extern void abort(void); #include void reach_error() { assert(0); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct device; struct net_device; struct file_operations; struct completion; enum system_states { SYSTEM_BOOTING = 0, SYSTEM_RUNNING = 1, SYSTEM_HALT = 2, SYSTEM_POWER_OFF = 3, SYSTEM_RESTART = 4 } ; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; typedef int pao_T__; typedef int pao_T_____0; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct ctl_table; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_47 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_46 { struct __anonstruct____missing_field_name_47 __annonCompField19 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_46 __annonCompField20 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct vm_area_struct; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct pci_bus; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct bio_vec; struct llist_node; struct llist_node { struct llist_node *next ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct ethtool_cmd; struct ethtool_ringparam; struct ethtool_wolinfo; struct ethtool_coalesce; struct ethtool_eeprom; struct ethtool_pauseparam; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_209 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_209 __annonCompField56 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_210 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_210 __annonCompField57 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct bdi_writeback; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_220 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; unsigned char has_secondary_link : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_220 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_221 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_221 __annonCompField59 ; unsigned long nr_segs ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct kiocb; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; struct kiocb *msg_iocb ; }; struct __anonstruct_sync_serial_settings_223 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_223 sync_serial_settings; struct __anonstruct_te1_settings_224 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_224 te1_settings; struct __anonstruct_raw_hdlc_proto_225 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_225 raw_hdlc_proto; struct __anonstruct_fr_proto_226 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_226 fr_proto; struct __anonstruct_fr_proto_pvc_227 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_227 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_228 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_228 fr_proto_pvc_info; struct __anonstruct_cisco_proto_229 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_229 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_230 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_230 ifs_ifsu ; }; union __anonunion_ifr_ifrn_231 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_232 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_231 ifr_ifrn ; union __anonunion_ifr_ifru_232 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_237 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_236 { struct __anonstruct____missing_field_name_237 __annonCompField60 ; }; struct lockref { union __anonunion____missing_field_name_236 __annonCompField61 ; }; struct vfsmount; struct __anonstruct____missing_field_name_239 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_238 { struct __anonstruct____missing_field_name_239 __annonCompField62 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_238 __annonCompField63 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_240 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_240 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_244 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_243 { struct __anonstruct____missing_field_name_244 __annonCompField64 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_243 __annonCompField65 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct export_operations; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_248 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_248 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_249 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_249 __annonCompField67 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_252 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_253 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_254 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_252 __annonCompField68 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_253 __annonCompField69 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_254 __annonCompField70 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_255 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_255 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_257 { struct list_head link ; int state ; }; union __anonunion_fl_u_256 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_257 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_256 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_24979 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_24979 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; typedef u64 netdev_features_t; union __anonunion_in6_u_272 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_272 in6_u ; }; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct pipe_buf_operations; struct pipe_buffer { struct page *page ; unsigned int offset ; unsigned int len ; struct pipe_buf_operations const *ops ; unsigned int flags ; unsigned long private ; }; struct pipe_inode_info { struct mutex mutex ; wait_queue_head_t wait ; unsigned int nrbufs ; unsigned int curbuf ; unsigned int buffers ; unsigned int readers ; unsigned int writers ; unsigned int files ; unsigned int waiting_writers ; unsigned int r_counter ; unsigned int w_counter ; struct page *tmp_page ; struct fasync_struct *fasync_readers ; struct fasync_struct *fasync_writers ; struct pipe_buffer *bufs ; }; struct pipe_buf_operations { int can_merge ; int (*confirm)(struct pipe_inode_info * , struct pipe_buffer * ) ; void (*release)(struct pipe_inode_info * , struct pipe_buffer * ) ; int (*steal)(struct pipe_inode_info * , struct pipe_buffer * ) ; void (*get)(struct pipe_inode_info * , struct pipe_buffer * ) ; }; struct napi_struct; struct nf_conntrack { atomic_t use ; }; union __anonunion____missing_field_name_277 { struct net_device *physoutdev ; char neigh_header[8U] ; }; union __anonunion____missing_field_name_278 { __be32 ipv4_daddr ; struct in6_addr ipv6_daddr ; }; struct nf_bridge_info { atomic_t use ; unsigned char orig_proto ; bool pkt_otherhost ; __u16 frag_max_size ; unsigned int mask ; struct net_device *physindev ; union __anonunion____missing_field_name_277 __annonCompField74 ; union __anonunion____missing_field_name_278 __annonCompField75 ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_279 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_279 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; u32 tskey ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_281 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_280 { u64 v64 ; struct __anonstruct____missing_field_name_281 __annonCompField76 ; }; struct skb_mstamp { union __anonunion____missing_field_name_280 __annonCompField77 ; }; union __anonunion____missing_field_name_284 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_283 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_284 __annonCompField78 ; }; union __anonunion____missing_field_name_282 { struct __anonstruct____missing_field_name_283 __annonCompField79 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_286 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_285 { __wsum csum ; struct __anonstruct____missing_field_name_286 __annonCompField81 ; }; union __anonunion____missing_field_name_287 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_288 { __u32 mark ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_289 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_282 __annonCompField80 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_285 __annonCompField82 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_287 __annonCompField83 ; __u32 secmark ; union __anonunion____missing_field_name_288 __annonCompField84 ; union __anonunion____missing_field_name_289 __annonCompField85 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[115U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; bool warned ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; bool fib_offload_disabled ; struct sock *fibnl ; struct sock **icmp_sk ; struct sock *mc_autojoin_sk ; struct inet_peer_base *peers ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_tcp_ecn_fallback ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; int sysctl_tcp_probe_threshold ; u32 sysctl_tcp_probe_interval ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; int idgen_retries ; int idgen_delay ; int flowlabel_state_ranges ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct sock *mc_autojoin_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; bool clusterip_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; struct nft_af_info *netdev ; unsigned int base_seq ; u8 gencursor ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct mpls_route; struct netns_mpls { size_t platform_labels ; struct mpls_route **platform_label ; struct ctl_table_header *ctl ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; atomic64_t cookie_gen ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; spinlock_t nsid_lock ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct netns_mpls mpls ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct __anonstruct_possible_net_t_306 { struct net *net ; }; typedef struct __anonstruct_possible_net_t_306 possible_net_t; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2, FWNODE_PDATA = 3 } ; struct fwnode_handle { enum fwnode_type type ; struct fwnode_handle *secondary ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; enum ldv_28568 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_28568 phy_interface_t; enum ldv_28622 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_28622 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; u32 phy_ignore_ta_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; struct net_device *of_netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; enum dsa_tag_protocol tag_protocol ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; int (*port_join_bridge)(struct dsa_switch * , int , u32 ) ; int (*port_leave_bridge)(struct dsa_switch * , int , u32 ) ; int (*port_stp_update)(struct dsa_switch * , int , u8 ) ; int (*fdb_add)(struct dsa_switch * , int , unsigned char const * , u16 ) ; int (*fdb_del)(struct dsa_switch * , int , unsigned char const * , u16 ) ; int (*fdb_getnext)(struct dsa_switch * , int , unsigned char * , bool * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_qcn { __u8 rpg_enable[8U] ; __u32 rppp_max_rps[8U] ; __u32 rpg_time_reset[8U] ; __u32 rpg_byte_reset[8U] ; __u32 rpg_threshold[8U] ; __u32 rpg_max_rate[8U] ; __u32 rpg_ai_rate[8U] ; __u32 rpg_hai_rate[8U] ; __u32 rpg_gd[8U] ; __u32 rpg_min_dec_fac[8U] ; __u32 rpg_min_rate[8U] ; __u32 cndd_state_machine[8U] ; }; struct ieee_qcn_stats { __u64 rppp_rp_centiseconds[8U] ; __u32 rppp_created_rps[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getqcn)(struct net_device * , struct ieee_qcn * ) ; int (*ieee_setqcn)(struct net_device * , struct ieee_qcn * ) ; int (*ieee_getqcnstats)(struct net_device * , struct ieee_qcn_stats * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_stats { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 broadcast ; __u64 multicast ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; __u32 rss_query_en ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; struct mpls_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; unsigned long tx_maxrate ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_get_vf_stats)(struct net_device * , int , struct ifla_vf_stats * ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_set_vf_rss_query_en)(struct net_device * , int , bool ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 , int ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_get_phys_port_name)(struct net_device * , char * , size_t ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_set_tx_maxrate)(struct net_device * , int , u32 ) ; int (*ndo_get_iflink)(struct net_device const * ) ; }; struct __anonstruct_adj_list_316 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_317 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct switchdev_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct tcf_proto; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_318 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; atomic_t carrier_changes ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_316 adj_list ; struct __anonstruct_all_adj_list_317 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int group ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct switchdev_ops const *switchdev_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; unsigned char name_assign_type ; bool uc_promisc ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; struct mpls_dev *mpls_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct tcf_proto *ingress_cl_list ; struct netdev_queue *ingress_queue ; struct list_head nf_hooks_ingress ; unsigned char broadcast[32U] ; struct cpu_rmap *rx_cpu_rmap ; struct hlist_node index_hlist ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; int watchdog_timeo ; struct xps_dev_maps *xps_maps ; unsigned long trans_start ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; possible_net_t nd_net ; union __anonunion____missing_field_name_318 __annonCompField95 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct iphdr { unsigned char ihl : 4 ; unsigned char version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct ipv6hdr { unsigned char priority : 4 ; unsigned char version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_stable_secret { bool initialized ; struct in6_addr secret ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 accept_ra_from_local ; __s32 optimistic_dad ; __s32 use_optimistic ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; __s32 accept_ra_mtu ; struct ipv6_stable_secret stable_secret ; void *sysctl ; }; struct page_counter { atomic_long_t count ; unsigned long limit ; struct page_counter *parent ; unsigned long watermark ; unsigned long failcnt ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct bpf_insn { __u8 code ; unsigned char dst_reg : 4 ; unsigned char src_reg : 4 ; __s16 off ; __s32 imm ; }; enum bpf_prog_type { BPF_PROG_TYPE_UNSPEC = 0, BPF_PROG_TYPE_SOCKET_FILTER = 1, BPF_PROG_TYPE_KPROBE = 2, BPF_PROG_TYPE_SCHED_CLS = 3, BPF_PROG_TYPE_SCHED_ACT = 4 } ; struct bpf_prog_aux; struct sock_fprog_kern { u16 len ; struct sock_filter *filter ; }; union __anonunion____missing_field_name_334 { struct sock_filter insns[0U] ; struct bpf_insn insnsi[0U] ; }; struct bpf_prog { u16 pages ; bool jited ; bool gpl_compatible ; u32 len ; enum bpf_prog_type type ; struct bpf_prog_aux *aux ; struct sock_fprog_kern *orig_prog ; unsigned int (*bpf_func)(struct sk_buff const * , struct bpf_insn const * ) ; union __anonunion____missing_field_name_334 __annonCompField100 ; }; struct sk_filter { atomic_t refcnt ; struct callback_head rcu ; struct bpf_prog *prog ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct tcmsg { unsigned char tcm_family ; unsigned char tcm__pad1 ; unsigned short tcm__pad2 ; int tcm_ifindex ; __u32 tcm_handle ; __u32 tcm_parent ; __u32 tcm_info ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; struct net *(*get_link_net)(struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { possible_net_t net ; struct net_device *dev ; struct list_head list ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[13U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; possible_net_t net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { int family ; int entry_size ; int key_len ; __be16 protocol ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; bool (*key_eq)(struct neighbour const * , void const * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; struct list_head parms_list ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_345 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sock * , struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_345 __annonCompField101 ; }; struct __anonstruct_socket_lock_t_346 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_346 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_348 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_347 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_348 __annonCompField102 ; }; union __anonunion____missing_field_name_349 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_351 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_350 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_351 __annonCompField105 ; }; union __anonunion____missing_field_name_352 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_353 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_347 __annonCompField103 ; union __anonunion____missing_field_name_349 __annonCompField104 ; union __anonunion____missing_field_name_350 __annonCompField106 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 1 ; unsigned char skc_ipv6only : 1 ; unsigned char skc_net_refcnt : 1 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_352 __annonCompField107 ; struct proto *skc_prot ; possible_net_t skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; atomic64_t skc_cookie ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_353 __annonCompField108 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_354 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_354 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; u16 sk_incoming_cpu ; __u32 sk_txhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check_tx : 1 ; unsigned char sk_no_check_rx : 1 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; u32 sk_ack_backlog ; u32 sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; struct timer_list sk_timer ; ktime_t sk_stamp ; u16 sk_tsflags ; u32 sk_tskey ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_357 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_357 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct page_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct request_sock const * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; struct sock *rsk_listener ; u16 mss ; u8 num_retrans ; unsigned char cookie_ts : 1 ; unsigned char num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; struct timer_list rsk_timer ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 *saved_syn ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; unsigned char res1 : 4 ; unsigned char doff : 4 ; unsigned char fin : 1 ; unsigned char syn : 1 ; unsigned char rst : 1 ; unsigned char psh : 1 ; unsigned char ack : 1 ; unsigned char urg : 1 ; unsigned char ece : 1 ; unsigned char cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct vlan_hdr { __be16 h_vlan_TCI ; __be16 h_vlan_encapsulated_proto ; }; struct tc_stats { __u64 bytes ; __u32 packets ; __u32 drops ; __u32 overlimits ; __u32 bps ; __u32 pps ; __u32 qlen ; __u32 backlog ; }; struct tc_sizespec { unsigned char cell_log ; unsigned char size_log ; short cell_align ; int overhead ; unsigned int linklayer ; unsigned int mpu ; unsigned int mtu ; unsigned int tsize ; }; struct gnet_stats_basic_packed { __u64 bytes ; __u32 packets ; }; struct gnet_stats_rate_est64 { __u64 bps ; __u64 pps ; }; struct gnet_stats_queue { __u32 qlen ; __u32 backlog ; __u32 drops ; __u32 requeues ; __u32 overlimits ; }; struct gnet_stats_basic_cpu { struct gnet_stats_basic_packed bstats ; struct u64_stats_sync syncp ; }; struct gnet_dump { spinlock_t *lock ; struct sk_buff *skb ; struct nlattr *tail ; int compat_tc_stats ; int compat_xstats ; void *xstats ; int xstats_len ; struct tc_stats tc_stats ; }; struct Qdisc_ops; struct qdisc_walker; struct tcf_walker; struct qdisc_size_table { struct callback_head rcu ; struct list_head list ; struct tc_sizespec szopts ; int refcnt ; u16 data[] ; }; struct Qdisc { int (*enqueue)(struct sk_buff * , struct Qdisc * ) ; struct sk_buff *(*dequeue)(struct Qdisc * ) ; unsigned int flags ; u32 limit ; struct Qdisc_ops const *ops ; struct qdisc_size_table *stab ; struct list_head list ; u32 handle ; u32 parent ; int (*reshape_fail)(struct sk_buff * , struct Qdisc * ) ; void *u32_node ; struct Qdisc *__parent ; struct netdev_queue *dev_queue ; struct gnet_stats_rate_est64 rate_est ; struct gnet_stats_basic_cpu *cpu_bstats ; struct gnet_stats_queue *cpu_qstats ; struct Qdisc *next_sched ; struct sk_buff *gso_skb ; unsigned long state ; struct sk_buff_head q ; struct gnet_stats_basic_packed bstats ; unsigned int __state ; struct gnet_stats_queue qstats ; struct callback_head callback_head ; int padded ; atomic_t refcnt ; spinlock_t busylock ; }; struct Qdisc_class_ops { struct netdev_queue *(*select_queue)(struct Qdisc * , struct tcmsg * ) ; int (*graft)(struct Qdisc * , unsigned long , struct Qdisc * , struct Qdisc ** ) ; struct Qdisc *(*leaf)(struct Qdisc * , unsigned long ) ; void (*qlen_notify)(struct Qdisc * , unsigned long ) ; unsigned long (*get)(struct Qdisc * , u32 ) ; void (*put)(struct Qdisc * , unsigned long ) ; int (*change)(struct Qdisc * , u32 , u32 , struct nlattr ** , unsigned long * ) ; int (*delete)(struct Qdisc * , unsigned long ) ; void (*walk)(struct Qdisc * , struct qdisc_walker * ) ; struct tcf_proto **(*tcf_chain)(struct Qdisc * , unsigned long ) ; unsigned long (*bind_tcf)(struct Qdisc * , unsigned long , u32 ) ; void (*unbind_tcf)(struct Qdisc * , unsigned long ) ; int (*dump)(struct Qdisc * , unsigned long , struct sk_buff * , struct tcmsg * ) ; int (*dump_stats)(struct Qdisc * , unsigned long , struct gnet_dump * ) ; }; struct Qdisc_ops { struct Qdisc_ops *next ; struct Qdisc_class_ops const *cl_ops ; char id[16U] ; int priv_size ; int (*enqueue)(struct sk_buff * , struct Qdisc * ) ; struct sk_buff *(*dequeue)(struct Qdisc * ) ; struct sk_buff *(*peek)(struct Qdisc * ) ; unsigned int (*drop)(struct Qdisc * ) ; int (*init)(struct Qdisc * , struct nlattr * ) ; void (*reset)(struct Qdisc * ) ; void (*destroy)(struct Qdisc * ) ; int (*change)(struct Qdisc * , struct nlattr * ) ; void (*attach)(struct Qdisc * ) ; int (*dump)(struct Qdisc * , struct sk_buff * ) ; int (*dump_stats)(struct Qdisc * , struct gnet_dump * ) ; struct module *owner ; }; struct tcf_result { unsigned long class ; u32 classid ; }; struct tcf_proto_ops { struct list_head head ; char kind[16U] ; int (*classify)(struct sk_buff * , struct tcf_proto const * , struct tcf_result * ) ; int (*init)(struct tcf_proto * ) ; bool (*destroy)(struct tcf_proto * , bool ) ; unsigned long (*get)(struct tcf_proto * , u32 ) ; int (*change)(struct net * , struct sk_buff * , struct tcf_proto * , unsigned long , u32 , struct nlattr ** , unsigned long * , bool ) ; int (*delete)(struct tcf_proto * , unsigned long ) ; void (*walk)(struct tcf_proto * , struct tcf_walker * ) ; int (*dump)(struct net * , struct tcf_proto * , unsigned long , struct sk_buff * , struct tcmsg * ) ; struct module *owner ; }; struct tcf_proto { struct tcf_proto *next ; void *root ; int (*classify)(struct sk_buff * , struct tcf_proto const * , struct tcf_result * ) ; __be16 protocol ; u32 prio ; u32 classid ; struct Qdisc *q ; void *data ; struct tcf_proto_ops const *ops ; struct callback_head rcu ; }; struct qdisc_walker { int stop ; int skip ; int count ; int (*fn)(struct Qdisc * , unsigned long , struct qdisc_walker * ) ; }; struct e1000_adapter; struct e1000_hw; struct e1000_hw_stats; enum ldv_35662 { e1000_undefined = 0, e1000_82542_rev2_0 = 1, e1000_82542_rev2_1 = 2, e1000_82543 = 3, e1000_82544 = 4, e1000_82540 = 5, e1000_82545 = 6, e1000_82545_rev_3 = 7, e1000_82546 = 8, e1000_ce4100 = 9, e1000_82546_rev_3 = 10, e1000_82541 = 11, e1000_82541_rev_2 = 12, e1000_82547 = 13, e1000_82547_rev_2 = 14, e1000_num_macs = 15 } ; typedef enum ldv_35662 e1000_mac_type; enum ldv_35664 { e1000_eeprom_uninitialized = 0, e1000_eeprom_spi = 1, e1000_eeprom_microwire = 2, e1000_eeprom_flash = 3, e1000_eeprom_none = 4, e1000_num_eeprom_types = 5 } ; typedef enum ldv_35664 e1000_eeprom_type; enum ldv_35666 { e1000_media_type_copper = 0, e1000_media_type_fiber = 1, e1000_media_type_internal_serdes = 2, e1000_num_media_types = 3 } ; typedef enum ldv_35666 e1000_media_type; enum ldv_35670 { E1000_FC_NONE = 0, E1000_FC_RX_PAUSE = 1, E1000_FC_TX_PAUSE = 2, E1000_FC_FULL = 3, E1000_FC_DEFAULT = 255 } ; typedef enum ldv_35670 e1000_fc_type; struct e1000_shadow_ram { u16 eeprom_word ; bool modified ; }; typedef int e1000_bus_type; typedef int e1000_bus_speed; typedef int e1000_bus_width; typedef int e1000_cable_length; enum ldv_35685 { e1000_10bt_ext_dist_enable_normal = 0, e1000_10bt_ext_dist_enable_lower = 1, e1000_10bt_ext_dist_enable_undefined = 255 } ; typedef enum ldv_35685 e1000_10bt_ext_dist_enable; enum ldv_35687 { e1000_rev_polarity_normal = 0, e1000_rev_polarity_reversed = 1, e1000_rev_polarity_undefined = 255 } ; typedef enum ldv_35687 e1000_rev_polarity; enum ldv_35689 { e1000_downshift_normal = 0, e1000_downshift_activated = 1, e1000_downshift_undefined = 255 } ; typedef enum ldv_35689 e1000_downshift; enum ldv_35691 { e1000_smart_speed_default = 0, e1000_smart_speed_on = 1, e1000_smart_speed_off = 2 } ; typedef enum ldv_35691 e1000_smart_speed; enum ldv_35693 { e1000_polarity_reversal_enabled = 0, e1000_polarity_reversal_disabled = 1, e1000_polarity_reversal_undefined = 255 } ; typedef enum ldv_35693 e1000_polarity_reversal; typedef int e1000_auto_x_mode; typedef int e1000_1000t_rx_status; typedef int e1000_phy_type; typedef int e1000_ms_type; typedef int e1000_ffe_config; enum ldv_35705 { e1000_dsp_config_disabled = 0, e1000_dsp_config_enabled = 1, e1000_dsp_config_activated = 2, e1000_dsp_config_undefined = 255 } ; typedef enum ldv_35705 e1000_dsp_config; struct e1000_phy_info { e1000_cable_length cable_length ; e1000_10bt_ext_dist_enable extended_10bt_distance ; e1000_rev_polarity cable_polarity ; e1000_downshift downshift ; e1000_polarity_reversal polarity_correction ; e1000_auto_x_mode mdix_mode ; e1000_1000t_rx_status local_rx ; e1000_1000t_rx_status remote_rx ; }; struct e1000_phy_stats { u32 idle_errors ; u32 receive_errors ; }; struct e1000_eeprom_info { e1000_eeprom_type type ; u16 word_size ; u16 opcode_bits ; u16 address_bits ; u16 delay_usec ; u16 page_size ; }; struct e1000_host_mng_dhcp_cookie { u32 signature ; u8 status ; u8 reserved0 ; u16 vlan_id ; u32 reserved1 ; u16 reserved2 ; u8 reserved3 ; u8 checksum ; }; struct e1000_rx_desc { __le64 buffer_addr ; __le16 length ; __le16 csum ; u8 status ; u8 errors ; __le16 special ; }; struct __anonstruct_flags_401 { __le16 length ; u8 cso ; u8 cmd ; }; union __anonunion_lower_400 { __le32 data ; struct __anonstruct_flags_401 flags ; }; struct __anonstruct_fields_403 { u8 status ; u8 css ; __le16 special ; }; union __anonunion_upper_402 { __le32 data ; struct __anonstruct_fields_403 fields ; }; struct e1000_tx_desc { __le64 buffer_addr ; union __anonunion_lower_400 lower ; union __anonunion_upper_402 upper ; }; struct __anonstruct_ip_fields_405 { u8 ipcss ; u8 ipcso ; __le16 ipcse ; }; union __anonunion_lower_setup_404 { __le32 ip_config ; struct __anonstruct_ip_fields_405 ip_fields ; }; struct __anonstruct_tcp_fields_407 { u8 tucss ; u8 tucso ; __le16 tucse ; }; union __anonunion_upper_setup_406 { __le32 tcp_config ; struct __anonstruct_tcp_fields_407 tcp_fields ; }; struct __anonstruct_fields_409 { u8 status ; u8 hdr_len ; __le16 mss ; }; union __anonunion_tcp_seg_setup_408 { __le32 data ; struct __anonstruct_fields_409 fields ; }; struct e1000_context_desc { union __anonunion_lower_setup_404 lower_setup ; union __anonunion_upper_setup_406 upper_setup ; __le32 cmd_and_length ; union __anonunion_tcp_seg_setup_408 tcp_seg_setup ; }; struct e1000_hw_stats { u64 crcerrs ; u64 algnerrc ; u64 symerrs ; u64 rxerrc ; u64 txerrc ; u64 mpc ; u64 scc ; u64 ecol ; u64 mcc ; u64 latecol ; u64 colc ; u64 dc ; u64 tncrs ; u64 sec ; u64 cexterr ; u64 rlec ; u64 xonrxc ; u64 xontxc ; u64 xoffrxc ; u64 xofftxc ; u64 fcruc ; u64 prc64 ; u64 prc127 ; u64 prc255 ; u64 prc511 ; u64 prc1023 ; u64 prc1522 ; u64 gprc ; u64 bprc ; u64 mprc ; u64 gptc ; u64 gorcl ; u64 gorch ; u64 gotcl ; u64 gotch ; u64 rnbc ; u64 ruc ; u64 rfc ; u64 roc ; u64 rlerrc ; u64 rjc ; u64 mgprc ; u64 mgpdc ; u64 mgptc ; u64 torl ; u64 torh ; u64 totl ; u64 toth ; u64 tpr ; u64 tpt ; u64 ptc64 ; u64 ptc127 ; u64 ptc255 ; u64 ptc511 ; u64 ptc1023 ; u64 ptc1522 ; u64 mptc ; u64 bptc ; u64 tsctc ; u64 tsctfc ; u64 iac ; u64 icrxptc ; u64 icrxatc ; u64 ictxptc ; u64 ictxatc ; u64 ictxqec ; u64 ictxqmtc ; u64 icrxdmtc ; u64 icrxoc ; }; struct e1000_hw { u8 *hw_addr ; u8 *flash_address ; void *ce4100_gbe_mdio_base_virt ; e1000_mac_type mac_type ; e1000_phy_type phy_type ; u32 phy_init_script ; e1000_media_type media_type ; void *back ; struct e1000_shadow_ram *eeprom_shadow_ram ; u32 flash_bank_size ; u32 flash_base_addr ; e1000_fc_type fc ; e1000_bus_speed bus_speed ; e1000_bus_width bus_width ; e1000_bus_type bus_type ; struct e1000_eeprom_info eeprom ; e1000_ms_type master_slave ; e1000_ms_type original_master_slave ; e1000_ffe_config ffe_config_state ; u32 asf_firmware_present ; u32 eeprom_semaphore_present ; unsigned long io_base ; u32 phy_id ; u32 phy_revision ; u32 phy_addr ; u32 original_fc ; u32 txcw ; u32 autoneg_failed ; u32 max_frame_size ; u32 min_frame_size ; u32 mc_filter_type ; u32 num_mc_addrs ; u32 collision_delta ; u32 tx_packet_delta ; u32 ledctl_default ; u32 ledctl_mode1 ; u32 ledctl_mode2 ; bool tx_pkt_filtering ; struct e1000_host_mng_dhcp_cookie mng_cookie ; u16 phy_spd_default ; u16 autoneg_advertised ; u16 pci_cmd_word ; u16 fc_high_water ; u16 fc_low_water ; u16 fc_pause_time ; u16 current_ifs_val ; u16 ifs_min_val ; u16 ifs_max_val ; u16 ifs_step_size ; u16 ifs_ratio ; u16 device_id ; u16 vendor_id ; u16 subsystem_id ; u16 subsystem_vendor_id ; u8 revision_id ; u8 autoneg ; u8 mdix ; u8 forced_speed_duplex ; u8 wait_autoneg_complete ; u8 dma_fairness ; u8 mac_addr[6U] ; u8 perm_mac_addr[6U] ; bool disable_polarity_correction ; bool speed_downgraded ; e1000_smart_speed smart_speed ; e1000_dsp_config dsp_config_state ; bool get_link_status ; bool serdes_has_link ; bool tbi_compatibility_en ; bool tbi_compatibility_on ; bool laa_is_present ; bool phy_reset_disable ; bool initialize_hw_bits_disable ; bool fc_send_xon ; bool fc_strict_ieee ; bool report_tx_early ; bool adaptive_ifs ; bool ifs_params_forced ; bool in_ifs_mode ; bool mng_reg_access_disabled ; bool leave_av_bit_off ; bool bad_tx_carr_stats_fd ; bool has_smbus ; }; struct e1000_tx_buffer { struct sk_buff *skb ; dma_addr_t dma ; unsigned long time_stamp ; u16 length ; u16 next_to_watch ; bool mapped_as_page ; unsigned short segs ; unsigned int bytecount ; }; union __anonunion_rxbuf_414 { struct page *page ; u8 *data ; }; struct e1000_rx_buffer { union __anonunion_rxbuf_414 rxbuf ; dma_addr_t dma ; }; struct e1000_tx_ring { void *desc ; dma_addr_t dma ; unsigned int size ; unsigned int count ; unsigned int next_to_use ; unsigned int next_to_clean ; struct e1000_tx_buffer *buffer_info ; u16 tdh ; u16 tdt ; bool last_tx_tso ; }; struct e1000_rx_ring { void *desc ; dma_addr_t dma ; unsigned int size ; unsigned int count ; unsigned int next_to_use ; unsigned int next_to_clean ; struct e1000_rx_buffer *buffer_info ; struct sk_buff *rx_skb_top ; int cpu ; u16 rdh ; u16 rdt ; }; struct e1000_adapter { unsigned long active_vlans[64U] ; u16 mng_vlan_id ; u32 bd_number ; u32 rx_buffer_len ; u32 wol ; u32 smartspeed ; u32 en_mng_pt ; u16 link_speed ; u16 link_duplex ; spinlock_t stats_lock ; unsigned int total_tx_bytes ; unsigned int total_tx_packets ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; u32 itr ; u32 itr_setting ; u16 tx_itr ; u16 rx_itr ; u8 fc_autoneg ; struct e1000_tx_ring *tx_ring ; unsigned int restart_queue ; u32 txd_cmd ; u32 tx_int_delay ; u32 tx_abs_int_delay ; u32 gotcl ; u64 gotcl_old ; u64 tpt_old ; u64 colc_old ; u32 tx_timeout_count ; u32 tx_fifo_head ; u32 tx_head_addr ; u32 tx_fifo_size ; u8 tx_timeout_factor ; atomic_t tx_fifo_stall ; bool pcix_82544 ; bool detect_tx_hung ; bool dump_buffers ; bool (*clean_rx)(struct e1000_adapter * , struct e1000_rx_ring * , int * , int ) ; void (*alloc_rx_buf)(struct e1000_adapter * , struct e1000_rx_ring * , int ) ; struct e1000_rx_ring *rx_ring ; struct napi_struct napi ; int num_tx_queues ; int num_rx_queues ; u64 hw_csum_err ; u64 hw_csum_good ; u32 alloc_rx_buff_failed ; u32 rx_int_delay ; u32 rx_abs_int_delay ; bool rx_csum ; u32 gorcl ; u64 gorcl_old ; struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_hw hw ; struct e1000_hw_stats stats ; struct e1000_phy_info phy_info ; struct e1000_phy_stats phy_stats ; u32 test_icr ; struct e1000_tx_ring test_tx_ring ; struct e1000_rx_ring test_rx_ring ; int msg_enable ; bool tso_force ; bool smart_power_down ; bool quad_port_a ; unsigned long flags ; u32 eeprom_wol ; int bars ; int need_ioport ; bool discarding ; struct work_struct reset_task ; struct delayed_work watchdog_task ; struct delayed_work fifo_stall_task ; struct delayed_work phy_info_task ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6 ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; __u8 addr_gen_mode ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_416 { __be32 a4 ; __be32 a6[4U] ; struct in6_addr in6 ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_416 __annonCompField111 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_417 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_419 { atomic_t rid ; }; union __anonunion____missing_field_name_418 { struct __anonstruct____missing_field_name_419 __annonCompField113 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[16U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_417 __annonCompField112 ; union __anonunion____missing_field_name_418 __annonCompField114 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; int total ; }; struct uncached_list; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; struct uncached_list *rt_uncached_list ; }; struct my_u { __le64 a ; __le64 b ; }; struct my_u___0 { __le64 a ; __le64 b ; }; typedef bool ldv_func_ret_type; typedef bool ldv_func_ret_type___0; typedef bool ldv_func_ret_type___1; typedef bool ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef bool ldv_func_ret_type___6; typedef bool ldv_func_ret_type___7; typedef bool ldv_func_ret_type___8; typedef bool ldv_func_ret_type___9; typedef int ldv_func_ret_type___10; enum hrtimer_restart; enum hrtimer_restart; struct e1000_stats { char stat_string[32U] ; int type ; int sizeof_stat ; int stat_offset ; }; enum hrtimer_restart; enum ldv_36289 { enable_option = 0, range_option = 1, list_option = 2 } ; struct e1000_opt_list { int i ; char *str ; }; struct __anonstruct_r_416 { int min ; int max ; }; struct __anonstruct_l_417 { int nr ; struct e1000_opt_list const *p ; }; union __anonunion_arg_415 { struct __anonstruct_r_416 r ; struct __anonstruct_l_417 l ; }; struct e1000_option { enum ldv_36289 type ; char const *name ; char const *err ; int def ; union __anonunion_arg_415 arg ; }; void __builtin_prefetch(void const * , ...) ; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %2, %0; setc %1": "+m" (*addr), "=qm" (c): "Ir" (nr): "memory"); return ((int )((signed char )c) != 0); } } __inline static int test_and_clear_bit(long nr , unsigned long volatile *addr ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %2, %0; setc %1": "+m" (*addr), "=qm" (c): "Ir" (nr): "memory"); return ((int )((signed char )c) != 0); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } __inline static int fls(int x ) { int r ; { __asm__ ("bsrl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } extern unsigned long find_next_bit(unsigned long const * , unsigned long , unsigned long ) ; extern unsigned long find_first_bit(unsigned long const * , unsigned long ) ; extern int printk(char const * , ...) ; extern void __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; extern enum system_states system_state ; extern void __bad_percpu_size(void) ; extern void __bad_size_call_parameter(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { switch (8UL) { case 1UL: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_2696; case 2UL: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2696; case 4UL: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2696; case 8UL: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2696; default: __bad_percpu_size(); } ldv_2696: ; return (pfo_ret__); } } __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern char *strcpy(char * , char const * ) ; extern char *strncpy(char * , char const * , __kernel_size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6474; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6474; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6474; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6474; default: __bad_percpu_size(); } ldv_6474: ; return (pfo_ret__ & 2147483647); } } __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; switch (4UL) { case 1UL: ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6531; case 2UL: ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6531; case 4UL: ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6531; case 8UL: ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (val)); } goto ldv_6531; default: __bad_percpu_size(); } ldv_6531: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; switch (4UL) { case 1UL: ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6543; case 2UL: ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6543; case 4UL: ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6543; case 8UL: ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6543; default: __bad_percpu_size(); } ldv_6543: ; return; } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { __local_bh_disable_ip(0UL, 512U); return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { __local_bh_enable_ip(0UL, 512U); return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField17.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { _raw_spin_lock(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { _raw_spin_unlock(& lock->__annonCompField17.rlock); return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->__annonCompField17.rlock, flags); return; } } extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) ; extern bool cancel_work_sync(struct work_struct * ) ; bool ldv_cancel_work_sync_24(struct work_struct *ldv_func_arg1 ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; bool ldv_cancel_delayed_work_sync_21(struct delayed_work *ldv_func_arg1 ) ; bool ldv_cancel_delayed_work_sync_22(struct delayed_work *ldv_func_arg1 ) ; bool ldv_cancel_delayed_work_sync_23(struct delayed_work *ldv_func_arg1 ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { tmp = ldv_queue_work_on_5(8192, wq, work); return (tmp); } } __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = ldv_queue_delayed_work_on_6(8192, wq, dwork, delay); return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { tmp = queue_work(system_wq, work); return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = queue_delayed_work(system_wq, dwork, delay); return (tmp); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { tmp = ioremap_nocache(offset, size); return (tmp); } } extern void iounmap(void volatile * ) ; __inline static void outl(unsigned int value , int port ) { { __asm__ volatile ("outl %0, %w1": : "a" (value), "Nd" (port)); return; } } extern int cpu_number ; extern struct page *alloc_pages_current(gfp_t , unsigned int ) ; __inline static struct page *alloc_pages(gfp_t gfp_mask , unsigned int order ) { struct page *tmp ; { tmp = alloc_pages_current(gfp_mask, order); return (tmp); } } extern void __free_page_frag(void * ) ; extern void kfree(void const * ) ; extern void *ldv_malloc(size_t); void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && 0xffffffffffffffffUL / size < n) { return ((void *)0); } else { } tmp = __kmalloc(n * size, flags); return (tmp); } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc_array(n, size, flags | 32768U); return (tmp); } } int ldv_state_variable_8 ; struct ethtool_cmd *e1000_ethtool_ops_group1 ; int pci_counter ; struct work_struct *ldv_work_struct_3_1 ; struct work_struct *ldv_work_struct_6_3 ; struct work_struct *ldv_work_struct_5_2 ; int ldv_state_variable_0 ; int ldv_state_variable_5 ; struct work_struct *ldv_work_struct_5_3 ; struct ethtool_ringparam *e1000_ethtool_ops_group0 ; int ldv_irq_2_0 = 0; int ldv_work_3_2 ; int ldv_work_3_0 ; struct ethtool_wolinfo *e1000_ethtool_ops_group6 ; void *ldv_irq_data_2_3 ; int ldv_irq_2_2 = 0; struct work_struct *ldv_work_struct_4_3 ; int ldv_state_variable_9 ; struct net_device *e1000_netdev_ops_group1 ; int ldv_work_6_0 ; int ldv_irq_line_2_0 ; struct work_struct *ldv_work_struct_6_1 ; int ref_cnt ; int ldv_irq_line_1_1 ; void *ldv_irq_data_2_2 ; int ldv_work_3_3 ; struct work_struct *ldv_work_struct_4_0 ; int ldv_state_variable_1 ; int ldv_state_variable_7 ; int ldv_work_5_3 ; int ldv_irq_line_1_2 ; struct work_struct *ldv_work_struct_3_3 ; struct pci_dev *e1000_err_handler_group0 ; int ldv_irq_line_2_3 ; int ldv_irq_2_1 = 0; int ldv_work_6_1 ; void *ldv_irq_data_2_1 ; int ldv_irq_1_3 = 0; struct ethtool_coalesce *e1000_ethtool_ops_group4 ; void *ldv_irq_data_1_1 ; int ldv_irq_line_2_2 ; struct work_struct *ldv_work_struct_6_2 ; int ldv_state_variable_10 ; int ldv_irq_1_0 = 0; int ldv_work_4_0 ; struct work_struct *ldv_work_struct_3_2 ; int ldv_state_variable_6 ; void *ldv_irq_data_1_0 ; int ldv_work_4_1 ; struct net_device *e1000_ethtool_ops_group5 ; int ldv_work_4_3 ; int ldv_work_3_1 ; int ldv_irq_line_2_1 ; int ldv_work_5_0 ; void *ldv_irq_data_1_3 ; int ldv_state_variable_2 ; int ldv_work_5_1 ; struct work_struct *ldv_work_struct_4_2 ; int ldv_work_6_3 ; void *ldv_irq_data_1_2 ; void *ldv_irq_data_2_0 ; struct ethtool_eeprom *e1000_ethtool_ops_group2 ; struct work_struct *ldv_work_struct_3_0 ; int ldv_work_4_2 ; struct ethtool_pauseparam *e1000_ethtool_ops_group3 ; int ldv_irq_1_2 = 0; int LDV_IN_INTERRUPT = 1; struct work_struct *ldv_work_struct_6_0 ; int ldv_irq_1_1 = 0; int ldv_irq_2_3 = 0; struct work_struct *ldv_work_struct_5_0 ; struct work_struct *ldv_work_struct_5_1 ; int ldv_irq_line_1_3 ; int ldv_work_5_2 ; int ldv_state_variable_3 ; struct pci_dev *e1000_driver_group1 ; int ldv_irq_line_1_0 ; struct work_struct *ldv_work_struct_4_1 ; int ldv_work_6_2 ; int ldv_state_variable_4 ; void activate_work_5(struct work_struct *work , int state ) ; void work_init_3(void) ; void disable_suitable_irq_2(int line , void *data ) ; void activate_work_4(struct work_struct *work , int state ) ; void call_and_disable_all_5(int state ) ; void invoke_work_6(void) ; void activate_suitable_irq_2(int line , void *data ) ; void activate_work_3(struct work_struct *work , int state ) ; void disable_work_6(struct work_struct *work ) ; void work_init_6(void) ; void work_init_5(void) ; void call_and_disable_all_4(int state ) ; void invoke_work_5(void) ; int reg_check_2(irqreturn_t (*handler)(int , void * ) ) ; void ldv_initialize_pci_error_handlers_10(void) ; void disable_work_5(struct work_struct *work ) ; void ldv_initialize_ethtool_ops_7(void) ; void call_and_disable_work_3(struct work_struct *work ) ; void disable_work_3(struct work_struct *work ) ; void disable_work_4(struct work_struct *work ) ; void call_and_disable_all_6(int state ) ; void ldv_pci_driver_9(void) ; void work_init_4(void) ; void invoke_work_3(void) ; void ldv_net_device_ops_8(void) ; void invoke_work_4(void) ; void call_and_disable_work_5(struct work_struct *work ) ; void call_and_disable_all_3(int state ) ; void call_and_disable_work_6(struct work_struct *work ) ; void call_and_disable_work_4(struct work_struct *work ) ; void activate_work_6(struct work_struct *work , int state ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static int PageTail(struct page const *page ) { int tmp ; { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); return (tmp); } } __inline static struct page *compound_head_by_tail(struct page *tail ) { struct page *head ; int tmp ; long tmp___0 ; { head = tail->__annonCompField46.first_page; __asm__ volatile ("": : : "memory"); tmp = PageTail((struct page const *)tail); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); if (tmp___0 != 0L) { return (head); } else { } return (tail); } } __inline static struct page *compound_head(struct page *page ) { struct page *tmp ; int tmp___0 ; long tmp___1 ; { tmp___0 = PageTail((struct page const *)page); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); if (tmp___1 != 0L) { tmp = compound_head_by_tail(page); return (tmp); } else { } return (page); } } extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } tmp = kobject_name(& dev->kobj); return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; __inline static int pci_channel_offline(struct pci_dev *pdev ) { { return (pdev->error_state != 1U); } } extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_set_mwi(struct pci_dev * ) ; extern void pci_clear_mwi(struct pci_dev * ) ; extern int pcix_get_mmrbc(struct pci_dev * ) ; extern int pcix_set_mmrbc(struct pci_dev * , int ) ; extern int pci_select_bars(struct pci_dev * , unsigned long ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; extern int pci_wake_from_d3(struct pci_dev * , bool ) ; extern int pci_prepare_to_sleep(struct pci_dev * ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { tmp = __pci_enable_wake(dev, state, 0, (int )enable); return (tmp); } } extern int pci_request_selected_regions(struct pci_dev * , int , char const * ) ; extern void pci_release_selected_regions(struct pci_dev * , int ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; int ldv___pci_register_driver_17(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; void ldv_pci_unregister_driver_18(struct pci_driver *ldv_func_arg1 ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_26563: ; goto ldv_26563; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_26572: ; goto ldv_26572; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (84), "i" (12UL)); ldv_26607: ; goto ldv_26607; } else { } addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (96), "i" (12UL)); ldv_26615: ; goto ldv_26615; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 0); return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (108), "i" (12UL)); ldv_26623: ; goto ldv_26623; } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; extern void *dma_alloc_attrs(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; extern void dma_free_attrs(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { tmp = dma_supported(dev, mask); if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static int dma_set_mask_and_coherent(struct device *dev , u64 mask ) { int rc ; int tmp ; { tmp = dma_set_mask(dev, mask); rc = tmp; if (rc == 0) { dma_set_coherent_mask(dev, mask); } else { } return (rc); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { tmp = dev_name(& pdev->dev); return (tmp); } } extern void *pci_ioremap_bar(struct pci_dev * , int ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void usleep_range(unsigned long , unsigned long ) ; __inline static void dql_queued(struct dql *dql , unsigned int count ) { long tmp ; { tmp = ldv__builtin_expect(count > 268435455U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/dynamic_queue_limits.h"), "i" (74), "i" (12UL)); ldv_27959: ; goto ldv_27959; } else { } dql->last_obj_cnt = count; __asm__ volatile ("": : : "memory"); dql->num_queued = dql->num_queued + count; return; } } __inline static int dql_avail(struct dql const *dql ) { unsigned int __var ; unsigned int __var___0 ; { __var = 0U; __var___0 = 0U; return ((int )((unsigned int )*((unsigned int const volatile *)(& dql->adj_limit)) - (unsigned int )*((unsigned int const volatile *)(& dql->num_queued)))); } } extern void dql_completed(struct dql * , unsigned int ) ; extern void dql_reset(struct dql * ) ; extern int net_ratelimit(void) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } extern void kfree_skb(struct sk_buff * ) ; extern void consume_skb(struct sk_buff * ) ; extern struct sk_buff *build_skb(void * , unsigned int ) ; extern int pskb_expand_head(struct sk_buff * , int , int , gfp_t ) ; extern int skb_pad(struct sk_buff * , int ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 142UL) == 0U) { return (0); } else { } tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); return (dataref != 1); } } __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void __skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { skb_frag_t *frag ; unsigned char *tmp ; { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp)->frags) + (unsigned long )i; frag->page.p = page; frag->page_offset = (__u32 )off; skb_frag_size_set(frag, (unsigned int )size); page = compound_head(page); if ((int )page->__annonCompField42.__annonCompField37.pfmemalloc && (unsigned long )page->__annonCompField36.mapping == (unsigned long )((struct address_space *)0)) { skb->pfmemalloc = 1U; } else { } return; } } __inline static void skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { unsigned char *tmp ; { __skb_fill_page_desc(skb, i, page, off, size); tmp = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp)->nr_frags = (unsigned int )((unsigned char )i) + 1U; return; } } __inline static unsigned char *skb_tail_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->tail); } } __inline static void skb_reset_tail_pointer(struct sk_buff *skb ) { { skb->tail = (sk_buff_data_t )((long )skb->data) - (sk_buff_data_t )((long )skb->head); return; } } __inline static void skb_set_tail_pointer(struct sk_buff *skb , int const offset ) { { skb_reset_tail_pointer(skb); skb->tail = skb->tail + (sk_buff_data_t )offset; return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static unsigned char *__skb_put(struct sk_buff *skb , unsigned int len ) { unsigned char *tmp ; unsigned char *tmp___0 ; bool tmp___1 ; long tmp___2 ; { tmp___0 = skb_tail_pointer((struct sk_buff const *)skb); tmp = tmp___0; tmp___1 = skb_is_nonlinear((struct sk_buff const *)skb); tmp___2 = ldv__builtin_expect((long )tmp___1, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/skbuff.h"), "i" (1696), "i" (12UL)); ldv_34815: ; goto ldv_34815; } else { } skb->tail = skb->tail + len; skb->len = skb->len + len; return (tmp); } } extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static int pskb_may_pull(struct sk_buff *skb , unsigned int len ) { unsigned int tmp ; long tmp___0 ; long tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; { tmp = skb_headlen((struct sk_buff const *)skb); tmp___0 = ldv__builtin_expect(tmp >= len, 1L); if (tmp___0 != 0L) { return (1); } else { } tmp___1 = ldv__builtin_expect(skb->len < len, 0L); if (tmp___1 != 0L) { return (0); } else { } tmp___2 = skb_headlen((struct sk_buff const *)skb); tmp___3 = __pskb_pull_tail(skb, (int )(len - tmp___2)); return ((unsigned long )tmp___3 != (unsigned long )((unsigned char *)0U)); } } __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { tmp = skb_headroom(skb); return ((int )((unsigned int )skb->__annonCompField82.__annonCompField81.csum_start - tmp)); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_transport_header(skb); return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } extern int ___pskb_trim(struct sk_buff * , unsigned int ) ; __inline static void __skb_trim(struct sk_buff *skb , unsigned int len ) { int __ret_warn_on ; long tmp ; bool tmp___0 ; long tmp___1 ; { tmp___0 = skb_is_nonlinear((struct sk_buff const *)skb); tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); if (tmp___1 != 0L) { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_null("include/linux/skbuff.h", 2054); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); return; } else { } skb->len = len; skb_set_tail_pointer(skb, (int const )len); return; } } extern void skb_trim(struct sk_buff * , unsigned int ) ; __inline static int __pskb_trim(struct sk_buff *skb , unsigned int len ) { int tmp ; { if (skb->data_len != 0U) { tmp = ___pskb_trim(skb, len); return (tmp); } else { } __skb_trim(skb, len); return (0); } } __inline static int pskb_trim(struct sk_buff *skb , unsigned int len ) { int tmp ; int tmp___0 ; { if (skb->len > len) { tmp = __pskb_trim(skb, len); tmp___0 = tmp; } else { tmp___0 = 0; } return (tmp___0); } } extern void *netdev_alloc_frag(unsigned int ) ; __inline static void skb_free_frag(void *addr ) { { __free_page_frag(addr); return; } } extern struct sk_buff *__napi_alloc_skb(struct napi_struct * , unsigned int , gfp_t ) ; __inline static struct sk_buff *napi_alloc_skb(struct napi_struct *napi , unsigned int length ) { struct sk_buff *tmp ; { tmp = __napi_alloc_skb(napi, length, 32U); return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); return (tmp___0); } } __inline static int __skb_cow(struct sk_buff *skb , unsigned int headroom , int cloned ) { int delta ; unsigned int tmp ; unsigned int tmp___0 ; int _max1 ; int _max2 ; int _max1___0 ; int _max2___0 ; int tmp___1 ; { delta = 0; tmp___0 = skb_headroom((struct sk_buff const *)skb); if (tmp___0 < headroom) { tmp = skb_headroom((struct sk_buff const *)skb); delta = (int )(headroom - tmp); } else { } if (delta != 0 || cloned != 0) { _max1 = 32; _max2 = 64; _max1___0 = 32; _max2___0 = 64; tmp___1 = pskb_expand_head(skb, (((_max1 > _max2 ? _max1 : _max2) + -1) + delta) & - (_max1___0 > _max2___0 ? _max1___0 : _max2___0), 0, 32U); return (tmp___1); } else { } return (0); } } __inline static int skb_cow_head(struct sk_buff *skb , unsigned int headroom ) { int tmp ; int tmp___0 ; { tmp = skb_header_cloned((struct sk_buff const *)skb); tmp___0 = __skb_cow(skb, headroom, tmp); return (tmp___0); } } __inline static int skb_put_padto(struct sk_buff *skb , unsigned int len ) { unsigned int size ; int tmp ; long tmp___0 ; { size = skb->len; tmp___0 = ldv__builtin_expect(size < len, 0L); if (tmp___0 != 0L) { len = len - size; tmp = skb_pad(skb, (int )len); if (tmp != 0) { return (-12); } else { } __skb_put(skb, len); } else { } return (0); } } extern void skb_clone_tx_timestamp(struct sk_buff * ) ; extern void skb_tstamp_tx(struct sk_buff * , struct skb_shared_hwtstamps * ) ; __inline static void sw_tx_timestamp(struct sk_buff *skb ) { unsigned char *tmp ; unsigned char *tmp___0 ; { tmp = skb_end_pointer((struct sk_buff const *)skb); if (((int )((struct skb_shared_info *)tmp)->tx_flags & 2) != 0) { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); if (((int )((struct skb_shared_info *)tmp___0)->tx_flags & 4) == 0) { skb_tstamp_tx(skb, (struct skb_shared_hwtstamps *)0); } else { } } else { } return; } } __inline static void skb_tx_timestamp(struct sk_buff *skb ) { { skb_clone_tx_timestamp(skb); sw_tx_timestamp(skb); return; } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_end_pointer(skb); return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } __inline static bool skb_is_gso_v6(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_end_pointer(skb); return (((int )((struct skb_shared_info *)tmp)->gso_type & 16) != 0); } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } extern void synchronize_irq(unsigned int ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); return (tmp); } } __inline static int ldv_request_irq_19(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; void ldv_free_irq_20(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = napi_disable_pending(n); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_complete(struct napi_struct *n ) { { return; } } extern void napi_disable(struct napi_struct * ) ; __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (507), "i" (12UL)); ldv_43287: ; goto ldv_43287; } else { } __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3008U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void free_netdev(struct net_device * ) ; void ldv_free_netdev_26(struct net_device *dev ) ; void ldv_free_netdev_28(struct net_device *dev ) ; extern void netif_schedule_queue(struct netdev_queue * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); return; } } extern void netif_tx_wake_queue(struct netdev_queue * ) ; __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); return (tmp___0); } } __inline static bool netif_xmit_stopped(struct netdev_queue const *dev_queue ) { { return (((unsigned long )dev_queue->state & 3UL) != 0UL); } } __inline static void netdev_tx_sent_queue(struct netdev_queue *dev_queue , unsigned int bytes ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { dql_queued(& dev_queue->dql, bytes); tmp = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___0 = ldv__builtin_expect(tmp >= 0, 1L); if (tmp___0 != 0L) { return; } else { } set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); __asm__ volatile ("mfence": : : "memory"); tmp___1 = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___2 = ldv__builtin_expect(tmp___1 >= 0, 0L); if (tmp___2 != 0L) { clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } else { } return; } } __inline static void netdev_sent_queue(struct net_device *dev , unsigned int bytes ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_sent_queue(tmp, bytes); return; } } __inline static void netdev_tx_completed_queue(struct netdev_queue *dev_queue , unsigned int pkts , unsigned int bytes ) { long tmp ; int tmp___0 ; int tmp___1 ; { tmp = ldv__builtin_expect(bytes == 0U, 0L); if (tmp != 0L) { return; } else { } dql_completed(& dev_queue->dql, bytes); __asm__ volatile ("mfence": : : "memory"); tmp___0 = dql_avail((struct dql const *)(& dev_queue->dql)); if (tmp___0 < 0) { return; } else { } tmp___1 = test_and_clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); if (tmp___1 != 0) { netif_schedule_queue(dev_queue); } else { } return; } } __inline static void netdev_completed_queue(struct net_device *dev , unsigned int pkts , unsigned int bytes ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_completed_queue(tmp, pkts, bytes); return; } } __inline static void netdev_tx_reset_queue(struct netdev_queue *q ) { { clear_bit(1L, (unsigned long volatile *)(& q->state)); dql_reset(& q->dql); return; } } __inline static void netdev_reset_queue(struct net_device *dev_queue ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev_queue, 0U); netdev_tx_reset_queue(tmp); return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); return (tmp != 0); } } extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { __dev_kfree_skb_any(skb, 1); return; } } extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; extern struct sk_buff *napi_get_frags(struct napi_struct * ) ; extern gro_result_t napi_gro_frags(struct napi_struct * ) ; __inline static void napi_free_frags(struct napi_struct *napi ) { { kfree_skb(napi->skb); napi->skb = (struct sk_buff *)0; return; } } __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if (debug_value < 0 || (unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { spin_lock(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { txq->xmit_lock_owner = -1; spin_unlock(& txq->_xmit_lock); return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { local_bh_disable(); __vpp_verify = (void const *)0; switch (4UL) { case 1UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_44936; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44936; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44936; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44936; default: __bad_percpu_size(); } ldv_44936: pscr_ret__ = pfo_ret__; goto ldv_44942; case 2UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44946; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44946; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44946; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44946; default: __bad_percpu_size(); } ldv_44946: pscr_ret__ = pfo_ret_____0; goto ldv_44942; case 4UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44955; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44955; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44955; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44955; default: __bad_percpu_size(); } ldv_44955: pscr_ret__ = pfo_ret_____1; goto ldv_44942; case 8UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44964; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44964; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44964; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44964; default: __bad_percpu_size(); } ldv_44964: pscr_ret__ = pfo_ret_____2; goto ldv_44942; default: __bad_size_call_parameter(); goto ldv_44942; } ldv_44942: cpu = pscr_ret__; i = 0U; goto ldv_44974; ldv_44973: tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; ldv_44974: ; if (dev->num_tx_queues > i) { goto ldv_44973; } else { } local_bh_enable(); return; } } extern int register_netdev(struct net_device * ) ; int ldv_register_netdev_25(struct net_device *dev ) ; extern void unregister_netdev(struct net_device * ) ; void ldv_unregister_netdev_27(struct net_device *dev ) ; extern void netdev_err(struct net_device const * , char const * , ...) ; extern void netdev_warn(struct net_device const * , char const * , ...) ; extern void netdev_info(struct net_device const * , char const * , ...) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { u32 a ; { a = *((u32 const *)addr); return ((a & 1U) != 0U); } } __inline static bool is_broadcast_ether_addr(u8 const *addr ) { { return ((unsigned int )(((int )((unsigned short )*((u16 const *)addr)) & (int )((unsigned short )*((u16 const *)addr + 2U))) & (int )((unsigned short )*((u16 const *)addr + 4U))) == 65535U); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { tmp = is_multicast_ether_addr(addr); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___1 = is_zero_ether_addr(addr); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static int eth_skb_pad(struct sk_buff *skb ) { int tmp ; { tmp = skb_put_padto(skb, 60U); return (tmp); } } extern void *vzalloc(unsigned long ) ; extern void vfree(void const * ) ; __inline static void pagefault_disabled_inc(void) { struct task_struct *tmp ; { tmp = get_current(); tmp->pagefault_disabled = tmp->pagefault_disabled + 1; return; } } __inline static void pagefault_disabled_dec(void) { struct task_struct *tmp ; int __ret_warn_on ; struct task_struct *tmp___0 ; long tmp___1 ; { tmp = get_current(); tmp->pagefault_disabled = tmp->pagefault_disabled - 1; tmp___0 = get_current(); __ret_warn_on = tmp___0->pagefault_disabled < 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___1 != 0L) { warn_slowpath_null("include/linux/uaccess.h", 15); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); return; } } __inline static void pagefault_disable(void) { { pagefault_disabled_inc(); __asm__ volatile ("": : : "memory"); return; } } __inline static void pagefault_enable(void) { { __asm__ volatile ("": : : "memory"); pagefault_disabled_dec(); return; } } __inline static void *kmap_atomic(struct page *page ) { void *tmp ; { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); pagefault_disable(); tmp = lowmem_page_address((struct page const *)page); return (tmp); } } __inline static void __kunmap_atomic(void *addr ) { { pagefault_enable(); __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); return; } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((struct iphdr *)tmp); } } __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_transport_header(skb); return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { tmp = tcp_hdr(skb); return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((struct ipv6hdr *)tmp); } } __inline static void __vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return; } } __inline static __be16 __vlan_get_protocol(struct sk_buff *skb , __be16 type , int *depth ) { unsigned int vlan_depth ; int __ret_warn_on ; long tmp ; long tmp___0 ; struct vlan_hdr *vh ; int tmp___1 ; long tmp___2 ; { vlan_depth = (unsigned int )skb->mac_len; if ((unsigned int )type == 129U || (unsigned int )type == 43144U) { if (vlan_depth != 0U) { __ret_warn_on = vlan_depth <= 3U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_null("include/linux/if_vlan.h", 492); } else { } tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { return (0U); } else { } vlan_depth = vlan_depth - 4U; } else { vlan_depth = 14U; } ldv_51614: tmp___1 = pskb_may_pull(skb, vlan_depth + 4U); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); if (tmp___2 != 0L) { return (0U); } else { } vh = (struct vlan_hdr *)skb->data + (unsigned long )vlan_depth; type = vh->h_vlan_encapsulated_proto; vlan_depth = vlan_depth + 4U; if ((unsigned int )type == 129U || (unsigned int )type == 43144U) { goto ldv_51614; } else { } } else { } if ((unsigned long )depth != (unsigned long )((int *)0)) { *depth = (int )vlan_depth; } else { } return (type); } } __inline static __be16 vlan_get_protocol(struct sk_buff *skb ) { __be16 tmp ; { tmp = __vlan_get_protocol(skb, (int )skb->protocol, (int *)0); return (tmp); } } s32 e1000_reset_hw(struct e1000_hw *hw ) ; s32 e1000_init_hw(struct e1000_hw *hw ) ; s32 e1000_set_mac_type(struct e1000_hw *hw ) ; void e1000_set_media_type(struct e1000_hw *hw ) ; s32 e1000_phy_setup_autoneg(struct e1000_hw *hw ) ; void e1000_config_collision_dist(struct e1000_hw *hw ) ; s32 e1000_check_for_link(struct e1000_hw *hw ) ; s32 e1000_get_speed_and_duplex(struct e1000_hw *hw , u16 *speed , u16 *duplex ) ; s32 e1000_read_phy_reg(struct e1000_hw *hw , u32 reg_addr , u16 *phy_data ) ; s32 e1000_write_phy_reg(struct e1000_hw *hw , u32 reg_addr , u16 phy_data ) ; s32 e1000_phy_hw_reset(struct e1000_hw *hw ) ; s32 e1000_phy_reset(struct e1000_hw *hw ) ; s32 e1000_phy_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) ; s32 e1000_init_eeprom_params(struct e1000_hw *hw ) ; u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw ) ; s32 e1000_read_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw ) ; s32 e1000_read_mac_addr(struct e1000_hw *hw ) ; u32 e1000_hash_mc_addr(struct e1000_hw *hw , u8 *mc_addr ) ; void e1000_rar_set(struct e1000_hw *hw , u8 *addr , u32 index ) ; void e1000_write_vfta(struct e1000_hw *hw , u32 offset , u32 value ) ; void e1000_reset_adaptive(struct e1000_hw *hw ) ; void e1000_update_adaptive(struct e1000_hw *hw ) ; void e1000_get_bus_info(struct e1000_hw *hw ) ; void e1000_pci_set_mwi(struct e1000_hw *hw ) ; void e1000_pci_clear_mwi(struct e1000_hw *hw ) ; void e1000_pcix_set_mmrbc(struct e1000_hw *hw , int mmrbc ) ; int e1000_pcix_get_mmrbc(struct e1000_hw *hw ) ; void e1000_io_write(struct e1000_hw *hw , unsigned long port , u32 value ) ; struct net_device *e1000_get_hw_dev(struct e1000_hw *hw ) ; char e1000_driver_name[6U] ; char const e1000_driver_version[15U] ; int e1000_up(struct e1000_adapter *adapter ) ; void e1000_down(struct e1000_adapter *adapter ) ; void e1000_reinit_locked(struct e1000_adapter *adapter ) ; void e1000_reset(struct e1000_adapter *adapter ) ; int e1000_set_spd_dplx(struct e1000_adapter *adapter , u32 spd , u8 dplx ) ; int e1000_setup_all_rx_resources(struct e1000_adapter *adapter ) ; int e1000_setup_all_tx_resources(struct e1000_adapter *adapter ) ; void e1000_free_all_rx_resources(struct e1000_adapter *adapter ) ; void e1000_free_all_tx_resources(struct e1000_adapter *adapter ) ; void e1000_update_stats(struct e1000_adapter *adapter ) ; bool e1000_has_link(struct e1000_adapter *adapter ) ; void e1000_power_up_phy(struct e1000_adapter *adapter ) ; void e1000_set_ethtool_ops(struct net_device *netdev ) ; void e1000_check_options(struct e1000_adapter *adapter ) ; char e1000_driver_name[6U] = { 'e', '1', '0', '0', '0', '\000'}; static char e1000_driver_string[33U] = { 'I', 'n', 't', 'e', 'l', '(', 'R', ')', ' ', 'P', 'R', 'O', '/', '1', '0', '0', '0', ' ', 'N', 'e', 't', 'w', 'o', 'r', 'k', ' ', 'D', 'r', 'i', 'v', 'e', 'r', '\000'}; char const e1000_driver_version[15U] = { '7', '.', '3', '.', '2', '1', '-', 'k', '8', '-', 'N', 'A', 'P', 'I', '\000'}; static char const e1000_copyright[43U] = { 'C', 'o', 'p', 'y', 'r', 'i', 'g', 'h', 't', ' ', '(', 'c', ')', ' ', '1', '9', '9', '9', '-', '2', '0', '0', '6', ' ', 'I', 'n', 't', 'e', 'l', ' ', 'C', 'o', 'r', 'p', 'o', 'r', 'a', 't', 'i', 'o', 'n', '.', '\000'}; static struct pci_device_id const e1000_pci_tbl[38U] = { {32902U, 4096U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4097U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4100U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4104U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4105U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4108U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4109U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4110U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4111U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4112U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4113U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4114U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4115U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4116U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4117U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4118U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4119U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4120U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4121U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4122U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4125U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4126U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4134U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4135U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4136U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4213U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4214U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4215U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4216U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4217U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4218U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4219U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4220U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4234U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4249U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4277U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 11886U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__e1000_pci_tbl_device_table[38U] ; static int e1000_setup_tx_resources(struct e1000_adapter *adapter , struct e1000_tx_ring *txdr ) ; static int e1000_setup_rx_resources(struct e1000_adapter *adapter , struct e1000_rx_ring *rxdr ) ; static void e1000_free_tx_resources(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) ; static void e1000_free_rx_resources(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring ) ; static int e1000_init_module(void) ; static void e1000_exit_module(void) ; static int e1000_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) ; static void e1000_remove(struct pci_dev *pdev ) ; static int e1000_alloc_queues(struct e1000_adapter *adapter ) ; static int e1000_sw_init(struct e1000_adapter *adapter ) ; static int e1000_open(struct net_device *netdev ) ; static int e1000_close(struct net_device *netdev ) ; static void e1000_configure_tx(struct e1000_adapter *adapter ) ; static void e1000_configure_rx(struct e1000_adapter *adapter ) ; static void e1000_setup_rctl(struct e1000_adapter *adapter ) ; static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter ) ; static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter ) ; static void e1000_clean_tx_ring(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) ; static void e1000_clean_rx_ring(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring ) ; static void e1000_set_rx_mode(struct net_device *netdev ) ; static void e1000_update_phy_info_task(struct work_struct *work ) ; static void e1000_watchdog(struct work_struct *work ) ; static void e1000_82547_tx_fifo_stall_task(struct work_struct *work ) ; static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) ; static struct net_device_stats *e1000_get_stats(struct net_device *netdev ) ; static int e1000_change_mtu(struct net_device *netdev , int new_mtu ) ; static int e1000_set_mac(struct net_device *netdev , void *p ) ; static irqreturn_t e1000_intr(int irq , void *data ) ; static bool e1000_clean_tx_irq(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) ; static int e1000_clean(struct napi_struct *napi , int budget ) ; static bool e1000_clean_rx_irq(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int *work_done , int work_to_do ) ; static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int *work_done , int work_to_do ) ; static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int cleaned_count ) { { return; } } static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int cleaned_count ) ; static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int cleaned_count ) ; static int e1000_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) ; static int e1000_mii_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) ; static void e1000_enter_82542_rst(struct e1000_adapter *adapter ) ; static void e1000_leave_82542_rst(struct e1000_adapter *adapter ) ; static void e1000_tx_timeout(struct net_device *netdev ) ; static void e1000_reset_task(struct work_struct *work ) ; static void e1000_smartspeed(struct e1000_adapter *adapter ) ; static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter , struct sk_buff *skb ) ; static bool e1000_vlan_used(struct e1000_adapter *adapter ) ; static void e1000_vlan_mode(struct net_device *netdev , netdev_features_t features ) ; static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter , bool filter_on ) ; static int e1000_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) ; static int e1000_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) ; static void e1000_restore_vlan(struct e1000_adapter *adapter ) ; static int e1000_suspend(struct pci_dev *pdev , pm_message_t state ) ; static int e1000_resume(struct pci_dev *pdev ) ; static void e1000_shutdown(struct pci_dev *pdev ) ; static void e1000_netpoll(struct net_device *netdev ) ; static unsigned int copybreak = 256U; static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) ; static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev ) ; static void e1000_io_resume(struct pci_dev *pdev ) ; static struct pci_error_handlers const e1000_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& e1000_io_error_detected), 0, 0, & e1000_io_slot_reset, 0, & e1000_io_resume}; static struct pci_driver e1000_driver = {{0, 0}, (char const *)(& e1000_driver_name), (struct pci_device_id const *)(& e1000_pci_tbl), & e1000_probe, & e1000_remove, & e1000_suspend, 0, 0, & e1000_resume, & e1000_shutdown, 0, & e1000_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int debug = -1; struct net_device *e1000_get_hw_dev(struct e1000_hw *hw ) { struct e1000_adapter *adapter ; { adapter = (struct e1000_adapter *)hw->back; return (adapter->netdev); } } static int e1000_init_module(void) { int ret ; { printk("\016e1000: %s - version %s\n", (char *)(& e1000_driver_string), (char const *)(& e1000_driver_version)); printk("\016e1000: %s\n", (char const *)(& e1000_copyright)); ret = ldv___pci_register_driver_17(& e1000_driver, & __this_module, "e1000"); if (copybreak != 256U) { if (copybreak == 0U) { printk("\016e1000: copybreak disabled\n"); } else { printk("\016e1000: copybreak enabled for packets <= %u bytes\n", copybreak); } } else { } return (ret); } } static void e1000_exit_module(void) { { ldv_pci_unregister_driver_18(& e1000_driver); return; } } static int e1000_request_irq(struct e1000_adapter *adapter ) { struct net_device *netdev ; irqreturn_t (*handler)(int , void * ) ; int irq_flags ; int err ; { netdev = adapter->netdev; handler = & e1000_intr; irq_flags = 128; err = ldv_request_irq_19((adapter->pdev)->irq, handler, (unsigned long )irq_flags, (char const *)(& netdev->name), (void *)netdev); if (err != 0) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate interrupt Error: %d\n", err); } else { } } else { } return (err); } } static void e1000_free_irq(struct e1000_adapter *adapter ) { struct net_device *netdev ; { netdev = adapter->netdev; ldv_free_irq_20((adapter->pdev)->irq, (void *)netdev); return; } } static void e1000_irq_disable(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { hw = & adapter->hw; writel(4294967295U, (void volatile *)hw->hw_addr + 216U); readl((void const volatile *)hw->hw_addr + 8U); synchronize_irq((adapter->pdev)->irq); return; } } static void e1000_irq_enable(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { hw = & adapter->hw; writel(157U, (void volatile *)hw->hw_addr + 208U); readl((void const volatile *)hw->hw_addr + 8U); return; } } static void e1000_update_mng_vlan(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct net_device *netdev ; u16 vid ; u16 old_vid ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { hw = & adapter->hw; netdev = adapter->netdev; vid = hw->mng_cookie.vlan_id; old_vid = adapter->mng_vlan_id; tmp = e1000_vlan_used(adapter); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } tmp___2 = variable_test_bit((long )vid, (unsigned long const volatile *)(& adapter->active_vlans)); if (tmp___2 == 0) { if (((int )hw->mng_cookie.status & 2) != 0) { e1000_vlan_rx_add_vid(netdev, 129, (int )vid); adapter->mng_vlan_id = vid; } else { adapter->mng_vlan_id = 65535U; } if ((unsigned int )old_vid != 65535U && (int )vid != (int )old_vid) { tmp___1 = variable_test_bit((long )old_vid, (unsigned long const volatile *)(& adapter->active_vlans)); if (tmp___1 == 0) { e1000_vlan_rx_kill_vid(netdev, 129, (int )old_vid); } else { } } else { } } else { adapter->mng_vlan_id = vid; } return; } } static void e1000_init_manageability(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 manc ; unsigned int tmp ; { hw = & adapter->hw; if (adapter->en_mng_pt != 0U) { tmp = readl((void const volatile *)hw->hw_addr + 22560U); manc = tmp; manc = manc & 4294959103U; writel(manc, (void volatile *)hw->hw_addr + 22560U); } else { } return; } } static void e1000_release_manageability(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 manc ; unsigned int tmp ; { hw = & adapter->hw; if (adapter->en_mng_pt != 0U) { tmp = readl((void const volatile *)hw->hw_addr + 22560U); manc = tmp; manc = manc | 8192U; writel(manc, (void volatile *)hw->hw_addr + 22560U); } else { } return; } } static void e1000_configure(struct e1000_adapter *adapter ) { struct net_device *netdev ; int i ; struct e1000_rx_ring *ring ; { netdev = adapter->netdev; e1000_set_rx_mode(netdev); e1000_restore_vlan(adapter); e1000_init_manageability(adapter); e1000_configure_tx(adapter); e1000_setup_rctl(adapter); e1000_configure_rx(adapter); i = 0; goto ldv_55925; ldv_55924: ring = adapter->rx_ring + (unsigned long )i; (*(adapter->alloc_rx_buf))(adapter, ring, (int )((((ring->next_to_clean <= ring->next_to_use ? ring->count : 0U) + ring->next_to_clean) - ring->next_to_use) - 1U)); i = i + 1; ldv_55925: ; if (adapter->num_rx_queues > i) { goto ldv_55924; } else { } return; } } int e1000_up(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { hw = & adapter->hw; e1000_configure(adapter); clear_bit(2L, (unsigned long volatile *)(& adapter->flags)); napi_enable(& adapter->napi); e1000_irq_enable(adapter); netif_wake_queue(adapter->netdev); writel(4U, (void volatile *)hw->hw_addr + 200U); return (0); } } void e1000_power_up_phy(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 mii_reg ; { hw = & adapter->hw; mii_reg = 0U; if ((unsigned int )hw->media_type == 0U) { e1000_read_phy_reg(hw, 0U, & mii_reg); mii_reg = (unsigned int )mii_reg & 63487U; e1000_write_phy_reg(hw, 0U, (int )mii_reg); } else { } return; } } static void e1000_power_down_phy(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 mii_reg ; unsigned int tmp ; { hw = & adapter->hw; if ((adapter->wol == 0U && (unsigned int )hw->mac_type > 4U) && (unsigned int )hw->media_type == 0U) { mii_reg = 0U; switch ((unsigned int )hw->mac_type) { case 5U: ; case 6U: ; case 7U: ; case 8U: ; case 9U: ; case 10U: ; case 11U: ; case 12U: ; case 13U: ; case 14U: tmp = readl((void const volatile *)hw->hw_addr + 22560U); if ((int )tmp & 1) { goto out; } else { } goto ldv_55952; default: ; goto out; } ldv_55952: e1000_read_phy_reg(hw, 0U, & mii_reg); mii_reg = (u16 )((unsigned int )mii_reg | 2048U); e1000_write_phy_reg(hw, 0U, (int )mii_reg); msleep(1U); } else { } out: ; return; } } static void e1000_down_and_stop(struct e1000_adapter *adapter ) { int tmp ; { set_bit(2L, (unsigned long volatile *)(& adapter->flags)); ldv_cancel_delayed_work_sync_21(& adapter->watchdog_task); ldv_cancel_delayed_work_sync_22(& adapter->phy_info_task); ldv_cancel_delayed_work_sync_23(& adapter->fifo_stall_task); tmp = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); if (tmp == 0) { ldv_cancel_work_sync_24(& adapter->reset_task); } else { } return; } } void e1000_down(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct net_device *netdev ; u32 rctl ; u32 tctl ; { hw = & adapter->hw; netdev = adapter->netdev; netif_carrier_off(netdev); rctl = readl((void const volatile *)hw->hw_addr + 256U); writel(rctl & 4294967293U, (void volatile *)hw->hw_addr + 256U); netif_tx_disable(netdev); tctl = readl((void const volatile *)hw->hw_addr + 1024U); tctl = tctl & 4294967293U; writel(tctl, (void volatile *)hw->hw_addr + 1024U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); napi_disable(& adapter->napi); e1000_irq_disable(adapter); e1000_down_and_stop(adapter); adapter->link_speed = 0U; adapter->link_duplex = 0U; e1000_reset(adapter); e1000_clean_all_tx_rings(adapter); e1000_clean_all_rx_rings(adapter); return; } } void e1000_reinit_locked(struct e1000_adapter *adapter ) { int __ret_warn_on ; int tmp ; long tmp___0 ; int tmp___1 ; { tmp = preempt_count(); __ret_warn_on = ((unsigned long )tmp & 2096896UL) != 0UL; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { warn_slowpath_null("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_main.c", 561); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); goto ldv_55970; ldv_55969: msleep(1U); ldv_55970: tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->flags)); if (tmp___1 != 0) { goto ldv_55969; } else { } e1000_down(adapter); e1000_up(adapter); clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); return; } } void e1000_reset(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 pba ; u32 tx_space ; u32 min_tx_space ; u32 min_rx_space ; bool legacy_pba_adjust ; u16 hwm ; u32 _min1 ; u32 _min2 ; s32 tmp ; u32 ctrl ; unsigned int tmp___0 ; { hw = & adapter->hw; pba = 0U; legacy_pba_adjust = 0; switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: ; case 3U: ; case 4U: ; case 5U: ; case 11U: ; case 12U: legacy_pba_adjust = 1; pba = 48U; goto ldv_55989; case 6U: ; case 7U: ; case 8U: ; case 9U: ; case 10U: pba = 48U; goto ldv_55989; case 13U: ; case 14U: legacy_pba_adjust = 1; pba = 30U; goto ldv_55989; case 0U: ; case 15U: ; goto ldv_55989; } ldv_55989: ; if ((int )legacy_pba_adjust) { if (hw->max_frame_size > 8192U) { pba = pba - 8U; } else { } if ((unsigned int )hw->mac_type == 13U) { adapter->tx_fifo_head = 0U; adapter->tx_head_addr = pba << 7; adapter->tx_fifo_size = (40U - pba) << 10; atomic_set(& adapter->tx_fifo_stall, 0); } else { } } else if (hw->max_frame_size > 1518U) { writel(pba, (void volatile *)hw->hw_addr + 4096U); pba = readl((void const volatile *)hw->hw_addr + 4096U); tx_space = pba >> 16; pba = pba & 65535U; min_tx_space = (u32 )((unsigned long )hw->max_frame_size + 12UL) * 2U; min_tx_space = (min_tx_space + 1023U) & 4294966272U; min_tx_space = min_tx_space >> 10; min_rx_space = hw->max_frame_size; min_rx_space = (min_rx_space + 1023U) & 4294966272U; min_rx_space = min_rx_space >> 10; if (tx_space < min_tx_space && min_tx_space - tx_space < pba) { pba = (tx_space - min_tx_space) + pba; switch ((unsigned int )hw->mac_type) { case 10U: case 9U: case 8U: case 7U: case 6U: pba = pba & 4294967288U; goto ldv_56000; default: ; goto ldv_56000; } ldv_56000: ; if (pba < min_rx_space) { pba = min_rx_space; } else { } } else { } } else { } writel(pba, (void volatile *)hw->hw_addr + 4096U); _min1 = (pba * 9216U) / 10U; _min2 = (pba << 10) - hw->max_frame_size; hwm = (u16 )(_min1 < _min2 ? _min1 : _min2); hw->fc_high_water = (unsigned int )hwm & 65528U; hw->fc_low_water = (unsigned int )hw->fc_high_water + 65528U; hw->fc_pause_time = 65535U; hw->fc_send_xon = 1; hw->fc = (e1000_fc_type )hw->original_fc; e1000_reset_hw(hw); if ((unsigned int )hw->mac_type > 3U) { writel(0U, (void volatile *)hw->hw_addr + 22528U); } else { } tmp = e1000_init_hw(hw); if (tmp != 0) { dev_err((struct device const *)(& (adapter->pdev)->dev), "Hardware Error\n"); } else { } e1000_update_mng_vlan(adapter); if (((unsigned int )hw->mac_type > 3U && (unsigned int )hw->autoneg == 1U) && (unsigned int )hw->autoneg_advertised == 32U) { tmp___0 = readl((void const volatile *)hw->hw_addr); ctrl = tmp___0; ctrl = ctrl & 4292870143U; writel(ctrl, (void volatile *)hw->hw_addr); } else { } writel(33024U, (void volatile *)hw->hw_addr + 56U); e1000_reset_adaptive(hw); e1000_phy_get_info(hw, & adapter->phy_info); e1000_release_manageability(adapter); return; } } static void e1000_dump_eeprom(struct e1000_adapter *adapter ) { struct net_device *netdev ; struct ethtool_eeprom eeprom ; struct ethtool_ops const *ops ; u8 *data ; int i ; u16 csum_old ; u16 csum_new ; int tmp ; void *tmp___0 ; { netdev = adapter->netdev; ops = netdev->ethtool_ops; csum_new = 0U; tmp = (*(ops->get_eeprom_len))(netdev); eeprom.len = (__u32 )tmp; eeprom.offset = 0U; tmp___0 = kmalloc((size_t )eeprom.len, 208U); data = (u8 *)tmp___0; if ((unsigned long )data == (unsigned long )((u8 *)0U)) { return; } else { } (*(ops->get_eeprom))(netdev, & eeprom, data); csum_old = (int )((u16 )*(data + 126UL)) + ((int )((u16 )*(data + 127UL)) << 8U); i = 0; goto ldv_56017; ldv_56016: csum_new = ((int )((u16 )*(data + (unsigned long )i)) + ((int )((u16 )*(data + ((unsigned long )i + 1UL))) << 8U)) + (int )csum_new; i = i + 2; ldv_56017: ; if (i <= 125) { goto ldv_56016; } else { } csum_new = 47802U - (unsigned int )csum_new; printk("\ve1000: /*********************/\n"); printk("\ve1000: Current EEPROM Checksum : 0x%04x\n", (int )csum_old); printk("\ve1000: Calculated : 0x%04x\n", (int )csum_new); printk("\ve1000: Offset Values\n"); printk("\ve1000: ======== ======\n"); print_hex_dump("\v", "", 2, 16, 1, (void const *)data, 128UL, 0); printk("\ve1000: Include this output when contacting your support provider.\n"); printk("\ve1000: This is not a software error! Something bad happened to\n"); printk("\ve1000: your hardware or EEPROM image. Ignoring this problem could\n"); printk("\ve1000: result in further problems, possibly loss of data,\n"); printk("\ve1000: corruption or system hangs!\n"); printk("\ve1000: The MAC Address will be reset to 00:00:00:00:00:00,\n"); printk("\ve1000: which is invalid and requires you to set the proper MAC\n"); printk("\ve1000: address manually before continuing to enable this network\n"); printk("\ve1000: device. Please inspect the EEPROM dump and report the\n"); printk("\ve1000: issue to your hardware vendor or Intel Customer Support.\n"); printk("\ve1000: /*********************/\n"); kfree((void const *)data); return; } } static int e1000_is_need_ioport(struct pci_dev *pdev ) { { switch ((int )pdev->device) { case 4110: ; case 4117: ; case 4119: ; case 4118: ; case 4126: ; case 4115: ; case 4120: ; case 4216: ; case 4116: ; case 4214: ; case 4220: ; case 4215: ; case 4104: ; case 4105: ; case 4108: ; case 4109: ; case 4111: ; case 4113: ; case 4112: ; case 4114: ; case 4125: ; return (1); default: ; return (0); } } } static netdev_features_t e1000_fix_features(struct net_device *netdev , netdev_features_t features ) { { if ((features & 256ULL) != 0ULL) { features = features | 128ULL; } else { features = features & 0xffffffffffffff7fULL; } return (features); } } static int e1000_set_features(struct net_device *netdev , netdev_features_t features ) { struct e1000_adapter *adapter ; void *tmp ; netdev_features_t changed ; bool tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; changed = netdev->features ^ features; if ((changed & 256ULL) != 0ULL) { e1000_vlan_mode(netdev, features); } else { } if ((changed & 292057776128ULL) == 0ULL) { return (0); } else { } netdev->features = features; adapter->rx_csum = (features & 17179869184ULL) != 0ULL; tmp___0 = netif_running((struct net_device const *)netdev); if ((int )tmp___0) { e1000_reinit_locked(adapter); } else { e1000_reset(adapter); } return (0); } } static struct net_device_ops const e1000_netdev_ops = {0, 0, & e1000_open, & e1000_close, & e1000_xmit_frame, 0, 0, & e1000_set_rx_mode, & e1000_set_mac, & eth_validate_addr, & e1000_ioctl, 0, & e1000_change_mtu, 0, & e1000_tx_timeout, 0, & e1000_get_stats, & e1000_vlan_rx_add_vid, & e1000_vlan_rx_kill_vid, & e1000_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & e1000_fix_features, & e1000_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int e1000_init_hw_struct(struct e1000_adapter *adapter , struct e1000_hw *hw ) { struct pci_dev *pdev ; s32 tmp ; { pdev = adapter->pdev; hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_id = pdev->subsystem_device; hw->revision_id = pdev->revision; pci_read_config_word((struct pci_dev const *)pdev, 4, & hw->pci_cmd_word); hw->max_frame_size = (adapter->netdev)->mtu + 18U; hw->min_frame_size = 64U; tmp = e1000_set_mac_type(hw); if (tmp != 0) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Unknown MAC Type\n"); } else { } return (-5); } else { } switch ((unsigned int )hw->mac_type) { default: ; goto ldv_56061; case 11U: ; case 13U: ; case 12U: ; case 14U: hw->phy_init_script = 1U; goto ldv_56061; } ldv_56061: e1000_set_media_type(hw); e1000_get_bus_info(hw); hw->wait_autoneg_complete = 0U; hw->tbi_compatibility_en = 1; hw->adaptive_ifs = 1; if ((unsigned int )hw->media_type == 0U) { hw->mdix = 0U; hw->disable_polarity_correction = 0; hw->master_slave = 0; } else { } return (0); } } static int e1000_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *netdev ; struct e1000_adapter *adapter ; struct e1000_hw *hw ; int cards_found ; int global_quad_port_a ; int i ; int err ; int pci_using_dac ; u16 eeprom_data ; u16 tmp ; u16 eeprom_apme_mask ; int bars ; int need_ioport ; void *tmp___0 ; u32 tmp___1 ; void *tmp___2 ; int tmp___3 ; char const *tmp___4 ; s32 tmp___5 ; s32 tmp___6 ; s32 tmp___7 ; bool tmp___8 ; int tmp___9 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_2 ; struct lock_class_key __key___4 ; struct lock_class_key __key___5 ; atomic_long_t __constr_expr_3 ; unsigned int tmp___10 ; unsigned int tmp___11 ; { cards_found = 0; global_quad_port_a = 0; eeprom_data = 0U; tmp = 0U; eeprom_apme_mask = 1024U; need_ioport = e1000_is_need_ioport(pdev); if (need_ioport != 0) { bars = pci_select_bars(pdev, 768UL); err = pci_enable_device(pdev); } else { bars = pci_select_bars(pdev, 512UL); err = pci_enable_device_mem(pdev); } if (err != 0) { return (err); } else { } err = pci_request_selected_regions(pdev, bars, (char const *)(& e1000_driver_name)); if (err != 0) { goto err_pci_reg; } else { } pci_set_master(pdev); err = pci_save_state(pdev); if (err != 0) { goto err_alloc_etherdev; } else { } err = -12; netdev = alloc_etherdev_mqs(2888, 1U, 1U); if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { goto err_alloc_etherdev; } else { } netdev->dev.parent = & pdev->dev; pci_set_drvdata(pdev, (void *)netdev); tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; adapter->netdev = netdev; adapter->pdev = pdev; tmp___1 = netif_msg_init(debug, 7); adapter->msg_enable = (int )tmp___1; adapter->bars = bars; adapter->need_ioport = need_ioport; hw = & adapter->hw; hw->back = (void *)adapter; err = -5; tmp___2 = pci_ioremap_bar(pdev, 0); hw->hw_addr = (u8 *)tmp___2; if ((unsigned long )hw->hw_addr == (unsigned long )((u8 *)0U)) { goto err_ioremap; } else { } if (adapter->need_ioport != 0) { i = 1; goto ldv_56089; ldv_56088: ; if ((pdev->resource[i].start == 0ULL && pdev->resource[i].end == pdev->resource[i].start) || pdev->resource[i].end - pdev->resource[i].start == 0xffffffffffffffffULL) { goto ldv_56086; } else { } if ((pdev->resource[i].flags & 256UL) != 0UL) { hw->io_base = (unsigned long )pdev->resource[i].start; goto ldv_56087; } else { } ldv_56086: i = i + 1; ldv_56089: ; if (i <= 5) { goto ldv_56088; } else { } ldv_56087: ; } else { } err = e1000_init_hw_struct(adapter, hw); if (err != 0) { goto err_sw_init; } else { } pci_using_dac = 0; if ((unsigned int )hw->bus_type == 2U) { tmp___3 = dma_set_mask_and_coherent(& pdev->dev, 0xffffffffffffffffULL); if (tmp___3 == 0) { pci_using_dac = 1; } else { goto _L; } } else { _L: /* CIL Label */ err = dma_set_mask_and_coherent(& pdev->dev, 4294967295ULL); if (err != 0) { printk("\ve1000: No usable DMA config, aborting\n"); goto err_dma; } else { } } netdev->netdev_ops = & e1000_netdev_ops; e1000_set_ethtool_ops(netdev); netdev->watchdog_timeo = 1250; netif_napi_add(netdev, & adapter->napi, & e1000_clean, 64); tmp___4 = pci_name((struct pci_dev const *)pdev); strncpy((char *)(& netdev->name), tmp___4, 15UL); adapter->bd_number = (u32 )cards_found; err = e1000_sw_init(adapter); if (err != 0) { goto err_sw_init; } else { } err = -5; if ((unsigned int )hw->mac_type == 9U) { hw->ce4100_gbe_mdio_base_virt = ioremap(pdev->resource[1].start, pdev->resource[1].start != 0ULL || pdev->resource[1].end != pdev->resource[1].start ? (unsigned long )((pdev->resource[1].end - pdev->resource[1].start) + 1ULL) : 0UL); if ((unsigned long )hw->ce4100_gbe_mdio_base_virt == (unsigned long )((void *)0)) { goto err_mdio_ioremap; } else { } } else { } if ((unsigned int )hw->mac_type > 2U) { netdev->hw_features = 265ULL; netdev->features = 640ULL; } else { } if ((unsigned int )hw->mac_type > 3U && (unsigned int )hw->mac_type != 13U) { netdev->hw_features = netdev->hw_features | 65536ULL; } else { } netdev->priv_flags = netdev->priv_flags | 524288U; netdev->features = netdev->features | netdev->hw_features; netdev->hw_features = netdev->hw_features | 429496729600ULL; if (pci_using_dac != 0) { netdev->features = netdev->features | 32ULL; netdev->vlan_features = netdev->vlan_features | 32ULL; } else { } netdev->vlan_features = netdev->vlan_features | 65545ULL; if ((unsigned int )hw->device_id != 4111U || (unsigned int )hw->subsystem_vendor_id != 5549U) { netdev->priv_flags = netdev->priv_flags | 131072U; } else { } adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); tmp___5 = e1000_init_eeprom_params(hw); if (tmp___5 != 0) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "EEPROM initialization failed\n"); } else { } goto err_eeprom; } else { } e1000_reset_hw(hw); tmp___7 = e1000_validate_eeprom_checksum(hw); if (tmp___7 < 0) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "The EEPROM Checksum Is Not Valid\n"); } else { } e1000_dump_eeprom(adapter); memset((void *)(& hw->mac_addr), 0, (size_t )netdev->addr_len); } else { tmp___6 = e1000_read_mac_addr(hw); if (tmp___6 != 0) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "EEPROM Read Error\n"); } else { } } else { } } memcpy((void *)netdev->dev_addr, (void const *)(& hw->mac_addr), (size_t )netdev->addr_len); tmp___8 = is_valid_ether_addr((u8 const *)netdev->dev_addr); if (tmp___8) { tmp___9 = 0; } else { tmp___9 = 1; } if (tmp___9) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Invalid MAC Address\n"); } else { } } else { } __init_work(& adapter->watchdog_task.work, 0); __constr_expr_0.counter = 137438953408L; adapter->watchdog_task.work.data = __constr_expr_0; lockdep_init_map(& adapter->watchdog_task.work.lockdep_map, "(&(&adapter->watchdog_task)->work)", & __key, 0); INIT_LIST_HEAD(& adapter->watchdog_task.work.entry); adapter->watchdog_task.work.func = & e1000_watchdog; init_timer_key(& adapter->watchdog_task.timer, 2097152U, "(&(&adapter->watchdog_task)->timer)", & __key___0); adapter->watchdog_task.timer.function = & delayed_work_timer_fn; adapter->watchdog_task.timer.data = (unsigned long )(& adapter->watchdog_task); __init_work(& adapter->fifo_stall_task.work, 0); __constr_expr_1.counter = 137438953408L; adapter->fifo_stall_task.work.data = __constr_expr_1; lockdep_init_map(& adapter->fifo_stall_task.work.lockdep_map, "(&(&adapter->fifo_stall_task)->work)", & __key___1, 0); INIT_LIST_HEAD(& adapter->fifo_stall_task.work.entry); adapter->fifo_stall_task.work.func = & e1000_82547_tx_fifo_stall_task; init_timer_key(& adapter->fifo_stall_task.timer, 2097152U, "(&(&adapter->fifo_stall_task)->timer)", & __key___2); adapter->fifo_stall_task.timer.function = & delayed_work_timer_fn; adapter->fifo_stall_task.timer.data = (unsigned long )(& adapter->fifo_stall_task); __init_work(& adapter->phy_info_task.work, 0); __constr_expr_2.counter = 137438953408L; adapter->phy_info_task.work.data = __constr_expr_2; lockdep_init_map(& adapter->phy_info_task.work.lockdep_map, "(&(&adapter->phy_info_task)->work)", & __key___3, 0); INIT_LIST_HEAD(& adapter->phy_info_task.work.entry); adapter->phy_info_task.work.func = & e1000_update_phy_info_task; init_timer_key(& adapter->phy_info_task.timer, 2097152U, "(&(&adapter->phy_info_task)->timer)", & __key___4); adapter->phy_info_task.timer.function = & delayed_work_timer_fn; adapter->phy_info_task.timer.data = (unsigned long )(& adapter->phy_info_task); __init_work(& adapter->reset_task, 0); __constr_expr_3.counter = 137438953408L; adapter->reset_task.data = __constr_expr_3; lockdep_init_map(& adapter->reset_task.lockdep_map, "(&adapter->reset_task)", & __key___5, 0); INIT_LIST_HEAD(& adapter->reset_task.entry); adapter->reset_task.func = & e1000_reset_task; e1000_check_options(adapter); switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: ; case 3U: ; goto ldv_56108; case 4U: e1000_read_eeprom(hw, 15, 1, & eeprom_data); eeprom_apme_mask = 4U; goto ldv_56108; case 8U: ; case 10U: tmp___10 = readl((void const volatile *)hw->hw_addr + 8U); if ((tmp___10 & 4U) != 0U) { e1000_read_eeprom(hw, 20, 1, & eeprom_data); goto ldv_56108; } else { } default: e1000_read_eeprom(hw, 36, 1, & eeprom_data); goto ldv_56108; } ldv_56108: ; if ((unsigned int )((int )eeprom_data & (int )eeprom_apme_mask) != 0U) { adapter->eeprom_wol = adapter->eeprom_wol | 2U; } else { } switch ((int )pdev->device) { case 4234: adapter->eeprom_wol = 0U; goto ldv_56114; case 4114: ; case 4218: tmp___11 = readl((void const volatile *)hw->hw_addr + 8U); if ((tmp___11 & 4U) != 0U) { adapter->eeprom_wol = 0U; } else { } goto ldv_56114; case 4277: ; if (global_quad_port_a != 0) { adapter->eeprom_wol = 0U; } else { adapter->quad_port_a = 1; } global_quad_port_a = global_quad_port_a + 1; if (global_quad_port_a == 4) { global_quad_port_a = 0; } else { } goto ldv_56114; } ldv_56114: adapter->wol = adapter->eeprom_wol; device_set_wakeup_enable(& (adapter->pdev)->dev, adapter->wol != 0U); if ((unsigned int )hw->mac_type == 9U) { i = 0; goto ldv_56121; ldv_56120: hw->phy_addr = (u32 )i; e1000_read_phy_reg(hw, 3U, & tmp); if ((unsigned int )tmp == 0U || (unsigned int )tmp == 255U) { if (i == 31) { goto err_eeprom; } else { } goto ldv_56118; } else { goto ldv_56119; } ldv_56118: i = i + 1; ldv_56121: ; if (i <= 31) { goto ldv_56120; } else { } ldv_56119: ; } else { } e1000_reset(adapter); strcpy((char *)(& netdev->name), "eth%d"); err = ldv_register_netdev_25(netdev); if (err != 0) { goto err_register; } else { } e1000_vlan_filter_on_off(adapter, 0); if ((adapter->msg_enable & 2) != 0) { netdev_info((struct net_device const *)adapter->netdev, "(PCI%s:%dMHz:%d-bit) %pM\n", (unsigned int )hw->bus_type == 2U ? (char *)"-X" : (char *)"", (unsigned int )hw->bus_speed != 5U ? ((unsigned int )hw->bus_speed != 4U ? ((unsigned int )hw->bus_speed != 3U ? ((unsigned int )hw->bus_speed == 2U ? 66 : 33) : 100) : 120) : 133, (unsigned int )hw->bus_width == 2U ? 64 : 32, netdev->dev_addr); } else { } netif_carrier_off(netdev); if ((adapter->msg_enable & 2) != 0) { netdev_info((struct net_device const *)adapter->netdev, "Intel(R) PRO/1000 Network Connection\n"); } else { } cards_found = cards_found + 1; return (0); err_register: ; err_eeprom: e1000_phy_hw_reset(hw); if ((unsigned long )hw->flash_address != (unsigned long )((u8 *)0U)) { iounmap((void volatile *)hw->flash_address); } else { } kfree((void const *)adapter->tx_ring); kfree((void const *)adapter->rx_ring); err_dma: ; err_sw_init: ; err_mdio_ioremap: iounmap((void volatile *)hw->ce4100_gbe_mdio_base_virt); iounmap((void volatile *)hw->hw_addr); err_ioremap: ldv_free_netdev_26(netdev); err_alloc_etherdev: pci_release_selected_regions(pdev, bars); err_pci_reg: pci_disable_device(pdev); return (err); } } static void e1000_remove(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; e1000_down_and_stop(adapter); e1000_release_manageability(adapter); ldv_unregister_netdev_27(netdev); e1000_phy_hw_reset(hw); kfree((void const *)adapter->tx_ring); kfree((void const *)adapter->rx_ring); if ((unsigned int )hw->mac_type == 9U) { iounmap((void volatile *)hw->ce4100_gbe_mdio_base_virt); } else { } iounmap((void volatile *)hw->hw_addr); if ((unsigned long )hw->flash_address != (unsigned long )((u8 *)0U)) { iounmap((void volatile *)hw->flash_address); } else { } pci_release_selected_regions(pdev, adapter->bars); ldv_free_netdev_28(netdev); pci_disable_device(pdev); return; } } static int e1000_sw_init(struct e1000_adapter *adapter ) { int tmp ; struct lock_class_key __key ; { adapter->rx_buffer_len = 1522U; adapter->num_tx_queues = 1; adapter->num_rx_queues = 1; tmp = e1000_alloc_queues(adapter); if (tmp != 0) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate memory for queues\n"); } else { } return (-12); } else { } e1000_irq_disable(adapter); spinlock_check(& adapter->stats_lock); __raw_spin_lock_init(& adapter->stats_lock.__annonCompField17.rlock, "&(&adapter->stats_lock)->rlock", & __key); set_bit(2L, (unsigned long volatile *)(& adapter->flags)); return (0); } } static int e1000_alloc_queues(struct e1000_adapter *adapter ) { void *tmp ; void *tmp___0 ; { tmp = kcalloc((size_t )adapter->num_tx_queues, 48UL, 208U); adapter->tx_ring = (struct e1000_tx_ring *)tmp; if ((unsigned long )adapter->tx_ring == (unsigned long )((struct e1000_tx_ring *)0)) { return (-12); } else { } tmp___0 = kcalloc((size_t )adapter->num_rx_queues, 56UL, 208U); adapter->rx_ring = (struct e1000_rx_ring *)tmp___0; if ((unsigned long )adapter->rx_ring == (unsigned long )((struct e1000_rx_ring *)0)) { kfree((void const *)adapter->tx_ring); return (-12); } else { } return (0); } } static int e1000_open(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int err ; int tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___0 != 0) { return (-16); } else { } netif_carrier_off(netdev); err = e1000_setup_all_tx_resources(adapter); if (err != 0) { goto err_setup_tx; } else { } err = e1000_setup_all_rx_resources(adapter); if (err != 0) { goto err_setup_rx; } else { } e1000_power_up_phy(adapter); adapter->mng_vlan_id = 65535U; if (((int )hw->mng_cookie.status & 2) != 0) { e1000_update_mng_vlan(adapter); } else { } e1000_configure(adapter); err = e1000_request_irq(adapter); if (err != 0) { goto err_req_irq; } else { } clear_bit(2L, (unsigned long volatile *)(& adapter->flags)); napi_enable(& adapter->napi); e1000_irq_enable(adapter); netif_start_queue(netdev); writel(4U, (void volatile *)hw->hw_addr + 200U); return (0); err_req_irq: e1000_power_down_phy(adapter); e1000_free_all_rx_resources(adapter); err_setup_rx: e1000_free_all_tx_resources(adapter); err_setup_tx: e1000_reset(adapter); return (err); } } static int e1000_close(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int count ; int tmp___0 ; int tmp___1 ; int __ret_warn_on ; int tmp___2 ; long tmp___3 ; int tmp___4 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; count = 50; goto ldv_56152; ldv_56151: usleep_range(10000UL, 20000UL); ldv_56152: tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___0 != 0) { tmp___1 = count; count = count - 1; if (tmp___1 != 0) { goto ldv_56151; } else { goto ldv_56153; } } else { } ldv_56153: tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); __ret_warn_on = tmp___2 != 0; tmp___3 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___3 != 0L) { warn_slowpath_null("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_main.c", 1449); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); e1000_down(adapter); e1000_power_down_phy(adapter); e1000_free_irq(adapter); e1000_free_all_tx_resources(adapter); e1000_free_all_rx_resources(adapter); if (((int )hw->mng_cookie.status & 2) != 0) { tmp___4 = variable_test_bit((long )adapter->mng_vlan_id, (unsigned long const volatile *)(& adapter->active_vlans)); if (tmp___4 == 0) { e1000_vlan_rx_kill_vid(netdev, 129, (int )adapter->mng_vlan_id); } else { } } else { } return (0); } } static bool e1000_check_64k_bound(struct e1000_adapter *adapter , void *start , unsigned long len ) { struct e1000_hw *hw ; unsigned long begin ; unsigned long end ; { hw = & adapter->hw; begin = (unsigned long )start; end = begin + len; if (((unsigned int )hw->mac_type == 6U || (unsigned int )hw->mac_type == 9U) || (unsigned int )hw->mac_type == 8U) { return (((end - 1UL) ^ begin) >> 16 == 0UL); } else { } return (1); } } static int e1000_setup_tx_resources(struct e1000_adapter *adapter , struct e1000_tx_ring *txdr ) { struct pci_dev *pdev ; int size ; void *tmp ; void *olddesc ; dma_addr_t olddma ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { pdev = adapter->pdev; size = (int )(txdr->count * 40U); tmp = vzalloc((unsigned long )size); txdr->buffer_info = (struct e1000_tx_buffer *)tmp; if ((unsigned long )txdr->buffer_info == (unsigned long )((struct e1000_tx_buffer *)0)) { return (-12); } else { } txdr->size = txdr->count * 16U; txdr->size = (txdr->size + 4095U) & 4294963200U; txdr->desc = dma_alloc_attrs(& pdev->dev, (size_t )txdr->size, & txdr->dma, 208U, (struct dma_attrs *)0); if ((unsigned long )txdr->desc == (unsigned long )((void *)0)) { setup_tx_desc_die: vfree((void const *)txdr->buffer_info); return (-12); } else { } tmp___2 = e1000_check_64k_bound(adapter, txdr->desc, (unsigned long )txdr->size); if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { olddesc = txdr->desc; olddma = txdr->dma; if ((adapter->msg_enable & 128) != 0) { netdev_err((struct net_device const *)adapter->netdev, "txdr align check failed: %u bytes at %p\n", txdr->size, txdr->desc); } else { } txdr->desc = dma_alloc_attrs(& pdev->dev, (size_t )txdr->size, & txdr->dma, 208U, (struct dma_attrs *)0); if ((unsigned long )txdr->desc == (unsigned long )((void *)0)) { dma_free_attrs(& pdev->dev, (size_t )txdr->size, olddesc, olddma, (struct dma_attrs *)0); goto setup_tx_desc_die; } else { } tmp___0 = e1000_check_64k_bound(adapter, txdr->desc, (unsigned long )txdr->size); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { dma_free_attrs(& pdev->dev, (size_t )txdr->size, txdr->desc, txdr->dma, (struct dma_attrs *)0); dma_free_attrs(& pdev->dev, (size_t )txdr->size, olddesc, olddma, (struct dma_attrs *)0); if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate aligned memory for the transmit descriptor ring\n"); } else { } vfree((void const *)txdr->buffer_info); return (-12); } else { dma_free_attrs(& pdev->dev, (size_t )txdr->size, olddesc, olddma, (struct dma_attrs *)0); } } else { } memset(txdr->desc, 0, (size_t )txdr->size); txdr->next_to_use = 0U; txdr->next_to_clean = 0U; return (0); } } int e1000_setup_all_tx_resources(struct e1000_adapter *adapter ) { int i ; int err ; { err = 0; i = 0; goto ldv_56183; ldv_56182: err = e1000_setup_tx_resources(adapter, adapter->tx_ring + (unsigned long )i); if (err != 0) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Allocation for Tx Queue %u failed\n", i); } else { } i = i - 1; goto ldv_56179; ldv_56178: e1000_free_tx_resources(adapter, adapter->tx_ring + (unsigned long )i); i = i - 1; ldv_56179: ; if (i >= 0) { goto ldv_56178; } else { } goto ldv_56181; } else { } i = i + 1; ldv_56183: ; if (adapter->num_tx_queues > i) { goto ldv_56182; } else { } ldv_56181: ; return (err); } } static void e1000_configure_tx(struct e1000_adapter *adapter ) { u64 tdba ; struct e1000_hw *hw ; u32 tdlen ; u32 tctl ; u32 tipg ; u32 ipgr1 ; u32 ipgr2 ; { hw = & adapter->hw; switch (adapter->num_tx_queues) { case 1: ; default: tdba = (adapter->tx_ring)->dma; tdlen = (adapter->tx_ring)->count * 16U; writel(tdlen, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14344UL : 1064UL))); writel((unsigned int )(tdba >> 32), (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14340UL : 1060UL))); writel((unsigned int )tdba, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14336UL : 1056UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14352UL : 1072UL))); (adapter->tx_ring)->tdh = (unsigned int )hw->mac_type > 2U ? 14352U : 1072U; (adapter->tx_ring)->tdt = (unsigned int )hw->mac_type > 2U ? 14360U : 1080U; goto ldv_56196; } ldv_56196: ; if ((unsigned int )hw->media_type == 1U || (unsigned int )hw->media_type == 2U) { tipg = 9U; } else { tipg = 8U; } switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: tipg = 10U; ipgr1 = 2U; ipgr2 = 10U; goto ldv_56199; default: ipgr1 = 8U; ipgr2 = 6U; goto ldv_56199; } ldv_56199: tipg = (ipgr1 << 10) | tipg; tipg = (ipgr2 << 20) | tipg; writel(tipg, (void volatile *)hw->hw_addr + 1040U); writel(adapter->tx_int_delay, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14368UL : 1088UL))); if ((unsigned int )hw->mac_type > 4U) { writel(adapter->tx_abs_int_delay, (void volatile *)hw->hw_addr + 14380U); } else { } tctl = readl((void const volatile *)hw->hw_addr + 1024U); tctl = tctl & 4294963215U; tctl = tctl | 16777464U; e1000_config_collision_dist(hw); adapter->txd_cmd = 50331648U; if (adapter->tx_int_delay != 0U) { adapter->txd_cmd = adapter->txd_cmd | 2147483648U; } else { } if ((unsigned int )hw->mac_type <= 2U) { adapter->txd_cmd = adapter->txd_cmd | 268435456U; } else { adapter->txd_cmd = adapter->txd_cmd | 134217728U; } if ((unsigned int )hw->mac_type == 4U && (unsigned int )hw->bus_type == 2U) { adapter->pcix_82544 = 1; } else { } writel(tctl, (void volatile *)hw->hw_addr + 1024U); return; } } static int e1000_setup_rx_resources(struct e1000_adapter *adapter , struct e1000_rx_ring *rxdr ) { struct pci_dev *pdev ; int size ; int desc_len ; void *tmp ; void *olddesc ; dma_addr_t olddma ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { pdev = adapter->pdev; size = (int )(rxdr->count * 16U); tmp = vzalloc((unsigned long )size); rxdr->buffer_info = (struct e1000_rx_buffer *)tmp; if ((unsigned long )rxdr->buffer_info == (unsigned long )((struct e1000_rx_buffer *)0)) { return (-12); } else { } desc_len = 16; rxdr->size = rxdr->count * (unsigned int )desc_len; rxdr->size = (rxdr->size + 4095U) & 4294963200U; rxdr->desc = dma_alloc_attrs(& pdev->dev, (size_t )rxdr->size, & rxdr->dma, 208U, (struct dma_attrs *)0); if ((unsigned long )rxdr->desc == (unsigned long )((void *)0)) { setup_rx_desc_die: vfree((void const *)rxdr->buffer_info); return (-12); } else { } tmp___2 = e1000_check_64k_bound(adapter, rxdr->desc, (unsigned long )rxdr->size); if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { olddesc = rxdr->desc; olddma = rxdr->dma; if ((adapter->msg_enable & 64) != 0) { netdev_err((struct net_device const *)adapter->netdev, "rxdr align check failed: %u bytes at %p\n", rxdr->size, rxdr->desc); } else { } rxdr->desc = dma_alloc_attrs(& pdev->dev, (size_t )rxdr->size, & rxdr->dma, 208U, (struct dma_attrs *)0); if ((unsigned long )rxdr->desc == (unsigned long )((void *)0)) { dma_free_attrs(& pdev->dev, (size_t )rxdr->size, olddesc, olddma, (struct dma_attrs *)0); goto setup_rx_desc_die; } else { } tmp___0 = e1000_check_64k_bound(adapter, rxdr->desc, (unsigned long )rxdr->size); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { dma_free_attrs(& pdev->dev, (size_t )rxdr->size, rxdr->desc, rxdr->dma, (struct dma_attrs *)0); dma_free_attrs(& pdev->dev, (size_t )rxdr->size, olddesc, olddma, (struct dma_attrs *)0); if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate aligned memory for the Rx descriptor ring\n"); } else { } goto setup_rx_desc_die; } else { dma_free_attrs(& pdev->dev, (size_t )rxdr->size, olddesc, olddma, (struct dma_attrs *)0); } } else { } memset(rxdr->desc, 0, (size_t )rxdr->size); rxdr->next_to_clean = 0U; rxdr->next_to_use = 0U; rxdr->rx_skb_top = (struct sk_buff *)0; return (0); } } int e1000_setup_all_rx_resources(struct e1000_adapter *adapter ) { int i ; int err ; { err = 0; i = 0; goto ldv_56221; ldv_56220: err = e1000_setup_rx_resources(adapter, adapter->rx_ring + (unsigned long )i); if (err != 0) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Allocation for Rx Queue %u failed\n", i); } else { } i = i - 1; goto ldv_56217; ldv_56216: e1000_free_rx_resources(adapter, adapter->rx_ring + (unsigned long )i); i = i - 1; ldv_56217: ; if (i >= 0) { goto ldv_56216; } else { } goto ldv_56219; } else { } i = i + 1; ldv_56221: ; if (adapter->num_rx_queues > i) { goto ldv_56220; } else { } ldv_56219: ; return (err); } } static void e1000_setup_rctl(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; { hw = & adapter->hw; rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294955007U; rctl = ((hw->mc_filter_type << 12) | rctl) | 32768U; if ((int )hw->tbi_compatibility_on) { rctl = rctl | 4U; } else { rctl = rctl & 4294967291U; } if ((adapter->netdev)->mtu <= 1500U) { rctl = rctl & 4294967263U; } else { rctl = rctl | 32U; } rctl = rctl & 4294770687U; rctl = rctl | 33554432U; switch (adapter->rx_buffer_len) { case 2048U: ; default: rctl = rctl; rctl = rctl & 4261412863U; goto ldv_56229; case 4096U: rctl = rctl | 196608U; goto ldv_56229; case 8192U: rctl = rctl | 131072U; goto ldv_56229; case 16384U: rctl = rctl | 65536U; goto ldv_56229; } ldv_56229: ; if (((adapter->netdev)->features & 274877906944ULL) != 0ULL) { rctl = rctl | 8421380U; rctl = rctl & 4289986559U; } else { } writel(rctl, (void volatile *)hw->hw_addr + 256U); return; } } static void e1000_configure_rx(struct e1000_adapter *adapter ) { u64 rdba ; struct e1000_hw *hw ; u32 rdlen ; u32 rctl ; u32 rxcsum ; { hw = & adapter->hw; if ((adapter->netdev)->mtu > 1500U) { rdlen = (adapter->rx_ring)->count * 16U; adapter->clean_rx = & e1000_clean_jumbo_rx_irq; adapter->alloc_rx_buf = & e1000_alloc_jumbo_rx_buffers; } else { rdlen = (adapter->rx_ring)->count * 16U; adapter->clean_rx = & e1000_clean_rx_irq; adapter->alloc_rx_buf = & e1000_alloc_rx_buffers; } rctl = readl((void const volatile *)hw->hw_addr + 256U); writel(rctl & 4294967293U, (void volatile *)hw->hw_addr + 256U); writel(adapter->rx_int_delay, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10272UL : 264UL))); if ((unsigned int )hw->mac_type > 4U) { writel(adapter->rx_abs_int_delay, (void volatile *)hw->hw_addr + 10284U); if (adapter->itr_setting != 0U) { writel(1000000000U / (adapter->itr * 256U), (void volatile *)hw->hw_addr + 196U); } else { } } else { } switch (adapter->num_rx_queues) { case 1: ; default: rdba = (adapter->rx_ring)->dma; writel(rdlen, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10248UL : 280UL))); writel((unsigned int )(rdba >> 32), (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10244UL : 276UL))); writel((unsigned int )rdba, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10240UL : 272UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10264UL : 296UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10256UL : 288UL))); (adapter->rx_ring)->rdh = (unsigned int )hw->mac_type > 2U ? 10256U : 288U; (adapter->rx_ring)->rdt = (unsigned int )hw->mac_type > 2U ? 