((void *)(& ar->channels), (void const *)(& ar5523_channels), 896UL); memcpy((void *)(& ar->rates), (void const *)(& ar5523_rates), 144UL); ar->band.band = 0; ar->band.channels = (struct ieee80211_channel *)(& ar->channels); ar->band.n_channels = 14; ar->band.bitrates = (struct ieee80211_rate *)(& ar->rates); ar->band.n_bitrates = 12; ((ar->hw)->wiphy)->bands[0] = & ar->band; } return (0); } } static int ar5523_load_firmware(struct usb_device *dev ) { struct ar5523_fwblock *txblock ; struct ar5523_fwblock *rxblock ; struct firmware const *fw ; void *fwbuf ; int len ; int offset ; int foolen ; int error ; int tmp ; void *tmp___0 ; void *tmp___1 ; __u32 tmp___2 ; int mlen ; int _min1 ; int _min2 ; __u32 tmp___3 ; __u32 tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; { { error = -6; tmp = request_firmware(& fw, "ar5523.bin", & dev->dev); } if (tmp != 0) { { dev_err((struct device const *)(& dev->dev), "no firmware found: %s\n", (char *)"ar5523.bin"); } return (-2); } else { } { tmp___0 = kmalloc(512UL, 208U); txblock = (struct ar5523_fwblock *)tmp___0; } if ((unsigned long )txblock == (unsigned long )((struct ar5523_fwblock *)0)) { goto out; } else { } { tmp___1 = kmalloc(512UL, 208U); rxblock = (struct ar5523_fwblock *)tmp___1; } if ((unsigned long )rxblock == (unsigned long )((struct ar5523_fwblock *)0)) { goto out_free_txblock; } else { } { fwbuf = kmalloc(2048UL, 208U); } if ((unsigned long )fwbuf == (unsigned long )((void *)0)) { goto out_free_rxblock; } else { } { memset((void *)txblock, 0, 512UL); txblock->flags = 268435456U; tmp___2 = __fswab32((__u32 )fw->size); txblock->total = tmp___2; offset = 0; len = (int )fw->size; } goto ldv_53391; ldv_53390: { _min1 = len; _min2 = 2048; mlen = _min1 < _min2 ? _min1 : _min2; tmp___3 = __fswab32((__u32 )(len - mlen)); txblock->remain = tmp___3; tmp___4 = __fswab32((__u32 )mlen); txblock->len = tmp___4; tmp___5 = __create_pipe(dev, 1U); error = usb_bulk_msg(dev, tmp___5 | 3221225472U, (void *)txblock, 512, & foolen, 1000); } if (error != 0) { { dev_err((struct device const *)(& dev->dev), "could not send firmware block info\n"); } goto out_free_fwbuf; } else { } { memcpy(fwbuf, (void const *)fw->data + (unsigned long )offset, (size_t )mlen); tmp___6 = __create_pipe(dev, 2U); error = usb_bulk_msg(dev, tmp___6 | 3221225472U, fwbuf, mlen, & foolen, 10000); } if (error != 0) { { dev_err((struct device const *)(& dev->dev), "could not send firmware block data\n"); } goto out_free_fwbuf; } else { } { tmp___7 = __create_pipe(dev, 129U); error = usb_bulk_msg(dev, tmp___7 | 3221225600U, (void *)rxblock, 512, & foolen, 1000); } if (error != 0) { { dev_err((struct device const *)(& dev->dev), "could not read firmware answer\n"); } goto out_free_fwbuf; } else { } len = len - mlen; offset = offset + mlen; ldv_53391: ; if (len > 0) { goto ldv_53390; } else { } error = -6; out_free_fwbuf: { kfree((void const *)fwbuf); } out_free_rxblock: { kfree((void const *)rxblock); } out_free_txblock: { kfree((void const *)txblock); } out: { release_firmware(fw); } return (error); } } static int ar5523_probe(struct usb_interface *intf , struct usb_device_id const *id ) { struct usb_device *dev ; struct usb_device *tmp ; struct ieee80211_hw *hw ; struct ar5523 *ar ; int error ; int tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; struct lock_class_key __key___4 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___5 ; atomic_long_t __constr_expr_2 ; struct lock_class_key __key___6 ; struct lock_class_key __key___7 ; struct lock_class_key __key___8 ; atomic_long_t __constr_expr_3 ; struct lock_class_key __key___9 ; struct lock_class_key __key___10 ; char const *__lock_name ; struct workqueue_struct *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; { { tmp = interface_to_usbdev(intf); dev = tmp; error = -12; } if ((int )id->driver_info & 1) { { tmp___0 = ar5523_load_firmware(dev); } return (tmp___0); } else { } { hw = ldv_ieee80211_alloc_hw_182(3040UL, & ar5523_ops); } if ((unsigned long )hw == (unsigned long )((struct ieee80211_hw *)0)) { goto out; } else { } { SET_IEEE80211_DEV(hw, & intf->dev); ar = (struct ar5523 *)hw->priv; ar->hw = hw; ar->dev = dev; __mutex_init(& ar->mutex, "&ar->mutex", & __key); __init_work(& ar->stat_work.work, 0); __constr_expr_0.counter = 137438953408L; ar->stat_work.work.data = __constr_expr_0; lockdep_init_map(& ar->stat_work.work.lockdep_map, "(&(&ar->stat_work)->work)", & __key___0, 0); INIT_LIST_HEAD(& ar->stat_work.work.entry); ar->stat_work.work.func = & ar5523_stat_work; init_timer_key(& ar->stat_work.timer, 2U, "(&(&ar->stat_work)->timer)", & __key___1); ar->stat_work.timer.function = & delayed_work_timer_fn; ar->stat_work.timer.data = (unsigned long )(& ar->stat_work); init_timer_key(& ar->tx_wd_timer, 0U, "(&ar->tx_wd_timer)", & __key___2); init_timer_key(& ar->tx_wd_timer, 0U, "((&ar->tx_wd_timer))", & __key___3); ar->tx_wd_timer.function = & ar5523_tx_wd_timer; ar->tx_wd_timer.data = (unsigned long )ar; __init_work(& ar->tx_wd_work, 0); __constr_expr_1.counter = 137438953408L; ar->tx_wd_work.data = __constr_expr_1; lockdep_init_map(& ar->tx_wd_work.lockdep_map, "(&ar->tx_wd_work)", & __key___4, 0); INIT_LIST_HEAD(& ar->tx_wd_work.entry); ar->tx_wd_work.func = & ar5523_tx_wd_work; __init_work(& ar->tx_work, 0); __constr_expr_2.counter = 137438953408L; ar->tx_work.data = __constr_expr_2; lockdep_init_map(& ar->tx_work.lockdep_map, "(&ar->tx_work)", & __key___5, 0); INIT_LIST_HEAD(& ar->tx_work.entry); ar->tx_work.func = & ar5523_tx_work; INIT_LIST_HEAD(& ar->tx_queue_pending); INIT_LIST_HEAD(& ar->tx_queue_submitted); spinlock_check(& ar->tx_data_list_lock); __raw_spin_lock_init(& ar->tx_data_list_lock.