/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef char *__kernel_caddr_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __kernel_caddr_t *caddr_t; typedef unsigned char u_char; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; struct request; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; struct gate_struct64 { u16 offset_low ; u16 segment ; unsigned char ist : 3 ; unsigned char zero0 : 5 ; unsigned char type : 5 ; unsigned char dpl : 2 ; unsigned char p : 1 ; u16 offset_middle ; u32 offset_high ; u32 zero1 ; }; typedef struct gate_struct64 gate_desc; struct desc_ptr { unsigned short size ; unsigned long address ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct tss_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_cpu_ops { unsigned long (*get_debugreg)(int ) ; void (*set_debugreg)(int , unsigned long ) ; void (*clts)(void) ; unsigned long (*read_cr0)(void) ; void (*write_cr0)(unsigned long ) ; unsigned long (*read_cr4_safe)(void) ; unsigned long (*read_cr4)(void) ; void (*write_cr4)(unsigned long ) ; unsigned long (*read_cr8)(void) ; void (*write_cr8)(unsigned long ) ; void (*load_tr_desc)(void) ; void (*load_gdt)(struct desc_ptr const * ) ; void (*load_idt)(struct desc_ptr const * ) ; void (*store_idt)(struct desc_ptr * ) ; void (*set_ldt)(void const * , unsigned int ) ; unsigned long (*store_tr)(void) ; void (*load_tls)(struct thread_struct * , unsigned int ) ; void (*load_gs_index)(unsigned int ) ; void (*write_ldt_entry)(struct desc_struct * , int , void const * ) ; void (*write_gdt_entry)(struct desc_struct * , int , void const * , int ) ; void (*write_idt_entry)(gate_desc * , int , gate_desc const * ) ; void (*alloc_ldt)(struct desc_struct * , unsigned int ) ; void (*free_ldt)(struct desc_struct * , unsigned int ) ; void (*load_sp0)(struct tss_struct * , struct thread_struct * ) ; void (*set_iopl_mask)(unsigned int ) ; void (*wbinvd)(void) ; void (*io_delay)(void) ; void (*cpuid)(unsigned int * , unsigned int * , unsigned int * , unsigned int * ) ; u64 (*read_msr)(unsigned int , int * ) ; int (*write_msr)(unsigned int , unsigned int , unsigned int ) ; u64 (*read_tsc)(void) ; u64 (*read_pmc)(int ) ; unsigned long long (*read_tscp)(unsigned int * ) ; void (*irq_enable_sysexit)(void) ; void (*usergs_sysret64)(void) ; void (*usergs_sysret32)(void) ; void (*iret)(void) ; void (*swapgs)(void) ; void (*start_context_switch)(struct task_struct * ) ; void (*end_context_switch)(struct task_struct * ) ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct x86_hw_tss { u32 reserved1 ; u64 sp0 ; u64 sp1 ; u64 sp2 ; u64 reserved2 ; u64 ist[7U] ; u32 reserved3 ; u32 reserved4 ; u16 reserved5 ; u16 io_bitmap_base ; }; struct tss_struct { struct x86_hw_tss x86_tss ; unsigned long io_bitmap[1025U] ; unsigned long stack[64U] ; }; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; typedef int pao_T__; typedef int pao_T_____0; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct execute_work { struct work_struct work ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_193 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_192 { struct __anonstruct____missing_field_name_193 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_192 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_195 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_194 { struct __anonstruct____missing_field_name_195 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_194 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_196 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_196 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_198 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_197 { struct __anonstruct____missing_field_name_198 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_197 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_199 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_199 __annonCompField65 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_200 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_200 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_201 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_201 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_204 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_205 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_206 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_204 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_205 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_206 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_207 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_207 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_209 { struct list_head link ; int state ; }; union __anonunion_fl_u_208 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_209 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_208 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct exception_table_entry { int insn ; int fixup ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_214 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_215 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_214 __annonCompField73 ; union __anonunion____missing_field_name_215 __annonCompField74 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct elevator_queue; struct blk_trace; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_216 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_217 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_218 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_220 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_221 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_219 { struct __anonstruct_elv_220 elv ; struct __anonstruct_flush_221 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_216 __annonCompField75 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_217 __annonCompField76 ; union __anonunion____missing_field_name_218 __annonCompField77 ; union __anonunion____missing_field_name_219 __annonCompField78 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct blk_mq_tags; struct blk_mq_cpu_notifier { struct list_head list ; void *data ; int (*notify)(void * , unsigned long , unsigned int ) ; }; struct blk_align_bitmap; struct blk_mq_ctxmap { unsigned int map_size ; unsigned int bits_per_word ; struct blk_align_bitmap *map ; }; struct __anonstruct____missing_field_name_223 { spinlock_t lock ; struct list_head dispatch ; }; struct blk_mq_hw_ctx { struct __anonstruct____missing_field_name_223 __annonCompField79 ; unsigned long state ; struct delayed_work run_work ; struct delayed_work delay_work ; cpumask_var_t cpumask ; int next_cpu ; int next_cpu_batch ; unsigned long flags ; struct request_queue *queue ; struct blk_flush_queue *fq ; void *driver_data ; struct blk_mq_ctxmap ctx_map ; unsigned int nr_ctx ; struct blk_mq_ctx **ctxs ; atomic_t wait_index ; struct blk_mq_tags *tags ; unsigned long queued ; unsigned long run ; unsigned long dispatched[10U] ; unsigned int numa_node ; unsigned int queue_num ; atomic_t nr_active ; struct blk_mq_cpu_notifier cpu_notifier ; struct kobject kobj ; }; struct blk_mq_tag_set { struct blk_mq_ops *ops ; unsigned int nr_hw_queues ; unsigned int queue_depth ; unsigned int reserved_tags ; unsigned int cmd_size ; int numa_node ; unsigned int timeout ; unsigned int flags ; void *driver_data ; struct blk_mq_tags **tags ; struct mutex tag_list_lock ; struct list_head tag_list ; }; struct blk_mq_queue_data { struct request *rq ; struct list_head *list ; bool last ; }; typedef int queue_rq_fn(struct blk_mq_hw_ctx * , struct blk_mq_queue_data const * ); typedef struct blk_mq_hw_ctx *map_queue_fn(struct request_queue * , int const ); typedef enum blk_eh_timer_return timeout_fn(struct request * , bool ); typedef int init_hctx_fn(struct blk_mq_hw_ctx * , void * , unsigned int ); typedef void exit_hctx_fn(struct blk_mq_hw_ctx * , unsigned int ); typedef int init_request_fn(void * , struct request * , unsigned int , unsigned int , unsigned int ); typedef void exit_request_fn(void * , struct request * , unsigned int , unsigned int ); struct blk_mq_ops { queue_rq_fn *queue_rq ; map_queue_fn *map_queue ; timeout_fn *timeout ; softirq_done_fn *complete ; init_hctx_fn *init_hctx ; exit_hctx_fn *exit_hctx ; init_request_fn *init_request ; exit_request_fn *exit_request ; }; struct scsi_cmnd; struct scsi_device; struct scsi_host_cmd_pool; struct scsi_target; struct Scsi_Host; struct scsi_transport_template; struct scsi_host_template { struct module *module ; char const *name ; int (*detect)(struct scsi_host_template * ) ; int (*release)(struct Scsi_Host * ) ; char const *(*info)(struct Scsi_Host * ) ; int (*ioctl)(struct scsi_device * , int , void * ) ; int (*compat_ioctl)(struct scsi_device * , int , void * ) ; int (*queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*eh_abort_handler)(struct scsi_cmnd * ) ; int (*eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*eh_target_reset_handler)(struct scsi_cmnd * ) ; int (*eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*eh_host_reset_handler)(struct scsi_cmnd * ) ; int (*slave_alloc)(struct scsi_device * ) ; int (*slave_configure)(struct scsi_device * ) ; void (*slave_destroy)(struct scsi_device * ) ; int (*target_alloc)(struct scsi_target * ) ; void (*target_destroy)(struct scsi_target * ) ; int (*scan_finished)(struct Scsi_Host * , unsigned long ) ; void (*scan_start)(struct Scsi_Host * ) ; int (*change_queue_depth)(struct scsi_device * , int ) ; int (*bios_param)(struct scsi_device * , struct block_device * , sector_t , int * ) ; void (*unlock_native_capacity)(struct scsi_device * ) ; int (*show_info)(struct seq_file * , struct Scsi_Host * ) ; int (*write_info)(struct Scsi_Host * , char * , int ) ; enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd * ) ; int (*host_reset)(struct Scsi_Host * , int ) ; char const *proc_name ; struct proc_dir_entry *proc_dir ; int can_queue ; int this_id ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; short cmd_per_lun ; unsigned char present ; int tag_alloc_policy ; unsigned char use_blk_tags : 1 ; unsigned char track_queue_depth : 1 ; unsigned char supported_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char emulated : 1 ; unsigned char skip_settle_delay : 1 ; unsigned char no_write_same : 1 ; unsigned char no_async_abort : 1 ; unsigned int max_host_blocked ; struct device_attribute **shost_attrs ; struct device_attribute **sdev_attrs ; struct list_head legacy_hosts ; u64 vendor_id ; unsigned int cmd_size ; struct scsi_host_cmd_pool *cmd_pool ; bool disable_blk_mq ; }; enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING = 2, SHOST_CANCEL = 3, SHOST_DEL = 4, SHOST_RECOVERY = 5, SHOST_CANCEL_RECOVERY = 6, SHOST_DEL_RECOVERY = 7 } ; union __anonunion____missing_field_name_224 { struct blk_queue_tag *bqt ; struct blk_mq_tag_set tag_set ; }; struct Scsi_Host { struct list_head __devices ; struct list_head __targets ; struct scsi_host_cmd_pool *cmd_pool ; spinlock_t free_list_lock ; struct list_head free_list ; struct list_head starved_list ; spinlock_t default_lock ; spinlock_t *host_lock ; struct mutex scan_mutex ; struct list_head eh_cmd_q ; struct task_struct *ehandler ; struct completion *eh_action ; wait_queue_head_t host_wait ; struct scsi_host_template *hostt ; struct scsi_transport_template *transportt ; union __anonunion____missing_field_name_224 __annonCompField80 ; atomic_t host_busy ; atomic_t host_blocked ; unsigned int host_failed ; unsigned int host_eh_scheduled ; unsigned int host_no ; int eh_deadline ; unsigned long last_reset ; unsigned int max_channel ; unsigned int max_id ; u64 max_lun ; unsigned int unique_id ; unsigned short max_cmd_len ; int this_id ; int can_queue ; short cmd_per_lun ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; unsigned int nr_hw_queues ; unsigned long cmd_serial_number ; unsigned char active_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char host_self_blocked : 1 ; unsigned char reverse_ordering : 1 ; unsigned char tmf_in_progress : 1 ; unsigned char async_scan : 1 ; unsigned char eh_noresume : 1 ; unsigned char no_write_same : 1 ; unsigned char use_blk_mq : 1 ; unsigned char use_cmd_list : 1 ; char work_q_name[20U] ; struct workqueue_struct *work_q ; struct workqueue_struct *tmf_work_q ; unsigned char no_scsi2_lun_in_cdb : 1 ; unsigned int max_host_blocked ; unsigned int prot_capabilities ; unsigned char prot_guard_type ; struct request_queue *uspace_req_q ; unsigned long base ; unsigned long io_port ; unsigned char n_io_port ; unsigned char dma_channel ; unsigned int irq ; enum scsi_host_state shost_state ; struct device shost_gendev ; struct device shost_dev ; struct list_head sht_legacy_list ; void *shost_data ; struct device *dma_dev ; unsigned long hostdata[0U] ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_231 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_231 __annonCompField81 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct scsi_sense_hdr; enum scsi_device_state { SDEV_CREATED = 1, SDEV_RUNNING = 2, SDEV_CANCEL = 3, SDEV_DEL = 4, SDEV_QUIESCE = 5, SDEV_OFFLINE = 6, SDEV_TRANSPORT_OFFLINE = 7, SDEV_BLOCK = 8, SDEV_CREATED_BLOCK = 9 } ; struct scsi_dh_data; struct scsi_device { struct Scsi_Host *host ; struct request_queue *request_queue ; struct list_head siblings ; struct list_head same_target_siblings ; atomic_t device_busy ; atomic_t device_blocked ; spinlock_t list_lock ; struct list_head cmd_list ; struct list_head starved_entry ; struct scsi_cmnd *current_cmnd ; unsigned short queue_depth ; unsigned short max_queue_depth ; unsigned short last_queue_full_depth ; unsigned short last_queue_full_count ; unsigned long last_queue_full_time ; unsigned long queue_ramp_up_period ; unsigned long last_queue_ramp_up ; unsigned int id ; unsigned int channel ; u64 lun ; unsigned int manufacturer ; unsigned int sector_size ; void *hostdata ; char type ; char scsi_level ; char inq_periph_qual ; unsigned char inquiry_len ; unsigned char *inquiry ; char const *vendor ; char const *model ; char const *rev ; int vpd_pg83_len ; unsigned char *vpd_pg83 ; int vpd_pg80_len ; unsigned char *vpd_pg80 ; unsigned char current_tag ; struct scsi_target *sdev_target ; unsigned int sdev_bflags ; unsigned int eh_timeout ; unsigned char removable : 1 ; unsigned char changed : 1 ; unsigned char busy : 1 ; unsigned char lockable : 1 ; unsigned char locked : 1 ; unsigned char borken : 1 ; unsigned char disconnect : 1 ; unsigned char soft_reset : 1 ; unsigned char sdtr : 1 ; unsigned char wdtr : 1 ; unsigned char ppr : 1 ; unsigned char tagged_supported : 1 ; unsigned char simple_tags : 1 ; unsigned char was_reset : 1 ; unsigned char expecting_cc_ua : 1 ; unsigned char use_10_for_rw : 1 ; unsigned char use_10_for_ms : 1 ; unsigned char no_report_opcodes : 1 ; unsigned char no_write_same : 1 ; unsigned char use_16_for_rw : 1 ; unsigned char skip_ms_page_8 : 1 ; unsigned char skip_ms_page_3f : 1 ; unsigned char skip_vpd_pages : 1 ; unsigned char try_vpd_pages : 1 ; unsigned char use_192_bytes_for_3f : 1 ; unsigned char no_start_on_add : 1 ; unsigned char allow_restart : 1 ; unsigned char manage_start_stop : 1 ; unsigned char start_stop_pwr_cond : 1 ; unsigned char no_uld_attach : 1 ; unsigned char select_no_atn : 1 ; unsigned char fix_capacity : 1 ; unsigned char guess_capacity : 1 ; unsigned char retry_hwerror : 1 ; unsigned char last_sector_bug : 1 ; unsigned char no_read_disc_info : 1 ; unsigned char no_read_capacity_16 : 1 ; unsigned char try_rc_10_first : 1 ; unsigned char is_visible : 1 ; unsigned char wce_default_on : 1 ; unsigned char no_dif : 1 ; unsigned char broken_fua : 1 ; unsigned char lun_in_cdb : 1 ; atomic_t disk_events_disable_depth ; unsigned long supported_events[1U] ; unsigned long pending_events[1U] ; struct list_head event_list ; struct work_struct event_work ; unsigned int max_device_blocked ; atomic_t iorequest_cnt ; atomic_t iodone_cnt ; atomic_t ioerr_cnt ; struct device sdev_gendev ; struct device sdev_dev ; struct execute_work ew ; struct work_struct requeue_work ; struct scsi_dh_data *scsi_dh_data ; enum scsi_device_state sdev_state ; unsigned long sdev_data[0U] ; }; struct scsi_device_handler { struct list_head list ; struct module *module ; char const *name ; int (*check_sense)(struct scsi_device * , struct scsi_sense_hdr * ) ; struct scsi_dh_data *(*attach)(struct scsi_device * ) ; void (*detach)(struct scsi_device * ) ; int (*activate)(struct scsi_device * , void (*)(void * , int ) , void * ) ; int (*prep_fn)(struct scsi_device * , struct request * ) ; int (*set_params)(struct scsi_device * , char const * ) ; bool (*match)(struct scsi_device * ) ; }; struct scsi_dh_data { struct scsi_device_handler *scsi_dh ; struct scsi_device *sdev ; struct kref kref ; }; enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING = 2, STARGET_DEL = 3 } ; struct scsi_target { struct scsi_device *starget_sdev_user ; struct list_head siblings ; struct list_head devices ; struct device dev ; struct kref reap_ref ; unsigned int channel ; unsigned int id ; unsigned char create : 1 ; unsigned char single_lun : 1 ; unsigned char pdt_1f_for_no_lun : 1 ; unsigned char no_report_luns : 1 ; unsigned char expecting_lun_change : 1 ; atomic_t target_busy ; atomic_t target_blocked ; unsigned int can_queue ; unsigned int max_target_blocked ; char scsi_level ; enum scsi_target_state state ; void *hostdata ; unsigned long starget_data[0U] ; }; struct scsi_data_buffer { struct sg_table table ; unsigned int length ; int resid ; }; struct scsi_pointer { char *ptr ; int this_residual ; struct scatterlist *buffer ; int buffers_residual ; dma_addr_t dma_handle ; int volatile Status ; int volatile Message ; int volatile have_data_in ; int volatile sent_command ; int volatile phase ; }; struct scsi_cmnd { struct scsi_device *device ; struct list_head list ; struct list_head eh_entry ; struct delayed_work abort_work ; int eh_eflags ; unsigned long serial_number ; unsigned long jiffies_at_alloc ; int retries ; int allowed ; unsigned char prot_op ; unsigned char prot_type ; unsigned char prot_flags ; unsigned short cmd_len ; enum dma_data_direction sc_data_direction ; unsigned char *cmnd ; struct scsi_data_buffer sdb ; struct scsi_data_buffer *prot_sdb ; unsigned int underflow ; unsigned int transfersize ; struct request *request ; unsigned char *sense_buffer ; void (*scsi_done)(struct scsi_cmnd * ) ; struct scsi_pointer SCp ; unsigned char *host_scribble ; int result ; int flags ; unsigned char tag ; }; struct scsi_sense_hdr { u8 response_code ; u8 sense_key ; u8 asc ; u8 ascq ; u8 byte4 ; u8 byte5 ; u8 byte6 ; u8 additional_length ; }; typedef struct scsi_cmnd Scsi_Cmnd; struct mbox_out { u8 cmd ; u8 cmdid ; u16 numsectors ; u32 lba ; u32 xferaddr ; u8 logdrv ; u8 numsgelements ; u8 resvd ; }; struct mbox_in { u8 volatile busy ; u8 volatile numstatus ; u8 volatile status ; u8 volatile completed[46U] ; u8 volatile poll ; u8 volatile ack ; }; struct __anonstruct_mbox_t_232 { struct mbox_out m_out ; struct mbox_in m_in ; }; typedef struct __anonstruct_mbox_t_232 mbox_t; struct __anonstruct_mbox64_t_233 { u32 xfer_segment_lo ; u32 xfer_segment_hi ; mbox_t mbox ; }; typedef struct __anonstruct_mbox64_t_233 mbox64_t; struct __anonstruct_mega_passthru_234 { unsigned char timeout : 3 ; unsigned char ars : 1 ; unsigned char reserved : 3 ; unsigned char islogical : 1 ; u8 logdrv ; u8 channel ; u8 target ; u8 queuetag ; u8 queueaction ; u8 cdb[10U] ; u8 cdblen ; u8 reqsenselen ; u8 reqsensearea[32U] ; u8 numsgelements ; u8 scsistatus ; u32 dataxferaddr ; u32 dataxferlen ; }; typedef struct __anonstruct_mega_passthru_234 mega_passthru; struct __anonstruct_mega_ext_passthru_235 { unsigned char timeout : 3 ; unsigned char ars : 1 ; unsigned char rsvd1 : 1 ; unsigned char cd_rom : 1 ; unsigned char rsvd2 : 1 ; unsigned char islogical : 1 ; u8 logdrv ; u8 channel ; u8 target ; u8 queuetag ; u8 queueaction ; u8 cdblen ; u8 rsvd3 ; u8 cdb[16U] ; u8 numsgelements ; u8 status ; u8 reqsenselen ; u8 reqsensearea[32U] ; u8 rsvd4 ; u32 dataxferaddr ; u32 dataxferlen ; }; typedef struct __anonstruct_mega_ext_passthru_235 mega_ext_passthru; struct __anonstruct_mega_sgl64_236 { u64 address ; u32 length ; }; typedef struct __anonstruct_mega_sgl64_236 mega_sgl64; struct __anonstruct_mega_sglist_237 { u32 address ; u32 length ; }; typedef struct __anonstruct_mega_sglist_237 mega_sglist; struct __anonstruct_scb_t_238 { int idx ; u32 state ; struct list_head list ; u8 raw_mbox[66U] ; u32 dma_type ; u32 dma_direction ; Scsi_Cmnd *cmd ; dma_addr_t dma_h_bulkdata ; dma_addr_t dma_h_sgdata ; mega_sglist *sgl ; mega_sgl64 *sgl64 ; dma_addr_t sgl_dma_addr ; mega_passthru *pthru ; dma_addr_t pthru_dma_addr ; mega_ext_passthru *epthru ; dma_addr_t epthru_dma_addr ; }; typedef struct __anonstruct_scb_t_238 scb_t; struct __anonstruct_mega_product_info_239 { u32 data_size ; u32 config_signature ; u8 fw_version[16U] ; u8 bios_version[16U] ; u8 product_name[80U] ; u8 max_commands ; u8 nchannels ; u8 fc_loop_present ; u8 mem_type ; u32 signature ; u16 dram_size ; u16 subsysid ; u16 subsysvid ; u8 notify_counters ; u8 pad1k[889U] ; }; typedef struct __anonstruct_mega_product_info_239 mega_product_info; struct notify { u32 global_counter ; u8 param_counter ; u8 param_id ; u16 param_val ; u8 write_config_counter ; u8 write_config_rsvd[3U] ; u8 ldrv_op_counter ; u8 ldrv_opid ; u8 ldrv_opcmd ; u8 ldrv_opstatus ; u8 ldrv_state_counter ; u8 ldrv_state_id ; u8 ldrv_state_new ; u8 ldrv_state_old ; u8 pdrv_state_counter ; u8 pdrv_state_id ; u8 pdrv_state_new ; u8 pdrv_state_old ; u8 pdrv_fmt_counter ; u8 pdrv_fmt_id ; u8 pdrv_fmt_val ; u8 pdrv_fmt_rsvd ; u8 targ_xfer_counter ; u8 targ_xfer_id ; u8 targ_xfer_val ; u8 targ_xfer_rsvd ; u8 fcloop_id_chg_counter ; u8 fcloopid_pdrvid ; u8 fcloop_id0 ; u8 fcloop_id1 ; u8 fcloop_state_counter ; u8 fcloop_state0 ; u8 fcloop_state1 ; u8 fcloop_state_rsvd ; }; struct __anonstruct_mega_inquiry3_240 { u32 data_size ; struct notify notify ; u8 notify_rsvd[88U] ; u8 rebuild_rate ; u8 cache_flush_interval ; u8 sense_alert ; u8 drive_insert_count ; u8 battery_status ; u8 num_ldrv ; u8 recon_state[5U] ; u16 ldrv_op_status[5U] ; u32 ldrv_size[40U] ; u8 ldrv_prop[40U] ; u8 ldrv_state[40U] ; u8 pdrv_state[256U] ; u16 pdrv_format[16U] ; u8 targ_xfer[80U] ; u8 pad1k[263U] ; }; typedef struct __anonstruct_mega_inquiry3_240 mega_inquiry3; struct __anonstruct_mega_adp_info_241 { u8 max_commands ; u8 rebuild_rate ; u8 max_targ_per_chan ; u8 nchannels ; u8 fw_version[4U] ; u16 age_of_flash ; u8 chip_set_value ; u8 dram_size ; u8 cache_flush_interval ; u8 bios_version[4U] ; u8 board_type ; u8 sense_alert ; u8 write_config_count ; u8 drive_inserted_count ; u8 inserted_drive ; u8 battery_status ; u8 dec_fault_bus_info ; }; typedef struct __anonstruct_mega_adp_info_241 mega_adp_info; struct __anonstruct_mega_ldrv_info_242 { u8 num_ldrv ; u8 rsvd[3U] ; u32 ldrv_size[8U] ; u8 ldrv_prop[8U] ; u8 ldrv_state[8U] ; }; typedef struct __anonstruct_mega_ldrv_info_242 mega_ldrv_info; struct __anonstruct_mega_pdrv_info_243 { u8 pdrv_state[75U] ; u8 rsvd ; }; typedef struct __anonstruct_mega_pdrv_info_243 mega_pdrv_info; struct __anonstruct_mraid_inquiry_244 { mega_adp_info adapter_info ; mega_ldrv_info logdrv_info ; mega_pdrv_info pdrv_info ; }; typedef struct __anonstruct_mraid_inquiry_244 mraid_inquiry; struct __anonstruct_mraid_ext_inquiry_245 { mraid_inquiry raid_inq ; u16 phys_drv_format[5U] ; u8 stack_attn ; u8 modem_status ; u8 rsvd[2U] ; }; typedef struct __anonstruct_mraid_ext_inquiry_245 mraid_ext_inquiry; struct __anonstruct_adp_device_246 { u8 channel ; u8 target ; }; typedef struct __anonstruct_adp_device_246 adp_device; struct __anonstruct_adp_span_40ld_247 { u32 start_blk ; u32 num_blks ; adp_device device[32U] ; }; typedef struct __anonstruct_adp_span_40ld_247 adp_span_40ld; struct __anonstruct_adp_span_8ld_248 { u32 start_blk ; u32 num_blks ; adp_device device[8U] ; }; typedef struct __anonstruct_adp_span_8ld_248 adp_span_8ld; struct __anonstruct_logdrv_param_249 { u8 span_depth ; u8 level ; u8 read_ahead ; u8 stripe_sz ; u8 status ; u8 write_mode ; u8 direct_io ; u8 row_size ; }; typedef struct __anonstruct_logdrv_param_249 logdrv_param; struct __anonstruct_logdrv_40ld_250 { logdrv_param lparam ; adp_span_40ld span[8U] ; }; typedef struct __anonstruct_logdrv_40ld_250 logdrv_40ld; struct __anonstruct_logdrv_8ld_251 { logdrv_param lparam ; adp_span_8ld span[8U] ; }; typedef struct __anonstruct_logdrv_8ld_251 logdrv_8ld; struct __anonstruct_phys_drv_252 { u8 type ; u8 cur_status ; u8 tag_depth ; u8 sync_neg ; u32 size ; }; typedef struct __anonstruct_phys_drv_252 phys_drv; struct __anonstruct_disk_array_40ld_253 { u8 nlog_drives ; u8 resvd[3U] ; logdrv_40ld ldrv[40U] ; phys_drv pdrv[75U] ; }; typedef struct __anonstruct_disk_array_40ld_253 disk_array_40ld; struct __anonstruct_disk_array_8ld_254 { u8 nlog_drives ; u8 resvd[3U] ; logdrv_8ld ldrv[8U] ; phys_drv pdrv[75U] ; }; typedef struct __anonstruct_disk_array_8ld_254 disk_array_8ld; struct __anonstruct_fcs_256 { u8 opcode ; u8 subopcode ; u16 adapno ; u8 *buffer ; u32 length ; }; union __anonunion_ui_255 { u8 fca[16U] ; struct __anonstruct_fcs_256 fcs ; }; struct uioctl_t { u32 inlen ; u32 outlen ; union __anonunion_ui_255 ui ; u8 mbox[18U] ; mega_passthru pthru ; char *data ; }; struct mcontroller { u64 base ; u8 irq ; u8 numldrv ; u8 pcibus ; u16 pcidev ; u8 pcifun ; u16 pciid ; u16 pcivendor ; u8 pcislot ; u32 uid ; }; struct __anonstruct_megacmd_t_257 { u8 cmd ; u8 cmdid ; u8 opcode ; u8 subopcode ; u32 lba ; u32 xferaddr ; u8 logdrv ; u8 rsvd[3U] ; u8 numstatus ; u8 status ; }; typedef struct __anonstruct_megacmd_t_257 megacmd_t; union __anonunion___ua_259 { u8 __raw_mbox[18U] ; void *__uaddr ; }; struct __anonstruct_nitioctl_t_258 { char signature[8U] ; u32 opcode ; u32 adapno ; union __anonunion___ua_259 __ua ; u32 xferlen ; u32 flags ; }; typedef struct __anonstruct_nitioctl_t_258 nitioctl_t; struct __anonstruct_megastat_t_260 { int num_ldrv ; u32 nreads[40U] ; u32 nreadblocks[40U] ; u32 nwrites[40U] ; u32 nwriteblocks[40U] ; u32 rd_errors[40U] ; u32 wr_errors[40U] ; }; typedef struct __anonstruct_megastat_t_260 megastat_t; struct private_bios_data { unsigned char geometry : 4 ; unsigned char unused : 4 ; u8 boot_drv ; u8 rsvd[12U] ; u16 cksum ; }; struct __anonstruct_adapter_t_261 { int this_id ; u32 flag ; unsigned long base ; void *mmio_base ; mbox64_t *una_mbox64 ; dma_addr_t una_mbox64_dma ; mbox64_t volatile *mbox64 ; mbox_t volatile *mbox ; dma_addr_t mbox_dma ; struct pci_dev *dev ; struct list_head free_list ; struct list_head pending_list ; struct list_head completed_list ; struct Scsi_Host *host ; u8 *mega_buffer ; dma_addr_t buf_dma_handle ; mega_product_info product_info ; u8 max_cmds ; scb_t *scb_list ; atomic_t pend_cmds ; u8 numldrv ; u8 fw_version[7U] ; u8 bios_version[7U] ; struct proc_dir_entry *controller_proc_dir_entry ; struct proc_dir_entry *proc_read ; struct proc_dir_entry *proc_stat ; struct proc_dir_entry *proc_mbox ; struct proc_dir_entry *proc_rr ; struct proc_dir_entry *proc_battery ; struct proc_dir_entry *proc_pdrvstat[4U] ; struct proc_dir_entry *proc_rdrvstat[4U] ; int has_64bit_addr ; int support_ext_cdb ; int boot_ldrv_enabled ; int boot_ldrv ; int boot_pdrv_enabled ; int boot_pdrv_ch ; int boot_pdrv_tgt ; int support_random_del ; int read_ldidmap ; atomic_t quiescent ; spinlock_t lock ; u8 logdrv_chan[9U] ; int mega_ch_class ; u8 sglen ; scb_t int_scb ; struct mutex int_mtx ; int int_status ; struct completion int_waitq ; int has_cluster ; }; typedef struct __anonstruct_adapter_t_261 adapter_t; struct mega_hbas { int is_bios_enabled ; adapter_t *hostdata_addr ; }; struct mega_proc_file { char const *name ; unsigned short ptr_offset ; int (*show)(struct seq_file * , void * ) ; }; struct ldv_struct_EMGentry_28 { int signal_pending ; }; struct ldv_struct_file_operations_instance_0 { struct file_operations *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_19 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_2 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_3 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_scsi_host_template_instance_4 { struct Scsi_Host *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type; typedef struct Scsi_Host *ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; int ldv_linux_fs_char_dev_register_chrdev(int major___0 ) ; void ldv_linux_fs_char_dev_unregister_chrdev_region(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void *is_got ) ; int ldv_linux_usb_gadget_register_class(void) ; int ldv_linux_usb_gadget_register_chrdev(int major___0 ) ; void ldv_linux_usb_gadget_unregister_chrdev_region(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(res1); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) ; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; void ldv_linux_kernel_sched_completion_init_completion_int_waitq_of_NOT_ARG_SIGN(void) ; void ldv_linux_kernel_sched_completion_wait_for_completion_int_waitq_of_NOT_ARG_SIGN(void) ; int ldv_undef_int(void) ; void *ldv_linux_arch_io_io_mem_remap(size_t size ) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_131(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_128(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_132(void) ; static void ldv_ldv_pre_probe_134(void) ; static void ldv_ldv_pre_probe_136(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_133(int retval ) ; static int ldv_ldv_post_probe_135(int retval ) ; static int ldv_ldv_post_probe_137(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_129(void) ; static void ldv_ldv_check_final_state_130(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void ldv_after_alloc(void * ) ; static void ldv_mutex_lock_106(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_110(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_int_mtx_of_NOT_ARG_SIGN(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_int_mtx_of_NOT_ARG_SIGN(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_megadev_mutex(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_megadev_mutex(struct mutex *lock ) ; extern struct module __this_module ; extern struct pv_cpu_ops pv_cpu_ops ; extern struct pv_irq_ops pv_irq_ops ; extern int printk(char const * , ...) ; extern void ___might_sleep(char const * , int , int ) ; extern void might_fault(void) ; extern int sprintf(char * , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern int strcmp(char const * , char const * ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static void slow_down_io(void) { { { (*(pv_cpu_ops.io_delay))(); } return; } } __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static void rep_nop(void) { { __asm__ volatile ("rep; nop": : : "memory"); return; } } __inline static void cpu_relax(void) { { { rep_nop(); } return; } } __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_sub(int i , atomic_t *v ) ; __inline static void atomic_inc(atomic_t *v ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_96(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_111(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_host_lock_of_Scsi_Host(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_114(struct mutex *ldv_func_arg1 ) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (val)); } goto ldv_7206; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7206; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7206; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (val)); } goto ldv_7206; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7206: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_7218; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7218; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7218; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (- val)); } goto ldv_7218; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7218: ; return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_irq_104(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_irq_105(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_init_completion_117(struct completion *x ) ; extern void wait_for_completion(struct completion * ) ; static void ldv_wait_for_completion_113(struct completion *ldv_func_arg1 ) ; extern void complete(struct completion * ) ; extern struct resource ioport_resource ; extern struct resource iomem_resource ; extern struct resource *__request_region(struct resource * , resource_size_t , resource_size_t , char const * , int ) ; extern void __release_region(struct resource * , resource_size_t , resource_size_t ) ; extern ssize_t seq_read(struct file * , char * , size_t , loff_t * ) ; extern loff_t seq_lseek(struct file * , loff_t , int ) ; extern int seq_putc(struct seq_file * , char ) ; extern int seq_puts(struct seq_file * , char const * ) ; extern int seq_write(struct seq_file * , void const * , size_t ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; extern int single_open(struct file * , int (*)(struct seq_file * , void * ) , void * ) ; extern int single_release(struct inode * , struct file * ) ; __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) ; static void ldv_iounmap_120(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_123(void volatile *ldv_func_arg1 ) ; __inline static void outb(unsigned char value , int port ) { { __asm__ volatile ("outb %b0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned char inb(int port ) { unsigned char value ; { __asm__ volatile ("inb %w1, %b0": "=a" (value): "Nd" (port)); return (value); } } __inline static void outb_p(unsigned char value , int port ) { { { outb((int )value, port); slow_down_io(); } return; } } __inline static unsigned char inb_p(int port ) { unsigned char value ; unsigned char tmp ; { { tmp = inb(port); value = tmp; slow_down_io(); } return (value); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern bool capable(int ) ; extern int _cond_resched(void) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; extern struct pci_dev *pci_alloc_dev(struct pci_bus * ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_124(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_127(struct pci_driver *ldv_func_arg1 ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static struct page *sg_page(struct scatterlist *sg ) { long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (98), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (99), "i" (12UL)); __builtin_unreachable(); } } else { } return ((struct page *)(sg->page_link & 0xfffffffffffffffcUL)); } } __inline static void *sg_virt(struct scatterlist *sg ) { struct page *tmp ; void *tmp___0 ; { { tmp = sg_page(sg); tmp___0 = lowmem_page_address((struct page const *)tmp); } return (tmp___0 + (unsigned long )sg->offset); } } extern struct scatterlist *sg_next(struct scatterlist * ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern int __register_chrdev(unsigned int , unsigned int , unsigned int , char const * , struct file_operations const * ) ; extern void __unregister_chrdev(unsigned int , unsigned int , unsigned int , char const * ) ; __inline static int ldv_register_chrdev_90(unsigned int major___0 , char const *name , struct file_operations const *fops ) { int tmp ; { { tmp = __register_chrdev(major___0, 0U, 256U, name, fops); } return (tmp); } } __inline static int register_chrdev(unsigned int major___0 , char const *name , struct file_operations const *fops ) ; __inline static int ldv_register_chrdev_125(unsigned int major___0 , char const *name , struct file_operations const *fops ) ; __inline static void ldv_unregister_chrdev_91(unsigned int major___0 , char const *name ) { { { __unregister_chrdev(major___0, 0U, 256U, name); } return; } } __inline static void unregister_chrdev(unsigned int major___0 , char const *name ) ; __inline static void ldv_unregister_chrdev_126(unsigned int major___0 , char const *name ) ; extern loff_t noop_llseek(struct file * , loff_t , int ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } __inline static void pagefault_disable(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void pagefault_enable(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } __inline static void *kmap_atomic(struct page *page ) { void *tmp ; { { pagefault_disable(); tmp = lowmem_page_address((struct page const *)page); } return (tmp); } } __inline static void __kunmap_atomic(void *addr ) { { { pagefault_enable(); } return; } } extern char const *scsi_device_type(unsigned int ) ; extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template * , int ) ; static struct Scsi_Host *ldv_scsi_host_alloc_115(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) ; extern int scsi_add_host_with_dma(struct Scsi_Host * , struct device * , struct device * ) ; extern void scsi_scan_host(struct Scsi_Host * ) ; extern void scsi_remove_host(struct Scsi_Host * ) ; static void ldv_scsi_remove_host_122(struct Scsi_Host *ldv_func_arg1 ) ; extern void scsi_host_put(struct Scsi_Host * ) ; extern void scsi_cmd_get_serial(struct Scsi_Host * , struct scsi_cmnd * ) ; __inline static int scsi_add_host(struct Scsi_Host *host , struct device *dev ) { int tmp ; { { tmp = scsi_add_host_with_dma(host, dev, dev); } return (tmp); } } __inline static int ldv_scsi_add_host_118(struct Scsi_Host *host , struct device *dev ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern struct proc_dir_entry *proc_mkdir(char const * , struct proc_dir_entry * ) ; extern struct proc_dir_entry *proc_mkdir_data(char const * , umode_t , struct proc_dir_entry * , void * ) ; extern struct proc_dir_entry *proc_create_data(char const * , umode_t , struct proc_dir_entry * , struct file_operations const * , void * ) ; extern void *PDE_DATA(struct inode const * ) ; extern void *proc_get_parent_data(struct inode const * ) ; extern void remove_proc_entry(char const * , struct proc_dir_entry * ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_116(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_119(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_121(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern int scsi_partsize(unsigned char * , unsigned long , unsigned int * , unsigned int * , unsigned int * ) ; extern unsigned char *scsi_bios_ptable(struct block_device * ) ; extern int scsi_dma_map(struct scsi_cmnd * ) ; extern void scsi_dma_unmap(struct scsi_cmnd * ) ; __inline static unsigned int scsi_sg_count(struct scsi_cmnd *cmd ) { { return (cmd->sdb.table.nents); } } __inline static struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd ) { { return (cmd->sdb.table.sgl); } } char const *megaraid_info(struct Scsi_Host *host ) ; static int mega_query_adapter(adapter_t *adapter ) ; static int issue_scb(adapter_t *adapter , scb_t *scb ) ; static int mega_setup_mailbox(adapter_t *adapter ) ; static int megaraid_queue(struct Scsi_Host *shost , struct scsi_cmnd *cmd ) ; static scb_t *mega_build_cmd(adapter_t *adapter , Scsi_Cmnd *cmd , int *busy ) ; static void __mega_runpendq(adapter_t *adapter ) ; static int issue_scb_block(adapter_t *adapter , u_char *raw_mbox ) ; static irqreturn_t megaraid_isr_memmapped(int irq , void *devp ) ; static irqreturn_t megaraid_isr_iomapped(int irq , void *devp ) ; static void mega_free_scb(adapter_t *adapter , scb_t *scb ) ; static int megaraid_abort(Scsi_Cmnd *cmd ) ; static int megaraid_reset(struct scsi_cmnd *cmd ) ; static int megaraid_abort_and_reset(adapter_t *adapter , Scsi_Cmnd *cmd , int aor ) ; static int megaraid_biosparam(struct scsi_device *sdev , struct block_device *bdev , sector_t capacity , int *geom ) ; static int mega_build_sglist(adapter_t *adapter , scb_t *scb , u32 *buf , u32 *len ) ; static int __mega_busywait_mbox(adapter_t *adapter ) ; static void mega_rundoneq(adapter_t *adapter ) ; static void mega_cmd_done(adapter_t *adapter , u8 *completed , int nstatus , int status ) ; __inline static void mega_free_sgl(adapter_t *adapter ) ; static void mega_8_to_40ld(mraid_inquiry *inquiry , mega_inquiry3 *enquiry3 , mega_product_info *product_info ) ; static int megadev_open(struct inode *inode , struct file *filep ) ; static int megadev_ioctl(struct file *filep , unsigned int cmd , unsigned long arg ) ; static int mega_m_to_n(void *arg , nitioctl_t *uioc ) ; static int mega_n_to_m(void *arg , megacmd_t *mc ) ; static int mega_init_scb(adapter_t *adapter ) ; static int mega_is_bios_enabled(adapter_t *adapter ) ; static void mega_create_proc_entry(int index , struct proc_dir_entry *parent ) ; static int mega_adapinq(adapter_t *adapter , dma_addr_t dma_handle ) ; static int mega_internal_dev_inquiry(adapter_t *adapter , u8 ch , u8 tgt , dma_addr_t buf_dma_handle ) ; static int mega_support_ext_cdb(adapter_t *adapter ) ; static mega_passthru *mega_prepare_passthru(adapter_t *adapter , scb_t *scb , Scsi_Cmnd *cmd , int channel , int target ) ; static mega_ext_passthru *mega_prepare_extpassthru(adapter_t *adapter , scb_t *scb , Scsi_Cmnd *cmd , int channel , int target ) ; static void mega_enum_raid_scsi(adapter_t *adapter ) ; static void mega_get_boot_drv(adapter_t *adapter ) ; static int mega_support_random_del(adapter_t *adapter ) ; static int mega_del_logdrv(adapter_t *adapter , int logdrv ) ; static int mega_do_del_logdrv(adapter_t *adapter , int logdrv ) ; static void mega_get_max_sgl(adapter_t *adapter ) ; static int mega_internal_command(adapter_t *adapter , megacmd_t *mc , mega_passthru *pthru ) ; static int mega_support_cluster(adapter_t *adapter ) ; static struct mutex megadev_mutex = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "megadev_mutex.wait_lock", 0, 0UL}}}}, {& megadev_mutex.wait_list, & megadev_mutex.wait_list}, 0, (void *)(& megadev_mutex), {0, {0, 0}, "megadev_mutex", 0, 0UL}}; static unsigned int max_cmd_per_lun = 63U; static unsigned short max_sectors_per_io = 128U; static unsigned short max_mbox_busy_wait = 10U; static int hba_count ; static adapter_t *hba_soft_state[32U] ; static struct proc_dir_entry *mega_proc_dir_entry ; static struct mega_hbas mega_hbas[32U] ; static long megadev_unlocked_ioctl(struct file *filep , unsigned int cmd , unsigned long arg ) ; static struct file_operations const megadev_fops = {& __this_module, & noop_llseek, 0, 0, 0, 0, 0, 0, 0, 0, & megadev_unlocked_ioctl, 0, 0, 0, & megadev_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct mcontroller mcontroller[32U] ; static u32 driver_ver = 33554432U; static int major ; static int trace_level ; static int mega_setup_mailbox(adapter_t *adapter ) { unsigned long align ; void *tmp ; { { tmp = pci_alloc_consistent(adapter->dev, 74UL, & adapter->una_mbox64_dma); adapter->una_mbox64 = (mbox64_t *)tmp; } if ((unsigned long )adapter->una_mbox64 == (unsigned long )((mbox64_t *)0)) { return (-1); } else { } adapter->mbox = (mbox_t volatile *)(& (adapter->una_mbox64)->mbox); adapter->mbox = (mbox_t volatile *)(((unsigned long )adapter->mbox + 15UL) & 0xfffffffffffffff0UL); adapter->mbox64 = (mbox64_t volatile *)((unsigned long )adapter->mbox - 8UL); align = (unsigned long )((long )adapter->mbox - (long )(& (adapter->una_mbox64)->mbox)); adapter->mbox_dma = (adapter->una_mbox64_dma + (unsigned long long )align) + 8ULL; if (((long )adapter->flag & 268435456L) != 0L) { { outb((int )((unsigned char )adapter->mbox_dma), (int )((unsigned int )(adapter->host)->io_port + 4U)); outb((int )((unsigned char )(adapter->mbox_dma >> 8)), (int )((unsigned int )(adapter->host)->io_port + 5U)); outb((int )((unsigned char )(adapter->mbox_dma >> 16)), (int )((unsigned int )(adapter->host)->io_port + 6U)); outb((int )((unsigned char )(adapter->mbox_dma >> 24)), (int )((unsigned int )(adapter->host)->io_port + 7U)); outb(0, (int )((unsigned int )(adapter->host)->io_port + 11U)); outb_p(8, (int )adapter->base); outb_p(192, (int )((unsigned int )adapter->base + 1U)); } } else { } return (0); } } static int mega_query_adapter(adapter_t *adapter ) { dma_addr_t prod_info_dma_handle ; mega_inquiry3 *inquiry3 ; u8 raw_mbox[15U] ; mbox_t *mbox ; int retval ; mraid_ext_inquiry *ext_inq ; mraid_inquiry *inq ; dma_addr_t dma_handle ; void *tmp ; { { mbox = (mbox_t *)(& raw_mbox); memset((void *)adapter->mega_buffer, 0, 2048UL); memset((void *)(& mbox->m_out), 0, 15UL); mbox->m_out.xferaddr = (unsigned int )adapter->buf_dma_handle; inquiry3 = (mega_inquiry3 *)adapter->mega_buffer; raw_mbox[0] = 161U; raw_mbox[2] = 15U; raw_mbox[3] = 2U; retval = issue_scb_block(adapter, (u_char *)(& raw_mbox)); } if (retval != 0) { { tmp = pci_alloc_consistent(adapter->dev, 166UL, & dma_handle); ext_inq = (mraid_ext_inquiry *)tmp; } if ((unsigned long )ext_inq == (unsigned long )((mraid_ext_inquiry *)0)) { return (-1); } else { } { inq = & ext_inq->raid_inq; mbox->m_out.xferaddr = (unsigned int )dma_handle; mbox->m_out.cmd = 4U; issue_scb_block(adapter, (u_char *)(& raw_mbox)); mega_8_to_40ld(inq, inquiry3, & adapter->product_info); pci_free_consistent(adapter->dev, 166UL, (void *)ext_inq, dma_handle); } } else { { adapter->flag = adapter->flag | 134217728U; prod_info_dma_handle = pci_map_single(adapter->dev, (void *)(& adapter->product_info), 1024UL, 2); mbox->m_out.xferaddr = (u32 )prod_info_dma_handle; raw_mbox[0] = 161U; raw_mbox[2] = 14U; retval = issue_scb_block(adapter, (u_char *)(& raw_mbox)); } if (retval != 0) { { printk("\fmegaraid: Product_info cmd failed with error: %d\n", retval); } } else { } { pci_unmap_single(adapter->dev, prod_info_dma_handle, 1024UL, 2); } } (adapter->host)->max_channel = (unsigned int )((int )adapter->product_info.nchannels + 3); (adapter->host)->max_id = 16U; (adapter->host)->max_lun = 7ULL; (adapter->host)->cmd_per_lun = (short )max_cmd_per_lun; adapter->numldrv = inquiry3->num_ldrv; adapter->max_cmds = adapter->product_info.max_commands; if ((unsigned int )adapter->max_cmds > 126U) { adapter->max_cmds = 126U; } else { } { (adapter->host)->can_queue = (int )adapter->max_cmds + -1; mega_get_max_sgl(adapter); (adapter->host)->sg_tablesize = (unsigned short )adapter->sglen; } if ((unsigned int )adapter->product_info.subsysvid == 4156U) { { sprintf((char *)(& adapter->fw_version), "%c%d%d.%d%d", (int )adapter->product_info.fw_version[2], 0, (int )adapter->product_info.fw_version[1] & 15, 0, (int )adapter->product_info.fw_version[0] & 15); sprintf((char *)(& adapter->bios_version), "%c%d%d.%d%d", (int )adapter->product_info.bios_version[2], 0, (int )adapter->product_info.bios_version[1] & 15, 0, (int )adapter->product_info.bios_version[0] & 15); } } else { { memcpy((void *)(& adapter->fw_version), (void const *)(& adapter->product_info.fw_version), 4UL); adapter->fw_version[4] = 0U; memcpy((void *)(& adapter->bios_version), (void const *)(& adapter->product_info.bios_version), 4UL); adapter->bios_version[4] = 0U; } } { printk("\rmegaraid: [%s:%s] detected %d logical drives.\n", (u8 *)(& adapter->fw_version), (u8 *)(& adapter->bios_version), (int )adapter->numldrv); adapter->support_ext_cdb = mega_support_ext_cdb(adapter); } if (adapter->support_ext_cdb != 0) { { printk("\rmegaraid: supports extended CDBs.