10264U : 296U; goto ldv_56243; } ldv_56243: ; if ((unsigned int )hw->mac_type > 2U) { rxcsum = readl((void const volatile *)hw->hw_addr + 20480U); if ((int )adapter->rx_csum) { rxcsum = rxcsum | 512U; } else { rxcsum = rxcsum & 4294966783U; } writel(rxcsum, (void volatile *)hw->hw_addr + 20480U); } else { } writel(rctl | 2U, (void volatile *)hw->hw_addr + 256U); return; } } static void e1000_free_tx_resources(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) { struct pci_dev *pdev ; { pdev = adapter->pdev; e1000_clean_tx_ring(adapter, tx_ring); vfree((void const *)tx_ring->buffer_info); tx_ring->buffer_info = (struct e1000_tx_buffer *)0; dma_free_attrs(& pdev->dev, (size_t )tx_ring->size, tx_ring->desc, tx_ring->dma, (struct dma_attrs *)0); tx_ring->desc = (void *)0; return; } } void e1000_free_all_tx_resources(struct e1000_adapter *adapter ) { int i ; { i = 0; goto ldv_56254; ldv_56253: e1000_free_tx_resources(adapter, adapter->tx_ring + (unsigned long )i); i = i + 1; ldv_56254: ; if (adapter->num_tx_queues > i) { goto ldv_56253; } else { } return; } } static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter , struct e1000_tx_buffer *buffer_info ) { { if (buffer_info->dma != 0ULL) { if ((int )buffer_info->mapped_as_page) { dma_unmap_page(& (adapter->pdev)->dev, buffer_info->dma, (size_t )buffer_info->length, 1); } else { dma_unmap_single_attrs(& (adapter->pdev)->dev, buffer_info->dma, (size_t )buffer_info->length, 1, (struct dma_attrs *)0); } buffer_info->dma = 0ULL; } else { } if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { dev_kfree_skb_any(buffer_info->skb); buffer_info->skb = (struct sk_buff *)0; } else { } buffer_info->time_stamp = 0UL; return; } } static void e1000_clean_tx_ring(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) { struct e1000_hw *hw ; struct e1000_tx_buffer *buffer_info ; unsigned long size ; unsigned int i ; { hw = & adapter->hw; i = 0U; goto ldv_56269; ldv_56268: buffer_info = tx_ring->buffer_info + (unsigned long )i; e1000_unmap_and_free_tx_resource(adapter, buffer_info); i = i + 1U; ldv_56269: ; if (tx_ring->count > i) { goto ldv_56268; } else { } netdev_reset_queue(adapter->netdev); size = (unsigned long )tx_ring->count * 40UL; memset((void *)tx_ring->buffer_info, 0, size); memset(tx_ring->desc, 0, (size_t )tx_ring->size); tx_ring->next_to_use = 0U; tx_ring->next_to_clean = 0U; tx_ring->last_tx_tso = 0; writel(0U, (void volatile *)hw->hw_addr + (unsigned long )tx_ring->tdh); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )tx_ring->tdt); return; } } static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter ) { int i ; { i = 0; goto ldv_56276; ldv_56275: e1000_clean_tx_ring(adapter, adapter->tx_ring + (unsigned long )i); i = i + 1; ldv_56276: ; if (adapter->num_tx_queues > i) { goto ldv_56275; } else { } return; } } static void e1000_free_rx_resources(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring ) { struct pci_dev *pdev ; { pdev = adapter->pdev; e1000_clean_rx_ring(adapter, rx_ring); vfree((void const *)rx_ring->buffer_info); rx_ring->buffer_info = (struct e1000_rx_buffer *)0; dma_free_attrs(& pdev->dev, (size_t )rx_ring->size, rx_ring->desc, rx_ring->dma, (struct dma_attrs *)0); rx_ring->desc = (void *)0; return; } } void e1000_free_all_rx_resources(struct e1000_adapter *adapter ) { int i ; { i = 0; goto ldv_56288; ldv_56287: e1000_free_rx_resources(adapter, adapter->rx_ring + (unsigned long )i); i = i + 1; ldv_56288: ; if (adapter->num_rx_queues > i) { goto ldv_56287; } else { } return; } } static unsigned int e1000_frag_len(struct e1000_adapter const *a ) { int _max1 ; int _max2 ; { _max1 = 32; _max2 = 64; return (((((unsigned int )a->rx_buffer_len + (unsigned int )(_max1 > _max2 ? _max1 : _max2)) + 63U) & 4294967232U) + 320U); } } static void *e1000_alloc_frag(struct e1000_adapter const *a ) { unsigned int len ; unsigned int tmp ; u8 *data ; void *tmp___0 ; int _max1 ; int _max2 ; long tmp___1 ; { tmp = e1000_frag_len(a); len = tmp; tmp___0 = netdev_alloc_frag(len); data = (u8 *)tmp___0; tmp___1 = ldv__builtin_expect((unsigned long )data != (unsigned long )((u8 *)0U), 1L); if (tmp___1 != 0L) { _max1 = 32; _max2 = 64; data = data + (unsigned long )(_max1 > _max2 ? _max1 : _max2); } else { } return ((void *)data); } } static void e1000_clean_rx_ring(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring ) { struct e1000_hw *hw ; struct e1000_rx_buffer *buffer_info ; struct pci_dev *pdev ; unsigned long size ; unsigned int i ; { hw = & adapter->hw; pdev = adapter->pdev; i = 0U; goto ldv_56320; ldv_56319: buffer_info = rx_ring->buffer_info + (unsigned long )i; if ((unsigned long )adapter->clean_rx == (unsigned long )(& e1000_clean_rx_irq)) { if (buffer_info->dma != 0ULL) { dma_unmap_single_attrs(& pdev->dev, buffer_info->dma, (size_t )adapter->rx_buffer_len, 2, (struct dma_attrs *)0); } else { } if ((unsigned long )buffer_info->rxbuf.data != (unsigned long )((u8 *)0U)) { skb_free_frag((void *)buffer_info->rxbuf.data); buffer_info->rxbuf.data = (u8 *)0U; } else { } } else if ((unsigned long )adapter->clean_rx == (unsigned long )(& e1000_clean_jumbo_rx_irq)) { if (buffer_info->dma != 0ULL) { dma_unmap_page(& pdev->dev, buffer_info->dma, (size_t )adapter->rx_buffer_len, 2); } else { } if ((unsigned long )buffer_info->rxbuf.page != (unsigned long )((struct page *)0)) { put_page(buffer_info->rxbuf.page); buffer_info->rxbuf.page = (struct page *)0; } else { } } else { } buffer_info->dma = 0ULL; i = i + 1U; ldv_56320: ; if (rx_ring->count > i) { goto ldv_56319; } else { } napi_free_frags(& adapter->napi); rx_ring->rx_skb_top = (struct sk_buff *)0; size = (unsigned long )rx_ring->count * 16UL; memset((void *)rx_ring->buffer_info, 0, size); memset(rx_ring->desc, 0, (size_t )rx_ring->size); rx_ring->next_to_clean = 0U; rx_ring->next_to_use = 0U; writel(0U, (void volatile *)hw->hw_addr + (unsigned long )rx_ring->rdh); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )rx_ring->rdt); return; } } static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter ) { int i ; { i = 0; goto ldv_56327; ldv_56326: e1000_clean_rx_ring(adapter, adapter->rx_ring + (unsigned long )i); i = i + 1; ldv_56327: ; if (adapter->num_rx_queues > i) { goto ldv_56326; } else { } return; } } static void e1000_enter_82542_rst(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct net_device *netdev ; u32 rctl ; unsigned long __ms ; unsigned long tmp ; bool tmp___0 ; { hw = & adapter->hw; netdev = adapter->netdev; e1000_pci_clear_mwi(hw); rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl | 1U; writel(rctl, (void volatile *)hw->hw_addr + 256U); readl((void const volatile *)hw->hw_addr + 8U); if (1) { __const_udelay(21475000UL); } else { __ms = 5UL; goto ldv_56337; ldv_56336: __const_udelay(4295000UL); ldv_56337: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_56336; } else { } } tmp___0 = netif_running((struct net_device const *)netdev); if ((int )tmp___0) { e1000_clean_all_rx_rings(adapter); } else { } return; } } static void e1000_leave_82542_rst(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct net_device *netdev ; u32 rctl ; unsigned long __ms ; unsigned long tmp ; struct e1000_rx_ring *ring ; bool tmp___0 ; { hw = & adapter->hw; netdev = adapter->netdev; rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294967294U; writel(rctl, (void volatile *)hw->hw_addr + 256U); readl((void const volatile *)hw->hw_addr + 8U); if (1) { __const_udelay(21475000UL); } else { __ms = 5UL; goto ldv_56347; ldv_56346: __const_udelay(4295000UL); ldv_56347: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_56346; } else { } } if (((int )hw->pci_cmd_word & 16) != 0) { e1000_pci_set_mwi(hw); } else { } tmp___0 = netif_running((struct net_device const *)netdev); if ((int )tmp___0) { ring = adapter->rx_ring; e1000_configure_rx(adapter); (*(adapter->alloc_rx_buf))(adapter, ring, (int )((((ring->next_to_clean <= ring->next_to_use ? ring->count : 0U) + ring->next_to_clean) - ring->next_to_use) - 1U)); } else { } return; } } static int e1000_set_mac(struct net_device *netdev , void *p ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct sockaddr *addr ; bool tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } if ((unsigned int )hw->mac_type == 1U) { e1000_enter_82542_rst(adapter); } else { } memcpy((void *)netdev->dev_addr, (void const *)(& addr->sa_data), (size_t )netdev->addr_len); memcpy((void *)(& hw->mac_addr), (void const *)(& addr->sa_data), (size_t )netdev->addr_len); e1000_rar_set(hw, (u8 *)(& hw->mac_addr), 0U); if ((unsigned int )hw->mac_type == 1U) { e1000_leave_82542_rst(adapter); } else { } return (0); } } static void e1000_set_rx_mode(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct netdev_hw_addr *ha ; bool use_uc ; u32 rctl ; u32 hash_value ; int i ; int rar_entries ; int mta_reg_count ; u32 *mcarray ; void *tmp___0 ; bool tmp___1 ; struct list_head const *__mptr ; int tmp___2 ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; u32 hash_reg ; u32 hash_bit ; u32 mta ; int tmp___3 ; struct list_head const *__mptr___2 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; use_uc = 0; rar_entries = 15; mta_reg_count = 128; tmp___0 = kcalloc((size_t )mta_reg_count, 4UL, 32U); mcarray = (u32 *)tmp___0; if ((unsigned long )mcarray == (unsigned long )((u32 *)0U)) { return; } else { } rctl = readl((void const volatile *)hw->hw_addr + 256U); if ((netdev->flags & 256U) != 0U) { rctl = rctl | 24U; rctl = rctl & 4294705151U; } else { if ((netdev->flags & 512U) != 0U) { rctl = rctl | 16U; } else { rctl = rctl & 4294967279U; } tmp___1 = e1000_vlan_used(adapter); if ((int )tmp___1) { rctl = rctl | 262144U; } else { } } if (netdev->uc.count > rar_entries + -1) { rctl = rctl | 8U; } else if ((netdev->flags & 256U) == 0U) { rctl = rctl & 4294967287U; use_uc = 1; } else { } writel(rctl, (void volatile *)hw->hw_addr + 256U); if ((unsigned int )hw->mac_type == 1U) { e1000_enter_82542_rst(adapter); } else { } i = 1; if ((int )use_uc) { __mptr = (struct list_head const *)netdev->uc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_56376; ldv_56375: ; if (i == rar_entries) { goto ldv_56374; } else { } tmp___2 = i; i = i + 1; e1000_rar_set(hw, (u8 *)(& ha->addr), (u32 )tmp___2); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_56376: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->uc.list)) { goto ldv_56375; } else { } ldv_56374: ; } else { } __mptr___1 = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr___1; goto ldv_56385; ldv_56384: ; if (i == rar_entries) { hash_value = e1000_hash_mc_addr(hw, (u8 *)(& ha->addr)); hash_reg = (hash_value >> 5) & 127U; hash_bit = hash_value & 31U; mta = (u32 )(1 << (int )hash_bit); *(mcarray + (unsigned long )hash_reg) = *(mcarray + (unsigned long )hash_reg) | mta; } else { tmp___3 = i; i = i + 1; e1000_rar_set(hw, (u8 *)(& ha->addr), (u32 )tmp___3); } __mptr___2 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___2; ldv_56385: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_56384; } else { } goto ldv_56388; ldv_56387: writel(0U, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(i << 3)))); readl((void const volatile *)hw->hw_addr + 8U); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(((i << 1) + 1) << 2)))); readl((void const volatile *)hw->hw_addr + 8U); i = i + 1; ldv_56388: ; if (i < rar_entries) { goto ldv_56387; } else { } i = mta_reg_count + -1; goto ldv_56391; ldv_56390: writel(*(mcarray + (unsigned long )i), (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 20992U : 512U) + (unsigned long )(i << 2)))); i = i - 1; ldv_56391: ; if (i >= 0) { goto ldv_56390; } else { } readl((void const volatile *)hw->hw_addr + 8U); if ((unsigned int )hw->mac_type == 1U) { e1000_leave_82542_rst(adapter); } else { } kfree((void const *)mcarray); return; } } static void e1000_update_phy_info_task(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffff598UL; e1000_phy_get_info(& adapter->hw, & adapter->phy_info); return; } } static void e1000_82547_tx_fifo_stall_task(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; struct e1000_hw *hw ; struct net_device *netdev ; u32 tctl ; int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; int tmp___6 ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffff678UL; hw = & adapter->hw; netdev = adapter->netdev; tmp___6 = atomic_read((atomic_t const *)(& adapter->tx_fifo_stall)); if (tmp___6 != 0) { tmp___0 = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); tmp___1 = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14352UL : 1072UL))); if (tmp___0 == tmp___1) { tmp___2 = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13336UL : 32792UL))); tmp___3 = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13328UL : 32784UL))); if (tmp___2 == tmp___3) { tmp___4 = readl((void const volatile *)hw->hw_addr + 13352U); tmp___5 = readl((void const volatile *)hw->hw_addr + 13344U); if (tmp___4 == tmp___5) { tctl = readl((void const volatile *)hw->hw_addr + 1024U); writel(tctl & 4294967293U, (void volatile *)hw->hw_addr + 1024U); writel(adapter->tx_head_addr, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13336UL : 32792UL))); writel(adapter->tx_head_addr, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13328UL : 32784UL))); writel(adapter->tx_head_addr, (void volatile *)hw->hw_addr + 13352U); writel(adapter->tx_head_addr, (void volatile *)hw->hw_addr + 13344U); writel(tctl, (void volatile *)hw->hw_addr + 1024U); readl((void const volatile *)hw->hw_addr + 8U); adapter->tx_fifo_head = 0U; atomic_set(& adapter->tx_fifo_stall, 0); netif_wake_queue(netdev); } else { goto _L___0; } } else { goto _L___0; } } else { _L___0: /* CIL Label */ tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp == 0) { schedule_delayed_work(& adapter->fifo_stall_task, 1UL); } else { } } } else { } return; } } bool e1000_has_link(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; bool link_active ; unsigned int tmp ; { hw = & adapter->hw; link_active = 0; switch ((unsigned int )hw->media_type) { case 0U: ; if ((unsigned int )hw->mac_type == 9U) { hw->get_link_status = 1; } else { } if ((int )hw->get_link_status) { e1000_check_for_link(hw); link_active = (bool )(! ((int )hw->get_link_status != 0)); } else { link_active = 1; } goto ldv_56414; case 1U: e1000_check_for_link(hw); tmp = readl((void const volatile *)hw->hw_addr + 8U); link_active = (tmp & 2U) != 0U; goto ldv_56414; case 2U: e1000_check_for_link(hw); link_active = hw->serdes_has_link; goto ldv_56414; default: ; goto ldv_56414; } ldv_56414: ; return (link_active); } } static void e1000_watchdog(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; struct e1000_hw *hw ; struct net_device *netdev ; struct e1000_tx_ring *txdr ; u32 link ; u32 tctl ; bool tmp ; bool tmp___0 ; u32 ctrl ; bool txb2b ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; bool tmp___5 ; bool tmp___6 ; int tmp___7 ; u32 goc ; u32 dif ; u32 itr ; int tmp___8 ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffff758UL; hw = & adapter->hw; netdev = adapter->netdev; txdr = adapter->tx_ring; tmp = e1000_has_link(adapter); link = (u32 )tmp; tmp___0 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___0 && link != 0U) { goto link_up; } else { } if (link != 0U) { tmp___2 = netif_carrier_ok((struct net_device const *)netdev); if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { txb2b = 1; e1000_get_speed_and_duplex(hw, & adapter->link_speed, & adapter->link_duplex); ctrl = readl((void const volatile *)hw->hw_addr); printk("\016e1000: %s NIC Link is Up %d Mbps %s, Flow Control: %s\n", (char *)(& netdev->name), (int )adapter->link_speed, (unsigned int )adapter->link_duplex == 2U ? (char *)"Full Duplex" : (char *)"Half Duplex", (ctrl & 268435456U) == 0U || (ctrl & 134217728U) == 0U ? ((ctrl & 134217728U) == 0U ? ((ctrl & 268435456U) != 0U ? (char *)"TX" : (char *)"None") : (char *)"RX") : (char *)"RX/TX"); adapter->tx_timeout_factor = 1U; switch ((int )adapter->link_speed) { case 10: txb2b = 0; adapter->tx_timeout_factor = 16U; goto ldv_56433; case 100: txb2b = 0; goto ldv_56433; } ldv_56433: tctl = readl((void const volatile *)hw->hw_addr + 1024U); tctl = tctl | 2U; writel(tctl, (void volatile *)hw->hw_addr + 1024U); netif_carrier_on(netdev); tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___1 == 0) { schedule_delayed_work(& adapter->phy_info_task, 500UL); } else { } adapter->smartspeed = 0U; } else { } } else { tmp___5 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___5) { adapter->link_speed = 0U; adapter->link_duplex = 0U; printk("\016e1000: %s NIC Link is Down\n", (char *)(& netdev->name)); netif_carrier_off(netdev); tmp___4 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___4 == 0) { schedule_delayed_work(& adapter->phy_info_task, 500UL); } else { } } else { } e1000_smartspeed(adapter); } link_up: e1000_update_stats(adapter); hw->tx_packet_delta = (u32 )adapter->stats.tpt - (u32 )adapter->tpt_old; adapter->tpt_old = adapter->stats.tpt; hw->collision_delta = (u32 )adapter->stats.colc - (u32 )adapter->colc_old; adapter->colc_old = adapter->stats.colc; adapter->gorcl = (u32 )adapter->stats.gorcl - (u32 )adapter->gorcl_old; adapter->gorcl_old = adapter->stats.gorcl; adapter->gotcl = (u32 )adapter->stats.gotcl - (u32 )adapter->gotcl_old; adapter->gotcl_old = adapter->stats.gotcl; e1000_update_adaptive(hw); tmp___6 = netif_carrier_ok((struct net_device const *)netdev); if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { if (((txdr->next_to_clean <= txdr->next_to_use ? txdr->count : 0U) + txdr->next_to_clean) - txdr->next_to_use < txdr->count) { adapter->tx_timeout_count = adapter->tx_timeout_count + 1U; schedule_work(& adapter->reset_task); return; } else { } } else { } if ((unsigned int )hw->mac_type > 4U && adapter->itr_setting == 4U) { goc = (adapter->gotcl + adapter->gorcl) / 10000U; dif = adapter->gotcl > adapter->gorcl ? (adapter->gotcl - adapter->gorcl) / 10000U : (adapter->gorcl - adapter->gotcl) / 10000U; itr = goc != 0U ? (dif * 6000U) / goc + 2000U : 8000U; writel(1000000000U / (itr * 256U), (void volatile *)hw->hw_addr + 196U); } else { } writel(16U, (void volatile *)hw->hw_addr + 200U); adapter->detect_tx_hung = 1; tmp___8 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___8 == 0) { schedule_delayed_work(& adapter->watchdog_task, 500UL); } else { } return; } } static unsigned int e1000_update_itr(struct e1000_adapter *adapter , u16 itr_setting , int packets , int bytes ) { unsigned int retval ; struct e1000_hw *hw ; long tmp ; { retval = (unsigned int )itr_setting; hw = & adapter->hw; tmp = ldv__builtin_expect((unsigned int )hw->mac_type <= 4U, 0L); if (tmp != 0L) { goto update_itr_done; } else { } if (packets == 0) { goto update_itr_done; } else { } switch ((int )itr_setting) { case 0: ; if (bytes / packets > 8000) { retval = 2U; } else if (packets <= 4 && bytes > 512) { retval = 1U; } else { } goto ldv_56453; case 1: ; if (bytes > 10000) { if (bytes / packets > 8000) { retval = 2U; } else if (packets <= 9 || bytes / packets > 1200) { retval = 2U; } else if (packets > 35) { retval = 0U; } else { } } else if (bytes / packets > 2000) { retval = 2U; } else if (packets <= 2 && bytes <= 511) { retval = 0U; } else { } goto ldv_56453; case 2: ; if (bytes > 25000) { if (packets > 35) { retval = 1U; } else { } } else if (bytes <= 5999) { retval = 1U; } else { } goto ldv_56453; } ldv_56453: ; update_itr_done: ; return (retval); } } static void e1000_set_itr(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 current_itr ; u32 new_itr ; long tmp ; long tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; u16 _max1 ; u16 _max2 ; u32 _min1 ; u32 _min2 ; { hw = & adapter->hw; new_itr = adapter->itr; tmp = ldv__builtin_expect((unsigned int )hw->mac_type <= 4U, 0L); if (tmp != 0L) { return; } else { } tmp___0 = ldv__builtin_expect((unsigned int )adapter->link_speed != 1000U, 0L); if (tmp___0 != 0L) { current_itr = 0U; new_itr = 4000U; goto set_itr_now; } else { } tmp___1 = e1000_update_itr(adapter, (int )adapter->tx_itr, (int )adapter->total_tx_packets, (int )adapter->total_tx_bytes); adapter->tx_itr = (u16 )tmp___1; if (adapter->itr_setting == 3U && (unsigned int )adapter->tx_itr == 0U) { adapter->tx_itr = 1U; } else { } tmp___2 = e1000_update_itr(adapter, (int )adapter->rx_itr, (int )adapter->total_rx_packets, (int )adapter->total_rx_bytes); adapter->rx_itr = (u16 )tmp___2; if (adapter->itr_setting == 3U && (unsigned int )adapter->rx_itr == 0U) { adapter->rx_itr = 1U; } else { } _max1 = adapter->rx_itr; _max2 = adapter->tx_itr; current_itr = (u16 )((int )_max1 > (int )_max2 ? _max1 : _max2); switch ((int )current_itr) { case 0: new_itr = 70000U; goto ldv_56467; case 1: new_itr = 20000U; goto ldv_56467; case 2: new_itr = 4000U; goto ldv_56467; default: ; goto ldv_56467; } ldv_56467: ; set_itr_now: ; if (adapter->itr != new_itr) { if (adapter->itr < new_itr) { _min1 = adapter->itr + (new_itr >> 2); _min2 = new_itr; new_itr = _min1 < _min2 ? _min1 : _min2; } else { new_itr = new_itr; } adapter->itr = new_itr; writel(1000000000U / (new_itr * 256U), (void volatile *)hw->hw_addr + 196U); } else { } return; } } static int e1000_tso(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring , struct sk_buff *skb , __be16 protocol ) { struct e1000_context_desc *context_desc ; struct e1000_tx_buffer *buffer_info ; unsigned int i ; u32 cmd_length ; u16 ipcse ; u16 tucse ; u16 mss ; u8 ipcss ; u8 ipcso ; u8 tucss ; u8 tucso ; u8 hdr_len ; int err ; int tmp ; unsigned int tmp___0 ; unsigned char *tmp___1 ; struct iphdr *iph ; struct iphdr *tmp___2 ; struct tcphdr *tmp___3 ; __sum16 tmp___4 ; int tmp___5 ; struct ipv6hdr *tmp___6 ; struct tcphdr *tmp___7 ; struct ipv6hdr *tmp___8 ; struct ipv6hdr *tmp___9 ; __sum16 tmp___10 ; bool tmp___11 ; int tmp___12 ; struct iphdr *tmp___13 ; int tmp___14 ; struct tcphdr *tmp___15 ; bool tmp___16 ; { cmd_length = 0U; ipcse = 0U; tmp___16 = skb_is_gso((struct sk_buff const *)skb); if ((int )tmp___16) { err = skb_cow_head(skb, 0U); if (err < 0) { return (err); } else { } tmp = skb_transport_offset((struct sk_buff const *)skb); tmp___0 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (int )((u8 )tmp) + (int )((u8 )tmp___0); tmp___1 = skb_end_pointer((struct sk_buff const *)skb); mss = ((struct skb_shared_info *)tmp___1)->gso_size; if ((unsigned int )protocol == 8U) { tmp___2 = ip_hdr((struct sk_buff const *)skb); iph = tmp___2; iph->tot_len = 0U; iph->check = 0U; tmp___3 = tcp_hdr((struct sk_buff const *)skb); tmp___4 = csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 6, 0U); tmp___3->check = ~ ((int )tmp___4); cmd_length = 33554432U; tmp___5 = skb_transport_offset((struct sk_buff const *)skb); ipcse = (unsigned int )((u16 )tmp___5) + 65535U; } else { tmp___11 = skb_is_gso_v6((struct sk_buff const *)skb); if ((int )tmp___11) { tmp___6 = ipv6_hdr((struct sk_buff const *)skb); tmp___6->payload_len = 0U; tmp___7 = tcp_hdr((struct sk_buff const *)skb); tmp___8 = ipv6_hdr((struct sk_buff const *)skb); tmp___9 = ipv6_hdr((struct sk_buff const *)skb); tmp___10 = csum_ipv6_magic((struct in6_addr const *)(& tmp___9->saddr), (struct in6_addr const *)(& tmp___8->daddr), 0U, 6, 0U); tmp___7->check = ~ ((int )tmp___10); ipcse = 0U; } else { } } tmp___12 = skb_network_offset((struct sk_buff const *)skb); ipcss = (u8 )tmp___12; tmp___13 = ip_hdr((struct sk_buff const *)skb); ipcso = (int )((u8 )((long )(& tmp___13->check))) - (int )((u8 )((long )skb->data)); tmp___14 = skb_transport_offset((struct sk_buff const *)skb); tucss = (u8 )tmp___14; tmp___15 = tcp_hdr((struct sk_buff const *)skb); tucso = (int )((u8 )((long )(& tmp___15->check))) - (int )((u8 )((long )skb->data)); tucse = 0U; cmd_length = ((skb->len - (unsigned int )hdr_len) | cmd_length) | 620756992U; i = tx_ring->next_to_use; context_desc = (struct e1000_context_desc *)tx_ring->desc + (unsigned long )i; buffer_info = tx_ring->buffer_info + (unsigned long )i; context_desc->lower_setup.ip_fields.ipcss = ipcss; context_desc->lower_setup.ip_fields.ipcso = ipcso; context_desc->lower_setup.ip_fields.ipcse = ipcse; context_desc->upper_setup.tcp_fields.tucss = tucss; context_desc->upper_setup.tcp_fields.tucso = tucso; context_desc->upper_setup.tcp_fields.tucse = tucse; context_desc->tcp_seg_setup.fields.mss = mss; context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; context_desc->cmd_and_length = cmd_length; buffer_info->time_stamp = jiffies; buffer_info->next_to_watch = (u16 )i; i = i + 1U; if (i == tx_ring->count) { i = 0U; } else { } tx_ring->next_to_use = i; return (1); } else { } return (0); } } static bool e1000_tx_csum(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring , struct sk_buff *skb , __be16 protocol ) { struct e1000_context_desc *context_desc ; struct e1000_tx_buffer *buffer_info ; unsigned int i ; u8 css ; u32 cmd_len ; struct iphdr *tmp ; struct ipv6hdr *tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; { cmd_len = 536870912U; if ((unsigned int )*((unsigned char *)skb + 145UL) != 6U) { return (0); } else { } switch ((int )protocol) { case 8: tmp = ip_hdr((struct sk_buff const *)skb); if ((unsigned int )tmp->protocol == 6U) { cmd_len = cmd_len | 16777216U; } else { } goto ldv_56506; case 56710: tmp___0 = ipv6_hdr((struct sk_buff const *)skb); if ((unsigned int )tmp___0->nexthdr == 6U) { cmd_len = cmd_len | 16777216U; } else { } goto ldv_56506; default: tmp___1 = net_ratelimit(); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); if (tmp___2 != 0L) { if (adapter->msg_enable & 1) { netdev_warn((struct net_device const *)adapter->netdev, "checksum_partial proto=%x!\n", (int )skb->protocol); } else { } } else { } goto ldv_56506; } ldv_56506: tmp___3 = skb_checksum_start_offset((struct sk_buff const *)skb); css = (u8 )tmp___3; i = tx_ring->next_to_use; buffer_info = tx_ring->buffer_info + (unsigned long )i; context_desc = (struct e1000_context_desc *)tx_ring->desc + (unsigned long )i; context_desc->lower_setup.ip_config = 0U; context_desc->upper_setup.tcp_fields.tucss = css; context_desc->upper_setup.tcp_fields.tucso = (int )((u8 )skb->__annonCompField82.__annonCompField81.csum_offset) + (int )css; context_desc->upper_setup.tcp_fields.tucse = 0U; context_desc->tcp_seg_setup.data = 0U; context_desc->cmd_and_length = cmd_len; buffer_info->time_stamp = jiffies; buffer_info->next_to_watch = (u16 )i; i = i + 1U; tmp___4 = ldv__builtin_expect(i == tx_ring->count, 0L); if (tmp___4 != 0L) { i = 0U; } else { } tx_ring->next_to_use = i; return (1); } } static int e1000_tx_map(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring , struct sk_buff *skb , unsigned int first , unsigned int max_per_txd , unsigned int nr_frags , unsigned int mss ) { struct e1000_hw *hw ; struct pci_dev *pdev ; struct e1000_tx_buffer *buffer_info ; unsigned int len ; unsigned int tmp ; unsigned int offset ; unsigned int size ; unsigned int count ; unsigned int i ; unsigned int f ; unsigned int bytecount ; unsigned int segs ; unsigned int _min1 ; unsigned int _min2 ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; long tmp___6 ; struct skb_frag_struct const *frag ; unsigned char *tmp___7 ; unsigned long bufend ; long tmp___8 ; unsigned int _min1___0 ; unsigned int _min2___0 ; long tmp___9 ; struct page *tmp___10 ; long tmp___11 ; int tmp___12 ; unsigned char *tmp___14 ; unsigned char *tmp___15 ; unsigned int tmp___16 ; unsigned int tmp___17 ; { hw = & adapter->hw; pdev = adapter->pdev; tmp = skb_headlen((struct sk_buff const *)skb); len = tmp; offset = 0U; count = 0U; i = tx_ring->next_to_use; goto ldv_56534; ldv_56533: buffer_info = tx_ring->buffer_info + (unsigned long )i; _min1 = len; _min2 = max_per_txd; size = _min1 < _min2 ? _min1 : _min2; if (skb->data_len == 0U && (int )tx_ring->last_tx_tso) { tmp___0 = skb_is_gso((struct sk_buff const *)skb); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { tx_ring->last_tx_tso = 0; size = size - 4U; } else { } } else { } tmp___2 = ldv__builtin_expect((long )(((mss != 0U && nr_frags == 0U) && size == len) && size > 8U), 0L); if (tmp___2 != 0L) { size = size - 4U; } else { } tmp___3 = ldv__builtin_expect((long )(((unsigned int )hw->bus_type == 2U && size > 2015U) && count == 0U), 0L); if (tmp___3 != 0L) { size = 2015U; } else { } tmp___4 = ldv__builtin_expect((long )(((int )adapter->pcix_82544 && ((unsigned long )(skb->data + (((unsigned long )offset + (unsigned long )size) + 0xffffffffffffffffUL)) & 4UL) == 0UL) && size > 4U), 0L); if (tmp___4 != 0L) { size = size - 4U; } else { } buffer_info->length = (u16 )size; buffer_info->time_stamp = jiffies; buffer_info->mapped_as_page = 0; buffer_info->dma = dma_map_single_attrs(& pdev->dev, (void *)skb->data + (unsigned long )offset, (size_t )size, 1, (struct dma_attrs *)0); tmp___5 = dma_mapping_error(& pdev->dev, buffer_info->dma); if (tmp___5 != 0) { goto dma_error; } else { } buffer_info->next_to_watch = (u16 )i; len = len - size; offset = offset + size; count = count + 1U; if (len != 0U) { i = i + 1U; tmp___6 = ldv__builtin_expect(tx_ring->count == i, 0L); if (tmp___6 != 0L) { i = 0U; } else { } } else { } ldv_56534: ; if (len != 0U) { goto ldv_56533; } else { } f = 0U; goto ldv_56545; ldv_56544: tmp___7 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct const *)(& ((struct skb_shared_info *)tmp___7)->frags) + (unsigned long )f; len = skb_frag_size(frag); offset = 0U; goto ldv_56542; ldv_56541: i = i + 1U; tmp___8 = ldv__builtin_expect(tx_ring->count == i, 0L); if (tmp___8 != 0L) { i = 0U; } else { } buffer_info = tx_ring->buffer_info + (unsigned long )i; _min1___0 = len; _min2___0 = max_per_txd; size = _min1___0 < _min2___0 ? _min1___0 : _min2___0; tmp___9 = ldv__builtin_expect((long )(((mss != 0U && nr_frags - 1U == f) && size == len) && size > 8U), 0L); if (tmp___9 != 0L) { size = size - 4U; } else { } tmp___10 = skb_frag_page(frag); bufend = (unsigned long )((unsigned long long )(((long )tmp___10 + 24189255811072L) / 64L) << 12); bufend = (unsigned long )((offset + size) - 1U) + bufend; tmp___11 = ldv__builtin_expect((long )(((int )adapter->pcix_82544 && (bufend & 4UL) == 0UL) && size > 4U), 0L); if (tmp___11 != 0L) { size = size - 4U; } else { } buffer_info->length = (u16 )size; buffer_info->time_stamp = jiffies; buffer_info->mapped_as_page = 1; buffer_info->dma = skb_frag_dma_map(& pdev->dev, frag, (size_t )offset, (size_t )size, 1); tmp___12 = dma_mapping_error(& pdev->dev, buffer_info->dma); if (tmp___12 != 0) { goto dma_error; } else { } buffer_info->next_to_watch = (u16 )i; len = len - size; offset = offset + size; count = count + 1U; ldv_56542: ; if (len != 0U) { goto ldv_56541; } else { } f = f + 1U; ldv_56545: ; if (f < nr_frags) { goto ldv_56544; } else { } tmp___15 = skb_end_pointer((struct sk_buff const *)skb); if ((int )((struct skb_shared_info *)tmp___15)->gso_segs != 0) { tmp___14 = skb_end_pointer((struct sk_buff const *)skb); segs = (unsigned int )((int )((struct skb_shared_info *)tmp___14)->gso_segs); } else { segs = 1U; } tmp___16 = skb_headlen((struct sk_buff const *)skb); bytecount = (segs - 1U) * tmp___16 + skb->len; (tx_ring->buffer_info + (unsigned long )i)->skb = skb; (tx_ring->buffer_info + (unsigned long )i)->segs = (unsigned short )segs; (tx_ring->buffer_info + (unsigned long )i)->bytecount = bytecount; (tx_ring->buffer_info + (unsigned long )first)->next_to_watch = (u16 )i; return ((int )count); dma_error: dev_err((struct device const *)(& pdev->dev), "TX DMA map failed\n"); buffer_info->dma = 0ULL; if (count != 0U) { count = count - 1U; } else { } goto ldv_56548; ldv_56547: ; if (i == 0U) { i = tx_ring->count + i; } else { } i = i - 1U; buffer_info = tx_ring->buffer_info + (unsigned long )i; e1000_unmap_and_free_tx_resource(adapter, buffer_info); ldv_56548: tmp___17 = count; count = count - 1U; if (tmp___17 != 0U) { goto ldv_56547; } else { } return (0); } } static void e1000_tx_queue(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring , int tx_flags , int count ) { struct e1000_tx_desc *tx_desc ; struct e1000_tx_buffer *buffer_info ; u32 txd_upper ; u32 txd_lower ; unsigned int i ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; long tmp___6 ; { tx_desc = (struct e1000_tx_desc *)0; txd_upper = 0U; txd_lower = 33554432U; tmp___0 = ldv__builtin_expect((tx_flags & 4) != 0, 1L); if (tmp___0 != 0L) { txd_lower = txd_lower | 605028352U; txd_upper = txd_upper | 512U; tmp = ldv__builtin_expect((tx_flags & 8) != 0, 1L); if (tmp != 0L) { txd_upper = txd_upper | 256U; } else { } } else { } tmp___1 = ldv__builtin_expect((long )tx_flags & 1L, 1L); if (tmp___1 != 0L) { txd_lower = txd_lower | 537919488U; txd_upper = txd_upper | 512U; } else { } tmp___2 = ldv__builtin_expect((tx_flags & 2) != 0, 0L); if (tmp___2 != 0L) { txd_lower = txd_lower | 1073741824U; txd_upper = ((u32 )tx_flags & 4294901760U) | txd_upper; } else { } tmp___3 = ldv__builtin_expect((tx_flags & 16) != 0, 0L); if (tmp___3 != 0L) { txd_lower = txd_lower & 4261412863U; } else { } i = tx_ring->next_to_use; goto ldv_56562; ldv_56561: buffer_info = tx_ring->buffer_info + (unsigned long )i; tx_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )i; tx_desc->buffer_addr = buffer_info->dma; tx_desc->lower.data = (u32 )buffer_info->length | txd_lower; tx_desc->upper.data = txd_upper; i = i + 1U; tmp___4 = ldv__builtin_expect(i == tx_ring->count, 0L); if (tmp___4 != 0L) { i = 0U; } else { } ldv_56562: tmp___5 = count; count = count - 1; if (tmp___5 != 0) { goto ldv_56561; } else { } tx_desc->lower.data = tx_desc->lower.data | adapter->txd_cmd; tmp___6 = ldv__builtin_expect((tx_flags & 16) != 0, 0L); if (tmp___6 != 0L) { tx_desc->lower.data = tx_desc->lower.data & 4261412863U; } else { } __asm__ volatile ("sfence": : : "memory"); tx_ring->next_to_use = i; return; } } static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter , struct sk_buff *skb ) { u32 fifo_space ; u32 skb_fifo_len ; int tmp ; { fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; skb_fifo_len = skb->len + 16U; skb_fifo_len = (skb_fifo_len + 15U) & 4294967280U; if ((unsigned int )adapter->link_duplex != 1U) { goto no_fifo_stall_required; } else { } tmp = atomic_read((atomic_t const *)(& adapter->tx_fifo_stall)); if (tmp != 0) { return (1); } else { } if (fifo_space + 992U <= skb_fifo_len) { atomic_set(& adapter->tx_fifo_stall, 1); return (1); } else { } no_fifo_stall_required: adapter->tx_fifo_head = adapter->tx_fifo_head + skb_fifo_len; if (adapter->tx_fifo_head >= adapter->tx_fifo_size) { adapter->tx_fifo_head = adapter->tx_fifo_head - adapter->tx_fifo_size; } else { } return (0); } } static int __e1000_maybe_stop_tx(struct net_device *netdev , int size ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_tx_ring *tx_ring ; long tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tx_ring = adapter->tx_ring; netif_stop_queue(netdev); __asm__ volatile ("mfence": : : "memory"); tmp___0 = ldv__builtin_expect((((tx_ring->next_to_clean <= tx_ring->next_to_use ? tx_ring->count : 0U) + tx_ring->next_to_clean) - tx_ring->next_to_use) - 1U < (unsigned int )size, 1L); if (tmp___0 != 0L) { return (-16); } else { } netif_start_queue(netdev); adapter->restart_queue = adapter->restart_queue + 1U; return (0); } } static int e1000_maybe_stop_tx(struct net_device *netdev , struct e1000_tx_ring *tx_ring , int size ) { long tmp ; int tmp___0 ; { tmp = ldv__builtin_expect((((tx_ring->next_to_clean <= tx_ring->next_to_use ? tx_ring->count : 0U) + tx_ring->next_to_clean) - tx_ring->next_to_use) - 1U >= (unsigned int )size, 1L); if (tmp != 0L) { return (0); } else { } tmp___0 = __e1000_maybe_stop_tx(netdev, size); return (tmp___0); } } static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct e1000_tx_ring *tx_ring ; unsigned int first ; unsigned int max_per_txd ; unsigned int max_txd_pwr ; unsigned int tx_flags ; unsigned int len ; unsigned int tmp___0 ; unsigned int nr_frags ; unsigned int mss ; int count ; int tso ; unsigned int f ; __be16 protocol ; __be16 tmp___1 ; int tmp___2 ; unsigned char *tmp___3 ; u8 hdr_len ; unsigned int _min1 ; unsigned int _min2 ; int tmp___4 ; int tmp___5 ; unsigned int tmp___6 ; unsigned int pull_size ; unsigned char *tmp___7 ; unsigned int _min1___0 ; unsigned int _min2___0 ; unsigned char *tmp___8 ; bool tmp___9 ; int tmp___10 ; long tmp___11 ; unsigned char *tmp___12 ; unsigned char *tmp___13 ; unsigned int tmp___14 ; int tmp___15 ; long tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; long tmp___20 ; long tmp___21 ; bool tmp___22 ; long tmp___23 ; long tmp___24 ; long tmp___25 ; struct netdev_queue *tmp___26 ; bool tmp___27 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; max_per_txd = 4096U; max_txd_pwr = 12U; tx_flags = 0U; tmp___0 = skb_headlen((struct sk_buff const *)skb); len = tmp___0; count = 0; tmp___1 = vlan_get_protocol(skb); protocol = tmp___1; tx_ring = adapter->tx_ring; tmp___2 = eth_skb_pad(skb); if (tmp___2 != 0) { return (0); } else { } tmp___3 = skb_end_pointer((struct sk_buff const *)skb); mss = (unsigned int )((struct skb_shared_info *)tmp___3)->gso_size; if (mss != 0U) { _min1 = mss << 2; _min2 = max_per_txd; max_per_txd = _min1 < _min2 ? _min1 : _min2; tmp___4 = fls((int )max_per_txd); max_txd_pwr = (unsigned int )(tmp___4 + -1); tmp___5 = skb_transport_offset((struct sk_buff const *)skb); tmp___6 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (int )((u8 )tmp___5) + (int )((u8 )tmp___6); if (skb->data_len != 0U && (unsigned int )hdr_len == len) { switch ((unsigned int )hw->mac_type) { case 4U: tmp___7 = skb_tail_pointer((struct sk_buff const *)skb); if (((unsigned long )(tmp___7 + 0xffffffffffffffffUL) & 4UL) != 0UL) { goto ldv_56606; } else { } _min1___0 = 4U; _min2___0 = skb->data_len; pull_size = _min1___0 < _min2___0 ? _min1___0 : _min2___0; tmp___8 = __pskb_pull_tail(skb, (int )pull_size); if ((unsigned long )tmp___8 == (unsigned long )((unsigned char *)0U)) { if (adapter->msg_enable & 1) { netdev_err((struct net_device const *)adapter->netdev, "__pskb_pull_tail failed.\n"); } else { } dev_kfree_skb_any(skb); return (0); } else { } len = skb_headlen((struct sk_buff const *)skb); goto ldv_56606; default: ; goto ldv_56606; } ldv_56606: ; } else { } } else { } if (mss != 0U || (unsigned int )*((unsigned char *)skb + 145UL) == 6U) { count = count + 1; } else { } count = count + 1; if (skb->data_len == 0U && (int )tx_ring->last_tx_tso) { tmp___9 = skb_is_gso((struct sk_buff const *)skb); if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { count = count + 1; } else { } } else { } count = (int )(((len >> (int )max_txd_pwr) + (unsigned int )count) + 1U); if ((int )adapter->pcix_82544) { count = count + 1; } else { } tmp___11 = ldv__builtin_expect((long )((unsigned int )hw->bus_type == 2U && len > 2015U), 0L); if (tmp___11 != 0L) { count = count + 1; } else { } tmp___12 = skb_end_pointer((struct sk_buff const *)skb); nr_frags = (unsigned int )((struct skb_shared_info *)tmp___12)->nr_frags; f = 0U; goto ldv_56612; ldv_56611: tmp___13 = skb_end_pointer((struct sk_buff const *)skb); tmp___14 = skb_frag_size((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___13)->frags) + (unsigned long )f); count = (int )(((tmp___14 >> (int )max_txd_pwr) + (unsigned int )count) + 1U); f = f + 1U; ldv_56612: ; if (f < nr_frags) { goto ldv_56611; } else { } if ((int )adapter->pcix_82544) { count = (int )((unsigned int )count + nr_frags); } else { } tmp___15 = e1000_maybe_stop_tx(netdev, tx_ring, count + 2); tmp___16 = ldv__builtin_expect(tmp___15 != 0, 0L); if (tmp___16 != 0L) { return (16); } else { } if ((unsigned int )hw->mac_type == 13U) { tmp___18 = e1000_82547_fifo_workaround(adapter, skb); if (tmp___18 != 0) { tmp___19 = 1; } else { tmp___19 = 0; } } else { tmp___19 = 0; } tmp___20 = ldv__builtin_expect((long )tmp___19, 0L); if (tmp___20 != 0L) { netif_stop_queue(netdev); tmp___17 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___17 == 0) { schedule_delayed_work(& adapter->fifo_stall_task, 1UL); } else { } return (16); } else { } if (((int )skb->vlan_tci & 4096) != 0) { tx_flags = tx_flags | 2U; tx_flags = (unsigned int )(((int )skb->vlan_tci & -4097) << 16) | tx_flags; } else { } first = tx_ring->next_to_use; tso = e1000_tso(adapter, tx_ring, skb, (int )protocol); if (tso < 0) { dev_kfree_skb_any(skb); return (0); } else { } tmp___24 = ldv__builtin_expect(tso != 0, 1L); if (tmp___24 != 0L) { tmp___21 = ldv__builtin_expect((unsigned int )hw->mac_type != 4U, 1L); if (tmp___21 != 0L) { tx_ring->last_tx_tso = 1; } else { } tx_flags = tx_flags | 4U; } else { tmp___22 = e1000_tx_csum(adapter, tx_ring, skb, (int )protocol); tmp___23 = ldv__builtin_expect((long )tmp___22, 1L); if (tmp___23 != 0L) { tx_flags = tx_flags | 1U; } else { } } if ((unsigned int )protocol == 8U) { tx_flags = tx_flags | 8U; } else { } tmp___25 = ldv__builtin_expect((long )*((unsigned char *)skb + 146UL) & 1L, 0L); if (tmp___25 != 0L) { tx_flags = tx_flags | 16U; } else { } count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, nr_frags, mss); if (count != 0) { netdev_sent_queue(netdev, skb->len); skb_tx_timestamp(skb); e1000_tx_queue(adapter, tx_ring, (int )tx_flags, count); e1000_maybe_stop_tx(netdev, tx_ring, 19); if ((unsigned int )*((unsigned char *)skb + 142UL) == 0U) { writel(tx_ring->next_to_use, (void volatile *)hw->hw_addr + (unsigned long )tx_ring->tdt); __asm__ volatile ("": : : "memory"); } else { tmp___26 = netdev_get_tx_queue((struct net_device const *)netdev, 0U); tmp___27 = netif_xmit_stopped((struct netdev_queue const *)tmp___26); if ((int )tmp___27) { writel(tx_ring->next_to_use, (void volatile *)hw->hw_addr + (unsigned long )tx_ring->tdt); __asm__ volatile ("": : : "memory"); } else { } } } else { dev_kfree_skb_any(skb); (tx_ring->buffer_info + (unsigned long )first)->time_stamp = 0UL; tx_ring->next_to_use = first; } return (0); } } static void e1000_regdump(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 regs[38U] ; u32 *regs_buff ; int i ; char const *reg_name[38U] ; { hw = & adapter->hw; regs_buff = (u32 *)(& regs); i = 0; reg_name[0] = "CTRL"; reg_name[1] = "STATUS"; reg_name[2] = "RCTL"; reg_name[3] = "RDLEN"; reg_name[4] = "RDH"; reg_name[5] = "RDT"; reg_name[6] = "RDTR"; reg_name[7] = "TCTL"; reg_name[8] = "TDBAL"; reg_name[9] = "TDBAH"; reg_name[10] = "TDLEN"; reg_name[11] = "TDH"; reg_name[12] = "TDT"; reg_name[13] = "TIDV"; reg_name[14] = "TXDCTL"; reg_name[15] = "TADV"; reg_name[16] = "TARC0"; reg_name[17] = "TDBAL1"; reg_name[18] = "TDBAH1"; reg_name[19] = "TDLEN1"; reg_name[20] = "TDH1"; reg_name[21] = "TDT1"; reg_name[22] = "TXDCTL1"; reg_name[23] = "TARC1"; reg_name[24] = "CTRL_EXT"; reg_name[25] = "ERT"; reg_name[26] = "RDBAL"; reg_name[27] = "RDBAH"; reg_name[28] = "TDFH"; reg_name[29] = "TDFT"; reg_name[30] = "TDFHS"; reg_name[31] = "TDFTS"; reg_name[32] = "TDFPC"; reg_name[33] = "RDFH"; reg_name[34] = "RDFT"; reg_name[35] = "RDFHS"; reg_name[36] = "RDFTS"; reg_name[37] = "RDFPC"; *regs_buff = readl((void const volatile *)hw->hw_addr); *(regs_buff + 1UL) = readl((void const volatile *)hw->hw_addr + 8U); *(regs_buff + 2UL) = readl((void const volatile *)hw->hw_addr + 256U); *(regs_buff + 3UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10248UL : 280UL))); *(regs_buff + 4UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10256UL : 288UL))); *(regs_buff + 5UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10264UL : 296UL))); *(regs_buff + 6UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10272UL : 264UL))); *(regs_buff + 7UL) = readl((void const volatile *)hw->hw_addr + 1024U); *(regs_buff + 8UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14336UL : 1056UL))); *(regs_buff + 9UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14340UL : 1060UL))); *(regs_buff + 10UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14344UL : 1064UL))); *(regs_buff + 11UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14352UL : 1072UL))); *(regs_buff + 12UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); *(regs_buff + 13UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14368UL : 1088UL))); *(regs_buff + 14UL) = readl((void const volatile *)hw->hw_addr + 14376U); *(regs_buff + 15UL) = readl((void const volatile *)hw->hw_addr + 14380U); *(regs_buff + 16UL) = readl((void const volatile *)hw->hw_addr + 14400U); *(regs_buff + 17UL) = readl((void const volatile *)hw->hw_addr + 14592U); *(regs_buff + 18UL) = readl((void const volatile *)hw->hw_addr + 14596U); *(regs_buff + 19UL) = readl((void const volatile *)hw->hw_addr + 14600U); *(regs_buff + 20UL) = readl((void const volatile *)hw->hw_addr + 14608U); *(regs_buff + 21UL) = readl((void const volatile *)hw->hw_addr + 14616U); *(regs_buff + 22UL) = readl((void const volatile *)hw->hw_addr + 14632U); *(regs_buff + 23UL) = readl((void const volatile *)hw->hw_addr + 14656U); *(regs_buff + 24UL) = readl((void const volatile *)hw->hw_addr + 24U); *(regs_buff + 25UL) = readl((void const volatile *)hw->hw_addr + 8200U); *(regs_buff + 26UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10240UL : 272UL))); *(regs_buff + 27UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10244UL : 276UL))); *(regs_buff + 28UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13328UL : 32784UL))); *(regs_buff + 29UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13336UL : 32792UL))); *(regs_buff + 30UL) = readl((void const volatile *)hw->hw_addr + 13344U); *(regs_buff + 31UL) = readl((void const volatile *)hw->hw_addr + 13352U); *(regs_buff + 32UL) = readl((void const volatile *)hw->hw_addr + 13360U); *(regs_buff + 33UL) = readl((void const volatile *)hw->hw_addr + 9232U); *(regs_buff + 34UL) = readl((void const volatile *)hw->hw_addr + 9240U); *(regs_buff + 35UL) = readl((void const volatile *)hw->hw_addr + 9248U); *(regs_buff + 36UL) = readl((void const volatile *)hw->hw_addr + 9256U); *(regs_buff + 37UL) = readl((void const volatile *)hw->hw_addr + 9264U); printk("\016e1000: Register dump\n"); i = 0; goto ldv_56623; ldv_56622: printk("\016e1000: %-15s %08x\n", reg_name[i], *(regs_buff + (unsigned long )i)); i = i + 1; ldv_56623: ; if (i <= 37) { goto ldv_56622; } else { } return; } } static void e1000_dump(struct e1000_adapter *adapter ) { struct e1000_tx_ring *tx_ring ; struct e1000_rx_ring *rx_ring ; int i ; struct e1000_tx_desc *tx_desc ; struct e1000_tx_buffer *buffer_info ; struct my_u *u ; char const *type ; struct e1000_rx_desc *rx_desc ; struct e1000_rx_buffer *buffer_info___0 ; struct my_u___0 *u___0 ; char const *type___0 ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; { tx_ring = adapter->tx_ring; rx_ring = adapter->rx_ring; if ((adapter->msg_enable & 8192) == 0) { return; } else { } e1000_regdump(adapter); printk("\016e1000: TX Desc ring0 dump\n"); printk("\016e1000: Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); printk("\016e1000: Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); if ((adapter->msg_enable & 1024) == 0) { goto rx_ring_summary; } else { } i = 0; goto ldv_56640; ldv_56639: tx_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )i; buffer_info = tx_ring->buffer_info + (unsigned long )i; u = (struct my_u *)tx_desc; if ((unsigned int )i == tx_ring->next_to_use && (unsigned int )i == tx_ring->next_to_clean) { type = "NTC/U"; } else if ((unsigned int )i == tx_ring->next_to_use) { type = "NTU"; } else if ((unsigned int )i == tx_ring->next_to_clean) { type = "NTC"; } else { type = ""; } printk("\016e1000: T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", (u->b & 1048576ULL) != 0ULL ? 100 : 99, i, u->a, u->b, buffer_info->dma, (int )buffer_info->length, (int )buffer_info->next_to_watch, (unsigned long long )buffer_info->time_stamp, buffer_info->skb, type); i = i + 1; ldv_56640: ; if ((unsigned long )tx_ring->desc != (unsigned long )((void *)0) && (unsigned int )i < tx_ring->count) { goto ldv_56639; } else { } rx_ring_summary: printk("\016e1000: \nRX Desc ring dump\n"); printk("\016e1000: R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); if ((adapter->msg_enable & 2048) == 0) { goto exit; } else { } i = 0; goto ldv_56651; ldv_56650: rx_desc = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; buffer_info___0 = rx_ring->buffer_info + (unsigned long )i; u___0 = (struct my_u___0 *)rx_desc; if ((unsigned int )i == rx_ring->next_to_use) { type___0 = "NTU"; } else if ((unsigned int )i == rx_ring->next_to_clean) { type___0 = "NTC"; } else { type___0 = ""; } printk("\016e1000: R[0x%03X] %016llX %016llX %016llX %p %s\n", i, u___0->a, u___0->b, buffer_info___0->dma, buffer_info___0->rxbuf.data, type___0); i = i + 1; ldv_56651: ; if ((unsigned long )rx_ring->desc != (unsigned long )((void *)0) && (unsigned int )i < rx_ring->count) { goto ldv_56650; } else { } printk("\016e1000: Rx descriptor cache in 64bit format\n"); i = 24576; goto ldv_56654; ldv_56653: tmp = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 8UL))); tmp___0 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 12UL))); tmp___1 = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )i); tmp___2 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 4UL))); printk("\016e1000: R%04X: %08X|%08X %08X|%08X\n", i, tmp___2, tmp___1, tmp___0, tmp); i = i + 16; ldv_56654: ; if (i <= 25599) { goto ldv_56653; } else { } printk("\016e1000: Tx descriptor cache in 64bit format\n"); i = 28672; goto ldv_56657; ldv_56656: tmp___3 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 8UL))); tmp___4 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 12UL))); tmp___5 = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )i); tmp___6 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 4UL))); printk("\016e1000: T%04X: %08X|%08X %08X|%08X\n", i, tmp___6, tmp___5, tmp___4, tmp___3); i = i + 16; ldv_56657: ; if (i <= 29695) { goto ldv_56656; } else { } exit: ; return; } } static void e1000_tx_timeout(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; adapter->tx_timeout_count = adapter->tx_timeout_count + 1U; schedule_work(& adapter->reset_task); return; } } static void e1000_reset_task(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffff7a8UL; if (adapter->msg_enable & 1) { netdev_err((struct net_device const *)adapter->netdev, "Reset adapter\n"); } else { } e1000_reinit_locked(adapter); return; } } static struct net_device_stats *e1000_get_stats(struct net_device *netdev ) { { return (& netdev->stats); } } static int e1000_change_mtu(struct net_device *netdev , int new_mtu ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int max_frame ; int tmp___0 ; bool tmp___1 ; bool tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; max_frame = new_mtu + 18; if (max_frame <= 63 || max_frame > 16128) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Invalid MTU setting\n"); } else { } return (-22); } else { } switch ((unsigned int )hw->mac_type) { case 2U: case 1U: case 0U: ; if (max_frame > 1518) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Jumbo Frames not supported.\n"); } else { } return (-22); } else { } goto ldv_56680; default: ; goto ldv_56680; } ldv_56680: ; goto ldv_56683; ldv_56682: msleep(1U); ldv_56683: tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->flags)); if (tmp___0 != 0) { goto ldv_56682; } else { } hw->max_frame_size = (u32 )max_frame; tmp___1 = netif_running((struct net_device const *)netdev); if ((int )tmp___1) { adapter->alloc_rx_buf = & e1000_alloc_dummy_rx_buffers; e1000_down(adapter); } else { } if (max_frame <= 2048) { adapter->rx_buffer_len = 2048U; } else { adapter->rx_buffer_len = 4096U; } if (! hw->tbi_compatibility_on && (max_frame == 1518 || max_frame == 1522)) { adapter->rx_buffer_len = 1522U; } else { } printk("\016e1000: %s changing MTU from %d to %d\n", (char *)(& netdev->name), netdev->mtu, new_mtu); netdev->mtu = (unsigned int )new_mtu; tmp___2 = netif_running((struct net_device const *)netdev); if ((int )tmp___2) { e1000_up(adapter); } else { e1000_reset(adapter); } clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); return (0); } } void e1000_update_stats(struct e1000_adapter *adapter ) { struct net_device *netdev ; struct e1000_hw *hw ; struct pci_dev *pdev ; unsigned long flags ; u16 phy_tmp ; int tmp ; raw_spinlock_t *tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; unsigned int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; unsigned int tmp___17 ; unsigned int tmp___18 ; unsigned int tmp___19 ; unsigned int tmp___20 ; unsigned int tmp___21 ; unsigned int tmp___22 ; unsigned int tmp___23 ; unsigned int tmp___24 ; unsigned int tmp___25 ; unsigned int tmp___26 ; unsigned int tmp___27 ; unsigned int tmp___28 ; unsigned int tmp___29 ; unsigned int tmp___30 ; unsigned int tmp___31 ; unsigned int tmp___32 ; unsigned int tmp___33 ; unsigned int tmp___34 ; unsigned int tmp___35 ; unsigned int tmp___36 ; unsigned int tmp___37 ; unsigned int tmp___38 ; unsigned int tmp___39 ; unsigned int tmp___40 ; unsigned int tmp___41 ; unsigned int tmp___42 ; unsigned int tmp___43 ; unsigned int tmp___44 ; unsigned int tmp___45 ; unsigned int tmp___46 ; unsigned int tmp___47 ; unsigned int tmp___48 ; unsigned int tmp___49 ; unsigned int tmp___50 ; unsigned int tmp___51 ; unsigned int tmp___52 ; unsigned int tmp___53 ; s32 tmp___54 ; s32 tmp___55 ; unsigned int tmp___56 ; unsigned int tmp___57 ; unsigned int tmp___58 ; { netdev = adapter->netdev; hw = & adapter->hw; pdev = adapter->pdev; if ((unsigned int )adapter->link_speed == 0U) { return; } else { } tmp = pci_channel_offline(pdev); if (tmp != 0) { return; } else { } tmp___0 = spinlock_check(& adapter->stats_lock); flags = _raw_spin_lock_irqsave(tmp___0); tmp___1 = readl((void const volatile *)hw->hw_addr + 16384U); adapter->stats.crcerrs = adapter->stats.crcerrs + (u64 )tmp___1; tmp___2 = readl((void const volatile *)hw->hw_addr + 16500U); adapter->stats.gprc = adapter->stats.gprc + (u64 )tmp___2; tmp___3 = readl((void const volatile *)hw->hw_addr + 16520U); adapter->stats.gorcl = adapter->stats.gorcl + (u64 )tmp___3; tmp___4 = readl((void const volatile *)hw->hw_addr + 16524U); adapter->stats.gorch = adapter->stats.gorch + (u64 )tmp___4; tmp___5 = readl((void const volatile *)hw->hw_addr + 16504U); adapter->stats.bprc = adapter->stats.bprc + (u64 )tmp___5; tmp___6 = readl((void const volatile *)hw->hw_addr + 16508U); adapter->stats.mprc = adapter->stats.mprc + (u64 )tmp___6; tmp___7 = readl((void const volatile *)hw->hw_addr + 16556U); adapter->stats.roc = adapter->stats.roc + (u64 )tmp___7; tmp___8 = readl((void const volatile *)hw->hw_addr + 16476U); adapter->stats.prc64 = adapter->stats.prc64 + (u64 )tmp___8; tmp___9 = readl((void const volatile *)hw->hw_addr + 16480U); adapter->stats.prc127 = adapter->stats.prc127 + (u64 )tmp___9; tmp___10 = readl((void const volatile *)hw->hw_addr + 16484U); adapter->stats.prc255 = adapter->stats.prc255 + (u64 )tmp___10; tmp___11 = readl((void const volatile *)hw->hw_addr + 16488U); adapter->stats.prc511 = adapter->stats.prc511 + (u64 )tmp___11; tmp___12 = readl((void const volatile *)hw->hw_addr + 16492U); adapter->stats.prc1023 = adapter->stats.prc1023 + (u64 )tmp___12; tmp___13 = readl((void const volatile *)hw->hw_addr + 16496U); adapter->stats.prc1522 = adapter->stats.prc1522 + (u64 )tmp___13; tmp___14 = readl((void const volatile *)hw->hw_addr + 16392U); adapter->stats.symerrs = adapter->stats.symerrs + (u64 )tmp___14; tmp___15 = readl((void const volatile *)hw->hw_addr + 16400U); adapter->stats.mpc = adapter->stats.mpc + (u64 )tmp___15; tmp___16 = readl((void const volatile *)hw->hw_addr + 16404U); adapter->stats.scc = adapter->stats.scc + (u64 )tmp___16; tmp___17 = readl((void const volatile *)hw->hw_addr + 16408U); adapter->stats.ecol = adapter->stats.ecol + (u64 )tmp___17; tmp___18 = readl((void const volatile *)hw->hw_addr + 16412U); adapter->stats.mcc = adapter->stats.mcc + (u64 )tmp___18; tmp___19 = readl((void const volatile *)hw->hw_addr + 16416U); adapter->stats.latecol = adapter->stats.latecol + (u64 )tmp___19; tmp___20 = readl((void const volatile *)hw->hw_addr + 16432U); adapter->stats.dc = adapter->stats.dc + (u64 )tmp___20; tmp___21 = readl((void const volatile *)hw->hw_addr + 16440U); adapter->stats.sec = adapter->stats.sec + (u64 )tmp___21; tmp___22 = readl((void const volatile *)hw->hw_addr + 16448U); adapter->stats.rlec = adapter->stats.rlec + (u64 )tmp___22; tmp___23 = readl((void const volatile *)hw->hw_addr + 16456U); adapter->stats.xonrxc = adapter->stats.xonrxc + (u64 )tmp___23; tmp___24 = readl((void const volatile *)hw->hw_addr + 16460U); adapter->stats.xontxc = adapter->stats.xontxc + (u64 )tmp___24; tmp___25 = readl((void const volatile *)hw->hw_addr + 16464U); adapter->stats.xoffrxc = adapter->stats.xoffrxc + (u64 )tmp___25; tmp___26 = readl((void const volatile *)hw->hw_addr + 16468U); adapter->stats.xofftxc = adapter->stats.xofftxc + (u64 )tmp___26; tmp___27 = readl((void const volatile *)hw->hw_addr + 16472U); adapter->stats.fcruc = adapter->stats.fcruc + (u64 )tmp___27; tmp___28 = readl((void const volatile *)hw->hw_addr + 16512U); adapter->stats.gptc = adapter->stats.gptc + (u64 )tmp___28; tmp___29 = readl((void const volatile *)hw->hw_addr + 16528U); adapter->stats.gotcl = adapter->stats.gotcl + (u64 )tmp___29; tmp___30 = readl((void const volatile *)hw->hw_addr + 16532U); adapter->stats.gotch = adapter->stats.gotch + (u64 )tmp___30; tmp___31 = readl((void const volatile *)hw->hw_addr + 16544U); adapter->stats.rnbc = adapter->stats.rnbc + (u64 )tmp___31; tmp___32 = readl((void const volatile *)hw->hw_addr + 16548U); adapter->stats.ruc = adapter->stats.ruc + (u64 )tmp___32; tmp___33 = readl((void const volatile *)hw->hw_addr + 16552U); adapter->stats.rfc = adapter->stats.rfc + (u64 )tmp___33; tmp___34 = readl((void const volatile *)hw->hw_addr + 16560U); adapter->stats.rjc = adapter->stats.rjc + (u64 )tmp___34; tmp___35 = readl((void const volatile *)hw->hw_addr + 16576U); adapter->stats.torl = adapter->stats.torl + (u64 )tmp___35; tmp___36 = readl((void const volatile *)hw->hw_addr + 16580U); adapter->stats.torh = adapter->stats.torh + (u64 )tmp___36; tmp___37 = readl((void const volatile *)hw->hw_addr + 16584U); adapter->stats.totl = adapter->stats.totl + (u64 )tmp___37; tmp___38 = readl((void const volatile *)hw->hw_addr + 16588U); adapter->stats.toth = adapter->stats.toth + (u64 )tmp___38; tmp___39 = readl((void const volatile *)hw->hw_addr + 16592U); adapter->stats.tpr = adapter->stats.tpr + (u64 )tmp___39; tmp___40 = readl((void const volatile *)hw->hw_addr + 16600U); adapter->stats.ptc64 = adapter->stats.ptc64 + (u64 )tmp___40; tmp___41 = readl((void const volatile *)hw->hw_addr + 16604U); adapter->stats.ptc127 = adapter->stats.ptc127 + (u64 )tmp___41; tmp___42 = readl((void const volatile *)hw->hw_addr + 16608U); adapter->stats.ptc255 = adapter->stats.ptc255 + (u64 )tmp___42; tmp___43 = readl((void const volatile *)hw->hw_addr + 16612U); adapter->stats.ptc511 = adapter->stats.ptc511 + (u64 )tmp___43; tmp___44 = readl((void const volatile *)hw->hw_addr + 16616U); adapter->stats.ptc1023 = adapter->stats.ptc1023 + (u64 )tmp___44; tmp___45 = readl((void const volatile *)hw->hw_addr + 16620U); adapter->stats.ptc1522 = adapter->stats.ptc1522 + (u64 )tmp___45; tmp___46 = readl((void const volatile *)hw->hw_addr + 16624U); adapter->stats.mptc = adapter->stats.mptc + (u64 )tmp___46; tmp___47 = readl((void const volatile *)hw->hw_addr + 16628U); adapter->stats.bptc = adapter->stats.bptc + (u64 )tmp___47; hw->tx_packet_delta = readl((void const volatile *)hw->hw_addr + 16596U); adapter->stats.tpt = adapter->stats.tpt + (u64 )hw->tx_packet_delta; hw->collision_delta = readl((void const volatile *)hw->hw_addr + 16424U); adapter->stats.colc = adapter->stats.colc + (u64 )hw->collision_delta; if ((unsigned int )hw->mac_type > 2U) { tmp___48 = readl((void const volatile *)hw->hw_addr + 16388U); adapter->stats.algnerrc = adapter->stats.algnerrc + (u64 )tmp___48; tmp___49 = readl((void const volatile *)hw->hw_addr + 16396U); adapter->stats.rxerrc = adapter->stats.rxerrc + (u64 )tmp___49; tmp___50 = readl((void const volatile *)hw->hw_addr + 16436U); adapter->stats.tncrs = adapter->stats.tncrs + (u64 )tmp___50; tmp___51 = readl((void const volatile *)hw->hw_addr + 16444U); adapter->stats.cexterr = adapter->stats.cexterr + (u64 )tmp___51; tmp___52 = readl((void const volatile *)hw->hw_addr + 16632U); adapter->stats.tsctc = adapter->stats.tsctc + (u64 )tmp___52; tmp___53 = readl((void const volatile *)hw->hw_addr + 16636U); adapter->stats.tsctfc = adapter->stats.tsctfc + (u64 )tmp___53; } else { } netdev->stats.multicast = (unsigned long )adapter->stats.mprc; netdev->stats.collisions = (unsigned long )adapter->stats.colc; netdev->stats.rx_errors = (unsigned long )(((((adapter->stats.rxerrc + adapter->stats.crcerrs) + adapter->stats.algnerrc) + adapter->stats.ruc) + adapter->stats.roc) + adapter->stats.cexterr); adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; netdev->stats.rx_length_errors = (unsigned long )adapter->stats.rlerrc; netdev->stats.rx_crc_errors = (unsigned long )adapter->stats.crcerrs; netdev->stats.rx_frame_errors = (unsigned long )adapter->stats.algnerrc; netdev->stats.rx_missed_errors = (unsigned long )adapter->stats.mpc; adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; netdev->stats.tx_errors = (unsigned long )adapter->stats.txerrc; netdev->stats.tx_aborted_errors = (unsigned long )adapter->stats.ecol; netdev->stats.tx_window_errors = (unsigned long )adapter->stats.latecol; netdev->stats.tx_carrier_errors = (unsigned long )adapter->stats.tncrs; if ((int )hw->bad_tx_carr_stats_fd && (unsigned int )adapter->link_duplex == 2U) { netdev->stats.tx_carrier_errors = 0UL; adapter->stats.tncrs = 0ULL; } else { } if ((unsigned int )hw->media_type == 0U) { if ((unsigned int )adapter->link_speed == 1000U) { tmp___54 = e1000_read_phy_reg(hw, 10U, & phy_tmp); if (tmp___54 == 0) { phy_tmp = (unsigned int )phy_tmp & 255U; adapter->phy_stats.idle_errors = adapter->phy_stats.idle_errors + (u32 )phy_tmp; } else { } } else { } if ((unsigned int )hw->mac_type <= 8U && (unsigned int )hw->phy_type == 0U) { tmp___55 = e1000_read_phy_reg(hw, 21U, & phy_tmp); if (tmp___55 == 0) { adapter->phy_stats.receive_errors = adapter->phy_stats.receive_errors + (u32 )phy_tmp; } else { } } else { } } else { } if ((int )hw->has_smbus) { tmp___56 = readl((void const volatile *)hw->hw_addr + 16572U); adapter->stats.mgptc = adapter->stats.mgptc + (u64 )tmp___56; tmp___57 = readl((void const volatile *)hw->hw_addr + 16564U); adapter->stats.mgprc = adapter->stats.mgprc + (u64 )tmp___57; tmp___58 = readl((void const volatile *)hw->hw_addr + 16568U); adapter->stats.mgpdc = adapter->stats.mgpdc + (u64 )tmp___58; } else { } spin_unlock_irqrestore(& adapter->stats_lock, flags); return; } } static irqreturn_t e1000_intr(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 icr ; unsigned int tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; long tmp___5 ; int tmp___6 ; bool tmp___7 ; long tmp___8 ; { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = readl((void const volatile *)hw->hw_addr + 192U); icr = tmp___0; tmp___1 = ldv__builtin_expect(icr == 0U, 0L); if (tmp___1 != 0L) { return (0); } else { } tmp___2 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); tmp___3 = ldv__builtin_expect(tmp___2 != 0, 0L); if (tmp___3 != 0L) { return (1); } else { } tmp___5 = ldv__builtin_expect((icr & 12U) != 0U, 0L); if (tmp___5 != 0L) { hw->get_link_status = 1; tmp___4 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___4 == 0) { schedule_delayed_work(& adapter->watchdog_task, 1UL); } else { } } else { } writel(4294967295U, (void volatile *)hw->hw_addr + 216U); readl((void const volatile *)hw->hw_addr + 8U); tmp___7 = napi_schedule_prep(& adapter->napi); tmp___8 = ldv__builtin_expect((long )tmp___7, 1L); if (tmp___8 != 0L) { adapter->total_tx_bytes = 0U; adapter->total_tx_packets = 0U; adapter->total_rx_bytes = 0U; adapter->total_rx_packets = 0U; __napi_schedule(& adapter->napi); } else { tmp___6 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___6 == 0) { e1000_irq_enable(adapter); } else { } } return (1); } } static int e1000_clean(struct napi_struct *napi , int budget ) { struct e1000_adapter *adapter ; struct napi_struct const *__mptr ; int tx_clean_complete ; int work_done ; bool tmp ; long tmp___0 ; int tmp___1 ; { __mptr = (struct napi_struct const *)napi; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffffd08UL; tx_clean_complete = 0; work_done = 0; tmp = e1000_clean_tx_irq(adapter, adapter->tx_ring); tx_clean_complete = (int )tmp; (*(adapter->clean_rx))(adapter, adapter->rx_ring, & work_done, budget); if (tx_clean_complete == 0) { work_done = budget; } else { } if (work_done < budget) { tmp___0 = ldv__builtin_expect((adapter->itr_setting & 3U) != 0U, 1L); if (tmp___0 != 0L) { e1000_set_itr(adapter); } else { } napi_complete(napi); tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___1 == 0) { e1000_irq_enable(adapter); } else { } } else { } return (work_done); } } static bool e1000_clean_tx_irq(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) { struct e1000_hw *hw ; struct net_device *netdev ; struct e1000_tx_desc *tx_desc ; struct e1000_tx_desc *eop_desc ; struct e1000_tx_buffer *buffer_info ; unsigned int i ; unsigned int eop ; unsigned int count ; unsigned int total_tx_bytes ; unsigned int total_tx_packets ; unsigned int bytes_compl ; unsigned int pkts_compl ; bool cleaned ; long tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; long tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; { hw = & adapter->hw; netdev = adapter->netdev; count = 0U; total_tx_bytes = 0U; total_tx_packets = 0U; bytes_compl = 0U; pkts_compl = 0U; i = tx_ring->next_to_clean; eop = (unsigned int )(tx_ring->buffer_info + (unsigned long )i)->next_to_watch; eop_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )eop; goto ldv_56734; ldv_56733: cleaned = 0; __asm__ volatile ("": : : "memory"); goto ldv_56731; ldv_56730: tx_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )i; buffer_info = tx_ring->buffer_info + (unsigned long )i; cleaned = i == eop; if ((int )cleaned) { total_tx_packets = (unsigned int )buffer_info->segs + total_tx_packets; total_tx_bytes = buffer_info->bytecount + total_tx_bytes; if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { bytes_compl = (buffer_info->skb)->len + bytes_compl; pkts_compl = pkts_compl + 1U; } else { } } else { } e1000_unmap_and_free_tx_resource(adapter, buffer_info); tx_desc->upper.data = 0U; i = i + 1U; tmp = ldv__builtin_expect(i == tx_ring->count, 0L); if (tmp != 0L) { i = 0U; } else { } count = count + 1U; ldv_56731: ; if (! cleaned) { goto ldv_56730; } else { } eop = (unsigned int )(tx_ring->buffer_info + (unsigned long )i)->next_to_watch; eop_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )eop; ldv_56734: ; if ((int )eop_desc->upper.data & 1 && tx_ring->count > count) { goto ldv_56733; } else { } tx_ring->next_to_clean = i; netdev_completed_queue(netdev, pkts_compl, bytes_compl); if (count != 0U) { tmp___2 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___2) { if ((((tx_ring->next_to_clean <= tx_ring->next_to_use ? tx_ring->count : 0U) + tx_ring->next_to_clean) - tx_ring->next_to_use) - 1U > 31U) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } } else { tmp___3 = 0; } tmp___4 = ldv__builtin_expect((long )tmp___3, 0L); if (tmp___4 != 0L) { __asm__ volatile ("mfence": : : "memory"); tmp___0 = netif_queue_stopped((struct net_device const *)netdev); if ((int )tmp___0) { tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___1 == 0) { netif_wake_queue(netdev); adapter->restart_queue = adapter->restart_queue + 1U; } else { } } else { } } else { } if ((int )adapter->detect_tx_hung) { adapter->detect_tx_hung = 0; if ((tx_ring->buffer_info + (unsigned long )eop)->time_stamp != 0UL && (long )(((tx_ring->buffer_info + (unsigned long )eop)->time_stamp + (unsigned long )((int )adapter->tx_timeout_factor * 250)) - (unsigned long )jiffies) < 0L) { tmp___7 = readl((void const volatile *)hw->hw_addr + 8U); if ((tmp___7 & 16U) == 0U) { if (adapter->msg_enable & 1) { tmp___5 = readl((void const volatile *)hw->hw_addr + (unsigned long )tx_ring->tdt); tmp___6 = readl((void const volatile *)hw->hw_addr + (unsigned long )tx_ring->tdh); netdev_err((struct net_device const *)adapter->netdev, "Detected Tx Unit Hang\n Tx Queue <%lu>\n TDH <%x>\n TDT <%x>\n next_to_use <%x>\n next_to_clean <%x>\nbuffer_info[next_to_clean]\n time_stamp <%lx>\n next_to_watch <%x>\n jiffies <%lx>\n next_to_watch.status <%x>\n", (unsigned long )(((long )tx_ring - (long )adapter->tx_ring) / 48L), tmp___6, tmp___5, tx_ring->next_to_use, tx_ring->next_to_clean, (tx_ring->buffer_info + (unsigned long )eop)->time_stamp, eop, jiffies, (int )eop_desc->upper.fields.status); } else { } e1000_dump(adapter); netif_stop_queue(netdev); } else { } } else { } } else { } adapter->total_tx_bytes = adapter->total_tx_bytes + total_tx_bytes; adapter->total_tx_packets = adapter->total_tx_packets + total_tx_packets; netdev->stats.tx_bytes = netdev->stats.tx_bytes + (unsigned long )total_tx_bytes; netdev->stats.tx_packets = netdev->stats.tx_packets + (unsigned long )total_tx_packets; return (tx_ring->count > count); } } static void e1000_rx_checksum(struct e1000_adapter *adapter , u32 status_err , u32 csum , struct sk_buff *skb ) { struct e1000_hw *hw ; u16 status ; u8 errors ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { hw = & adapter->hw; status = (unsigned short )status_err; errors = (unsigned char )(status_err >> 24); skb_checksum_none_assert((struct sk_buff const *)skb); tmp = ldv__builtin_expect((unsigned int )hw->mac_type <= 2U, 0L); if (tmp != 0L) { return; } else { } tmp___0 = ldv__builtin_expect(((int )status & 4) != 0, 0L); if (tmp___0 != 0L) { return; } else { } tmp___1 = ldv__builtin_expect(((int )errors & 32) != 0, 0L); if (tmp___1 != 0L) { adapter->hw_csum_err = adapter->hw_csum_err + 1ULL; return; } else { } if (((int )status & 32) == 0) { return; } else { } tmp___2 = ldv__builtin_expect(((int )status & 32) != 0, 1L); if (tmp___2 != 0L) { skb->ip_summed = 1U; } else { } adapter->hw_csum_good = adapter->hw_csum_good + 1ULL; return; } } static void e1000_consume_page(struct e1000_rx_buffer *bi , struct sk_buff *skb , u16 length ) { { bi->rxbuf.page = (struct page *)0; skb->len = skb->len + (unsigned int )length; skb->data_len = skb->data_len + (unsigned int )length; skb->truesize = skb->truesize + 4096U; return; } } static void e1000_receive_skb(struct e1000_adapter *adapter , u8 status , __le16 vlan , struct sk_buff *skb ) { u16 vid ; { skb->protocol = eth_type_trans(skb, adapter->netdev); if (((int )status & 8) != 0) { vid = (unsigned int )vlan & 4095U; __vlan_hwaccel_put_tag(skb, 129, (int )vid); } else { } napi_gro_receive(& adapter->napi, skb); return; } } static void e1000_tbi_adjust_stats(struct e1000_hw *hw , struct e1000_hw_stats *stats , u32 frame_len , u8 const *mac_addr ) { u64 carry_bit ; bool tmp ; bool tmp___0 ; { frame_len = frame_len - 1U; stats->crcerrs = stats->crcerrs - 1ULL; stats->gprc = stats->gprc + 1ULL; carry_bit = stats->gorcl & 2147483648ULL; stats->gorcl = stats->gorcl + (u64 )frame_len; if (carry_bit != 0ULL && (stats->gorcl & 2147483648ULL) == 0ULL) { stats->gorch = stats->gorch + 1ULL; } else { } tmp___0 = is_broadcast_ether_addr(mac_addr); if ((int )tmp___0) { stats->bprc = stats->bprc + 1ULL; } else { tmp = is_multicast_ether_addr(mac_addr); if ((int )tmp) { stats->mprc = stats->mprc + 1ULL; } else { } } if (hw->max_frame_size == frame_len) { if (stats->roc != 0ULL) { stats->roc = stats->roc - 1ULL; } else { } } else { } if (frame_len == 64U) { stats->prc64 = stats->prc64 + 1ULL; stats->prc127 = stats->prc127 - 1ULL; } else if (frame_len == 127U) { stats->prc127 = stats->prc127 + 1ULL; stats->prc255 = stats->prc255 - 1ULL; } else if (frame_len == 255U) { stats->prc255 = stats->prc255 + 1ULL; stats->prc511 = stats->prc511 - 1ULL; } else if (frame_len == 511U) { stats->prc511 = stats->prc511 + 1ULL; stats->prc1023 = stats->prc1023 - 1ULL; } else if (frame_len == 1023U) { stats->prc1023 = stats->prc1023 + 1ULL; stats->prc1522 = stats->prc1522 - 1ULL; } else if (frame_len == 1522U) { stats->prc1522 = stats->prc1522 + 1ULL; } else { } return; } } static bool e1000_tbi_should_accept(struct e1000_adapter *adapter , u8 status , u8 errors , u32 length , u8 const *data ) { struct e1000_hw *hw ; u8 last_byte ; unsigned long irq_flags ; raw_spinlock_t *tmp ; { hw = & adapter->hw; last_byte = *(data + ((unsigned long )length + 0xffffffffffffffffUL)); if ((((int )hw->tbi_compatibility_on && ((int )errors & 151) == 1) && (unsigned int )last_byte == 15U) && (((int )status & 8) != 0 ? hw->min_frame_size - 4U < length && hw->max_frame_size + 1U >= length : hw->min_frame_size < length && hw->max_frame_size + 5U >= length)) { tmp = spinlock_check(& adapter->stats_lock); irq_flags = _raw_spin_lock_irqsave(tmp); e1000_tbi_adjust_stats(hw, & adapter->stats, length, data); spin_unlock_irqrestore(& adapter->stats_lock, irq_flags); return (1); } else { } return (0); } } static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter , unsigned int bufsz ) { struct sk_buff *skb ; struct sk_buff *tmp ; long tmp___0 ; { tmp = napi_alloc_skb(& adapter->napi, bufsz); skb = tmp; tmp___0 = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); if (tmp___0 != 0L) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; } else { } return (skb); } } static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int *work_done , int work_to_do ) { struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_rx_desc *rx_desc ; struct e1000_rx_desc *next_rxd ; struct e1000_rx_buffer *buffer_info ; struct e1000_rx_buffer *next_buffer ; u32 length ; unsigned int i ; int cleaned_count ; bool cleaned ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; struct sk_buff *skb ; u8 status ; u8 *mapped ; void *tmp ; bool tmp___0 ; long tmp___1 ; unsigned char *tmp___2 ; unsigned char *tmp___3 ; struct page *p ; u8 *vaddr ; long tmp___4 ; void *tmp___5 ; unsigned char *tmp___6 ; long tmp___7 ; __le16 vlan ; u16 vid ; long tmp___8 ; { netdev = adapter->netdev; pdev = adapter->pdev; cleaned_count = 0; cleaned = 0; total_rx_bytes = 0U; total_rx_packets = 0U; i = rx_ring->next_to_clean; rx_desc = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_56817; ldv_56816: ; if (*work_done >= work_to_do) { goto ldv_56808; } else { } *work_done = *work_done + 1; __asm__ volatile ("": : : "memory"); status = rx_desc->status; i = i + 1U; if (i == rx_ring->count) { i = 0U; } else { } next_rxd = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; __builtin_prefetch((void const *)next_rxd); next_buffer = rx_ring->buffer_info + (unsigned long )i; cleaned = 1; cleaned_count = cleaned_count + 1; dma_unmap_page(& pdev->dev, buffer_info->dma, (size_t )adapter->rx_buffer_len, 2); buffer_info->dma = 0ULL; length = (u32 )rx_desc->length; tmp___1 = ldv__builtin_expect((long )(((int )status & 2) != 0 && ((int )rx_desc->errors & 151) != 0), 0L); if (tmp___1 != 0L) { tmp = lowmem_page_address((struct page const *)buffer_info->rxbuf.page); mapped = (u8 *)tmp; tmp___0 = e1000_tbi_should_accept(adapter, (int )status, (int )rx_desc->errors, length, (u8 const *)mapped); if ((int )tmp___0) { length = length - 1U; } else if ((netdev->features & 274877906944ULL) != 0ULL) { goto process_skb; } else { if ((unsigned long )rx_ring->rx_skb_top != (unsigned long )((struct sk_buff *)0)) { consume_skb(rx_ring->rx_skb_top); } else { } rx_ring->rx_skb_top = (struct sk_buff *)0; goto next_desc; } } else { } process_skb: ; if (((int )status & 2) == 0) { if ((unsigned long )rx_ring->rx_skb_top == (unsigned long )((struct sk_buff *)0)) { rx_ring->rx_skb_top = napi_get_frags(& adapter->napi); if ((unsigned long )rx_ring->rx_skb_top == (unsigned long )((struct sk_buff *)0)) { goto ldv_56808; } else { } skb_fill_page_desc(rx_ring->rx_skb_top, 0, buffer_info->rxbuf.page, 0, (int )length); } else { tmp___2 = skb_end_pointer((struct sk_buff const *)rx_ring->rx_skb_top); skb_fill_page_desc(rx_ring->rx_skb_top, (int )((struct skb_shared_info *)tmp___2)->nr_frags, buffer_info->rxbuf.page, 0, (int )length); } e1000_consume_page(buffer_info, rx_ring->rx_skb_top, (int )((u16 )length)); goto next_desc; } else if ((unsigned long )rx_ring->rx_skb_top != (unsigned long )((struct sk_buff *)0)) { tmp___3 = skb_end_pointer((struct sk_buff const *)rx_ring->rx_skb_top); skb_fill_page_desc(rx_ring->rx_skb_top, (int )((struct skb_shared_info *)tmp___3)->nr_frags, buffer_info->rxbuf.page, 0, (int )length); skb = rx_ring->rx_skb_top; rx_ring->rx_skb_top = (struct sk_buff *)0; e1000_consume_page(buffer_info, skb, (int )((u16 )length)); } else { p = buffer_info->rxbuf.page; if (length <= copybreak) { tmp___4 = ldv__builtin_expect((netdev->features & 137438953472ULL) == 0ULL, 1L); if (tmp___4 != 0L) { length = length - 4U; } else { } skb = e1000_alloc_rx_skb(adapter, length); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_56808; } else { } tmp___5 = kmap_atomic(p); vaddr = (u8 *)tmp___5; tmp___6 = skb_tail_pointer((struct sk_buff const *)skb); memcpy((void *)tmp___6, (void const *)vaddr, (size_t )length); __kunmap_atomic((void *)vaddr); skb_put(skb, length); e1000_rx_checksum(adapter, (u32 )((int )status | ((int )rx_desc->errors << 24)), (u32 )rx_desc->csum, skb); total_rx_bytes = skb->len + total_rx_bytes; total_rx_packets = total_rx_packets + 1U; e1000_receive_skb(adapter, (int )status, (int )rx_desc->special, skb); goto next_desc; } else { skb = napi_get_frags(& adapter->napi); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_56808; } else { } skb_fill_page_desc(skb, 0, p, 0, (int )length); e1000_consume_page(buffer_info, skb, (int )((u16 )length)); } } e1000_rx_checksum(adapter, (unsigned int )status | ((unsigned int )rx_desc->errors << 24), (u32 )rx_desc->csum, skb); total_rx_bytes = (skb->len + total_rx_bytes) - 4U; tmp___7 = ldv__builtin_expect((netdev->features & 137438953472ULL) == 0ULL, 1L); if (tmp___7 != 0L) { pskb_trim(skb, skb->len - 4U); } else { } total_rx_packets = total_rx_packets + 1U; if (((int )status & 8) != 0) { vlan = rx_desc->special; vid = (unsigned int )vlan & 4095U; __vlan_hwaccel_put_tag(skb, 129, (int )vid); } else { } napi_gro_frags(& adapter->napi); next_desc: rx_desc->status = 0U; tmp___8 = ldv__builtin_expect(cleaned_count > 15, 0L); if (tmp___8 != 0L) { (*(adapter->alloc_rx_buf))(adapter, rx_ring, cleaned_count); cleaned_count = 0; } else { } rx_desc = next_rxd; buffer_info = next_buffer; ldv_56817: ; if ((int )rx_desc->status & 1) { goto ldv_56816; } else { } ldv_56808: rx_ring->next_to_clean = i; cleaned_count = (int )((((rx_ring->next_to_clean <= rx_ring->next_to_use ? rx_ring->count : 0U) + rx_ring->next_to_clean) - rx_ring->next_to_use) - 1U); if (cleaned_count != 0) { (*(adapter->alloc_rx_buf))(adapter, rx_ring, cleaned_count); } else { } adapter->total_rx_packets = adapter->total_rx_packets + total_rx_packets; adapter->total_rx_bytes = adapter->total_rx_bytes + total_rx_bytes; netdev->stats.rx_bytes = netdev->stats.rx_bytes + (unsigned long )total_rx_bytes; netdev->stats.rx_packets = netdev->stats.rx_packets + (unsigned long )total_rx_packets; return (cleaned); } } static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter , struct e1000_rx_buffer *buffer_info , u32 length , void const *data ) { struct sk_buff *skb ; unsigned char *tmp ; { if (length > copybreak) { return ((struct sk_buff *)0); } else { } skb = e1000_alloc_rx_skb(adapter, length); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return ((struct sk_buff *)0); } else { } dma_sync_single_for_cpu(& (adapter->pdev)->dev, buffer_info->dma, (size_t )length, 2); tmp = skb_put(skb, length); memcpy((void *)tmp, data, (size_t )length); return (skb); } } static bool e1000_clean_rx_irq(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int *work_done , int work_to_do ) { struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_rx_desc *rx_desc ; struct e1000_rx_desc *next_rxd ; struct e1000_rx_buffer *buffer_info ; struct e1000_rx_buffer *next_buffer ; u32 length ; unsigned int i ; int cleaned_count ; bool cleaned ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; struct sk_buff *skb ; u8 *data ; u8 status ; unsigned int frag_len ; unsigned int tmp ; int _max1 ; int _max2 ; int _max1___0 ; int _max2___0 ; long tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; bool tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; { netdev = adapter->netdev; pdev = adapter->pdev; cleaned_count = 0; cleaned = 0; total_rx_bytes = 0U; total_rx_packets = 0U; i = rx_ring->next_to_clean; rx_desc = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_56859; ldv_56858: ; if (*work_done >= work_to_do) { goto ldv_56846; } else { } *work_done = *work_done + 1; __asm__ volatile ("": : : "memory"); status = rx_desc->status; length = (u32 )rx_desc->length; data = buffer_info->rxbuf.data; __builtin_prefetch((void const *)data); skb = e1000_copybreak(adapter, buffer_info, length, (void const *)data); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { tmp = e1000_frag_len((struct e1000_adapter const *)adapter); frag_len = tmp; _max1 = 32; _max2 = 64; skb = build_skb((void *)(data + - ((unsigned long )(_max1 > _max2 ? _max1 : _max2))), frag_len); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_56846; } else { } _max1___0 = 32; _max2___0 = 64; skb_reserve(skb, _max1___0 > _max2___0 ? _max1___0 : _max2___0); dma_unmap_single_attrs(& pdev->dev, buffer_info->dma, (size_t )adapter->rx_buffer_len, 2, (struct dma_attrs *)0); buffer_info->dma = 0ULL; buffer_info->rxbuf.data = (u8 *)0U; } else { } i = i + 1U; if (i == rx_ring->count) { i = 0U; } else { } next_rxd = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; __builtin_prefetch((void const *)next_rxd); next_buffer = rx_ring->buffer_info + (unsigned long )i; cleaned = 1; cleaned_count = cleaned_count + 1; tmp___0 = ldv__builtin_expect(((int )status & 2) == 0, 0L); if (tmp___0 != 0L) { adapter->discarding = 1; } else { } if ((int )adapter->discarding) { descriptor.modname = "e1000"; descriptor.function = "e1000_clean_rx_irq"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_main.c"; descriptor.format = "Receive packet consumed multiple buffers\n"; descriptor.lineno = 4418U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)netdev, "Receive packet consumed multiple buffers\n"); } else { } consume_skb(skb); if (((int )status & 2) != 0) { adapter->discarding = 0; } else { } goto next_desc; } else { } tmp___3 = ldv__builtin_expect(((int )rx_desc->errors & 151) != 0, 0L); if (tmp___3 != 0L) { tmp___2 = e1000_tbi_should_accept(adapter, (int )status, (int )rx_desc->errors, length, (u8 const *)data); if ((int )tmp___2) { length = length - 1U; } else if ((netdev->features & 274877906944ULL) != 0ULL) { goto process_skb; } else { consume_skb(skb); goto next_desc; } } else { } process_skb: total_rx_bytes = (length + total_rx_bytes) - 4U; total_rx_packets = total_rx_packets + 1U; tmp___4 = ldv__builtin_expect((netdev->features & 137438953472ULL) == 0ULL, 1L); if (tmp___4 != 0L) { length = length - 4U; } else { } if ((unsigned long )buffer_info->rxbuf.data == (unsigned long )((u8 *)0U)) { skb_put(skb, length); } else { skb_trim(skb, length); } e1000_rx_checksum(adapter, (unsigned int )status | ((unsigned int )rx_desc->errors << 24), (u32 )rx_desc->csum, skb); e1000_receive_skb(adapter, (int )status, (int )rx_desc->special, skb); next_desc: rx_desc->status = 0U; tmp___5 = ldv__builtin_expect(cleaned_count > 15, 0L); if (tmp___5 != 0L) { (*(adapter->alloc_rx_buf))(adapter, rx_ring, cleaned_count); cleaned_count = 0; } else { } rx_desc = next_rxd; buffer_info = next_buffer; ldv_56859: ; if ((int )rx_desc->status & 1) { goto ldv_56858; } else { } ldv_56846: rx_ring->next_to_clean = i; cleaned_count = (int )((((rx_ring->next_to_clean <= rx_ring->next_to_use ? rx_ring->count : 0U) + rx_ring->next_to_clean) - rx_ring->next_to_use) - 1U); if (cleaned_count != 0) { (*(adapter->alloc_rx_buf))(adapter, rx_ring, cleaned_count); } else { } adapter->total_rx_packets = adapter->total_rx_packets + total_rx_packets; adapter->total_rx_bytes = adapter->total_rx_bytes + total_rx_bytes; netdev->stats.rx_bytes = netdev->stats.rx_bytes + (unsigned long )total_rx_bytes; netdev->stats.rx_packets = netdev->stats.rx_packets + (unsigned long )total_rx_packets; return (cleaned); } } static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int cleaned_count ) { struct pci_dev *pdev ; struct e1000_rx_desc *rx_desc ; struct e1000_rx_buffer *buffer_info ; unsigned int i ; long tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; long tmp___4 ; long tmp___5 ; { pdev = adapter->pdev; i = rx_ring->next_to_use; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_56871; ldv_56870: ; if ((unsigned long )buffer_info->rxbuf.page == (unsigned long )((struct page *)0)) { buffer_info->rxbuf.page = alloc_pages(32U, 0U); tmp = ldv__builtin_expect((unsigned long )buffer_info->rxbuf.page == (unsigned long )((struct page *)0), 0L); if (tmp != 0L) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_56869; } else { } } else { } if (buffer_info->dma == 0ULL) { buffer_info->dma = dma_map_page(& pdev->dev, buffer_info->rxbuf.page, 0UL, (size_t )adapter->rx_buffer_len, 2); tmp___0 = dma_mapping_error(& pdev->dev, buffer_info->dma); if (tmp___0 != 0) { put_page(buffer_info->rxbuf.page); buffer_info->rxbuf.page = (struct page *)0; buffer_info->dma = 0ULL; adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_56869; } else { } } else { } rx_desc = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; rx_desc->buffer_addr = buffer_info->dma; i = i + 1U; tmp___1 = ldv__builtin_expect(i == rx_ring->count, 0L); if (tmp___1 != 0L) { i = 0U; } else { } buffer_info = rx_ring->buffer_info + (unsigned long )i; ldv_56871: tmp___2 = cleaned_count; cleaned_count = cleaned_count - 1; if (tmp___2 != 0) { goto ldv_56870; } else { } ldv_56869: tmp___5 = ldv__builtin_expect(rx_ring->next_to_use != i, 1L); if (tmp___5 != 0L) { rx_ring->next_to_use = i; tmp___3 = i; i = i - 1U; tmp___4 = ldv__builtin_expect(tmp___3 == 0U, 0L); if (tmp___4 != 0L) { i = rx_ring->count - 1U; } else { } __asm__ volatile ("sfence": : : "memory"); writel(i, (void volatile *)adapter->hw.hw_addr + (unsigned long )rx_ring->rdt); } else { } return; } } static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int cleaned_count ) { struct e1000_hw *hw ; struct pci_dev *pdev ; struct e1000_rx_desc *rx_desc ; struct e1000_rx_buffer *buffer_info ; unsigned int i ; unsigned int bufsz ; void *data ; void *olddata ; bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; long tmp___6 ; int tmp___7 ; unsigned int tmp___8 ; long tmp___9 ; long tmp___10 ; { hw = & adapter->hw; pdev = adapter->pdev; bufsz = adapter->rx_buffer_len; i = rx_ring->next_to_use; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_56888; ldv_56887: ; if ((unsigned long )buffer_info->rxbuf.data != (unsigned long )((u8 *)0U)) { goto skip; } else { } data = e1000_alloc_frag((struct e1000_adapter const *)adapter); if ((unsigned long )data == (unsigned long )((void *)0)) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_56885; } else { } tmp___1 = e1000_check_64k_bound(adapter, data, (unsigned long )bufsz); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { olddata = data; if ((adapter->msg_enable & 64) != 0) { netdev_err((struct net_device const *)adapter->netdev, "skb align check failed: %u bytes at %p\n", bufsz, data); } else { } data = e1000_alloc_frag((struct e1000_adapter const *)adapter); if ((unsigned long )data == (unsigned long )((void *)0)) { skb_free_frag(olddata); adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_56885; } else { } tmp = e1000_check_64k_bound(adapter, data, (unsigned long )bufsz); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { skb_free_frag(data); skb_free_frag(olddata); adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_56885; } else { } skb_free_frag(olddata); } else { } buffer_info->dma = dma_map_single_attrs(& pdev->dev, data, (size_t )adapter->rx_buffer_len, 2, (struct dma_attrs *)0); tmp___3 = dma_mapping_error(& pdev->dev, buffer_info->dma); if (tmp___3 != 0) { skb_free_frag(data); buffer_info->dma = 0ULL; adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_56885; } else { } tmp___4 = e1000_check_64k_bound(adapter, (void *)buffer_info->dma, (unsigned long )adapter->rx_buffer_len); if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { if ((adapter->msg_enable & 64) != 0) { netdev_err((struct net_device const *)adapter->netdev, "dma align check failed: %u bytes at %p\n", adapter->rx_buffer_len, (void *)buffer_info->dma); } else { } dma_unmap_single_attrs(& pdev->dev, buffer_info->dma, (size_t )adapter->rx_buffer_len, 2, (struct dma_attrs *)0); skb_free_frag(data); buffer_info->rxbuf.data = (u8 *)0U; buffer_info->dma = 0ULL; adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_56885; } else { } buffer_info->rxbuf.data = (u8 *)data; skip: rx_desc = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; rx_desc->buffer_addr = buffer_info->dma; i = i + 1U; tmp___6 = ldv__builtin_expect(i == rx_ring->count, 0L); if (tmp___6 != 0L) { i = 0U; } else { } buffer_info = rx_ring->buffer_info + (unsigned long )i; ldv_56888: tmp___7 = cleaned_count; cleaned_count = cleaned_count - 1; if (tmp___7 != 0) { goto ldv_56887; } else { } ldv_56885: tmp___10 = ldv__builtin_expect(rx_ring->next_to_use != i, 1L); if (tmp___10 != 0L) { rx_ring->next_to_use = i; tmp___8 = i; i = i - 1U; tmp___9 = ldv__builtin_expect(tmp___8 == 0U, 0L); if (tmp___9 != 0L) { i = rx_ring->count - 1U; } else { } __asm__ volatile ("sfence": : : "memory"); writel(i, (void volatile *)hw->hw_addr + (unsigned long )rx_ring->rdt); } else { } return; } } static void e1000_smartspeed(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 phy_status ; u16 phy_ctrl ; s32 tmp ; s32 tmp___0 ; s32 tmp___1 ; s32 tmp___2 ; u32 tmp___3 ; { hw = & adapter->hw; if (((unsigned int )hw->phy_type != 1U || (unsigned int )hw->autoneg == 0U) || ((int )hw->autoneg_advertised & 32) == 0) { return; } else { } if (adapter->smartspeed == 0U) { e1000_read_phy_reg(hw, 10U, & phy_status); if ((int )((short )phy_status) >= 0) { return; } else { } e1000_read_phy_reg(hw, 10U, & phy_status); if ((int )((short )phy_status) >= 0) { return; } else { } e1000_read_phy_reg(hw, 9U, & phy_ctrl); if (((int )phy_ctrl & 4096) != 0) { phy_ctrl = (unsigned int )phy_ctrl & 61439U; e1000_write_phy_reg(hw, 9U, (int )phy_ctrl); adapter->smartspeed = adapter->smartspeed + 1U; tmp = e1000_phy_setup_autoneg(hw); if (tmp == 0) { tmp___0 = e1000_read_phy_reg(hw, 0U, & phy_ctrl); if (tmp___0 == 0) { phy_ctrl = (u16 )((unsigned int )phy_ctrl | 4608U); e1000_write_phy_reg(hw, 0U, (int )phy_ctrl); } else { } } else { } } else { } return; } else if (adapter->smartspeed == 3U) { e1000_read_phy_reg(hw, 9U, & phy_ctrl); phy_ctrl = (u16 )((unsigned int )phy_ctrl | 4096U); e1000_write_phy_reg(hw, 9U, (int )phy_ctrl); tmp___1 = e1000_phy_setup_autoneg(hw); if (tmp___1 == 0) { tmp___2 = e1000_read_phy_reg(hw, 0U, & phy_ctrl); if (tmp___2 == 0) { phy_ctrl = (u16 )((unsigned int )phy_ctrl | 4608U); e1000_write_phy_reg(hw, 0U, (int )phy_ctrl); } else { } } else { } } else { } tmp___3 = adapter->smartspeed; adapter->smartspeed = adapter->smartspeed + 1U; if (tmp___3 == 15U) { adapter->smartspeed = 0U; } else { } return; } } static int e1000_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { int tmp ; { switch (cmd) { case 35143: ; case 35144: ; case 35145: tmp = e1000_mii_ioctl(netdev, ifr, cmd); return (tmp); default: ; return (-95); } } } static int e1000_mii_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp___0 ; int retval ; u16 mii_reg ; unsigned long flags ; raw_spinlock_t *tmp___1 ; s32 tmp___2 ; raw_spinlock_t *tmp___3 ; s32 tmp___4 ; u32 speed ; bool tmp___5 ; s32 tmp___6 ; bool tmp___7 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = if_mii(ifr); data = tmp___0; if ((unsigned int )hw->media_type != 0U) { return (-95); } else { } switch (cmd) { case 35143: data->phy_id = (__u16 )hw->phy_addr; goto ldv_56916; case 35144: tmp___1 = spinlock_check(& adapter->stats_lock); flags = _raw_spin_lock_irqsave(tmp___1); tmp___2 = e1000_read_phy_reg(hw, (u32 )data->reg_num & 31U, & data->val_out); if (tmp___2 != 0) { spin_unlock_irqrestore(& adapter->stats_lock, flags); return (-5); } else { } spin_unlock_irqrestore(& adapter->stats_lock, flags); goto ldv_56916; case 35145: ; if (((int )data->reg_num & -32) != 0) { return (-14); } else { } mii_reg = data->val_in; tmp___3 = spinlock_check(& adapter->stats_lock); flags = _raw_spin_lock_irqsave(tmp___3); tmp___4 = e1000_write_phy_reg(hw, (u32 )data->reg_num, (int )mii_reg); if (tmp___4 != 0) { spin_unlock_irqrestore(& adapter->stats_lock, flags); return (-5); } else { } spin_unlock_irqrestore(& adapter->stats_lock, flags); if ((unsigned int )hw->media_type == 0U) { switch ((int )data->reg_num) { case 0: ; if (((int )mii_reg & 2048) != 0) { goto ldv_56926; } else { } if (((int )mii_reg & 4096) != 0) { hw->autoneg = 1U; hw->autoneg_advertised = 47U; } else { if (((int )mii_reg & 64) != 0) { speed = 1000U; } else if (((int )mii_reg & 8192) != 0) { speed = 100U; } else { speed = 10U; } retval = e1000_set_spd_dplx(adapter, speed, ((int )mii_reg & 256) != 0); if (retval != 0) { return (retval); } else { } } tmp___5 = netif_running((struct net_device const *)adapter->netdev); if ((int )tmp___5) { e1000_reinit_locked(adapter); } else { e1000_reset(adapter); } goto ldv_56926; case 16: ; case 20: tmp___6 = e1000_phy_reset(hw); if (tmp___6 != 0) { return (-5); } else { } goto ldv_56926; } ldv_56926: ; } else { switch ((int )data->reg_num) { case 0: ; if (((int )mii_reg & 2048) != 0) { goto ldv_56931; } else { } tmp___7 = netif_running((struct net_device const *)adapter->netdev); if ((int )tmp___7) { e1000_reinit_locked(adapter); } else { e1000_reset(adapter); } goto ldv_56931; } ldv_56931: ; } goto ldv_56916; default: ; return (-95); } ldv_56916: ; return (0); } } void e1000_pci_set_mwi(struct e1000_hw *hw ) { struct e1000_adapter *adapter ; int ret_val ; int tmp ; { adapter = (struct e1000_adapter *)hw->back; tmp = pci_set_mwi(adapter->pdev); ret_val = tmp; if (ret_val != 0) { if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Error in setting MWI\n"); } else { } } else { } return; } } void e1000_pci_clear_mwi(struct e1000_hw *hw ) { struct e1000_adapter *adapter ; { adapter = (struct e1000_adapter *)hw->back; pci_clear_mwi(adapter->pdev); return; } } int e1000_pcix_get_mmrbc(struct e1000_hw *hw ) { struct e1000_adapter *adapter ; int tmp ; { adapter = (struct e1000_adapter *)hw->back; tmp = pcix_get_mmrbc(adapter->pdev); return (tmp); } } void e1000_pcix_set_mmrbc(struct e1000_hw *hw , int mmrbc ) { struct e1000_adapter *adapter ; { adapter = (struct e1000_adapter *)hw->back; pcix_set_mmrbc(adapter->pdev, mmrbc); return; } } void e1000_io_write(struct e1000_hw *hw , unsigned long port , u32 value ) { { outl(value, (int )port); return; } } static bool e1000_vlan_used(struct e1000_adapter *adapter ) { u16 vid ; unsigned long tmp ; unsigned long tmp___0 ; { tmp = find_first_bit((unsigned long const *)(& adapter->active_vlans), 4096UL); vid = (u16 )tmp; goto ldv_56961; ldv_56960: ; return (1); tmp___0 = find_next_bit((unsigned long const *)(& adapter->active_vlans), 4096UL, (unsigned long )((int )vid + 1)); vid = (u16 )tmp___0; ldv_56961: ; if ((unsigned int )vid <= 4095U) { goto ldv_56960; } else { } return (0); } } static void __e1000_vlan_mode(struct e1000_adapter *adapter , netdev_features_t features ) { struct e1000_hw *hw ; u32 ctrl ; { hw = & adapter->hw; ctrl = readl((void const volatile *)hw->hw_addr); if ((features & 256ULL) != 0ULL) { ctrl = ctrl | 1073741824U; } else { ctrl = ctrl & 3221225471U; } writel(ctrl, (void volatile *)hw->hw_addr); return; } } static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter , bool filter_on ) { struct e1000_hw *hw ; u32 rctl ; int tmp ; int tmp___0 ; { hw = & adapter->hw; tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp == 0) { e1000_irq_disable(adapter); } else { } __e1000_vlan_mode(adapter, (adapter->netdev)->features); if ((int )filter_on) { rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294443007U; if (((adapter->netdev)->flags & 256U) == 0U) { rctl = rctl | 262144U; } else { } writel(rctl, (void volatile *)hw->hw_addr + 256U); e1000_update_mng_vlan(adapter); } else { rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294705151U; writel(rctl, (void volatile *)hw->hw_addr + 256U); } tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___0 == 0) { e1000_irq_enable(adapter); } else { } return; } } static void e1000_vlan_mode(struct net_device *netdev , netdev_features_t features ) { struct e1000_adapter *adapter ; void *tmp ; int tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___0 == 0) { e1000_irq_disable(adapter); } else { } __e1000_vlan_mode(adapter, features); tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___1 == 0) { e1000_irq_enable(adapter); } else { } return; } } static int e1000_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 vfta ; u32 index ; bool tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if (((int )hw->mng_cookie.status & 2) != 0 && (int )adapter->mng_vlan_id == (int )vid) { return (0); } else { } tmp___0 = e1000_vlan_used(adapter); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { e1000_vlan_filter_on_off(adapter, 1); } else { } index = (u32 )((int )vid >> 5) & 127U; vfta = readl((void const volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )(index << 2)))); vfta = (u32 )(1 << ((int )vid & 31)) | vfta; e1000_write_vfta(hw, index, vfta); set_bit((long )vid, (unsigned long volatile *)(& adapter->active_vlans)); return (0); } } static int e1000_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 vfta ; u32 index ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___0 == 0) { e1000_irq_disable(adapter); } else { } tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___1 == 0) { e1000_irq_enable(adapter); } else { } index = (u32 )((int )vid >> 5) & 127U; vfta = readl((void const volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )(index << 2)))); vfta = (u32 )(~ (1 << ((int )vid & 31))) & vfta; e1000_write_vfta(hw, index, vfta); clear_bit((long )vid, (unsigned long volatile *)(& adapter->active_vlans)); tmp___2 = e1000_vlan_used(adapter); if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { e1000_vlan_filter_on_off(adapter, 0); } else { } return (0); } } static void e1000_restore_vlan(struct e1000_adapter *adapter ) { u16 vid ; bool tmp ; int tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; { tmp = e1000_vlan_used(adapter); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } e1000_vlan_filter_on_off(adapter, 1); tmp___1 = find_first_bit((unsigned long const *)(& adapter->active_vlans), 4096UL); vid = (u16 )tmp___1; goto ldv_57003; ldv_57002: e1000_vlan_rx_add_vid(adapter->netdev, 129, (int )vid); tmp___2 = find_next_bit((unsigned long const *)(& adapter->active_vlans), 4096UL, (unsigned long )((int )vid + 1)); vid = (u16 )tmp___2; ldv_57003: ; if ((unsigned int )vid <= 4095U) { goto ldv_57002; } else { } return; } } int e1000_set_spd_dplx(struct e1000_adapter *adapter , u32 spd , u8 dplx ) { struct e1000_hw *hw ; { hw = & adapter->hw; hw->autoneg = 0U; if ((int )spd & 1 || ((int )dplx & -2) != 0) { goto err_inval; } else { } if (((unsigned int )hw->media_type == 1U && spd != 1000U) && (unsigned int )dplx != 1U) { goto err_inval; } else { } switch ((u32 )dplx + spd) { case 10U: hw->forced_speed_duplex = 0U; goto ldv_57013; case 11U: hw->forced_speed_duplex = 1U; goto ldv_57013; case 100U: hw->forced_speed_duplex = 2U; goto ldv_57013; case 101U: hw->forced_speed_duplex = 3U; goto ldv_57013; case 1001U: hw->autoneg = 1U; hw->autoneg_advertised = 32U; goto ldv_57013; case 1000U: ; default: ; goto err_inval; } ldv_57013: hw->mdix = 0U; return (0); err_inval: ; if ((adapter->msg_enable & 2) != 0) { netdev_err((struct net_device const *)adapter->netdev, "Unsupported Speed/Duplex configuration\n"); } else { } return (-22); } } static int __e1000_shutdown(struct pci_dev *pdev , bool *enable_wake ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; u32 ctrl ; u32 ctrl_ext ; u32 rctl ; u32 status ; u32 wufc ; int retval ; int count ; int tmp___1 ; int tmp___2 ; int __ret_warn_on ; int tmp___3 ; long tmp___4 ; bool tmp___5 ; bool tmp___6 ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; wufc = adapter->wol; retval = 0; netif_device_detach(netdev); tmp___5 = netif_running((struct net_device const *)netdev); if ((int )tmp___5) { count = 50; goto ldv_57035; ldv_57034: usleep_range(10000UL, 20000UL); ldv_57035: tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); if (tmp___1 != 0) { tmp___2 = count; count = count - 1; if (tmp___2 != 0) { goto ldv_57034; } else { goto ldv_57036; } } else { } ldv_57036: tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); __ret_warn_on = tmp___3 != 0; tmp___4 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___4 != 0L) { warn_slowpath_null("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_main.c", 5071); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); e1000_down(adapter); } else { } retval = pci_save_state(pdev); if (retval != 0) { return (retval); } else { } status = readl((void const volatile *)hw->hw_addr + 8U); if ((status & 2U) != 0U) { wufc = wufc & 4294967294U; } else { } if (wufc != 0U) { e1000_setup_rctl(adapter); e1000_set_rx_mode(netdev); rctl = readl((void const volatile *)hw->hw_addr + 256U); if ((wufc & 8U) != 0U) { rctl = rctl | 16U; } else { } writel(rctl | 2U, (void volatile *)hw->hw_addr + 256U); if ((unsigned int )hw->mac_type > 4U) { ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl | 3145728U; writel(ctrl, (void volatile *)hw->hw_addr); } else { } if ((unsigned int )hw->media_type == 1U || (unsigned int )hw->media_type == 2U) { ctrl_ext = readl((void const volatile *)hw->hw_addr + 24U); ctrl_ext = ctrl_ext | 128U; writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); } else { } writel(2U, (void volatile *)hw->hw_addr + 22528U); writel(wufc, (void volatile *)hw->hw_addr + 22536U); } else { writel(0U, (void volatile *)hw->hw_addr + 22528U); writel(0U, (void volatile *)hw->hw_addr + 22536U); } e1000_release_manageability(adapter); *enable_wake = wufc != 0U; if (adapter->en_mng_pt != 0U) { *enable_wake = 1; } else { } tmp___6 = netif_running((struct net_device const *)netdev); if ((int )tmp___6) { e1000_free_irq(adapter); } else { } pci_disable_device(pdev); return (0); } } static int e1000_suspend(struct pci_dev *pdev , pm_message_t state ) { int retval ; bool wake ; { retval = __e1000_shutdown(pdev, & wake); if (retval != 0) { return (retval); } else { } if ((int )wake) { pci_prepare_to_sleep(pdev); } else { pci_wake_from_d3(pdev, 0); pci_set_power_state(pdev, 3); } return (0); } } static int e1000_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; u32 err ; int tmp___1 ; int tmp___2 ; int tmp___3 ; bool tmp___4 ; bool tmp___5 ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; pci_set_power_state(pdev, 0); pci_restore_state(pdev); pci_save_state(pdev); if (adapter->need_ioport != 0) { tmp___1 = pci_enable_device(pdev); err = (u32 )tmp___1; } else { tmp___2 = pci_enable_device_mem(pdev); err = (u32 )tmp___2; } if (err != 0U) { printk("\ve1000: Cannot enable PCI device from suspend\n"); return ((int )err); } else { } pci_set_master(pdev); pci_enable_wake(pdev, 3, 0); pci_enable_wake(pdev, 4, 0); tmp___4 = netif_running((struct net_device const *)netdev); if ((int )tmp___4) { tmp___3 = e1000_request_irq(adapter); err = (u32 )tmp___3; if (err != 0U) { return ((int )err); } else { } } else { } e1000_power_up_phy(adapter); e1000_reset(adapter); writel(4294967295U, (void volatile *)hw->hw_addr + 22544U); e1000_init_manageability(adapter); tmp___5 = netif_running((struct net_device const *)netdev); if ((int )tmp___5) { e1000_up(adapter); } else { } netif_device_attach(netdev); return (0); } } static void e1000_shutdown(struct pci_dev *pdev ) { bool wake ; { __e1000_shutdown(pdev, & wake); if ((unsigned int )system_state == 3U) { pci_wake_from_d3(pdev, (int )wake); pci_set_power_state(pdev, 3); } else { } return; } } static void e1000_netpoll(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; disable_irq((adapter->pdev)->irq); e1000_intr((int )(adapter->pdev)->irq, (void *)netdev); enable_irq((adapter->pdev)->irq); return; } } static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; netif_device_detach(netdev); if (state == 3U) { return (4U); } else { } tmp___1 = netif_running((struct net_device const *)netdev); if ((int )tmp___1) { e1000_down(adapter); } else { } pci_disable_device(pdev); return (3U); } } static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; int err ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; if (adapter->need_ioport != 0) { err = pci_enable_device(pdev); } else { err = pci_enable_device_mem(pdev); } if (err != 0) { printk("\ve1000: Cannot re-enable PCI device after reset.\n"); return (4U); } else { } pci_set_master(pdev); pci_enable_wake(pdev, 3, 0); pci_enable_wake(pdev, 4, 0); e1000_reset(adapter); writel(4294967295U, (void volatile *)hw->hw_addr + 22544U); return (5U); } } static void e1000_io_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; int tmp___1 ; bool tmp___2 ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; e1000_init_manageability(adapter); tmp___2 = netif_running((struct net_device const *)netdev); if ((int )tmp___2) { tmp___1 = e1000_up(adapter); if (tmp___1 != 0) { printk("\016e1000: can\'t bring device back up after reset\n"); return; } else { } } else { } netif_device_attach(netdev); return; } } extern int ldv_resume_early_9(void) ; int ldv_retval_2 ; int ldv_retval_5 ; int ldv_retval_0 ; int ldv_retval_6 ; int ldv_retval_1 ; extern void ldv_initialize(void) ; extern int ldv_ndo_uninit_8(void) ; extern int ldv_suspend_late_9(void) ; extern int ldv_release_10(void) ; extern int ldv_probe_10(void) ; extern int ldv_suspend_10(void) ; int ldv_retval_4 ; void ldv_check_final_state(void) ; int ldv_retval_3 ; int ldv_retval_7 ; extern int ldv_ndo_init_8(void) ; void activate_work_5(struct work_struct *work , int state ) { { if (ldv_work_5_0 == 0) { ldv_work_struct_5_0 = work; ldv_work_5_0 = state; return; } else { } if (ldv_work_5_1 == 0) { ldv_work_struct_5_1 = work; ldv_work_5_1 = state; return; } else { } if (ldv_work_5_2 == 0) { ldv_work_struct_5_2 = work; ldv_work_5_2 = state; return; } else { } if (ldv_work_5_3 == 0) { ldv_work_struct_5_3 = work; ldv_work_5_3 = state; return; } else { } return; } } void work_init_3(void) { { ldv_work_3_0 = 0; ldv_work_3_1 = 0; ldv_work_3_2 = 0; ldv_work_3_3 = 0; return; } } void activate_work_4(struct work_struct *work , int state ) { { if (ldv_work_4_0 == 0) { ldv_work_struct_4_0 = work; ldv_work_4_0 = state; return; } else { } if (ldv_work_4_1 == 0) { ldv_work_struct_4_1 = work; ldv_work_4_1 = state; return; } else { } if (ldv_work_4_2 == 0) { ldv_work_struct_4_2 = work; ldv_work_4_2 = state; return; } else { } if (ldv_work_4_3 == 0) { ldv_work_struct_4_3 = work; ldv_work_4_3 = state; return; } else { } return; } } void call_and_disable_all_5(int state ) { { if (ldv_work_5_0 == state) { call_and_disable_work_5(ldv_work_struct_5_0); } else { } if (ldv_work_5_1 == state) { call_and_disable_work_5(ldv_work_struct_5_1); } else { } if (ldv_work_5_2 == state) { call_and_disable_work_5(ldv_work_struct_5_2); } else { } if (ldv_work_5_3 == state) { call_and_disable_work_5(ldv_work_struct_5_3); } else { } return; } } void invoke_work_6(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_6_0 == 2 || ldv_work_6_0 == 3) { ldv_work_6_0 = 4; e1000_reset_task(ldv_work_struct_6_0); ldv_work_6_0 = 1; } else { } goto ldv_57124; case 1: ; if (ldv_work_6_1 == 2 || ldv_work_6_1 == 3) { ldv_work_6_1 = 4; e1000_reset_task(ldv_work_struct_6_0); ldv_work_6_1 = 1; } else { } goto ldv_57124; case 2: ; if (ldv_work_6_2 == 2 || ldv_work_6_2 == 3) { ldv_work_6_2 = 4; e1000_reset_task(ldv_work_struct_6_0); ldv_work_6_2 = 1; } else { } goto ldv_57124; case 3: ; if (ldv_work_6_3 == 2 || ldv_work_6_3 == 3) { ldv_work_6_3 = 4; e1000_reset_task(ldv_work_struct_6_0); ldv_work_6_3 = 1; } else { } goto ldv_57124; default: ldv_stop(); } ldv_57124: ; return; } } void activate_work_3(struct work_struct *work , int state ) { { if (ldv_work_3_0 == 0) { ldv_work_struct_3_0 = work; ldv_work_3_0 = state; return; } else { } if (ldv_work_3_1 == 0) { ldv_work_struct_3_1 = work; ldv_work_3_1 = state; return; } else { } if (ldv_work_3_2 == 0) { ldv_work_struct_3_2 = work; ldv_work_3_2 = state; return; } else { } if (ldv_work_3_3 == 0) { ldv_work_struct_3_3 = work; ldv_work_3_3 = state; return; } else { } return; } } void disable_work_6(struct work_struct *work ) { { if ((ldv_work_6_0 == 3 || ldv_work_6_0 == 2) && (unsigned long )ldv_work_struct_6_0 == (unsigned long )work) { ldv_work_6_0 = 1; } else { } if ((ldv_work_6_1 == 3 || ldv_work_6_1 == 2) && (unsigned long )ldv_work_struct_6_1 == (unsigned long )work) { ldv_work_6_1 = 1; } else { } if ((ldv_work_6_2 == 3 || ldv_work_6_2 == 2) && (unsigned long )ldv_work_struct_6_2 == (unsigned long )work) { ldv_work_6_2 = 1; } else { } if ((ldv_work_6_3 == 3 || ldv_work_6_3 == 2) && (unsigned long )ldv_work_struct_6_3 == (unsigned long )work) { ldv_work_6_3 = 1; } else { } return; } } void work_init_6(void) { { ldv_work_6_0 = 0; ldv_work_6_1 = 0; ldv_work_6_2 = 0; ldv_work_6_3 = 0; return; } } void work_init_5(void) { { ldv_work_5_0 = 0; ldv_work_5_1 = 0; ldv_work_5_2 = 0; ldv_work_5_3 = 0; return; } } void call_and_disable_all_4(int state ) { { if (ldv_work_4_0 == state) { call_and_disable_work_4(ldv_work_struct_4_0); } else { } if (ldv_work_4_1 == state) { call_and_disable_work_4(ldv_work_struct_4_1); } else { } if (ldv_work_4_2 == state) { call_and_disable_work_4(ldv_work_struct_4_2); } else { } if (ldv_work_4_3 == state) { call_and_disable_work_4(ldv_work_struct_4_3); } else { } return; } } void invoke_work_5(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_5_0 == 2 || ldv_work_5_0 == 3) { ldv_work_5_0 = 4; e1000_update_phy_info_task(ldv_work_struct_5_0); ldv_work_5_0 = 1; } else { } goto ldv_57151; case 1: ; if (ldv_work_5_1 == 2 || ldv_work_5_1 == 3) { ldv_work_5_1 = 4; e1000_update_phy_info_task(ldv_work_struct_5_0); ldv_work_5_1 = 1; } else { } goto ldv_57151; case 2: ; if (ldv_work_5_2 == 2 || ldv_work_5_2 == 3) { ldv_work_5_2 = 4; e1000_update_phy_info_task(ldv_work_struct_5_0); ldv_work_5_2 = 1; } else { } goto ldv_57151; case 3: ; if (ldv_work_5_3 == 2 || ldv_work_5_3 == 3) { ldv_work_5_3 = 4; e1000_update_phy_info_task(ldv_work_struct_5_0); ldv_work_5_3 = 1; } else { } goto ldv_57151; default: ldv_stop(); } ldv_57151: ; return; } } void ldv_initialize_pci_error_handlers_10(void) { { e1000_err_handler_group0 = ldv_malloc(sizeof(struct pci_dev)); return; } } void disable_work_5(struct work_struct *work ) { { if ((ldv_work_5_0 == 3 || ldv_work_5_0 == 2) && (unsigned long )ldv_work_struct_5_0 == (unsigned long )work) { ldv_work_5_0 = 1; } else { } if ((ldv_work_5_1 == 3 || ldv_work_5_1 == 2) && (unsigned long )ldv_work_struct_5_1 == (unsigned long )work) { ldv_work_5_1 = 1; } else { } if ((ldv_work_5_2 == 3 || ldv_work_5_2 == 2) && (unsigned long )ldv_work_struct_5_2 == (unsigned long )work) { ldv_work_5_2 = 1; } else { } if ((ldv_work_5_3 == 3 || ldv_work_5_3 == 2) && (unsigned long )ldv_work_struct_5_3 == (unsigned long )work) { ldv_work_5_3 = 1; } else { } return; } } void call_and_disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 2 || ldv_work_3_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_0) { e1000_watchdog(work); ldv_work_3_0 = 1; return; } else { } if ((ldv_work_3_1 == 2 || ldv_work_3_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_1) { e1000_watchdog(work); ldv_work_3_1 = 1; return; } else { } if ((ldv_work_3_2 == 2 || ldv_work_3_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_2) { e1000_watchdog(work); ldv_work_3_2 = 1; return; } else { } if ((ldv_work_3_3 == 2 || ldv_work_3_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_3) { e1000_watchdog(work); ldv_work_3_3 = 1; return; } else { } return; } } void disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 3 || ldv_work_3_0 == 2) && (unsigned long )ldv_work_struct_3_0 == (unsigned long )work) { ldv_work_3_0 = 1; } else { } if ((ldv_work_3_1 == 3 || ldv_work_3_1 == 2) && (unsigned long )ldv_work_struct_3_1 == (unsigned long )work) { ldv_work_3_1 = 1; } else { } if ((ldv_work_3_2 == 3 || ldv_work_3_2 == 2) && (unsigned long )ldv_work_struct_3_2 == (unsigned long )work) { ldv_work_3_2 = 1; } else { } if ((ldv_work_3_3 == 3 || ldv_work_3_3 == 2) && (unsigned long )ldv_work_struct_3_3 == (unsigned long )work) { ldv_work_3_3 = 1; } else { } return; } } void disable_work_4(struct work_struct *work ) { { if ((ldv_work_4_0 == 3 || ldv_work_4_0 == 2) && (unsigned long )ldv_work_struct_4_0 == (unsigned long )work) { ldv_work_4_0 = 1; } else { } if ((ldv_work_4_1 == 3 || ldv_work_4_1 == 2) && (unsigned long )ldv_work_struct_4_1 == (unsigned long )work) { ldv_work_4_1 = 1; } else { } if ((ldv_work_4_2 == 3 || ldv_work_4_2 == 2) && (unsigned long )ldv_work_struct_4_2 == (unsigned long )work) { ldv_work_4_2 = 1; } else { } if ((ldv_work_4_3 == 3 || ldv_work_4_3 == 2) && (unsigned long )ldv_work_struct_4_3 == (unsigned long )work) { ldv_work_4_3 = 1; } else { } return; } } void call_and_disable_all_6(int state ) { { if (ldv_work_6_0 == state) { call_and_disable_work_6(ldv_work_struct_6_0); } else { } if (ldv_work_6_1 == state) { call_and_disable_work_6(ldv_work_struct_6_1); } else { } if (ldv_work_6_2 == state) { call_and_disable_work_6(ldv_work_struct_6_2); } else { } if (ldv_work_6_3 == state) { call_and_disable_work_6(ldv_work_struct_6_3); } else { } return; } } void ldv_pci_driver_9(void) { void *tmp ; { tmp = ldv_init_zalloc(2976UL); e1000_driver_group1 = (struct pci_dev *)tmp; return; } } void work_init_4(void) { { ldv_work_4_0 = 0; ldv_work_4_1 = 0; ldv_work_4_2 = 0; ldv_work_4_3 = 0; return; } } void invoke_work_3(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_3_0 == 2 || ldv_work_3_0 == 3) { ldv_work_3_0 = 4; e1000_watchdog(ldv_work_struct_3_0); ldv_work_3_0 = 1; } else { } goto ldv_57188; case 1: ; if (ldv_work_3_1 == 2 || ldv_work_3_1 == 3) { ldv_work_3_1 = 4; e1000_watchdog(ldv_work_struct_3_0); ldv_work_3_1 = 1; } else { } goto ldv_57188; case 2: ; if (ldv_work_3_2 == 2 || ldv_work_3_2 == 3) { ldv_work_3_2 = 4; e1000_watchdog(ldv_work_struct_3_0); ldv_work_3_2 = 1; } else { } goto ldv_57188; case 3: ; if (ldv_work_3_3 == 2 || ldv_work_3_3 == 3) { ldv_work_3_3 = 4; e1000_watchdog(ldv_work_struct_3_0); ldv_work_3_3 = 1; } else { } goto ldv_57188; default: ldv_stop(); } ldv_57188: ; return; } } void ldv_net_device_ops_8(void) { void *tmp ; { tmp = ldv_init_zalloc(3008UL); e1000_netdev_ops_group1 = (struct net_device *)tmp; return; } } void invoke_work_4(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_4_0 == 2 || ldv_work_4_0 == 3) { ldv_work_4_0 = 4; e1000_82547_tx_fifo_stall_task(ldv_work_struct_4_0); ldv_work_4_0 = 1; } else { } goto ldv_57204; case 1: ; if (ldv_work_4_1 == 2 || ldv_work_4_1 == 3) { ldv_work_4_1 = 4; e1000_82547_tx_fifo_stall_task(ldv_work_struct_4_0); ldv_work_4_1 = 1; } else { } goto ldv_57204; case 2: ; if (ldv_work_4_2 == 2 || ldv_work_4_2 == 3) { ldv_work_4_2 = 4; e1000_82547_tx_fifo_stall_task(ldv_work_struct_4_0); ldv_work_4_2 = 1; } else { } goto ldv_57204; case 3: ; if (ldv_work_4_3 == 2 || ldv_work_4_3 == 3) { ldv_work_4_3 = 4; e1000_82547_tx_fifo_stall_task(ldv_work_struct_4_0); ldv_work_4_3 = 1; } else { } goto ldv_57204; default: ldv_stop(); } ldv_57204: ; return; } } void call_and_disable_work_5(struct work_struct *work ) { { if ((ldv_work_5_0 == 2 || ldv_work_5_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_5_0) { e1000_update_phy_info_task(work); ldv_work_5_0 = 1; return; } else { } if ((ldv_work_5_1 == 2 || ldv_work_5_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_5_1) { e1000_update_phy_info_task(work); ldv_work_5_1 = 1; return; } else { } if ((ldv_work_5_2 == 2 || ldv_work_5_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_5_2) { e1000_update_phy_info_task(work); ldv_work_5_2 = 1; return; } else { } if ((ldv_work_5_3 == 2 || ldv_work_5_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_5_3) { e1000_update_phy_info_task(work); ldv_work_5_3 = 1; return; } else { } return; } } void call_and_disable_all_3(int state ) { { if (ldv_work_3_0 == state) { call_and_disable_work_3(ldv_work_struct_3_0); } else { } if (ldv_work_3_1 == state) { call_and_disable_work_3(ldv_work_struct_3_1); } else { } if (ldv_work_3_2 == state) { call_and_disable_work_3(ldv_work_struct_3_2); } else { } if (ldv_work_3_3 == state) { call_and_disable_work_3(ldv_work_struct_3_3); } else { } return; } } void call_and_disable_work_6(struct work_struct *work ) { { if ((ldv_work_6_0 == 2 || ldv_work_6_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_6_0) { e1000_reset_task(work); ldv_work_6_0 = 1; return; } else { } if ((ldv_work_6_1 == 2 || ldv_work_6_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_6_1) { e1000_reset_task(work); ldv_work_6_1 = 1; return; } else { } if ((ldv_work_6_2 == 2 || ldv_work_6_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_6_2) { e1000_reset_task(work); ldv_work_6_2 = 1; return; } else { } if ((ldv_work_6_3 == 2 || ldv_work_6_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_6_3) { e1000_reset_task(work); ldv_work_6_3 = 1; return; } else { } return; } } void call_and_disable_work_4(struct work_struct *work ) { { if ((ldv_work_4_0 == 2 || ldv_work_4_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_0) { e1000_82547_tx_fifo_stall_task(work); ldv_work_4_0 = 1; return; } else { } if ((ldv_work_4_1 == 2 || ldv_work_4_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_1) { e1000_82547_tx_fifo_stall_task(work); ldv_work_4_1 = 1; return; } else { } if ((ldv_work_4_2 == 2 || ldv_work_4_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_2) { e1000_82547_tx_fifo_stall_task(work); ldv_work_4_2 = 1; return; } else { } if ((ldv_work_4_3 == 2 || ldv_work_4_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_3) { e1000_82547_tx_fifo_stall_task(work); ldv_work_4_3 = 1; return; } else { } return; } } void activate_work_6(struct work_struct *work , int state ) { { if (ldv_work_6_0 == 0) { ldv_work_struct_6_0 = work; ldv_work_6_0 = state; return; } else { } if (ldv_work_6_1 == 0) { ldv_work_struct_6_1 = work; ldv_work_6_1 = state; return; } else { } if (ldv_work_6_2 == 0) { ldv_work_struct_6_2 = work; ldv_work_6_2 = state; return; } else { } if (ldv_work_6_3 == 0) { ldv_work_struct_6_3 = work; ldv_work_6_3 = state; return; } else { } return; } } void ldv_main_exported_7(void) ; int main(void) { struct pci_device_id *ldvarg16 ; void *tmp ; pm_message_t ldvarg15 ; int ldvarg24 ; netdev_features_t ldvarg18 ; __be16 ldvarg27 ; u16 ldvarg26 ; int ldvarg20 ; __be16 ldvarg23 ; netdev_features_t ldvarg21 ; struct ifreq *ldvarg25 ; void *tmp___0 ; void *ldvarg17 ; void *tmp___1 ; u16 ldvarg22 ; struct sk_buff *ldvarg19 ; void *tmp___2 ; enum pci_channel_state ldvarg28 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { tmp = ldv_init_zalloc(32UL); ldvarg16 = (struct pci_device_id *)tmp; tmp___0 = ldv_init_zalloc(40UL); ldvarg25 = (struct ifreq *)tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg17 = tmp___1; tmp___2 = ldv_init_zalloc(232UL); ldvarg19 = (struct sk_buff *)tmp___2; ldv_initialize(); ldv_memset((void *)(& ldvarg15), 0, 4UL); ldv_memset((void *)(& ldvarg24), 0, 4UL); ldv_memset((void *)(& ldvarg18), 0, 8UL); ldv_memset((void *)(& ldvarg27), 0, 2UL); ldv_memset((void *)(& ldvarg26), 0, 2UL); ldv_memset((void *)(& ldvarg20), 0, 4UL); ldv_memset((void *)(& ldvarg23), 0, 2UL); ldv_memset((void *)(& ldvarg21), 0, 8UL); ldv_memset((void *)(& ldvarg22), 0, 2UL); ldv_memset((void *)(& ldvarg28), 0, 4UL); work_init_6(); ldv_state_variable_6 = 1; work_init_3(); ldv_state_variable_3 = 1; ldv_state_variable_7 = 0; ldv_state_variable_9 = 0; ldv_state_variable_2 = 1; ldv_state_variable_8 = 0; ldv_state_variable_1 = 1; work_init_4(); ldv_state_variable_4 = 1; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_10 = 0; work_init_5(); ldv_state_variable_5 = 1; ldv_57312: tmp___3 = __VERIFIER_nondet_int(); switch (tmp___3) { case 0: ; if (ldv_state_variable_6 != 0) { invoke_work_6(); } else { } goto ldv_57259; case 1: ; if (ldv_state_variable_3 != 0) { invoke_work_3(); } else { } goto ldv_57259; case 2: ; if (ldv_state_variable_7 != 0) { ldv_main_exported_7(); } else { } goto ldv_57259; case 3: ; if (ldv_state_variable_9 != 0) { tmp___4 = __VERIFIER_nondet_int(); switch (tmp___4) { case 0: ; if (ldv_state_variable_9 == 1) { ldv_retval_4 = e1000_probe(e1000_driver_group1, (struct pci_device_id const *)ldvarg16); if (ldv_retval_4 == 0) { ldv_state_variable_9 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_57264; case 1: ; if (ldv_state_variable_9 == 4) { e1000_shutdown(e1000_driver_group1); ldv_state_variable_9 = 4; } else { } if (ldv_state_variable_9 == 3) { e1000_shutdown(e1000_driver_group1); ldv_state_variable_9 = 3; } else { } if (ldv_state_variable_9 == 2) { e1000_shutdown(e1000_driver_group1); ldv_state_variable_9 = 2; } else { } if (ldv_state_variable_9 == 5) { e1000_shutdown(e1000_driver_group1); ldv_state_variable_9 = 5; } else { } goto ldv_57264; case 2: ; if (ldv_state_variable_9 == 2 && pci_counter == 0) { ldv_retval_3 = e1000_suspend(e1000_driver_group1, ldvarg15); if (ldv_retval_3 == 0) { ldv_state_variable_9 = 3; } else { } } else { } goto ldv_57264; case 3: ; if (ldv_state_variable_9 == 4) { e1000_remove(e1000_driver_group1); ldv_state_variable_9 = 1; } else { } if (ldv_state_variable_9 == 3) { e1000_remove(e1000_driver_group1); ldv_state_variable_9 = 1; } else { } if (ldv_state_variable_9 == 2) { e1000_remove(e1000_driver_group1); ldv_state_variable_9 = 1; } else { } if (ldv_state_variable_9 == 5) { e1000_remove(e1000_driver_group1); ldv_state_variable_9 = 1; } else { } goto ldv_57264; case 4: ; if (ldv_state_variable_9 == 4) { ldv_retval_2 = e1000_resume(e1000_driver_group1); if (ldv_retval_2 == 0) { ldv_state_variable_9 = 2; } else { } } else { } if (ldv_state_variable_9 == 3) { ldv_retval_2 = e1000_resume(e1000_driver_group1); if (ldv_retval_2 == 0) { ldv_state_variable_9 = 2; } else { } } else { } if (ldv_state_variable_9 == 5) { ldv_retval_2 = e1000_resume(e1000_driver_group1); if (ldv_retval_2 == 0) { ldv_state_variable_9 = 2; } else { } } else { } goto ldv_57264; case 5: ; if (ldv_state_variable_9 == 3) { ldv_retval_1 = ldv_suspend_late_9(); if (ldv_retval_1 == 0) { ldv_state_variable_9 = 4; } else { } } else { } goto ldv_57264; case 6: ; if (ldv_state_variable_9 == 4) { ldv_retval_0 = ldv_resume_early_9(); if (ldv_retval_0 == 0) { ldv_state_variable_9 = 5; } else { } } else { } if (ldv_state_variable_9 == 3) { ldv_retval_0 = ldv_resume_early_9(); if (ldv_retval_0 == 0) { ldv_state_variable_9 = 5; } else { } } else { } goto ldv_57264; default: ldv_stop(); } ldv_57264: ; } else { } goto ldv_57259; case 4: ; goto ldv_57259; case 5: ; if (ldv_state_variable_8 != 0) { tmp___5 = __VERIFIER_nondet_int(); switch (tmp___5) { case 0: ; if (ldv_state_variable_8 == 3) { e1000_close(e1000_netdev_ops_group1); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 1: ; if (ldv_state_variable_8 == 1) { e1000_set_rx_mode(e1000_netdev_ops_group1); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { e1000_set_rx_mode(e1000_netdev_ops_group1); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_set_rx_mode(e1000_netdev_ops_group1); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 2: ; if (ldv_state_variable_8 == 1) { eth_validate_addr(e1000_netdev_ops_group1); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { eth_validate_addr(e1000_netdev_ops_group1); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { eth_validate_addr(e1000_netdev_ops_group1); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 3: ; if (ldv_state_variable_8 == 1) { e1000_vlan_rx_kill_vid(e1000_netdev_ops_group1, (int )ldvarg27, (int )ldvarg26); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { e1000_vlan_rx_kill_vid(e1000_netdev_ops_group1, (int )ldvarg27, (int )ldvarg26); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_vlan_rx_kill_vid(e1000_netdev_ops_group1, (int )ldvarg27, (int )ldvarg26); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 4: ; if (ldv_state_variable_8 == 1) { e1000_ioctl(e1000_netdev_ops_group1, ldvarg25, ldvarg24); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { e1000_ioctl(e1000_netdev_ops_group1, ldvarg25, ldvarg24); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_ioctl(e1000_netdev_ops_group1, ldvarg25, ldvarg24); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 5: ; if (ldv_state_variable_8 == 