__annonCompField18.rlock, "&(&ar->tx_data_list_lock)->rlock", & __key___6); atomic_set(& ar->tx_nr_total, 0); atomic_set(& ar->tx_nr_pending, 0); __init_waitqueue_head(& ar->tx_flush_waitq, "&ar->tx_flush_waitq", & __key___7); atomic_set(& ar->rx_data_free_cnt, 0); __init_work(& ar->rx_refill_work, 0); __constr_expr_3.counter = 137438953408L; ar->rx_refill_work.data = __constr_expr_3; lockdep_init_map(& ar->rx_refill_work.lockdep_map, "(&ar->rx_refill_work)", & __key___8, 0); INIT_LIST_HEAD(& ar->rx_refill_work.entry); ar->rx_refill_work.func = & ar5523_rx_refill_work; INIT_LIST_HEAD(& ar->rx_data_free); INIT_LIST_HEAD(& ar->rx_data_used); spinlock_check(& ar->rx_data_list_lock); __raw_spin_lock_init(& ar->rx_data_list_lock.__annonCompField18.rlock, "&(&ar->rx_data_list_lock)->rlock", & __key___9); __lock_name = "\"%s\"\"ar5523\""; tmp___1 = __alloc_workqueue_key("%s", 131082U, 1, & __key___10, __lock_name, (char *)"ar5523"); ar->wq = tmp___1; } if ((unsigned long )ar->wq == (unsigned long )((struct workqueue_struct *)0)) { { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___2 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Could not create wq\n"); } } else { } goto out_free_ar; } else { } { error = ar5523_alloc_rx_bufs(ar); } if (error != 0) { { tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___3 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Could not allocate rx buffers\n"); } } else { } goto out_free_wq; } else { } { error = ar5523_alloc_rx_cmd(ar); } if (error != 0) { { tmp___4 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___4 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Could not allocate rx command buffers\n"); } } else { } goto out_free_rx_bufs; } else { } { error = ar5523_alloc_tx_cmd(ar); } if (error != 0) { { tmp___5 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___5 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Could not allocate tx command buffers\n"); } } else { } goto out_free_rx_cmd; } else { } { error = ar5523_submit_rx_cmd(ar); } if (error != 0) { { tmp___6 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___6 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "Failed to submit rx cmd\n"); } } else { } goto out_free_tx_cmd; } else { } { error = ar5523_host_available(ar); } if (error != 0) { { tmp___7 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___7 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not initialize adapter\n"); } } else { } goto out_cancel_rx_cmd; } else { } { error = ar5523_get_max_rxsz(ar); } if (error != 0) { { tmp___8 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___8 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not get caps from adapter\n"); } } else { } goto out_cancel_rx_cmd; } else { } { error = ar5523_get_devcap(ar); } if (error != 0) { { tmp___9 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___9 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not get caps from adapter\n"); } } else { } goto out_cancel_rx_cmd; } else { } { error = ar5523_get_devstatus(ar); } if (error != 0) { { tmp___10 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___10 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not get device status\n"); } } else { } goto out_cancel_rx_cmd; } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "MAC/BBP AR5523, RF AR%c112\n", ((unsigned long )id->driver_info & 2UL) != 0UL ? 53 : 50); ar->vif = (struct ieee80211_vif *)0; hw->flags = 67U; hw->extra_tx_headroom = 32U; (hw->wiphy)->interface_modes = 4U; hw->queues = 1U; error = ar5523_init_modes(ar); } if (error != 0) { goto out_cancel_rx_cmd; } else { } { usb_set_intfdata(intf, (void *)hw); error = ieee80211_register_hw(hw); } if (error != 0) { { tmp___11 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->flags)); } if (tmp___11 == 0) { { dev_err((struct device const *)(& (ar->dev)->dev), "could not register device\n"); } } else { } goto out_cancel_rx_cmd; } else { } { _dev_info((struct device const *)(& (ar->dev)->dev), "Found and initialized AR5523 device\n"); } return (0); out_cancel_rx_cmd: { ar5523_cancel_rx_cmd(ar); } out_free_tx_cmd: { ar5523_free_tx_cmd(ar); } out_free_rx_cmd: { ar5523_free_rx_cmd(ar); } out_free_rx_bufs: { ar5523_free_rx_bufs(ar); } out_free_wq: { destroy_workqueue(ar->wq); } out_free_ar: { ldv_ieee80211_free_hw_183(hw); } out: ; return (error); } } static void ar5523_disconnect(struct usb_interface *intf ) { struct ieee80211_hw *hw ; void *tmp ; struct ar5523 *ar ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = usb_get_intfdata(intf); hw = (struct ieee80211_hw *)tmp; ar = (struct ar5523 *)hw->priv; descriptor.modname = "ar5523"; descriptor.function = "ar5523_disconnect"; descriptor.filename = "drivers/net/wireless/ath/ar5523/ar5523.c"; descriptor.format = "detaching\n"; descriptor.lineno = 1729U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (ar->dev)->dev), "detaching\n"); } } else { } { set_bit(1L, (unsigned long volatile *)(& ar->flags)); ldv_ieee80211_unregister_hw_184(hw); ar5523_cancel_rx_cmd(ar); ar5523_free_tx_cmd(ar); ar5523_free_rx_cmd(ar); ar5523_free_rx_bufs(ar); destroy_workqueue(ar->wq); ldv_ieee80211_free_hw_185(hw); usb_set_intfdata(intf, (void *)0); } return; } } static struct usb_device_id ar5523_id_table[57U] = { {3U, 5772U, 1U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 5772U, 2U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 3315U, 1U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 3315U, 2U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 3315U, 3U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 3315U, 4U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 3315U, 5U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 2UL}, {3U, 3315U, 6U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 3470U, 30721U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 3470U, 30722U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 3470U, 30737U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 