\n"); } } else { } return (0); } } __inline static void mega_runpendq(adapter_t *adapter ) { int tmp ; { { tmp = list_empty((struct list_head const *)(& adapter->pending_list)); } if (tmp == 0) { { __mega_runpendq(adapter); } } else { } return; } } static int megaraid_queue_lck(Scsi_Cmnd *scmd , void (*done)(Scsi_Cmnd * ) ) { adapter_t *adapter ; scb_t *scb ; int busy ; unsigned long flags ; int tmp ; { { busy = 0; adapter = (adapter_t *)(& ((scmd->device)->host)->hostdata); scmd->scsi_done = done; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_96(& adapter->lock); scb = mega_build_cmd(adapter, scmd, & busy); } if ((unsigned long )scb == (unsigned long )((scb_t *)0)) { goto out; } else { } { scb->state = scb->state | 2U; list_add_tail(& scb->list, & adapter->pending_list); tmp = atomic_read((atomic_t const *)(& adapter->quiescent)); } if (tmp == 0) { { mega_runpendq(adapter); } } else { } busy = 0; out: { ldv_spin_unlock_irqrestore_97(& adapter->lock, flags); } return (busy); } } static int megaraid_queue(struct Scsi_Host *shost , struct scsi_cmnd *cmd ) { unsigned long irq_flags ; int rc ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(shost->host_lock); scsi_cmd_get_serial(shost, cmd); rc = megaraid_queue_lck(cmd, cmd->scsi_done); ldv_spin_unlock_irqrestore_99(shost->host_lock, irq_flags); } return (rc); } } __inline static scb_t *mega_allocate_scb(adapter_t *adapter , Scsi_Cmnd *cmd ) { struct list_head *head ; scb_t *scb ; struct list_head const *__mptr ; int tmp ; { { head = & adapter->free_list; tmp = list_empty((struct list_head const *)head); } if (tmp == 0) { { __mptr = (struct list_head const *)head->next; scb = (scb_t *)__mptr + 0xfffffffffffffff8UL; list_del_init(head->next); scb->state = 1U; scb->cmd = cmd; scb->dma_type = 65535U; } return (scb); } else { } return ((scb_t *)0); } } __inline static int mega_get_ldrv_num(adapter_t *adapter , Scsi_Cmnd *cmd , int channel ) { int tgt ; int ldrv_num ; { tgt = (int )(cmd->device)->id; if (tgt > adapter->this_id) { tgt = tgt - 1; } else { } ldrv_num = channel * 15 + tgt; if (adapter->boot_ldrv_enabled != 0) { if (ldrv_num == 0) { ldrv_num = adapter->boot_ldrv; } else if (ldrv_num <= adapter->boot_ldrv) { ldrv_num = ldrv_num - 1; } else { } } else { } if (adapter->support_random_del != 0 && adapter->read_ldidmap != 0) { { if ((int )*(cmd->cmnd) == 8) { goto case_8; } else { } if ((int )*(cmd->cmnd) == 10) { goto case_10; } else { } if ((int )*(cmd->cmnd) == 40) { goto case_40; } else { } if ((int )*(cmd->cmnd) == 42) { goto case_42; } else { } goto switch_break; case_8: /* CIL Label */ ; case_10: /* CIL Label */ ; case_40: /* CIL Label */ ; case_42: /* CIL Label */ ldrv_num = ldrv_num + 128; switch_break: /* CIL Label */ ; } } else { } return (ldrv_num); } } extern void __compiletime_assert_669(void) ; static scb_t *mega_build_cmd(adapter_t *adapter , Scsi_Cmnd *cmd , int *busy ) { mega_ext_passthru *epthru ; mega_passthru *pthru ; scb_t *scb ; mbox_t *mbox ; u32 seg ; char islogical ; int max_ldrv_num ; int channel ; int target ; int ldrv_num ; char *buf ; struct scatterlist *sg ; struct page *tmp ; void *tmp___0 ; bool __cond ; int tmp___1 ; int tmp___2 ; { channel = 0; target = 0; ldrv_num = 0; islogical = (char )adapter->logdrv_chan[(cmd->device)->channel]; if (adapter->boot_pdrv_enabled != 0) { if ((int )((signed char )islogical) != 0) { channel = (int )((cmd->device)->channel - (unsigned int )adapter->product_info.nchannels); } else { channel = (int )(cmd->device)->channel; target = (int )(cmd->device)->id; if (target == 0) { target = adapter->boot_pdrv_tgt; } else if (target == adapter->boot_pdrv_tgt) { target = 0; } else { } } } else if ((int )((signed char )islogical) != 0) { channel = (int )(cmd->device)->channel; } else { channel = (int )((cmd->device)->channel - 4U); target = (int )(cmd->device)->id; } if ((int )((signed char )islogical) != 0) { if ((cmd->device)->lun != 0ULL) { { cmd->result = 262144; (*(cmd->scsi_done))(cmd); } return ((scb_t *)0); } else { } { ldrv_num = mega_get_ldrv_num(adapter, cmd, channel); max_ldrv_num = ((long )adapter->flag & 134217728L) != 0L ? 40 : 8; } if (adapter->read_ldidmap != 0) { max_ldrv_num = max_ldrv_num + 128; } else { } if (ldrv_num > max_ldrv_num) { { cmd->result = 262144; (*(cmd->scsi_done))(cmd); } return ((scb_t *)0); } else { } } else if ((cmd->device)->lun > 7ULL) { { cmd->result = 262144; (*(cmd->scsi_done))(cmd); } return ((scb_t *)0); } else { } if ((int )((signed char )islogical) != 0) { { if ((int )*(cmd->cmnd) == 0) { goto case_0; } else { } if ((int )*(cmd->cmnd) == 26) { goto case_26; } else { } if ((int )*(cmd->cmnd) == 37) { goto case_37; } else { } if ((int )*(cmd->cmnd) == 18) { goto case_18; } else { } if ((int )*(cmd->cmnd) == 8) { goto case_8; } else { } if ((int )*(cmd->cmnd) == 10) { goto case_10; } else { } if ((int )*(cmd->cmnd) == 40) { goto case_40; } else { } if ((int )*(cmd->cmnd) == 42) { goto case_42; } else { } if ((int )*(cmd->cmnd) == 168) { goto case_168; } else { } if ((int )*(cmd->cmnd) == 170) { goto case_170; } else { } if ((int )*(cmd->cmnd) == 22) { goto case_22; } else { } if ((int )*(cmd->cmnd) == 23) { goto case_23; } else { } goto switch_default; case_0: /* CIL Label */ ; if (adapter->has_cluster == 0) { { cmd->result = 0; (*(cmd->scsi_done))(cmd); } return ((scb_t *)0); } else { } { scb = mega_allocate_scb(adapter, cmd); } if ((unsigned long )scb == (unsigned long )((scb_t *)0)) { *busy = 1; return ((scb_t *)0); } else { } scb->raw_mbox[0] = 110U; scb->raw_mbox[2] = 4U; scb->raw_mbox[3] = (u8 )ldrv_num; scb->dma_direction = 3U; return (scb); case_26: /* CIL Label */ { sg = scsi_sglist(cmd); tmp = sg_page(sg); tmp___0 = kmap_atomic(tmp); buf = (char *)tmp___0 + (unsigned long )sg->offset; memset((void *)buf, 0, (size_t )*(cmd->cmnd + 4UL)); __cond = 0; } if ((int )__cond) { { __compiletime_assert_669(); } } else { } { __kunmap_atomic((void *)(buf + - ((unsigned long )sg->offset))); cmd->result = 0; (*(cmd->scsi_done))(cmd); } return ((scb_t *)0); case_37: /* CIL Label */ ; case_18: /* CIL Label */ ; if ((((long )adapter->flag >> (int )(cmd->device)->channel) & 1L) == 0L) { { printk("\rscsi%d: scanning scsi channel %d ", (adapter->host)->host_no, (cmd->device)->channel); printk("for logical drives.\n"); adapter->flag = (u32 )((int )adapter->flag | (int )(1L << (int )(cmd->device)->channel)); } } else { } { scb = mega_allocate_scb(adapter, cmd); } if ((unsigned long )scb == (unsigned long )((scb_t *)0)) { *busy = 1; return ((scb_t *)0); } else { } { pthru = scb->pthru; mbox = (mbox_t *)(& scb->raw_mbox); memset((void *)mbox, 0, 66UL); memset((void *)pthru, 0, 60UL); pthru->timeout = 0U; pthru->ars = 1U; pthru->reqsenselen = 14U; pthru->islogical = 1U; pthru->logdrv = (u8 )ldrv_num; pthru->cdblen = (u8 )cmd->cmd_len; memcpy((void *)(& pthru->cdb), (void const *)cmd->cmnd, (size_t )cmd->cmd_len); } if (adapter->has_64bit_addr != 0) { mbox->m_out.cmd = 195U; } else { mbox->m_out.cmd = 3U; } { scb->dma_direction = 2U; tmp___1 = mega_build_sglist(adapter, scb, & pthru->dataxferaddr, & pthru->dataxferlen); pthru->numsgelements = (u8 )tmp___1; mbox->m_out.xferaddr = (u32 )scb->pthru_dma_addr; } return (scb); case_8: /* CIL Label */ ; case_10: /* CIL Label */ ; case_40: /* CIL Label */ ; case_42: /* CIL Label */ ; case_168: /* CIL Label */ ; case_170: /* CIL Label */ { scb = mega_allocate_scb(adapter, cmd); } if ((unsigned long )scb == (unsigned long )((scb_t *)0)) { *busy = 1; return ((scb_t *)0); } else { } { mbox = (mbox_t *)(& scb->raw_mbox); memset((void *)mbox, 0, 66UL); mbox->m_out.logdrv = (u8 )ldrv_num; } if (adapter->has_64bit_addr != 0) { mbox->m_out.cmd = ((int )*(cmd->cmnd) & 2) != 0 ? 168U : 167U; } else { mbox->m_out.cmd = ((int )*(cmd->cmnd) & 2) != 0 ? 2U : 1U; } if ((unsigned int )cmd->cmd_len == 6U) { mbox->m_out.numsectors = (u16 )*(cmd->cmnd + 4UL); mbox->m_out.lba = (((unsigned int )*(cmd->cmnd + 1UL) << 16) | ((unsigned int )*(cmd->cmnd + 2UL) << 8)) | (unsigned int )*(cmd->cmnd + 3UL); mbox->m_out.lba = mbox->m_out.lba & 2097151U; } else { } if ((unsigned int )cmd->cmd_len == 10U) { mbox->m_out.numsectors = (int )((u16 )*(cmd->cmnd + 8UL)) | ((int )((u16 )*(cmd->cmnd + 7UL)) << 8U); mbox->m_out.lba = ((((unsigned int )*(cmd->cmnd + 2UL) << 24) | ((unsigned int )*(cmd->cmnd + 3UL) << 16)) | ((unsigned int )*(cmd->cmnd + 4UL) << 8)) | (unsigned int )*(cmd->cmnd + 5UL); } else { } if ((unsigned int )cmd->cmd_len == 12U) { mbox->m_out.lba = ((((unsigned int )*(cmd->cmnd + 2UL) << 24) | ((unsigned int )*(cmd->cmnd + 3UL) << 16)) | ((unsigned int )*(cmd->cmnd + 4UL) << 8)) | (unsigned int )*(cmd->cmnd + 5UL); mbox->m_out.numsectors = ((int )((u16 )*(cmd->cmnd + 8UL)) << 8U) | (int )((u16 )*(cmd->cmnd + 9UL)); } else { } if (((int )*(cmd->cmnd) & 15) == 8) { scb->dma_direction = 2U; } else { scb->dma_direction = 1U; } { tmp___2 = mega_build_sglist(adapter, scb, & mbox->m_out.xferaddr, & seg); mbox->m_out.numsgelements = (u8 )tmp___2; } return (scb); case_22: /* CIL Label */ ; case_23: /* CIL Label */ ; if (adapter->has_cluster == 0) { { cmd->result = 262144; (*(cmd->scsi_done))(cmd); } return ((scb_t *)0); } else { } { scb = mega_allocate_scb(adapter, cmd); } if ((unsigned long )scb == (unsigned long )((scb_t *)0)) { *busy = 1; return ((scb_t *)0); } else { } scb->raw_mbox[0] = 110U; scb->raw_mbox[2] = (unsigned int )*(cmd->cmnd) == 22U ? 1U : 2U; scb->raw_mbox[3] = (u8 )ldrv_num; scb->dma_direction = 3U; return (scb); switch_default: /* CIL Label */ { cmd->result = 262144; (*(cmd->scsi_done))(cmd); } return ((scb_t *)0); switch_break: /* CIL Label */ ; } } else { { scb = mega_allocate_scb(adapter, cmd); } if ((unsigned long )scb == (unsigned long )((scb_t *)0)) { *busy = 1; return ((scb_t *)0); } else { } { mbox = (mbox_t *)(& scb->raw_mbox); memset((void *)mbox, 0, 66UL); } if (adapter->support_ext_cdb != 0) { { epthru = mega_prepare_extpassthru(adapter, scb, cmd, channel, target); mbox->m_out.cmd = 227U; mbox->m_out.xferaddr = (u32 )scb->epthru_dma_addr; } } else { { pthru = mega_prepare_passthru(adapter, scb, cmd, channel, target); } if (adapter->has_64bit_addr != 0) { mbox->m_out.cmd = 195U; } else { mbox->m_out.cmd = 3U; } mbox->m_out.xferaddr = (u32 )scb->pthru_dma_addr; } return (scb); } return ((scb_t *)0); } } static mega_passthru *mega_prepare_passthru(adapter_t *adapter , scb_t *scb , Scsi_Cmnd *cmd , int channel , int target ) { mega_passthru *pthru ; int tmp ; { { pthru = scb->pthru; memset((void *)pthru, 0, 60UL); pthru->timeout = 2U; pthru->ars = 1U; pthru->reqsenselen = 14U; pthru->islogical = 0U; pthru->channel = ((long )adapter->flag & 134217728L) == 0L ? (u8 )channel : 0U; pthru->target = ((long )adapter->flag & 134217728L) != 0L ? (u8 )((int )((signed char )(channel << 4)) | (int )((signed char )target)) : (u8 )target; pthru->cdblen = (u8 )cmd->cmd_len; pthru->logdrv = (u8 )(cmd->device)->lun; memcpy((void *)(& pthru->cdb), (void const *)cmd->cmnd, (size_t )cmd->cmd_len); scb->dma_direction = 0U; } { if ((int )*(cmd->cmnd) == 18) { goto case_18; } else { } if ((int )*(cmd->cmnd) == 37) { goto case_37; } else { } goto switch_default; case_18: /* CIL Label */ ; case_37: /* CIL Label */ ; if ((((long )adapter->flag >> (int )(cmd->device)->channel) & 1L) == 0L) { { printk("\rscsi%d: scanning scsi channel %d [P%d] ", (adapter->host)->host_no, (cmd->device)->channel, channel); printk("for physical devices.\n"); adapter->flag = (u32 )((int )adapter->flag | (int )(1L << (int )(cmd->device)->channel)); } } else { } switch_default: /* CIL Label */ { tmp = mega_build_sglist(adapter, scb, & pthru->dataxferaddr, & pthru->dataxferlen); pthru->numsgelements = (u8 )tmp; } goto ldv_38837; switch_break: /* CIL Label */ ; } ldv_38837: ; return (pthru); } } static mega_ext_passthru *mega_prepare_extpassthru(adapter_t *adapter , scb_t *scb , Scsi_Cmnd *cmd , int channel , int target ) { mega_ext_passthru *epthru ; int tmp ; { { epthru = scb->epthru; memset((void *)epthru, 0, 68UL); epthru->timeout = 2U; epthru->ars = 1U; epthru->reqsenselen = 14U; epthru->islogical = 0U; epthru->channel = ((long )adapter->flag & 134217728L) == 0L ? (u8 )channel : 0U; epthru->target = ((long )adapter->flag & 134217728L) != 0L ? (u8 )((int )((signed char )(channel << 4)) | (int )((signed char )target)) : (u8 )target; epthru->cdblen = (u8 )cmd->cmd_len; epthru->logdrv = (u8 )(cmd->device)->lun; memcpy((void *)(& epthru->cdb), (void const *)cmd->cmnd, (size_t )cmd->cmd_len); scb->dma_direction = 0U; } { if ((int )*(cmd->cmnd) == 18) { goto case_18; } else { } if ((int )*(cmd->cmnd) == 37) { goto case_37; } else { } goto switch_default; case_18: /* CIL Label */ ; case_37: /* CIL Label */ ; if ((((long )adapter->flag >> (int )(cmd->device)->channel) & 1L) == 0L) { { printk("\rscsi%d: scanning scsi channel %d [P%d] ", (adapter->host)->host_no, (cmd->device)->channel, channel); printk("for physical devices.\n"); adapter->flag = (u32 )((int )adapter->flag | (int )(1L << (int )(cmd->device)->channel)); } } else { } switch_default: /* CIL Label */ { tmp = mega_build_sglist(adapter, scb, & epthru->dataxferaddr, & epthru->dataxferlen); epthru->numsgelements = (u8 )tmp; } goto ldv_38849; switch_break: /* CIL Label */ ; } ldv_38849: ; return (epthru); } } static void __mega_runpendq(adapter_t *adapter ) { scb_t *scb ; struct list_head *pos ; struct list_head *next ; struct list_head const *__mptr ; int tmp ; { pos = adapter->pending_list.next; next = pos->next; goto ldv_38859; ldv_38858: __mptr = (struct list_head const *)pos; scb = (scb_t *)__mptr + 0xfffffffffffffff8UL; if ((scb->state & 4U) == 0U) { { tmp = issue_scb(adapter, scb); } if (tmp != 0) { return; } else { } } else { } pos = next; next = pos->next; ldv_38859: ; if ((unsigned long )pos != (unsigned long )(& adapter->pending_list)) { goto ldv_38858; } else { } return; } } static int issue_scb(adapter_t *adapter , scb_t *scb ) { mbox64_t volatile *mbox64 ; mbox_t volatile *mbox ; unsigned int i ; long tmp ; long tmp___0 ; { { mbox64 = adapter->mbox64; mbox = adapter->mbox; i = 0U; tmp = ldv__builtin_expect((unsigned int )((unsigned char )mbox->m_in.busy) != 0U, 0L); } if (tmp != 0L) { ldv_38868: { __const_udelay(4295UL); i = i + 1U; } if ((unsigned int )((unsigned char )mbox->m_in.busy) != 0U && i < (unsigned int )max_mbox_busy_wait) { goto ldv_38868; } else { } if ((unsigned int )((unsigned char )mbox->m_in.busy) != 0U) { return (-1); } else { } } else { } { memcpy((void *)(& mbox->m_out), (void const *)(& scb->raw_mbox), 15UL); mbox->m_out.cmdid = (u8 volatile )scb->idx; mbox->m_in.busy = 1U; atomic_inc(& adapter->pend_cmds); } { if ((int )mbox->m_out.cmd == 167) { goto case_167; } else { } if ((int )mbox->m_out.cmd == 168) { goto case_168; } else { } if ((int )mbox->m_out.cmd == 195) { goto case_195; } else { } if ((int )mbox->m_out.cmd == 227) { goto case_227; } else { } goto switch_default; case_167: /* CIL Label */ ; case_168: /* CIL Label */ ; case_195: /* CIL Label */ ; case_227: /* CIL Label */ mbox64->xfer_segment_lo = mbox->m_out.xferaddr; mbox64->xfer_segment_hi = 0U; mbox->m_out.xferaddr = 4294967295U; goto ldv_38874; switch_default: /* CIL Label */ mbox64->xfer_segment_lo = 0U; mbox64->xfer_segment_hi = 0U; switch_break: /* CIL Label */ ; } ldv_38874: { scb->state = scb->state | 4U; tmp___0 = ldv__builtin_expect(((long )adapter->flag & 536870912L) != 0L, 1L); } if (tmp___0 != 0L) { { mbox->m_in.poll = 0U; mbox->m_in.ack = 0U; writel((unsigned int )adapter->mbox_dma | 1U, (void volatile *)adapter->mmio_base + 32U); } } else { { outb_p(192, (int )((unsigned int )adapter->base + 1U)); outb_p(16, (int )adapter->base); } } return (0); } } __inline static int mega_busywait_mbox(adapter_t *adapter ) { int tmp ; { if ((unsigned int )((unsigned char )(adapter->mbox)->m_in.busy) != 0U) { { tmp = __mega_busywait_mbox(adapter); } return (tmp); } else { } return (0); } } static int issue_scb_block(adapter_t *adapter , u_char *raw_mbox ) { mbox64_t volatile *mbox64 ; mbox_t volatile *mbox ; u8 byte ; int tmp ; unsigned int tmp___0 ; long tmp___1 ; { { mbox64 = adapter->mbox64; mbox = adapter->mbox; tmp = mega_busywait_mbox(adapter); } if (tmp != 0) { goto bug_blocked_mailbox; } else { } { memcpy((void *)mbox, (void const *)raw_mbox, 15UL); mbox->m_out.cmdid = 254U; mbox->m_in.busy = 1U; } { if ((int )*raw_mbox == 167) { goto case_167; } else { } if ((int )*raw_mbox == 168) { goto case_168; } else { } if ((int )*raw_mbox == 195) { goto case_195; } else { } if ((int )*raw_mbox == 227) { goto case_227; } else { } goto switch_default; case_167: /* CIL Label */ ; case_168: /* CIL Label */ ; case_195: /* CIL Label */ ; case_227: /* CIL Label */ mbox64->xfer_segment_lo = mbox->m_out.xferaddr; mbox64->xfer_segment_hi = 0U; mbox->m_out.xferaddr = 4294967295U; goto ldv_38891; switch_default: /* CIL Label */ mbox64->xfer_segment_lo = 0U; mbox64->xfer_segment_hi = 0U; switch_break: /* CIL Label */ ; } ldv_38891: { tmp___1 = ldv__builtin_expect(((long )adapter->flag & 536870912L) != 0L, 1L); } if (tmp___1 != 0L) { { mbox->m_in.poll = 0U; mbox->m_in.ack = 0U; mbox->m_in.numstatus = 255U; mbox->m_in.status = 255U; writel((unsigned int )adapter->mbox_dma | 1U, (void volatile *)adapter->mmio_base + 32U); } goto ldv_38894; ldv_38893: { cpu_relax(); } ldv_38894: ; if ((unsigned int )((unsigned char )mbox->m_in.numstatus) == 255U) { goto ldv_38893; } else { } mbox->m_in.numstatus = 255U; goto ldv_38897; ldv_38896: { cpu_relax(); } ldv_38897: ; if ((unsigned int )((unsigned char )mbox->m_in.poll) != 119U) { goto ldv_38896; } else { } { mbox->m_in.poll = 0U; mbox->m_in.ack = 119U; writel((unsigned int )adapter->mbox_dma | 2U, (void volatile *)adapter->mmio_base + 32U); } goto ldv_38900; ldv_38899: { cpu_relax(); } ldv_38900: { tmp___0 = readl((void const volatile *)adapter->mmio_base + 32U); } if ((tmp___0 & 2U) != 0U) { goto ldv_38899; } else { } } else { { outb_p(0, (int )((unsigned int )adapter->base + 1U)); outb_p(16, (int )adapter->base); } goto ldv_38903; ldv_38902: { cpu_relax(); } ldv_38903: { byte = inb_p((int )((unsigned int )adapter->base + 10U)); } if (((int )byte & 64) == 0) { goto ldv_38902; } else { } { outb_p((int )byte, (int )((unsigned int )adapter->base + 10U)); outb_p(192, (int )((unsigned int )adapter->base + 1U)); outb_p(8, (int )adapter->base); } } return ((int )mbox->m_in.status); bug_blocked_mailbox: { printk("\fmegaraid: Blocked mailbox......!!\n"); __const_udelay(4295000UL); } return (-1); } } static irqreturn_t megaraid_isr_iomapped(int irq , void *devp ) { adapter_t *adapter ; unsigned long flags ; u8 status ; u8 nstatus ; u8 completed[46U] ; u8 byte ; int handled ; int tmp ; { { adapter = (adapter_t *)devp; handled = 0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(& adapter->lock); } ldv_38920: { byte = inb_p((int )((unsigned int )adapter->base + 10U)); } if (((int )byte & 64) == 0) { goto out_unlock; } else { } { outb_p((int )byte, (int )((unsigned int )adapter->base + 10U)); } goto ldv_38918; ldv_38917: { cpu_relax(); } ldv_38918: nstatus = (adapter->mbox)->m_in.numstatus; if ((unsigned int )nstatus == 255U) { goto ldv_38917; } else { } { (adapter->mbox)->m_in.numstatus = 255U; status = (adapter->mbox)->m_in.status; atomic_sub((int )nstatus, & adapter->pend_cmds); memcpy((void *)(& completed), (void const *)(& (adapter->mbox)->m_in.completed), (size_t )nstatus); outb_p(8, (int )adapter->base); mega_cmd_done(adapter, (u8 *)(& completed), (int )nstatus, (int )status); mega_rundoneq(adapter); handled = 1; tmp = atomic_read((atomic_t const *)(& adapter->quiescent)); } if (tmp == 0) { { mega_runpendq(adapter); } } else { } goto ldv_38920; out_unlock: { ldv_spin_unlock_irqrestore_97(& adapter->lock, flags); } return (handled != 0); } } static irqreturn_t megaraid_isr_memmapped(int irq , void *devp ) { adapter_t *adapter ; unsigned long flags ; u8 status ; u32 dword ; u8 nstatus ; u8 completed[46U] ; int handled ; unsigned int tmp ; int tmp___0 ; { { adapter = (adapter_t *)devp; dword = 0U; handled = 0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(& adapter->lock); } ldv_38939: { dword = readl((void const volatile *)adapter->mmio_base + 44U); } if (dword != 268440116U) { goto out_unlock; } else { } { writel(268440116U, (void volatile *)adapter->mmio_base + 44U); } goto ldv_38934; ldv_38933: { cpu_relax(); } ldv_38934: nstatus = (adapter->mbox)->m_in.numstatus; if ((unsigned int )nstatus == 255U) { goto ldv_38933; } else { } { (adapter->mbox)->m_in.numstatus = 255U; status = (adapter->mbox)->m_in.status; atomic_sub((int )nstatus, & adapter->pend_cmds); memcpy((void *)(& completed), (void const *)(& (adapter->mbox)->m_in.completed), (size_t )nstatus); writel(2U, (void volatile *)adapter->mmio_base + 32U); handled = 1; } goto ldv_38937; ldv_38936: { cpu_relax(); } ldv_38937: { tmp = readl((void const volatile *)adapter->mmio_base + 32U); } if ((tmp & 2U) != 0U) { goto ldv_38936; } else { } { mega_cmd_done(adapter, (u8 *)(& completed), (int )nstatus, (int )status); mega_rundoneq(adapter); tmp___0 = atomic_read((atomic_t const *)(& adapter->quiescent)); } if (tmp___0 == 0) { { mega_runpendq(adapter); } } else { } goto ldv_38939; out_unlock: { ldv_spin_unlock_irqrestore_97(& adapter->lock, flags); } return (handled != 0); } } static void mega_cmd_done(adapter_t *adapter , u8 *completed , int nstatus , int status ) { mega_ext_passthru *epthru ; struct scatterlist *sgl ; Scsi_Cmnd *cmd ; mega_passthru *pthru ; mbox_t *mbox ; u8 c ; scb_t *scb ; int islogical ; int cmdid ; int i ; void *tmp ; struct page *tmp___0 ; { epthru = (mega_ext_passthru *)0; cmd = (Scsi_Cmnd *)0; pthru = (mega_passthru *)0; mbox = (mbox_t *)0; i = 0; goto ldv_38963; ldv_38962: cmdid = (int )*(completed + (unsigned long )i); if (cmdid == 127) { { scb = & adapter->int_scb; list_del_init(& scb->list); scb->state = 0U; adapter->int_status = status; complete(& adapter->int_waitq); } } else { scb = adapter->scb_list + (unsigned long )cmdid; if ((scb->state & 4U) == 0U || (unsigned long )scb->cmd == (unsigned long )((Scsi_Cmnd *)0)) { { printk("\nmegaraid: invalid command "); printk("Id %d, scb->state:%x, scsi cmd:%p\n", cmdid, scb->state, scb->cmd); } goto ldv_38956; } else { } if ((scb->state & 8U) != 0U) { { printk("\fmegaraid: aborted cmd [%x] complete.\n", scb->idx); (scb->cmd)->result = 327680; list_add_tail((struct list_head *)(& (scb->cmd)->SCp), & adapter->completed_list); mega_free_scb(adapter, scb); } goto ldv_38956; } else { } if ((scb->state & 16U) != 0U) { { printk("\fmegaraid: reset cmd [%x] complete.\n", scb->idx); (scb->cmd)->result = 524288; list_add_tail((struct list_head *)(& (scb->cmd)->SCp), & adapter->completed_list); mega_free_scb(adapter, scb); } goto ldv_38956; } else { } cmd = scb->cmd; pthru = scb->pthru; epthru = scb->epthru; mbox = (mbox_t *)(& scb->raw_mbox); } islogical = (int )adapter->logdrv_chan[(cmd->device)->channel]; if ((unsigned int )*(cmd->cmnd) == 18U && islogical == 0) { { sgl = scsi_sglist(cmd); tmp___0 = sg_page(sgl); } if ((unsigned long )tmp___0 != (unsigned long )((struct page *)0)) { { tmp = sg_virt(sgl); c = *((unsigned char *)tmp); } } else { { printk("\fmegaraid: invalid sg.