1) { e1000_vlan_rx_add_vid(e1000_netdev_ops_group1, (int )ldvarg23, (int )ldvarg22); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { e1000_vlan_rx_add_vid(e1000_netdev_ops_group1, (int )ldvarg23, (int )ldvarg22); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_vlan_rx_add_vid(e1000_netdev_ops_group1, (int )ldvarg23, (int )ldvarg22); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 6: ; if (ldv_state_variable_8 == 1) { e1000_netpoll(e1000_netdev_ops_group1); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { e1000_netpoll(e1000_netdev_ops_group1); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_netpoll(e1000_netdev_ops_group1); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 7: ; if (ldv_state_variable_8 == 1) { e1000_get_stats(e1000_netdev_ops_group1); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { e1000_get_stats(e1000_netdev_ops_group1); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_get_stats(e1000_netdev_ops_group1); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 8: ; if (ldv_state_variable_8 == 1) { e1000_set_features(e1000_netdev_ops_group1, ldvarg21); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { e1000_set_features(e1000_netdev_ops_group1, ldvarg21); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_set_features(e1000_netdev_ops_group1, ldvarg21); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 9: ; if (ldv_state_variable_8 == 3) { e1000_change_mtu(e1000_netdev_ops_group1, ldvarg20); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_change_mtu(e1000_netdev_ops_group1, ldvarg20); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 10: ; if (ldv_state_variable_8 == 2) { ldv_retval_6 = e1000_open(e1000_netdev_ops_group1); if (ldv_retval_6 == 0) { ldv_state_variable_8 = 3; } else { } } else { } goto ldv_57275; case 11: ; if (ldv_state_variable_8 == 3) { e1000_xmit_frame(ldvarg19, e1000_netdev_ops_group1); ldv_state_variable_8 = 3; } else { } goto ldv_57275; case 12: ; if (ldv_state_variable_8 == 1) { e1000_fix_features(e1000_netdev_ops_group1, ldvarg18); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { e1000_fix_features(e1000_netdev_ops_group1, ldvarg18); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_fix_features(e1000_netdev_ops_group1, ldvarg18); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 13: ; if (ldv_state_variable_8 == 1) { e1000_set_mac(e1000_netdev_ops_group1, ldvarg17); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { e1000_set_mac(e1000_netdev_ops_group1, ldvarg17); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_set_mac(e1000_netdev_ops_group1, ldvarg17); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 14: ; if (ldv_state_variable_8 == 1) { e1000_tx_timeout(e1000_netdev_ops_group1); ldv_state_variable_8 = 1; } else { } if (ldv_state_variable_8 == 3) { e1000_tx_timeout(e1000_netdev_ops_group1); ldv_state_variable_8 = 3; } else { } if (ldv_state_variable_8 == 2) { e1000_tx_timeout(e1000_netdev_ops_group1); ldv_state_variable_8 = 2; } else { } goto ldv_57275; case 15: ; if (ldv_state_variable_8 == 1) { ldv_retval_5 = ldv_ndo_init_8(); if (ldv_retval_5 == 0) { ldv_state_variable_8 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_57275; case 16: ; if (ldv_state_variable_8 == 2) { ldv_ndo_uninit_8(); ldv_state_variable_8 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_57275; default: ldv_stop(); } ldv_57275: ; } else { } goto ldv_57259; case 6: ; goto ldv_57259; case 7: ; if (ldv_state_variable_4 != 0) { invoke_work_4(); } else { } goto ldv_57259; case 8: ; if (ldv_state_variable_0 != 0) { tmp___6 = __VERIFIER_nondet_int(); switch (tmp___6) { case 0: ; if (ldv_state_variable_0 == 2 && ref_cnt == 0) { e1000_exit_module(); ldv_state_variable_0 = 3; goto ldv_final; } else { } goto ldv_57298; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_7 = e1000_init_module(); if (ldv_retval_7 != 0) { ldv_state_variable_0 = 3; goto ldv_final; } else { } if (ldv_retval_7 == 0) { ldv_state_variable_0 = 2; ldv_state_variable_10 = 1; ldv_initialize_pci_error_handlers_10(); ldv_state_variable_7 = 1; ldv_initialize_ethtool_ops_7(); } else { } } else { } goto ldv_57298; default: ldv_stop(); } ldv_57298: ; } else { } goto ldv_57259; case 9: ; if (ldv_state_variable_10 != 0) { tmp___7 = __VERIFIER_nondet_int(); switch (tmp___7) { case 0: ; if (ldv_state_variable_10 == 1) { e1000_io_slot_reset(e1000_err_handler_group0); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 3) { e1000_io_slot_reset(e1000_err_handler_group0); ldv_state_variable_10 = 3; } else { } if (ldv_state_variable_10 == 2) { e1000_io_slot_reset(e1000_err_handler_group0); ldv_state_variable_10 = 2; } else { } goto ldv_57303; case 1: ; if (ldv_state_variable_10 == 1) { e1000_io_error_detected(e1000_err_handler_group0, (pci_channel_state_t )ldvarg28); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 3) { e1000_io_error_detected(e1000_err_handler_group0, (pci_channel_state_t )ldvarg28); ldv_state_variable_10 = 3; } else { } if (ldv_state_variable_10 == 2) { e1000_io_error_detected(e1000_err_handler_group0, (pci_channel_state_t )ldvarg28); ldv_state_variable_10 = 2; } else { } goto ldv_57303; case 2: ; if (ldv_state_variable_10 == 3) { e1000_io_resume(e1000_err_handler_group0); ldv_state_variable_10 = 2; } else { } goto ldv_57303; case 3: ; if (ldv_state_variable_10 == 2) { ldv_suspend_10(); ldv_state_variable_10 = 3; } else { } goto ldv_57303; case 4: ; if (ldv_state_variable_10 == 3) { ldv_release_10(); ldv_state_variable_10 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_10 == 2) { ldv_release_10(); ldv_state_variable_10 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_57303; case 5: ; if (ldv_state_variable_10 == 1) { ldv_probe_10(); ldv_state_variable_10 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_57303; default: ldv_stop(); } ldv_57303: ; } else { } goto ldv_57259; case 10: ; if (ldv_state_variable_5 != 0) { invoke_work_5(); } else { } goto ldv_57259; default: ldv_stop(); } ldv_57259: ; goto ldv_57312; ldv_final: ldv_check_final_state(); return 0; } } bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_6(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_6(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_6(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_6(2); return; } } bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_6(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv___pci_register_driver_17(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; ldv_state_variable_9 = 1; ldv_pci_driver_9(); return (ldv_func_res); } } void ldv_pci_unregister_driver_18(struct pci_driver *ldv_func_arg1 ) { { pci_unregister_driver(ldv_func_arg1); ldv_state_variable_9 = 0; return; } } __inline static int ldv_request_irq_19(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = reg_check_2(handler); if (tmp___0 != 0 && ldv_func_res == 0) { activate_suitable_irq_2((int )irq, dev); } else { } return (ldv_func_res); } } void ldv_free_irq_20(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_2((int )ldv_func_arg1, ldv_func_arg2); return; } } bool ldv_cancel_delayed_work_sync_21(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_6(& ldv_func_arg1->work); return (ldv_func_res); } } bool ldv_cancel_delayed_work_sync_22(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___7 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_6(& ldv_func_arg1->work); return (ldv_func_res); } } bool ldv_cancel_delayed_work_sync_23(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_6(& ldv_func_arg1->work); return (ldv_func_res); } } bool ldv_cancel_work_sync_24(struct work_struct *ldv_func_arg1 ) { ldv_func_ret_type___9 ldv_func_res ; bool tmp ; { tmp = cancel_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_6(ldv_func_arg1); return (ldv_func_res); } } int ldv_register_netdev_25(struct net_device *dev ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; { tmp = register_netdev(dev); ldv_func_res = tmp; ldv_state_variable_8 = 1; ldv_net_device_ops_8(); return (ldv_func_res); } } void ldv_free_netdev_26(struct net_device *dev ) { { free_netdev(dev); ldv_state_variable_8 = 0; return; } } void ldv_unregister_netdev_27(struct net_device *dev ) { { unregister_netdev(dev); ldv_state_variable_8 = 0; return; } } void ldv_free_netdev_28(struct net_device *dev ) { { free_netdev(dev); ldv_state_variable_8 = 0; return; } } __inline static long ldv__builtin_expect(long exp , long c ) ; int ldv_mutex_trylock_65(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_63(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_66(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_67(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_62(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_64(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_68(struct mutex *ldv_func_arg1 ) ; bool ldv_queue_work_on_57(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_59(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_58(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_61(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_60(struct workqueue_struct *ldv_func_arg1 ) ; __inline static void *phys_to_virt(phys_addr_t address ) { { return ((void *)((unsigned long )address + 0xffff880000000000UL)); } } extern void ioread16_rep(void * , void * , unsigned long ) ; extern void iowrite16_rep(void * , void const * , unsigned long ) ; extern void __udelay(unsigned long ) ; s32 e1000_setup_link(struct e1000_hw *hw ) ; s32 e1000_force_mac_fc(struct e1000_hw *hw ) ; s32 e1000_validate_mdi_setting(struct e1000_hw *hw ) ; s32 e1000_update_eeprom_checksum(struct e1000_hw *hw ) ; s32 e1000_write_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; s32 e1000_setup_led(struct e1000_hw *hw ) ; s32 e1000_cleanup_led(struct e1000_hw *hw ) ; s32 e1000_led_on(struct e1000_hw *hw ) ; s32 e1000_led_off(struct e1000_hw *hw ) ; static s32 e1000_check_downshift(struct e1000_hw *hw ) ; static s32 e1000_check_polarity(struct e1000_hw *hw , e1000_rev_polarity *polarity ) ; static void e1000_clear_hw_cntrs(struct e1000_hw *hw ) ; static void e1000_clear_vfta(struct e1000_hw *hw ) ; static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw , bool link_up ) ; static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw ) ; static s32 e1000_detect_gig_phy(struct e1000_hw *hw ) ; static s32 e1000_get_auto_rd_done(struct e1000_hw *hw ) ; static s32 e1000_get_cable_length(struct e1000_hw *hw , u16 *min_length , u16 *max_length ) ; static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw ) ; static s32 e1000_id_led_init(struct e1000_hw *hw ) ; static void e1000_init_rx_addrs(struct e1000_hw *hw ) ; static s32 e1000_phy_igp_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) ; static s32 e1000_phy_m88_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) ; static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw , bool active ) ; static s32 e1000_wait_autoneg(struct e1000_hw *hw ) ; static void e1000_write_reg_io(struct e1000_hw *hw , u32 offset , u32 value ) ; static s32 e1000_set_phy_type(struct e1000_hw *hw ) ; static void e1000_phy_init_script(struct e1000_hw *hw ) ; static s32 e1000_setup_copper_link(struct e1000_hw *hw ) ; static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw ) ; static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw ) ; static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw ) ; static s32 e1000_config_mac_to_phy(struct e1000_hw *hw ) ; static void e1000_raise_mdi_clk(struct e1000_hw *hw , u32 *ctrl ) ; static void e1000_lower_mdi_clk(struct e1000_hw *hw , u32 *ctrl ) ; static void e1000_shift_out_mdi_bits(struct e1000_hw *hw , u32 data , u16 count ) ; static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw ) ; static s32 e1000_phy_reset_dsp(struct e1000_hw *hw ) ; static s32 e1000_write_eeprom_spi(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw ) ; static void e1000_raise_ee_clk(struct e1000_hw *hw , u32 *eecd ) ; static void e1000_lower_ee_clk(struct e1000_hw *hw , u32 *eecd ) ; static void e1000_shift_out_ee_bits(struct e1000_hw *hw , u16 data , u16 count ) ; static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw , u32 reg_addr , u16 phy_data ) ; static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw , u32 reg_addr , u16 *phy_data ) ; static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw , u16 count ) ; static s32 e1000_acquire_eeprom(struct e1000_hw *hw ) ; static void e1000_release_eeprom(struct e1000_hw *hw ) ; static void e1000_standby_eeprom(struct e1000_hw *hw ) ; static s32 e1000_set_vco_speed(struct e1000_hw *hw ) ; static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw ) ; static s32 e1000_set_phy_mode(struct e1000_hw *hw ) ; static s32 e1000_do_read_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; static s32 e1000_do_write_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; static u16 const e1000_igp_cable_length_table[128U] = { 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 10U, 10U, 10U, 10U, 10U, 10U, 10U, 20U, 20U, 20U, 20U, 20U, 25U, 25U, 25U, 25U, 25U, 25U, 25U, 30U, 30U, 30U, 30U, 40U, 40U, 40U, 40U, 40U, 40U, 40U, 40U, 40U, 50U, 50U, 50U, 50U, 50U, 50U, 50U, 60U, 60U, 60U, 60U, 60U, 60U, 60U, 60U, 60U, 70U, 70U, 70U, 70U, 70U, 70U, 80U, 80U, 80U, 80U, 80U, 80U, 90U, 90U, 90U, 90U, 90U, 90U, 90U, 90U, 90U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 120U, 120U, 120U, 120U, 120U, 120U, 120U, 120U, 120U, 120U}; static spinlock_t e1000_eeprom_lock = {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "e1000_eeprom_lock", 0, 0UL}}}}; static spinlock_t e1000_phy_lock = {{{{{0}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "e1000_phy_lock", 0, 0UL}}}}; static s32 e1000_set_phy_type(struct e1000_hw *hw ) { { if ((unsigned int )hw->mac_type == 0U) { return (-6); } else { } switch (hw->phy_id) { case 21040208U: ; case 21040176U: ; case 21040160U: ; case 21040320U: ; case 21040704U: hw->phy_type = 0; goto ldv_54019; case 44565376U: ; if ((((unsigned int )hw->mac_type == 11U || (unsigned int )hw->mac_type == 12U) || (unsigned int )hw->mac_type == 13U) || (unsigned int )hw->mac_type == 14U) { hw->phy_type = 1; } else { } goto ldv_54019; case 1886480U: hw->phy_type = 2; goto ldv_54019; case 33280U: hw->phy_type = 3; goto ldv_54019; default: hw->phy_type = 255; return (-6); } ldv_54019: ; return (0); } } static void e1000_phy_init_script(struct e1000_hw *hw ) { u32 ret_val ; u16 phy_saved_data ; s32 tmp ; u16 fused ; u16 fine ; u16 coarse ; { if (hw->phy_init_script != 0U) { msleep(20U); tmp = e1000_read_phy_reg(hw, 12123U, & phy_saved_data); ret_val = (u32 )tmp; e1000_write_phy_reg(hw, 12123U, 3); msleep(20U); e1000_write_phy_reg(hw, 0U, 320); msleep(5U); switch ((unsigned int )hw->mac_type) { case 11U: ; case 13U: e1000_write_phy_reg(hw, 8085U, 1); e1000_write_phy_reg(hw, 8049U, 48417); e1000_write_phy_reg(hw, 8057U, 24); e1000_write_phy_reg(hw, 7984U, 5632); e1000_write_phy_reg(hw, 7985U, 20); e1000_write_phy_reg(hw, 7986U, 5660); e1000_write_phy_reg(hw, 8084U, 3); e1000_write_phy_reg(hw, 8086U, 63); e1000_write_phy_reg(hw, 8208U, 8); goto ldv_54031; case 12U: ; case 14U: e1000_write_phy_reg(hw, 8051U, 153); goto ldv_54031; default: ; goto ldv_54031; } ldv_54031: e1000_write_phy_reg(hw, 0U, 13056); msleep(20U); e1000_write_phy_reg(hw, 12123U, (int )phy_saved_data); if ((unsigned int )hw->mac_type == 13U) { e1000_read_phy_reg(hw, 8401U, & fused); if (((int )fused & 256) == 0) { e1000_read_phy_reg(hw, 8400U, & fused); fine = (unsigned int )fused & 3968U; coarse = (unsigned int )fused & 112U; if ((unsigned int )coarse > 64U) { coarse = (unsigned int )coarse + 65520U; fine = (unsigned int )fine + 65408U; } else if ((unsigned int )coarse == 64U) { fine = (unsigned int )fine + 64256U; } else { } fused = (u16 )((((int )((short )fused) & -4096) | ((int )((short )fine) & 3968)) | ((int )((short )coarse) & 112)); e1000_write_phy_reg(hw, 8412U, (int )fused); e1000_write_phy_reg(hw, 8414U, 2); } else { } } else { } } else { } return; } } s32 e1000_set_mac_type(struct e1000_hw *hw ) { { switch ((int )hw->device_id) { case 4096: ; switch ((int )hw->revision_id) { case 2: hw->mac_type = 1; goto ldv_54043; case 3: hw->mac_type = 2; goto ldv_54043; default: ; return (-5); } ldv_54043: ; goto ldv_54046; case 4097: ; case 4100: hw->mac_type = 3; goto ldv_54046; case 4104: ; case 4105: ; case 4108: ; case 4109: hw->mac_type = 4; goto ldv_54046; case 4110: ; case 4117: ; case 4119: ; case 4118: ; case 4126: hw->mac_type = 5; goto ldv_54046; case 4111: ; case 4113: hw->mac_type = 6; goto ldv_54046; case 4134: ; case 4135: ; case 4136: hw->mac_type = 7; goto ldv_54046; case 4112: ; case 4114: ; case 4125: hw->mac_type = 8; goto ldv_54046; case 4217: ; case 4218: ; case 4219: ; case 4234: ; case 4249: ; case 4277: hw->mac_type = 10; goto ldv_54046; case 4115: ; case 4120: ; case 4116: hw->mac_type = 11; goto ldv_54046; case 4216: ; case 4214: ; case 4220: ; case 4215: hw->mac_type = 12; goto ldv_54046; case 4121: ; case 4122: hw->mac_type = 13; goto ldv_54046; case 4213: hw->mac_type = 14; goto ldv_54046; case 11886: hw->mac_type = 9; goto ldv_54046; default: ; return (-5); } ldv_54046: ; switch ((unsigned int )hw->mac_type) { case 11U: ; case 13U: ; case 12U: ; case 14U: hw->asf_firmware_present = 1U; goto ldv_54088; default: ; goto ldv_54088; } ldv_54088: ; if ((unsigned int )hw->mac_type == 3U) { hw->bad_tx_carr_stats_fd = 1; } else { } if ((unsigned int )hw->mac_type > 4U) { hw->has_smbus = 1; } else { } return (0); } } void e1000_set_media_type(struct e1000_hw *hw ) { u32 status ; { if ((unsigned int )hw->mac_type != 3U) { hw->tbi_compatibility_en = 0; } else { } switch ((int )hw->device_id) { case 4136: ; case 4219: hw->media_type = 2; goto ldv_54096; default: ; switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: hw->media_type = 1; goto ldv_54100; case 9U: hw->media_type = 0; goto ldv_54100; default: status = readl((void const volatile *)hw->hw_addr + 8U); if ((status & 32U) != 0U) { hw->media_type = 1; hw->tbi_compatibility_en = 0; } else { hw->media_type = 0; } goto ldv_54100; } ldv_54100: ; } ldv_54096: ; return; } } s32 e1000_reset_hw(struct e1000_hw *hw ) { u32 ctrl ; u32 ctrl_ext ; u32 icr ; u32 manc ; u32 led_ctrl ; s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; { if ((unsigned int )hw->mac_type == 1U) { descriptor.modname = "e1000"; descriptor.function = "e1000_reset_hw"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Disabling MWI on 82542 rev 2.0\n"; descriptor.lineno = 412U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Disabling MWI on 82542 rev 2.0\n"); } else { } e1000_pci_clear_mwi(hw); } else { } descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_reset_hw"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Masking off all interrupts\n"; descriptor___0.lineno = 417U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Masking off all interrupts\n"); } else { } writel(4294967295U, (void volatile *)hw->hw_addr + 216U); writel(0U, (void volatile *)hw->hw_addr + 256U); writel(8U, (void volatile *)hw->hw_addr + 1024U); readl((void const volatile *)hw->hw_addr + 8U); hw->tbi_compatibility_on = 0; msleep(10U); ctrl = readl((void const volatile *)hw->hw_addr); if ((unsigned int )hw->mac_type == 11U || (unsigned int )hw->mac_type == 13U) { writel(ctrl | 2147483648U, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); msleep(5U); } else { } descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_reset_hw"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Issuing a global reset to MAC\n"; descriptor___1.lineno = 450U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Issuing a global reset to MAC\n"); } else { } switch ((unsigned int )hw->mac_type) { case 4U: ; case 5U: ; case 6U: ; case 8U: ; case 11U: ; case 12U: e1000_write_reg_io(hw, 0U, ctrl | 67108864U); goto ldv_54122; case 7U: ; case 10U: writel(ctrl | 67108864U, (void volatile *)hw->hw_addr + 4U); goto ldv_54122; case 9U: ; default: writel(ctrl | 67108864U, (void volatile *)hw->hw_addr); goto ldv_54122; } ldv_54122: ; switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: ; case 3U: ; case 4U: __const_udelay(42950UL); ctrl_ext = readl((void const volatile *)hw->hw_addr + 24U); ctrl_ext = ctrl_ext | 8192U; writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); readl((void const volatile *)hw->hw_addr + 8U); msleep(2U); goto ldv_54131; case 11U: ; case 12U: ; case 13U: ; case 14U: msleep(20U); goto ldv_54131; default: ret_val = e1000_get_auto_rd_done(hw); if (ret_val != 0) { return (ret_val); } else { } goto ldv_54131; } ldv_54131: ; if ((unsigned int )hw->mac_type > 4U) { manc = readl((void const volatile *)hw->hw_addr + 22560U); manc = manc & 4294959103U; writel(manc, (void volatile *)hw->hw_addr + 22560U); } else { } if ((unsigned int )hw->mac_type == 11U || (unsigned int )hw->mac_type == 13U) { e1000_phy_init_script(hw); led_ctrl = readl((void const volatile *)hw->hw_addr + 3584U); led_ctrl = led_ctrl & 4294963455U; led_ctrl = led_ctrl | 117441280U; writel(led_ctrl, (void volatile *)hw->hw_addr + 3584U); } else { } descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_reset_hw"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Masking off all interrupts\n"; descriptor___2.lineno = 526U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Masking off all interrupts\n"); } else { } writel(4294967295U, (void volatile *)hw->hw_addr + 216U); icr = readl((void const volatile *)hw->hw_addr + 192U); if ((unsigned int )hw->mac_type == 1U) { if (((int )hw->pci_cmd_word & 16) != 0) { e1000_pci_set_mwi(hw); } else { } } else { } return (0); } } s32 e1000_init_hw(struct e1000_hw *hw ) { u32 ctrl ; u32 i ; s32 ret_val ; u32 mta_size ; u32 ctrl_ext ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; int tmp___7 ; { ret_val = e1000_id_led_init(hw); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_init_hw"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Error Initializing Identification LED\n"; descriptor.lineno = 562U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Error Initializing Identification LED\n"); } else { } return (ret_val); } else { } e1000_set_media_type(hw); descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_init_hw"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Initializing the IEEE VLAN\n"; descriptor___0.lineno = 570U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Initializing the IEEE VLAN\n"); } else { } if ((unsigned int )hw->mac_type <= 6U) { writel(0U, (void volatile *)hw->hw_addr + 56U); } else { } e1000_clear_vfta(hw); if ((unsigned int )hw->mac_type == 1U) { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_init_hw"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Disabling MWI on 82542 rev 2.0\n"; descriptor___1.lineno = 577U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Disabling MWI on 82542 rev 2.0\n"); } else { } e1000_pci_clear_mwi(hw); writel(1U, (void volatile *)hw->hw_addr + 256U); readl((void const volatile *)hw->hw_addr + 8U); msleep(5U); } else { } e1000_init_rx_addrs(hw); if ((unsigned int )hw->mac_type == 1U) { writel(0U, (void volatile *)hw->hw_addr + 256U); readl((void const volatile *)hw->hw_addr + 8U); msleep(1U); if (((int )hw->pci_cmd_word & 16) != 0) { e1000_pci_set_mwi(hw); } else { } } else { } descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_init_hw"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Zeroing the MTA\n"; descriptor___2.lineno = 599U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Zeroing the MTA\n"); } else { } mta_size = 128U; i = 0U; goto ldv_54152; ldv_54151: writel(0U, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 20992U : 512U) + (unsigned long )(i << 2)))); readl((void const volatile *)hw->hw_addr + 8U); i = i + 1U; ldv_54152: ; if (i < mta_size) { goto ldv_54151; } else { } if ((unsigned int )hw->dma_fairness != 0U && (unsigned int )hw->mac_type <= 3U) { ctrl = readl((void const volatile *)hw->hw_addr); writel(ctrl | 4U, (void volatile *)hw->hw_addr); } else { } switch ((unsigned int )hw->mac_type) { case 7U: ; case 10U: ; goto ldv_54156; default: ; if ((unsigned int )hw->bus_type == 2U) { tmp___7 = e1000_pcix_get_mmrbc(hw); if (tmp___7 > 2048) { e1000_pcix_set_mmrbc(hw, 2048); } else { } } else { } goto ldv_54156; } ldv_54156: ret_val = e1000_setup_link(hw); if ((unsigned int )hw->mac_type > 4U) { ctrl = readl((void const volatile *)hw->hw_addr + 14376U); ctrl = (ctrl & 4274061311U) | 16842752U; writel(ctrl, (void volatile *)hw->hw_addr + 14376U); } else { } e1000_clear_hw_cntrs(hw); if ((unsigned int )hw->device_id == 4249U || (unsigned int )hw->device_id == 4277U) { ctrl_ext = readl((void const volatile *)hw->hw_addr + 24U); ctrl_ext = ctrl_ext | 131072U; writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); } else { } return (ret_val); } } static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw ) { u16 eeprom_data ; s32 ret_val ; { if ((unsigned int )hw->media_type != 2U) { return (0); } else { } switch ((unsigned int )hw->mac_type) { case 7U: ; case 10U: ; goto ldv_54165; default: ; return (0); } ldv_54165: ret_val = e1000_read_eeprom(hw, 6, 1, & eeprom_data); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )eeprom_data != 65535U) { eeprom_data = (unsigned int )eeprom_data & 15U; ret_val = e1000_write_phy_reg(hw, 26U, (int )eeprom_data); if (ret_val != 0) { return (ret_val); } else { } } else { } return (0); } } s32 e1000_setup_link(struct e1000_hw *hw ) { u32 ctrl_ext ; s32 ret_val ; u16 eeprom_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; s32 tmp___5 ; s32 tmp___6 ; struct _ddebug descriptor___2 ; struct net_device *tmp___7 ; long tmp___8 ; { if ((unsigned int )hw->fc == 255U) { ret_val = e1000_read_eeprom(hw, 15, 1, & eeprom_data); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_setup_link"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "EEPROM Read Error\n"; descriptor.lineno = 731U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "EEPROM Read Error\n"); } else { } return (-1); } else { } if (((int )eeprom_data & 12288) == 0) { hw->fc = 0; } else if (((int )eeprom_data & 12288) == 8192) { hw->fc = 2; } else { hw->fc = 3; } } else { } if ((unsigned int )hw->mac_type == 1U) { hw->fc = (e1000_fc_type )((unsigned int )hw->fc & 4294967293U); } else { } if ((unsigned int )hw->mac_type <= 2U && (int )hw->report_tx_early) { hw->fc = (e1000_fc_type )((unsigned int )hw->fc & 4294967294U); } else { } hw->original_fc = (u32 )hw->fc; descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_setup_link"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "After fix-ups FlowControl is now = %x\n"; descriptor___0.lineno = 755U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "After fix-ups FlowControl is now = %x\n", (unsigned int )hw->fc); } else { } if ((unsigned int )hw->mac_type == 3U) { ret_val = e1000_read_eeprom(hw, 15, 1, & eeprom_data); if (ret_val != 0) { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_setup_link"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "EEPROM Read Error\n"; descriptor___1.lineno = 768U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "EEPROM Read Error\n"); } else { } return (-1); } else { } ctrl_ext = (u32 )(((int )eeprom_data & 240) << 4); writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); } else { } if ((unsigned int )hw->media_type == 0U) { tmp___5 = e1000_setup_copper_link(hw); ret_val = tmp___5; } else { tmp___6 = e1000_setup_fiber_serdes_link(hw); ret_val = tmp___6; } descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_setup_link"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Initializing the Flow Control address, type and timer regs\n"; descriptor___2.lineno = 785U; descriptor___2.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___8 != 0L) { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___7, "Initializing the Flow Control address, type and timer regs\n"); } else { } writel(34824U, (void volatile *)hw->hw_addr + 48U); writel(256U, (void volatile *)hw->hw_addr + 44U); writel(12746753U, (void volatile *)hw->hw_addr + 40U); writel((unsigned int )hw->fc_pause_time, (void volatile *)hw->hw_addr + 368U); if (((unsigned int )hw->fc & 2U) == 0U) { writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8544UL : 360UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8552UL : 352UL))); } else if ((int )hw->fc_send_xon) { writel((unsigned int )hw->fc_low_water | 2147483648U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8544UL : 360UL))); writel((unsigned int )hw->fc_high_water, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8552UL : 352UL))); } else { writel((unsigned int )hw->fc_low_water, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8544UL : 360UL))); writel((unsigned int )hw->fc_high_water, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8552UL : 352UL))); } return (ret_val); } } static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw ) { u32 ctrl ; u32 status ; u32 txcw ; u32 i ; u32 signal ; s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; struct _ddebug descriptor___5 ; struct net_device *tmp___11 ; long tmp___12 ; unsigned int tmp___13 ; { txcw = 0U; signal = 0U; ctrl = readl((void const volatile *)hw->hw_addr); if ((unsigned int )hw->media_type == 1U) { signal = (unsigned int )hw->mac_type > 4U ? 524288U : 0U; } else { } ret_val = e1000_adjust_serdes_amplitude(hw); if (ret_val != 0) { return (ret_val); } else { } ctrl = ctrl & 4294967287U; ret_val = e1000_set_vco_speed(hw); if (ret_val != 0) { return (ret_val); } else { } e1000_config_collision_dist(hw); switch ((unsigned int )hw->fc) { case 0U: txcw = 2147483680U; goto ldv_54188; case 1U: txcw = 2147484064U; goto ldv_54188; case 2U: txcw = 2147483936U; goto ldv_54188; case 3U: txcw = 2147484064U; goto ldv_54188; default: descriptor.modname = "e1000"; descriptor.function = "e1000_setup_fiber_serdes_link"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Flow control param set incorrectly\n"; descriptor.lineno = 903U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Flow control param set incorrectly\n"); } else { } return (-3); } ldv_54188: descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_setup_fiber_serdes_link"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Auto-negotiation enabled\n"; descriptor___0.lineno = 913U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Auto-negotiation enabled\n"); } else { } writel(txcw, (void volatile *)hw->hw_addr + 376U); writel(ctrl, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); hw->txcw = txcw; msleep(1U); if ((unsigned int )hw->media_type == 2U) { goto _L; } else { tmp___13 = readl((void const volatile *)hw->hw_addr); if ((tmp___13 & 524288U) == signal) { _L: /* CIL Label */ descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_setup_fiber_serdes_link"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Looking for Link\n"; descriptor___1.lineno = 931U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Looking for Link\n"); } else { } i = 0U; goto ldv_54199; ldv_54198: msleep(10U); status = readl((void const volatile *)hw->hw_addr + 8U); if ((status & 2U) != 0U) { goto ldv_54197; } else { } i = i + 1U; ldv_54199: ; if (i <= 49U) { goto ldv_54198; } else { } ldv_54197: ; if (i == 50U) { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_setup_fiber_serdes_link"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Never got a valid link from auto-neg!!!\n"; descriptor___2.lineno = 939U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Never got a valid link from auto-neg!!!\n"); } else { } hw->autoneg_failed = 1U; ret_val = e1000_check_for_link(hw); if (ret_val != 0) { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_setup_fiber_serdes_link"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Error while checking for link\n"; descriptor___3.lineno = 948U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___8 != 0L) { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Error while checking for link\n"); } else { } return (ret_val); } else { } hw->autoneg_failed = 0U; } else { hw->autoneg_failed = 0U; descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_setup_fiber_serdes_link"; descriptor___4.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "Valid Link Found\n"; descriptor___4.lineno = 954U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___10 != 0L) { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "Valid Link Found\n"); } else { } } } else { descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_setup_fiber_serdes_link"; descriptor___5.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "No Signal Detected\n"; descriptor___5.lineno = 957U; descriptor___5.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___12 != 0L) { tmp___11 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___11, "No Signal Detected\n"); } else { } } } return (0); } } static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw ) { s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { ret_val = e1000_phy_reset(hw); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_rtl_setup"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Error Resetting the PHY\n"; descriptor.lineno = 975U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Error Resetting the PHY\n"); } else { } return (ret_val); } else { } return (0); } } static s32 gbe_dhg_phy_setup(struct e1000_hw *hw ) { s32 ret_val ; u32 ctrl_aux ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; { switch ((unsigned int )hw->phy_type) { case 2U: ret_val = e1000_copper_link_rtl_setup(hw); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "gbe_dhg_phy_setup"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_copper_link_rtl_setup failed!\n"; descriptor.lineno = 991U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_copper_link_rtl_setup failed!\n"); } else { } return (ret_val); } else { } goto ldv_54218; case 3U: ctrl_aux = readl((void const volatile *)hw->hw_addr + 224U); ctrl_aux = ctrl_aux | 1U; writel(ctrl_aux, (void volatile *)hw->hw_addr + 224U); readl((void const volatile *)hw->hw_addr + 8U); ctrl_aux = readl((void const volatile *)hw->hw_addr + 224U); ctrl_aux = ctrl_aux | 4U; ctrl_aux = ctrl_aux & 4294967293U; writel(ctrl_aux, (void volatile *)hw->hw_addr + 224U); readl((void const volatile *)hw->hw_addr + 8U); ret_val = e1000_copper_link_rtl_setup(hw); if (ret_val != 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "gbe_dhg_phy_setup"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "e1000_copper_link_rtl_setup failed!\n"; descriptor___0.lineno = 1011U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "e1000_copper_link_rtl_setup failed!\n"); } else { } return (ret_val); } else { } goto ldv_54218; default: descriptor___1.modname = "e1000"; descriptor___1.function = "gbe_dhg_phy_setup"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Error Resetting the PHY\n"; descriptor___1.lineno = 1016U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Error Resetting the PHY\n"); } else { } return (6); } ldv_54218: ; return (0); } } static s32 e1000_copper_link_preconfig(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { ctrl = readl((void const volatile *)hw->hw_addr); if ((unsigned int )hw->mac_type > 3U) { ctrl = ctrl | 64U; ctrl = ctrl & 4294961151U; writel(ctrl, (void volatile *)hw->hw_addr); } else { ctrl = ctrl | 6208U; writel(ctrl, (void volatile *)hw->hw_addr); ret_val = e1000_phy_hw_reset(hw); if (ret_val != 0) { return (ret_val); } else { } } ret_val = e1000_detect_gig_phy(hw); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_preconfig"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Error, did not detect valid phy.\n"; descriptor.lineno = 1056U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Error, did not detect valid phy.\n"); } else { } return (ret_val); } else { } descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_copper_link_preconfig"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Phy ID = %x\n"; descriptor___0.lineno = 1059U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Phy ID = %x\n", hw->phy_id); } else { } ret_val = e1000_set_phy_mode(hw); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->mac_type == 7U || (unsigned int )hw->mac_type == 10U) { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); phy_data = (u16 )((unsigned int )phy_data | 8U); ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); } else { } if (((((unsigned int )hw->mac_type <= 3U || (unsigned int )hw->mac_type == 11U) || (unsigned int )hw->mac_type == 13U) || (unsigned int )hw->mac_type == 12U) || (unsigned int )hw->mac_type == 14U) { hw->phy_reset_disable = 0; } else { } return (0); } } static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw ) { u32 led_ctrl ; s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; e1000_ms_type phy_ms_setting ; { if ((int )hw->phy_reset_disable) { return (0); } else { } ret_val = e1000_phy_reset(hw); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_igp_setup"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Error Resetting the PHY\n"; descriptor.lineno = 1099U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Error Resetting the PHY\n"); } else { } return (ret_val); } else { } msleep(15U); led_ctrl = readl((void const volatile *)hw->hw_addr + 3584U); led_ctrl = led_ctrl & 4294963455U; led_ctrl = led_ctrl | 117441280U; writel(led_ctrl, (void volatile *)hw->hw_addr + 3584U); if ((unsigned int )hw->phy_type == 1U) { ret_val = e1000_set_d3_lplu_state(hw, 0); if (ret_val != 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_copper_link_igp_setup"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error Disabling LPLU D3\n"; descriptor___0.lineno = 1116U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error Disabling LPLU D3\n"); } else { } return (ret_val); } else { } } else { } ret_val = e1000_read_phy_reg(hw, 18U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->mac_type == 11U || (unsigned int )hw->mac_type == 13U) { hw->dsp_config_state = 0; phy_data = (unsigned int )phy_data & 53247U; hw->mdix = 1U; } else { hw->dsp_config_state = 1; phy_data = (unsigned int )phy_data & 61439U; switch ((int )hw->mdix) { case 1: phy_data = (unsigned int )phy_data & 57343U; goto ldv_54242; case 2: phy_data = (u16 )((unsigned int )phy_data | 8192U); goto ldv_54242; case 0: ; default: phy_data = (u16 )((unsigned int )phy_data | 4096U); goto ldv_54242; } ldv_54242: ; } ret_val = e1000_write_phy_reg(hw, 18U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->autoneg != 0U) { phy_ms_setting = hw->master_slave; if ((unsigned int )hw->ffe_config_state == 1U) { hw->ffe_config_state = 0; } else { } if ((unsigned int )hw->dsp_config_state == 2U) { hw->dsp_config_state = 1; } else { } if ((unsigned int )hw->autoneg_advertised == 32U) { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 65407U; ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 9U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 61439U; ret_val = e1000_write_phy_reg(hw, 9U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } else { } ret_val = e1000_read_phy_reg(hw, 9U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } hw->original_master_slave = ((int )phy_data & 4096) != 0 ? (((int )phy_data & 2048) != 0 ? 1 : 2) : 3; switch ((unsigned int )phy_ms_setting) { case 1U: phy_data = (u16 )((unsigned int )phy_data | 6144U); goto ldv_54248; case 2U: phy_data = (u16 )((unsigned int )phy_data | 4096U); phy_data = (unsigned int )phy_data & 63487U; goto ldv_54248; case 3U: phy_data = (unsigned int )phy_data & 61439U; default: ; goto ldv_54248; } ldv_54248: ret_val = e1000_write_phy_reg(hw, 9U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } else { } return (0); } } static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { if ((int )hw->phy_reset_disable) { return (0); } else { } ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 2048U); phy_data = (unsigned int )phy_data & 65439U; switch ((int )hw->mdix) { case 1: phy_data = phy_data; goto ldv_54258; case 2: phy_data = (u16 )((unsigned int )phy_data | 32U); goto ldv_54258; case 3: phy_data = (u16 )((unsigned int )phy_data | 64U); goto ldv_54258; case 0: ; default: phy_data = (u16 )((unsigned int )phy_data | 96U); goto ldv_54258; } ldv_54258: phy_data = (unsigned int )phy_data & 65533U; if ((int )hw->disable_polarity_correction) { phy_data = (u16 )((unsigned int )phy_data | 2U); } else { } ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } if (hw->phy_revision <= 3U) { ret_val = e1000_read_phy_reg(hw, 20U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 112U); if (hw->phy_revision == 2U && hw->phy_id == 21040320U) { phy_data = (unsigned int )phy_data & 61951U; phy_data = (u16 )((unsigned int )phy_data | 2048U); ret_val = e1000_write_phy_reg(hw, 20U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } else { phy_data = (unsigned int )phy_data & 61695U; phy_data = (u16 )((unsigned int )phy_data | 256U); ret_val = e1000_write_phy_reg(hw, 20U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } } else { } ret_val = e1000_phy_reset(hw); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_mgp_setup"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Error Resetting the PHY\n"; descriptor.lineno = 1321U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Error Resetting the PHY\n"); } else { } return (ret_val); } else { } return (0); } } static s32 e1000_copper_link_autoneg(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; { hw->autoneg_advertised = (unsigned int )hw->autoneg_advertised & 47U; if ((unsigned int )hw->autoneg_advertised == 0U) { hw->autoneg_advertised = 47U; } else { } if ((unsigned int )hw->phy_type == 3U) { hw->autoneg_advertised = (unsigned int )hw->autoneg_advertised & 15U; } else { } descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_autoneg"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Reconfiguring auto-neg advertisement params\n"; descriptor.lineno = 1355U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Reconfiguring auto-neg advertisement params\n"); } else { } ret_val = e1000_phy_setup_autoneg(hw); if (ret_val != 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_copper_link_autoneg"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error Setting up Auto-Negotiation\n"; descriptor___0.lineno = 1358U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error Setting up Auto-Negotiation\n"); } else { } return (ret_val); } else { } descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_copper_link_autoneg"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Restarting Auto-Neg\n"; descriptor___1.lineno = 1361U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Restarting Auto-Neg\n"); } else { } ret_val = e1000_read_phy_reg(hw, 0U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 4608U); ret_val = e1000_write_phy_reg(hw, 0U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->wait_autoneg_complete != 0U) { ret_val = e1000_wait_autoneg(hw); if (ret_val != 0) { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_copper_link_autoneg"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Error while waiting for autoneg to complete\n"; descriptor___2.lineno = 1382U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Error while waiting for autoneg to complete\n"); } else { } return (ret_val); } else { } } else { } hw->get_link_status = 1; return (0); } } static s32 e1000_copper_link_postconfig(struct e1000_hw *hw ) { s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; { if ((unsigned int )hw->mac_type > 3U && (unsigned int )hw->mac_type != 9U) { e1000_config_collision_dist(hw); } else { ret_val = e1000_config_mac_to_phy(hw); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_postconfig"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Error configuring MAC to PHY settings\n"; descriptor.lineno = 1414U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Error configuring MAC to PHY settings\n"); } else { } return (ret_val); } else { } } ret_val = e1000_config_fc_after_link_up(hw); if (ret_val != 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_copper_link_postconfig"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error Configuring Flow Control\n"; descriptor___0.lineno = 1420U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error Configuring Flow Control\n"); } else { } return (ret_val); } else { } if ((unsigned int )hw->phy_type == 1U) { ret_val = e1000_config_dsp_after_link_change(hw, 1); if (ret_val != 0) { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_copper_link_postconfig"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Error Configuring DSP after link up\n"; descriptor___1.lineno = 1428U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Error Configuring DSP after link up\n"); } else { } return (ret_val); } else { } } else { } return (0); } } static s32 e1000_setup_copper_link(struct e1000_hw *hw ) { s32 ret_val ; u16 i ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; { ret_val = e1000_copper_link_preconfig(hw); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->phy_type == 1U) { ret_val = e1000_copper_link_igp_setup(hw); if (ret_val != 0) { return (ret_val); } else { } } else if ((unsigned int )hw->phy_type == 0U) { ret_val = e1000_copper_link_mgp_setup(hw); if (ret_val != 0) { return (ret_val); } else { } } else { ret_val = gbe_dhg_phy_setup(hw); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_setup_copper_link"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "gbe_dhg_phy_setup failed!\n"; descriptor.lineno = 1464U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "gbe_dhg_phy_setup failed!\n"); } else { } return (ret_val); } else { } } if ((unsigned int )hw->autoneg != 0U) { ret_val = e1000_copper_link_autoneg(hw); if (ret_val != 0) { return (ret_val); } else { } } else { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_setup_copper_link"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Forcing speed and duplex\n"; descriptor___0.lineno = 1480U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Forcing speed and duplex\n"); } else { } ret_val = e1000_phy_force_speed_duplex(hw); if (ret_val != 0) { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_setup_copper_link"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Error Forcing Speed and Duplex\n"; descriptor___1.lineno = 1483U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Error Forcing Speed and Duplex\n"); } else { } return (ret_val); } else { } } i = 0U; goto ldv_54295; ldv_54294: ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 4) != 0) { ret_val = e1000_copper_link_postconfig(hw); if (ret_val != 0) { return (ret_val); } else { } descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_setup_copper_link"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Valid link established!!!\n"; descriptor___2.lineno = 1505U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Valid link established!!!\n"); } else { } return (0); } else { } __const_udelay(42950UL); i = (u16 )((int )i + 1); ldv_54295: ; if ((unsigned int )i <= 9U) { goto ldv_54294; } else { } descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_setup_copper_link"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Unable to establish link!!!\n"; descriptor___3.lineno = 1511U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___8 != 0L) { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Unable to establish link!!!\n"); } else { } return (0); } } s32 e1000_phy_setup_autoneg(struct e1000_hw *hw ) { s32 ret_val ; u16 mii_autoneg_adv_reg ; u16 mii_1000t_ctrl_reg ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; struct _ddebug descriptor___5 ; struct net_device *tmp___11 ; long tmp___12 ; struct _ddebug descriptor___6 ; struct net_device *tmp___13 ; long tmp___14 ; struct _ddebug descriptor___7 ; struct net_device *tmp___15 ; long tmp___16 ; { ret_val = e1000_read_phy_reg(hw, 4U, & mii_autoneg_adv_reg); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 9U, & mii_1000t_ctrl_reg); if (ret_val != 0) { return (ret_val); } else if ((unsigned int )hw->phy_type == 3U) { mii_1000t_ctrl_reg = (unsigned int )mii_1000t_ctrl_reg & 64767U; } else { } mii_autoneg_adv_reg = (unsigned int )mii_autoneg_adv_reg & 65055U; mii_1000t_ctrl_reg = (unsigned int )mii_1000t_ctrl_reg & 64767U; descriptor.modname = "e1000"; descriptor.function = "e1000_phy_setup_autoneg"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "autoneg_advertised %x\n"; descriptor.lineno = 1553U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "autoneg_advertised %x\n", (int )hw->autoneg_advertised); } else { } if ((int )hw->autoneg_advertised & 1) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_phy_setup_autoneg"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Advertise 10mb Half duplex\n"; descriptor___0.lineno = 1557U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Advertise 10mb Half duplex\n"); } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 32U); } else { } if (((int )hw->autoneg_advertised & 2) != 0) { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_phy_setup_autoneg"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Advertise 10mb Full duplex\n"; descriptor___1.lineno = 1563U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Advertise 10mb Full duplex\n"); } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 64U); } else { } if (((int )hw->autoneg_advertised & 4) != 0) { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_phy_setup_autoneg"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Advertise 100mb Half duplex\n"; descriptor___2.lineno = 1569U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Advertise 100mb Half duplex\n"); } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 128U); } else { } if (((int )hw->autoneg_advertised & 8) != 0) { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_phy_setup_autoneg"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Advertise 100mb Full duplex\n"; descriptor___3.lineno = 1575U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___8 != 0L) { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Advertise 100mb Full duplex\n"); } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 256U); } else { } if (((int )hw->autoneg_advertised & 16) != 0) { descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_phy_setup_autoneg"; descriptor___4.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "Advertise 1000mb Half duplex requested, request denied!\n"; descriptor___4.lineno = 1582U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___10 != 0L) { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "Advertise 1000mb Half duplex requested, request denied!\n"); } else { } } else { } if (((int )hw->autoneg_advertised & 32) != 0) { descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_phy_setup_autoneg"; descriptor___5.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "Advertise 1000mb Full duplex\n"; descriptor___5.lineno = 1587U; descriptor___5.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___12 != 0L) { tmp___11 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___11, "Advertise 1000mb Full duplex\n"); } else { } mii_1000t_ctrl_reg = (u16 )((unsigned int )mii_1000t_ctrl_reg | 512U); } else { } switch ((unsigned int )hw->fc) { case 0U: mii_autoneg_adv_reg = (unsigned int )mii_autoneg_adv_reg & 62463U; goto ldv_54313; case 1U: mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 3072U); goto ldv_54313; case 2U: mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 2048U); mii_autoneg_adv_reg = (unsigned int )mii_autoneg_adv_reg & 64511U; goto ldv_54313; case 3U: mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 3072U); goto ldv_54313; default: descriptor___6.modname = "e1000"; descriptor___6.function = "e1000_phy_setup_autoneg"; descriptor___6.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___6.format = "Flow control param set incorrectly\n"; descriptor___6.lineno = 1641U; descriptor___6.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___14 != 0L) { tmp___13 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)tmp___13, "Flow control param set incorrectly\n"); } else { } return (-3); } ldv_54313: ret_val = e1000_write_phy_reg(hw, 4U, (int )mii_autoneg_adv_reg); if (ret_val != 0) { return (ret_val); } else { } descriptor___7.modname = "e1000"; descriptor___7.function = "e1000_phy_setup_autoneg"; descriptor___7.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___7.format = "Auto-Neg Advertising %x\n"; descriptor___7.lineno = 1649U; descriptor___7.flags = 0U; tmp___16 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); if (tmp___16 != 0L) { tmp___15 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)tmp___15, "Auto-Neg Advertising %x\n", (int )mii_autoneg_adv_reg); } else { } if ((unsigned int )hw->phy_type == 3U) { mii_1000t_ctrl_reg = 0U; } else { ret_val = e1000_write_phy_reg(hw, 9U, (int )mii_1000t_ctrl_reg); if (ret_val != 0) { return (ret_val); } else { } } return (0); } } static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; u16 mii_ctrl_reg ; u16 mii_status_reg ; u16 phy_data ; u16 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; struct _ddebug descriptor___5 ; struct net_device *tmp___11 ; long tmp___12 ; struct _ddebug descriptor___6 ; struct net_device *tmp___13 ; long tmp___14 ; { hw->fc = 0; descriptor.modname = "e1000"; descriptor.function = "e1000_phy_force_speed_duplex"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "hw->fc = %d\n"; descriptor.lineno = 1681U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "hw->fc = %d\n", (unsigned int )hw->fc); } else { } ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl | 6144U; ctrl = ctrl & 4294966527U; ctrl = ctrl & 4294967263U; ret_val = e1000_read_phy_reg(hw, 0U, & mii_ctrl_reg); if (ret_val != 0) { return (ret_val); } else { } mii_ctrl_reg = (unsigned int )mii_ctrl_reg & 61439U; if ((unsigned int )hw->forced_speed_duplex == 3U || (unsigned int )hw->forced_speed_duplex == 1U) { ctrl = ctrl | 1U; mii_ctrl_reg = (u16 )((unsigned int )mii_ctrl_reg | 256U); descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_phy_force_speed_duplex"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Full Duplex\n"; descriptor___0.lineno = 1710U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Full Duplex\n"); } else { } } else { ctrl = ctrl & 4294967294U; mii_ctrl_reg = (unsigned int )mii_ctrl_reg & 65279U; descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_phy_force_speed_duplex"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Half Duplex\n"; descriptor___1.lineno = 1717U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Half Duplex\n"); } else { } } if ((unsigned int )hw->forced_speed_duplex == 3U || (unsigned int )hw->forced_speed_duplex == 2U) { ctrl = ctrl | 256U; mii_ctrl_reg = (u16 )((unsigned int )mii_ctrl_reg | 8192U); mii_ctrl_reg = (unsigned int )mii_ctrl_reg & 65471U; descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_phy_force_speed_duplex"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Forcing 100mb "; descriptor___2.lineno = 1727U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Forcing 100mb "); } else { } } else { ctrl = ctrl & 4294966527U; mii_ctrl_reg = mii_ctrl_reg; mii_ctrl_reg = (unsigned int )mii_ctrl_reg & 57279U; descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_phy_force_speed_duplex"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Forcing 10mb "; descriptor___3.lineno = 1733U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___8 != 0L) { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Forcing 10mb "); } else { } } e1000_config_collision_dist(hw); writel(ctrl, (void volatile *)hw->hw_addr); if ((unsigned int )hw->phy_type == 0U) { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 65439U; ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_phy_force_speed_duplex"; descriptor___4.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "M88E1000 PSCR: %x\n"; descriptor___4.lineno = 1756U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___10 != 0L) { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "M88E1000 PSCR: %x\n", (int )phy_data); } else { } mii_ctrl_reg = (u16 )((unsigned int )mii_ctrl_reg | 32768U); } else { ret_val = e1000_read_phy_reg(hw, 18U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 61439U; phy_data = (unsigned int )phy_data & 57343U; ret_val = e1000_write_phy_reg(hw, 18U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } ret_val = e1000_write_phy_reg(hw, 0U, (int )mii_ctrl_reg); if (ret_val != 0) { return (ret_val); } else { } __const_udelay(4295UL); if ((unsigned int )hw->wait_autoneg_complete != 0U) { descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_phy_force_speed_duplex"; descriptor___5.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "Waiting for forced speed/duplex link.\n"; descriptor___5.lineno = 1796U; descriptor___5.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___12 != 0L) { tmp___11 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___11, "Waiting for forced speed/duplex link.\n"); } else { } mii_status_reg = 0U; i = 20U; goto ldv_54339; ldv_54338: ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_status_reg & 4) != 0) { goto ldv_54337; } else { } msleep(100U); i = (u16 )((int )i - 1); ldv_54339: ; if ((unsigned int )i != 0U) { goto ldv_54338; } else { } ldv_54337: ; if ((unsigned int )i == 0U && (unsigned int )hw->phy_type == 0U) { ret_val = e1000_phy_reset_dsp(hw); if (ret_val != 0) { descriptor___6.modname = "e1000"; descriptor___6.function = "e1000_phy_force_speed_duplex"; descriptor___6.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___6.format = "Error Resetting PHY DSP\n"; descriptor___6.lineno = 1824U; descriptor___6.