2UL}, {3U, 3470U, 30738U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 8193U, 14848U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 2UL}, {3U, 8193U, 14849U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 8193U, 14850U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 8193U, 14851U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 8193U, 14852U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 2UL}, {3U, 8193U, 14853U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 2001U, 14855U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 2001U, 14856U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 5776U, 1810U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 5776U, 1811U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 5776U, 1808U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 5776U, 1809U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 4763U, 5643U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 4763U, 5644U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 5803U, 30721U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 5803U, 30722U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 5803U, 30737U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 2UL}, {3U, 5803U, 30738U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 3470U, 30722U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 3470U, 30723U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 2118U, 17152U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 2UL}, {3U, 2118U, 17153U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 2118U, 16976U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 2118U, 16977U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 2118U, 24320U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 2118U, 24321U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 5502U, 12294U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 5502U, 12295U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 5502U, 12805U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 2UL}, {3U, 5502U, 12806U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 5502U, 12294U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 5502U, 12295U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 5173U, 2086U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 5173U, 2087U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 5173U, 2088U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 2UL}, {3U, 5173U, 2089U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 3294U, 18U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 3294U, 19U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 4997U, 16976U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 4997U, 16977U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 4997U, 24320U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 4997U, 24321U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 4997U, 24322U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 4997U, 24323U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}}; struct usb_device_id const __mod_usb__ar5523_id_table_device_table[57U] ; static struct usb_driver ar5523_driver = {"ar5523", & ar5523_probe, & ar5523_disconnect, 0, 0, 0, 0, 0, 0, (struct usb_device_id const *)(& ar5523_id_table), {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, {{0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0}, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}; static int ar5523_driver_init(void) { int tmp ; { { tmp = ldv_usb_register_driver_186(& ar5523_driver, & __this_module, "ar5523"); } return (tmp); } } static void ar5523_driver_exit(void) { { { ldv_usb_deregister_187(& ar5523_driver); } return; } } void ldv_EMGentry_exit_ar5523_driver_exit_11_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_ar5523_driver_init_11_7(int (*arg0)(void) ) ; int ldv_del_timer(int arg0 , struct timer_list *arg1 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_7_2(struct ieee80211_hw *arg0 ) ; void ldv_dispatch_deregister_9_1(struct usb_driver *arg0 ) ; void ldv_dispatch_instance_deregister_3_2(struct usb_driver *arg0 ) ; void ldv_dispatch_instance_deregister_4_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_3_3(struct usb_driver *arg0 ) ; void ldv_dispatch_instance_register_8_2(struct timer_list *arg0 ) ; void ldv_dispatch_register_10_2(struct usb_driver *arg0 ) ; void ldv_dispatch_register_6_3(struct ieee80211_bss_conf *arg0 ) ; void ldv_entry_EMGentry_11(void *arg0 ) ; int main(void) ; struct ieee80211_hw *ldv_ieee80211_alloc_hw(struct ieee80211_hw *arg0 , unsigned long arg1 , struct ieee80211_ops *arg2 ) ; void ldv_ieee80211_free_hw(void *arg0 , struct ieee80211_hw **arg1 ) ; void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) ; void ldv_ieee80211_instance_callback_0_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_0_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_0_21(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) ; void ldv_ieee80211_instance_callback_0_24(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) ; void ldv_ieee80211_instance_callback_0_27(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned int , _Bool ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned int arg3 , _Bool arg4 ) ; void ldv_ieee80211_instance_callback_0_30(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_0_31(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) ; void ldv_ieee80211_instance_callback_0_34(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) ; void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_timer_instance_callback_1_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_1(void *arg0 ) ; void ldv_usb_deregister(void *arg0 , struct usb_driver *arg1 ) ; void ldv_usb_dummy_factory_3(void *arg0 ) ; void