\n"); c = 0U; } } if ((adapter->mega_ch_class >> (int )(cmd->device)->channel) & 1 && ((int )c & 31) == 0) { status = 240; } else { } } else { } cmd->result = 0; { if (status == 0) { goto case_0; } else { } if (status == 2) { goto case_2; } else { } if (status == 8) { goto case_8; } else { } goto switch_default; case_0: /* CIL Label */ cmd->result = cmd->result; goto ldv_38958; case_2: /* CIL Label */ ; if ((unsigned int )mbox->m_out.cmd == 3U || (unsigned int )mbox->m_out.cmd == 195U) { { memcpy((void *)cmd->sense_buffer, (void const *)(& pthru->reqsensearea), 14UL); cmd->result = 134217730; } } else if ((unsigned int )mbox->m_out.cmd == 227U) { { memcpy((void *)cmd->sense_buffer, (void const *)(& epthru->reqsensearea), 14UL); cmd->result = 134217730; } } else { *(cmd->sense_buffer) = 112U; *(cmd->sense_buffer + 2UL) = 11U; cmd->result = cmd->result | 2; } goto ldv_38958; case_8: /* CIL Label */ cmd->result = cmd->result | (status | 131072); goto ldv_38958; switch_default: /* CIL Label */ ; if ((unsigned int )*(cmd->cmnd) == 0U) { cmd->result = cmd->result | 458776; } else if (status == 1 && (unsigned int )*(cmd->cmnd) - 22U <= 1U) { cmd->result = cmd->result | 458776; } else { cmd->result = cmd->result | (status | 262144); } switch_break: /* CIL Label */ ; } ldv_38958: { mega_free_scb(adapter, scb); list_add_tail((struct list_head *)(& cmd->SCp), & adapter->completed_list); } ldv_38956: i = i + 1; ldv_38963: ; if (i < nstatus) { goto ldv_38962; } else { } return; } } static void mega_rundoneq(adapter_t *adapter ) { Scsi_Cmnd *cmd ; struct list_head *pos ; struct scsi_pointer *spos ; struct scsi_pointer const *__mptr ; { pos = adapter->completed_list.next; goto ldv_38974; ldv_38973: { spos = (struct scsi_pointer *)pos; __mptr = (struct scsi_pointer const *)spos; cmd = (Scsi_Cmnd *)__mptr + 0xfffffffffffffe80UL; (*(cmd->scsi_done))(cmd); pos = pos->next; } ldv_38974: ; if ((unsigned long )pos != (unsigned long )(& adapter->completed_list)) { goto ldv_38973; } else { } { INIT_LIST_HEAD(& adapter->completed_list); } return; } } static void mega_free_scb(adapter_t *adapter , scb_t *scb ) { { { if (scb->dma_type == 65535U) { goto case_65535; } else { } if (scb->dma_type == 2U) { goto case_2; } else { } goto switch_default; case_65535: /* CIL Label */ ; goto ldv_38981; case_2: /* CIL Label */ { scsi_dma_unmap(scb->cmd); } goto ldv_38981; switch_default: /* CIL Label */ ; goto ldv_38981; switch_break: /* CIL Label */ ; } ldv_38981: { list_del_init(& scb->list); scb->state = 0U; scb->cmd = (Scsi_Cmnd *)0; list_add(& scb->list, & adapter->free_list); } return; } } static int __mega_busywait_mbox(adapter_t *adapter ) { mbox_t volatile *mbox ; long counter ; { mbox = adapter->mbox; counter = 0L; goto ldv_38991; ldv_38990: ; if ((unsigned int )((unsigned char )mbox->m_in.busy) == 0U) { return (0); } else { } { __const_udelay(429500UL); ___might_sleep("drivers/scsi/megaraid.c", 1712, 0); _cond_resched(); counter = counter + 1L; } ldv_38991: ; if (counter <= 9999L) { goto ldv_38990; } else { } return (-1); } } static int mega_build_sglist(adapter_t *adapter , scb_t *scb , u32 *buf , u32 *len ) { struct scatterlist *sg ; Scsi_Cmnd *cmd ; int sgcnt ; int idx ; long tmp ; unsigned int tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; { { cmd = scb->cmd; sgcnt = scsi_dma_map(cmd); scb->dma_type = 2U; tmp = ldv__builtin_expect((long )(sgcnt > (int )adapter->sglen || sgcnt < 0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/megaraid.c"), "i" (1740), "i" (12UL)); __builtin_unreachable(); } } else { } { *len = 0U; tmp___0 = scsi_sg_count(cmd); } if (tmp___0 == 1U && adapter->has_64bit_addr == 0) { { sg = scsi_sglist(cmd); scb->dma_h_bulkdata = sg->dma_address; *buf = (unsigned int )scb->dma_h_bulkdata; *len = sg->dma_length; } return (0); } else { } { idx = 0; sg = scsi_sglist(cmd); } goto ldv_39004; ldv_39003: ; if (adapter->has_64bit_addr != 0) { (scb->sgl64 + (unsigned long )idx)->address = sg->dma_address; tmp___1 = sg->dma_length; (scb->sgl64 + (unsigned long )idx)->length = tmp___1; *len = *len + tmp___1; } else { (scb->sgl + (unsigned long )idx)->address = (u32 )sg->dma_address; tmp___2 = sg->dma_length; (scb->sgl + (unsigned long )idx)->length = tmp___2; *len = *len + tmp___2; } { idx = idx + 1; sg = sg_next(sg); } ldv_39004: ; if (idx < sgcnt) { goto ldv_39003; } else { } *buf = (u32 )scb->sgl_dma_addr; return (sgcnt); } } static void mega_8_to_40ld(mraid_inquiry *inquiry , mega_inquiry3 *enquiry3 , mega_product_info *product_info ) { int i ; { product_info->max_commands = inquiry->adapter_info.max_commands; enquiry3->rebuild_rate = inquiry->adapter_info.rebuild_rate; product_info->nchannels = inquiry->adapter_info.nchannels; i = 0; goto ldv_39013; ldv_39012: product_info->fw_version[i] = inquiry->adapter_info.fw_version[i]; product_info->bios_version[i] = inquiry->adapter_info.bios_version[i]; i = i + 1; ldv_39013: ; if (i <= 3) { goto ldv_39012; } else { } enquiry3->cache_flush_interval = inquiry->adapter_info.cache_flush_interval; product_info->dram_size = (u16 )inquiry->adapter_info.dram_size; enquiry3->num_ldrv = inquiry->logdrv_info.num_ldrv; i = 0; goto ldv_39016; ldv_39015: enquiry3->ldrv_size[i] = inquiry->logdrv_info.ldrv_size[i]; enquiry3->ldrv_prop[i] = inquiry->logdrv_info.ldrv_prop[i]; enquiry3->ldrv_state[i] = inquiry->logdrv_info.ldrv_state[i]; i = i + 1; ldv_39016: ; if (i <= 7) { goto ldv_39015; } else { } i = 0; goto ldv_39019; ldv_39018: enquiry3->pdrv_state[i] = inquiry->pdrv_info.pdrv_state[i]; i = i + 1; ldv_39019: ; if (i <= 74) { goto ldv_39018; } else { } return; } } __inline static void mega_free_sgl(adapter_t *adapter ) { scb_t *scb ; int i ; { i = 0; goto ldv_39027; ldv_39026: scb = adapter->scb_list + (unsigned long )i; if ((unsigned long )scb->sgl64 != (unsigned long )((mega_sgl64 *)0)) { { pci_free_consistent(adapter->dev, (unsigned long )adapter->sglen * 12UL, (void *)scb->sgl64, scb->sgl_dma_addr); scb->sgl64 = (mega_sgl64 *)0; } } else { } if ((unsigned long )scb->pthru != (unsigned long )((mega_passthru *)0)) { { pci_free_consistent(adapter->dev, 60UL, (void *)scb->pthru, scb->pthru_dma_addr); scb->pthru = (mega_passthru *)0; } } else { } if ((unsigned long )scb->epthru != (unsigned long )((mega_ext_passthru *)0)) { { pci_free_consistent(adapter->dev, 68UL, (void *)scb->epthru, scb->epthru_dma_addr); scb->epthru = (mega_ext_passthru *)0; } } else { } i = i + 1; ldv_39027: ; if (i < (int )adapter->max_cmds) { goto ldv_39026; } else { } return; } } char const *megaraid_info(struct Scsi_Host *host ) { char buffer[512U] ; adapter_t *adapter ; { { adapter = (adapter_t *)(& host->hostdata); sprintf((char *)(& buffer), "LSI Logic MegaRAID %s %d commands %d targs %d chans %d luns", (u8 *)(& adapter->fw_version), (int )adapter->product_info.max_commands, (adapter->host)->max_id, (adapter->host)->max_channel, (unsigned int )(adapter->host)->max_lun); } return ((char const *)(& buffer)); } } static int megaraid_abort(Scsi_Cmnd *cmd ) { adapter_t *adapter ; int rval ; { { adapter = (adapter_t *)(& ((cmd->device)->host)->hostdata); rval = megaraid_abort_and_reset(adapter, cmd, 8); mega_rundoneq(adapter); } return (rval); } } static int megaraid_reset(struct scsi_cmnd *cmd ) { adapter_t *adapter ; megacmd_t mc ; int rval ; int tmp ; { { adapter = (adapter_t *)(& ((cmd->device)->host)->hostdata); mc.cmd = 110U; mc.opcode = 3U; tmp = mega_internal_command(adapter, & mc, (mega_passthru *)0); } if (tmp != 0) { { printk("\fmegaraid: reservation reset failed.\n"); } } else { { printk("\016megaraid: reservation reset.\n"); } } { ldv_spin_lock_irq_104(& adapter->lock); rval = megaraid_abort_and_reset(adapter, cmd, 16); mega_rundoneq(adapter); ldv_spin_unlock_irq_105(& adapter->lock); } return (rval); } } static int megaraid_abort_and_reset(adapter_t *adapter , Scsi_Cmnd *cmd , int aor ) { struct list_head *pos ; struct list_head *next ; scb_t *scb ; int tmp ; struct list_head const *__mptr ; { { printk("\fmegaraid: %s cmd=%x \n", aor == 8 ? (char *)"ABORTING" : (char *)"RESET", (int )*(cmd->cmnd), (cmd->device)->channel, (cmd->device)->id, (unsigned int )(cmd->device)->lun); tmp = list_empty((struct list_head const *)(& adapter->pending_list)); } if (tmp != 0) { return (8195); } else { } pos = adapter->pending_list.next; next = pos->next; goto ldv_39056; ldv_39055: __mptr = (struct list_head const *)pos; scb = (scb_t *)__mptr + 0xfffffffffffffff8UL; if ((unsigned long )scb->cmd == (unsigned long )cmd) { scb->state = scb->state | (u32 )aor; if ((scb->state & 4U) != 0U) { { printk("\fmegaraid: %s[%x], fw owner.\n", aor == 8 ? (char *)"ABORTING" : (char *)"RESET", scb->idx); } return (8195); } else { { printk("\fmegaraid: %s-[%x], driver owner.\n", aor == 8 ? (char *)"ABORTING" : (char *)"RESET", scb->idx); mega_free_scb(adapter, scb); } if (aor == 8) { cmd->result = 327680; } else { cmd->result = 524288; } { list_add_tail((struct list_head *)(& cmd->SCp), & adapter->completed_list); } return (8194); } } else { } pos = next; next = pos->next; ldv_39056: ; if ((unsigned long )pos != (unsigned long )(& adapter->pending_list)) { goto ldv_39055; } else { } return (8195); } } __inline static int make_local_pdev(adapter_t *adapter , struct pci_dev **pdev ) { int tmp ; { { *pdev = pci_alloc_dev((struct pci_bus *)0); } if ((unsigned long )*pdev == (unsigned long )((struct pci_dev *)0)) { return (-1); } else { } { memcpy((void *)*pdev, (void const *)adapter->dev, 2968UL); tmp = pci_set_dma_mask(*pdev, 4294967295ULL); } if (tmp != 0) { { kfree((void const *)*pdev); } return (-1); } else { } return (0); } } __inline static void free_local_pdev(struct pci_dev *pdev ) { { { kfree((void const *)pdev); } return; } } __inline static void *mega_allocate_inquiry(dma_addr_t *dma_handle , struct pci_dev *pdev ) { void *tmp ; { { tmp = pci_alloc_consistent(pdev, 1024UL, dma_handle); } return (tmp); } } __inline static void mega_free_inquiry(void *inquiry , dma_addr_t dma_handle , struct pci_dev *pdev ) { { { pci_free_consistent(pdev, 1024UL, inquiry, dma_handle); } return; } } static int proc_show_config(struct seq_file *m , void *v ) { adapter_t *adapter ; int tmp ; { { adapter = (adapter_t *)m->private; seq_puts(m, "v2.00.4 (Release Date: Thu Feb 9 08:51:30 EST 2006)\n"); } if ((unsigned int )adapter->product_info.product_name[0] != 0U) { { seq_printf(m, "%s\n", (u8 *)(& adapter->product_info.product_name)); } } else { } { seq_puts(m, "Controller Type: "); } if (((long )adapter->flag & 536870912L) != 0L) { { seq_puts(m, "438/466/467/471/493/518/520/531/532\n"); } } else { { seq_puts(m, "418/428/434\n"); } } if (((long )adapter->flag & 134217728L) != 0L) { { seq_puts(m, "Controller Supports 40 Logical Drives\n"); } } else { } if (((long )adapter->flag & 67108864L) != 0L) { { seq_puts(m, "Controller capable of 64-bit memory addressing\n"); } } else { } if (adapter->has_64bit_addr != 0) { { seq_puts(m, "Controller using 64-bit memory addressing\n"); } } else { { seq_puts(m, "Controller is not using 64-bit memory addressing\n"); } } { seq_printf(m, "Base = %08lx, Irq = %d, ", adapter->base, (adapter->host)->irq); seq_printf(m, "Logical Drives = %d, Channels = %d\n", (int )adapter->numldrv, (int )adapter->product_info.nchannels); seq_printf(m, "Version =%s:%s, DRAM = %dMb\n", (u8 *)(& adapter->fw_version), (u8 *)(& adapter->bios_version), (int )adapter->product_info.dram_size); seq_printf(m, "Controller Queue Depth = %d, Driver Queue Depth = %d\n", (int )adapter->product_info.max_commands, (int )adapter->max_cmds); seq_printf(m, "support_ext_cdb = %d\n", adapter->support_ext_cdb); seq_printf(m, "support_random_del = %d\n", adapter->support_random_del); seq_printf(m, "boot_ldrv_enabled = %d\n", adapter->boot_ldrv_enabled); seq_printf(m, "boot_ldrv = %d\n", adapter->boot_ldrv); seq_printf(m, "boot_pdrv_enabled = %d\n", adapter->boot_pdrv_enabled); seq_printf(m, "boot_pdrv_ch = %d\n", adapter->boot_pdrv_ch); seq_printf(m, "boot_pdrv_tgt = %d\n", adapter->boot_pdrv_tgt); tmp = atomic_read((atomic_t const *)(& adapter->quiescent)); seq_printf(m, "quiescent = %d\n", tmp); seq_printf(m, "has_cluster = %d\n", adapter->has_cluster); seq_puts(m, "\nModule Parameters:\n"); seq_printf(m, "max_cmd_per_lun = %d\n", max_cmd_per_lun); seq_printf(m, "max_sectors_per_io = %d\n", (int )max_sectors_per_io); } return (0); } } static int proc_show_stat(struct seq_file *m , void *v ) { adapter_t *adapter ; int tmp ; { { adapter = (adapter_t *)m->private; seq_puts(m, "Statistical Information for this controller\n"); tmp = atomic_read((atomic_t const *)(& adapter->pend_cmds)); seq_printf(m, "pend_cmds = %d\n", tmp); seq_puts(m, "IO and error counters not compiled in driver.\n"); } return (0); } } static int proc_show_mbox(struct seq_file *m , void *v ) { adapter_t *adapter ; mbox_t volatile *mbox ; { { adapter = (adapter_t *)m->private; mbox = adapter->mbox; seq_puts(m, "Contents of Mail Box Structure\n"); seq_printf(m, " Fw Command = 0x%02x\n", (int )mbox->m_out.cmd); seq_printf(m, " Cmd Sequence = 0x%02x\n", (int )mbox->m_out.cmdid); seq_printf(m, " No of Sectors= %04d\n", (int )mbox->m_out.numsectors); seq_printf(m, " LBA = 0x%02x\n", mbox->m_out.lba); seq_printf(m, " DTA = 0x%08x\n", mbox->m_out.xferaddr); seq_printf(m, " Logical Drive= 0x%02x\n", (int )mbox->m_out.logdrv); seq_printf(m, " No of SG Elmt= 0x%02x\n", (int )mbox->m_out.numsgelements); seq_printf(m, " Busy = %01x\n", (int )mbox->m_in.busy); seq_printf(m, " Status = 0x%02x\n", (int )mbox->m_in.status); } return (0); } } static int proc_show_rebuild_rate(struct seq_file *m , void *v ) { adapter_t *adapter ; dma_addr_t dma_handle ; caddr_t inquiry ; struct pci_dev *pdev ; int tmp ; void *tmp___0 ; int tmp___1 ; { { adapter = (adapter_t *)m->private; tmp = make_local_pdev(adapter, & pdev); } if (tmp != 0) { return (0); } else { } { tmp___0 = mega_allocate_inquiry(& dma_handle, pdev); inquiry = (caddr_t )tmp___0; } if ((unsigned long )inquiry == (unsigned long )((caddr_t )0)) { goto free_pdev; } else { } { tmp___1 = mega_adapinq(adapter, dma_handle); } if (tmp___1 != 0) { { seq_puts(m, "Adapter inquiry failed.\n"); printk("\fmegaraid: inquiry failed.\n"); } goto free_inquiry; } else { } if (((long )adapter->flag & 134217728L) != 0L) { { seq_printf(m, "Rebuild Rate: [%d%%]\n", (int )((mega_inquiry3 *)inquiry)->rebuild_rate); } } else { { seq_printf(m, "Rebuild Rate: [%d%%]\n", (int )((mraid_ext_inquiry *)inquiry)->raid_inq.adapter_info.rebuild_rate); } } free_inquiry: { mega_free_inquiry((void *)inquiry, dma_handle, pdev); } free_pdev: { free_local_pdev(pdev); } return (0); } } static int proc_show_battery(struct seq_file *m , void *v ) { adapter_t *adapter ; dma_addr_t dma_handle ; caddr_t inquiry ; struct pci_dev *pdev ; u8 battery_status ; int tmp ; void *tmp___0 ; int tmp___1 ; { { adapter = (adapter_t *)m->private; tmp = make_local_pdev(adapter, & pdev); } if (tmp != 0) { return (0); } else { } { tmp___0 = mega_allocate_inquiry(& dma_handle, pdev); inquiry = (caddr_t )tmp___0; } if ((unsigned long )inquiry == (unsigned long )((caddr_t )0)) { goto free_pdev; } else { } { tmp___1 = mega_adapinq(adapter, dma_handle); } if (tmp___1 != 0) { { seq_puts(m, "Adapter inquiry failed.\n"); printk("\fmegaraid: inquiry failed.\n"); } goto free_inquiry; } else { } if (((long )adapter->flag & 134217728L) != 0L) { battery_status = ((mega_inquiry3 *)inquiry)->battery_status; } else { battery_status = ((mraid_ext_inquiry *)inquiry)->raid_inq.adapter_info.battery_status; } { seq_printf(m, "Battery Status:[%d]", (int )battery_status); } if ((unsigned int )battery_status == 0U) { { seq_puts(m, " Charge Done"); } } else { } if ((int )battery_status & 1) { { seq_puts(m, " Module Missing"); } } else { } if (((int )battery_status & 2) != 0) { { seq_puts(m, " Low Voltage"); } } else { } if (((int )battery_status & 4) != 0) { { seq_puts(m, " Temperature High"); } } else { } if (((int )battery_status & 8) != 0) { { seq_puts(m, " Pack Missing"); } } else { } if (((int )battery_status & 16) != 0) { { seq_puts(m, " Charge In-progress"); } } else { } if (((int )battery_status & 32) != 0) { { seq_puts(m, " Charge Fail"); } } else { } if (((int )battery_status & 64) != 0) { { seq_puts(m, " Cycles Exceeded"); } } else { } { seq_putc(m, 10); } free_inquiry: { mega_free_inquiry((void *)inquiry, dma_handle, pdev); } free_pdev: { free_local_pdev(pdev); } return (0); } } static void mega_print_inquiry(struct seq_file *m , char *scsi_inq ) { int i ; char const *tmp ; { { seq_puts(m, " Vendor: "); seq_write(m, (void const *)scsi_inq + 8U, 8UL); seq_puts(m, " Model: "); seq_write(m, (void const *)scsi_inq + 16U, 16UL); seq_puts(m, " Rev: "); seq_write(m, (void const *)scsi_inq + 32U, 4UL); seq_putc(m, 10); i = (int )*scsi_inq & 31; tmp = scsi_device_type((unsigned int )i); seq_printf(m, " Type: %s ", tmp); seq_printf(m, " ANSI SCSI revision: %02x", (int )*(scsi_inq + 2UL) & 7); } if (((int )*(scsi_inq + 2UL) & 7) == 1 && ((int )*(scsi_inq + 3UL) & 15) == 1) { { seq_puts(m, " CCS\n"); } } else { { seq_putc(m, 10); } } return; } } static int proc_show_pdrv(struct seq_file *m , adapter_t *adapter , int channel ) { dma_addr_t dma_handle ; char *scsi_inq ; dma_addr_t scsi_inq_dma_handle ; caddr_t inquiry ; struct pci_dev *pdev ; u8 *pdrv_state ; u8 state ; int tgt ; int max_channels ; int i ; int tmp ; void *tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; { { tmp = make_local_pdev(adapter, & pdev); } if (tmp != 0) { return (0); } else { } { tmp___0 = mega_allocate_inquiry(& dma_handle, pdev); inquiry = (caddr_t )tmp___0; } if ((unsigned long )inquiry == (unsigned long )((caddr_t )0)) { goto free_pdev; } else { } { tmp___1 = mega_adapinq(adapter, dma_handle); } if (tmp___1 != 0) { { seq_puts(m, "Adapter inquiry failed.\n"); printk("\fmegaraid: inquiry failed.\n"); } goto free_inquiry; } else { } { tmp___2 = pci_alloc_consistent(pdev, 256UL, & scsi_inq_dma_handle); scsi_inq = (char *)tmp___2; } if ((unsigned long )scsi_inq == (unsigned long )((char *)0)) { { seq_puts(m, "memory not available for scsi inq.\n"); } goto free_inquiry; } else { } if (((long )adapter->flag & 134217728L) != 0L) { pdrv_state = (u8 *)(& ((mega_inquiry3 *)inquiry)->pdrv_state); } else { pdrv_state = (u8 *)(& ((mraid_ext_inquiry *)inquiry)->raid_inq.pdrv_info.pdrv_state); } max_channels = (int )adapter->product_info.nchannels; if (channel >= max_channels) { goto free_pci; } else { } tgt = 0; goto ldv_39142; ldv_39141: i = channel * 16 + tgt; state = *(pdrv_state + (unsigned long )i); { if (((int )state & 15) == 3) { goto case_3; } else { } if (((int )state & 15) == 4) { goto case_4; } else { } if (((int )state & 15) == 5) { goto case_5; } else { } if (((int )state & 15) == 6) { goto case_6; } else { } goto switch_default; case_3: /* CIL Label */ { seq_printf(m, "Channel:%2d Id:%2d State: Online", channel, tgt); } goto ldv_39135; case_4: /* CIL Label */ { seq_printf(m, "Channel:%2d Id:%2d State: Failed", channel, tgt); } goto ldv_39135; case_5: /* CIL Label */ { seq_printf(m, "Channel:%2d Id:%2d State: Rebuild", channel, tgt); } goto ldv_39135; case_6: /* CIL Label */ { seq_printf(m, "Channel:%2d Id:%2d State: Hot spare", channel, tgt); } goto ldv_39135; switch_default: /* CIL Label */ { seq_printf(m, "Channel:%2d Id:%2d State: Un-configured", channel, tgt); } goto ldv_39135; switch_break: /* CIL Label */ ; } ldv_39135: { memset((void *)scsi_inq, 0, 256UL); tmp___3 = mega_internal_dev_inquiry(adapter, (int )((u8 )channel), (int )((u8 )tgt), scsi_inq_dma_handle); } if (tmp___3 != 0 || ((int )*scsi_inq & 31) != 0) { goto ldv_39140; } else { } { seq_puts(m, ".\n"); mega_print_inquiry(m, scsi_inq); } ldv_39140: tgt = tgt + 1; ldv_39142: ; if (tgt <= 15) { goto ldv_39141; } else { } free_pci: { pci_free_consistent(pdev, 256UL, (void *)scsi_inq, scsi_inq_dma_handle); } free_inquiry: { mega_free_inquiry((void *)inquiry, dma_handle, pdev); } free_pdev: { free_local_pdev(pdev); } return (0); } } static int proc_show_pdrv_ch0(struct seq_file *m , void *v ) { int tmp ; { { tmp = proc_show_pdrv(m, (adapter_t *)m->private, 0); } return (tmp); } } static int proc_show_pdrv_ch1(struct seq_file *m , void *v ) { int tmp ; { { tmp = proc_show_pdrv(m, (adapter_t *)m->private, 1); } return (tmp); } } static int proc_show_pdrv_ch2(struct seq_file *m , void *v ) { int tmp ; { { tmp = proc_show_pdrv(m, (adapter_t *)m->private, 2); } return (tmp); } } static int proc_show_pdrv_ch3(struct seq_file *m , void *v ) { int tmp ; { { tmp = proc_show_pdrv(m, (adapter_t *)m->private, 3); } return (tmp); } } static int proc_show_rdrv(struct seq_file *m , adapter_t *adapter , int start , int end ) { dma_addr_t dma_handle ; logdrv_param *lparam ; megacmd_t mc ; char *disk_array ; dma_addr_t disk_array_dma_handle ; caddr_t inquiry ; struct pci_dev *pdev ; u8 *rdrv_state ; int num_ldrv ; u32 array_sz ; int i ; int tmp ; void *tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { tmp = make_local_pdev(adapter, & pdev); } if (tmp != 0) { return (0); } else { } { tmp___0 = mega_allocate_inquiry(& dma_handle, pdev); inquiry = (caddr_t )tmp___0; } if ((unsigned long )inquiry == (unsigned long )((caddr_t )0)) { goto free_pdev; } else { } { tmp___1 = mega_adapinq(adapter, dma_handle); } if (tmp___1 != 0) { { seq_puts(m, "Adapter inquiry failed.\n"); printk("\fmegaraid: inquiry failed.\n"); } goto free_inquiry; } else { } { memset((void *)(& mc), 0, 18UL); } if (((long )adapter->flag & 134217728L) != 0L) { array_sz = 23964U; rdrv_state = (u8 *)(& ((mega_inquiry3 *)inquiry)->ldrv_state); num_ldrv = (int )((mega_inquiry3 *)inquiry)->num_ldrv; } else { array_sz = 2204U; rdrv_state = (u8 *)(& ((mraid_ext_inquiry *)inquiry)->raid_inq.logdrv_info.ldrv_state); num_ldrv = (int )((mraid_ext_inquiry *)inquiry)->raid_inq.logdrv_info.num_ldrv; } { tmp___2 = pci_alloc_consistent(pdev, (size_t )array_sz, & disk_array_dma_handle); disk_array = (char *)tmp___2; } if ((unsigned long )disk_array == (unsigned long )((char *)0)) { { seq_puts(m, "memory not available.\n"); } goto free_inquiry; } else { } mc.xferaddr = (unsigned int )disk_array_dma_handle; if (((long )adapter->flag & 134217728L) != 0L) { { mc.cmd = 161U; mc.opcode = 4U; tmp___3 = mega_internal_command(adapter, & mc, (mega_passthru *)0); } if (tmp___3 != 0) { { seq_puts(m, "40LD read config failed.\n"); } goto free_pci; } else { } } else { { mc.cmd = 103U; tmp___5 = mega_internal_command(adapter, & mc, (mega_passthru *)0); } if (tmp___5 != 0) { { mc.cmd = 7U; tmp___4 = mega_internal_command(adapter, & mc, (mega_passthru *)0); } if (tmp___4 != 0) { { seq_puts(m, "8LD read config failed.\n"); } goto free_pci; } else { } } else { } } i = start; goto ldv_39197; ldv_39196: ; if (((long )adapter->flag & 134217728L) != 0L) { lparam = & ((disk_array_40ld *)disk_array)->ldrv[i].lparam; } else { lparam = & ((disk_array_8ld *)disk_array)->ldrv[i].lparam; } { seq_printf(m, "Logical drive:%2d:, ", i); } { if (((int )*(rdrv_state + (unsigned long )i) & 15) == 0) { goto case_0; } else { } if (((int )*(rdrv_state + (unsigned long )i) & 15) == 1) { goto case_1; } else { } if (((int )*(rdrv_state + (unsigned long )i) & 15) == 2) { goto case_2; } else { } if (((int )*(rdrv_state + (unsigned long )i) & 15) == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { seq_puts(m, "state: offline"); } goto ldv_39181; case_1: /* CIL Label */ { seq_puts(m, "state: degraded"); } goto ldv_39181; case_2: /* CIL Label */ { seq_puts(m, "state: optimal"); } goto ldv_39181; case_3: /* CIL Label */ { seq_puts(m, "state: deleted"); } goto ldv_39181; switch_default: /* CIL Label */ { seq_puts(m, "state: unknown"); } goto ldv_39181; switch_break: /* CIL Label */ ; } ldv_39181: ; if (((int )*(rdrv_state + (unsigned long )i) & 240) == 32) { { seq_puts(m, ", check-consistency in progress"); } } else if (((int )*(rdrv_state + (unsigned long )i) & 240) == 16) { { seq_puts(m, ", initialization in progress"); } } else { } { seq_putc(m, 10); seq_printf(m, "Span depth:%3d, ", (int )lparam->span_depth); seq_printf(m, "RAID level:%3d, ", (int )lparam->level); seq_printf(m, "Stripe size:%3d, ", (unsigned int )lparam->stripe_sz != 0U ? (int )((unsigned int )lparam->stripe_sz / 2U) : 128); seq_printf(m, "Row size:%3d\n", (int )lparam->row_size); seq_puts(m, "Read Policy: "); } { if ((int )lparam->read_ahead == 0) { goto case_0___0; } else { } if ((int )lparam->read_ahead == 1) { goto case_1___0; } else { } if ((int )lparam->read_ahead == 2) { goto case_2___0; } else { } goto switch_break___0; case_0___0: /* CIL Label */ { seq_puts(m, "No read ahead, "); } goto ldv_39187; case_1___0: /* CIL Label */ { seq_puts(m, "Read ahead, "); } goto ldv_39187; case_2___0: /* CIL Label */ { seq_puts(m, "Adaptive, "); } goto ldv_39187; switch_break___0: /* CIL Label */ ; } ldv_39187: { seq_puts(m, "Write Policy: "); } { if ((int )lparam->write_mode == 0) { goto case_0___1; } else { } if ((int )lparam->write_mode == 1) { goto case_1___1; } else { } goto switch_break___1; case_0___1: /* CIL Label */ { seq_puts(m, "Write thru, "); } goto ldv_39191; case_1___1: /* CIL Label */ { seq_puts(m, "Write back, "); } goto ldv_39191; switch_break___1: /* CIL Label */ ; } ldv_39191: { seq_puts(m, "Cache Policy: "); } { if ((int )lparam->direct_io == 0) { goto case_0___2; } else { } if ((int )lparam->direct_io == 1) { goto case_1___2; } else { } goto switch_break___2; case_0___2: /* CIL Label */ { seq_puts(m, "Cached IO\n\n"); } goto ldv_39194; case_1___2: /* CIL Label */ { seq_puts(m, "Direct IO\n\n"); } goto ldv_39194; switch_break___2: /* CIL Label */ ; } ldv_39194: i = i + 1; ldv_39197: ; if (i < (end + 1 < num_ldrv ? end + 1 : num_ldrv)) { goto ldv_39196; } else { } free_pci: { pci_free_consistent(pdev, (size_t )array_sz, (void *)disk_array, disk_array_dma_handle); } free_inquiry: { mega_free_inquiry((void *)inquiry, dma_handle, pdev); } free_pdev: { free_local_pdev(pdev); } return (0); } } static int proc_show_rdrv_10(struct seq_file *m , void *v ) { int tmp ; { { tmp = proc_show_rdrv(m, (adapter_t *)m->private, 0, 9); } return (tmp); } } static int proc_show_rdrv_20(struct seq_file *m , void *v ) { int tmp ; { { tmp = proc_show_rdrv(m, (adapter_t *)m->private, 10, 19); } return (tmp); } } static int proc_show_rdrv_30(struct seq_file *m , void *v ) { int tmp ; { { tmp = proc_show_rdrv(m, (adapter_t *)m->private, 20, 29); } return (tmp); } } static int proc_show_rdrv_40(struct seq_file *m , void *v ) { int tmp ; { { tmp = proc_show_rdrv(m, (adapter_t *)m->private, 30, 39); } return (tmp); } } static int mega_proc_open(struct inode *inode , struct file *file ) { adapter_t *adapter ; void *tmp ; int (*show)(struct seq_file * , void * ) ; void *tmp___0 ; int tmp___1 ; { { tmp = proc_get_parent_data((struct inode const *)inode); adapter = (adapter_t *)tmp; tmp___0 = PDE_DATA((struct inode const *)inode); show = (int (*)(struct seq_file * , void * ))tmp___0; tmp___1 = single_open(file, show, (void *)adapter); } return (tmp___1); } } static struct file_operations const mega_proc_fops = {0, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & mega_proc_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct mega_proc_file const mega_proc_files[14U] = { {"config", 1216U, & proc_show_config}, {"stat", 1224U, & proc_show_stat}, {"mailbox", 1232U, & proc_show_mbox}, {"rebuild-rate", 1240U, & proc_show_rebuild_rate}, {"battery-status", 1248U, & proc_show_battery}, {"diskdrives-ch0", 1256U, & proc_show_pdrv_ch0}, {"diskdrives-ch1", 1264U, & proc_show_pdrv_ch1}, {"diskdrives-ch2", 1272U, & proc_show_pdrv_ch2}, {"diskdrives-ch3", 1280U, & proc_show_pdrv_ch3}, {"raiddrives-0-9", 1288U, & proc_show_rdrv_10}, {"raiddrives-10-19", 1296U, & proc_show_rdrv_20}, {"raiddrives-20-29", 1304U, & proc_show_rdrv_30}, {"raiddrives-30-39", 1312U, & proc_show_rdrv_40}, {(char const *)0, (unsigned short)0, 0}}; static void mega_create_proc_entry(int index , struct proc_dir_entry *parent ) { struct mega_proc_file const *f ; adapter_t *adapter ; struct proc_dir_entry *dir ; struct proc_dir_entry *de ; struct proc_dir_entry **ppde ; u8 string[16U] ; struct proc_dir_entry *tmp ; { { adapter = hba_soft_state[index]; sprintf((char *)(& string), "hba%d", (adapter->host)->host_no); tmp = proc_mkdir_data((char const *)(& string), 0, parent, (void *)adapter); adapter->controller_proc_dir_entry = tmp; dir = tmp; } if ((unsigned long )dir == (unsigned long )((struct proc_dir_entry *)0)) { { printk("\f\nmegaraid: proc_mkdir failed\n"); } return; } else { } f = (struct mega_proc_file const *)(& mega_proc_files); goto ldv_39242; ldv_39241: { de = proc_create_data(f->name, 256, dir, & mega_proc_fops, (void *)f->show); } if ((unsigned long )de == (unsigned long )((struct proc_dir_entry *)0)) { { printk("\f\nmegaraid: proc_create failed\n"); } return; } else { } ppde = (struct proc_dir_entry **)adapter + (unsigned long )f->ptr_offset; *ppde = de; f = f + 1; ldv_39242: ; if ((unsigned long )f->name != (unsigned long )((char const */* const */)0)) { goto ldv_39241; } else { } return; } } static int megaraid_biosparam(struct scsi_device *sdev , struct block_device *bdev , sector_t capacity , int *geom ) { adapter_t *adapter ; unsigned char *bh ; int heads ; int sectors ; int cylinders ; int rval ; { adapter = (adapter_t *)(& (sdev->host)->hostdata); if ((adapter->mega_ch_class >> (int )sdev->channel) & 1) { heads = 64; sectors = 32; cylinders = (int )(capacity / (sector_t )(heads * sectors)); if (capacity > 2097151UL) { heads = 255; sectors = 63; cylinders = (int )(capacity / (sector_t )(heads * sectors)); } else { } *geom = heads; *(geom + 1UL) = sectors; *(geom + 2UL) = cylinders; } else { { bh = scsi_bios_ptable(bdev); } if ((unsigned long )bh != (unsigned long )((unsigned char *)0U)) { { rval = scsi_partsize(bh, capacity, (unsigned int *)geom + 2U, (unsigned int *)geom, (unsigned int *)geom + 1U); kfree((void const *)bh); } if (rval != -1) { return (rval); } else { } } else { } { printk("\016megaraid: invalid partition on this disk on channel %d\n", sdev->channel); heads = 64; sectors = 32; cylinders = (int )(capacity / (sector_t )(heads * sectors)); } if (capacity > 2097151UL) { heads = 255; sectors = 63; cylinders = (int )(capacity / (sector_t )(heads * sectors)); } else { } *geom = heads; *(geom + 1UL) = sectors; *(geom + 2UL) = cylinders; } return (0); } } static int mega_init_scb(adapter_t *adapter ) { scb_t *scb ; int i ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { i = 0; goto ldv_39262; ldv_39261: scb = adapter->scb_list + (unsigned long )i; scb->sgl64 = (mega_sgl64 *)0; scb->sgl = (mega_sglist *)0; scb->pthru = (mega_passthru *)0; scb->epthru = (mega_ext_passthru *)0; i = i + 1; ldv_39262: ; if (i < (int )adapter->max_cmds) { goto ldv_39261; } else { } i = 0; goto ldv_39265; ldv_39264: { scb = adapter->scb_list + (unsigned long )i; scb->idx = i; tmp = pci_alloc_consistent(adapter->dev, (unsigned long )adapter->sglen * 12UL, & scb->sgl_dma_addr); scb->sgl64 = (mega_sgl64 *)tmp; scb->sgl = (mega_sglist *)scb->sgl64; } if ((unsigned long )scb->sgl == (unsigned long )((mega_sglist *)0)) { { printk("\fRAID: Can\'t allocate sglist.\n"); mega_free_sgl(adapter); } return (-1); } else { } { tmp___0 = pci_alloc_consistent(adapter->dev, 60UL, & scb->pthru_dma_addr); scb->pthru = (mega_passthru *)tmp___0; } if ((unsigned long )scb->pthru == (unsigned long )((mega_passthru *)0)) { { printk("\fRAID: Can\'t allocate passthru.\n"); mega_free_sgl(adapter); } return (-1); } else { } { tmp___1 = pci_alloc_consistent(adapter->dev, 68UL, & scb->epthru_dma_addr); scb->epthru = (mega_ext_passthru *)tmp___1; } if ((unsigned long )scb->epthru == (unsigned long )((mega_ext_passthru *)0)) { { printk("\fCan\'t allocate extended passthru.\n"); mega_free_sgl(adapter); } return (-1); } else { } { scb->dma_type = 65535U; scb->state = 0U; scb->cmd = (Scsi_Cmnd *)0; list_add(& scb->list, & adapter->free_list); i = i + 1; } ldv_39265: ; if (i < (int )adapter->max_cmds) { goto ldv_39264; } else { } return (0); } } static int megadev_open(struct inode *inode , struct file *filep ) { bool tmp ; int tmp___0 ; { { tmp = capable(21); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-13); } else { } return (0); } } static int megadev_ioctl(struct file *filep , unsigned int cmd , unsigned long arg ) { adapter_t *adapter ; nitioctl_t uioc ; int adapno ; int rval ; mega_passthru *upthru ; mega_passthru *pthru ; dma_addr_t pthru_dma_hndl ; void *data ; dma_addr_t data_dma_hndl ; megacmd_t mc ; megastat_t *ustats ; int num_ldrv ; u32 uxferaddr ; struct pci_dev *pdev ; int __ret_pu ; u32 __pu_val ; int __ret_pu___0 ; u32 __pu_val___0 ; unsigned long tmp ; int tmp___0 ; void *tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; unsigned long tmp___6 ; unsigned long tmp___7 ; { data = (void *)0; uxferaddr = 0U; ustats = (megastat_t *)0; num_ldrv = 0; if (((cmd >> 8) & 255U) != 109U && cmd != 224U) { return (-22); } else { } { memset((void *)(& uioc), 0, 48UL); rval = mega_m_to_n((void *)arg, & uioc); } if (rval != 0) { return (rval); } else { } { if (uioc.opcode == 65536U) { goto case_65536; } else { } if (uioc.opcode == 131072U) { goto case_131072; } else { } if (uioc.opcode == 196608U) { goto case_196608; } else { } if (uioc.opcode == 0U) { goto case_0; } else { } goto switch_default___1; case_65536: /* CIL Label */ { might_fault(); __pu_val = driver_ver; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" ((u32 *)uioc.__ua.__uaddr): "ebx"); goto ldv_39294; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" ((u32 *)uioc.__ua.__uaddr): "ebx"); goto ldv_39294; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" ((u32 *)uioc.__ua.__uaddr): "ebx"); goto ldv_39294; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" ((u32 *)uioc.__ua.__uaddr): "ebx"); goto ldv_39294; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" ((u32 *)uioc.__ua.__uaddr): "ebx"); goto ldv_39294; switch_break___0: /* CIL Label */ ; } ldv_39294: ; if (__ret_pu != 0) { return (-14); } else { } goto ldv_39300; case_131072: /* CIL Label */ { might_fault(); __pu_val___0 = (u32 )hba_count; } { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((u32 *)uioc.__ua.__uaddr): "ebx"); goto ldv_39305; case_2___0: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((u32 *)uioc.__ua.__uaddr): "ebx"); goto ldv_39305; case_4___0: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((u32 *)uioc.__ua.__uaddr): "ebx"); goto ldv_39305; case_8___0: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((u32 *)uioc.__ua.__uaddr): "ebx"); goto ldv_39305; switch_default___0: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((u32 *)uioc.__ua.__uaddr): "ebx"); goto ldv_39305; switch_break___1: /* CIL Label */ ; } ldv_39305: ; if (__ret_pu___0 != 0) { return (-14); } else { } return (hba_count); case_196608: /* CIL Label */ adapno = (int )(uioc.adapno ^ 27904U); if (adapno >= hba_count) { return (-19); } else { } { tmp = copy_to_user(uioc.__ua.__uaddr, (void const *)(& mcontroller) + (unsigned long )adapno, 32UL); } if (tmp != 0UL) { return (-14); } else { } goto ldv_39300; case_0: /* CIL Label */ adapno = (int )(uioc.adapno ^ 27904U); if (adapno >= hba_count) { return (-19); } else { } adapter = hba_soft_state[adapno]; if (*((unsigned int *)(& uioc) + 4UL) == 1835172U) { if (adapter->support_random_del == 0) { { printk("\fmegaraid: logdrv "); printk("delete on non-supporting F/W.\n"); } return (-22); } else { } { rval = mega_del_logdrv(adapter, (int )uioc.__ua.__raw_mbox[3]); } if (rval == 0) { { memset((void *)(& mc), 0, 18UL); mc.status = (u8 )rval; rval = mega_n_to_m((void *)arg, & mc); } } else { } return (rval); } else { } if ((unsigned int )uioc.__ua.__raw_mbox[0] == 195U || (unsigned int )uioc.__ua.__raw_mbox[0] == 227U) { { printk("\fmegaraid: rejected passthru.\n"); } return (-22); } else { } { tmp___0 = make_local_pdev(adapter, & pdev); } if (tmp___0 != 0) { return (-5); } else { } if ((unsigned int )uioc.__ua.__raw_mbox[0] == 3U) { { tmp___1 = pci_alloc_consistent(pdev, 60UL, & pthru_dma_hndl); pthru = (mega_passthru *)tmp___1; } if ((unsigned long )pthru == (unsigned long )((mega_passthru *)0)) { { free_local_pdev(pdev); } return (-12); } else { } { upthru = (mega_passthru *)((unsigned long )((megacmd_t *)(& uioc.__ua.__raw_mbox))->xferaddr); tmp___2 = copy_from_user((void *)pthru, (void const *)upthru, 60UL); } if (tmp___2 != 0UL) { { pci_free_consistent(pdev, 60UL, (void *)pthru, pthru_dma_hndl); free_local_pdev(pdev); } return (-14); } else { } if (pthru->dataxferlen != 0U) { { data = pci_alloc_consistent(pdev, (size_t )pthru->dataxferlen, & data_dma_hndl); } if ((unsigned long )data == (unsigned long )((void *)0)) { { pci_free_consistent(pdev, 60UL, (void *)pthru, pthru_dma_hndl); free_local_pdev(pdev); } return (-12); } else { } uxferaddr = pthru->dataxferaddr; pthru->dataxferaddr = (u32 )data_dma_hndl; } else { } if (pthru->dataxferlen != 0U && (uioc.flags & 2U) != 0U) { { tmp___3 = copy_from_user(data, (void const *)((unsigned long )uxferaddr), (unsigned long )pthru->dataxferlen); } if (tmp___3 != 0UL) { rval = -14; goto freemem_and_return; } else { } } else { } { memset((void *)(& mc), 0, 18UL); mc.cmd = 3U; mc.xferaddr = (unsigned int )pthru_dma_hndl; mega_internal_command(adapter, & mc, pthru); rval = mega_n_to_m((void *)arg, & mc); } if (rval != 0) { goto freemem_and_return; } else { } if (pthru->dataxferlen != 0U && (int )uioc.flags & 1) { { tmp___4 = copy_to_user((void *)((unsigned long )uxferaddr), (void const *)data, (unsigned long )pthru->dataxferlen); } if (tmp___4 != 0UL) { rval = -14; } else { } } else { } { tmp___5 = copy_to_user((void *)(& upthru->reqsensearea), (void const *)(& pthru->reqsensearea), 14UL); } if (tmp___5 != 0UL) { rval = -14; } else { } freemem_and_return: ; if (pthru->dataxferlen != 0U) { { pci_free_consistent(pdev, (size_t )pthru->dataxferlen, data, data_dma_hndl); } } else { } { pci_free_consistent(pdev, 60UL, (void *)pthru, pthru_dma_hndl); free_local_pdev(pdev); } return (rval); } else { if (uioc.xferlen != 0U) { { data = pci_alloc_consistent(pdev, (size_t )uioc.xferlen, & data_dma_hndl); } if ((unsigned long )data == (unsigned long )((void *)0)) { { free_local_pdev(pdev); } return (-12); } else { } uxferaddr = ((megacmd_t *)(& uioc.__ua.__raw_mbox))->xferaddr; } else { } if (uioc.xferlen != 0U && (uioc.flags & 2U) != 0U) { { tmp___6 = copy_from_user(data, (void const *)((unsigned long )uxferaddr), (unsigned long )uioc.xferlen); } if (tmp___6 != 0UL) { { pci_free_consistent(pdev, (size_t )uioc.xferlen, data, data_dma_hndl); free_local_pdev(pdev); } return (-14); } else { } } else { } { memcpy((void *)(& mc), (void const *)(& uioc.__ua.__raw_mbox), 18UL); mc.xferaddr = (unsigned int )data_dma_hndl; mega_internal_command(adapter, & mc, (mega_passthru *)0); rval = mega_n_to_m((void *)arg, & mc); } if (rval != 0) { if (uioc.xferlen != 0U) { { pci_free_consistent(pdev, (size_t )uioc.xferlen, data, data_dma_hndl); } } else { } { free_local_pdev(pdev); } return (rval); } else { } if (uioc.xferlen != 0U && (int )uioc.flags & 1) { { tmp___7 = copy_to_user((void *)((unsigned long )uxferaddr), (void const *)data, (unsigned long )uioc.xferlen); } if (tmp___7 != 0UL) { rval = -14; } else { } } else { } if (uioc.xferlen != 0U) { { pci_free_consistent(pdev, (size_t )uioc.xferlen, data, data_dma_hndl); } } else { } { free_local_pdev(pdev); } return (rval); } switch_default___1: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_39300: ; return (0); } } static long megadev_unlocked_ioctl(struct file *filep , unsigned int cmd , unsigned long arg ) { int ret ; { { ldv_mutex_lock_106(& megadev_mutex); ret = megadev_ioctl(filep, cmd, arg); ldv_mutex_unlock_107(& megadev_mutex); } return ((long )ret); } } static int mega_m_to_n(void *arg , nitioctl_t *uioc ) { struct uioctl_t uioc_mimd ; char signature[8U] ; unsigned int tmp ; u8 opcode ; u8 subopcode ; unsigned long tmp___0 ; int tmp___1 ; unsigned long tmp___2 ; { signature[0] = 0; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 8U) { goto while_break; } else { } signature[tmp] = (char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { tmp___0 = copy_from_user((void *)(& signature), (void const *)arg, 7UL); } if (tmp___0 != 0UL) { return (-14); } else { } { tmp___1 = memcmp((void const *)(& signature), (void const *)"MEGANIT", 7UL); } if (tmp___1 == 0) { return (-22); } else { } { tmp___2 = copy_from_user((void *)(& uioc_mimd), (void const *)arg, 110UL); } if (tmp___2 != 0UL) { return (-14); } else { } opcode = uioc_mimd.ui.fcs.opcode; subopcode = uioc_mimd.ui.fcs.subopcode; { if ((int )opcode == 130) { goto case_130; } else { } if ((int )opcode == 129) { goto case_129; } else { } if ((int )opcode == 128) { goto case_128; } else { } goto switch_default___0; case_130: /* CIL Label */ ; { if ((int )subopcode == 101) { goto case_101; } else { } if ((int )subopcode == 109) { goto case_109; } else { } if ((int )subopcode == 103) { goto case_103; } else { } goto switch_default; case_101: /* CIL Label */ uioc->opcode = 65536U; uioc->__ua.__uaddr = (void *)uioc_mimd.data; goto ldv_39331; case_109: /* CIL Label */ uioc->opcode = 131072U; uioc->__ua.__uaddr = (void *)uioc_mimd.data; goto ldv_39331; case_103: /* CIL Label */ uioc->opcode = 196608U; uioc->adapno = (u32 )uioc_mimd.ui.fcs.adapno; uioc->__ua.__uaddr = (void *)uioc_mimd.data; goto ldv_39331; switch_default: /* CIL Label */ ; return (-22); switch_break___0: /* CIL Label */ ; } ldv_39331: ; goto ldv_39335; case_129: /* CIL Label */ { uioc->opcode = 0U; uioc->adapno = (u32 )uioc_mimd.ui.fcs.adapno; memcpy((void *)(& uioc->__ua.__raw_mbox), (void const *)(& uioc_mimd.mbox), 18UL); uioc->xferlen = uioc_mimd.ui.fcs.length; } if (uioc_mimd.outlen != 0U) { uioc->flags = 1U; } else { } if (uioc_mimd.inlen != 0U) { uioc->flags = uioc->flags | 2U; } else { } goto ldv_39335; case_128: /* CIL Label */ { uioc->opcode = 0U; uioc->adapno = (u32 )uioc_mimd.ui.fcs.adapno; memcpy((void *)(& uioc->__ua.__raw_mbox), (void const *)(& uioc_mimd.mbox), 18UL); uioc->xferlen = uioc_mimd.outlen > uioc_mimd.inlen ? uioc_mimd.outlen : uioc_mimd.inlen; } if (uioc_mimd.outlen != 0U) { uioc->flags = 1U; } else { } if (uioc_mimd.inlen != 0U) { uioc->flags = uioc->flags | 2U; } else { } goto ldv_39335; switch_default___0: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_39335: ; return (0); } } static int mega_n_to_m(void *arg , megacmd_t *mc ) { nitioctl_t *uiocp ; megacmd_t *umc ; mega_passthru *upthru ; struct uioctl_t *uioc_mimd ; char signature[8U] ; unsigned int tmp ; unsigned long tmp___0 ; int __ret_pu ; u8 __pu_val ; int __ret_gu ; register unsigned long __val_gu ; int __ret_pu___0 ; u8 __pu_val___0 ; int __ret_pu___1 ; u8 __pu_val___1 ; int __ret_gu___0 ; register unsigned long __val_gu___0 ; int __ret_pu___2 ; u8 __pu_val___2 ; int tmp___1 ; { signature[0] = 0; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 8U) { goto while_break; } else { } signature[tmp] = (char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { tmp___0 = copy_from_user((void *)(& signature), (void const *)arg, 7UL); } if (tmp___0 != 0UL) { return (-14); } else { } { tmp___1 = memcmp((void const *)(& signature), (void const *)"MEGANIT", 7UL); } if (tmp___1 == 0) { { uiocp = (nitioctl_t *)arg; might_fault(); __pu_val = mc->status; } { if (1UL == 1UL) { goto case_1; } else { } if (1UL == 2UL) { goto case_2; } else { } if (1UL == 4UL) { goto case_4; } else { } if (1UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (& ((megacmd_t *)(& uiocp->__ua.__raw_mbox))->status): "ebx"); goto ldv_39351; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (& ((megacmd_t *)(& uiocp->__ua.__raw_mbox))->status): "ebx"); goto ldv_39351; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (& ((megacmd_t *)(& uiocp->__ua.__raw_mbox))->status): "ebx"); goto ldv_39351; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (& ((megacmd_t *)(& uiocp->__ua.__raw_mbox))->status): "ebx"); goto ldv_39351; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (& ((megacmd_t *)(& uiocp->__ua.__raw_mbox))->status): "ebx"); goto ldv_39351; switch_break: /* CIL Label */ ; } ldv_39351: ; if (__ret_pu != 0) { return (-14); } else { } if ((unsigned int )mc->cmd == 3U) { { umc = (megacmd_t *)(& uiocp->__ua.__raw_mbox); might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu), "=r" (__val_gu): "0" ((mega_passthru **)(& umc->xferaddr)), "i" (8UL)); upthru = (mega_passthru *)__val_gu; } if (__ret_gu != 0) { return (-14); } else { } { might_fault(); __pu_val___0 = mc->status; } { if (1UL == 1UL) { goto case_1___0; } else { } if (1UL == 2UL) { goto case_2___0; } else { } if (1UL == 4UL) { goto case_4___0; } else { } if (1UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& upthru->scsistatus): "ebx"); goto ldv_39363; case_2___0: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& upthru->scsistatus): "ebx"); goto ldv_39363; case_4___0: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& upthru->scsistatus): "ebx"); goto ldv_39363; case_8___0: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& upthru->scsistatus): "ebx"); goto ldv_39363; switch_default___0: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& upthru->scsistatus): "ebx"); goto ldv_39363; switch_break___0: /* CIL Label */ ; } ldv_39363: ; if (__ret_pu___0 != 0) { return (-14); } else { } } else { } } else { { uioc_mimd = (struct uioctl_t *)arg; might_fault(); __pu_val___1 = mc->status; } { if (1UL == 1UL) { goto case_1___1; } else { } if (1UL == 2UL) { goto case_2___1; } else { } if (1UL == 4UL) { goto case_4___1; } else { } if (1UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" ((u8 *)(& uioc_mimd->mbox) + 17UL): "ebx"); goto ldv_39372; case_2___1: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" ((u8 *)(& uioc_mimd->mbox) + 17UL): "ebx"); goto ldv_39372; case_4___1: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" ((u8 *)(& uioc_mimd->mbox) + 17UL): "ebx"); goto ldv_39372; case_8___1: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" ((u8 *)(& uioc_mimd->mbox) + 17UL): "ebx"); goto ldv_39372; switch_default___1: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" ((u8 *)(& uioc_mimd->mbox) + 17UL): "ebx"); goto ldv_39372; switch_break___1: /* CIL Label */ ; } ldv_39372: ; if (__ret_pu___1 != 0) { return (-14); } else { } if ((unsigned int )mc->cmd == 3U) { { umc = (megacmd_t *)(& uioc_mimd->mbox); might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu___0), "=r" (__val_gu___0): "0" ((mega_passthru **)(& umc->xferaddr)), "i" (8UL)); upthru = (mega_passthru *)__val_gu___0; } if (__ret_gu___0 != 0) { return (-14); } else { } { might_fault(); __pu_val___2 = mc->status; } { if (1UL == 1UL) { goto case_1___2; } else { } if (1UL == 2UL) { goto case_2___2; } else { } if (1UL == 4UL) { goto case_4___2; } else { } if (1UL == 8UL) { goto case_8___2; } else { } goto switch_default___2; case_1___2: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& upthru->scsistatus): "ebx"); goto ldv_39384; case_2___2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& upthru->scsistatus): "ebx"); goto ldv_39384; case_4___2: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& upthru->scsistatus): "ebx"); goto ldv_39384; case_8___2: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& upthru->scsistatus): "ebx"); goto ldv_39384; switch_default___2: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___2): "0" (__pu_val___2), "c" (& upthru->scsistatus): "ebx"); goto ldv_39384; switch_break___2: /* CIL Label */ ; } ldv_39384: ; if (__ret_pu___2 != 0) { return (-14); } else { } } else { } } return (0); } } static int mega_is_bios_enabled(adapter_t *adapter ) { unsigned char raw_mbox[15U] ; mbox_t *mbox ; int ret ; { { mbox = (mbox_t *)(& raw_mbox); memset((void *)(& mbox->m_out), 0, 15UL); memset((void *)adapter->mega_buffer, 0, 2048UL); mbox->m_out.xferaddr = (unsigned int )adapter->buf_dma_handle; raw_mbox[0] = 98U; raw_mbox[2] = 1U; ret = issue_scb_block(adapter, (u_char *)(& raw_mbox)); } return ((int )*((char *)adapter->mega_buffer)); } } static void mega_enum_raid_scsi(adapter_t *adapter ) { unsigned char raw_mbox[15U] ; mbox_t *mbox ; int i ; int tmp ; { { mbox = (mbox_t *)(& raw_mbox); memset((void *)(& mbox->m_out), 0, 15UL); raw_mbox[0] = 169U; raw_mbox[2] = 0U; memset((void *)adapter->mega_buffer, 0, 2048UL); mbox->m_out.xferaddr = (unsigned int )adapter->buf_dma_handle; adapter->mega_ch_class = 255; tmp = issue_scb_block(adapter, (u_char *)(& raw_mbox)); } if (tmp == 0) { adapter->mega_ch_class = (int )*((char *)adapter->mega_buffer); } else { } i = 0; goto ldv_39403; ldv_39402: ; if ((adapter->mega_ch_class >> i) & 1) { { printk("\016megaraid: channel[%d] is raid.\n", i); } } else { { printk("\016megaraid: channel[%d] is scsi.