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___14 != 0L) { tmp___13 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)tmp___13, "Error Resetting PHY DSP\n"); } else { } return (ret_val); } else { } } else { } i = 20U; goto ldv_54343; ldv_54342: ; if (((int )mii_status_reg & 4) != 0) { goto ldv_54341; } else { } msleep(100U); ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } i = (u16 )((int )i - 1); ldv_54343: ; if ((unsigned int )i != 0U) { goto ldv_54342; } else { } ldv_54341: ; } else { } if ((unsigned int )hw->phy_type == 0U) { ret_val = e1000_read_phy_reg(hw, 20U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 112U); ret_val = e1000_write_phy_reg(hw, 20U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 2048U); ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } if ((((unsigned int )hw->mac_type == 4U || (unsigned int )hw->mac_type == 3U) && (unsigned int )hw->autoneg == 0U) && ((unsigned int )hw->forced_speed_duplex == 1U || (unsigned int )hw->forced_speed_duplex == 0U)) { ret_val = e1000_polarity_reversal_workaround(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } } else { } return (0); } } void e1000_config_collision_dist(struct e1000_hw *hw ) { u32 tctl ; u32 coll_dist ; { if ((unsigned int )hw->mac_type <= 2U) { coll_dist = 64U; } else { coll_dist = 63U; } tctl = readl((void const volatile *)hw->hw_addr + 1024U); tctl = tctl & 4290777087U; tctl = (coll_dist << 12) | tctl; writel(tctl, (void volatile *)hw->hw_addr + 1024U); readl((void const volatile *)hw->hw_addr + 8U); return; } } static s32 e1000_config_mac_to_phy(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; u16 phy_data ; { if ((unsigned int )hw->mac_type > 3U && (unsigned int )hw->mac_type != 9U) { return (0); } else { } ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl | 6144U; ctrl = ctrl & 4294966399U; switch ((unsigned int )hw->phy_type) { case 3U: ret_val = e1000_read_phy_reg(hw, 0U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 256) != 0) { ctrl = ctrl | 1U; } else { ctrl = ctrl & 4294967294U; } if (((int )phy_data & 2097152) != 0) { ctrl = ctrl | 256U; } else { ctrl = ctrl; } e1000_config_collision_dist(hw); goto ldv_54356; default: ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 8192) != 0) { ctrl = ctrl | 1U; } else { ctrl = ctrl & 4294967294U; } e1000_config_collision_dist(hw); if (((int )phy_data & 49152) == 32768) { ctrl = ctrl | 512U; } else if (((int )phy_data & 49152) == 16384) { ctrl = ctrl | 256U; } else { } } ldv_54356: writel(ctrl, (void volatile *)hw->hw_addr); return (0); } } s32 e1000_force_mac_fc(struct e1000_hw *hw ) { u32 ctrl ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { ctrl = readl((void const volatile *)hw->hw_addr); switch ((unsigned int )hw->fc) { case 0U: ctrl = ctrl & 3892314111U; goto ldv_54363; case 1U: ctrl = ctrl & 4026531839U; ctrl = ctrl | 134217728U; goto ldv_54363; case 2U: ctrl = ctrl & 4160749567U; ctrl = ctrl | 268435456U; goto ldv_54363; case 3U: ctrl = ctrl | 402653184U; goto ldv_54363; default: descriptor.modname = "e1000"; descriptor.function = "e1000_force_mac_fc"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Flow control param set incorrectly\n"; descriptor.lineno = 2051U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Flow control param set incorrectly\n"); } else { } return (-3); } ldv_54363: ; if ((unsigned int )hw->mac_type == 1U) { ctrl = ctrl & 4026531839U; } else { } writel(ctrl, (void volatile *)hw->hw_addr); return (0); } } static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw ) { s32 ret_val ; u16 mii_status_reg ; u16 mii_nway_adv_reg ; u16 mii_nway_lp_ability_reg ; u16 speed ; u16 duplex ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; struct _ddebug descriptor___5 ; struct net_device *tmp___11 ; long tmp___12 ; struct _ddebug descriptor___6 ; struct net_device *tmp___13 ; long tmp___14 ; struct _ddebug descriptor___7 ; struct net_device *tmp___15 ; long tmp___16 ; struct _ddebug descriptor___8 ; struct net_device *tmp___17 ; long tmp___18 ; { if ((((unsigned int )hw->media_type == 1U && hw->autoneg_failed != 0U) || ((unsigned int )hw->media_type == 2U && hw->autoneg_failed != 0U)) || ((unsigned int )hw->media_type == 0U && (unsigned int )hw->autoneg == 0U)) { ret_val = e1000_force_mac_fc(hw); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_config_fc_after_link_up"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Error forcing flow control settings\n"; descriptor.lineno = 2094U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Error forcing flow control settings\n"); } else { } return (ret_val); } else { } } else { } if ((unsigned int )hw->media_type == 0U && (unsigned int )hw->autoneg != 0U) { ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_status_reg & 32) != 0) { ret_val = e1000_read_phy_reg(hw, 4U, & mii_nway_adv_reg); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 5U, & mii_nway_lp_ability_reg); if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_nway_adv_reg & 1024) != 0 && ((int )mii_nway_lp_ability_reg & 1024) != 0) { if (hw->original_fc == 3U) { hw->fc = 3; descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_config_fc_after_link_up"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Flow Control = FULL.\n"; descriptor___0.lineno = 2178U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Flow Control = FULL.\n"); } else { } } else { hw->fc = 1; descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_config_fc_after_link_up"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Flow Control = RX PAUSE frames only.\n"; descriptor___1.lineno = 2182U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Flow Control = RX PAUSE frames only.\n"); } else { } } } else if (((((int )mii_nway_adv_reg & 1024) == 0 && ((int )mii_nway_adv_reg & 2048) != 0) && ((int )mii_nway_lp_ability_reg & 1024) != 0) && ((int )mii_nway_lp_ability_reg & 2048) != 0) { hw->fc = 2; descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_config_fc_after_link_up"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Flow Control = TX PAUSE frames only.\n"; descriptor___2.lineno = 2200U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Flow Control = TX PAUSE frames only.\n"); } else { } } else if (((((int )mii_nway_adv_reg & 1024) != 0 && ((int )mii_nway_adv_reg & 2048) != 0) && ((int )mii_nway_lp_ability_reg & 1024) == 0) && ((int )mii_nway_lp_ability_reg & 2048) != 0) { hw->fc = 1; descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_config_fc_after_link_up"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Flow Control = RX PAUSE frames only.\n"; descriptor___3.lineno = 2217U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___8 != 0L) { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Flow Control = RX PAUSE frames only.\n"); } else { } } else if ((hw->original_fc == 0U || hw->original_fc == 2U) || (int )hw->fc_strict_ieee) { hw->fc = 0; descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_config_fc_after_link_up"; descriptor___4.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "Flow Control = NONE.\n"; descriptor___4.lineno = 2245U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___10 != 0L) { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "Flow Control = NONE.\n"); } else { } } else { hw->fc = 1; descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_config_fc_after_link_up"; descriptor___5.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "Flow Control = RX PAUSE frames only.\n"; descriptor___5.lineno = 2249U; descriptor___5.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___12 != 0L) { tmp___11 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___11, "Flow Control = RX PAUSE frames only.\n"); } else { } } ret_val = e1000_get_speed_and_duplex(hw, & speed, & duplex); if (ret_val != 0) { descriptor___6.modname = "e1000"; descriptor___6.function = "e1000_config_fc_after_link_up"; descriptor___6.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___6.format = "Error getting link speed and duplex\n"; descriptor___6.lineno = 2260U; descriptor___6.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___14 != 0L) { tmp___13 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)tmp___13, "Error getting link speed and duplex\n"); } else { } return (ret_val); } else { } if ((unsigned int )duplex == 1U) { hw->fc = 0; } else { } ret_val = e1000_force_mac_fc(hw); if (ret_val != 0) { descriptor___7.modname = "e1000"; descriptor___7.function = "e1000_config_fc_after_link_up"; descriptor___7.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___7.format = "Error forcing flow control settings\n"; descriptor___7.lineno = 2273U; descriptor___7.flags = 0U; tmp___16 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); if (tmp___16 != 0L) { tmp___15 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)tmp___15, "Error forcing flow control settings\n"); } else { } return (ret_val); } else { } } else { descriptor___8.modname = "e1000"; descriptor___8.function = "e1000_config_fc_after_link_up"; descriptor___8.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___8.format = "Copper PHY and Auto Neg has not completed.\n"; descriptor___8.lineno = 2278U; descriptor___8.flags = 0U; tmp___18 = ldv__builtin_expect((long )descriptor___8.flags & 1L, 0L); if (tmp___18 != 0L) { tmp___17 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___8, (struct net_device const *)tmp___17, "Copper PHY and Auto Neg has not completed.\n"); } else { } } } else { } return (0); } } static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw ) { u32 rxcw ; u32 ctrl ; u32 status ; s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; unsigned int tmp___9 ; struct _ddebug descriptor___4 ; struct net_device *tmp___10 ; long tmp___11 ; struct _ddebug descriptor___5 ; struct net_device *tmp___12 ; long tmp___13 ; struct _ddebug descriptor___6 ; struct net_device *tmp___14 ; long tmp___15 ; struct _ddebug descriptor___7 ; struct net_device *tmp___16 ; long tmp___17 ; unsigned int tmp___18 ; { ret_val = 0; ctrl = readl((void const volatile *)hw->hw_addr); status = readl((void const volatile *)hw->hw_addr + 8U); rxcw = readl((void const volatile *)hw->hw_addr + 384U); if ((status & 2U) == 0U && (rxcw & 536870912U) == 0U) { if (hw->autoneg_failed == 0U) { hw->autoneg_failed = 1U; goto out; } else { } descriptor.modname = "e1000"; descriptor.function = "e1000_check_for_serdes_link_generic"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "NOT RXing /C/, disable AutoNeg and force link.\n"; descriptor.lineno = 2314U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "NOT RXing /C/, disable AutoNeg and force link.\n"); } else { } writel(hw->txcw & 2147483647U, (void volatile *)hw->hw_addr + 376U); ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl | 65U; writel(ctrl, (void volatile *)hw->hw_addr); ret_val = e1000_config_fc_after_link_up(hw); if (ret_val != 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_check_for_serdes_link_generic"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error configuring flow control\n"; descriptor___0.lineno = 2327U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error configuring flow control\n"); } else { } goto out; } else { } } else if ((ctrl & 64U) != 0U && (rxcw & 536870912U) != 0U) { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_check_for_serdes_link_generic"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "RXing /C/, enable AutoNeg and stop forcing link.\n"; descriptor___1.lineno = 2336U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "RXing /C/, enable AutoNeg and stop forcing link.\n"); } else { } writel(hw->txcw, (void volatile *)hw->hw_addr + 376U); writel(ctrl & 4294967231U, (void volatile *)hw->hw_addr); hw->serdes_has_link = 1; } else { tmp___9 = readl((void const volatile *)hw->hw_addr + 376U); if ((int )tmp___9 >= 0) { __const_udelay(42950UL); rxcw = readl((void const volatile *)hw->hw_addr + 384U); if ((rxcw & 1073741824U) != 0U) { if ((rxcw & 134217728U) == 0U) { hw->serdes_has_link = 1; descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_check_for_serdes_link_generic"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "SERDES: Link up - forced.\n"; descriptor___2.lineno = 2352U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "SERDES: Link up - forced.\n"); } else { } } else { } } else { hw->serdes_has_link = 0; descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_check_for_serdes_link_generic"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "SERDES: Link down - force failed.\n"; descriptor___3.lineno = 2356U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___8 != 0L) { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "SERDES: Link down - force failed.\n"); } else { } } } else { } } tmp___18 = readl((void const volatile *)hw->hw_addr + 376U); if ((int )tmp___18 < 0) { status = readl((void const volatile *)hw->hw_addr + 8U); if ((status & 2U) != 0U) { __const_udelay(42950UL); rxcw = readl((void const volatile *)hw->hw_addr + 384U); if ((rxcw & 1073741824U) != 0U) { if ((rxcw & 134217728U) == 0U) { hw->serdes_has_link = 1; descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_check_for_serdes_link_generic"; descriptor___4.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "SERDES: Link up - autoneg completed successfully.\n"; descriptor___4.lineno = 2370U; descriptor___4.flags = 0U; tmp___11 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___11 != 0L) { tmp___10 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___10, "SERDES: Link up - autoneg completed successfully.\n"); } else { } } else { hw->serdes_has_link = 0; descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_check_for_serdes_link_generic"; descriptor___5.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "SERDES: Link down - invalidcodewords detected in autoneg.\n"; descriptor___5.lineno = 2374U; descriptor___5.flags = 0U; tmp___13 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___13 != 0L) { tmp___12 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___12, "SERDES: Link down - invalidcodewords detected in autoneg.\n"); } else { } } } else { hw->serdes_has_link = 0; descriptor___6.modname = "e1000"; descriptor___6.function = "e1000_check_for_serdes_link_generic"; descriptor___6.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___6.format = "SERDES: Link down - no sync.\n"; descriptor___6.lineno = 2378U; descriptor___6.flags = 0U; tmp___15 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___15 != 0L) { tmp___14 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)tmp___14, "SERDES: Link down - no sync.\n"); } else { } } } else { hw->serdes_has_link = 0; descriptor___7.modname = "e1000"; descriptor___7.function = "e1000_check_for_serdes_link_generic"; descriptor___7.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___7.format = "SERDES: Link down - autoneg failed\n"; descriptor___7.lineno = 2382U; descriptor___7.flags = 0U; tmp___17 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); if (tmp___17 != 0L) { tmp___16 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)tmp___16, "SERDES: Link down - autoneg failed\n"); } else { } } } else { } out: ; return (ret_val); } } s32 e1000_check_for_link(struct e1000_hw *hw ) { u32 rxcw ; u32 ctrl ; u32 status ; u32 rctl ; u32 icr ; u32 signal ; s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; u16 speed ; u16 duplex ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; { rxcw = 0U; signal = 0U; ctrl = readl((void const volatile *)hw->hw_addr); status = readl((void const volatile *)hw->hw_addr + 8U); if ((unsigned int )hw->media_type == 1U || (unsigned int )hw->media_type == 2U) { rxcw = readl((void const volatile *)hw->hw_addr + 384U); if ((unsigned int )hw->media_type == 1U) { signal = (unsigned int )hw->mac_type > 4U ? 524288U : 0U; if ((status & 2U) != 0U) { hw->get_link_status = 0; } else { } } else { } } else { } if ((unsigned int )hw->media_type == 0U && (int )hw->get_link_status) { ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 4) != 0) { hw->get_link_status = 0; e1000_check_downshift(hw); if ((((unsigned int )hw->mac_type == 4U || (unsigned int )hw->mac_type == 3U) && (unsigned int )hw->autoneg == 0U) && ((unsigned int )hw->forced_speed_duplex == 1U || (unsigned int )hw->forced_speed_duplex == 0U)) { writel(4294967295U, (void volatile *)hw->hw_addr + 216U); ret_val = e1000_polarity_reversal_workaround(hw); icr = readl((void const volatile *)hw->hw_addr + 192U); writel(icr & 4294967291U, (void volatile *)hw->hw_addr + 200U); writel(157U, (void volatile *)hw->hw_addr + 208U); } else { } } else { e1000_config_dsp_after_link_change(hw, 0); return (0); } if ((unsigned int )hw->autoneg == 0U) { return (-3); } else { } e1000_config_dsp_after_link_change(hw, 1); if ((unsigned int )hw->mac_type > 3U && (unsigned int )hw->mac_type != 9U) { e1000_config_collision_dist(hw); } else { ret_val = e1000_config_mac_to_phy(hw); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_check_for_link"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Error configuring MAC to PHY settings\n"; descriptor.lineno = 2505U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Error configuring MAC to PHY settings\n"); } else { } return (ret_val); } else { } } ret_val = e1000_config_fc_after_link_up(hw); if (ret_val != 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_check_for_link"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error configuring flow control\n"; descriptor___0.lineno = 2517U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error configuring flow control\n"); } else { } return (ret_val); } else { } if ((int )hw->tbi_compatibility_en) { ret_val = e1000_get_speed_and_duplex(hw, & speed, & duplex); if (ret_val != 0) { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_check_for_link"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Error getting link speed and duplex\n"; descriptor___1.lineno = 2535U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Error getting link speed and duplex\n"); } else { } return (ret_val); } else { } if ((unsigned int )speed != 1000U) { if ((int )hw->tbi_compatibility_on) { rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294967291U; writel(rctl, (void volatile *)hw->hw_addr + 256U); hw->tbi_compatibility_on = 0; } else { } } else if (! hw->tbi_compatibility_on) { hw->tbi_compatibility_on = 1; rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl | 4U; writel(rctl, (void volatile *)hw->hw_addr + 256U); } else { } } else { } } else { } if ((unsigned int )hw->media_type == 1U || (unsigned int )hw->media_type == 2U) { e1000_check_for_serdes_link_generic(hw); } else { } return (0); } } s32 e1000_get_speed_and_duplex(struct e1000_hw *hw , u16 *speed , u16 *duplex ) { u32 status ; s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; { if ((unsigned int )hw->mac_type > 2U) { status = readl((void const volatile *)hw->hw_addr + 8U); if ((status & 128U) != 0U) { *speed = 1000U; descriptor.modname = "e1000"; descriptor.function = "e1000_get_speed_and_duplex"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "1000 Mbs, "; descriptor.lineno = 2593U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "1000 Mbs, "); } else { } } else if ((status & 64U) != 0U) { *speed = 100U; descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_get_speed_and_duplex"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "100 Mbs, "; descriptor___0.lineno = 2596U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "100 Mbs, "); } else { } } else { *speed = 10U; descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_get_speed_and_duplex"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "10 Mbs, "; descriptor___1.lineno = 2599U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "10 Mbs, "); } else { } } if ((int )status & 1) { *duplex = 2U; descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_get_speed_and_duplex"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Full Duplex\n"; descriptor___2.lineno = 2604U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Full Duplex\n"); } else { } } else { *duplex = 1U; descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_get_speed_and_duplex"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = " Half Duplex\n"; descriptor___3.lineno = 2607U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___8 != 0L) { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, " Half Duplex\n"); } else { } } } else { descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_get_speed_and_duplex"; descriptor___4.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "1000 Mbs, Full Duplex\n"; descriptor___4.lineno = 2610U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___10 != 0L) { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "1000 Mbs, Full Duplex\n"); } else { } *speed = 1000U; *duplex = 2U; } if ((unsigned int )hw->phy_type == 1U && (int )hw->speed_downgraded) { ret_val = e1000_read_phy_reg(hw, 6U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 1) == 0) { *duplex = 1U; } else { ret_val = e1000_read_phy_reg(hw, 5U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if (((unsigned int )*speed == 100U && ((int )phy_data & 256) == 0) || ((unsigned int )*speed == 10U && ((int )phy_data & 64) == 0)) { *duplex = 1U; } else { } } } else { } return (0); } } static s32 e1000_wait_autoneg(struct e1000_hw *hw ) { s32 ret_val ; u16 i ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { descriptor.modname = "e1000"; descriptor.function = "e1000_wait_autoneg"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Waiting for Auto-Neg to complete.\n"; descriptor.lineno = 2654U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Waiting for Auto-Neg to complete.\n"); } else { } i = 45U; goto ldv_54449; ldv_54448: ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 32) != 0) { return (0); } else { } msleep(100U); i = (u16 )((int )i - 1); ldv_54449: ; if ((unsigned int )i != 0U) { goto ldv_54448; } else { } return (0); } } static void e1000_raise_mdi_clk(struct e1000_hw *hw , u32 *ctrl ) { { writel(*ctrl | 2097152U, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); __const_udelay(42950UL); return; } } static void e1000_lower_mdi_clk(struct e1000_hw *hw , u32 *ctrl ) { { writel(*ctrl & 4292870143U, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); __const_udelay(42950UL); return; } } static void e1000_shift_out_mdi_bits(struct e1000_hw *hw , u32 data , u16 count ) { u32 ctrl ; u32 mask ; { mask = 1U; mask = mask << ((int )count + -1); ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl | 50331648U; goto ldv_54467; ldv_54466: ; if ((data & mask) != 0U) { ctrl = ctrl | 1048576U; } else { ctrl = ctrl & 4293918719U; } writel(ctrl, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); __const_udelay(42950UL); e1000_raise_mdi_clk(hw, & ctrl); e1000_lower_mdi_clk(hw, & ctrl); mask = mask >> 1; ldv_54467: ; if (mask != 0U) { goto ldv_54466; } else { } return; } } static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw ) { u32 ctrl ; u16 data ; u8 i ; { data = 0U; ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl & 4278190079U; ctrl = ctrl & 4293918719U; writel(ctrl, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); e1000_raise_mdi_clk(hw, & ctrl); e1000_lower_mdi_clk(hw, & ctrl); data = 0U; i = 0U; goto ldv_54476; ldv_54475: data = (int )data << 1U; e1000_raise_mdi_clk(hw, & ctrl); ctrl = readl((void const volatile *)hw->hw_addr); if ((ctrl & 1048576U) != 0U) { data = (u16 )((unsigned int )data | 1U); } else { } e1000_lower_mdi_clk(hw, & ctrl); i = (u8 )((int )i + 1); ldv_54476: ; if ((unsigned int )i <= 15U) { goto ldv_54475; } else { } e1000_raise_mdi_clk(hw, & ctrl); e1000_lower_mdi_clk(hw, & ctrl); return (data); } } s32 e1000_read_phy_reg(struct e1000_hw *hw , u32 reg_addr , u16 *phy_data ) { u32 ret_val ; unsigned long flags ; raw_spinlock_t *tmp ; s32 tmp___0 ; s32 tmp___1 ; { tmp = spinlock_check(& e1000_phy_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned int )hw->phy_type == 1U && reg_addr > 15U) { tmp___0 = e1000_write_phy_reg_ex(hw, 31U, (int )((unsigned short )reg_addr)); ret_val = (u32 )tmp___0; if (ret_val != 0U) { spin_unlock_irqrestore(& e1000_phy_lock, flags); return ((s32 )ret_val); } else { } } else { } tmp___1 = e1000_read_phy_reg_ex(hw, reg_addr & 31U, phy_data); ret_val = (u32 )tmp___1; spin_unlock_irqrestore(& e1000_phy_lock, flags); return ((s32 )ret_val); } } static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw , u32 reg_addr , u16 *phy_data ) { u32 i ; u32 mdic ; u32 phy_addr ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; { mdic = 0U; phy_addr = (unsigned int )hw->mac_type == 9U ? hw->phy_addr : 1U; if (reg_addr > 31U) { descriptor.modname = "e1000"; descriptor.function = "e1000_read_phy_reg_ex"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "PHY Address %d is out of range\n"; descriptor.lineno = 2847U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "PHY Address %d is out of range\n", reg_addr); } else { } return (-4); } else { } if ((unsigned int )hw->mac_type > 3U) { if ((unsigned int )hw->mac_type == 9U) { mdic = ((reg_addr << 16) | (phy_addr << 21)) | 2147483648U; writel(mdic, (void volatile *)hw->ce4100_gbe_mdio_base_virt + 4U); i = 0U; goto ldv_54500; ldv_54499: __const_udelay(214750UL); mdic = readl((void const volatile *)hw->ce4100_gbe_mdio_base_virt + 4U); if ((int )mdic >= 0) { goto ldv_54498; } else { } i = i + 1U; ldv_54500: ; if (i <= 63U) { goto ldv_54499; } else { } ldv_54498: ; if ((int )mdic < 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_read_phy_reg_ex"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "MDI Read did not complete\n"; descriptor___0.lineno = 2875U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "MDI Read did not complete\n"); } else { } return (-2); } else { } mdic = readl((void const volatile *)hw->ce4100_gbe_mdio_base_virt); if ((int )mdic < 0) { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_read_phy_reg_ex"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "MDI Read Error\n"; descriptor___1.lineno = 2881U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "MDI Read Error\n"); } else { } return (-2); } else { } *phy_data = (unsigned short )mdic; } else { mdic = ((reg_addr << 16) | (phy_addr << 21)) | 134217728U; writel(mdic, (void volatile *)hw->hw_addr + 32U); i = 0U; goto ldv_54505; ldv_54504: __const_udelay(214750UL); mdic = readl((void const volatile *)hw->hw_addr + 32U); if ((mdic & 268435456U) != 0U) { goto ldv_54503; } else { } i = i + 1U; ldv_54505: ; if (i <= 63U) { goto ldv_54504; } else { } ldv_54503: ; if ((mdic & 268435456U) == 0U) { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_read_phy_reg_ex"; descriptor___2.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "MDI Read did not complete\n"; descriptor___2.lineno = 2902U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___6 != 0L) { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "MDI Read did not complete\n"); } else { } return (-2); } else { } if ((mdic & 1073741824U) != 0U) { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_read_phy_reg_ex"; descriptor___3.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "MDI Error\n"; descriptor___3.lineno = 2906U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___8 != 0L) { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "MDI Error\n"); } else { } return (-2); } else { } *phy_data = (unsigned short )mdic; } } else { e1000_shift_out_mdi_bits(hw, 4294967295U, 32); mdic = ((phy_addr << 5) | reg_addr) | 6144U; e1000_shift_out_mdi_bits(hw, mdic, 14); *phy_data = e1000_shift_in_mdi_bits(hw); } return (0); } } s32 e1000_write_phy_reg(struct e1000_hw *hw , u32 reg_addr , u16 phy_data ) { u32 ret_val ; unsigned long flags ; raw_spinlock_t *tmp ; s32 tmp___0 ; s32 tmp___1 ; { tmp = spinlock_check(& e1000_phy_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned int )hw->phy_type == 1U && reg_addr > 15U) { tmp___0 = e1000_write_phy_reg_ex(hw, 31U, (int )((unsigned short )reg_addr)); ret_val = (u32 )tmp___0; if (ret_val != 0U) { spin_unlock_irqrestore(& e1000_phy_lock, flags); return ((s32 )ret_val); } else { } } else { } tmp___1 = e1000_write_phy_reg_ex(hw, reg_addr & 31U, (int )phy_data); ret_val = (u32 )tmp___1; spin_unlock_irqrestore(& e1000_phy_lock, flags); return ((s32 )ret_val); } } static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw , u32 reg_addr , u16 phy_data ) { u32 i ; u32 mdic ; u32 phy_addr ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; { mdic = 0U; phy_addr = (unsigned int )hw->mac_type == 9U ? hw->phy_addr : 1U; if (reg_addr > 31U) { descriptor.modname = "e1000"; descriptor.function = "e1000_write_phy_reg_ex"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "PHY Address %d is out of range\n"; descriptor.lineno = 2985U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "PHY Address %d is out of range\n", reg_addr); } else { } return (-4); } else { } if ((unsigned int )hw->mac_type > 3U) { if ((unsigned int )hw->mac_type == 9U) { mdic = (((unsigned int )phy_data | (reg_addr << 16)) | (phy_addr << 21)) | 2214592512U; writel(mdic, (void volatile *)hw->ce4100_gbe_mdio_base_virt + 4U); i = 0U; goto ldv_54530; ldv_54529: __const_udelay(21475UL); mdic = readl((void const volatile *)hw->ce4100_gbe_mdio_base_virt + 4U); if ((int )mdic >= 0) { goto ldv_54528; } else { } i = i + 1U; ldv_54530: ; if (i <= 639U) { goto ldv_54529; } else { } ldv_54528: ; if ((int )mdic < 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_write_phy_reg_ex"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "MDI Write did not complete\n"; descriptor___0.lineno = 3014U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "MDI Write did not complete\n"); } else { } return (-2); } else { } } else { mdic = (((unsigned int )phy_data | (reg_addr << 16)) | (phy_addr << 21)) | 67108864U; writel(mdic, (void volatile *)hw->hw_addr + 32U); i = 0U; goto ldv_54534; ldv_54533: __const_udelay(21475UL); mdic = readl((void const volatile *)hw->hw_addr + 32U); if ((mdic & 268435456U) != 0U) { goto ldv_54532; } else { } i = i + 1U; ldv_54534: ; if (i <= 640U) { goto ldv_54533; } else { } ldv_54532: ; if ((mdic & 268435456U) == 0U) { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_write_phy_reg_ex"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "MDI Write did not complete\n"; descriptor___1.lineno = 3035U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "MDI Write did not complete\n"); } else { } return (-2); } else { } } } else { e1000_shift_out_mdi_bits(hw, 4294967295U, 32); mdic = ((reg_addr << 2) | (phy_addr << 7)) | 20482U; mdic = mdic << 16; mdic = (u32 )phy_data | mdic; e1000_shift_out_mdi_bits(hw, mdic, 32); } return (0); } } s32 e1000_phy_hw_reset(struct e1000_hw *hw ) { u32 ctrl ; u32 ctrl_ext ; u32 led_ctrl ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; s32 tmp___1 ; { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_hw_reset"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Resetting Phy...\n"; descriptor.lineno = 3075U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Resetting Phy...\n"); } else { } if ((unsigned int )hw->mac_type > 3U) { ctrl = readl((void const volatile *)hw->hw_addr); writel(ctrl | 2147483648U, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); writel(ctrl, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); } else { ctrl_ext = readl((void const volatile *)hw->hw_addr + 24U); ctrl_ext = ctrl_ext | 256U; ctrl_ext = ctrl_ext & 4294967279U; writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); ctrl_ext = ctrl_ext | 16U; writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); readl((void const volatile *)hw->hw_addr + 8U); } __const_udelay(644250UL); if ((unsigned int )hw->mac_type == 11U || (unsigned int )hw->mac_type == 13U) { led_ctrl = readl((void const volatile *)hw->hw_addr + 3584U); led_ctrl = led_ctrl & 4294963455U; led_ctrl = led_ctrl | 117441280U; writel(led_ctrl, (void volatile *)hw->hw_addr + 3584U); } else { } tmp___1 = e1000_get_phy_cfg_done(hw); return (tmp___1); } } s32 e1000_phy_reset(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; { switch ((unsigned int )hw->phy_type) { case 1U: ret_val = e1000_phy_hw_reset(hw); if (ret_val != 0) { return (ret_val); } else { } goto ldv_54550; default: ret_val = e1000_read_phy_reg(hw, 0U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 32768U); ret_val = e1000_write_phy_reg(hw, 0U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } __const_udelay(4295UL); goto ldv_54550; } ldv_54550: ; if ((unsigned int )hw->phy_type == 1U) { e1000_phy_init_script(hw); } else { } return (0); } } static s32 e1000_detect_gig_phy(struct e1000_hw *hw ) { s32 phy_init_status ; s32 ret_val ; u16 phy_id_high ; u16 phy_id_low ; bool match ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; { match = 0; if (hw->phy_id != 0U) { return (0); } else { } ret_val = e1000_read_phy_reg(hw, 2U, & phy_id_high); if (ret_val != 0) { return (ret_val); } else { } hw->phy_id = (unsigned int )((int )phy_id_high << 16); __const_udelay(85900UL); ret_val = e1000_read_phy_reg(hw, 3U, & phy_id_low); if (ret_val != 0) { return (ret_val); } else { } hw->phy_id = hw->phy_id | ((u32 )phy_id_low & 4294967280U); hw->phy_revision = (unsigned int )phy_id_low & 15U; switch ((unsigned int )hw->mac_type) { case 3U: ; if (hw->phy_id == 21040208U) { match = 1; } else { } goto ldv_54561; case 4U: ; if (hw->phy_id == 21040176U) { match = 1; } else { } goto ldv_54561; case 5U: ; case 6U: ; case 7U: ; case 8U: ; case 10U: ; if (hw->phy_id == 21040160U) { match = 1; } else { } goto ldv_54561; case 9U: ; if ((hw->phy_id == 1886480U || hw->phy_id == 33280U) || hw->phy_id == 21040704U) { match = 1; } else { } goto ldv_54561; case 11U: ; case 12U: ; case 13U: ; case 14U: ; if (hw->phy_id == 44565376U) { match = 1; } else { } goto ldv_54561; default: descriptor.modname = "e1000"; descriptor.function = "e1000_detect_gig_phy"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Invalid MAC type %d\n"; descriptor.lineno = 3219U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Invalid MAC type %d\n", (unsigned int )hw->mac_type); } else { } return (-3); } ldv_54561: phy_init_status = e1000_set_phy_type(hw); if ((int )match && phy_init_status == 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_detect_gig_phy"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "PHY ID 0x%X detected\n"; descriptor___0.lineno = 3225U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "PHY ID 0x%X detected\n", hw->phy_id); } else { } return (0); } else { } descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_detect_gig_phy"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Invalid PHY ID 0x%X\n"; descriptor___1.lineno = 3228U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___4 != 0L) { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Invalid PHY ID 0x%X\n", hw->phy_id); } else { } return (-2); } } static s32 e1000_phy_reset_dsp(struct e1000_hw *hw ) { s32 ret_val ; { ret_val = e1000_write_phy_reg(hw, 29U, 29); if (ret_val != 0) { goto ldv_54582; } else { } ret_val = e1000_write_phy_reg(hw, 30U, 193); if (ret_val != 0) { goto ldv_54582; } else { } ret_val = e1000_write_phy_reg(hw, 30U, 0); if (ret_val != 0) { goto ldv_54582; } else { } ret_val = 0; ldv_54582: ; return (ret_val); } } static s32 e1000_phy_igp_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) { s32 ret_val ; u16 phy_data ; u16 min_length ; u16 max_length ; u16 average ; e1000_rev_polarity polarity ; { phy_info->downshift = (enum ldv_35689 )hw->speed_downgraded; phy_info->extended_10bt_distance = 0; phy_info->polarity_correction = 0; ret_val = e1000_check_polarity(hw, & polarity); if (ret_val != 0) { return (ret_val); } else { } phy_info->cable_polarity = polarity; ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_info->mdix_mode = (int )(((int )phy_data & 2048) >> 11); if (((int )phy_data & 49152) == 49152) { ret_val = e1000_read_phy_reg(hw, 10U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_info->local_rx = ((int )phy_data & 8192) >> 13 != 0; phy_info->remote_rx = ((int )phy_data & 4096) >> 12 != 0; ret_val = e1000_get_cable_length(hw, & min_length, & max_length); if (ret_val != 0) { return (ret_val); } else { } average = (u16 )(((int )max_length + (int )min_length) / 2); if ((unsigned int )average <= 50U) { phy_info->cable_length = 0; } else if ((unsigned int )average <= 80U) { phy_info->cable_length = 1; } else if ((unsigned int )average <= 110U) { phy_info->cable_length = 2; } else if ((unsigned int )average <= 140U) { phy_info->cable_length = 3; } else { phy_info->cable_length = 4; } } else { } return (0); } } static s32 e1000_phy_m88_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) { s32 ret_val ; u16 phy_data ; e1000_rev_polarity polarity ; { phy_info->downshift = (enum ldv_35689 )hw->speed_downgraded; ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_info->extended_10bt_distance = ((int )phy_data & 128) >> 7 != 0; phy_info->polarity_correction = ((int )phy_data & 2) >> 1 != 0; ret_val = e1000_check_polarity(hw, & polarity); if (ret_val != 0) { return (ret_val); } else { } phy_info->cable_polarity = polarity; ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_info->mdix_mode = (int )(((int )phy_data & 64) >> 6); if (((int )phy_data & 49152) == 32768) { phy_info->cable_length = (int )(((int )phy_data & 896) >> 7); ret_val = e1000_read_phy_reg(hw, 10U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_info->local_rx = ((int )phy_data & 8192) >> 13 != 0; phy_info->remote_rx = ((int )phy_data & 4096) >> 12 != 0; } else { } return (0); } } s32 e1000_phy_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) { s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; s32 tmp___3 ; s32 tmp___4 ; { phy_info->cable_length = 255; phy_info->extended_10bt_distance = 255; phy_info->cable_polarity = 255; phy_info->downshift = 255; phy_info->polarity_correction = 255; phy_info->mdix_mode = 255; phy_info->local_rx = 255; phy_info->remote_rx = 255; if ((unsigned int )hw->media_type != 0U) { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_get_info"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "PHY info is only valid for copper media\n"; descriptor.lineno = 3432U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "PHY info is only valid for copper media\n"); } else { } return (-3); } else { } ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 4) == 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_phy_get_info"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "PHY info is only valid if link is up\n"; descriptor___0.lineno = 3445U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "PHY info is only valid if link is up\n"); } else { } return (-3); } else { } if ((unsigned int )hw->phy_type == 1U) { tmp___3 = e1000_phy_igp_get_info(hw, phy_info); return (tmp___3); } else if ((unsigned int )hw->phy_type == 2U || (unsigned int )hw->phy_type == 3U) { return (0); } else { tmp___4 = e1000_phy_m88_get_info(hw, phy_info); return (tmp___4); } } } s32 e1000_validate_mdi_setting(struct e1000_hw *hw ) { struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { if ((unsigned int )hw->autoneg == 0U && ((unsigned int )hw->mdix == 0U || (unsigned int )hw->mdix == 3U)) { descriptor.modname = "e1000"; descriptor.function = "e1000_validate_mdi_setting"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Invalid MDI setting detected\n"; descriptor.lineno = 3461U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Invalid MDI setting detected\n"); } else { } hw->mdix = 1U; return (-3); } else { } return (0); } } s32 e1000_init_eeprom_params(struct e1000_hw *hw ) { struct e1000_eeprom_info *eeprom ; u32 eecd ; unsigned int tmp ; s32 ret_val ; u16 eeprom_size ; { eeprom = & hw->eeprom; tmp = readl((void const volatile *)hw->hw_addr + 16U); eecd = tmp; ret_val = 0; switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: ; case 3U: ; case 4U: eeprom->type = 2; eeprom->word_size = 64U; eeprom->opcode_bits = 3U; eeprom->address_bits = 6U; eeprom->delay_usec = 50U; goto ldv_54625; case 5U: ; case 6U: ; case 7U: ; case 8U: ; case 10U: eeprom->type = 2; eeprom->opcode_bits = 3U; eeprom->delay_usec = 50U; if ((eecd & 512U) != 0U) { eeprom->word_size = 256U; eeprom->address_bits = 8U; } else { eeprom->word_size = 64U; eeprom->address_bits = 6U; } goto ldv_54625; case 11U: ; case 12U: ; case 13U: ; case 14U: ; if ((eecd & 8192U) != 0U) { eeprom->type = 1; eeprom->opcode_bits = 8U; eeprom->delay_usec = 1U; if ((eecd & 1024U) != 0U) { eeprom->page_size = 32U; eeprom->address_bits = 16U; } else { eeprom->page_size = 8U; eeprom->address_bits = 8U; } } else { eeprom->type = 2; eeprom->opcode_bits = 3U; eeprom->delay_usec = 50U; if ((eecd & 1024U) != 0U) { eeprom->word_size = 256U; eeprom->address_bits = 8U; } else { eeprom->word_size = 64U; eeprom->address_bits = 6U; } } goto ldv_54625; default: ; goto ldv_54625; } ldv_54625: ; if ((unsigned int )eeprom->type == 1U) { eeprom->word_size = 64U; ret_val = e1000_read_eeprom(hw, 18, 1, & eeprom_size); if (ret_val != 0) { return (ret_val); } else { } eeprom_size = (u16 )(((int )eeprom_size & 7168) >> 10); if ((unsigned int )eeprom_size != 0U) { eeprom_size = (u16 )((int )eeprom_size + 1); } else { } eeprom->word_size = (u16 )(1 << ((int )eeprom_size + 6)); } else { } return (ret_val); } } static void e1000_raise_ee_clk(struct e1000_hw *hw , u32 *eecd ) { { *eecd = *eecd | 1U; writel(*eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )hw->eeprom.delay_usec); return; } } static void e1000_lower_ee_clk(struct e1000_hw *hw , u32 *eecd ) { { *eecd = *eecd & 4294967294U; writel(*eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )hw->eeprom.delay_usec); return; } } static void e1000_shift_out_ee_bits(struct e1000_hw *hw , u16 data , u16 count ) { struct e1000_eeprom_info *eeprom ; u32 eecd ; u32 mask ; { eeprom = & hw->eeprom; mask = (u32 )(1 << ((int )count + -1)); eecd = readl((void const volatile *)hw->hw_addr + 16U); if ((unsigned int )eeprom->type == 2U) { eecd = eecd & 4294967287U; } else if ((unsigned int )eeprom->type == 1U) { eecd = eecd | 8U; } else { } ldv_54652: eecd = eecd & 4294967291U; if (((u32 )data & mask) != 0U) { eecd = eecd | 4U; } else { } writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); e1000_raise_ee_clk(hw, & eecd); e1000_lower_ee_clk(hw, & eecd); mask = mask >> 1; if (mask != 0U) { goto ldv_54652; } else { } eecd = eecd & 4294967291U; writel(eecd, (void volatile *)hw->hw_addr + 16U); return; } } static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw , u16 count ) { u32 eecd ; u32 i ; u16 data ; { eecd = readl((void const volatile *)hw->hw_addr + 16U); eecd = eecd & 4294967283U; data = 0U; i = 0U; goto ldv_54662; ldv_54661: data = (int )data << 1U; e1000_raise_ee_clk(hw, & eecd); eecd = readl((void const volatile *)hw->hw_addr + 16U); eecd = eecd & 4294967291U; if ((eecd & 8U) != 0U) { data = (u16 )((unsigned int )data | 1U); } else { } e1000_lower_ee_clk(hw, & eecd); i = i + 1U; ldv_54662: ; if ((u32 )count > i) { goto ldv_54661; } else { } return (data); } } static s32 e1000_acquire_eeprom(struct e1000_hw *hw ) { struct e1000_eeprom_info *eeprom ; u32 eecd ; u32 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { eeprom = & hw->eeprom; i = 0U; eecd = readl((void const volatile *)hw->hw_addr + 16U); if ((unsigned int )hw->mac_type > 4U) { eecd = eecd | 64U; writel(eecd, (void volatile *)hw->hw_addr + 16U); eecd = readl((void const volatile *)hw->hw_addr + 16U); goto ldv_54671; ldv_54670: i = i + 1U; __const_udelay(21475UL); eecd = readl((void const volatile *)hw->hw_addr + 16U); ldv_54671: ; if ((eecd & 128U) == 0U && i <= 999U) { goto ldv_54670; } else { } if ((eecd & 128U) == 0U) { eecd = eecd & 4294967231U; writel(eecd, (void volatile *)hw->hw_addr + 16U); descriptor.modname = "e1000"; descriptor.function = "e1000_acquire_eeprom"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Could not acquire EEPROM grant\n"; descriptor.lineno = 3715U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Could not acquire EEPROM grant\n"); } else { } return (-1); } else { } } else { } if ((unsigned int )eeprom->type == 2U) { eecd = eecd & 4294967290U; writel(eecd, (void volatile *)hw->hw_addr + 16U); eecd = eecd | 2U; writel(eecd, (void volatile *)hw->hw_addr + 16U); } else if ((unsigned int )eeprom->type == 1U) { eecd = eecd & 4294967292U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __const_udelay(4295UL); } else { } return (0); } } static void e1000_standby_eeprom(struct e1000_hw *hw ) { struct e1000_eeprom_info *eeprom ; u32 eecd ; { eeprom = & hw->eeprom; eecd = readl((void const volatile *)hw->hw_addr + 16U); if ((unsigned int )eeprom->type == 2U) { eecd = eecd & 4294967292U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); eecd = eecd | 1U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); eecd = eecd | 2U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); eecd = eecd & 4294967294U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); } else if ((unsigned int )eeprom->type == 1U) { eecd = eecd | 2U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); eecd = eecd & 4294967293U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); } else { } return; } } static void e1000_release_eeprom(struct e1000_hw *hw ) { u32 eecd ; { eecd = readl((void const volatile *)hw->hw_addr + 16U); if ((unsigned int )hw->eeprom.type == 1U) { eecd = eecd | 2U; eecd = eecd & 4294967294U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )hw->eeprom.delay_usec); } else if ((unsigned int )hw->eeprom.type == 2U) { eecd = eecd & 4294967289U; writel(eecd, (void volatile *)hw->hw_addr + 16U); eecd = eecd | 1U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )hw->eeprom.delay_usec); eecd = eecd & 4294967294U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )hw->eeprom.delay_usec); } else { } if ((unsigned int )hw->mac_type > 4U) { eecd = eecd & 4294967231U; writel(eecd, (void volatile *)hw->hw_addr + 16U); } else { } return; } } static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw ) { u16 retry_count ; u8 spi_stat_reg ; u16 tmp ; struct _ddebug descriptor ; struct net_device *tmp___0 ; long tmp___1 ; { retry_count = 0U; retry_count = 0U; ldv_54690: e1000_shift_out_ee_bits(hw, 5, (int )hw->eeprom.opcode_bits); tmp = e1000_shift_in_ee_bits(hw, 8); spi_stat_reg = (unsigned char )tmp; if (((int )spi_stat_reg & 1) == 0) { goto ldv_54689; } else { } __const_udelay(21475UL); retry_count = (unsigned int )retry_count + 5U; e1000_standby_eeprom(hw); if ((unsigned int )retry_count <= 4999U) { goto ldv_54690; } else { } ldv_54689: ; if ((unsigned int )retry_count > 4999U) { descriptor.modname = "e1000"; descriptor.function = "e1000_spi_eeprom_ready"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "SPI EEPROM Status error\n"; descriptor.lineno = 3868U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___1 != 0L) { tmp___0 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp___0, "SPI EEPROM Status error\n"); } else { } return (-1); } else { } return (0); } } s32 e1000_read_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { s32 ret ; { spin_lock(& e1000_eeprom_lock); ret = e1000_do_read_eeprom(hw, (int )offset, (int )words, data); spin_unlock(& e1000_eeprom_lock); return (ret); } } static s32 e1000_do_read_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_eeprom_info *eeprom ; u32 i ; void *tmp ; struct _ddebug descriptor ; struct net_device *tmp___0 ; long tmp___1 ; s32 tmp___2 ; u16 word_in ; u8 read_opcode ; s32 tmp___3 ; { eeprom = & hw->eeprom; i = 0U; if ((unsigned int )hw->mac_type == 9U) { tmp = phys_to_virt(393216ULL); ioread16_rep(tmp + (unsigned long )((int )offset << 1), (void *)data, (unsigned long )words); return (0); } else { } if ((unsigned int )eeprom->word_size == 0U) { e1000_init_eeprom_params(hw); } else { } if (((int )eeprom->word_size <= (int )offset || (int )words > (int )eeprom->word_size - (int )offset) || (unsigned int )words == 0U) { descriptor.modname = "e1000"; descriptor.function = "e1000_do_read_eeprom"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "\"words\" parameter out of bounds. Words = %d,size = %d\n"; descriptor.lineno = 3913U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___1 != 0L) { tmp___0 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp___0, "\"words\" parameter out of bounds. Words = %d,size = %d\n", (int )offset, (int )eeprom->word_size); } else { } return (-1); } else { } tmp___2 = e1000_acquire_eeprom(hw); if (tmp___2 != 0) { return (-1); } else { } if ((unsigned int )eeprom->type == 1U) { read_opcode = 3U; tmp___3 = e1000_spi_eeprom_ready(hw); if (tmp___3 != 0) { e1000_release_eeprom(hw); return (-1); } else { } e1000_standby_eeprom(hw); if ((unsigned int )eeprom->address_bits == 8U && (unsigned int )offset > 127U) { read_opcode = (u8 )((unsigned int )read_opcode | 8U); } else { } e1000_shift_out_ee_bits(hw, (int )read_opcode, (int )eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (int )((unsigned int )offset * 2U), (int )eeprom->address_bits); i = 0U; goto ldv_54713; ldv_54712: word_in = e1000_shift_in_ee_bits(hw, 16); *(data + (unsigned long )i) = (u16 )((int )((short )((int )word_in >> 8)) | (int )((short )((int )word_in << 8))); i = i + 1U; ldv_54713: ; if ((u32 )words > i) { goto ldv_54712; } else { } } else if ((unsigned int )eeprom->type == 2U) { i = 0U; goto ldv_54716; ldv_54715: e1000_shift_out_ee_bits(hw, 6, (int )eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (int )((unsigned short )i) + (int )offset, (int )eeprom->address_bits); *(data + (unsigned long )i) = e1000_shift_in_ee_bits(hw, 16); e1000_standby_eeprom(hw); i = i + 1U; ldv_54716: ; if ((u32 )words > i) { goto ldv_54715; } else { } } else { } e1000_release_eeprom(hw); return (0); } } s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw ) { u16 checksum ; u16 i ; u16 eeprom_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; s32 tmp___1 ; struct _ddebug descriptor___0 ; struct net_device *tmp___2 ; long tmp___3 ; { checksum = 0U; i = 0U; goto ldv_54727; ldv_54726: tmp___1 = e1000_read_eeprom(hw, (int )i, 1, & eeprom_data); if (tmp___1 < 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_validate_eeprom_checksum"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "EEPROM Read Error\n"; descriptor.lineno = 3999U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "EEPROM Read Error\n"); } else { } return (-1); } else { } checksum = (int )checksum + (int )eeprom_data; i = (u16 )((int )i + 1); ldv_54727: ; if ((unsigned int )i <= 63U) { goto ldv_54726; } else { } if ((unsigned int )checksum == 47802U) { return (0); } else { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_validate_eeprom_checksum"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "EEPROM Checksum Invalid\n"; descriptor___0.lineno = 4014U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___3 != 0L) { tmp___2 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___2, "EEPROM Checksum Invalid\n"); } else { } return (-1); } } } s32 e1000_update_eeprom_checksum(struct e1000_hw *hw ) { u16 checksum ; u16 i ; u16 eeprom_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; s32 tmp___1 ; struct _ddebug descriptor___0 ; struct net_device *tmp___2 ; long tmp___3 ; s32 tmp___4 ; { checksum = 0U; i = 0U; goto ldv_54739; ldv_54738: tmp___1 = e1000_read_eeprom(hw, (int )i, 1, & eeprom_data); if (tmp___1 < 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_update_eeprom_checksum"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "EEPROM Read Error\n"; descriptor.lineno = 4033U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "EEPROM Read Error\n"); } else { } return (-1); } else { } checksum = (int )checksum + (int )eeprom_data; i = (u16 )((int )i + 1); ldv_54739: ; if ((unsigned int )i <= 62U) { goto ldv_54738; } else { } checksum = 47802U - (unsigned int )checksum; tmp___4 = e1000_write_eeprom(hw, 63, 1, & checksum); if (tmp___4 < 0) { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_update_eeprom_checksum"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "EEPROM Write Error\n"; descriptor___0.lineno = 4040U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___3 != 0L) { tmp___2 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___2, "EEPROM Write Error\n"); } else { } return (-1); } else { } return (0); } } s32 e1000_write_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { s32 ret ; { spin_lock(& e1000_eeprom_lock); ret = e1000_do_write_eeprom(hw, (int )offset, (int )words, data); spin_unlock(& e1000_eeprom_lock); return (ret); } } static s32 e1000_do_write_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_eeprom_info *eeprom ; s32 status ; void *tmp ; struct _ddebug descriptor ; struct net_device *tmp___0 ; long tmp___1 ; s32 tmp___2 ; { eeprom = & hw->eeprom; status = 0; if ((unsigned int )hw->mac_type == 9U) { tmp = phys_to_virt(393216ULL); iowrite16_rep(tmp + (unsigned long )offset, (void const *)data, (unsigned long )words); return (0); } else { } if ((unsigned int )eeprom->word_size == 0U) { e1000_init_eeprom_params(hw); } else { } if (((int )eeprom->word_size <= (int )offset || (int )words > (int )eeprom->word_size - (int )offset) || (unsigned int )words == 0U) { descriptor.modname = "e1000"; descriptor.function = "e1000_do_write_eeprom"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "\"words\" parameter out of bounds\n"; descriptor.lineno = 4086U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___1 != 0L) { tmp___0 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp___0, "\"words\" parameter out of bounds\n"); } else { } return (-1); } else { } tmp___2 = e1000_acquire_eeprom(hw); if (tmp___2 != 0) { return (-1); } else { } if ((unsigned int )eeprom->type == 2U) { status = e1000_write_eeprom_microwire(hw, (int )offset, (int )words, data); } else { status = e1000_write_eeprom_spi(hw, (int )offset, (int )words, data); msleep(10U); } e1000_release_eeprom(hw); return (status); } } static s32 e1000_write_eeprom_spi(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_eeprom_info *eeprom ; u16 widx ; u8 write_opcode ; s32 tmp ; u16 word_out ; { eeprom = & hw->eeprom; widx = 0U; goto ldv_54773; ldv_54772: write_opcode = 2U; tmp = e1000_spi_eeprom_ready(hw); if (tmp != 0) { return (-1); } else { } e1000_standby_eeprom(hw); e1000_shift_out_ee_bits(hw, 6, (int )eeprom->opcode_bits); e1000_standby_eeprom(hw); if ((unsigned int )eeprom->address_bits == 8U && (unsigned int )offset > 127U) { write_opcode = (u8 )((unsigned int )write_opcode | 8U); } else { } e1000_shift_out_ee_bits(hw, (int )write_opcode, (int )eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (int )((unsigned int )((unsigned short )((int )offset + (int )widx)) * 2U), (int )eeprom->address_bits); goto ldv_54771; ldv_54770: word_out = *(data + (unsigned long )widx); word_out = (u16 )((int )((short )((int )word_out >> 8)) | (int )((short )((int )word_out << 8))); e1000_shift_out_ee_bits(hw, (int )word_out, 16); widx = (u16 )((int )widx + 1); if ((((int )offset + (int )widx) * 2) % (int )eeprom->page_size == 0) { e1000_standby_eeprom(hw); goto ldv_54769; } else { } ldv_54771: ; if ((int )widx < (int )words) { goto ldv_54770; } else { } ldv_54769: ; ldv_54773: ; if ((int )widx < (int )words) { goto ldv_54772; } else { } return (0); } } static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_eeprom_info *eeprom ; u32 eecd ; u16 words_written ; u16 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { eeprom = & hw->eeprom; words_written = 0U; i = 0U; e1000_shift_out_ee_bits(hw, 19, (int )((unsigned int )eeprom->opcode_bits + 2U)); e1000_shift_out_ee_bits(hw, 0, (int )((unsigned int )eeprom->address_bits - 2U)); e1000_standby_eeprom(hw); goto ldv_54791; ldv_54790: e1000_shift_out_ee_bits(hw, 5, (int )eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (int )offset + (int )words_written, (int )eeprom->address_bits); e1000_shift_out_ee_bits(hw, (int )*(data + (unsigned long )words_written), 16); e1000_standby_eeprom(hw); i = 0U; goto ldv_54787; ldv_54786: eecd = readl((void const volatile *)hw->hw_addr + 16U); if ((eecd & 8U) != 0U) { goto ldv_54785; } else { } __const_udelay(214750UL); i = (u16 )((int )i + 1); ldv_54787: ; if ((unsigned int )i <= 199U) { goto ldv_54786; } else { } ldv_54785: ; if ((unsigned int )i == 200U) { descriptor.modname = "e1000"; descriptor.function = "e1000_write_eeprom_microwire"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "EEPROM Write did not complete\n"; descriptor.lineno = 4229U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "EEPROM Write did not complete\n"); } else { } return (-1); } else { } e1000_standby_eeprom(hw); words_written = (u16 )((int )words_written + 1); ldv_54791: ; if ((int )words_written < (int )words) { goto ldv_54790; } else { } e1000_shift_out_ee_bits(hw, 16, (int )((unsigned int )eeprom->opcode_bits + 2U)); e1000_shift_out_ee_bits(hw, 0, (int )((unsigned int )eeprom->address_bits - 2U)); return (0); } } s32 e1000_read_mac_addr(struct e1000_hw *hw ) { u16 offset ; u16 eeprom_data ; u16 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; s32 tmp___1 ; unsigned int tmp___2 ; { i = 0U; goto ldv_54802; ldv_54801: offset = (u16 )((int )i >> 1); tmp___1 = e1000_read_eeprom(hw, (int )offset, 1, & eeprom_data); if (tmp___1 < 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_read_mac_addr"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "EEPROM Read Error\n"; descriptor.lineno = 4268U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "EEPROM Read Error\n"); } else { } return (-1); } else { } hw->perm_mac_addr[(int )i] = (unsigned char )eeprom_data; hw->perm_mac_addr[(int )i + 1] = (unsigned char )((int )eeprom_data >> 8); i = (unsigned int )i + 2U; ldv_54802: ; if ((unsigned int )i <= 5U) { goto ldv_54801; } else { } switch ((unsigned int )hw->mac_type) { default: ; goto ldv_54805; case 8U: ; case 10U: tmp___2 = readl((void const volatile *)hw->hw_addr + 8U); if ((tmp___2 & 4U) != 0U) { hw->perm_mac_addr[5] = (u8 )((unsigned int )hw->perm_mac_addr[5] ^ 1U); } else { } goto ldv_54805; } ldv_54805: i = 0U; goto ldv_54809; ldv_54808: hw->mac_addr[(int )i] = hw->perm_mac_addr[(int )i]; i = (u16 )((int )i + 1); ldv_54809: ; if ((unsigned int )i <= 5U) { goto ldv_54808; } else { } return (0); } } static void e1000_init_rx_addrs(struct e1000_hw *hw ) { u32 i ; u32 rar_num ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { descriptor.modname = "e1000"; descriptor.function = "e1000_init_rx_addrs"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Programming MAC Address into RAR[0]\n"; descriptor.lineno = 4304U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Programming MAC Address into RAR[0]\n"); } else { } e1000_rar_set(hw, (u8 *)(& hw->mac_addr), 0U); rar_num = 15U; descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_init_rx_addrs"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Clearing RAR[1-15]\n"; descriptor___0.lineno = 4311U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Clearing RAR[1-15]\n"); } else { } i = 1U; goto ldv_54820; ldv_54819: writel(0U, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(i << 3U)))); readl((void const volatile *)hw->hw_addr + 8U); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(((i << 1) + 1U) << 2)))); readl((void const volatile *)hw->hw_addr + 8U); i = i + 1U; ldv_54820: ; if (i < rar_num) { goto ldv_54819; } else { } return; } } u32 e1000_hash_mc_addr(struct e1000_hw *hw , u8 *mc_addr ) { u32 hash_value ; { hash_value = 0U; switch (hw->mc_filter_type) { case 0U: hash_value = (u32 )(((int )*(mc_addr + 4UL) >> 4) | ((int )*(mc_addr + 5UL) << 4)); goto ldv_54828; case 1U: hash_value = (u32 )(((int )*(mc_addr + 4UL) >> 3) | ((int )*(mc_addr + 5UL) << 5)); goto ldv_54828; case 2U: hash_value = (u32 )(((int )*(mc_addr + 4UL) >> 2) | ((int )*(mc_addr + 5UL) << 6)); goto ldv_54828; case 3U: hash_value = (u32 )((int )*(mc_addr + 4UL) | ((int )*(mc_addr + 5UL) << 8)); goto ldv_54828; } ldv_54828: hash_value = hash_value & 4095U; return (hash_value); } } void e1000_rar_set(struct e1000_hw *hw , u8 *addr , u32 index ) { u32 rar_low ; u32 rar_high ; { rar_low = (((unsigned int )*addr | ((unsigned int )*(addr + 1UL) << 8)) | ((unsigned int )*(addr + 2UL) << 16)) | ((unsigned int )*(addr + 3UL) << 24); rar_high = (unsigned int )*(addr + 4UL) | ((unsigned int )*(addr + 5UL) << 8); switch ((unsigned int )hw->mac_type) { default: rar_high = rar_high | 2147483648U; goto ldv_54840; } ldv_54840: writel(rar_low, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(index << 3U)))); readl((void const volatile *)hw->hw_addr + 8U); writel(rar_high, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(((index << 1) + 1U) << 2)))); readl((void const volatile *)hw->hw_addr + 8U); return; } } void e1000_write_vfta(struct e1000_hw *hw , u32 offset , u32 value ) { u32 temp ; { if ((unsigned int )hw->mac_type == 4U && (int )offset & 1) { temp = readl((void const volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )((offset - 1U) << 2)))); writel(value, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )(offset << 2)))); readl((void const volatile *)hw->hw_addr + 8U); writel(temp, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )((offset - 1U) << 2)))); readl((void const volatile *)hw->hw_addr + 8U); } else { writel(value, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )(offset << 2)))); readl((void const volatile *)hw->hw_addr + 8U); } return; } } static void e1000_clear_vfta(struct e1000_hw *hw ) { u32 offset ; u32 vfta_value ; u32 vfta_offset ; u32 vfta_bit_in_reg ; { vfta_value = 0U; vfta_offset = 0U; vfta_bit_in_reg = 0U; offset = 0U; goto ldv_54855; ldv_54854: vfta_value = offset == vfta_offset ? vfta_bit_in_reg : 0U; writel(vfta_value, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )(offset << 2)))); readl((void const volatile *)hw->hw_addr + 8U); offset = offset + 1U; ldv_54855: ; if (offset <= 127U) { goto ldv_54854; } else { } return; } } static s32 e1000_id_led_init(struct e1000_hw *hw ) { u32 ledctl ; u32 ledctl_mask ; u32 ledctl_on ; u32 ledctl_off ; u16 eeprom_data ; u16 i ; u16 temp ; u16 led_mask ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; s32 tmp___1 ; { ledctl_mask = 255U; ledctl_on = 14U; ledctl_off = 15U; led_mask = 15U; if ((unsigned int )hw->mac_type <= 4U) { return (0); } else { } ledctl = readl((void const volatile *)hw->hw_addr + 3584U); hw->ledctl_default = ledctl; hw->ledctl_mode1 = hw->ledctl_default; hw->ledctl_mode2 = hw->ledctl_default; tmp___1 = e1000_read_eeprom(hw, 4, 1, & eeprom_data); if (tmp___1 < 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_id_led_init"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "EEPROM Read Error\n"; descriptor.lineno = 4471U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "EEPROM Read Error\n"); } else { } return (-1); } else { } if ((unsigned int )eeprom_data == 0U || (unsigned