ldv_usb_instance_post_2_9(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_pre_2_10(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; int ldv_usb_instance_probe_2_13(int (*arg0)(struct usb_interface * , struct usb_device_id * ) , struct usb_interface *arg1 , struct usb_device_id *arg2 ) ; void ldv_usb_instance_release_2_4(void (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_resume_2_7(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; int ldv_usb_register_driver(int arg0 , struct usb_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_usb_usb_instance_2(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; void ldv_EMGentry_exit_ar5523_driver_exit_11_2(void (*arg0)(void) ) { { { ar5523_driver_exit(); } return; } } int ldv_EMGentry_init_ar5523_driver_init_11_7(int (*arg0)(void) ) { int tmp ; { { tmp = ar5523_driver_init(); } return (tmp); } } int ldv_del_timer(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_4_timer_list_timer_list ; { { ldv_4_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_4_1(ldv_4_timer_list_timer_list); } return (arg0); return (arg0); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_5_timer_list_timer_list ; { ldv_5_timer_list_timer_list = arg1; return (arg0); return (arg0); } } void ldv_dispatch_deregister_7_2(struct ieee80211_hw *arg0 ) { { return; } } void ldv_dispatch_deregister_9_1(struct usb_driver *arg0 ) { { return; } } void ldv_dispatch_instance_deregister_3_2(struct usb_driver *arg0 ) { { return; } } void ldv_dispatch_instance_deregister_4_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_3_3(struct usb_driver *arg0 ) { struct ldv_struct_usb_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_usb_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_usb_usb_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_instance_register_8_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_timer_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_timer_timer_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_10_2(struct usb_driver *arg0 ) { struct ldv_struct_usb_instance_2 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_usb_instance_2 *)tmp; cf_arg_3->arg0 = arg0; ldv_usb_dummy_factory_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_6_3(struct ieee80211_bss_conf *arg0 ) { struct ldv_struct_ieee80211_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_ieee80211_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_ieee80211_ieee80211_instance_0((void *)cf_arg_0); } return; } } void ldv_entry_EMGentry_11(void *arg0 ) { void (*ldv_11_exit_ar5523_driver_exit_default)(void) ; int (*ldv_11_init_ar5523_driver_init_default)(void) ; int ldv_11_ret_default ; int tmp ; { { ldv_11_ret_default = ldv_EMGentry_init_ar5523_driver_init_11_7(ldv_11_init_ar5523_driver_init_default); ldv_11_ret_default = ldv_ldv_post_init_188(ldv_11_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_11_ret_default != 0); ldv_ldv_check_final_state_189(); ldv_stop(); } return; } else { { ldv_assume(ldv_11_ret_default == 0); ldv_EMGentry_exit_ar5523_driver_exit_11_2(ldv_11_exit_ar5523_driver_exit_default); ldv_ldv_check_final_state_190(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_191(); ldv_entry_EMGentry_11((void *)0); } return 0; } } struct ieee80211_hw *ldv_ieee80211_alloc_hw(struct ieee80211_hw *arg0 , unsigned long arg1 , struct ieee80211_ops *arg2 ) { struct ieee80211_hw *ldv_6_ieee80211_hw_ieee80211_hw ; struct ieee80211_bss_conf *ldv_6_ieee80211_hw_struct_ieee80211_bss_conf_ptr ; struct ieee80211_tx_control *ldv_6_ieee80211_hw_struct_ieee80211_tx_control_ptr ; struct ieee80211_vif *ldv_6_ieee80211_hw_struct_ieee80211_vif_ptr ; struct sk_buff *ldv_6_ieee80211_hw_struct_sk_buff_ptr ; struct ieee80211_ops *ldv_6_ieee80211_ops_ieee80211_ops ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { ldv_6_ieee80211_ops_ieee80211_ops = arg2; tmp = ldv_xmalloc(144UL); ldv_6_ieee80211_hw_ieee80211_hw = (struct ieee80211_hw *)tmp; tmp___0 = ldv_xmalloc(240UL); ldv_6_ieee80211_hw_struct_ieee80211_bss_conf_ptr = (struct ieee80211_bss_conf *)tmp___0; tmp___1 = ldv_xmalloc(8UL); ldv_6_ieee80211_hw_struct_ieee80211_tx_control_ptr = (struct ieee80211_tx_control *)tmp___1; tmp___2 = ldv_xmalloc(288UL); ldv_6_ieee80211_hw_struct_ieee80211_vif_ptr = (struct ieee80211_vif *)tmp___2; tmp___3 = ldv_xmalloc(232UL); ldv_6_ieee80211_hw_struct_sk_buff_ptr = (struct sk_buff *)tmp___3; ldv_dispatch_register_6_3(ldv_6_ieee80211_hw_struct_ieee80211_bss_conf_ptr); } return (ldv_6_ieee80211_hw_ieee80211_hw); return (arg0); } else { { ldv_assume((unsigned long )ldv_6_ieee80211_hw_ieee80211_hw == (unsigned long )((struct ieee80211_hw *)0)); } return ((struct ieee80211_hw *)0); return (arg0); } return (arg0); } } void ldv_ieee80211_free_hw(void *arg0 , struct ieee80211_hw **arg1 ) { struct ieee80211_hw *ldv_7_ieee80211_hw_ieee80211_hw ; { { ldv_dispatch_deregister_7_2(ldv_7_ieee80211_hw_ieee80211_hw); ldv_free((void *)ldv_7_ieee80211_hw_ieee80211_hw); } return; return; } } void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) { int (*ldv_0_callback_add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_0_callback_bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) ; int (*ldv_0_callback_config)(struct ieee80211_hw * , unsigned int ) ; void (*ldv_0_callback_configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) ; void (*ldv_0_callback_flush)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned int , _Bool ) ; void (*ldv_0_callback_remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*ldv_0_callback_set_rts_threshold)(struct ieee80211_hw * , unsigned int ) ; void (*ldv_0_callback_tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; struct ieee80211_ops *ldv_0_container_ieee80211_ops ; unsigned int ldv_0_ldv_param_18_3_default ; unsigned int ldv_0_ldv_param_21_1_default ; unsigned