\n", i); } } i = i + 1; ldv_39403: ; if (i < (int )adapter->product_info.nchannels) { goto ldv_39402; } else { } return; } } static void mega_get_boot_drv(adapter_t *adapter ) { struct private_bios_data *prv_bios_data ; unsigned char raw_mbox[15U] ; mbox_t *mbox ; u16 cksum ; u8 *cksum_p ; u8 boot_pdrv ; int i ; u8 *tmp ; int tmp___0 ; { { cksum = 0U; mbox = (mbox_t *)(& raw_mbox); memset((void *)(& mbox->m_out), 0, 15UL); raw_mbox[0] = 64U; raw_mbox[2] = 0U; memset((void *)adapter->mega_buffer, 0, 2048UL); mbox->m_out.xferaddr = (unsigned int )adapter->buf_dma_handle; adapter->boot_ldrv_enabled = 0; adapter->boot_ldrv = 0; adapter->boot_pdrv_enabled = 0; adapter->boot_pdrv_ch = 0; adapter->boot_pdrv_tgt = 0; tmp___0 = issue_scb_block(adapter, (u_char *)(& raw_mbox)); } if (tmp___0 == 0) { prv_bios_data = (struct private_bios_data *)adapter->mega_buffer; cksum = 0U; cksum_p = (u8 *)prv_bios_data; i = 0; goto ldv_39416; ldv_39415: tmp = cksum_p; cksum_p = cksum_p + 1; cksum = (int )cksum + (int )((u16 )*tmp); i = i + 1; ldv_39416: ; if (i <= 13) { goto ldv_39415; } else { } if ((int )prv_bios_data->cksum == (int )((unsigned short )(- ((int )cksum)))) { if ((int )((signed char )prv_bios_data->boot_drv) < 0) { adapter->boot_pdrv_enabled = 1; boot_pdrv = (unsigned int )prv_bios_data->boot_drv & 127U; adapter->boot_pdrv_ch = (int )((unsigned int )boot_pdrv / 16U); adapter->boot_pdrv_tgt = (int )boot_pdrv & 15; } else { adapter->boot_ldrv_enabled = 1; adapter->boot_ldrv = (int )prv_bios_data->boot_drv; } } else { } } else { } return; } } static int mega_support_random_del(adapter_t *adapter ) { unsigned char raw_mbox[15U] ; mbox_t *mbox ; int rval ; { { mbox = (mbox_t *)(& raw_mbox); memset((void *)(& mbox->m_out), 0, 15UL); raw_mbox[0] = 164U; raw_mbox[2] = 42U; rval = issue_scb_block(adapter, (u_char *)(& raw_mbox)); } return (rval == 0); } } static int mega_support_ext_cdb(adapter_t *adapter ) { unsigned char raw_mbox[15U] ; mbox_t *mbox ; int rval ; { { mbox = (mbox_t *)(& raw_mbox); memset((void *)(& mbox->m_out), 0, 15UL); raw_mbox[0] = 164U; raw_mbox[2] = 22U; rval = issue_scb_block(adapter, (u_char *)(& raw_mbox)); } return (rval == 0); } } static int mega_del_logdrv(adapter_t *adapter , int logdrv ) { unsigned long flags ; scb_t *scb ; int rval ; int tmp ; int tmp___0 ; struct list_head *pos ; struct list_head const *__mptr ; { { atomic_set(& adapter->quiescent, 1); } goto ldv_39438; ldv_39437: { msleep(1000U); } ldv_39438: { tmp = atomic_read((atomic_t const *)(& adapter->pend_cmds)); } if (tmp > 0) { goto ldv_39437; } else { { tmp___0 = list_empty((struct list_head const *)(& adapter->pending_list)); } if (tmp___0 == 0) { goto ldv_39437; } else { goto ldv_39439; } } ldv_39439: { rval = mega_do_del_logdrv(adapter, logdrv); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(& adapter->lock); } if (adapter->read_ldidmap != 0) { pos = adapter->pending_list.next; goto ldv_39444; ldv_39443: __mptr = (struct list_head const *)pos; scb = (scb_t *)__mptr + 0xfffffffffffffff8UL; if ((int )((signed char )(scb->pthru)->logdrv) >= 0) { (scb->pthru)->logdrv = (unsigned int )(scb->pthru)->logdrv + 128U; } else { } pos = pos->next; ldv_39444: ; if ((unsigned long )pos != (unsigned long )(& adapter->pending_list)) { goto ldv_39443; } else { } } else { } { atomic_set(& adapter->quiescent, 0); mega_runpendq(adapter); ldv_spin_unlock_irqrestore_97(& adapter->lock, flags); } return (rval); } } static int mega_do_del_logdrv(adapter_t *adapter , int logdrv ) { megacmd_t mc ; int rval ; { { memset((void *)(& mc), 0, 18UL); mc.cmd = 164U; mc.opcode = 28U; mc.subopcode = (u8 )logdrv; rval = mega_internal_command(adapter, & mc, (mega_passthru *)0); } if (rval != 0) { { printk("\fmegaraid: Delete LD-%d failed.", logdrv); } return (rval); } else { } adapter->read_ldidmap = 1; return (rval); } } static void mega_get_max_sgl(adapter_t *adapter ) { unsigned char raw_mbox[15U] ; mbox_t *mbox ; int tmp ; { { mbox = (mbox_t *)(& raw_mbox); memset((void *)mbox, 0, 15UL); memset((void *)adapter->mega_buffer, 0, 2048UL); mbox->m_out.xferaddr = (unsigned int )adapter->buf_dma_handle; raw_mbox[0] = 164U; raw_mbox[2] = 1U; tmp = issue_scb_block(adapter, (u_char *)(& raw_mbox)); } if (tmp != 0) { adapter->sglen = 26U; } else { adapter->sglen = (u8 )*((char *)adapter->mega_buffer); if ((unsigned int )adapter->sglen > 64U) { adapter->sglen = 64U; } else { } } return; } } static int mega_support_cluster(adapter_t *adapter ) { unsigned char raw_mbox[15U] ; mbox_t *mbox ; int tmp ; { { mbox = (mbox_t *)(& raw_mbox); memset((void *)mbox, 0, 15UL); memset((void *)adapter->mega_buffer, 0, 2048UL); mbox->m_out.xferaddr = (unsigned int )adapter->buf_dma_handle; raw_mbox[0] = 125U; tmp = issue_scb_block(adapter, (u_char *)(& raw_mbox)); } if (tmp == 0) { adapter->this_id = (int )*((u32 *)adapter->mega_buffer); (adapter->host)->this_id = adapter->this_id; return (1); } else { } return (0); } } static int mega_adapinq(adapter_t *adapter , dma_addr_t dma_handle ) { megacmd_t mc ; int tmp ; { { memset((void *)(& mc), 0, 18UL); } if (((long )adapter->flag & 134217728L) != 0L) { mc.cmd = 161U; mc.opcode = 15U; mc.subopcode = 2U; } else { mc.cmd = 4U; } { mc.xferaddr = (unsigned int )dma_handle; tmp = mega_internal_command(adapter, & mc, (mega_passthru *)0); } if (tmp != 0) { return (-1); } else { } return (0); } } static int mega_internal_dev_inquiry(adapter_t *adapter , u8 ch , u8 tgt , dma_addr_t buf_dma_handle ) { mega_passthru *pthru ; dma_addr_t pthru_dma_handle ; megacmd_t mc ; int rval ; struct pci_dev *pdev ; int tmp ; void *tmp___0 ; { { tmp = make_local_pdev(adapter, & pdev); } if (tmp != 0) { return (-1); } else { } { tmp___0 = pci_alloc_consistent(pdev, 60UL, & pthru_dma_handle); pthru = (mega_passthru *)tmp___0; } if ((unsigned long )pthru == (unsigned long )((mega_passthru *)0)) { { free_local_pdev(pdev); } return (-1); } else { } { pthru->timeout = 2U; pthru->ars = 1U; pthru->reqsenselen = 14U; pthru->islogical = 0U; pthru->channel = ((long )adapter->flag & 134217728L) == 0L ? ch : 0U; pthru->target = ((long )adapter->flag & 134217728L) != 0L ? (u8 )((int )((signed char )((int )ch << 4)) | (int )((signed char )tgt)) : tgt; pthru->cdblen = 6U; pthru->cdb[0] = 18U; pthru->cdb[1] = 0U; pthru->cdb[2] = 0U; pthru->cdb[3] = 0U; pthru->cdb[4] = 255U; pthru->cdb[5] = 0U; pthru->dataxferaddr = (unsigned int )buf_dma_handle; pthru->dataxferlen = 256U; memset((void *)(& mc), 0, 18UL); mc.cmd = 3U; mc.xferaddr = (unsigned int )pthru_dma_handle; rval = mega_internal_command(adapter, & mc, pthru); pci_free_consistent(pdev, 60UL, (void *)pthru, pthru_dma_handle); free_local_pdev(pdev); } return (rval); } } static int mega_internal_command(adapter_t *adapter , megacmd_t *mc , mega_passthru *pthru ) { unsigned long flags ; scb_t *scb ; int rval ; int tmp ; { { ldv_mutex_lock_110(& adapter->int_mtx); scb = & adapter->int_scb; memset((void *)scb, 0, 184UL); scb->idx = 127; scb->state = scb->state | 3U; memcpy((void *)(& scb->raw_mbox), (void const *)mc, 18UL); } if ((unsigned int )mc->cmd == 3U) { scb->pthru = pthru; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_111(& adapter->lock); list_add_tail(& scb->list, & adapter->pending_list); tmp = atomic_read((atomic_t const *)(& adapter->quiescent)); } if (tmp == 0) { { mega_runpendq(adapter); } } else { } { ldv_spin_unlock_irqrestore_97(& adapter->lock, flags); ldv_wait_for_completion_113(& adapter->int_waitq); rval = adapter->int_status; mc->status = (u8 )rval; } if (rval != 0 && trace_level != 0) { { printk("megaraid: cmd [%x, %x, %x] status:[%x]\n", (int )mc->cmd, (int )mc->opcode, (int )mc->subopcode, rval); } } else { } { ldv_mutex_unlock_114(& adapter->int_mtx); } return (rval); } } static struct scsi_host_template megaraid_template = {& __this_module, "MegaRAID", 0, 0, & megaraid_info, 0, 0, & megaraid_queue, & megaraid_abort, & megaraid_reset, 0, & megaraid_reset, & megaraid_reset, 0, 0, 0, 0, 0, 0, 0, 0, & megaraid_biosparam, 0, 0, 0, 0, 0, "megaraid_legacy", 0, 126, 7, 64U, (unsigned short)0, 128U, 0UL, 63, (unsigned char)0, 0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, 0U, 0, 0, {0, 0}, 0ULL, 0U, 0, (_Bool)0}; static int megaraid_probe_one(struct pci_dev *pdev , struct pci_device_id const *id ) { struct Scsi_Host *host ; adapter_t *adapter ; unsigned long mega_baseport ; unsigned long tbase ; unsigned long flag ; u16 subsysid ; u16 subsysvid ; u8 pci_bus ; u8 pci_dev_func ; int irq ; int i ; int j ; int error ; int tmp ; u16 magic ; u32 magic64 ; struct resource *tmp___0 ; void *tmp___1 ; struct resource *tmp___2 ; struct lock_class_key __key ; void *tmp___3 ; void *tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; struct lock_class_key __key___0 ; { { flag = 0UL; error = -19; tmp = pci_enable_device(pdev); } if (tmp != 0) { goto out; } else { } { pci_set_master(pdev); pci_bus = (pdev->bus)->number; pci_dev_func = (u8 )pdev->devfn; } if ((unsigned int )pdev->vendor == 32902U) { if (*((unsigned int *)pdev + 16UL) == 3221229073U) { return (-19); } else { } { pci_read_config_word((struct pci_dev const *)pdev, 160, & magic); } if ((unsigned int )magic != 52428U && (unsigned int )magic != 13124U) { return (-19); } else { } } else { } if (((unsigned long )id->driver_data & 67108864UL) != 0UL) { flag = flag | 67108864UL; } else { { pci_read_config_dword((struct pci_dev const *)pdev, 164, & magic64); } if (magic64 == 665U) { flag = flag | 67108864UL; } else { } } { subsysvid = pdev->subsystem_vendor; subsysid = pdev->subsystem_device; printk("\rmegaraid: found 0x%4.04x:0x%4.04x:bus %d:", id->vendor, id->device, (int )pci_bus); printk("slot %d:func %d\n", ((int )pci_dev_func >> 3) & 31, (int )pci_dev_func & 7); mega_baseport = (unsigned long )pdev->resource[0].start; irq = (int )pdev->irq; tbase = mega_baseport; } if ((pdev->resource[0].flags & 512UL) != 0UL) { { flag = flag | 536870912UL; tmp___0 = __request_region(& iomem_resource, (resource_size_t )mega_baseport, 128ULL, "megaraid", 0); } if ((unsigned long )tmp___0 == (unsigned long )((struct resource *)0)) { { printk("\fmegaraid: mem region busy!\n"); } goto out_disable_device; } else { } { tmp___1 = ioremap((resource_size_t )mega_baseport, 128UL); mega_baseport = (unsigned long )tmp___1; } if (mega_baseport == 0UL) { { printk("\fmegaraid: could not map hba memory\n"); } goto out_release_region; } else { } } else { { flag = flag | 268435456UL; mega_baseport = mega_baseport + 16UL; tmp___2 = __request_region(& ioport_resource, (resource_size_t )mega_baseport, 16ULL, "megaraid", 0); } if ((unsigned long )tmp___2 == (unsigned long )((struct resource *)0)) { goto out_disable_device; } else { } } { host = ldv_scsi_host_alloc_115(& megaraid_template, 1912); } if ((unsigned long )host == (unsigned long )((struct Scsi_Host *)0)) { goto out_iounmap; } else { } { adapter = (adapter_t *)(& host->hostdata); memset((void *)adapter, 0, 1912UL); printk("\rscsi%d:Found MegaRAID controller at 0x%lx, IRQ:%d\n", host->host_no, mega_baseport, irq); adapter->base = mega_baseport; } if ((flag & 536870912UL) != 0UL) { adapter->mmio_base = (void *)mega_baseport; } else { } { INIT_LIST_HEAD(& adapter->free_list); INIT_LIST_HEAD(& adapter->pending_list); INIT_LIST_HEAD(& adapter->completed_list); adapter->flag = (u32 )flag; spinlock_check(& adapter->lock); __raw_spin_lock_init(& adapter->lock.__annonCompField18.rlock, "&(&adapter->lock)->rlock", & __key); host->cmd_per_lun = (short )max_cmd_per_lun; host->max_sectors = (unsigned int )max_sectors_per_io; adapter->dev = pdev; adapter->host = host; (adapter->host)->irq = (unsigned int )irq; } if ((flag & 536870912UL) != 0UL) { (adapter->host)->base = tbase; } else { (adapter->host)->io_port = tbase; (adapter->host)->n_io_port = 16U; } { (adapter->host)->unique_id = (unsigned int )(((int )pci_bus << 8) | (int )pci_dev_func); tmp___3 = pci_alloc_consistent(adapter->dev, 2048UL, & adapter->buf_dma_handle); adapter->mega_buffer = (u8 *)tmp___3; } if ((unsigned long )adapter->mega_buffer == (unsigned long )((u8 *)0U)) { { printk("\fmegaraid: out of RAM.\n"); } goto out_host_put; } else { } { tmp___4 = kmalloc(23184UL, 208U); adapter->scb_list = (scb_t *)tmp___4; } if ((unsigned long )adapter->scb_list == (unsigned long )((scb_t *)0)) { { printk("\fmegaraid: out of RAM.\n"); } goto out_free_cmd_buffer; } else { } { tmp___5 = ldv_request_irq_116((unsigned int )irq, ((long )adapter->flag & 536870912L) != 0L ? & megaraid_isr_memmapped : & megaraid_isr_iomapped, 128UL, "megaraid", (void *)adapter); } if (tmp___5 != 0) { { printk("\fmegaraid: Couldn\'t register IRQ %d!\n", irq); } goto out_free_scb_list; } else { } { tmp___6 = mega_setup_mailbox(adapter); } if (tmp___6 != 0) { goto out_free_irq; } else { } { tmp___7 = mega_query_adapter(adapter); } if (tmp___7 != 0) { goto out_free_mbox; } else { } if ((unsigned int )subsysid == 4369U && (unsigned int )subsysvid == 4369U) { { tmp___8 = strcmp((char const *)(& adapter->fw_version), "3.00"); } if (tmp___8 == 0) { { printk("\fmegaraid: Your card is a Dell PERC 2/SC RAID controller with firmware\nmegaraid: 3.00 or 3.01. This driver is known to have corruption issues\nmegaraid: with those firmware versions on this specific card. In order\nmegaraid: to protect your data, please upgrade your firmware to version\nmegaraid: 3.10 or later, available from the Dell Technical Support web\nmegaraid: site at\nhttp://support.dell.com/us/en/filelib/download/index.asp?fileid=2940\n"); } } else { { tmp___9 = strcmp((char const *)(& adapter->fw_version), "3.01"); } if (tmp___9 == 0) { { printk("\fmegaraid: Your card is a Dell PERC 2/SC RAID controller with firmware\nmegaraid: 3.00 or 3.01. This driver is known to have corruption issues\nmegaraid: with those firmware versions on this specific card. In order\nmegaraid: to protect your data, please upgrade your firmware to version\nmegaraid: 3.10 or later, available from the Dell Technical Support web\nmegaraid: site at\nhttp://support.dell.com/us/en/filelib/download/index.asp?fileid=2940\n"); } } else { } } } else { } if ((unsigned int )subsysvid == 4156U && (unsigned int )subsysid - 24807U <= 1U) { { tmp___10 = strcmp((char const *)(& adapter->fw_version), "H01.07"); } if (tmp___10 == 0) { { printk("\fmegaraid: Firmware H.01.07, H.01.08, and H.01.09 on 1M/2M controllers\nmegaraid: do not support 64 bit addressing.\nmegaraid: DISABLING 64 bit support.\n"); adapter->flag = adapter->flag & 4227858431U; } } else { { tmp___11 = strcmp((char const *)(& adapter->fw_version), "H01.08"); } if (tmp___11 == 0) { { printk("\fmegaraid: Firmware H.01.07, H.01.08, and H.01.09 on 1M/2M controllers\nmegaraid: do not support 64 bit addressing.\nmegaraid: DISABLING 64 bit support.\n"); adapter->flag = adapter->flag & 4227858431U; } } else { { tmp___12 = strcmp((char const *)(& adapter->fw_version), "H01.09"); } if (tmp___12 == 0) { { printk("\fmegaraid: Firmware H.01.07, H.01.08, and H.01.09 on 1M/2M controllers\nmegaraid: do not support 64 bit addressing.\nmegaraid: DISABLING 64 bit support.\n"); adapter->flag = adapter->flag & 4227858431U; } } else { } } } } else { } { tmp___13 = mega_is_bios_enabled(adapter); } if (tmp___13 != 0) { mega_hbas[hba_count].is_bios_enabled = 1; } else { } { mega_hbas[hba_count].hostdata_addr = adapter; mega_enum_raid_scsi(adapter); mega_get_boot_drv(adapter); } if (adapter->boot_pdrv_enabled != 0) { j = (int )adapter->product_info.nchannels; i = 0; goto ldv_39517; ldv_39516: adapter->logdrv_chan[i] = 0U; i = i + 1; ldv_39517: ; if (i < j) { goto ldv_39516; } else { } i = j; goto ldv_39520; ldv_39519: adapter->logdrv_chan[i] = 1U; i = i + 1; ldv_39520: ; if (i < j + 4) { goto ldv_39519; } else { } } else { i = 0; goto ldv_39523; ldv_39522: adapter->logdrv_chan[i] = 1U; i = i + 1; ldv_39523: ; if (i <= 3) { goto ldv_39522; } else { } i = 4; goto ldv_39526; ldv_39525: adapter->logdrv_chan[i] = 0U; i = i + 1; ldv_39526: ; if (i <= 8) { goto ldv_39525; } else { } adapter->mega_ch_class = adapter->mega_ch_class << 4; } { adapter->read_ldidmap = 0; adapter->support_random_del = mega_support_random_del(adapter); tmp___14 = mega_init_scb(adapter); } if (tmp___14 != 0) { goto out_free_mbox; } else { } { atomic_set(& adapter->pend_cmds, 0); atomic_set(& adapter->quiescent, 0); hba_soft_state[hba_count] = adapter; i = hba_count; mcontroller[i].base = (u64 )mega_baseport; mcontroller[i].irq = (u8 )irq; mcontroller[i].numldrv = adapter->numldrv; mcontroller[i].pcibus = pci_bus; mcontroller[i].pcidev = (u16 )id->device; mcontroller[i].pcifun = (unsigned int )pci_dev_func & 7U; mcontroller[i].pciid = 65535U; mcontroller[i].pcivendor = (u16 )id->vendor; mcontroller[i].pcislot = (u8 )((int )pci_dev_func >> 3); mcontroller[i].uid = (u32 )(((int )pci_bus << 8) | (int )pci_dev_func); } if (((long )adapter->flag & 67108864L) != 0L) { { pci_set_dma_mask(pdev, 0xffffffffffffffffULL); adapter->has_64bit_addr = 1; } } else { { pci_set_dma_mask(pdev, 4294967295ULL); adapter->has_64bit_addr = 0; } } { __mutex_init(& adapter->int_mtx, "&adapter->int_mtx", & __key___0); ldv_init_completion_117(& adapter->int_waitq); adapter->this_id = 7; (adapter->host)->this_id = 7; adapter->has_cluster = mega_support_cluster(adapter); } if (adapter->has_cluster != 0) { { printk("\rmegaraid: Cluster driver, initiator id:%d\n", adapter->this_id); } } else { } { pci_set_drvdata(pdev, (void *)host); mega_create_proc_entry(hba_count, mega_proc_dir_entry); error = ldv_scsi_add_host_118(host, & pdev->dev); } if (error != 0) { goto out_free_mbox; } else { } { scsi_scan_host(host); hba_count = hba_count + 1; } return (0); out_free_mbox: { pci_free_consistent(adapter->dev, 74UL, (void *)adapter->una_mbox64, adapter->una_mbox64_dma); } out_free_irq: { ldv_free_irq_119((adapter->host)->irq, (void *)adapter); } out_free_scb_list: { kfree((void const *)adapter->scb_list); } out_free_cmd_buffer: { pci_free_consistent(adapter->dev, 2048UL, (void *)adapter->mega_buffer, adapter->buf_dma_handle); } out_host_put: { scsi_host_put(host); } out_iounmap: ; if ((flag & 536870912UL) != 0UL) { { ldv_iounmap_120((void volatile *)mega_baseport); } } else { } out_release_region: ; if ((flag & 536870912UL) != 0UL) { { __release_region(& iomem_resource, (resource_size_t )tbase, 128ULL); } } else { { __release_region(& ioport_resource, (resource_size_t )mega_baseport, 16ULL); } } out_disable_device: { pci_disable_device(pdev); } out: ; return (error); } } static void __megaraid_shutdown(adapter_t *adapter ) { u_char raw_mbox[15U] ; mbox_t *mbox ; int i ; int tmp ; unsigned long __ms ; unsigned long tmp___0 ; { { mbox = (mbox_t *)(& raw_mbox); memset((void *)(& mbox->m_out), 0, 15UL); raw_mbox[0] = 10U; ldv_free_irq_121((adapter->host)->irq, (void *)adapter); issue_scb_block(adapter, (u_char *)(& raw_mbox)); memset((void *)(& mbox->m_out), 0, 15UL); raw_mbox[0] = 254U; issue_scb_block(adapter, (u_char *)(& raw_mbox)); tmp = atomic_read((atomic_t const *)(& adapter->pend_cmds)); } if (tmp > 0) { { printk("\fmegaraid: pending commands!!\n"); } } else { } i = 0; goto ldv_39540; ldv_39539: __ms = 1000UL; goto ldv_39537; ldv_39536: { __const_udelay(4295000UL); } ldv_39537: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_39536; } else { } i = i + 1; ldv_39540: ; if (i <= 10) { goto ldv_39539; } else { } return; } } static void megaraid_remove_one(struct pci_dev *pdev ) { struct Scsi_Host *host ; void *tmp ; adapter_t *adapter ; char buf[12U] ; unsigned int tmp___0 ; { { tmp = pci_get_drvdata(pdev); host = (struct Scsi_Host *)tmp; adapter = (adapter_t *)(& host->hostdata); ldv_scsi_remove_host_122(host); __megaraid_shutdown(adapter); } if (((long )adapter->flag & 536870912L) != 0L) { { ldv_iounmap_123((void volatile *)adapter->base); __release_region(& iomem_resource, (resource_size_t )(adapter->host)->base, 128ULL); } } else { { __release_region(& ioport_resource, (resource_size_t )adapter->base, 16ULL); } } { mega_free_sgl(adapter); } if ((unsigned long )adapter->controller_proc_dir_entry != (unsigned long )((struct proc_dir_entry *)0)) { { remove_proc_entry("stat", adapter->controller_proc_dir_entry); remove_proc_entry("config", adapter->controller_proc_dir_entry); remove_proc_entry("mailbox", adapter->controller_proc_dir_entry); remove_proc_entry("rebuild-rate", adapter->controller_proc_dir_entry); remove_proc_entry("battery-status", adapter->controller_proc_dir_entry); remove_proc_entry("diskdrives-ch0", adapter->controller_proc_dir_entry); remove_proc_entry("diskdrives-ch1", adapter->controller_proc_dir_entry); remove_proc_entry("diskdrives-ch2", adapter->controller_proc_dir_entry); remove_proc_entry("diskdrives-ch3", adapter->controller_proc_dir_entry); remove_proc_entry("raiddrives-0-9", adapter->controller_proc_dir_entry); remove_proc_entry("raiddrives-10-19", adapter->controller_proc_dir_entry); remove_proc_entry("raiddrives-20-29", adapter->controller_proc_dir_entry); remove_proc_entry("raiddrives-30-39", adapter->controller_proc_dir_entry); buf[0] = 0; tmp___0 = 1U; } { while (1) { while_continue: /* CIL Label */ ; if (tmp___0 >= 12U) { goto while_break; } else { } buf[tmp___0] = (char)0; tmp___0 = tmp___0 + 1U; } while_break: /* CIL Label */ ; } { sprintf((char *)(& buf), "hba%d", (adapter->host)->host_no); remove_proc_entry((char const *)(& buf), mega_proc_dir_entry); } } else { } { pci_free_consistent(adapter->dev, 2048UL, (void *)adapter->mega_buffer, adapter->buf_dma_handle); kfree((void const *)adapter->scb_list); pci_free_consistent(adapter->dev, 74UL, (void *)adapter->una_mbox64, adapter->una_mbox64_dma); scsi_host_put(host); pci_disable_device(pdev); hba_count = hba_count - 1; } return; } } static void megaraid_shutdown(struct pci_dev *pdev ) { struct Scsi_Host *host ; void *tmp ; adapter_t *adapter ; { { tmp = pci_get_drvdata(pdev); host = (struct Scsi_Host *)tmp; adapter = (adapter_t *)(& host->hostdata); __megaraid_shutdown(adapter); } return; } } static struct pci_device_id megaraid_pci_tbl[4U] = { {4126U, 36880U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4126U, 36960U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 6496U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__megaraid_pci_tbl_device_table[4U] ; static struct pci_driver megaraid_pci_driver = {{0, 0}, "megaraid_legacy", (struct pci_device_id const *)(& megaraid_pci_tbl), & megaraid_probe_one, & megaraid_remove_one, 0, 0, 0, 0, & megaraid_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int megaraid_init(void) { int error ; { if (max_cmd_per_lun - 1U > 125U) { max_cmd_per_lun = 126U; } else { } if ((unsigned int )max_mbox_busy_wait > 10U) { max_mbox_busy_wait = 10U; } else { } { mega_proc_dir_entry = proc_mkdir("megaraid", (struct proc_dir_entry *)0); } if ((unsigned long )mega_proc_dir_entry == (unsigned long )((struct proc_dir_entry *)0)) { { printk("\fmegaraid: failed to create megaraid root\n"); } } else { } { error = ldv___pci_register_driver_124(& megaraid_pci_driver, & __this_module, "megaraid"); } if (error != 0) { { remove_proc_entry("megaraid", (struct proc_dir_entry *)0); } return (error); } else { } { major = ldv_register_chrdev_125(0U, "megadev_legacy", & megadev_fops); } if (major == 0) { { printk("\fmegaraid: failed to register char device\n"); } } else { } return (0); } } static void megaraid_exit(void) { { { ldv_unregister_chrdev_126((unsigned int )major, "megadev_legacy"); ldv_pci_unregister_driver_127(& megaraid_pci_driver); remove_proc_entry("megaraid", (struct proc_dir_entry *)0); } return; } } void ldv_EMGentry_exit_megaraid_exit_28_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_megaraid_init_28_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_dispatch_deregister_23_1(struct Scsi_Host *arg0 ) ; void ldv_dispatch_deregister_24_1(struct file_operations *arg0 ) ; void ldv_dispatch_deregister_26_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_14_28_4(void) ; void ldv_dispatch_irq_deregister_19_1(int arg0 ) ; void ldv_dispatch_irq_register_20_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_21_2(struct Scsi_Host *arg0 ) ; void ldv_dispatch_register_25_2(struct file_operations *arg0 ) ; void ldv_dispatch_register_27_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_14_28_5(void) ; void ldv_dummy_resourceless_instance_callback_10_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_11_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_12_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_13_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_14_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_15_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_16_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_17_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_18_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_8_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_9_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) ; void ldv_entry_EMGentry_28(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_file_operations_instance_1(void *arg0 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_2(void *arg0 ) ; int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_3(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_chrdev(int arg0 , unsigned int arg1 , char *arg2 , struct file_operations *arg3 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_scsi_add_host(int arg0 , struct Scsi_Host *arg1 , struct device *arg2 ) ; struct Scsi_Host *ldv_scsi_host_alloc(struct Scsi_Host *arg0 , struct scsi_host_template *arg1 , int arg2 ) ; void ldv_scsi_host_template_instance_callback_4_17(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_18(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_19(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_20(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_21(char *(*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_22(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_scsi_host_template_instance_callback_4_25(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_scsi_host_template_instance_callback_4_28(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) ; void ldv_scsi_host_template_instance_callback_4_29(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_scsi_host_template_instance_callback_4_32(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_scsi_host_template_instance_callback_4_4(int (*arg0)(struct scsi_device * , struct block_device * , unsigned long , int * ) , struct scsi_device *arg1 , struct block_device *arg2 , unsigned long arg3 , int *arg4 ) ; void ldv_scsi_host_template_instance_callback_5_17(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_5_18(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_5_19(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_5_20(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_5_21(char *(*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_callback_5_22(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_scsi_host_template_instance_callback_5_25(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_scsi_host_template_instance_callback_5_28(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) ; void ldv_scsi_host_template_instance_callback_5_29(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_scsi_host_template_instance_callback_5_32(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_scsi_host_template_instance_callback_5_4(int (*arg0)(struct scsi_device * , struct block_device * , unsigned long , int * ) , struct scsi_device *arg1 , struct block_device *arg2 , unsigned long arg3 , int *arg4 ) ; int ldv_scsi_host_template_instance_probe_4_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; int ldv_scsi_host_template_instance_probe_5_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_release_4_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_release_5_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_scsi_host_template_instance_4(void *arg0 ) ; void ldv_scsi_host_template_scsi_host_template_instance_5(void *arg0 ) ; void ldv_scsi_remove_host(void *arg0 , struct Scsi_Host *arg1 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_10(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_11(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_12(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_13(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_14(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_15(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_16(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_17(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_18(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_8(void *arg0 ) ; void ldv_struct_mega_proc_file_dummy_resourceless_instance_9(void *arg0 ) ; void ldv_unregister_chrdev(void *arg0 , unsigned int arg1 , char *arg2 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_10 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_12 ; struct ldv_thread ldv_thread_13 ; struct ldv_thread ldv_thread_14 ; struct ldv_thread ldv_thread_15 ; struct ldv_thread ldv_thread_16 ; struct ldv_thread ldv_thread_17 ; struct ldv_thread ldv_thread_18 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_28 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_megaraid_exit_28_2(void (*arg0)(void) ) { { { megaraid_exit(); } return; } } int ldv_EMGentry_init_megaraid_init_28_9(int (*arg0)(void) ) { int tmp ; { { tmp = megaraid_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_27_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_27_pci_driver_pci_driver = arg1; ldv_dispatch_register_27_2(ldv_27_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_23_1(struct Scsi_Host *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } return; } } void ldv_dispatch_deregister_24_1(struct file_operations *arg0 ) { { return; } } void ldv_dispatch_deregister_26_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_14_28_4(void) { { return; } } void ldv_dispatch_irq_deregister_19_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_20_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_2 *)tmp; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_21_2(struct Scsi_Host *arg0 ) { struct ldv_struct_scsi_host_template_instance_4 *cf_arg_4 ; struct ldv_struct_scsi_host_template_instance_4 *cf_arg_5 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_scsi_host_template_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_scsi_host_template_scsi_host_template_instance_4((void *)cf_arg_4); } } else { { tmp___0 = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_scsi_host_template_instance_4 *)tmp___0; cf_arg_5->arg0 = arg0; ldv_scsi_host_template_scsi_host_template_instance_5((void *)cf_arg_5); } } return; } } void ldv_dispatch_register_25_2(struct file_operations *arg0 ) { struct ldv_struct_file_operations_instance_0 *cf_arg_0 ; struct ldv_struct_file_operations_instance_0 *cf_arg_1 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_file_operations_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); } } else { { tmp___0 = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_file_operations_instance_0 *)tmp___0; cf_arg_1->arg0 = arg0; ldv_file_operations_file_operations_instance_1((void *)cf_arg_1); } } return; } } void ldv_dispatch_register_27_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_pci_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_pci_pci_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_14_28_5(void) { struct ldv_struct_EMGentry_28 *cf_arg_6 ; struct ldv_struct_EMGentry_28 *cf_arg_7 ; struct ldv_struct_EMGentry_28 *cf_arg_8 ; struct ldv_struct_EMGentry_28 *cf_arg_9 ; struct ldv_struct_EMGentry_28 *cf_arg_10 ; struct ldv_struct_EMGentry_28 *cf_arg_11 ; struct ldv_struct_EMGentry_28 *cf_arg_12 ; struct ldv_struct_EMGentry_28 *cf_arg_13 ; struct ldv_struct_EMGentry_28 *cf_arg_14 ; struct ldv_struct_EMGentry_28 *cf_arg_15 ; struct ldv_struct_EMGentry_28 *cf_arg_16 ; struct ldv_struct_EMGentry_28 *cf_arg_17 ; struct ldv_struct_EMGentry_28 *cf_arg_18 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; { { tmp = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_EMGentry_28 *)tmp; ldv_struct_mega_proc_file_dummy_resourceless_instance_6((void *)cf_arg_6); tmp___0 = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_EMGentry_28 *)tmp___0; ldv_struct_mega_proc_file_dummy_resourceless_instance_7((void *)cf_arg_7); tmp___1 = ldv_xmalloc(4UL); cf_arg_8 = (struct ldv_struct_EMGentry_28 *)tmp___1; ldv_struct_mega_proc_file_dummy_resourceless_instance_8((void *)cf_arg_8); tmp___2 = ldv_xmalloc(4UL); cf_arg_9 = (struct ldv_struct_EMGentry_28 *)tmp___2; ldv_struct_mega_proc_file_dummy_resourceless_instance_9((void *)cf_arg_9); tmp___3 = ldv_xmalloc(4UL); cf_arg_10 = (struct ldv_struct_EMGentry_28 *)tmp___3; ldv_struct_mega_proc_file_dummy_resourceless_instance_10((void *)cf_arg_10); tmp___4 = ldv_xmalloc(4UL); cf_arg_11 = (struct ldv_struct_EMGentry_28 *)tmp___4; ldv_struct_mega_proc_file_dummy_resourceless_instance_11((void *)cf_arg_11); tmp___5 = ldv_xmalloc(4UL); cf_arg_12 = (struct ldv_struct_EMGentry_28 *)tmp___5; ldv_struct_mega_proc_file_dummy_resourceless_instance_12((void *)cf_arg_12); tmp___6 = ldv_xmalloc(4UL); cf_arg_13 = (struct ldv_struct_EMGentry_28 *)tmp___6; ldv_struct_mega_proc_file_dummy_resourceless_instance_13((void *)cf_arg_13); tmp___7 = ldv_xmalloc(4UL); cf_arg_14 = (struct ldv_struct_EMGentry_28 *)tmp___7; ldv_struct_mega_proc_file_dummy_resourceless_instance_14((void *)cf_arg_14); tmp___8 = ldv_xmalloc(4UL); cf_arg_15 = (struct ldv_struct_EMGentry_28 *)tmp___8; ldv_struct_mega_proc_file_dummy_resourceless_instance_15((void *)cf_arg_15); tmp___9 = ldv_xmalloc(4UL); cf_arg_16 = (struct ldv_struct_EMGentry_28 *)tmp___9; ldv_struct_mega_proc_file_dummy_resourceless_instance_16((void *)cf_arg_16); tmp___10 = ldv_xmalloc(4UL); cf_arg_17 = (struct ldv_struct_EMGentry_28 *)tmp___10; ldv_struct_mega_proc_file_dummy_resourceless_instance_17((void *)cf_arg_17); tmp___11 = ldv_xmalloc(4UL); cf_arg_18 = (struct ldv_struct_EMGentry_28 *)tmp___11; ldv_struct_mega_proc_file_dummy_resourceless_instance_18((void *)cf_arg_18); } return; } } void ldv_dummy_resourceless_instance_callback_10_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_pdrv_ch1(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_11_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_pdrv_ch2(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_12_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_pdrv_ch3(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_13_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_rdrv_10(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_14_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_rdrv_20(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_15_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_rdrv_30(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_16_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_rdrv_40(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_17_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_rebuild_rate(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_18_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_stat(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_battery(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_config(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_8_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_mbox(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_9_3(int (*arg0)(struct seq_file * , void * ) , struct seq_file *arg1 , void *arg2 ) { { { proc_show_pdrv_ch0(arg1, arg2); } return; } } void ldv_entry_EMGentry_28(void *arg0 ) { void (*ldv_28_exit_megaraid_exit_default)(void) ; int (*ldv_28_init_megaraid_init_default)(void) ; int ldv_28_ret_default ; int tmp ; int tmp___0 ; { { ldv_28_ret_default = ldv_EMGentry_init_megaraid_init_28_9(ldv_28_init_megaraid_init_default); ldv_28_ret_default = ldv_ldv_post_init_128(ldv_28_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_28_ret_default != 0); ldv_ldv_check_final_state_129(); ldv_stop(); } return; } else { { ldv_assume(ldv_28_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_14_28_5(); ldv_dispatch_deregister_dummy_resourceless_instance_14_28_4(); } } else { } { ldv_EMGentry_exit_megaraid_exit_28_2(ldv_28_exit_megaraid_exit_default); ldv_ldv_check_final_state_130(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_131(); ldv_entry_EMGentry_28((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { struct file_operations *ldv_0_container_file_operations ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; unsigned long ldv_0_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_0_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_0_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_0_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ ; goto ldv_call_0; goto ldv_call_0; case_3: /* CIL Label */ ; goto ldv_main_0; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_file_operations_file_operations_instance_1(void *arg0 ) { struct file_operations *ldv_1_container_file_operations ; char *ldv_1_ldv_param_4_1_default ; long long *ldv_1_ldv_param_4_3_default ; struct file *ldv_1_resource_file ; struct inode *ldv_1_resource_inode ; int ldv_1_ret_default ; unsigned long ldv_1_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_1_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_1_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_1_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_1_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_1_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_1; return; ldv_main_1: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_1_ret_default = ldv_file_operations_instance_probe_1_12(ldv_1_container_file_operations->open, ldv_1_resource_inode, ldv_1_resource_file); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_file); ldv_free((void *)ldv_1_resource_inode); } return; } return; ldv_call_1: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_1_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_1_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_1_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_1_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_1_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_1_container_file_operations->write, ldv_1_resource_file, ldv_1_ldv_param_4_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_1_ldv_param_4_1_default); ldv_free((void *)ldv_1_ldv_param_4_3_default); } goto ldv_call_1; case_2: /* CIL Label */ ; goto ldv_call_1; goto ldv_call_1; case_3: /* CIL Label */ ; goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = mega_proc_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = megadev_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_19_line_line ; { { ldv_19_line_line = arg1; ldv_dispatch_irq_deregister_19_1(ldv_19_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { enum irqreturn tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_2(void *arg0 ) { enum irqreturn (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line ; enum irqreturn ldv_2_ret_val_default ; enum irqreturn (*ldv_2_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_2 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_2 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_2 *)0)) { { ldv_2_line_line = data->arg0; ldv_2_callback_handler = data->arg1; ldv_2_thread_thread = data->arg2; ldv_2_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_2_callback_handler != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_2_ret_val_default = ldv_interrupt_instance_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); } } else { } { ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_2_ret_val_default == 2U); } if ((unsigned long )ldv_2_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_2_ret_val_default != 2U); } } return; return; } } int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = megaraid_probe_one(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { megaraid_remove_one(arg1); } return; } } void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { megaraid_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_3(void *arg0 ) { struct pci_driver *ldv_3_container_pci_driver ; struct pci_dev *ldv_3_resource_dev ; struct pm_message ldv_3_resource_pm_message ; struct pci_device_id *ldv_3_resource_struct_pci_device_id_ptr ; int ldv_3_ret_default ; struct ldv_struct_pci_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_3 *)arg0; ldv_3_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_3 *)0)) { { ldv_3_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_3_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_3_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_3; return; ldv_main_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_132(); ldv_3_ret_default = ldv_pci_instance_probe_3_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_3_container_pci_driver->probe, ldv_3_resource_dev, ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = ldv_ldv_post_probe_133(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_dev); ldv_free((void *)ldv_3_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_3: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_3; case_2: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_3_8(ldv_3_container_pci_driver->suspend, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_late_3_7(ldv_3_container_pci_driver->suspend_late, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_3_6(ldv_3_container_pci_driver->resume_early, ldv_3_resource_dev); } } else { } if ((unsigned long )ldv_3_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_3_5(ldv_3_container_pci_driver->resume, ldv_3_resource_dev); } } else { } goto ldv_call_3; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_3_3(ldv_3_container_pci_driver->shutdown, ldv_3_resource_dev); ldv_pci_instance_release_3_2(ldv_3_container_pci_driver->remove, ldv_3_resource_dev); } goto ldv_main_3; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_26_pci_driver_pci_driver ; { { ldv_26_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_26_1(ldv_26_pci_driver_pci_driver); } return; return; } } int ldv_register_chrdev(int arg0 , unsigned int arg1 , char *arg2 , struct file_operations *arg3 ) { struct file_operations *ldv_25_file_operations_file_operations ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_25_file_operations_file_operations = arg3; ldv_dispatch_register_25_2(ldv_25_file_operations_file_operations); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_20_callback_handler)(int , void * ) ; void *ldv_20_data_data ; int ldv_20_line_line ; enum irqreturn (*ldv_20_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_20_line_line = (int )arg1; ldv_20_callback_handler = arg2; ldv_20_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_20_data_data = arg5; ldv_dispatch_irq_register_20_2(ldv_20_line_line, ldv_20_callback_handler, ldv_20_thread_thread, ldv_20_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_scsi_add_host(int arg0 , struct Scsi_Host *arg1 , struct device *arg2 ) { struct Scsi_Host *ldv_21_host_host ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_dispatch_register_21_2(ldv_21_host_host); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct Scsi_Host *ldv_scsi_host_alloc(struct Scsi_Host *arg0 , struct scsi_host_template *arg1 , int arg2 ) { struct Scsi_Host *ldv_22_host_host ; struct scsi_host_template *ldv_22_scsi_host_template_scsi_host_template ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3800UL); ldv_22_host_host = (struct Scsi_Host *)tmp; ldv_22_scsi_host_template_scsi_host_template = arg1; ldv_22_host_host->hostt = ldv_22_scsi_host_template_scsi_host_template; } return (ldv_22_host_host); return (arg0); } else { return ((struct Scsi_Host *)0); return (arg0); } return (arg0); } } void ldv_scsi_host_template_instance_callback_4_17(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { megaraid_abort(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_18(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { megaraid_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_19(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { megaraid_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_20(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { megaraid_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_21(char *(*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { megaraid_info(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_22(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { noop_llseek(arg1, arg2, arg3); } return; } } void ldv_scsi_host_template_instance_callback_4_25(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { single_release(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_4_28(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) { { { megaraid_queue(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_4_29(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { seq_read(arg1, arg2, arg3, arg4); } return; } } void ldv_scsi_host_template_instance_callback_4_32(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { megadev_unlocked_ioctl(arg1, arg2, arg3); } return; } } void ldv_scsi_host_template_instance_callback_4_4(int (*arg0)(struct scsi_device * , struct block_device * , unsigned long , int * ) , struct scsi_device *arg1 , struct block_device *arg2 , unsigned long arg3 , int *arg4 ) { { { megaraid_biosparam(arg1, arg2, arg3, arg4); } return; } } void ldv_scsi_host_template_instance_callback_5_17(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { megaraid_abort(arg1); } return; } } void ldv_scsi_host_template_instance_callback_5_18(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { megaraid_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_5_19(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { megaraid_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_5_20(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { megaraid_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_5_21(char *(*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { megaraid_info(arg1); } return; } } void ldv_scsi_host_template_instance_callback_5_22(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { seq_lseek(arg1, arg2, arg3); } return; } } void ldv_scsi_host_template_instance_callback_5_25(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { single_release(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_5_28(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) { { { megaraid_queue(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_5_29(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { seq_read(arg1, arg2, arg3, arg4); } return; } } void ldv_scsi_host_template_instance_callback_5_32(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { megadev_unlocked_ioctl(arg1, arg2, arg3); } return; } } void ldv_scsi_host_template_instance_callback_5_4(int (*arg0)(struct scsi_device * , struct block_device * , unsigned long , int * ) , struct scsi_device *arg1 , struct block_device *arg2 , unsigned long arg3 , int *arg4 ) { { { megaraid_biosparam(arg1, arg2, arg3, arg4); } return; } } int ldv_scsi_host_template_instance_probe_4_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } int ldv_scsi_host_template_instance_probe_5_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_scsi_host_template_instance_release_4_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_scsi_host_template_instance_release_5_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_scsi_host_template_scsi_host_template_instance_4(void *arg0 ) { int (*ldv_4_callback_bios_param)(struct scsi_device * , struct block_device * , unsigned long , int * ) ; int (*ldv_4_callback_eh_abort_handler)(struct scsi_cmnd * ) ; int (*ldv_4_callback_eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_4_callback_eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_4_callback_eh_host_reset_handler)(struct scsi_cmnd * ) ; char *(*ldv_4_callback_info)(struct Scsi_Host * ) ; long long (*ldv_4_callback_llseek)(struct file * , long long , int ) ; int (*ldv_4_callback_open)(struct inode * , struct file * ) ; int (*ldv_4_callback_queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; long (*ldv_4_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_4_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct Scsi_Host *ldv_4_host_host ; struct file *ldv_4_host_struct_file_ptr ; struct scsi_cmnd *ldv_4_host_struct_scsi_cmnd_ptr ; long long ldv_4_ldv_param_22_1_default ; int ldv_4_ldv_param_22_2_default ; struct inode *ldv_4_ldv_param_25_0_default ; char *ldv_4_ldv_param_29_1_default ; unsigned long ldv_4_ldv_param_29_2_default ; long long *ldv_4_ldv_param_29_3_default ; unsigned int ldv_4_ldv_param_32_1_default ; unsigned long ldv_4_ldv_param_32_2_default ; struct scsi_device *ldv_4_ldv_param_4_0_default ; struct block_device *ldv_4_ldv_param_4_1_default ; unsigned long ldv_4_ldv_param_4_2_default ; int *ldv_4_ldv_param_4_3_default ; int ldv_4_ret_default ; struct ldv_struct_scsi_host_template_instance_4 *data ; int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; int tmp___8 ; { data = (struct ldv_struct_scsi_host_template_instance_4 *)arg0; ldv_4_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_scsi_host_template_instance_4 *)0)) { { ldv_4_host_host = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_4; return; ldv_main_4: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_ldv_pre_probe_134(); } if ((unsigned long )(ldv_4_host_host->hostt)->detect != (unsigned long )((int (*)(struct scsi_host_template * ))0)) { { ldv_4_ret_default = ldv_scsi_host_template_instance_probe_4_10((int (*)(struct Scsi_Host * ))(ldv_4_host_host->hostt)->detect, ldv_4_host_host); } } else { } { ldv_4_ret_default = ldv_ldv_post_probe_135(ldv_4_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_4_ret_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_ret_default != 0); } goto ldv_main_4; } } else { return; } return; ldv_call_4: { tmp___8 = ldv_undef_int(); } if (tmp___8 != 0) { if ((unsigned long )(ldv_4_host_host->hostt)->release != (unsigned long )((int (*)(struct Scsi_Host * ))0)) { { ldv_scsi_host_template_instance_release_4_2((ldv_4_host_host->hostt)->release, ldv_4_host_host); } } else { } goto ldv_main_4; } else { { tmp___1 = ldv_xmalloc(3464UL); ldv_4_ldv_param_4_0_default = (struct scsi_device *)tmp___1; tmp___2 = ldv_xmalloc(480UL); ldv_4_ldv_param_4_1_default = (struct block_device *)tmp___2; tmp___3 = ldv_xmalloc(4UL); ldv_4_ldv_param_4_3_default = (int *)tmp___3; tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } if (tmp___4 == 4) { goto case_4; } else { } if (tmp___4 == 5) { goto case_5; } else { } if (tmp___4 == 6) { goto case_6; } else { } if (tmp___4 == 7) { goto case_7; } else { } if (tmp___4 == 8) { goto case_8; } else { } if (tmp___4 == 9) { goto case_9; } else { } if (tmp___4 == 10) { goto case_10; } else { } if (tmp___4 == 11) { goto case_11; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_32(ldv_4_callback_unlocked_ioctl, ldv_4_host_struct_file_ptr, ldv_4_ldv_param_32_1_default, ldv_4_ldv_param_32_2_default); } goto