int )eeprom_data == 65535U) { eeprom_data = 35089U; } else { } i = 0U; goto ldv_54887; ldv_54886: temp = (u16 )((int )((short )((int )eeprom_data >> ((int )i << 2))) & (int )((short )led_mask)); switch ((int )temp) { case 4: ; case 5: ; case 6: hw->ledctl_mode1 = hw->ledctl_mode1 & ~ (ledctl_mask << ((int )i << 3)); hw->ledctl_mode1 = hw->ledctl_mode1 | (ledctl_on << ((int )i << 3)); goto ldv_54873; case 7: ; case 8: ; case 9: hw->ledctl_mode1 = hw->ledctl_mode1 & ~ (ledctl_mask << ((int )i << 3)); hw->ledctl_mode1 = hw->ledctl_mode1 | (ledctl_off << ((int )i << 3)); goto ldv_54873; default: ; goto ldv_54873; } ldv_54873: ; switch ((int )temp) { case 2: ; case 5: ; case 8: hw->ledctl_mode2 = hw->ledctl_mode2 & ~ (ledctl_mask << ((int )i << 3)); hw->ledctl_mode2 = hw->ledctl_mode2 | (ledctl_on << ((int )i << 3)); goto ldv_54881; case 3: ; case 6: ; case 9: hw->ledctl_mode2 = hw->ledctl_mode2 & ~ (ledctl_mask << ((int )i << 3)); hw->ledctl_mode2 = hw->ledctl_mode2 | (ledctl_off << ((int )i << 3)); goto ldv_54881; default: ; goto ldv_54881; } ldv_54881: i = (u16 )((int )i + 1); ldv_54887: ; if ((unsigned int )i <= 3U) { goto ldv_54886; } else { } return (0); } } s32 e1000_setup_led(struct e1000_hw *hw ) { u32 ledctl ; s32 ret_val ; { ret_val = 0; switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: ; case 3U: ; case 4U: ; goto ldv_54898; case 11U: ; case 13U: ; case 12U: ; case 14U: ret_val = e1000_read_phy_reg(hw, 20U, & hw->phy_spd_default); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 20U, (int )hw->phy_spd_default & 65503); if (ret_val != 0) { return (ret_val); } else { } default: ; if ((unsigned int )hw->media_type == 1U) { ledctl = readl((void const volatile *)hw->hw_addr + 3584U); hw->ledctl_default = ledctl; ledctl = ledctl & 4294967088U; ledctl = ledctl | 15U; writel(ledctl, (void volatile *)hw->hw_addr + 3584U); } else if ((unsigned int )hw->media_type == 0U) { writel(hw->ledctl_mode1, (void volatile *)hw->hw_addr + 3584U); } else { } goto ldv_54898; } ldv_54898: ; return (0); } } s32 e1000_cleanup_led(struct e1000_hw *hw ) { s32 ret_val ; { ret_val = 0; switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: ; case 3U: ; case 4U: ; goto ldv_54912; case 11U: ; case 13U: ; case 12U: ; case 14U: ret_val = e1000_write_phy_reg(hw, 20U, (int )hw->phy_spd_default); if (ret_val != 0) { return (ret_val); } else { } default: writel(hw->ledctl_default, (void volatile *)hw->hw_addr + 3584U); goto ldv_54912; } ldv_54912: ; return (0); } } s32 e1000_led_on(struct e1000_hw *hw ) { u32 ctrl ; unsigned int tmp ; { tmp = readl((void const volatile *)hw->hw_addr); ctrl = tmp; switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: ; case 3U: ctrl = ctrl | 262144U; ctrl = ctrl | 4194304U; goto ldv_54925; case 4U: ; if ((unsigned int )hw->media_type == 1U) { ctrl = ctrl | 262144U; ctrl = ctrl | 4194304U; } else { ctrl = ctrl & 4294705151U; ctrl = ctrl | 4194304U; } goto ldv_54925; default: ; if ((unsigned int )hw->media_type == 1U) { ctrl = ctrl & 4294705151U; ctrl = ctrl | 4194304U; } else if ((unsigned int )hw->media_type == 0U) { writel(hw->ledctl_mode2, (void volatile *)hw->hw_addr + 3584U); return (0); } else { } goto ldv_54925; } ldv_54925: writel(ctrl, (void volatile *)hw->hw_addr); return (0); } } s32 e1000_led_off(struct e1000_hw *hw ) { u32 ctrl ; unsigned int tmp ; { tmp = readl((void const volatile *)hw->hw_addr); ctrl = tmp; switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: ; case 3U: ctrl = ctrl & 4294705151U; ctrl = ctrl | 4194304U; goto ldv_54935; case 4U: ; if ((unsigned int )hw->media_type == 1U) { ctrl = ctrl & 4294705151U; ctrl = ctrl | 4194304U; } else { ctrl = ctrl | 262144U; ctrl = ctrl | 4194304U; } goto ldv_54935; default: ; if ((unsigned int )hw->media_type == 1U) { ctrl = ctrl | 262144U; ctrl = ctrl | 4194304U; } else if ((unsigned int )hw->media_type == 0U) { writel(hw->ledctl_mode1, (void volatile *)hw->hw_addr + 3584U); return (0); } else { } goto ldv_54935; } ldv_54935: writel(ctrl, (void volatile *)hw->hw_addr); return (0); } } static void e1000_clear_hw_cntrs(struct e1000_hw *hw ) { u32 volatile temp ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; unsigned int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; unsigned int tmp___17 ; unsigned int tmp___18 ; unsigned int tmp___19 ; unsigned int tmp___20 ; unsigned int tmp___21 ; unsigned int tmp___22 ; unsigned int tmp___23 ; unsigned int tmp___24 ; unsigned int tmp___25 ; unsigned int tmp___26 ; unsigned int tmp___27 ; unsigned int tmp___28 ; unsigned int tmp___29 ; unsigned int tmp___30 ; unsigned int tmp___31 ; unsigned int tmp___32 ; unsigned int tmp___33 ; unsigned int tmp___34 ; unsigned int tmp___35 ; unsigned int tmp___36 ; unsigned int tmp___37 ; unsigned int tmp___38 ; unsigned int tmp___39 ; unsigned int tmp___40 ; unsigned int tmp___41 ; unsigned int tmp___42 ; unsigned int tmp___43 ; unsigned int tmp___44 ; unsigned int tmp___45 ; unsigned int tmp___46 ; unsigned int tmp___47 ; unsigned int tmp___48 ; unsigned int tmp___49 ; unsigned int tmp___50 ; unsigned int tmp___51 ; unsigned int tmp___52 ; unsigned int tmp___53 ; unsigned int tmp___54 ; unsigned int tmp___55 ; unsigned int tmp___56 ; { tmp = readl((void const volatile *)hw->hw_addr + 16384U); temp = tmp; tmp___0 = readl((void const volatile *)hw->hw_addr + 16392U); temp = tmp___0; tmp___1 = readl((void const volatile *)hw->hw_addr + 16400U); temp = tmp___1; tmp___2 = readl((void const volatile *)hw->hw_addr + 16404U); temp = tmp___2; tmp___3 = readl((void const volatile *)hw->hw_addr + 16408U); temp = tmp___3; tmp___4 = readl((void const volatile *)hw->hw_addr + 16412U); temp = tmp___4; tmp___5 = readl((void const volatile *)hw->hw_addr + 16416U); temp = tmp___5; tmp___6 = readl((void const volatile *)hw->hw_addr + 16424U); temp = tmp___6; tmp___7 = readl((void const volatile *)hw->hw_addr + 16432U); temp = tmp___7; tmp___8 = readl((void const volatile *)hw->hw_addr + 16440U); temp = tmp___8; tmp___9 = readl((void const volatile *)hw->hw_addr + 16448U); temp = tmp___9; tmp___10 = readl((void const volatile *)hw->hw_addr + 16456U); temp = tmp___10; tmp___11 = readl((void const volatile *)hw->hw_addr + 16460U); temp = tmp___11; tmp___12 = readl((void const volatile *)hw->hw_addr + 16464U); temp = tmp___12; tmp___13 = readl((void const volatile *)hw->hw_addr + 16468U); temp = tmp___13; tmp___14 = readl((void const volatile *)hw->hw_addr + 16472U); temp = tmp___14; tmp___15 = readl((void const volatile *)hw->hw_addr + 16476U); temp = tmp___15; tmp___16 = readl((void const volatile *)hw->hw_addr + 16480U); temp = tmp___16; tmp___17 = readl((void const volatile *)hw->hw_addr + 16484U); temp = tmp___17; tmp___18 = readl((void const volatile *)hw->hw_addr + 16488U); temp = tmp___18; tmp___19 = readl((void const volatile *)hw->hw_addr + 16492U); temp = tmp___19; tmp___20 = readl((void const volatile *)hw->hw_addr + 16496U); temp = tmp___20; tmp___21 = readl((void const volatile *)hw->hw_addr + 16500U); temp = tmp___21; tmp___22 = readl((void const volatile *)hw->hw_addr + 16504U); temp = tmp___22; tmp___23 = readl((void const volatile *)hw->hw_addr + 16508U); temp = tmp___23; tmp___24 = readl((void const volatile *)hw->hw_addr + 16512U); temp = tmp___24; tmp___25 = readl((void const volatile *)hw->hw_addr + 16520U); temp = tmp___25; tmp___26 = readl((void const volatile *)hw->hw_addr + 16524U); temp = tmp___26; tmp___27 = readl((void const volatile *)hw->hw_addr + 16528U); temp = tmp___27; tmp___28 = readl((void const volatile *)hw->hw_addr + 16532U); temp = tmp___28; tmp___29 = readl((void const volatile *)hw->hw_addr + 16544U); temp = tmp___29; tmp___30 = readl((void const volatile *)hw->hw_addr + 16548U); temp = tmp___30; tmp___31 = readl((void const volatile *)hw->hw_addr + 16552U); temp = tmp___31; tmp___32 = readl((void const volatile *)hw->hw_addr + 16556U); temp = tmp___32; tmp___33 = readl((void const volatile *)hw->hw_addr + 16560U); temp = tmp___33; tmp___34 = readl((void const volatile *)hw->hw_addr + 16576U); temp = tmp___34; tmp___35 = readl((void const volatile *)hw->hw_addr + 16580U); temp = tmp___35; tmp___36 = readl((void const volatile *)hw->hw_addr + 16584U); temp = tmp___36; tmp___37 = readl((void const volatile *)hw->hw_addr + 16588U); temp = tmp___37; tmp___38 = readl((void const volatile *)hw->hw_addr + 16592U); temp = tmp___38; tmp___39 = readl((void const volatile *)hw->hw_addr + 16596U); temp = tmp___39; tmp___40 = readl((void const volatile *)hw->hw_addr + 16600U); temp = tmp___40; tmp___41 = readl((void const volatile *)hw->hw_addr + 16604U); temp = tmp___41; tmp___42 = readl((void const volatile *)hw->hw_addr + 16608U); temp = tmp___42; tmp___43 = readl((void const volatile *)hw->hw_addr + 16612U); temp = tmp___43; tmp___44 = readl((void const volatile *)hw->hw_addr + 16616U); temp = tmp___44; tmp___45 = readl((void const volatile *)hw->hw_addr + 16620U); temp = tmp___45; tmp___46 = readl((void const volatile *)hw->hw_addr + 16624U); temp = tmp___46; tmp___47 = readl((void const volatile *)hw->hw_addr + 16628U); temp = tmp___47; if ((unsigned int )hw->mac_type <= 2U) { return; } else { } tmp___48 = readl((void const volatile *)hw->hw_addr + 16388U); temp = tmp___48; tmp___49 = readl((void const volatile *)hw->hw_addr + 16396U); temp = tmp___49; tmp___50 = readl((void const volatile *)hw->hw_addr + 16436U); temp = tmp___50; tmp___51 = readl((void const volatile *)hw->hw_addr + 16444U); temp = tmp___51; tmp___52 = readl((void const volatile *)hw->hw_addr + 16632U); temp = tmp___52; tmp___53 = readl((void const volatile *)hw->hw_addr + 16636U); temp = tmp___53; if ((unsigned int )hw->mac_type <= 4U) { return; } else { } tmp___54 = readl((void const volatile *)hw->hw_addr + 16564U); temp = tmp___54; tmp___55 = readl((void const volatile *)hw->hw_addr + 16568U); temp = tmp___55; tmp___56 = readl((void const volatile *)hw->hw_addr + 16572U); temp = tmp___56; return; } } void e1000_reset_adaptive(struct e1000_hw *hw ) { struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { if ((int )hw->adaptive_ifs) { if (! hw->ifs_params_forced) { hw->current_ifs_val = 0U; hw->ifs_min_val = 40U; hw->ifs_max_val = 80U; hw->ifs_step_size = 10U; hw->ifs_ratio = 4U; } else { } hw->in_ifs_mode = 0; writel(0U, (void volatile *)hw->hw_addr + 1112U); } else { descriptor.modname = "e1000"; descriptor.function = "e1000_reset_adaptive"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Not in Adaptive IFS mode!\n"; descriptor.lineno = 4797U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Not in Adaptive IFS mode!\n"); } else { } } return; } } void e1000_update_adaptive(struct e1000_hw *hw ) { struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { if ((int )hw->adaptive_ifs) { if (hw->collision_delta * (u32 )hw->ifs_ratio > hw->tx_packet_delta) { if (hw->tx_packet_delta > 1000U) { hw->in_ifs_mode = 1; if ((int )hw->current_ifs_val < (int )hw->ifs_max_val) { if ((unsigned int )hw->current_ifs_val == 0U) { hw->current_ifs_val = hw->ifs_min_val; } else { hw->current_ifs_val = (int )hw->current_ifs_val + (int )hw->ifs_step_size; } writel((unsigned int )hw->current_ifs_val, (void volatile *)hw->hw_addr + 1112U); } else { } } else { } } else if ((int )hw->in_ifs_mode && hw->tx_packet_delta <= 1000U) { hw->current_ifs_val = 0U; hw->in_ifs_mode = 0; writel(0U, (void volatile *)hw->hw_addr + 1112U); } else { } } else { descriptor.modname = "e1000"; descriptor.function = "e1000_update_adaptive"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Not in Adaptive IFS mode!\n"; descriptor.lineno = 4835U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Not in Adaptive IFS mode!\n"); } else { } } return; } } void e1000_get_bus_info(struct e1000_hw *hw ) { u32 status ; { switch ((unsigned int )hw->mac_type) { case 1U: ; case 2U: hw->bus_type = 1; hw->bus_speed = 0; hw->bus_width = 0; goto ldv_54958; default: status = readl((void const volatile *)hw->hw_addr + 8U); hw->bus_type = (status & 8192U) != 0U ? 2 : 1; if ((unsigned int )hw->device_id == 4125U) { hw->bus_speed = (unsigned int )hw->bus_type == 1U ? 2 : 4; } else if ((unsigned int )hw->bus_type == 1U) { hw->bus_speed = (status & 2048U) != 0U ? 2 : 1; } else { switch (status & 49152U) { case 0U: hw->bus_speed = 2; goto ldv_54961; case 16384U: hw->bus_speed = 3; goto ldv_54961; case 32768U: hw->bus_speed = 5; goto ldv_54961; default: hw->bus_speed = 6; goto ldv_54961; } ldv_54961: ; } hw->bus_width = (status & 4096U) != 0U ? 2 : 1; goto ldv_54958; } ldv_54958: ; return; } } static void e1000_write_reg_io(struct e1000_hw *hw , u32 offset , u32 value ) { unsigned long io_addr ; unsigned long io_data ; { io_addr = hw->io_base; io_data = hw->io_base + 4UL; e1000_io_write(hw, io_addr, offset); e1000_io_write(hw, io_data, value); return; } } static s32 e1000_get_cable_length(struct e1000_hw *hw , u16 *min_length , u16 *max_length ) { s32 ret_val ; u16 agc_value ; u16 i ; u16 phy_data ; u16 cable_length ; u16 tmp ; u16 cur_agc_value ; u16 min_agc_value ; u16 agc_reg_array[4U] ; { agc_value = 0U; tmp = 0U; *max_length = tmp; *min_length = tmp; if ((unsigned int )hw->phy_type == 0U) { ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } cable_length = (u16 )(((int )phy_data & 896) >> 7); switch ((int )cable_length) { case 0: *min_length = 0U; *max_length = 50U; goto ldv_54983; case 1: *min_length = 50U; *max_length = 80U; goto ldv_54983; case 2: *min_length = 80U; *max_length = 110U; goto ldv_54983; case 3: *min_length = 110U; *max_length = 140U; goto ldv_54983; case 4: *min_length = 140U; *max_length = 170U; goto ldv_54983; default: ; return (-2); } ldv_54983: ; } else if ((unsigned int )hw->phy_type == 1U) { min_agc_value = 128U; agc_reg_array[0] = 4466U; agc_reg_array[1] = 4722U; agc_reg_array[2] = 5234U; agc_reg_array[3] = 6258U; i = 0U; goto ldv_54993; ldv_54992: ret_val = e1000_read_phy_reg(hw, (u32 )agc_reg_array[(int )i], & phy_data); if (ret_val != 0) { return (ret_val); } else { } cur_agc_value = (u16 )((int )phy_data >> 7); if ((unsigned int )cur_agc_value > 126U || (unsigned int )cur_agc_value == 0U) { return (-2); } else { } agc_value = (int )agc_value + (int )cur_agc_value; if ((int )min_agc_value > (int )cur_agc_value) { min_agc_value = cur_agc_value; } else { } i = (u16 )((int )i + 1); ldv_54993: ; if ((unsigned int )i <= 3U) { goto ldv_54992; } else { } if ((unsigned int )agc_value <= 199U) { agc_value = (int )agc_value - (int )min_agc_value; agc_value = (u16 )((unsigned int )agc_value / 3U); } else { agc_value = (u16 )((unsigned int )agc_value / 4U); } *min_length = (u16 )(0 > (int )e1000_igp_cable_length_table[(int )agc_value] + -10 ? 0 : (int )e1000_igp_cable_length_table[(int )agc_value] + -10); *max_length = (unsigned int )((u16 )e1000_igp_cable_length_table[(int )agc_value]) + 10U; } else { } return (0); } } static s32 e1000_check_polarity(struct e1000_hw *hw , e1000_rev_polarity *polarity ) { s32 ret_val ; u16 phy_data ; { if ((unsigned int )hw->phy_type == 0U) { ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } *polarity = ((int )phy_data & 2) >> 1 != 0; } else if ((unsigned int )hw->phy_type == 1U) { ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 49152) == 49152) { ret_val = e1000_read_phy_reg(hw, 180U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } *polarity = ((int )phy_data & 120) != 0; } else { *polarity = ((int )phy_data & 2) != 0; } } else { } return (0); } } static s32 e1000_check_downshift(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; { if ((unsigned int )hw->phy_type == 1U) { ret_val = e1000_read_phy_reg(hw, 19U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } hw->speed_downgraded = (int )((short )phy_data) < 0; } else if ((unsigned int )hw->phy_type == 0U) { ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } hw->speed_downgraded = ((int )phy_data & 32) >> 5 != 0; } else { } return (0); } } static u16 const dsp_reg_array[4U] = { 4465U, 4721U, 5233U, 6257U}; static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw ) { u16 min_length ; u16 max_length ; u16 phy_data ; u16 i ; s32 ret_val ; u16 ffe_idle_err_timeout ; u32 idle_errs ; { ret_val = e1000_get_cable_length(hw, & min_length, & max_length); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->dsp_config_state != 1U) { return (0); } else { } if ((unsigned int )min_length > 49U) { i = 0U; goto ldv_55016; ldv_55015: ret_val = e1000_read_phy_reg(hw, (u32 )dsp_reg_array[(int )i], & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 16383U; ret_val = e1000_write_phy_reg(hw, (u32 )dsp_reg_array[(int )i], (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } i = (u16 )((int )i + 1); ldv_55016: ; if ((unsigned int )i <= 3U) { goto ldv_55015; } else { } hw->dsp_config_state = 2; } else { ffe_idle_err_timeout = 20U; idle_errs = 0U; ret_val = e1000_read_phy_reg(hw, 10U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } i = 0U; goto ldv_55022; ldv_55021: __const_udelay(4295000UL); ret_val = e1000_read_phy_reg(hw, 10U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } idle_errs = ((u32 )phy_data & 255U) + idle_errs; if (idle_errs > 5U) { hw->ffe_config_state = 1; ret_val = e1000_write_phy_reg(hw, 7989U, 105); if (ret_val != 0) { return (ret_val); } else { } goto ldv_55020; } else { } if (idle_errs != 0U) { ffe_idle_err_timeout = 100U; } else { } i = (u16 )((int )i + 1); ldv_55022: ; if ((int )i < (int )ffe_idle_err_timeout) { goto ldv_55021; } else { } ldv_55020: ; } return (0); } } static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw , bool link_up ) { s32 ret_val ; u16 phy_data ; u16 phy_saved_data ; u16 speed ; u16 duplex ; u16 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { if ((unsigned int )hw->phy_type != 1U) { return (0); } else { } if ((int )link_up) { ret_val = e1000_get_speed_and_duplex(hw, & speed, & duplex); if (ret_val != 0) { descriptor.modname = "e1000"; descriptor.function = "e1000_config_dsp_after_link_change"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Error getting link speed and duplex\n"; descriptor.lineno = 5225U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Error getting link speed and duplex\n"); } else { } return (ret_val); } else { } if ((unsigned int )speed == 1000U) { ret_val = e1000_1000Mb_check_cable_length(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } } else { if ((unsigned int )hw->dsp_config_state == 2U) { ret_val = e1000_read_phy_reg(hw, 12123U, & phy_saved_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 12123U, 3); if (ret_val != 0) { return (ret_val); } else { } msleep(20U); ret_val = e1000_write_phy_reg(hw, 0U, 320); if (ret_val != 0) { return (ret_val); } else { } i = 0U; goto ldv_55036; ldv_55035: ret_val = e1000_read_phy_reg(hw, (u32 )dsp_reg_array[(int )i], & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 16383U; phy_data = (u16 )((unsigned int )phy_data | 32768U); ret_val = e1000_write_phy_reg(hw, (u32 )dsp_reg_array[(int )i], (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } i = (u16 )((int )i + 1); ldv_55036: ; if ((unsigned int )i <= 3U) { goto ldv_55035; } else { } ret_val = e1000_write_phy_reg(hw, 0U, 13056); if (ret_val != 0) { return (ret_val); } else { } msleep(20U); ret_val = e1000_write_phy_reg(hw, 12123U, (int )phy_saved_data); if (ret_val != 0) { return (ret_val); } else { } hw->dsp_config_state = 1; } else { } if ((unsigned int )hw->ffe_config_state == 1U) { ret_val = e1000_read_phy_reg(hw, 12123U, & phy_saved_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 12123U, 3); if (ret_val != 0) { return (ret_val); } else { } msleep(20U); ret_val = e1000_write_phy_reg(hw, 0U, 320); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 7989U, 42); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 0U, 13056); if (ret_val != 0) { return (ret_val); } else { } msleep(20U); ret_val = e1000_write_phy_reg(hw, 12123U, (int )phy_saved_data); if (ret_val != 0) { return (ret_val); } else { } hw->ffe_config_state = 0; } else { } } return (0); } } static s32 e1000_set_phy_mode(struct e1000_hw *hw ) { s32 ret_val ; u16 eeprom_data ; { if ((unsigned int )hw->mac_type == 7U && (unsigned int )hw->media_type == 0U) { ret_val = e1000_read_eeprom(hw, 7, 1, & eeprom_data); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )eeprom_data != 65535U && (int )((short )eeprom_data) < 0) { ret_val = e1000_write_phy_reg(hw, 29U, 11); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 30U, 33028); if (ret_val != 0) { return (ret_val); } else { } hw->phy_reset_disable = 0; } else { } } else { } return (0); } } static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw , bool active ) { s32 ret_val ; u16 phy_data ; { if ((unsigned int )hw->phy_type != 1U) { return (0); } else { } if ((unsigned int )hw->mac_type == 12U || (unsigned int )hw->mac_type == 14U) { ret_val = e1000_read_phy_reg(hw, 20U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } } else { } if (! active) { if ((unsigned int )hw->mac_type == 12U || (unsigned int )hw->mac_type == 14U) { phy_data = (unsigned int )phy_data & 65519U; ret_val = e1000_write_phy_reg(hw, 20U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned int )hw->smart_speed == 1U) { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 128U); ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } else if ((unsigned int )hw->smart_speed == 2U) { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 65407U; ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } else { } } else if (((unsigned int )hw->autoneg_advertised == 47U || (unsigned int )hw->autoneg_advertised == 3U) || (unsigned int )hw->autoneg_advertised == 15U) { if ((unsigned int )hw->mac_type == 12U || (unsigned int )hw->mac_type == 14U) { phy_data = (u16 )((unsigned int )phy_data | 16U); ret_val = e1000_write_phy_reg(hw, 20U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } else { } ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 65407U; ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } else { } return (0); } } static s32 e1000_set_vco_speed(struct e1000_hw *hw ) { s32 ret_val ; u16 default_page ; u16 phy_data ; { default_page = 0U; switch ((unsigned int )hw->mac_type) { case 7U: ; case 10U: ; goto ldv_55057; default: ; return (0); } ldv_55057: ret_val = e1000_read_phy_reg(hw, 29U, & default_page); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 29U, 5); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 30U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 65279U; ret_val = e1000_write_phy_reg(hw, 30U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 29U, 4); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 30U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 2048U); ret_val = e1000_write_phy_reg(hw, 30U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 29U, (int )default_page); if (ret_val != 0) { return (ret_val); } else { } return (0); } } u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw ) { u32 manc ; { if (hw->asf_firmware_present != 0U) { manc = readl((void const volatile *)hw->hw_addr + 22560U); if ((manc & 131072U) == 0U || (manc & 1048576U) == 0U) { return (0U); } else { } if ((int )manc & 1 && (manc & 2U) == 0U) { return (1U); } else { } } else { } return (0U); } } static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw ) { s32 ret_val ; u16 mii_status_reg ; u16 i ; { ret_val = e1000_write_phy_reg(hw, 29U, 25); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 30U, 65535); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 29U, 0); if (ret_val != 0) { return (ret_val); } else { } i = 20U; goto ldv_55071; ldv_55070: ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_status_reg & -5) == 0) { goto ldv_55069; } else { } msleep(100U); i = (u16 )((int )i - 1); ldv_55071: ; if ((unsigned int )i != 0U) { goto ldv_55070; } else { } ldv_55069: msleep(1000U); ret_val = e1000_write_phy_reg(hw, 29U, 25); if (ret_val != 0) { return (ret_val); } else { } msleep(50U); ret_val = e1000_write_phy_reg(hw, 30U, 65520); if (ret_val != 0) { return (ret_val); } else { } msleep(50U); ret_val = e1000_write_phy_reg(hw, 30U, 65280); if (ret_val != 0) { return (ret_val); } else { } msleep(50U); ret_val = e1000_write_phy_reg(hw, 30U, 0); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_phy_reg(hw, 29U, 0); if (ret_val != 0) { return (ret_val); } else { } i = 20U; goto ldv_55074; ldv_55073: ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_status_reg & 4) != 0) { goto ldv_55072; } else { } msleep(100U); i = (u16 )((int )i - 1); ldv_55074: ; if ((unsigned int )i != 0U) { goto ldv_55073; } else { } ldv_55072: ; return (0); } } static s32 e1000_get_auto_rd_done(struct e1000_hw *hw ) { { msleep(5U); return (0); } } static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw ) { { msleep(10U); return (0); } } bool ldv_queue_work_on_57(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_6(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_58(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_6(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_59(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_6(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_60(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_6(2); return; } } bool ldv_queue_delayed_work_on_61(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_6(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_62(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_63(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_64(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_65(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_66(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_67(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_68(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } __inline static long ldv__builtin_expect(long exp , long c ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern void warn_slowpath_fmt(char const * , int const , char const * , ...) ; int ldv_mutex_trylock_93(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_91(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_94(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_95(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_90(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_92(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_96(struct mutex *ldv_func_arg1 ) ; bool ldv_queue_work_on_85(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_87(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_86(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_89(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_88(struct workqueue_struct *ldv_func_arg1 ) ; void *ldv_zalloc(size_t size ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } void choose_interrupt_2(void) ; int reg_check_1(irqreturn_t (*handler)(int , void * ) ) ; void choose_interrupt_1(void) ; void disable_suitable_irq_1(int line , void *data ) ; int ldv_irq_1(int state , int line , void *data ) ; void activate_suitable_irq_1(int line , void *data ) ; int ldv_irq_2(int state , int line , void *data ) ; __inline static bool device_can_wakeup(struct device *dev ) { { return ((int )dev->power.can_wakeup != 0); } } extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; __inline static dma_addr_t dma_map_single_attrs___0(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_26533: ; goto ldv_26533; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static void dma_unmap_single_attrs___0(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_26542: ; goto ldv_26542; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static void dma_sync_single_for_cpu___0(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (108), "i" (12UL)); ldv_26593: ; goto ldv_26593; } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (120), "i" (12UL)); ldv_26601: ; goto ldv_26601; } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_device))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_device(dev, addr, size, (int )dir); return; } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flag ) { void *ret ; void *tmp ; { tmp = dma_alloc_attrs(dev, size, dma_handle, flag | 32768U, (struct dma_attrs *)0); ret = tmp; return (ret); } } extern unsigned long msleep_interruptible(unsigned int ) ; extern struct sk_buff *__alloc_skb(unsigned int , gfp_t , int , int ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t priority ) { struct sk_buff *tmp ; { tmp = __alloc_skb(size, priority, 0, -1); return (tmp); } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern int ethtool_op_get_ts_info(struct net_device * , struct ethtool_ts_info * ) ; __inline static int ldv_request_irq_97(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_19(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; void ldv_free_irq_99(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern int dev_open(struct net_device * ) ; extern int dev_close(struct net_device * ) ; static struct e1000_stats const e1000_gstrings_stats[46U] = { {{'r', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, 1, 8, 1616}, {{'t', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, 1, 8, 1640}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 1, 8, 1648}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 1, 8, 1664}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 1, 8, 1624}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 1, 8, 1856}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 1, 8, 1632}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 1, 8, 1848}, {{'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1424}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1432}, {{'t', 'x', '_', 'd', 'r', 'o', 'p', 'p', 'e', 'd', '\000'}, 0, 8, 352}, {{'m', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 1, 8, 1632}, {{'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, 1, 8, 1480}, {{'r', 'x', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1712}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 384}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1400}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 400}, {{'r', 'x', '_', 'n', 'o', '_', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'c', 'o', 'u', 'n', 't', '\000'}, 1, 8, 1680}, {{'r', 'x', '_', 'm', 'i', 's', 's', 'e', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1440}, {{'t', 'x', '_', 'a', 'b', 'o', 'r', 't', 'e', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1456}, {{'t', 'x', '_', 'c', 'a', 'r', 'r', 'i', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1496}, {{'t', 'x', '_', 'f', 'i', 'f', 'o', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 440}, {{'t', 'x', '_', 'h', 'e', 'a', 'r', 't', 'b', 'e', 'a', 't', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 448}, {{'t', 'x', '_', 'w', 'i', 'n', 'd', 'o', 'w', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1472}, {{'t', 'x', '_', 'a', 'b', 'o', 'r', 't', '_', 'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', '\000'}, 1, 8, 1472}, {{'t', 'x', '_', 'd', 'e', 'f', 'e', 'r', 'r', 'e', 'd', '_', 'o', 'k', '\000'}, 1, 8, 1488}, {{'t', 'x', '_', 's', 'i', 'n', 'g', 'l', 'e', '_', 'c', 'o', 'l', 'l', '_', 'o', 'k', '\000'}, 1, 8, 1448}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', '_', 'c', 'o', 'l', 'l', '_', 'o', 'k', '\000'}, 1, 8, 1464}, {{'t', 'x', '_', 't', 'i', 'm', 'e', 'o', 'u', 't', '_', 'c', 'o', 'u', 'n', 't', '\000'}, 1, 4, 704}, {{'t', 'x', '_', 'r', 'e', 's', 't', 'a', 'r', 't', '_', 'q', 'u', 'e', 'u', 'e', '\000'}, 1, 4, 656}, {{'r', 'x', '_', 'l', 'o', 'n', 'g', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1704}, {{'r', 'x', '_', 's', 'h', 'o', 'r', 't', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1688}, {{'r', 'x', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1408}, {{'t', 'x', '_', 't', 'c', 'p', '_', 's', 'e', 'g', '_', 'g', 'o', 'o', 'd', '\000'}, 1, 8, 1864}, {{'t', 'x', '_', 't', 'c', 'p', '_', 's', 'e', 'g', '_', 'f', 'a', 'i', 'l', 'e', 'd', '\000'}, 1, 8, 1872}, {{'r', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'n', '\000'}, 1, 8, 1528}, {{'r', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'f', 'f', '\000'}, 1, 8, 1544}, {{'t', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'n', '\000'}, 1, 8, 1536}, {{'t', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'f', 'f', '\000'}, 1, 8, 1552}, {{'r', 'x', '_', 'l', 'o', 'n', 'g', '_', 'b', 'y', 't', 'e', '_', 'c', 'o', 'u', 'n', 't', '\000'}, 1, 8, 1648}, {{'r', 'x', '_', 'c', 's', 'u', 'm', '_', 'o', 'f', 'f', 'l', 'o', 'a', 'd', '_', 'g', 'o', 'o', 'd', '\000'}, 1, 8, 1056}, {{'r', 'x', '_', 'c', 's', 'u', 'm', '_', 'o', 'f', 'f', 'l', 'o', 'a', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1048}, {{'a', 'l', 'l', 'o', 'c', '_', 'r', 'x', '_', 'b', 'u', 'f', 'f', '_', 'f', 'a', 'i', 'l', 'e', 'd', '\000'}, 1, 4, 1064}, {{'t', 'x', '_', 's', 'm', 'b', 'u', 's', '\000'}, 1, 8, 1744}, {{'r', 'x', '_', 's', 'm', 'b', 'u', 's', '\000'}, 1, 8, 1728}, {{'d', 'r', 'o', 'p', 'p', 'e', 'd', '_', 's', 'm', 'b', 'u', 's', '\000'}, 1, 8, 1736}}; static char const e1000_gstrings_test[5U][32U] = { { 'R', 'e', 'g', 'i', 's', 't', 'e', 'r', ' ', 't', 'e', 's', 't', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'E', 'e', 'p', 'r', 'o', 'm', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'I', 'n', 't', 'e', 'r', 'r', 'u', 'p', 't', ' ', 't', 'e', 's', 't', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'L', 'o', 'o', 'p', 'b', 'a', 'c', 'k', ' ', 't', 'e', 's', 't', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'L', 'i', 'n', 'k', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', '(', 'o', 'n', '/', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}; static int e1000_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; unsigned int tmp___0 ; bool tmp___1 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if ((unsigned int )hw->media_type == 0U) { ecmd->supported = 239U; ecmd->advertising = 128U; if ((unsigned int )hw->autoneg == 1U) { ecmd->advertising = ecmd->advertising | 64U; ecmd->advertising = ecmd->advertising | (__u32 )hw->autoneg_advertised; } else { } ecmd->port = 0U; ecmd->phy_address = (__u8 )hw->phy_addr; if ((unsigned int )hw->mac_type == 3U) { ecmd->transceiver = 1U; } else { ecmd->transceiver = 0U; } } else { ecmd->supported = 1120U; ecmd->advertising = 1120U; ecmd->port = 3U; if ((unsigned int )hw->mac_type > 5U) { ecmd->transceiver = 0U; } else { ecmd->transceiver = 1U; } } tmp___0 = readl((void const volatile *)hw->hw_addr + 8U); if ((tmp___0 & 2U) != 0U) { e1000_get_speed_and_duplex(hw, & adapter->link_speed, & adapter->link_duplex); ethtool_cmd_speed_set(ecmd, (__u32 )adapter->link_speed); if ((unsigned int )adapter->link_duplex == 2U) { ecmd->duplex = 1U; } else { ecmd->duplex = 0U; } } else { ethtool_cmd_speed_set(ecmd, 4294967295U); ecmd->duplex = 255U; } ecmd->autoneg = (__u8 )((unsigned int )hw->media_type == 1U || (unsigned int )hw->autoneg != 0U); if ((unsigned int )hw->media_type == 0U) { tmp___1 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___1) { ecmd->eth_tp_mdix = (unsigned int )adapter->phy_info.mdix_mode != 0U ? 2U : 1U; } else { ecmd->eth_tp_mdix = 0U; } } else { ecmd->eth_tp_mdix = 0U; } if ((unsigned int )hw->mdix == 0U) { ecmd->eth_tp_mdix_ctrl = 3U; } else { ecmd->eth_tp_mdix_ctrl = hw->mdix; } return (0); } } static int e1000_set_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int tmp___0 ; u32 speed ; __u32 tmp___1 ; int tmp___2 ; bool tmp___3 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if ((unsigned int )ecmd->eth_tp_mdix_ctrl != 0U) { if ((unsigned int )hw->media_type != 0U) { return (-95); } else { } if ((unsigned int )ecmd->eth_tp_mdix_ctrl != 3U && (unsigned int )ecmd->autoneg != 1U) { if (adapter->msg_enable & 1) { netdev_err((struct net_device const *)adapter->netdev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); } else { } return (-22); } else { } } else { } goto ldv_53951; ldv_53950: msleep(1U); ldv_53951: tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->flags)); if (tmp___0 != 0) { goto ldv_53950; } else { } if ((unsigned int )ecmd->autoneg == 1U) { hw->autoneg = 1U; if ((unsigned int )hw->media_type == 1U) { hw->autoneg_advertised = 1120U; } else { hw->autoneg_advertised = (unsigned int )((u16 )ecmd->advertising) | 192U; } ecmd->advertising = (__u32 )hw->autoneg_advertised; } else { tmp___1 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); speed = tmp___1; tmp___2 = e1000_set_spd_dplx(adapter, speed, (int )ecmd->duplex); if (tmp___2 != 0) { clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); return (-22); } else { } } if ((unsigned int )ecmd->eth_tp_mdix_ctrl != 0U) { if ((unsigned int )ecmd->eth_tp_mdix_ctrl == 3U) { hw->mdix = 0U; } else { hw->mdix = ecmd->eth_tp_mdix_ctrl; } } else { } tmp___3 = netif_running((struct net_device const *)adapter->netdev); if ((int )tmp___3) { e1000_down(adapter); e1000_up(adapter); } else { e1000_reset(adapter); } clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); return (0); } } static u32 e1000_get_link(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tmp___0 = netif_carrier_ok((struct net_device const *)netdev); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { adapter->hw.get_link_status = 1; } else { } tmp___2 = e1000_has_link(adapter); return ((u32 )tmp___2); } } static void e1000_get_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; pause->autoneg = (unsigned int )adapter->fc_autoneg != 0U; if ((unsigned int )hw->fc == 1U) { pause->rx_pause = 1U; } else if ((unsigned int )hw->fc == 2U) { pause->tx_pause = 1U; } else if ((unsigned int )hw->fc == 3U) { pause->rx_pause = 1U; pause->tx_pause = 1U; } else { } return; } } static int e1000_set_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int retval ; int tmp___0 ; bool tmp___1 ; s32 tmp___2 ; s32 tmp___3 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; retval = 0; adapter->fc_autoneg = (u8 )pause->autoneg; goto ldv_53972; ldv_53971: msleep(1U); ldv_53972: tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->flags)); if (tmp___0 != 0) { goto ldv_53971; } else { } if (pause->rx_pause != 0U && pause->tx_pause != 0U) { hw->fc = 3; } else if (pause->rx_pause != 0U && pause->tx_pause == 0U) { hw->fc = 1; } else if (pause->rx_pause == 0U && pause->tx_pause != 0U) { hw->fc = 2; } else if (pause->rx_pause == 0U && pause->tx_pause == 0U) { hw->fc = 0; } else { } hw->original_fc = (u32 )hw->fc; if ((unsigned int )adapter->fc_autoneg == 1U) { tmp___1 = netif_running((struct net_device const *)adapter->netdev); if ((int )tmp___1) { e1000_down(adapter); e1000_up(adapter); } else { e1000_reset(adapter); } } else if ((unsigned int )hw->media_type == 1U) { tmp___2 = e1000_setup_link(hw); retval = tmp___2; } else { tmp___3 = e1000_force_mac_fc(hw); retval = tmp___3; } clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); return (retval); } } static u32 e1000_get_msglevel(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; return ((u32 )adapter->msg_enable); } } static void e1000_set_msglevel(struct net_device *netdev , u32 data ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; adapter->msg_enable = (int )data; return; } } static int e1000_get_regs_len(struct net_device *netdev ) { { return (128); } } static void e1000_get_regs(struct net_device *netdev , struct ethtool_regs *regs , void *p ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 *regs_buff ; u16 phy_data ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; regs_buff = (u32 *)p; memset(p, 0, 128UL); regs->version = (__u32 )((((int )hw->revision_id << 16) | 16777216) | (int )hw->device_id); *regs_buff = readl((void const volatile *)hw->hw_addr); *(regs_buff + 1UL) = readl((void const volatile *)hw->hw_addr + 8U); *(regs_buff + 2UL) = readl((void const volatile *)hw->hw_addr + 256U); *(regs_buff + 3UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10248UL : 280UL))); *(regs_buff + 4UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10256UL : 288UL))); *(regs_buff + 5UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10264UL : 296UL))); *(regs_buff + 6UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10272UL : 264UL))); *(regs_buff + 7UL) = readl((void const volatile *)hw->hw_addr + 1024U); *(regs_buff + 8UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14344UL : 1064UL))); *(regs_buff + 9UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14352UL : 1072UL))); *(regs_buff + 10UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); *(regs_buff + 11UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14368UL : 1088UL))); *(regs_buff + 12UL) = (u32 )hw->phy_type; if ((unsigned int )hw->phy_type == 1U) { e1000_write_phy_reg(hw, 31U, 4466); e1000_read_phy_reg(hw, 18U, & phy_data); *(regs_buff + 13UL) = (unsigned int )phy_data; e1000_write_phy_reg(hw, 31U, 4722); e1000_read_phy_reg(hw, 18U, & phy_data); *(regs_buff + 14UL) = (unsigned int )phy_data; e1000_write_phy_reg(hw, 31U, 5234); e1000_read_phy_reg(hw, 18U, & phy_data); *(regs_buff + 15UL) = (unsigned int )phy_data; e1000_write_phy_reg(hw, 31U, 6258); e1000_read_phy_reg(hw, 18U, & phy_data); *(regs_buff + 16UL) = (unsigned int )phy_data; *(regs_buff + 17UL) = 0U; e1000_write_phy_reg(hw, 31U, 0); e1000_read_phy_reg(hw, 17U, & phy_data); *(regs_buff + 18UL) = (unsigned int )phy_data; e1000_write_phy_reg(hw, 31U, 180); e1000_read_phy_reg(hw, 20U, & phy_data); *(regs_buff + 19UL) = (unsigned int )phy_data; *(regs_buff + 20UL) = 0U; *(regs_buff + 22UL) = 0U; *(regs_buff + 23UL) = *(regs_buff + 18UL); e1000_write_phy_reg(hw, 31U, 0); } else { e1000_read_phy_reg(hw, 17U, & phy_data); *(regs_buff + 13UL) = (unsigned int )phy_data; *(regs_buff + 14UL) = 0U; *(regs_buff + 15UL) = 0U; *(regs_buff + 16UL) = 0U; e1000_read_phy_reg(hw, 16U, & phy_data); *(regs_buff + 17UL) = (unsigned int )phy_data; *(regs_buff + 18UL) = *(regs_buff + 13UL); *(regs_buff + 19UL) = 0U; *(regs_buff + 20UL) = *(regs_buff + 17UL); *(regs_buff + 22UL) = adapter->phy_stats.receive_errors; *(regs_buff + 23UL) = *(regs_buff + 13UL); } *(regs_buff + 21UL) = adapter->phy_stats.idle_errors; e1000_read_phy_reg(hw, 10U, & phy_data); *(regs_buff + 24UL) = (unsigned int )phy_data; *(regs_buff + 25UL) = *(regs_buff + 24UL); if ((unsigned int )hw->mac_type > 4U && (unsigned int )hw->media_type == 0U) { *(regs_buff + 26UL) = readl((void const volatile *)hw->hw_addr + 22560U); } else { } return; } } static int e1000_get_eeprom_len(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; return ((int )hw->eeprom.word_size * 2); } } static int e1000_get_eeprom(struct net_device *netdev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u16 *eeprom_buff ; int first_word ; int last_word ; int ret_val ; u16 i ; void *tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; ret_val = 0; if (eeprom->len == 0U) { return (-22); } else { } eeprom->magic = (__u32 )((int )hw->vendor_id | ((int )hw->device_id << 16)); first_word = (int )(eeprom->offset >> 1); last_word = (int )(((eeprom->offset + eeprom->len) - 1U) >> 1); tmp___0 = kmalloc((unsigned long )((last_word - first_word) + 1) * 2UL, 208U); eeprom_buff = (u16 *)tmp___0; if ((unsigned long )eeprom_buff == (unsigned long )((u16 *)0U)) { return (-12); } else { } if ((unsigned int )hw->eeprom.type == 1U) { ret_val = e1000_read_eeprom(hw, (int )((u16 )first_word), (int )((unsigned int )((int )((u16 )last_word) - (int )((u16 )first_word)) + 1U), eeprom_buff); } else { i = 0U; goto ldv_54014; ldv_54013: ret_val = e1000_read_eeprom(hw, (int )((u16 )first_word) + (int )i, 1, eeprom_buff + (unsigned long )i); if (ret_val != 0) { goto ldv_54012; } else { } i = (u16 )((int )i + 1); ldv_54014: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_54013; } else { } ldv_54012: ; } i = 0U; goto ldv_54016; ldv_54015: i = (u16 )((int )i + 1); ldv_54016: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_54015; } else { } memcpy((void *)bytes, (void const *)eeprom_buff + ((unsigned long )eeprom->offset & 1UL), (size_t )eeprom->len); kfree((void const *)eeprom_buff); return (ret_val); } } static int e1000_set_eeprom(struct net_device *netdev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u16 *eeprom_buff ; void *ptr ; int max_len ; int first_word ; int last_word ; int ret_val ; u16 i ; void *tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; ret_val = 0; if (eeprom->len == 0U) { return (-95); } else { } if (eeprom->magic != (__u32 )((int )hw->vendor_id | ((int )hw->device_id << 16))) { return (-14); } else { } max_len = (int )hw->eeprom.word_size * 2; first_word = (int )(eeprom->offset >> 1); last_word = (int )(((eeprom->offset + eeprom->len) - 1U) >> 1); tmp___0 = kmalloc((size_t )max_len, 208U); eeprom_buff = (u16 *)tmp___0; if ((unsigned long )eeprom_buff == (unsigned long )((u16 *)0U)) { return (-12); } else { } ptr = (void *)eeprom_buff; if ((int )eeprom->offset & 1) { ret_val = e1000_read_eeprom(hw, (int )((u16 )first_word), 1, eeprom_buff); ptr = ptr + 1; } else { } if ((int )(eeprom->offset + eeprom->len) & 1 && ret_val == 0) { ret_val = e1000_read_eeprom(hw, (int )((u16 )last_word), 1, eeprom_buff + (unsigned long )(last_word - first_word)); } else { } i = 0U; goto ldv_54033; ldv_54032: i = (u16 )((int )i + 1); ldv_54033: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_54032; } else { } memcpy(ptr, (void const *)bytes, (size_t )eeprom->len); i = 0U; goto ldv_54036; ldv_54035: *(eeprom_buff + (unsigned long )i) = *(eeprom_buff + (unsigned long )i); i = (u16 )((int )i + 1); ldv_54036: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_54035; } else { } ret_val = e1000_write_eeprom(hw, (int )((u16 )first_word), (int )((unsigned int )((int )((u16 )last_word) - (int )((u16 )first_word)) + 1U), eeprom_buff); if (ret_val == 0 && first_word <= 63) { e1000_update_eeprom_checksum(hw); } else { } kfree((void const *)eeprom_buff); return (ret_val); } } static void e1000_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *drvinfo ) { struct e1000_adapter *adapter ; void *tmp ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; strlcpy((char *)(& drvinfo->driver), (char const *)(& e1000_driver_name), 32UL); strlcpy((char *)(& drvinfo->version), (char const *)(& e1000_driver_version), 32UL); tmp___0 = pci_name((struct pci_dev const *)adapter->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); tmp___1 = e1000_get_regs_len(netdev); drvinfo->regdump_len = (__u32 )tmp___1; tmp___2 = e1000_get_eeprom_len(netdev); drvinfo->eedump_len = (__u32 )tmp___2; return; } } static void e1000_get_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; e1000_mac_type mac_type ; struct e1000_tx_ring *txdr ; struct e1000_rx_ring *rxdr ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; mac_type = hw->mac_type; txdr = adapter->tx_ring; rxdr = adapter->rx_ring; ring->rx_max_pending = (unsigned int )mac_type <= 3U ? 256U : 4096U; ring->tx_max_pending = (unsigned int )mac_type <= 3U ? 256U : 4096U; ring->rx_pending = rxdr->count; ring->tx_pending = txdr->count; return; } } static int e1000_set_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; e1000_mac_type mac_type ; struct e1000_tx_ring *txdr ; struct e1000_tx_ring *tx_old ; struct e1000_rx_ring *rxdr ; struct e1000_rx_ring *rx_old ; int i ; int err ; int tmp___0 ; bool tmp___1 ; void *tmp___2 ; void *tmp___3 ; __u32 _max1 ; unsigned int _max2 ; unsigned int _min1 ; unsigned int _min2 ; __u32 _max1___0 ; unsigned int _max2___0 ; unsigned int _min1___0 ; unsigned int _min2___0 ; bool tmp___4 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; mac_type = hw->mac_type; if (ring->rx_mini_pending != 0U || ring->rx_jumbo_pending != 0U) { return (-22); } else { } goto ldv_54066; ldv_54065: msleep(1U); ldv_54066: tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->flags)); if (tmp___0 != 0) { goto ldv_54065; } else { } tmp___1 = netif_running((struct net_device const *)adapter->netdev); if ((int )tmp___1) { e1000_down(adapter); } else { } tx_old = adapter->tx_ring; rx_old = adapter->rx_ring; err = -12; tmp___2 = kcalloc((size_t )adapter->num_tx_queues, 48UL, 208U); txdr = (struct e1000_tx_ring *)tmp___2; if ((unsigned long )txdr == (unsigned long )((struct e1000_tx_ring *)0)) { goto err_alloc_tx; } else { } tmp___3 = kcalloc((size_t )adapter->num_rx_queues, 56UL, 208U); rxdr = (struct e1000_rx_ring *)tmp___3; if ((unsigned long )rxdr == (unsigned long )((struct e1000_rx_ring *)0)) { goto err_alloc_rx; } else { } adapter->tx_ring = txdr; adapter->rx_ring = rxdr; _max1 = ring->rx_pending; _max2 = 48U; rxdr->count = _max1 > _max2 ? _max1 : _max2; _min1 = rxdr->count; _min2 = (unsigned int )mac_type <= 3U ? 256U : 4096U; rxdr->count = _min1 < _min2 ? _min1 : _min2; rxdr->count = (rxdr->count + 7U) & 4294967288U; _max1___0 = ring->tx_pending; _max2___0 = 48U; txdr->count = _max1___0 > _max2___0 ? _max1___0 : _max2___0; _min1___0 = txdr->count; _min2___0 = (unsigned int )mac_type <= 3U ? 256U : 4096U; txdr->count = _min1___0 < _min2___0 ? _min1___0 : _min2___0; txdr->count = (txdr->count + 7U) & 4294967288U; i = 0; goto ldv_54083; ldv_54082: (txdr + (unsigned long )i)->count = txdr->count; i = i + 1; ldv_54083: ; if (adapter->num_tx_queues > i) { goto ldv_54082; } else { } i = 0; goto ldv_54086; ldv_54085: (rxdr + (unsigned long )i)->count = rxdr->count; i = i + 1; ldv_54086: ; if (adapter->num_rx_queues > i) { goto ldv_54085; } else { } tmp___4 = netif_running((struct net_device const *)adapter->netdev); if ((int )tmp___4) { err = e1000_setup_all_rx_resources(adapter); if (err != 0) { goto err_setup_rx; } else { } err = e1000_setup_all_tx_resources(adapter); if (err != 0) { goto err_setup_tx; } else { } adapter->rx_ring = rx_old; adapter->tx_ring = tx_old; e1000_free_all_rx_resources(adapter); e1000_free_all_tx_resources(adapter); kfree((void const *)tx_old); kfree((void const *)rx_old); adapter->rx_ring = rxdr; adapter->tx_ring = txdr; err = e1000_up(adapter); if (err != 0) { goto err_setup; } else { } } else { } clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); return (0); err_setup_tx: e1000_free_all_rx_resources(adapter); err_setup_rx: adapter->rx_ring = rx_old; adapter->tx_ring = tx_old; kfree((void const *)rxdr); err_alloc_rx: kfree((void const *)txdr); err_alloc_tx: e1000_up(adapter); err_setup: clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); return (err); } } static bool reg_pattern_test(struct e1000_adapter *adapter , u64 *data , int reg , u32 mask , u32 write ) { struct e1000_hw *hw ; u32 test[4U] ; u8 *address ; u32 read ; int i ; { hw = & adapter->hw; test[0] = 1515870810U; test[1] = 2779096485U; test[2] = 0U; test[3] = 4294967295U; address = hw->hw_addr + (unsigned long )reg; i = 0; goto ldv_54106; ldv_54105: writel(test[i] & write, (void volatile *)address); read = readl((void const volatile *)address); if (((test[i] & write) & mask) != read) { if (adapter->msg_enable & 1) { netdev_err((struct net_device const *)adapter->netdev, "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", reg, read, (test[i] & write) & mask); } else { } *data = (u64 )reg; return (1); } else { } i = i + 1; ldv_54106: ; if ((unsigned int )i <= 3U) { goto ldv_54105; } else { } return (0); } } static bool reg_set_and_check(struct e1000_adapter *adapter , u64 *data , int reg , u32 mask , u32 write ) { struct e1000_hw *hw ; u8 *address ; u32 read ; { hw = & adapter->hw; address = hw->hw_addr + (unsigned long )reg; writel(write & mask, (void volatile *)address); read = readl((void const volatile *)address); if (((read ^ write) & mask) != 0U) { if (adapter->msg_enable & 1) { netdev_err((struct net_device const *)adapter->netdev, "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg, read & mask, write & mask); } else { } *data = (u64 )reg; return (1); } else { } return (0); } } static int e1000_reg_test(struct e1000_adapter *adapter , u64 *data ) { u32 value ; u32 before ; u32 after ; u32 i ; u32 toggle ; struct e1000_hw *hw ; unsigned int tmp ; unsigned int tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; bool tmp___4 ; bool tmp___5 ; bool tmp___6 ; bool tmp___7 ; bool tmp___8 ; bool tmp___9 ; bool tmp___10 ; bool tmp___11 ; bool tmp___12 ; bool tmp___13 ; bool tmp___14 ; bool tmp___15 ; bool tmp___16 ; bool tmp___17 ; bool tmp___18 ; bool tmp___19 ; bool tmp___20 ; bool tmp___21 ; bool tmp___22 ; bool tmp___23 ; bool tmp___24 ; bool tmp___25 ; bool tmp___26 ; bool tmp___27 ; bool tmp___28 ; { hw = & adapter->hw; toggle = 4294965299U; before = readl((void const volatile *)hw->hw_addr + 8U); tmp = readl((void const volatile *)hw->hw_addr + 8U); value = tmp & toggle; writel(toggle, (void volatile *)hw->hw_addr + 8U); tmp___0 = readl((void const volatile *)hw->hw_addr + 8U); after = tmp___0 & toggle; if (value != after) { if (adapter->msg_enable & 1) { netdev_err((struct net_device const *)adapter->netdev, "failed STATUS register test got: 0x%08X expected: 0x%08X\n", after, value); } else { } *data = 1ULL; return (1); } else { } writel(before, (void volatile *)hw->hw_addr + 8U); tmp___1 = reg_pattern_test(adapter, data, 40, 4294967295U, 4294967295U); if ((int )tmp___1) { return (1); } else { } tmp___2 = reg_pattern_test(adapter, data, 44, 65535U, 4294967295U); if ((int )tmp___2) { return (1); } else { } tmp___3 = reg_pattern_test(adapter, data, 48, 65535U, 4294967295U); if ((int )tmp___3) { return (1); } else { } tmp___4 = reg_pattern_test(adapter, data, 56, 65535U, 4294967295U); if ((int )tmp___4) { return (1); } else { } tmp___5 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10272 : 264, 65535U, 4294967295U); if ((int )tmp___5) { return (1); } else { } tmp___6 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10244 : 276, 4294967295U, 4294967295U); if ((int )tmp___6) { return (1); } else { } tmp___7 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10248 : 280, 1048448U, 1048575U); if ((int )tmp___7) { return (1); } else { } tmp___8 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10256 : 288, 65535U, 65535U); if ((int )tmp___8) { return (1); } else { } tmp___9 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10264 : 296, 65535U, 65535U); if ((int )tmp___9) { return (1); } else { } tmp___10 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 8552 : 352, 65528U, 65528U); if ((int )tmp___10) { return (1); } else { } tmp___11 = reg_pattern_test(adapter, data, 368, 65535U, 65535U); if ((int )tmp___11) { return (1); } else { } tmp___12 = reg_pattern_test(adapter, data, 1040, 1073741823U, 1073741823U); if ((int )tmp___12) { return (1); } else { } tmp___13 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 14340 : 1060, 4294967295U, 4294967295U); if ((int )tmp___13) { return (1); } else { } tmp___14 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 14344 : 1064, 1048448U, 1048575U); if ((int )tmp___14) { return (1); } else { } tmp___15 = reg_set_and_check(adapter, data, 256, 4294967295U, 0U); if ((int )tmp___15) { return (1); } else { } before = 115323902U; tmp___16 = reg_set_and_check(adapter, data, 256, before, 4194299U); if ((int )tmp___16) { return (1); } else { } tmp___17 = reg_set_and_check(adapter, data, 1024, 4294967295U, 0U); if ((int )tmp___17) { return (1); } else { } if ((unsigned int )hw->mac_type > 2U) { tmp___18 = reg_set_and_check(adapter, data, 256, before, 4294967295U); if ((int )tmp___18) { return (1); } else { } tmp___19 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10240 : 272, 4294967280U, 4294967295U); if ((int )tmp___19) { return (1); } else { } tmp___20 = reg_pattern_test(adapter, data, 376, 3221291007U, 65535U); if ((int )tmp___20) { return (1); } else { } tmp___21 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 14336 : 1056, 4294967280U, 4294967295U); if ((int )tmp___21) { return (1); } else { } tmp___22 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 14368 : 1088, 65535U, 65535U); if ((int )tmp___22) { return (1); } else { } value = 15U; i = 0U; goto ldv_54129; ldv_54128: tmp___23 = reg_pattern_test(adapter, data, (int )((unsigned int )hw->mac_type > 2U ? (((i << 1) + 1U) << 2) + 21504U : (((i << 1) + 1U) << 2) + 64U), 2147745791U, 4294967295U); if ((int )tmp___23) { return (1); } else { } i = i + 1U; ldv_54129: ; if (i < value) { goto ldv_54128; } else { } } else { tmp___24 = reg_set_and_check(adapter, data, 256, 4294967295U, 33554431U); if ((int )tmp___24) { return (1); } else { } tmp___25 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10240 : 272, 4294963200U, 4294967295U); if ((int )tmp___25) { return (1); } else { } tmp___26 = reg_pattern_test(adapter, data, 376, 65535U, 65535U); if ((int )tmp___26) { return (1); } else { } tmp___27 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 14336 : 1056, 4294963200U, 4294967295U); if ((int )tmp___27) { return (1); } else { } } value = 128U; i = 0U; goto ldv_54132; ldv_54131: tmp___28 = reg_pattern_test(adapter, data, (int )((unsigned int )hw->mac_type > 2U ? (i << 2) + 20992U : (i << 2) + 512U), 4294967295U, 4294967295U); if ((int )tmp___28) { return (1); } else { } i = i + 1U; ldv_54132: ; if (i < value) { goto ldv_54131; } else { } *data = 0ULL; return (0); } } static int e1000_eeprom_test(struct e1000_adapter *adapter , u64 *data ) { struct e1000_hw *hw ; u16 temp ; u16 checksum ; u16 i ; s32 tmp ; { hw = & adapter->hw; checksum = 0U; *data = 0ULL; i = 0U; goto ldv_54144; ldv_54143: tmp = e1000_read_eeprom(hw, (int )i, 1, & temp); if (tmp < 0) { *data = 1ULL; goto ldv_54142; } else { } checksum = (int )checksum + (int )temp; i = (u16 )((int )i + 1); ldv_54144: ; if ((unsigned int )i <= 63U) { goto ldv_54143; } else { } ldv_54142: ; if ((unsigned int )checksum != 47802U && *data == 0ULL) { *data = 2ULL; } else { } return ((int )*data); } } static irqreturn_t e1000_test_intr(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; unsigned int tmp___0 ; { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = readl((void const volatile *)hw->hw_addr + 192U); adapter->test_icr = adapter->test_icr | tmp___0; return (1); } } static int e1000_intr_test(struct e1000_adapter *adapter , u64 *data ) { struct net_device *netdev ; u32 mask ; u32 i ; bool shared_int ; u32 irq ; struct e1000_hw *hw ; int tmp ; int tmp___0 ; { netdev = adapter->netdev; i = 0U; shared_int = 1; irq = (adapter->pdev)->irq; hw = & adapter->hw; *data = 0ULL; tmp___0 = ldv_request_irq_97(irq, & e1000_test_intr, 256UL, (char const *)(& netdev->name), (void *)netdev); if (tmp___0 == 0) { shared_int = 0; } else { tmp = ldv_request_irq_19(irq, & e1000_test_intr, 128UL, (char const *)(& netdev->name), (void *)netdev); if (tmp != 0) { *data = 1ULL; return (-1); } else { } } if ((adapter->msg_enable & 8192) != 0) { netdev_info((struct net_device const *)adapter->netdev, "testing %s interrupt\n", (int )shared_int ? (char *)"shared" : (char *)"unshared"); } else { } writel(4294967295U, (void volatile *)hw->hw_addr + 216U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); goto ldv_54164; ldv_54163: mask = (u32 )(1 << (int )i); if (! shared_int) { adapter->test_icr = 0U; writel(mask, (void volatile *)hw->hw_addr + 216U); writel(mask, (void volatile *)hw->hw_addr + 200U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); if ((adapter->test_icr & mask) != 0U) { *data = 3ULL; goto ldv_54162; } else { } } else { } adapter->test_icr = 0U; writel(mask, (void volatile *)hw->hw_addr + 208U); writel(mask, (void volatile *)hw->hw_addr + 200U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); if ((adapter->test_icr & mask) == 0U) { *data = 4ULL; goto ldv_54162; } else { } if (! shared_int) { adapter->test_icr = 0U; writel(~ mask & 32767U, (void volatile *)hw->hw_addr + 216U); writel(~ mask & 32767U, (void volatile *)hw->hw_addr + 200U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); if (adapter->test_icr != 0U) { *data = 5ULL; goto ldv_54162; } else { } } else { } i = i + 1U; ldv_54164: ; if (i <= 9U) { goto ldv_54163; } else { } ldv_54162: writel(4294967295U, (void volatile *)hw->hw_addr + 216U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); ldv_free_irq_99(irq, (void *)netdev); return ((int )*data); } } static void e1000_free_desc_rings(struct e1000_adapter *adapter ) { struct e1000_tx_ring *txdr ; struct e1000_rx_ring *rxdr ; struct pci_dev *pdev ; int i ; { txdr = & adapter->test_tx_ring; rxdr = & adapter->test_rx_ring; pdev = adapter->pdev; if ((unsigned long )txdr->desc != (unsigned long )((void *)0) && (unsigned long )txdr->buffer_info != (unsigned long )((struct e1000_tx_buffer *)0)) { i = 0; goto ldv_54173; ldv_54172: ; if ((txdr->buffer_info + (unsigned long )i)->dma != 0ULL) { dma_unmap_single_attrs___0(& pdev->dev, (txdr->buffer_info + (unsigned long )i)->dma, (size_t )(txdr->buffer_info + (unsigned long )i)->length, 1, (struct dma_attrs *)0); } else { } if ((unsigned long )(txdr->buffer_info + (unsigned long )i)->skb != (unsigned long )((struct sk_buff *)0)) { consume_skb((txdr->buffer_info + (unsigned long )i)->skb); } else { } i = i + 1; ldv_54173: ; if ((unsigned int )i < txdr->count) { goto ldv_54172; } else { } } else { } if ((unsigned long )rxdr->desc != (unsigned long )((void *)0) && (unsigned long )rxdr->buffer_info != (unsigned long )((struct e1000_rx_buffer *)0)) { i = 0; goto ldv_54176; ldv_54175: ; if ((rxdr->buffer_info + (unsigned long )i)->dma != 0ULL) { dma_unmap_single_attrs___0(& pdev->dev, (rxdr->buffer_info + (unsigned long )i)->dma, 2048UL, 2, (struct dma_attrs *)0); } else { } kfree((void const *)(rxdr->buffer_info + (unsigned long )i)->rxbuf.data); i = i + 1; ldv_54176: ; if ((unsigned int )i < rxdr->count) { goto ldv_54175; } else { } } else { } if ((unsigned long )txdr->desc != (unsigned long )((void *)0)) { dma_free_attrs(& pdev->dev, (size_t )txdr->size, txdr->desc, txdr->dma, (struct dma_attrs *)0); txdr->desc = (void *)0; } else { } if ((unsigned long )rxdr->desc != (unsigned long )((void *)0)) { dma_free_attrs(& pdev->dev, (size_t )rxdr->size, rxdr->desc, rxdr->dma, (struct dma_attrs *)0); rxdr->desc = (void *)0; } else { } kfree((void const *)txdr->buffer_info); txdr->buffer_info = (struct e1000_tx_buffer *)0; kfree((void const *)rxdr->buffer_info); rxdr->buffer_info = (struct e1000_rx_buffer *)0; return; } } static int e1000_setup_desc_rings(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct e1000_tx_ring *txdr ; struct e1000_rx_ring *rxdr ; struct pci_dev *pdev ; u32 rctl ; int i ; int ret_val ; void *tmp ; unsigned int tmp___0 ; struct e1000_tx_desc *tx_desc ; struct sk_buff *skb ; unsigned int size ; int tmp___1 ; void *tmp___2 ; unsigned int tmp___3 ; struct e1000_rx_desc *rx_desc ; u8 *buf ; int _max1 ; int _max2 ; void *tmp___4 ; int _max1___0 ; int _max2___0 ; int tmp___5 ; { hw = & adapter->hw; txdr = & adapter->test_tx_ring; rxdr = & adapter->test_rx_ring; pdev = adapter->pdev; if (txdr->count == 0U) { txdr->count = 256U; } else { } tmp = kcalloc((size_t )txdr->count, 40UL, 208U); txdr->buffer_info = (struct e1000_tx_buffer *)tmp; if ((unsigned long )txdr->buffer_info == (unsigned long )((struct e1000_tx_buffer *)0)) { ret_val = 1; goto err_nomem; } else { } txdr->size = txdr->count * 16U; txdr->size = (txdr->size + 4095U) & 4294963200U; txdr->desc = dma_zalloc_coherent(& pdev->dev, (size_t )txdr->size, & txdr->dma, 208U); if ((unsigned long )txdr->desc == (unsigned long )((void *)0)) { ret_val = 2; goto err_nomem; } else { } tmp___0 = 0U; txdr->next_to_clean = tmp___0; txdr->next_to_use = tmp___0; writel((unsigned int )txdr->dma, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14336UL : 1056UL))); writel((unsigned int )(txdr->dma >> 32), (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14340UL : 1060UL))); writel(txdr->count * 16U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14344UL : 1064UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14352UL : 1072UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); writel(258298U, (void volatile *)hw->hw_addr + 1024U); i = 0; goto ldv_54193; ldv_54192: tx_desc = (struct e1000_tx_desc *)txdr->desc + (unsigned long )i; size = 1024U; skb = alloc_skb(size, 208U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { ret_val = 3; goto err_nomem; } else { } skb_put(skb, size); (txdr->buffer_info + (unsigned long )i)->skb = skb; (txdr->buffer_info + (unsigned long )i)->length = (u16 )skb->len; (txdr->buffer_info + (unsigned long )i)->dma = dma_map_single_attrs___0(& pdev->dev, (void *)skb->data, (size_t )skb->len, 1, (struct dma_attrs *)0); tmp___1 = dma_mapping_error(& pdev->dev, (txdr->buffer_info + (unsigned long )i)->dma); if (tmp___1 != 0) { ret_val = 4; goto err_nomem; } else { } tx_desc->buffer_addr = (txdr->buffer_info + (unsigned long )i)->dma; tx_desc->lower.data = skb->len; tx_desc->lower.data = tx_desc->lower.data | 318767104U; tx_desc->upper.data = 0U; i = i + 1; ldv_54193: ; if ((unsigned int )i < txdr->count) { goto ldv_54192; } else { } if (rxdr->count == 0U) { rxdr->count = 256U; } else { } tmp___2 = kcalloc((size_t )rxdr->count, 16UL, 208U); rxdr->buffer_info = (struct e1000_rx_buffer *)tmp___2; if ((unsigned long )rxdr->buffer_info == (unsigned long )((struct e1000_rx_buffer *)0)) { ret_val = 5; goto err_nomem; } else { } rxdr->size = rxdr->count * 16U; rxdr->desc = dma_zalloc_coherent(& pdev->dev, (size_t )rxdr->size, & rxdr->dma, 208U); if ((unsigned long )rxdr->desc == (unsigned long )((void *)0)) { ret_val = 6; goto err_nomem; } else { } tmp___3 = 0U; rxdr->next_to_clean = tmp___3; rxdr->next_to_use = tmp___3; rctl = readl((void const volatile *)hw->hw_addr + 256U); writel(rctl & 4294967293U, (void volatile *)hw->hw_addr + 256U); writel((unsigned int )rxdr->dma, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10240UL : 272UL))); writel((unsigned int )(rxdr->dma >> 32), (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10244UL : 276UL))); writel(rxdr->size, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10248UL : 280UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10256UL : 288UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10264UL : 296UL))); rctl = (hw->mc_filter_type << 12) | 32770U; writel(rctl, (void volatile *)hw->hw_addr + 256U); i = 0; goto ldv_54204; ldv_54203: rx_desc = (struct e1000_rx_desc *)rxdr->desc + (unsigned long )i; _max1 = 32; _max2 = 64; tmp___4 = kzalloc((size_t )((_max1 > _max2 ? _max1 : _max2) + 2048), 208U); buf = (u8 *)tmp___4; if ((unsigned long )buf == (unsigned long )((u8 *)0U)) { ret_val = 7; goto err_nomem; } else { } (rxdr->buffer_info + (unsigned long )i)->rxbuf.data = buf; _max1___0 = 32; _max2___0 = 64; (rxdr->buffer_info + (unsigned long )i)->dma = dma_map_single_attrs___0(& pdev->dev, (void *)buf + (unsigned long )(_max1___0 > _max2___0 ? _max1___0 : _max2___0), 2048UL, 2, (struct dma_attrs *)0); tmp___5 = dma_mapping_error(& pdev->dev, (rxdr->buffer_info + (unsigned long )i)->dma); if (tmp___5 != 0) { ret_val = 8; goto err_nomem; } else { } rx_desc->buffer_addr = (rxdr->buffer_info + (unsigned long )i)->dma; i = i + 1; ldv_54204: ; if ((unsigned int )i < rxdr->count) { goto ldv_54203; } else { } return (0); err_nomem: e1000_free_desc_rings(adapter); return (ret_val); } } static void e1000_phy_disable_receiver(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { hw = & adapter->hw; e1000_write_phy_reg(hw, 29U, 31); e1000_write_phy_reg(hw, 30U, 36860); e1000_write_phy_reg(hw, 29U, 26); e1000_write_phy_reg(hw, 30U, 36848); return; } } static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 phy_reg ; { hw = & adapter->hw; e1000_read_phy_reg(hw, 20U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 112U); e1000_write_phy_reg(hw, 20U, (int )phy_reg); e1000_read_phy_reg(hw, 16U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 2048U); e1000_write_phy_reg(hw, 16U, (int )phy_reg); return; } } static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl_reg ; u16 phy_reg ; { hw = & adapter->hw; ctrl_reg = readl((void const volatile *)hw->hw_addr); ctrl_reg = ctrl_reg | 6785U; writel(ctrl_reg, (void volatile *)hw->hw_addr); e1000_read_phy_reg(hw, 16U, & phy_reg); phy_reg = (unsigned int )phy_reg & 65439U; e1000_write_phy_reg(hw, 16U, (int )phy_reg); e1000_phy_reset(hw); e1000_phy_reset_clk_and_crs(adapter); e1000_write_phy_reg(hw, 0U, 33024); __const_udelay(2147500UL); e1000_phy_reset_clk_and_crs(adapter); e1000_phy_disable_receiver(adapter); e1000_read_phy_reg(hw, 0U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 16384U); e1000_write_phy_reg(hw, 0U, (int )phy_reg); e1000_phy_reset_clk_and_crs(adapter); e1000_read_phy_reg(hw, 0U, & phy_reg); if ((unsigned int )phy_reg != 16640U) { return (9); } else { } e1000_read_phy_reg(hw, 20U, & phy_reg); if ((unsigned int )phy_reg != 112U) { return (10); } else { } e1000_read_phy_reg(hw, 29U, & phy_reg); if ((unsigned int )phy_reg != 26U) { return (11); } else { } return (0); } } static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl_reg ; u32 stat_reg ; { hw = & adapter->hw; ctrl_reg = 0U; stat_reg = 0U; hw->autoneg = 0U; if ((unsigned int )hw->phy_type == 0U) { e1000_write_phy_reg(hw, 16U, 2056); e1000_write_phy_reg(hw, 0U, 37184); e1000_write_phy_reg(hw, 0U, 33088); } else { } ctrl_reg = readl((void const volatile *)hw->hw_addr); e1000_write_phy_reg(hw, 0U, 16704); ctrl_reg = readl((void const volatile *)hw->hw_addr); ctrl_reg = ctrl_reg & 4294966527U; ctrl_reg = ctrl_reg | 6657U; if ((unsigned int )hw->media_type == 0U && (unsigned int )hw->phy_type == 0U) { ctrl_reg = ctrl_reg | 128U; } else { stat_reg = readl((void const volatile *)hw->hw_addr + 8U); if ((stat_reg & 1U) == 0U) { ctrl_reg = ctrl_reg | 192U; } else { } } writel(ctrl_reg, (void volatile *)hw->hw_addr); if ((unsigned int )hw->phy_type == 0U) { e1000_phy_disable_receiver(adapter); } else { } __const_udelay(2147500UL); return (0); } } static int e1000_set_phy_loopback(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 phy_reg ; u16 count ; int tmp ; u16 tmp___0 ; int tmp___1 ; { hw = & adapter->hw; phy_reg = 0U; count = 0U; switch ((unsigned int )hw->mac_type) { case 3U: ; if ((unsigned int )hw->media_type == 0U) { goto ldv_54235; ldv_54234: ; ldv_54235: tmp = e1000_nonintegrated_phy_loopback(adapter); if (tmp != 0) { tmp___0 = count; count = (u16 )((int )count + 1); if ((unsigned int )tmp___0 <= 9U) { goto ldv_54234; } else { goto ldv_54236; } } else { } ldv_54236: ; if ((unsigned int )count <= 10U) { return (0); } else { } } else { } goto ldv_54237; case 4U: ; case 5U: ; case 6U: ; case 7U: ; case 8U: ; case 10U: ; case 11U: ; case 12U: ; case 13U: ; case 14U: tmp___1 = e1000_integrated_phy_loopback(adapter); return (tmp___1); default: e1000_read_phy_reg(hw, 0U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 16384U); e1000_write_phy_reg(hw, 0U, (int )phy_reg); return (0); } ldv_54237: ; return (8); } } static int e1000_setup_loopback_test(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; int tmp ; int tmp___0 ; { hw = & adapter->hw; if ((unsigned int )hw->media_type == 1U || (unsigned int )hw->media_type == 2U) { switch ((unsigned int )hw->mac_type) { case 6U: ; case 8U: ; case 7U: ; case 10U: tmp = e1000_set_phy_loopback(adapter); return (tmp); default: rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl | 192U; writel(rctl, (void volatile *)hw->hw_addr + 256U); return (0); } } else if ((unsigned int )hw->media_type == 0U) { tmp___0 = e1000_set_phy_loopback(adapter); return (tmp___0); } else { } return (7); } } static void e1000_loopback_cleanup(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; u16 phy_reg ; { hw = & adapter->hw; rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294967103U; writel(rctl, (void volatile *)hw->hw_addr + 256U); switch ((unsigned int )hw->mac_type) { case 6U: ; case 8U: ; case 7U: ; case 10U: ; default: hw->autoneg = 1U; e1000_read_phy_reg(hw, 0U, & phy_reg); if (((int )phy_reg & 16384) != 0) { phy_reg = (unsigned int )phy_reg & 49151U; e1000_write_phy_reg(hw, 0U, (int )phy_reg); e1000_phy_reset(hw); } else { } goto ldv_54270; } ldv_54270: ; return; } } static void e1000_create_lbtest_frame(struct sk_buff *skb , unsigned int frame_size ) { { memset((void *)skb->data, 255, (size_t )frame_size); frame_size = frame_size & 4294967294U; memset((void *)skb->data + (unsigned long )(frame_size / 2U), 170, (size_t )(frame_size / 2U - 1U)); memset((void *)skb->data + (unsigned long )(frame_size / 2U + 10U), 190, 1UL); memset((void *)skb->data + (unsigned long )(frame_size / 2U + 12U), 175, 1UL); return; } } static int e1000_check_lbtest_frame(unsigned char const *data , unsigned int frame_size ) { { frame_size = frame_size & 4294967294U; if ((unsigned int )((unsigned char )*(data + 3UL)) == 255U) { if ((unsigned int )((unsigned char )*(data + ((unsigned long )(frame_size / 2U) + 10UL))) == 190U && (unsigned int )((unsigned char )*(data + ((unsigned long )(frame_size / 2U) + 12UL))) == 175U) { return (0); } else { } } else { } return (13); } } static int e1000_run_loopback_test(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct e1000_tx_ring *txdr ; struct e1000_rx_ring *rxdr ; struct pci_dev *pdev ; int i ; int j ; int k ; int l ; int lc ; int good_cnt ; int ret_val ; unsigned long time ; long tmp ; int _max1 ; int _max2 ; long tmp___0 ; { hw = & adapter->hw; txdr = & adapter->test_tx_ring; rxdr = & adapter->test_rx_ring; pdev = adapter->pdev; ret_val = 0; writel(rxdr->count - 1U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10264UL : 296UL))); if (rxdr->count <= txdr->count) { lc = (int )((txdr->count / 64U) * 2U + 1U); } else { lc = (int )((rxdr->count / 64U) * 2U + 1U); } l = 0; k = l; j = 0; goto ldv_54316; ldv_54315: i = 0; goto ldv_54295; ldv_54294: e1000_create_lbtest_frame((txdr->buffer_info + (unsigned long )i)->skb, 1024U); dma_sync_single_for_device(& pdev->dev, (txdr->buffer_info + (unsigned long )k)->dma, (size_t )(txdr->buffer_info + (unsigned long )k)->length, 1); k = k + 1; tmp = ldv__builtin_expect((unsigned int )k == txdr->count, 0L); if (tmp != 0L) { k = 0; } else { } i = i + 1; ldv_54295: ; if (i <= 63) { goto ldv_54294; } else { } writel((unsigned int )k, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); readl((void const volatile *)hw->hw_addr + 8U); msleep(200U); time = jiffies; good_cnt = 0; ldv_54306: dma_sync_single_for_cpu___0(& pdev->dev, (rxdr->buffer_info + (unsigned long )l)->dma, 2048UL, 2); _max1 = 32; _max2 = 64; ret_val = e1000_check_lbtest_frame((unsigned char const *)(rxdr->buffer_info + (unsigned long )l)->rxbuf.data + (unsigned long )(_max1 > _max2 ? _max1 : _max2), 1024U); if (ret_val == 0) { good_cnt = good_cnt + 1; } else { } l = l + 1; tmp___0 = ldv__builtin_expect((unsigned int )l == rxdr->count, 0L); if (tmp___0 != 0L) { l = 0; } else { } if (good_cnt <= 63 && (long )(((unsigned long )jiffies - time) - 20UL) < 0L) { goto ldv_54306; } else { } if (good_cnt != 64) { ret_val = 13; goto ldv_54308; } else { } if ((long )(((unsigned long )jiffies - time) - 2UL) >= 0L) { ret_val = 14; goto ldv_54308; } else { } j = j + 1; ldv_54316: ; if (j <= lc) { goto ldv_54315; } else { } ldv_54308: ; return (ret_val); } } static int e1000_loopback_test(struct e1000_adapter *adapter , u64 *data ) { int tmp ; int tmp___0 ; int tmp___1 ; { tmp = e1000_setup_desc_rings(adapter); *data = (u64 )tmp; if (*data != 0ULL) { goto out; } else { } tmp___0 = e1000_setup_loopback_test(adapter); *data = (u64 )tmp___0; if (*data != 0ULL) { goto err_loopback; } else { } tmp___1 = e1000_run_loopback_test(adapter); *data = (u64 )tmp___1; e1000_loopback_cleanup(adapter); err_loopback: e1000_free_desc_rings(adapter); out: ; return ((int )*data); } } static int e1000_link_test(struct e1000_adapter *adapter , u64 *data ) { struct e1000_hw *hw ; int i ; int tmp ; unsigned int tmp___0 ; { hw = & adapter->hw; *data = 0ULL; if ((unsigned int )hw->media_type == 2U) { i = 0; hw->serdes_has_link = 0; ldv_54329: e1000_check_for_link(hw); if ((int )hw->serdes_has_link) { return ((int )*data); } else { } msleep(20U); tmp = i; i = i + 1; if (tmp <= 3749) { goto ldv_54329; } else { } *data = 1ULL; } else { e1000_check_for_link(hw); if ((unsigned int )hw->autoneg != 0U) { msleep(4000U); } else { } tmp___0 = readl((void const volatile *)hw->hw_addr + 8U); if ((tmp___0 & 2U) == 0U) { *data = 1ULL; } else { } } return ((int )*data); } } static int e1000_get_sset_count(struct net_device *netdev , int sset ) { { switch (sset) { case 0: ; return (5); case 1: ; return (46); default: ; return (-95); } } } static void e1000_diag_test(struct net_device *netdev , struct ethtool_test *eth_test , u64 *data ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; bool if_running ; bool tmp___0 ; u16 autoneg_advertised ; u8 forced_speed_duplex ; u8 autoneg ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = netif_running((struct net_device const *)netdev); if_running = tmp___0; set_bit(0L, (unsigned long volatile *)(& adapter->flags)); if (eth_test->flags == 1U) { autoneg_advertised = hw->autoneg_advertised; forced_speed_duplex = hw->forced_speed_duplex; autoneg = hw->autoneg; if ((adapter->msg_enable & 8192) != 0) { netdev_info((struct net_device const *)adapter->netdev, "offline testing starting\n"); } else { } tmp___1 = e1000_link_test(adapter, data + 4UL); if (tmp___1 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } if ((int )if_running) { dev_close(netdev); } else { e1000_reset(adapter); } tmp___2 = e1000_reg_test(adapter, data); if (tmp___2 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } e1000_reset(adapter); tmp___3 = e1000_eeprom_test(adapter, data + 1UL); if (tmp___3 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } e1000_reset(adapter); tmp___4 = e1000_intr_test(adapter, data + 2UL); if (tmp___4 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } e1000_reset(adapter); e1000_power_up_phy(adapter); tmp___5 = e1000_loopback_test(adapter, data + 3UL); if (tmp___5 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } hw->autoneg_advertised = autoneg_advertised; hw->forced_speed_duplex = forced_speed_duplex; hw->autoneg = autoneg; e1000_reset(adapter); clear_bit(0L, (unsigned long volatile *)(& adapter->flags)); if ((int )if_running) { dev_open(netdev); } else { } } else { if ((adapter->msg_enable & 8192) != 0) { netdev_info((struct net_device const *)adapter->netdev, "online testing starting\n"); } else { } tmp___6 = e1000_link_test(adapter, data + 4UL); if (tmp___6 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } *data = 0ULL; *(data + 1UL) = 0ULL; *(data + 2UL) = 0ULL; *(data + 3UL) = 0ULL; clear_bit(0L, (unsigned long volatile *)(& adapter->flags)); } msleep_interruptible(4000U); return; } } static int e1000_wol_exclusion(struct e1000_adapter *adapter , struct ethtool_wolinfo *wol ) { struct e1000_hw *hw ; int retval ; unsigned int tmp ; unsigned int tmp___0 ; { hw = & adapter->hw; retval = 1; switch ((int )hw->device_id) { case 4096: ; case 4097: ; case 4100: ; case 4105: ; case 4125: ; case 4113: ; case 4111: ; case 4249: ; case 4234: wol->supported = 0U; goto ldv_54368; case 4114: ; case 4218: tmp = readl((void const volatile *)hw->hw_addr + 8U); if ((tmp & 4U) != 0U) { wol->supported = 0U; goto ldv_54368; } else { } retval = 0; goto ldv_54368; case 4277: ; if (! adapter->quad_port_a) { wol->supported = 0U; goto ldv_54368; } else { } retval = 0; goto ldv_54368; default: tmp___0 = readl((void const volatile *)hw->hw_addr + 8U); if ((tmp___0 & 4U) != 0U && adapter->eeprom_wol == 0U) { wol->supported = 0U; goto ldv_54368; } else { } retval = 0; } ldv_54368: ; return (retval); } } static void e1000_get_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; wol->supported = 46U; wol->wolopts = 0U; tmp___0 = e1000_wol_exclusion(adapter, wol); if (tmp___0 != 0) { return; } else { tmp___1 = device_can_wakeup(& (adapter->pdev)->dev); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return; } else { } } switch ((int )hw->device_id) { case 4277: wol->supported = wol->supported & 4294967293U; if ((adapter->wol & 4U) != 0U) { if (adapter->msg_enable & 1) { netdev_err((struct net_device const *)adapter->netdev, "Interface does not support directed (unicast) frame wake-up packets\n"); } else { } } else { } goto ldv_54380; default: ; goto ldv_54380; } ldv_54380: ; if ((adapter->wol & 4U) != 0U) { wol->wolopts = wol->wolopts | 2U; } else { } if ((adapter->wol & 8U) != 0U) { wol->wolopts = wol->wolopts | 4U; } else { } if ((adapter->wol & 16U) != 0U) { wol->wolopts = wol->wolopts | 8U; } else { } if ((adapter->wol & 2U) != 0U) { wol->wolopts = wol->wolopts | 32U; } else { } return; } } static int e1000_set_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if ((wol->wolopts & 81U) != 0U) { return (-95); } else { } tmp___0 = e1000_wol_exclusion(adapter, wol); if (tmp___0 != 0) { return (wol->wolopts != 0U ? -95 : 0); } else { tmp___1 = device_can_wakeup(& (adapter->pdev)->dev); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (wol->wolopts != 0U ? -95 : 0); } else { } } switch ((int )hw->device_id) { case 4277: ; if ((wol->wolopts & 2U) != 0U) { if (adapter->msg_enable & 1) { netdev_err((struct net_device const *)adapter->netdev, "Interface does not support directed (unicast) frame wake-up packets\n"); } else { } return (-95); } else { } goto ldv_54389; default: ; goto ldv_54389; } ldv_54389: adapter->wol = 0U; if ((wol->wolopts & 2U) != 0U) { adapter->wol = adapter->wol | 4U; } else { } if ((wol->wolopts & 4U) != 0U) { adapter->wol = adapter->wol | 8U; } else { } if ((wol->wolopts & 8U) != 0U) { adapter->wol = adapter->wol | 16U; } else { } if ((wol->wolopts & 32U) != 0U) { adapter->wol = adapter->wol | 2U; } else { } device_set_wakeup_enable(& (adapter->pdev)->dev, adapter->wol != 0U); return (0); } } static int e1000_set_phys_id(struct net_device *netdev , enum ethtool_phys_id_state state ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; switch ((unsigned int )state) { case 1U: e1000_setup_led(hw); return (2); case 2U: e1000_led_on(hw); goto ldv_54399; case 3U: e1000_led_off(hw); goto ldv_54399; case 0U: e1000_cleanup_led(hw); } ldv_54399: ; return (0); } } static int e1000_get_coalesce(struct net_device *netdev , struct ethtool_coalesce *ec ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; if ((unsigned int )adapter->hw.mac_type <= 5U) { return (-95); } else { } if (adapter->itr_setting <= 4U) { ec->rx_coalesce_usecs = adapter->itr_setting; } else { ec->rx_coalesce_usecs = 1000000U / adapter->itr_setting; } return (0); } } static int e1000_set_coalesce(struct net_device *netdev , struct ethtool_coalesce *ec ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if ((unsigned int )hw->mac_type <= 5U) { return (-95); } else { } if ((ec->rx_coalesce_usecs > 10000U || (ec->rx_coalesce_usecs > 4U && ec->rx_coalesce_usecs <= 9U)) || ec->rx_coalesce_usecs == 2U) { return (-22); } else { } if (ec->rx_coalesce_usecs == 4U) { tmp___0 = 4U; adapter->itr_setting = tmp___0; adapter->itr = tmp___0; } else if (ec->rx_coalesce_usecs <= 3U) { adapter->itr = 20000U; adapter->itr_setting = ec->rx_coalesce_usecs; } else { adapter->itr = 1000000U / ec->rx_coalesce_usecs; adapter->itr_setting = adapter->itr & 4294967292U; } if (adapter->itr_setting != 0U) { writel(1000000000U / (adapter->itr * 256U), (void volatile *)hw->hw_addr + 196U); } else { writel(0U, (void volatile *)hw->hw_addr + 196U); } return (0); } } static int e1000_nway_reset(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; bool tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); if ((int )tmp___0) { e1000_reinit_locked(adapter); } else { } return (0); } } static void e1000_get_ethtool_stats(struct net_device *netdev , struct ethtool_stats *stats , u64 *data ) { struct e1000_adapter *adapter ; void *tmp ; int i ; char *p ; struct e1000_stats const *stat ; bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; p = (char *)0; stat = (struct e1000_stats const *)(& e1000_gstrings_stats); e1000_update_stats(adapter); i = 0; goto ldv_54438; ldv_54437: ; switch (stat->type) { case 0: p = (char *)netdev + (unsigned long )stat->stat_offset; goto ldv_54429; case 1: p = (char *)adapter + (unsigned long )stat->stat_offset; goto ldv_54429; default: __ret_warn_once = 1; tmp___2 = ldv__builtin_expect(__ret_warn_once != 0, 0L); if (tmp___2 != 0L) { __ret_warn_on = ! __warned; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { warn_slowpath_fmt("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_ethtool.c", 1844, "Invalid E1000 stat type: %u index %d\n", stat->type, i); } else { } tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___1 != 0L) { __warned = 1; } else { } } else { } ldv__builtin_expect(__ret_warn_once != 0, 0L); goto ldv_54429; } ldv_54429: ; if (stat->sizeof_stat == 8) { *(data + (unsigned long )i) = *((u64 *)p); } else { *(data + (unsigned long )i) = (u64 )*((u32 *)p); } stat = stat + 1; i = i + 1; ldv_54438: ; if ((unsigned int )i <= 45U) { goto ldv_54437; } else { } return; } } static void e1000_get_strings(struct net_device *netdev , u32 stringset , u8 *data ) { u8 *p ; int i ; { p = data; switch (stringset) { case 0U: memcpy((void *)data, (void const *)(& e1000_gstrings_test), 160UL); goto ldv_54448; case 1U: i = 0; goto ldv_54453; ldv_54452: memcpy((void *)p, (void const *)(& e1000_gstrings_stats[i].stat_string), 32UL); p = p + 32UL; i = i + 1; ldv_54453: ; if ((unsigned int )i <= 45U) { goto ldv_54452; } else { } goto ldv_54448; } ldv_54448: ; return; } } static struct ethtool_ops const e1000_ethtool_ops = {& e1000_get_settings, & e1000_set_settings, & e1000_get_drvinfo, & e1000_get_regs_len, & e1000_get_regs, & e1000_get_wol, & e1000_set_wol, & e1000_get_msglevel, & e1000_set_msglevel, & e1000_nway_reset, & e1000_get_link, & e1000_get_eeprom_len, & e1000_get_eeprom, & e1000_set_eeprom, & e1000_get_coalesce, & e1000_set_coalesce, & e1000_get_ringparam, & e1000_set_ringparam, & e1000_get_pauseparam, & e1000_set_pauseparam, & e1000_diag_test, & e1000_get_strings, & e1000_set_phys_id, & e1000_get_ethtool_stats, 0, 0, 0, 0, & e1000_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ethtool_op_get_ts_info, 0, 0, 0, 0, 0, 0}; void e1000_set_ethtool_ops(struct net_device *netdev ) { { netdev->ethtool_ops = & e1000_ethtool_ops; return; } } void choose_interrupt_2(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_0, ldv_irq_line_2_0, ldv_irq_data_2_0); goto ldv_54463; case 1: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_1, ldv_irq_line_2_1, ldv_irq_data_2_1); goto ldv_54463; case 2: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_2, ldv_irq_line_2_2, ldv_irq_data_2_2); goto ldv_54463; case 3: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_3, ldv_irq_line_2_3, ldv_irq_data_2_3); goto ldv_54463; default: ldv_stop(); } ldv_54463: ; return; } } void disable_suitable_irq_2(int line , void *data ) { { if (ldv_irq_2_0 != 0 && line == ldv_irq_line_2_0) { ldv_irq_2_0 = 0; return; } else { } if (ldv_irq_2_1 != 0 && line == ldv_irq_line_2_1) { ldv_irq_2_1 = 0; return; } else { } if (ldv_irq_2_2 != 0 && line == ldv_irq_line_2_2) { ldv_irq_2_2 = 0; return; } else { } if (ldv_irq_2_3 != 0 && line == ldv_irq_line_2_3) { ldv_irq_2_3 = 0; return; } else { } return; } } void activate_suitable_irq_2(int line , void *data ) { { if (ldv_irq_2_0 == 0) { ldv_irq_line_2_0 = line; ldv_irq_data_2_0 = data; ldv_irq_2_0 = 1; return; } else { } if (ldv_irq_2_1 == 0) { ldv_irq_line_2_1 = line; ldv_irq_data_2_1 = data; ldv_irq_2_1 = 1; return; } else { } if (ldv_irq_2_2 == 0) { ldv_irq_line_2_2 = line; ldv_irq_data_2_2 = data; ldv_irq_2_2 = 1; return; } else { } if (ldv_irq_2_3 == 0) { ldv_irq_line_2_3 = line; ldv_irq_data_2_3 = data; ldv_irq_2_3 = 1; return; } else { } return; } } int reg_check_1(irqreturn_t (*handler)(int , void * ) ) { { if ((unsigned long )handler == (unsigned long )(& e1000_test_intr)) { return (1); } else { } return (0); } } void choose_interrupt_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_0, ldv_irq_line_1_0, ldv_irq_data_1_0); goto ldv_54485; case 1: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_1, ldv_irq_line_1_1, ldv_irq_data_1_1); goto ldv_54485; case 2: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_2, ldv_irq_line_1_2, ldv_irq_data_1_2); goto ldv_54485; case 3: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_3, ldv_irq_line_1_3, ldv_irq_data_1_3); goto ldv_54485; default: ldv_stop(); } ldv_54485: ; return; } } int reg_check_2(irqreturn_t (*handler)(int , void * ) ) { { if ((unsigned long )handler == (unsigned long )(& e1000_test_intr)) { return (1); } else { } return (0); } } void ldv_initialize_ethtool_ops_7(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; { tmp = ldv_init_zalloc(92UL); e1000_ethtool_ops_group4 = (struct ethtool_coalesce *)tmp; tmp___0 = ldv_init_zalloc(36UL); e1000_ethtool_ops_group0 = (struct ethtool_ringparam *)tmp___0; tmp___1 = ldv_init_zalloc(3008UL); e1000_ethtool_ops_group5 = (struct net_device *)tmp___1; tmp___2 = ldv_init_zalloc(16UL); e1000_ethtool_ops_group2 = (struct ethtool_eeprom *)tmp___2; tmp___3 = ldv_init_zalloc(44UL); e1000_ethtool_ops_group1 = (struct ethtool_cmd *)tmp___3; tmp___4 = ldv_init_zalloc(20UL); e1000_ethtool_ops_group6 = (struct ethtool_wolinfo *)tmp___4; tmp___5 = ldv_init_zalloc(16UL); e1000_ethtool_ops_group3 = (struct ethtool_pauseparam *)tmp___5; return; } } void disable_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 != 0 && line == ldv_irq_line_1_0) { ldv_irq_1_0 = 0; return; } else { } if (ldv_irq_1_1 != 0 && line == ldv_irq_line_1_1) { ldv_irq_1_1 = 0; return; } else { } if (ldv_irq_1_2 != 0 && line == ldv_irq_line_1_2) { ldv_irq_1_2 = 0; return; } else { } if (ldv_irq_1_3 != 0 && line == ldv_irq_line_1_3) { ldv_irq_1_3 = 0; return; } else { } return; } } int ldv_irq_1(int state , int line , void *data ) { irqreturn_t irq_retval ; int tmp ; int tmp___0 ; { tmp = __VERIFIER_nondet_int(); irq_retval = (irqreturn_t )tmp; if (state != 0) { tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (state == 1) { LDV_IN_INTERRUPT = 2; irq_retval = e1000_test_intr(line, data); LDV_IN_INTERRUPT = 1; return (state); } else { } goto ldv_54509; default: ldv_stop(); } ldv_54509: ; } else { } return (state); } } void activate_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 == 0) { ldv_irq_line_1_0 = line; ldv_irq_data_1_0 = data; ldv_irq_1_0 = 1; return; } else { } if (ldv_irq_1_1 == 0) { ldv_irq_line_1_1 = line; ldv_irq_data_1_1 = data; ldv_irq_1_1 = 1; return; } else { } if (ldv_irq_1_2 == 0) { ldv_irq_line_1_2 = line; ldv_irq_data_1_2 = data; ldv_irq_1_2 = 1; return; } else { } if (ldv_irq_1_3 == 0) { ldv_irq_line_1_3 = line; ldv_irq_data_1_3 = data; ldv_irq_1_3 = 1; return; } else { } return; } } int ldv_irq_2(int state , int line , void *data ) { irqreturn_t irq_retval ; int tmp ; int tmp___0 ; { tmp = __VERIFIER_nondet_int(); irq_retval = (irqreturn_t )tmp; if (state != 0) { tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (state == 1) { LDV_IN_INTERRUPT = 2; irq_retval = e1000_test_intr(line, data); LDV_IN_INTERRUPT = 1; return (state); } else { } goto ldv_54522; default: ldv_stop(); } ldv_54522: ; } else { } return (state); } } void ldv_main_exported_7(void) { u32 ldvarg2 ; enum ethtool_phys_id_state ldvarg9 ; void *ldvarg10 ; void *tmp ; struct ethtool_stats *ldvarg13 ; void *tmp___0 ; u64 *ldvarg4 ; void *tmp___1 ; struct ethtool_drvinfo *ldvarg14 ; void *tmp___2 ; u8 *ldvarg1 ; void *tmp___3 ; int ldvarg8 ; u32 ldvarg6 ; struct ethtool_test *ldvarg5 ; void *tmp___4 ; u64 *ldvarg12 ; void *tmp___5 ; u8 *ldvarg0 ; void *tmp___6 ; u8 *ldvarg3 ; void *tmp___7 ; struct ethtool_ts_info *ldvarg7 ; void *tmp___8 ; struct ethtool_regs *ldvarg11 ; void *tmp___9 ; int tmp___10 ; { tmp = ldv_init_zalloc(1UL); ldvarg10 = tmp; tmp___0 = ldv_init_zalloc(8UL); ldvarg13 = (struct ethtool_stats *)tmp___0; tmp___1 = ldv_init_zalloc(8UL); ldvarg4 = (u64 *)tmp___1; tmp___2 = ldv_init_zalloc(196UL); ldvarg14 = (struct ethtool_drvinfo *)tmp___2; tmp___3 = ldv_init_zalloc(1UL); ldvarg1 = (u8 *)tmp___3; tmp___4 = ldv_init_zalloc(16UL); ldvarg5 = (struct ethtool_test *)tmp___4; tmp___5 = ldv_init_zalloc(8UL); ldvarg12 = (u64 *)tmp___5; tmp___6 = ldv_init_zalloc(1UL); ldvarg0 = (u8 *)tmp___6; tmp___7 = ldv_init_zalloc(1UL); ldvarg3 = (u8 *)tmp___7; tmp___8 = ldv_init_zalloc(44UL); ldvarg7 = (struct ethtool_ts_info *)tmp___8; tmp___9 = ldv_init_zalloc(12UL); ldvarg11 = (struct ethtool_regs *)tmp___9; ldv_memset((void *)(& ldvarg2), 0, 4UL); ldv_memset((void *)(& ldvarg9), 0, 4UL); ldv_memset((void *)(& ldvarg8), 0, 4UL); ldv_memset((void *)(& ldvarg6), 0, 4UL); tmp___10 = __VERIFIER_nondet_int(); switch (tmp___10) { case 0: ; if (ldv_state_variable_7 == 1) { e1000_get_drvinfo(e1000_ethtool_ops_group5, ldvarg14); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 1: ; if (ldv_state_variable_7 == 1) { e1000_set_pauseparam(e1000_ethtool_ops_group5, e1000_ethtool_ops_group3); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 2: ; if (ldv_state_variable_7 == 1) { e1000_get_ethtool_stats(e1000_ethtool_ops_group5, ldvarg13, ldvarg12); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 3: ; if (ldv_state_variable_7 == 1) { e1000_get_coalesce(e1000_ethtool_ops_group5, e1000_ethtool_ops_group4); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 4: ; if (ldv_state_variable_7 == 1) { e1000_get_ringparam(e1000_ethtool_ops_group5, e1000_ethtool_ops_group0); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 5: ; if (ldv_state_variable_7 == 1) { e1000_get_regs(e1000_ethtool_ops_group5, ldvarg11, ldvarg10); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 6: ; if (ldv_state_variable_7 == 1) { e1000_set_phys_id(e1000_ethtool_ops_group5, ldvarg9); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 7: ; if (ldv_state_variable_7 == 1) { e1000_get_pauseparam(e1000_ethtool_ops_group5, e1000_ethtool_ops_group3); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 8: ; if (ldv_state_variable_7 == 1) { e1000_get_sset_count(e1000_ethtool_ops_group5, ldvarg8); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 9: ; if (ldv_state_variable_7 == 1) { e1000_get_settings(e1000_ethtool_ops_group5, e1000_ethtool_ops_group1); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 10: ; if (ldv_state_variable_7 == 1) { e1000_set_coalesce(e1000_ethtool_ops_group5, e1000_ethtool_ops_group4); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 11: ; if (ldv_state_variable_7 == 1) { e1000_set_wol(e1000_ethtool_ops_group5, e1000_ethtool_ops_group6); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 12: ; if (ldv_state_variable_7 == 1) { ethtool_op_get_ts_info(e1000_ethtool_ops_group5, ldvarg7); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 13: ; if (ldv_state_variable_7 == 1) { e1000_set_msglevel(e1000_ethtool_ops_group5, ldvarg6); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 14: ; if (ldv_state_variable_7 == 1) { e1000_get_eeprom_len(e1000_ethtool_ops_group5); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 15: ; if (ldv_state_variable_7 == 1) { e1000_set_settings(e1000_ethtool_ops_group5, e1000_ethtool_ops_group1); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 16: ; if (ldv_state_variable_7 == 1) { e1000_diag_test(e1000_ethtool_ops_group5, ldvarg5, ldvarg4); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 17: ; if (ldv_state_variable_7 == 1) { e1000_get_eeprom(e1000_ethtool_ops_group5, e1000_ethtool_ops_group2, ldvarg3); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 18: ; if (ldv_state_variable_7 == 1) { e1000_get_strings(e1000_ethtool_ops_group5, ldvarg2, ldvarg1); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 19: ; if (ldv_state_variable_7 == 1) { e1000_nway_reset(e1000_ethtool_ops_group5); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 20: ; if (ldv_state_variable_7 == 1) { e1000_get_wol(e1000_ethtool_ops_group5, e1000_ethtool_ops_group6); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 21: ; if (ldv_state_variable_7 == 1) { e1000_set_eeprom(e1000_ethtool_ops_group5, e1000_ethtool_ops_group2, ldvarg0); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 22: ; if (ldv_state_variable_7 == 1) { e1000_get_msglevel(e1000_ethtool_ops_group5); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 23: ; if (ldv_state_variable_7 == 1) { e1000_get_regs_len(e1000_ethtool_ops_group5); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 24: ; if (ldv_state_variable_7 == 1) { e1000_set_ringparam(e1000_ethtool_ops_group5, e1000_ethtool_ops_group0); ldv_state_variable_7 = 1; } else { } goto ldv_54543; case 25: ; if (ldv_state_variable_7 == 1) { e1000_get_link(e1000_ethtool_ops_group5); ldv_state_variable_7 = 1; } else { } goto ldv_54543; default: ldv_stop(); } ldv_54543: ; return; } } bool ldv_queue_work_on_85(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_6(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_86(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_6(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_87(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_6(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_88(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_6(2); return; } } bool ldv_queue_delayed_work_on_89(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_6(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_90(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_91(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_92(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_93(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_94(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_95(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_96(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } __inline static int ldv_request_irq_97(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = reg_check_2(handler); if (tmp___0 != 0 && ldv_func_res == 0) { activate_suitable_irq_2((int )irq, dev); } else { } return (ldv_func_res); } } void ldv_free_irq_99(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_2((int )ldv_func_arg1, ldv_func_arg2); return; } } int ldv_mutex_trylock_127(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_128(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_129(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_124(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_130(struct mutex *ldv_func_arg1 ) ; bool ldv_queue_work_on_119(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_121(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_120(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_123(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_122(struct workqueue_struct *ldv_func_arg1 ) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; static int TxDescriptors[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_TxDescriptors ; static int RxDescriptors[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_RxDescriptors ; static int Speed[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_Speed ; static int Duplex[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_Duplex ; static int AutoNeg[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_AutoNeg ; static int FlowControl[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_FlowControl ; static int XsumRX[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_XsumRX ; static int TxIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_TxIntDelay ; static int TxAbsIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_TxAbsIntDelay ; static int RxIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_RxIntDelay ; static int RxAbsIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_RxAbsIntDelay ; static int InterruptThrottleRate[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_InterruptThrottleRate ; static int SmartPowerDownEnable[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_SmartPowerDownEnable ; static int e1000_validate_option(unsigned int *value , struct e1000_option const *opt , struct e1000_adapter *adapter ) { int i ; struct e1000_opt_list const *ent ; { if (*value == 4294967295U) { *value = (unsigned int )opt->def; return (0); } else { } switch ((unsigned int )opt->type) { case 0U: ; switch (*value) { case 1U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s Enabled\n", opt->name); return (0); case 0U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s Disabled\n", opt->name); return (0); } goto ldv_54222; case 1U: ; if (*value >= (unsigned int )opt->arg.r.min && *value <= (unsigned int )opt->arg.r.max) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to %i\n", opt->name, *value); return (0); } else { } goto ldv_54222; case 2U: i = 0; goto ldv_54228; ldv_54227: ent = opt->arg.l.p + (unsigned long )i; if (*value == (unsigned int )ent->i) { if ((int )((signed char )*(ent->str)) != 0) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s\n", ent->str); } else { } return (0); } else { } i = i + 1; ldv_54228: ; if ((int )opt->arg.l.nr > i) { goto ldv_54227; } else { } goto ldv_54222; default: __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_param.c"), "i" (249), "i" (12UL)); ldv_54231: ; goto ldv_54231; } ldv_54222: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Invalid %s value specified (%i) %s\n", opt->name, *value, opt->err); *value = (unsigned int )opt->def; return (-1); } } static void e1000_check_fiber_options(struct e1000_adapter *adapter ) ; static void e1000_check_copper_options(struct e1000_adapter *adapter ) ; void e1000_check_options(struct e1000_adapter *adapter ) { struct e1000_option opt ; int bd ; struct e1000_tx_ring *tx_ring ; int i ; e1000_mac_type mac_type ; struct e1000_option __constr_expr_0 ; struct e1000_rx_ring *rx_ring ; int i___0 ; e1000_mac_type mac_type___0 ; struct e1000_option __constr_expr_1 ; struct e1000_option __constr_expr_2 ; unsigned int rx_csum ; struct e1000_opt_list fc_list[5U] ; struct e1000_option __constr_expr_3 ; unsigned int fc ; u32 tmp ; u32 tmp___0 ; struct e1000_option __constr_expr_4 ; struct e1000_option __constr_expr_5 ; struct e1000_option __constr_expr_6 ; struct e1000_option __constr_expr_7 ; struct e1000_option __constr_expr_8 ; struct e1000_option __constr_expr_9 ; unsigned int spd ; { bd = (int )adapter->bd_number; if (bd > 31) { dev_warn((struct device const *)(& (adapter->pdev)->dev), "Warning: no configuration for board #%i using defaults for all values\n", bd); } else { } tx_ring = adapter->tx_ring; mac_type = adapter->hw.mac_type; __constr_expr_0.type = 1; __constr_expr_0.name = "Transmit Descriptors"; __constr_expr_0.err = "using default of 256"; __constr_expr_0.def = 256; __constr_expr_0.arg.r.min = 48; __constr_expr_0.arg.r.max = (unsigned int )mac_type <= 3U ? 256 : 4096; opt = __constr_expr_0; if ((unsigned int )bd < num_TxDescriptors) { tx_ring->count = (unsigned int )TxDescriptors[bd]; e1000_validate_option(& tx_ring->count, (struct e1000_option const *)(& opt), adapter); tx_ring->count = (tx_ring->count + 7U) & 4294967288U; } else { tx_ring->count = (unsigned int )opt.def; } i = 0; goto ldv_54246; ldv_54245: (tx_ring + (unsigned long )i)->count = tx_ring->count; i = i + 1; ldv_54246: ; if (adapter->num_tx_queues > i) { goto ldv_54245; } else { } rx_ring = adapter->rx_ring; mac_type___0 = adapter->hw.mac_type; __constr_expr_1.type = 1; __constr_expr_1.name = "Receive Descriptors"; __constr_expr_1.err = "using default of 256"; __constr_expr_1.def = 256; __constr_expr_1.arg.r.min = 48; __constr_expr_1.arg.r.max = (unsigned int )mac_type___0 <= 3U ? 256 : 4096; opt = __constr_expr_1; if ((unsigned int )bd < num_RxDescriptors) { rx_ring->count = (unsigned int )RxDescriptors[bd]; e1000_validate_option(& rx_ring->count, (struct e1000_option const *)(& opt), adapter); rx_ring->count = (rx_ring->count + 7U) & 4294967288U; } else { rx_ring->count = (unsigned int )opt.def; } i___0 = 0; goto ldv_54253; ldv_54252: (rx_ring + (unsigned long )i___0)->count = rx_ring->count; i___0 = i___0 + 1; ldv_54253: ; if (adapter->num_rx_queues > i___0) { goto ldv_54252; } else { } __constr_expr_2.type = 0; __constr_expr_2.name = "Checksum Offload"; __constr_expr_2.err = "defaulting to Enabled"; __constr_expr_2.def = 1; __constr_expr_2.arg.l.nr = 0; __constr_expr_2.arg.l.p = 0; opt = __constr_expr_2; if ((unsigned int )bd < num_XsumRX) { rx_csum = (unsigned int )XsumRX[bd]; e1000_validate_option(& rx_csum, (struct e1000_option const *)(& opt), adapter); adapter->rx_csum = rx_csum != 0U; } else { adapter->rx_csum = opt.def != 0; } fc_list[0].i = 0; fc_list[0].str = (char *)"Flow Control Disabled"; fc_list[1].i = 1; fc_list[1].str = (char *)"Flow Control Receive Only"; fc_list[2].i = 2; fc_list[2].str = (char *)"Flow Control Transmit Only"; fc_list[3].i = 3; fc_list[3].str = (char *)"Flow Control Enabled"; fc_list[4].i = 255; fc_list[4].str = (char *)"Flow Control Hardware Default"; __constr_expr_3.type = 2; __constr_expr_3.name = "Flow Control"; __constr_expr_3.err = "reading default settings from EEPROM"; __constr_expr_3.def = 255; __constr_expr_3.arg.l.nr = 5; __constr_expr_3.arg.l.p = (struct e1000_opt_list const *)(& fc_list); opt = __constr_expr_3; if ((unsigned int )bd < num_FlowControl) { fc = (unsigned int )FlowControl[bd]; e1000_validate_option(& fc, (struct e1000_option const *)(& opt), adapter); tmp = fc; adapter->hw.original_fc = tmp; adapter->hw.fc = (e1000_fc_type )tmp; } else { tmp___0 = (u32 )opt.def; adapter->hw.original_fc = tmp___0; adapter->hw.fc = (e1000_fc_type )tmp___0; } __constr_expr_4.type = 1; __constr_expr_4.name = "Transmit Interrupt Delay"; __constr_expr_4.err = "using default of 8"; __constr_expr_4.def = 8; __constr_expr_4.arg.r.min = 0; __constr_expr_4.arg.r.max = 65535; opt = __constr_expr_4; if ((unsigned int )bd < num_TxIntDelay) { adapter->tx_int_delay = (u32 )TxIntDelay[bd]; e1000_validate_option(& adapter->tx_int_delay, (struct e1000_option const *)(& opt), adapter); } else { adapter->tx_int_delay = (u32 )opt.def; } __constr_expr_5.type = 1; __constr_expr_5.name = "Transmit Absolute Interrupt Delay"; __constr_expr_5.err = "using default of 32"; __constr_expr_5.def = 32; __constr_expr_5.arg.r.min = 0; __constr_expr_5.arg.r.max = 65535; opt = __constr_expr_5; if ((unsigned int )bd < num_TxAbsIntDelay) { adapter->tx_abs_int_delay = (u32 )TxAbsIntDelay[bd]; e1000_validate_option(& adapter->tx_abs_int_delay, (struct e1000_option const *)(& opt), adapter); } else { adapter->tx_abs_int_delay = (u32 )opt.def; } __constr_expr_6.type = 1; __constr_expr_6.name = "Receive Interrupt Delay"; __constr_expr_6.err = "using default of 0"; __constr_expr_6.def = 0; __constr_expr_6.arg.r.min = 0; __constr_expr_6.arg.r.max = 65535; opt = __constr_expr_6; if ((unsigned int )bd < num_RxIntDelay) { adapter->rx_int_delay = (u32 )RxIntDelay[bd]; e1000_validate_option(& adapter->rx_int_delay, (struct e1000_option const *)(& opt), adapter); } else { adapter->rx_int_delay = (u32 )opt.def; } __constr_expr_7.type = 1; __constr_expr_7.name = "Receive Absolute Interrupt Delay"; __constr_expr_7.err = "using default of 8"; __constr_expr_7.def = 8; __constr_expr_7.arg.r.min = 0; __constr_expr_7.arg.r.max = 65535; opt = __constr_expr_7; if ((unsigned int )bd < num_RxAbsIntDelay) { adapter->rx_abs_int_delay = (u32 )RxAbsIntDelay[bd]; e1000_validate_option(& adapter->rx_abs_int_delay, (struct e1000_option const *)(& opt), adapter); } else { adapter->rx_abs_int_delay = (u32 )opt.def; } __constr_expr_8.type = 1; __constr_expr_8.name = "Interrupt Throttling Rate (ints/sec)"; __constr_expr_8.err = "using default of 3"; __constr_expr_8.def = 3; __constr_expr_8.arg.r.min = 100; __constr_expr_8.arg.r.max = 100000; opt = __constr_expr_8; if ((unsigned int )bd < num_InterruptThrottleRate) { adapter->itr = (u32 )InterruptThrottleRate[bd]; switch (adapter->itr) { case 0U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s turned off\n", opt.name); goto ldv_54268; case 1U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to dynamic mode\n", opt.name); adapter->itr_setting = adapter->itr; adapter->itr = 20000U; goto ldv_54268; case 3U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to dynamic conservative mode\n", opt.name); adapter->itr_setting = adapter->itr; adapter->itr = 20000U; goto ldv_54268; case 4U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to simplified (2000-8000) ints mode\n", opt.name); adapter->itr_setting = adapter->itr; goto ldv_54268; default: e1000_validate_option(& adapter->itr, (struct e1000_option const *)(& opt), adapter); adapter->itr_setting = adapter->itr & 4294967292U; goto ldv_54268; } ldv_54268: ; } else { adapter->itr_setting = (u32 )opt.def; adapter->itr = 20000U; } __constr_expr_9.type = 0; __constr_expr_9.name = "PHY Smart Power Down"; __constr_expr_9.err = "defaulting to Disabled"; __constr_expr_9.def = 0; __constr_expr_9.arg.l.nr = 0; __constr_expr_9.arg.l.p = 0; opt = __constr_expr_9; if ((unsigned int )bd < num_SmartPowerDownEnable) { spd = (unsigned int )SmartPowerDownEnable[bd]; e1000_validate_option(& spd, (struct e1000_option const *)(& opt), adapter); adapter->smart_power_down = spd != 0U; } else { adapter->smart_power_down = opt.def != 0; } switch ((unsigned int )adapter->hw.media_type) { case 1U: ; case 2U: e1000_check_fiber_options(adapter); goto ldv_54277; case 0U: e1000_check_copper_options(adapter); goto ldv_54277; default: __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_param.c"), "i" (527), "i" (12UL)); ldv_54280: ; goto ldv_54280; } ldv_54277: ; return; } } static void e1000_check_fiber_options(struct e1000_adapter *adapter ) { int bd ; { bd = (int )adapter->bd_number; if ((unsigned int )bd < num_Speed) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Speed not valid for fiber adapters, parameter ignored\n"); } else { } if ((unsigned int )bd < num_Duplex) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Duplex not valid for fiber adapters, parameter ignored\n"); } else { } if ((unsigned int )bd < num_AutoNeg && AutoNeg[bd] != 32) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "AutoNeg other than 1000/Full is not valid for fiberadapters, parameter ignored\n"); } else { } return; } } static void e1000_check_copper_options(struct e1000_adapter *adapter ) { struct e1000_option opt ; unsigned int speed ; unsigned int dplx ; unsigned int an ; int bd ; struct e1000_opt_list speed_list[4U] ; struct e1000_option __constr_expr_0 ; struct e1000_opt_list dplx_list[3U] ; struct e1000_option __constr_expr_1 ; struct e1000_opt_list an_list[31U] ; struct e1000_option __constr_expr_2 ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; u8 tmp___5 ; u8 tmp___6 ; u8 tmp___7 ; u8 tmp___8 ; s32 tmp___9 ; { bd = (int )adapter->bd_number; speed_list[0].i = 0; speed_list[0].str = (char *)""; speed_list[1].i = 10; speed_list[1].str = (char *)""; speed_list[2].i = 100; speed_list[2].str = (char *)""; speed_list[3].i = 1000; speed_list[3].str = (char *)""; __constr_expr_0.type = 2; __constr_expr_0.name = "Speed"; __constr_expr_0.err = "parameter ignored"; __constr_expr_0.def = 0; __constr_expr_0.arg.l.nr = 4; __constr_expr_0.arg.l.p = (struct e1000_opt_list const *)(& speed_list); opt = __constr_expr_0; if ((unsigned int )bd < num_Speed) { speed = (unsigned int )Speed[bd]; e1000_validate_option(& speed, (struct e1000_option const *)(& opt), adapter); } else { speed = (unsigned int )opt.def; } dplx_list[0].i = 0; dplx_list[0].str = (char *)""; dplx_list[1].i = 1; dplx_list[1].str = (char *)""; dplx_list[2].i = 2; dplx_list[2].str = (char *)""; __constr_expr_1.type = 2; __constr_expr_1.name = "Duplex"; __constr_expr_1.err = "parameter ignored"; __constr_expr_1.def = 0; __constr_expr_1.arg.l.nr = 3; __constr_expr_1.arg.l.p = (struct e1000_opt_list const *)(& dplx_list); opt = __constr_expr_1; if ((unsigned int )bd < num_Duplex) { dplx = (unsigned int )Duplex[bd]; e1000_validate_option(& dplx, (struct e1000_option const *)(& opt), adapter); } else { dplx = (unsigned int )opt.def; } if ((unsigned int )bd < num_AutoNeg && (speed != 0U || dplx != 0U)) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "AutoNeg specified along with Speed or Duplex, parameter ignored\n"); adapter->hw.autoneg_advertised = 47U; } else { an_list[0].i = 1; an_list[0].str = (char *)"AutoNeg advertising 10/HD"; an_list[1].i = 2; an_list[1].str = (char *)"AutoNeg advertising 10/FD"; an_list[2].i = 3; an_list[2].str = (char *)"AutoNeg advertising 10/FD, 10/HD"; an_list[3].i = 4; an_list[3].str = (char *)"AutoNeg advertising 100/HD"; an_list[4].i = 5; an_list[4].str = (char *)"AutoNeg advertising 100/HD, 10/HD"; an_list[5].i = 6; an_list[5].str = (char *)"AutoNeg advertising 100/HD, 10/FD"; an_list[6].i = 7; an_list[6].str = (char *)"AutoNeg advertising 100/HD, 10/FD, 10/HD"; an_list[7].i = 8; an_list[7].str = (char *)"AutoNeg advertising 100/FD"; an_list[8].i = 9; an_list[8].str = (char *)"AutoNeg advertising 100/FD, 10/HD"; an_list[9].i = 10; an_list[9].str = (char *)"AutoNeg advertising 100/FD, 10/FD"; an_list[10].i = 11; an_list[10].str = (char *)"AutoNeg advertising 100/FD, 10/FD, 10/HD"; an_list[11].i = 12; an_list[11].str = (char *)"AutoNeg advertising 100/FD, 100/HD"; an_list[12].i = 13; an_list[12].str = (char *)"AutoNeg advertising 100/FD, 100/HD, 10/HD"; an_list[13].i = 14; an_list[13].str = (char *)"AutoNeg advertising 100/FD, 100/HD, 10/FD"; an_list[14].i = 15; an_list[14].str = (char *)"AutoNeg advertising 100/FD, 100/HD, 10/FD, 10/HD"; an_list[15].i = 32; an_list[15].str = (char *)"AutoNeg advertising 1000/FD"; an_list[16].i = 33; an_list[16].str = (char *)"AutoNeg advertising 1000/FD, 10/HD"; an_list[17].i = 34; an_list[17].str = (char *)"AutoNeg advertising 1000/FD, 10/FD"; an_list[18].i = 35; an_list[18].str = (char *)"AutoNeg advertising 1000/FD, 10/FD, 10/HD"; an_list[19].i = 36; an_list[19].str = (char *)"AutoNeg advertising 1000/FD, 100/HD"; an_list[20].i = 37; an_list[20].str = (char *)"AutoNeg advertising 1000/FD, 100/HD, 10/HD"; an_list[21].i = 38; an_list[21].str = (char *)"AutoNeg advertising 1000/FD, 100/HD, 10/FD"; an_list[22].i = 39; an_list[22].str = (char *)"AutoNeg advertising 1000/FD, 100/HD, 10/FD, 10/HD"; an_list[23].i = 40; an_list[23].str = (char *)"AutoNeg advertising 1000/FD, 100/FD"; an_list[24].i = 41; an_list[24].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 10/HD"; an_list[25].i = 42; an_list[25].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 10/FD"; an_list[26].i = 43; an_list[26].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 10/FD, 10/HD"; an_list[27].i = 44; an_list[27].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 100/HD"; an_list[28].i = 45; an_list[28].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 100/HD, 10/HD"; an_list[29].i = 46; an_list[29].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 100/HD, 10/FD"; an_list[30].i = 47; an_list[30].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 100/HD, 10/FD, 10/HD"; __constr_expr_2.type = 2; __constr_expr_2.name = "AutoNeg"; __constr_expr_2.err = "parameter ignored"; __constr_expr_2.def = 47; __constr_expr_2.arg.l.nr = 31; __constr_expr_2.arg.l.p = (struct e1000_opt_list const *)(& an_list); opt = __constr_expr_2; if ((unsigned int )bd < num_AutoNeg) { an = (unsigned int )AutoNeg[bd]; e1000_validate_option(& an, (struct e1000_option const *)(& opt), adapter); } else { an = (unsigned int )opt.def; } adapter->hw.autoneg_advertised = (u16 )an; } switch (speed + dplx) { case 0U: tmp = 1U; adapter->fc_autoneg = tmp; adapter->hw.autoneg = tmp; if ((unsigned int )bd < num_Speed && (speed != 0U || dplx != 0U)) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Speed and duplex autonegotiation enabled\n"); } else { } goto ldv_54306; case 1U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Half Duplex specified without Speed\n"); _dev_info((struct device const *)(& (adapter->pdev)->dev), "Using Autonegotiation at Half Duplex only\n"); tmp___0 = 1U; adapter->fc_autoneg = tmp___0; adapter->hw.autoneg = tmp___0; adapter->hw.autoneg_advertised = 5U; goto ldv_54306; case 2U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Full Duplex specified without Speed\n"); _dev_info((struct device const *)(& (adapter->pdev)->dev), "Using Autonegotiation at Full Duplex only\n"); tmp___1 = 1U; adapter->fc_autoneg = tmp___1; adapter->hw.autoneg = tmp___1; adapter->hw.autoneg_advertised = 42U; goto ldv_54306; case 10U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "10 Mbps Speed specified without Duplex\n"); _dev_info((struct device const *)(& (adapter->pdev)->dev), "Using Autonegotiation at 10 Mbps only\n"); tmp___2 = 1U; adapter->fc_autoneg = tmp___2; adapter->hw.autoneg = tmp___2; adapter->hw.autoneg_advertised = 3U; goto ldv_54306; case 11U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Forcing to 10 Mbps Half Duplex\n"); tmp___3 = 0U; adapter->fc_autoneg = tmp___3; adapter->hw.autoneg = tmp___3; adapter->hw.forced_speed_duplex = 0U; adapter->hw.autoneg_advertised = 0U; goto ldv_54306; case 12U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Forcing to 10 Mbps Full Duplex\n"); tmp___4 = 0U; adapter->fc_autoneg = tmp___4; adapter->hw.autoneg = tmp___4; adapter->hw.forced_speed_duplex = 1U; adapter->hw.autoneg_advertised = 0U; goto ldv_54306; case 100U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "100 Mbps Speed specified without Duplex\n"); _dev_info((struct device const *)(& (adapter->pdev)->dev), "Using Autonegotiation at 100 Mbps only\n"); tmp___5 = 1U; adapter->fc_autoneg = tmp___5; adapter->hw.autoneg = tmp___5; adapter->hw.autoneg_advertised = 12U; goto ldv_54306; case 101U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Forcing to 100 Mbps Half Duplex\n"); tmp___6 = 0U; adapter->fc_autoneg = tmp___6; adapter->hw.autoneg = tmp___6; adapter->hw.forced_speed_duplex = 2U; adapter->hw.autoneg_advertised = 0U; goto ldv_54306; case 102U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Forcing to 100 Mbps Full Duplex\n"); tmp___7 = 0U; adapter->fc_autoneg = tmp___7; adapter->hw.autoneg = tmp___7; adapter->hw.forced_speed_duplex = 3U; adapter->hw.autoneg_advertised = 0U; goto ldv_54306; case 1000U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "1000 Mbps Speed specified without Duplex\n"); goto full_duplex_only; case 1001U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Half Duplex is not supported at 1000 Mbps\n"); case 1002U: ; full_duplex_only: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Using Autonegotiation at 1000 Mbps Full Duplex only\n"); tmp___8 = 1U; adapter->fc_autoneg = tmp___8; adapter->hw.autoneg = tmp___8; adapter->hw.autoneg_advertised = 32U; goto ldv_54306; default: __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/11349/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000/e1000_param.c"), "i" (745), "i" (12UL)); ldv_54320: ; goto ldv_54320; } ldv_54306: tmp___9 = e1000_validate_mdi_setting(& adapter->hw); if (tmp___9 < 0) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Speed, AutoNeg and MDI-X specs are incompatible. Setting MDI-X to a compatible value.\n"); } else { } return; } } bool ldv_queue_work_on_119(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_6(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_120(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_6(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_121(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_6(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_122(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_6(2); return; } } bool ldv_queue_delayed_work_on_123(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_6(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_124(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_127(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_128(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_129(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_130(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } __inline static void ldv_error(void) { { ERROR: ; {reach_error();} } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_i_mutex_of_inode = 1; int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 2; return; } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_i_mutex_of_inode = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_i_mutex_of_inode = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 2) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 1; return; } } void ldv_usb_lock_device_i_mutex_of_inode(void) { { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return; } } int ldv_usb_trylock_device_i_mutex_of_inode(void) { int tmp ; { tmp = ldv_mutex_trylock_i_mutex_of_inode((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_i_mutex_of_inode(void) { { ldv_mutex_unlock_i_mutex_of_inode((struct mutex *)0); return; } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } return; } } #include "model/linux-4.2-rc1.tar.xz-32_7a-drivers--net--ethernet--intel--e1000--e1000.ko-entry_point_true-unreach-call.cil.out.env.c" #include "model/common.env.c"