int ldv_0_ldv_param_24_1_default ; unsigned int *ldv_0_ldv_param_24_2_default ; unsigned long long ldv_0_ldv_param_24_3_default ; unsigned int ldv_0_ldv_param_27_2_default ; _Bool ldv_0_ldv_param_27_3_default ; unsigned int ldv_0_ldv_param_31_1_default ; struct ieee80211_hw *ldv_0_resource_ieee80211_hw ; struct ieee80211_bss_conf *ldv_0_resource_struct_ieee80211_bss_conf_ptr ; struct ieee80211_tx_control *ldv_0_resource_struct_ieee80211_tx_control_ptr ; struct ieee80211_vif *ldv_0_resource_struct_ieee80211_vif_ptr ; struct sk_buff *ldv_0_resource_struct_sk_buff_ptr ; int ldv_0_ret_default ; struct ldv_struct_ieee80211_instance_0 *data ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; { data = (struct ldv_struct_ieee80211_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_ieee80211_instance_0 *)0)) { { ldv_0_resource_struct_ieee80211_bss_conf_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_0; return; ldv_main_0: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_rtnl_lock_192(); ldv_0_ret_default = ldv_ieee80211_instance_start_0_6(ldv_0_container_ieee80211_ops->start, ldv_0_resource_ieee80211_hw); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); ldv_rtnl_unlock_193(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_started_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { return; } return; ldv_started_0: { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } if (tmp___1 == 5) { goto case_5; } else { } if (tmp___1 == 6) { goto case_6; } else { } if (tmp___1 == 7) { goto case_7; } else { } if (tmp___1 == 8) { goto case_8; } else { } if (tmp___1 == 9) { goto case_9; } else { } if (tmp___1 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_ieee80211_instance_callback_0_34(ldv_0_callback_tx, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_tx_control_ptr, ldv_0_resource_struct_sk_buff_ptr); } goto ldv_started_0; case_2: /* CIL Label */ { ldv_ieee80211_instance_callback_0_31(ldv_0_callback_set_rts_threshold, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_31_1_default); } goto ldv_started_0; goto ldv_started_0; case_3: /* CIL Label */ { ldv_ieee80211_instance_callback_0_30(ldv_0_callback_remove_interface, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_4: /* CIL Label */ { ldv_ieee80211_instance_callback_0_27(ldv_0_callback_flush, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr, ldv_0_ldv_param_27_2_default, (int )ldv_0_ldv_param_27_3_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_5: /* CIL Label */ { tmp___2 = ldv_xmalloc(4UL); ldv_0_ldv_param_24_2_default = (unsigned int *)tmp___2; ldv_ieee80211_instance_callback_0_24(ldv_0_callback_configure_filter, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_24_1_default, ldv_0_ldv_param_24_2_default, ldv_0_ldv_param_24_3_default); ldv_free((void *)ldv_0_ldv_param_24_2_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_6: /* CIL Label */ { ldv_ieee80211_instance_callback_0_21(ldv_0_callback_config, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_21_1_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_7: /* CIL Label */ { ldv_ieee80211_instance_callback_0_18(ldv_0_callback_bss_info_changed, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr, ldv_0_resource_struct_ieee80211_bss_conf_ptr, ldv_0_ldv_param_18_3_default); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_8: /* CIL Label */ ; if ((unsigned long )ldv_0_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_0_12(ldv_0_container_ieee80211_ops->resume, ldv_0_resource_ieee80211_hw); } } else { } goto ldv_started_0; case_9: /* CIL Label */ { ldv_ieee80211_instance_callback_0_10(ldv_0_callback_add_interface, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr); } goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; goto ldv_started_0; case_10: /* CIL Label */ { ldv_rtnl_lock_194(); ldv_ieee80211_instance_stop_0_8(ldv_0_container_ieee80211_ops->stop, ldv_0_resource_ieee80211_hw); ldv_rtnl_unlock_195(); } goto ldv_main_0; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_ieee80211_instance_callback_0_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { ar5523_add_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) { { { ar5523_bss_info_changed(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_21(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) { { { ar5523_hwconfig(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_24(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) { { { ar5523_configure_filter(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_27(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned int , _Bool ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned int arg3 , _Bool arg4 ) { { { ar5523_flush(arg1, arg2, arg3, (int )arg4); } return; } } void ldv_ieee80211_instance_callback_0_30(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { ar5523_remove_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_31(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) { { { ar5523_set_rts_threshold(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_34(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) { { { ar5523_tx(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = ar5523_start(arg1); } return (tmp); } } void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { ar5523_stop(arg1); } return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_8_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_8_timer_list_timer_list = arg1; ldv_dispatch_instance_register_8_2(ldv_8_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_timer_instance_callback_1_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_1(void *arg0 ) { struct timer_list *ldv_1_container_timer_list ; struct ldv_struct_timer_instance_1 *data ; { data = (struct ldv_struct_timer_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_1 *)0)) { { ldv_1_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_1_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_1_2(ldv_1_container_timer_list->function, ldv_1_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_usb_deregister(void *arg0 , struct usb_driver *arg1 ) { struct usb_driver *ldv_9_usb_driver_usb_driver ; { { ldv_9_usb_driver_usb_driver = arg1; ldv_dispatch_deregister_9_1(ldv_9_usb_driver_usb_driver); } return; return; } } void ldv_usb_dummy_factory_3(void *arg0 ) { struct usb_driver *ldv_3_container_usb_driver ; struct ldv_struct_usb_instance_2 *data ; { data = (struct ldv_struct_usb_instance_2 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_usb_instance_2 *)0)) { { ldv_3_container_usb_driver = data->arg0; ldv_free((void *)data); } } else { } { ldv_dispatch_instance_register_3_3(ldv_3_container_usb_driver); ldv_dispatch_instance_deregister_3_2(ldv_3_container_usb_driver); } return; return; } } void ldv_usb_instance_post_2_9(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_usb_instance_pre_2_10(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_usb_instance_probe_2_13(int (*arg0)(struct usb_interface * , struct usb_device_id * ) , struct usb_interface *arg1 , struct usb_device_id *arg2 ) { int tmp ; { { tmp = ar5523_probe(arg1, (struct usb_device_id const *)arg2); } return (tmp); } } void ldv_usb_instance_release_2_4(void (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { ar5523_disconnect(arg1); } return; } } void ldv_usb_instance_resume_2_7(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_usb_register_driver(int arg0 , struct usb_driver *arg1 , struct module *arg2 , char *arg3 ) { struct usb_driver *ldv_10_usb_driver_usb_driver ; int tmp ; { { arg0 = ldv_pre_usb_register_driver(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_10_usb_driver_usb_driver = arg1; ldv_dispatch_register_10_2(ldv_10_usb_driver_usb_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_usb_usb_instance_2(void *arg0 ) { struct usb_driver *ldv_2_container_usb_driver ; struct usb_device_id *ldv_2_ldv_param_13_1_default ; int ldv_2_probe_retval_default ; _Bool ldv_2_reset_flag_default ; struct usb_interface *ldv_2_resource_usb_interface ; struct usb_device *ldv_2_usb_device_usb_device ; struct ldv_struct_usb_instance_2 *data ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_usb_instance_2 *)arg0; ldv_2_reset_flag_default = 0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_usb_instance_2 *)0)) { { ldv_2_container_usb_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(1552UL); ldv_2_resource_usb_interface = (struct usb_interface *)tmp; tmp___0 = ldv_xmalloc(2024UL); ldv_2_usb_device_usb_device = (struct usb_device *)tmp___0; ldv_2_resource_usb_interface->dev.parent = & ldv_2_usb_device_usb_device->dev; tmp___1 = ldv_xmalloc(32UL); ldv_2_ldv_param_13_1_default = (struct usb_device_id *)tmp___1; ldv_ldv_pre_probe_196(); ldv_2_probe_retval_default = ldv_usb_instance_probe_2_13((int (*)(struct usb_interface * , struct usb_device_id * ))ldv_2_container_usb_driver->probe, ldv_2_resource_usb_interface, ldv_2_ldv_param_13_1_default); ldv_2_probe_retval_default = ldv_ldv_post_probe_197(ldv_2_probe_retval_default); ldv_free((void *)ldv_2_ldv_param_13_1_default); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_assume(ldv_2_probe_retval_default == 0); tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } if (tmp___2 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned long )ldv_2_container_usb_driver->pre_reset != (unsigned long )((int (*)(struct usb_interface * ))0)) { { ldv_usb_instance_pre_2_10(ldv_2_container_usb_driver->pre_reset, ldv_2_resource_usb_interface); } } else { } if ((unsigned long )ldv_2_container_usb_driver->post_reset != (unsigned long )((int (*)(struct usb_interface * ))0)) { { ldv_usb_instance_post_2_9(ldv_2_container_usb_driver->post_reset, ldv_2_resource_usb_interface); } } else { } goto ldv_53933; case_2: /* CIL Label */ ; if ((unsigned long )ldv_2_container_usb_driver->resume != (unsigned long )((int (*)(struct usb_interface * ))0)) { { ldv_usb_instance_resume_2_7(ldv_2_container_usb_driver->resume, ldv_2_resource_usb_interface); } } else { } goto ldv_53933; case_3: /* CIL Label */ ; goto ldv_53933; case_4: /* CIL Label */ ; goto ldv_53933; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_53933: { ldv_usb_instance_release_2_4(ldv_2_container_usb_driver->disconnect, ldv_2_resource_usb_interface); } } else { { ldv_assume(ldv_2_probe_retval_default != 0); } } { ldv_free((void *)ldv_2_resource_usb_interface); ldv_free((void *)ldv_2_usb_device_usb_device); } return; return; } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static void atomic_dec(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_dec(v); } return; } } __inline static int atomic_add_return(int i , atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_add_return(i, v); } return (tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc(size); ldv_after_alloc(res); } return (res); } } __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); } return ((struct sk_buff *)tmp); } } static int ldv_mod_timer_121(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static struct urb *ldv_usb_alloc_urb_122(int ldv_func_arg1 , gfp_t flags ) { struct urb *res ; struct urb *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_urb_usb_alloc_urb(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void *ldv_usb_alloc_coherent_123(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_coherent_usb_alloc_coherent(ldv_func_arg2); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void ldv_usb_free_urb_124(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static void ldv_usb_free_coherent_125(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) { { { ldv_linux_usb_coherent_usb_free_coherent(addr); } return; } } static