ldv_40677; case_2: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_4_ldv_param_29_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_4_ldv_param_29_3_default = (long long *)tmp___6; ldv_scsi_host_template_instance_callback_4_29(ldv_4_callback_read, ldv_4_host_struct_file_ptr, ldv_4_ldv_param_29_1_default, ldv_4_ldv_param_29_2_default, ldv_4_ldv_param_29_3_default); ldv_free((void *)ldv_4_ldv_param_29_1_default); ldv_free((void *)ldv_4_ldv_param_29_3_default); } goto ldv_40677; case_3: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_28(ldv_4_callback_queuecommand, ldv_4_host_host, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_40677; case_4: /* CIL Label */ { tmp___7 = ldv_xmalloc(976UL); ldv_4_ldv_param_25_0_default = (struct inode *)tmp___7; ldv_scsi_host_template_instance_callback_4_25(ldv_4_callback_open, ldv_4_ldv_param_25_0_default, ldv_4_host_struct_file_ptr); ldv_free((void *)ldv_4_ldv_param_25_0_default); } goto ldv_40677; case_5: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_22(ldv_4_callback_llseek, ldv_4_host_struct_file_ptr, ldv_4_ldv_param_22_1_default, ldv_4_ldv_param_22_2_default); } goto ldv_40677; case_6: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_21(ldv_4_callback_info, ldv_4_host_host); } goto ldv_40677; case_7: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_20(ldv_4_callback_eh_host_reset_handler, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_40677; case_8: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_19(ldv_4_callback_eh_device_reset_handler, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_40677; case_9: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_18(ldv_4_callback_eh_bus_reset_handler, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_40677; case_10: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_17(ldv_4_callback_eh_abort_handler, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_40677; case_11: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_4(ldv_4_callback_bios_param, ldv_4_ldv_param_4_0_default, ldv_4_ldv_param_4_1_default, ldv_4_ldv_param_4_2_default, ldv_4_ldv_param_4_3_default); } goto ldv_40677; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_40677: ; } { ldv_free((void *)ldv_4_ldv_param_4_0_default); ldv_free((void *)ldv_4_ldv_param_4_1_default); ldv_free((void *)ldv_4_ldv_param_4_3_default); } goto ldv_call_4; return; } } void ldv_scsi_host_template_scsi_host_template_instance_5(void *arg0 ) { int (*ldv_5_callback_bios_param)(struct scsi_device * , struct block_device * , unsigned long , int * ) ; int (*ldv_5_callback_eh_abort_handler)(struct scsi_cmnd * ) ; int (*ldv_5_callback_eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_5_callback_eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*ldv_5_callback_eh_host_reset_handler)(struct scsi_cmnd * ) ; char *(*ldv_5_callback_info)(struct Scsi_Host * ) ; long long (*ldv_5_callback_llseek)(struct file * , long long , int ) ; int (*ldv_5_callback_open)(struct inode * , struct file * ) ; int (*ldv_5_callback_queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; long (*ldv_5_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_5_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct Scsi_Host *ldv_5_host_host ; struct file *ldv_5_host_struct_file_ptr ; struct scsi_cmnd *ldv_5_host_struct_scsi_cmnd_ptr ; long long ldv_5_ldv_param_22_1_default ; int ldv_5_ldv_param_22_2_default ; struct inode *ldv_5_ldv_param_25_0_default ; char *ldv_5_ldv_param_29_1_default ; unsigned long ldv_5_ldv_param_29_2_default ; long long *ldv_5_ldv_param_29_3_default ; unsigned int ldv_5_ldv_param_32_1_default ; unsigned long ldv_5_ldv_param_32_2_default ; struct scsi_device *ldv_5_ldv_param_4_0_default ; struct block_device *ldv_5_ldv_param_4_1_default ; unsigned long ldv_5_ldv_param_4_2_default ; int *ldv_5_ldv_param_4_3_default ; int ldv_5_ret_default ; struct ldv_struct_scsi_host_template_instance_4 *data ; int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; int tmp___8 ; { data = (struct ldv_struct_scsi_host_template_instance_4 *)arg0; ldv_5_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_scsi_host_template_instance_4 *)0)) { { ldv_5_host_host = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_5; return; ldv_main_5: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_ldv_pre_probe_136(); } if ((unsigned long )(ldv_5_host_host->hostt)->detect != (unsigned long )((int (*)(struct scsi_host_template * ))0)) { { ldv_5_ret_default = ldv_scsi_host_template_instance_probe_5_10((int (*)(struct Scsi_Host * ))(ldv_5_host_host->hostt)->detect, ldv_5_host_host); } } else { } { ldv_5_ret_default = ldv_ldv_post_probe_137(ldv_5_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_5_ret_default == 0); } goto ldv_call_5; } else { { ldv_assume(ldv_5_ret_default != 0); } goto ldv_main_5; } } else { return; } return; ldv_call_5: { tmp___8 = ldv_undef_int(); } if (tmp___8 != 0) { if ((unsigned long )(ldv_5_host_host->hostt)->release != (unsigned long )((int (*)(struct Scsi_Host * ))0)) { { ldv_scsi_host_template_instance_release_5_2((ldv_5_host_host->hostt)->release, ldv_5_host_host); } } else { } goto ldv_main_5; } else { { tmp___1 = ldv_xmalloc(3464UL); ldv_5_ldv_param_4_0_default = (struct scsi_device *)tmp___1; tmp___2 = ldv_xmalloc(480UL); ldv_5_ldv_param_4_1_default = (struct block_device *)tmp___2; tmp___3 = ldv_xmalloc(4UL); ldv_5_ldv_param_4_3_default = (int *)tmp___3; tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } if (tmp___4 == 4) { goto case_4; } else { } if (tmp___4 == 5) { goto case_5; } else { } if (tmp___4 == 6) { goto case_6; } else { } if (tmp___4 == 7) { goto case_7; } else { } if (tmp___4 == 8) { goto case_8; } else { } if (tmp___4 == 9) { goto case_9; } else { } if (tmp___4 == 10) { goto case_10; } else { } if (tmp___4 == 11) { goto case_11; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_scsi_host_template_instance_callback_5_32(ldv_5_callback_unlocked_ioctl, ldv_5_host_struct_file_ptr, ldv_5_ldv_param_32_1_default, ldv_5_ldv_param_32_2_default); } goto ldv_40746; case_2: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_5_ldv_param_29_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_5_ldv_param_29_3_default = (long long *)tmp___6; ldv_scsi_host_template_instance_callback_5_29(ldv_5_callback_read, ldv_5_host_struct_file_ptr, ldv_5_ldv_param_29_1_default, ldv_5_ldv_param_29_2_default, ldv_5_ldv_param_29_3_default); ldv_free((void *)ldv_5_ldv_param_29_1_default); ldv_free((void *)ldv_5_ldv_param_29_3_default); } goto ldv_40746; case_3: /* CIL Label */ { ldv_scsi_host_template_instance_callback_5_28(ldv_5_callback_queuecommand, ldv_5_host_host, ldv_5_host_struct_scsi_cmnd_ptr); } goto ldv_40746; case_4: /* CIL Label */ { tmp___7 = ldv_xmalloc(976UL); ldv_5_ldv_param_25_0_default = (struct inode *)tmp___7; ldv_scsi_host_template_instance_callback_5_25(ldv_5_callback_open, ldv_5_ldv_param_25_0_default, ldv_5_host_struct_file_ptr); ldv_free((void *)ldv_5_ldv_param_25_0_default); } goto ldv_40746; case_5: /* CIL Label */ { ldv_scsi_host_template_instance_callback_5_22(ldv_5_callback_llseek, ldv_5_host_struct_file_ptr, ldv_5_ldv_param_22_1_default, ldv_5_ldv_param_22_2_default); } goto ldv_40746; case_6: /* CIL Label */ { ldv_scsi_host_template_instance_callback_5_21(ldv_5_callback_info, ldv_5_host_host); } goto ldv_40746; case_7: /* CIL Label */ { ldv_scsi_host_template_instance_callback_5_20(ldv_5_callback_eh_host_reset_handler, ldv_5_host_struct_scsi_cmnd_ptr); } goto ldv_40746; case_8: /* CIL Label */ { ldv_scsi_host_template_instance_callback_5_19(ldv_5_callback_eh_device_reset_handler, ldv_5_host_struct_scsi_cmnd_ptr); } goto ldv_40746; case_9: /* CIL Label */ { ldv_scsi_host_template_instance_callback_5_18(ldv_5_callback_eh_bus_reset_handler, ldv_5_host_struct_scsi_cmnd_ptr); } goto ldv_40746; case_10: /* CIL Label */ { ldv_scsi_host_template_instance_callback_5_17(ldv_5_callback_eh_abort_handler, ldv_5_host_struct_scsi_cmnd_ptr); } goto ldv_40746; case_11: /* CIL Label */ { ldv_scsi_host_template_instance_callback_5_4(ldv_5_callback_bios_param, ldv_5_ldv_param_4_0_default, ldv_5_ldv_param_4_1_default, ldv_5_ldv_param_4_2_default, ldv_5_ldv_param_4_3_default); } goto ldv_40746; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_40746: ; } { ldv_free((void *)ldv_5_ldv_param_4_0_default); ldv_free((void *)ldv_5_ldv_param_4_1_default); ldv_free((void *)ldv_5_ldv_param_4_3_default); } goto ldv_call_5; return; } } void ldv_scsi_remove_host(void *arg0 , struct Scsi_Host *arg1 ) { struct Scsi_Host *ldv_23_host_host ; { { ldv_23_host_host = arg1; ldv_dispatch_deregister_23_1(ldv_23_host_host); } return; return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_10(void *arg0 ) { int (*ldv_10_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_10_container_struct_seq_file_ptr ; void *ldv_10_ldv_param_3_1_default ; int tmp ; { goto ldv_call_10; return; ldv_call_10: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_10_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_10_3(ldv_10_callback_show, ldv_10_container_struct_seq_file_ptr, ldv_10_ldv_param_3_1_default); ldv_free(ldv_10_ldv_param_3_1_default); } goto ldv_call_10; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_11(void *arg0 ) { int (*ldv_11_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_11_container_struct_seq_file_ptr ; void *ldv_11_ldv_param_3_1_default ; int tmp ; { goto ldv_call_11; return; ldv_call_11: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_11_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_11_3(ldv_11_callback_show, ldv_11_container_struct_seq_file_ptr, ldv_11_ldv_param_3_1_default); ldv_free(ldv_11_ldv_param_3_1_default); } goto ldv_call_11; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_12(void *arg0 ) { int (*ldv_12_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_12_container_struct_seq_file_ptr ; void *ldv_12_ldv_param_3_1_default ; int tmp ; { goto ldv_call_12; return; ldv_call_12: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_12_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_12_3(ldv_12_callback_show, ldv_12_container_struct_seq_file_ptr, ldv_12_ldv_param_3_1_default); ldv_free(ldv_12_ldv_param_3_1_default); } goto ldv_call_12; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_13(void *arg0 ) { int (*ldv_13_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_13_container_struct_seq_file_ptr ; void *ldv_13_ldv_param_3_1_default ; int tmp ; { goto ldv_call_13; return; ldv_call_13: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_13_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_13_3(ldv_13_callback_show, ldv_13_container_struct_seq_file_ptr, ldv_13_ldv_param_3_1_default); ldv_free(ldv_13_ldv_param_3_1_default); } goto ldv_call_13; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_14(void *arg0 ) { int (*ldv_14_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_14_container_struct_seq_file_ptr ; void *ldv_14_ldv_param_3_1_default ; int tmp ; { goto ldv_call_14; return; ldv_call_14: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_14_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_14_3(ldv_14_callback_show, ldv_14_container_struct_seq_file_ptr, ldv_14_ldv_param_3_1_default); ldv_free(ldv_14_ldv_param_3_1_default); } goto ldv_call_14; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_15(void *arg0 ) { int (*ldv_15_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_15_container_struct_seq_file_ptr ; void *ldv_15_ldv_param_3_1_default ; int tmp ; { goto ldv_call_15; return; ldv_call_15: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_15_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_15_3(ldv_15_callback_show, ldv_15_container_struct_seq_file_ptr, ldv_15_ldv_param_3_1_default); ldv_free(ldv_15_ldv_param_3_1_default); } goto ldv_call_15; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_16(void *arg0 ) { int (*ldv_16_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_16_container_struct_seq_file_ptr ; void *ldv_16_ldv_param_3_1_default ; int tmp ; { goto ldv_call_16; return; ldv_call_16: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_16_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_16_3(ldv_16_callback_show, ldv_16_container_struct_seq_file_ptr, ldv_16_ldv_param_3_1_default); ldv_free(ldv_16_ldv_param_3_1_default); } goto ldv_call_16; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_17(void *arg0 ) { int (*ldv_17_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_17_container_struct_seq_file_ptr ; void *ldv_17_ldv_param_3_1_default ; int tmp ; { goto ldv_call_17; return; ldv_call_17: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_17_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_17_3(ldv_17_callback_show, ldv_17_container_struct_seq_file_ptr, ldv_17_ldv_param_3_1_default); ldv_free(ldv_17_ldv_param_3_1_default); } goto ldv_call_17; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_18(void *arg0 ) { int (*ldv_18_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_18_container_struct_seq_file_ptr ; void *ldv_18_ldv_param_3_1_default ; int tmp ; { goto ldv_call_18; return; ldv_call_18: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_18_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_18_3(ldv_18_callback_show, ldv_18_container_struct_seq_file_ptr, ldv_18_ldv_param_3_1_default); ldv_free(ldv_18_ldv_param_3_1_default); } goto ldv_call_18; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_6(void *arg0 ) { int (*ldv_6_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_6_container_struct_seq_file_ptr ; void *ldv_6_ldv_param_3_1_default ; int tmp ; { goto ldv_call_6; return; ldv_call_6: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_6_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_show, ldv_6_container_struct_seq_file_ptr, ldv_6_ldv_param_3_1_default); ldv_free(ldv_6_ldv_param_3_1_default); } goto ldv_call_6; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_7(void *arg0 ) { int (*ldv_7_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_7_container_struct_seq_file_ptr ; void *ldv_7_ldv_param_3_1_default ; int tmp ; { goto ldv_call_7; return; ldv_call_7: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_7_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_show, ldv_7_container_struct_seq_file_ptr, ldv_7_ldv_param_3_1_default); ldv_free(ldv_7_ldv_param_3_1_default); } goto ldv_call_7; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_8(void *arg0 ) { int (*ldv_8_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_8_container_struct_seq_file_ptr ; void *ldv_8_ldv_param_3_1_default ; int tmp ; { goto ldv_call_8; return; ldv_call_8: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_8_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_8_3(ldv_8_callback_show, ldv_8_container_struct_seq_file_ptr, ldv_8_ldv_param_3_1_default); ldv_free(ldv_8_ldv_param_3_1_default); } goto ldv_call_8; } else { return; } return; } } void ldv_struct_mega_proc_file_dummy_resourceless_instance_9(void *arg0 ) { int (*ldv_9_callback_show)(struct seq_file * , void * ) ; struct seq_file *ldv_9_container_struct_seq_file_ptr ; void *ldv_9_ldv_param_3_1_default ; int tmp ; { goto ldv_call_9; return; ldv_call_9: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_9_ldv_param_3_1_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_show, ldv_9_container_struct_seq_file_ptr, ldv_9_ldv_param_3_1_default); ldv_free(ldv_9_ldv_param_3_1_default); } goto ldv_call_9; } else { return; } return; } } void ldv_unregister_chrdev(void *arg0 , unsigned int arg1 , char *arg2 ) { struct file_operations *ldv_24_file_operations_file_operations ; { { ldv_dispatch_deregister_24_1(ldv_24_file_operations_file_operations); } return; return; } } __inline static void atomic_sub(int i , atomic_t *v ) { { { ldv_linux_usb_dev_atomic_sub(i, v); } return; } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(size); } return (tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc(size); ldv_after_alloc(res); } return (res); } } __inline static int register_chrdev(unsigned int major___0 , char const *name , struct file_operations const *fops ) { ldv_func_ret_type ldv_func_res ; int tmp ; int res1 ; int tmp___0 ; int res2 ; int tmp___1 ; { { tmp = ldv_register_chrdev_90(major___0, name, fops); ldv_func_res = tmp; tmp___0 = ldv_linux_fs_char_dev_register_chrdev((int )major___0); res1 = tmp___0; tmp___1 = ldv_linux_usb_gadget_register_chrdev((int )major___0); res2 = tmp___1; ldv_assume(res1 == res2); } return (res1); return (ldv_func_res); } } __inline static void unregister_chrdev(unsigned int major___0 , char const *name ) { { { ldv_unregister_chrdev_91(major___0, name); ldv_linux_fs_char_dev_unregister_chrdev_region(); ldv_linux_usb_gadget_unregister_chrdev_region(); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_96(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_host_lock_of_Scsi_Host(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_irq_104(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_105(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(); spin_unlock_irq(lock); } return; } } static void ldv_mutex_lock_106(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_megadev_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_megadev_mutex(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_108(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_110(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_int_mtx_of_NOT_ARG_SIGN(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_111(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_wait_for_completion_113(struct completion *ldv_func_arg1 ) { { { ldv_linux_kernel_sched_completion_wait_for_completion_int_waitq_of_NOT_ARG_SIGN(); wait_for_completion(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_114(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_int_mtx_of_NOT_ARG_SIGN(ldv_func_arg1); } return; } } static struct Scsi_Host *ldv_scsi_host_alloc_115(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; struct Scsi_Host *tmp ; struct Scsi_Host *tmp___0 ; { { tmp = scsi_host_alloc(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_scsi_host_alloc(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_116(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_init_completion_117(struct completion *x ) { { { ldv_linux_kernel_sched_completion_init_completion_int_waitq_of_NOT_ARG_SIGN(); } return; } } __inline static int ldv_scsi_add_host_118(struct Scsi_Host *host , struct device *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = scsi_add_host(host, dev); ldv_func_res = tmp; tmp___0 = ldv_scsi_add_host(ldv_func_res, host, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_119(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_iounmap_120(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_free_irq_121(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_scsi_remove_host_122(struct Scsi_Host *ldv_func_arg1 ) { { { scsi_remove_host(ldv_func_arg1); ldv_scsi_remove_host((void *)0, ldv_func_arg1); } return; } } static void ldv_iounmap_123(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static int ldv___pci_register_driver_124(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_register_chrdev_125(unsigned int major___0 , char const *name , struct file_operations const *fops ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_chrdev(major___0, name, fops); ldv_func_res = tmp; tmp___0 = ldv_register_chrdev(ldv_func_res, major___0, (char *)name, (struct file_operations *)fops); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_unregister_chrdev_126(unsigned int major___0 , char const *name ) { { { unregister_chrdev(major___0, name); ldv_unregister_chrdev((void *)0, major___0, (char *)name); } return; } } static void ldv_pci_unregister_driver_127(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_128(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_129(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_130(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_131(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_132(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_133(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_134(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_135(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_136(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_137(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(size_t size ) { void *ptr ; void *tmp ; { { tmp = ldv_malloc(size); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_malloc(sizeof(struct gendisk)); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_malloc(sizeof(struct request_queue)); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_malloc(sizeof(struct request)); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_malloc(sizeof(struct request)); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_malloc(sizeof(struct class)); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major___0 ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major___0 == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(size); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void *is_got ) { long tmp ; { { ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major___0 ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major___0 == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN ; void ldv_linux_kernel_locking_mutex_mutex_lock_int_mtx_of_NOT_ARG_SIGN(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_int_mtx_of_NOT_ARG_SIGN(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_int_mtx_of_NOT_ARG_SIGN(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_int_mtx_of_NOT_ARG_SIGN(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_int_mtx_of_NOT_ARG_SIGN(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_int_mtx_of_NOT_ARG_SIGN(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_int_mtx_of_NOT_ARG_SIGN(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_int_mtx_of_NOT_ARG_SIGN(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex ; void ldv_linux_kernel_locking_mutex_mutex_lock_megadev_mutex(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_megadev_mutex(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_megadev_mutex(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_megadev_mutex(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_megadev_mutex(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_megadev_mutex(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_megadev_mutex(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_megadev_mutex(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_int_mtx_of_NOT_ARG_SIGN); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_megadev_mutex); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_host_lock_of_Scsi_Host(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 2); ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_host_lock_of_Scsi_Host(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_host_lock_of_Scsi_Host(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_host_lock_of_Scsi_Host(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_host_lock_of_Scsi_Host(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_host_lock_of_Scsi_Host(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_host_lock_of_Scsi_Host(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_host_lock_of_Scsi_Host(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion_int_waitq_of_NOT_ARG_SIGN = 0; void ldv_linux_kernel_sched_completion_init_completion_int_waitq_of_NOT_ARG_SIGN(void) { { ldv_linux_kernel_sched_completion_completion_int_waitq_of_NOT_ARG_SIGN = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro_int_waitq_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion_int_waitq_of_NOT_ARG_SIGN != 0); ldv_linux_kernel_sched_completion_completion_int_waitq_of_NOT_ARG_SIGN = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion_int_waitq_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion_int_waitq_of_NOT_ARG_SIGN != 0); ldv_linux_kernel_sched_completion_completion_int_waitq_of_NOT_ARG_SIGN = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-4.0-rc1---drivers--scsi--megaraid.ko_false-unreach-call.cil.env.c" #include "model/common.env.c"