void ldv_usb_free_urb_126(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static int ldv_usb_submit_urb_127(struct urb *ldv_func_arg1 , gfp_t flags ) { { { ldv_check_alloc_flags(flags); } return __VERIFIER_nondet_int(); } } static int ldv_usb_submit_urb_128(struct urb *ldv_func_arg1 , gfp_t flags ) { { { ldv_check_alloc_flags(flags); } return __VERIFIER_nondet_int(); } } static unsigned long ldv_wait_for_completion_timeout_129(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { unsigned long tmp ; { { ldv_linux_kernel_sched_completion_wait_for_completion_done_of_ar5523_tx_cmd(); tmp = wait_for_completion_timeout(ldv_func_arg1, ldv_func_arg2); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_130(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rx_data_list_lock_of_ar5523(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_131(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_rx_data_list_lock_of_ar5523(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_132(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rx_data_list_lock_of_ar5523(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_134(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rx_data_list_lock_of_ar5523(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_usb_submit_urb_136(struct urb *ldv_func_arg1 , gfp_t flags ) { { { ldv_check_alloc_flags(flags); } return __VERIFIER_nondet_int(); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_137(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rx_data_list_lock_of_ar5523(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_usb_free_urb_139(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static struct urb *ldv_usb_alloc_urb_140(int ldv_func_arg1 , gfp_t flags ) { struct urb *res ; struct urb *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_urb_usb_alloc_urb(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static int ldv_del_timer_141(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_142(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_tx_data_list_lock_of_ar5523(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_143(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_tx_data_list_lock_of_ar5523(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv_usb_free_urb_144(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_145(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_tx_data_list_lock_of_ar5523(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_147(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_tx_data_list_lock_of_ar5523(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static struct urb *ldv_usb_alloc_urb_149(int ldv_func_arg1 , gfp_t flags ) { struct urb *res ; struct urb *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_urb_usb_alloc_urb(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_150(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_tx_data_list_lock_of_ar5523(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_mod_timer_152(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_usb_submit_urb_153(struct urb *ldv_func_arg1 , gfp_t flags ) { { { ldv_check_alloc_flags(flags); } return __VERIFIER_nondet_int(); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_154(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_tx_data_list_lock_of_ar5523(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_usb_free_urb_156(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static void ldv_mutex_lock_157(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_158(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_lock_159(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_160(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_usb_free_coherent_161(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) { { { ldv_linux_usb_coherent_usb_free_coherent(addr); } return; } } static void ldv_usb_free_urb_162(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } __inline static void ldv_init_completion_163(struct completion *x ) { { { ldv_linux_kernel_sched_completion_init_completion_done_of_ar5523_tx_cmd(); } return; } } static struct urb *ldv_usb_alloc_urb_164(int ldv_func_arg1 , gfp_t flags ) { struct urb *res ; struct urb *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_urb_usb_alloc_urb(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void *ldv_usb_alloc_coherent_165(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_coherent_usb_alloc_coherent(ldv_func_arg2); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void ldv_usb_free_urb_166(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static void ldv_mutex_lock_167(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_168(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_lock_169(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_170(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_lock_171(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(ldv_func_arg1); } return; } } static int ldv_del_timer_sync_172(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_mutex_unlock_173(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_lock_174(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_175(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_lock_176(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_177(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_lock_178(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_179(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_lock_180(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_181(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(ldv_func_arg1); } return; } } __inline static struct ieee80211_hw *ldv_ieee80211_alloc_hw_182(size_t priv_data_len , struct ieee80211_ops const *ops ) { ldv_func_ret_type___5 ldv_func_res ; struct ieee80211_hw *tmp ; struct ieee80211_hw *tmp___0 ; { { tmp = ieee80211_alloc_hw(priv_data_len, ops); ldv_func_res = tmp; tmp___0 = ldv_ieee80211_alloc_hw(ldv_func_res, priv_data_len, (struct ieee80211_ops *)ops); } return (tmp___0); return (ldv_func_res); } } static void ldv_ieee80211_free_hw_183(struct ieee80211_hw *ldv_func_arg1 ) { { { ieee80211_free_hw(ldv_func_arg1); ldv_ieee80211_free_hw((void *)0, (struct ieee80211_hw **)ldv_func_arg1); } return; } } static void ldv_ieee80211_unregister_hw_184(struct ieee80211_hw *ldv_func_arg1 ) { { { ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(); ieee80211_unregister_hw(ldv_func_arg1); } return; } } static void ldv_ieee80211_free_hw_185(struct ieee80211_hw *ldv_func_arg1 ) { { { ieee80211_free_hw(ldv_func_arg1); ldv_ieee80211_free_hw((void *)0, (struct ieee80211_hw **)ldv_func_arg1); } return; } } static int ldv_usb_register_driver_186(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = usb_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_usb_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_usb_deregister_187(struct usb_driver *ldv_func_arg1 ) { { { usb_deregister(ldv_func_arg1); ldv_usb_deregister((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_188(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_189(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_190(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_191(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_rtnl_lock_192(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_193(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_194(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_195(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_ldv_pre_probe_196(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_197(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(size_t size ) { void *ptr ; void *tmp ; { { tmp = ldv_malloc(size); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; int ldv_linux_block_request_blk_rq = 0; void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_malloc(sizeof(struct class)); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(size); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void *is_got ) { long tmp ; { { ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(sizeof(struct urb)); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523 ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523 = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_ar5523(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523 = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_ar5523(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_ar5523(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_ar5523(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523 = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_ar5523(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_ar5523(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_ar5523(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523 = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523 = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_ar5523); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_rx_data_list_lock_of_ar5523(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 1); ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_rx_data_list_lock_of_ar5523(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 2); ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_rx_data_list_lock_of_ar5523(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_rx_data_list_lock_of_ar5523(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_rx_data_list_lock_of_ar5523(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_rx_data_list_lock_of_ar5523(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_rx_data_list_lock_of_ar5523(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_rx_data_list_lock_of_ar5523(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_rx_data_list_lock_of_ar5523(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_data_list_lock_of_ar5523(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 1); ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_data_list_lock_of_ar5523(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 2); ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_data_list_lock_of_ar5523(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_data_list_lock_of_ar5523(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_data_list_lock_of_ar5523(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_data_list_lock_of_ar5523(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_data_list_lock_of_ar5523(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_data_list_lock_of_ar5523(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_data_list_lock_of_ar5523(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_rx_data_list_lock_of_ar5523 == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_data_list_lock_of_ar5523 == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion_done_of_ar5523_tx_cmd = 0; void ldv_linux_kernel_sched_completion_init_completion_done_of_ar5523_tx_cmd(void) { { ldv_linux_kernel_sched_completion_completion_done_of_ar5523_tx_cmd = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro_done_of_ar5523_tx_cmd(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion_done_of_ar5523_tx_cmd != 0); ldv_linux_kernel_sched_completion_completion_done_of_ar5523_tx_cmd = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion_done_of_ar5523_tx_cmd(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion_done_of_ar5523_tx_cmd != 0); ldv_linux_kernel_sched_completion_completion_done_of_ar5523_tx_cmd = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-4.0-rc1---drivers--net--wireless--ath--ar5523--ar5523.ko_false-unreach-call.cil.env.c" #include "model/common.env.c"