extern void abort(void); #include void reach_error() { assert(0); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u64 __be64; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned int uint; typedef unsigned long ulong; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct device; struct file_operations; struct completion; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_15 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_25 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField11 ; struct __anonstruct____missing_field_name_26 __annonCompField12 ; }; union __anonunion____missing_field_name_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_24 __annonCompField13 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_27 __annonCompField14 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_30 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_31 __annonCompField16 ; }; struct spinlock { union __anonunion____missing_field_name_30 __annonCompField17 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_34 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_35 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_36 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct_futex_34 futex ; struct __anonstruct_nanosleep_35 nanosleep ; struct __anonstruct_poll_36 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField18 ; }; typedef int pao_T__; typedef int pao_T_____0; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct execute_work { struct work_struct work ; }; struct vm_area_struct; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct pci_bus; struct __anonstruct_mm_context_t_113 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_113 mm_context_t; struct bio_vec; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; unsigned int flags ; }; struct kmem_cache; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_146 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_147 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField33 ; struct __anonstruct____missing_field_name_147 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_145 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_148 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_150 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_154 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_153 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_154 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_151 { unsigned long counters ; struct __anonstruct____missing_field_name_152 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_149 { union __anonunion____missing_field_name_150 __annonCompField37 ; union __anonunion____missing_field_name_151 __annonCompField41 ; }; struct __anonstruct____missing_field_name_156 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_157 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_155 { struct list_head lru ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_158 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_148 __annonCompField36 ; struct __anonstruct____missing_field_name_149 __annonCompField42 ; union __anonunion____missing_field_name_155 __annonCompField45 ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_159 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_159 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct __anonstruct_kuid_t_161 { uid_t val ; }; typedef struct __anonstruct_kuid_t_161 kuid_t; struct __anonstruct_kgid_t_162 { gid_t val ; }; typedef struct __anonstruct_kgid_t_162 kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_170 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_170 _addr_bnd ; }; struct __anonstruct__sigpoll_171 { long _band ; int _fd ; }; struct __anonstruct__sigsys_172 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_171 _sigpoll ; struct __anonstruct__sigsys_172 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_179 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_180 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_182 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_181 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_182 __annonCompField49 ; }; union __anonunion_type_data_183 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_185 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_184 { union __anonunion_payload_185 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_179 __annonCompField47 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_180 __annonCompField48 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_181 __annonCompField50 ; union __anonunion_type_data_183 type_data ; union __anonunion____missing_field_name_184 __annonCompField51 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; union __anonunion____missing_field_name_186 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_186 __annonCompField52 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct kernfs_root; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; struct ctlr_info; struct Scsi_Host; struct scsi_cmnd; struct device_attribute; struct scsi_device; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_209 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_209 __annonCompField56 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_210 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_210 __annonCompField57 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct proc_dir_entry; struct exception_table_entry { int insn ; int fixup ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_228 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; unsigned char has_secondary_link : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_228 __annonCompField65 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct bdi_writeback; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct msix_entry { u32 vector ; u16 entry ; }; struct acpi_device; struct pci_sysdata { int domain ; int node ; struct acpi_device *companion ; void *iommu ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_232 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_231 { struct __anonstruct____missing_field_name_232 __annonCompField66 ; }; struct lockref { union __anonunion____missing_field_name_231 __annonCompField67 ; }; struct vfsmount; struct __anonstruct____missing_field_name_234 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_233 { struct __anonstruct____missing_field_name_234 __annonCompField68 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_233 __annonCompField69 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_235 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_235 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_239 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_238 { struct __anonstruct____missing_field_name_239 __annonCompField70 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_238 __annonCompField71 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_242 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t __bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_242 __annonCompField72 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t __bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_243 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_243 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_244 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_244 __annonCompField73 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_247 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_248 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_249 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_247 __annonCompField74 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_248 __annonCompField75 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_249 __annonCompField76 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_250 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_250 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_252 { struct list_head link ; int state ; }; union __anonunion_fl_u_251 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_252 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_251 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_253 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_253 __annonCompField77 ; unsigned long nr_segs ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; typedef int congested_fn(void * , int ); struct bdi_writeback_congested { unsigned long state ; atomic_t refcnt ; struct backing_dev_info *bdi ; int blkcg_id ; struct rb_node rb_node ; }; union __anonunion____missing_field_name_279 { struct work_struct release_work ; struct callback_head rcu ; }; struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long state ; unsigned long last_old_flush ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; struct percpu_counter stat[4U] ; struct bdi_writeback_congested *congested ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; spinlock_t work_lock ; struct list_head work_list ; struct delayed_work dwork ; struct percpu_ref refcnt ; struct fprop_local_percpu memcg_completions ; struct cgroup_subsys_state *memcg_css ; struct cgroup_subsys_state *blkcg_css ; struct list_head memcg_node ; struct list_head blkcg_node ; union __anonunion____missing_field_name_279 __annonCompField78 ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; atomic_long_t tot_write_bandwidth ; struct bdi_writeback wb ; struct radix_tree_root cgwb_tree ; struct rb_root cgwb_congested_tree ; atomic_t usage_cnt ; wait_queue_head_t wb_waitq ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_280 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_281 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_280 __annonCompField79 ; union __anonunion____missing_field_name_281 __annonCompField80 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct elevator_queue; struct request; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; union __anonunion____missing_field_name_282 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_283 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_284 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_286 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_287 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_285 { struct __anonstruct_elv_286 elv ; struct __anonstruct_flush_287 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_282 __annonCompField81 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; unsigned int cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_283 __annonCompField82 ; union __anonunion____missing_field_name_284 __annonCompField83 ; union __anonunion____missing_field_name_285 __annonCompField84 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); typedef void elevator_registered_fn(struct request_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; elevator_registered_fn *elevator_registered_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; atomic_t mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct scsi_sense_hdr { u8 response_code ; u8 sense_key ; u8 asc ; u8 ascq ; u8 byte4 ; u8 byte5 ; u8 byte6 ; u8 additional_length ; }; enum scsi_device_state { SDEV_CREATED = 1, SDEV_RUNNING = 2, SDEV_CANCEL = 3, SDEV_DEL = 4, SDEV_QUIESCE = 5, SDEV_OFFLINE = 6, SDEV_TRANSPORT_OFFLINE = 7, SDEV_BLOCK = 8, SDEV_CREATED_BLOCK = 9 } ; struct scsi_target; struct scsi_dh_data; struct scsi_device { struct Scsi_Host *host ; struct request_queue *request_queue ; struct list_head siblings ; struct list_head same_target_siblings ; atomic_t device_busy ; atomic_t device_blocked ; spinlock_t list_lock ; struct list_head cmd_list ; struct list_head starved_entry ; struct scsi_cmnd *current_cmnd ; unsigned short queue_depth ; unsigned short max_queue_depth ; unsigned short last_queue_full_depth ; unsigned short last_queue_full_count ; unsigned long last_queue_full_time ; unsigned long queue_ramp_up_period ; unsigned long last_queue_ramp_up ; unsigned int id ; unsigned int channel ; u64 lun ; unsigned int manufacturer ; unsigned int sector_size ; void *hostdata ; char type ; char scsi_level ; char inq_periph_qual ; unsigned char inquiry_len ; unsigned char *inquiry ; char const *vendor ; char const *model ; char const *rev ; int vpd_pg83_len ; unsigned char *vpd_pg83 ; int vpd_pg80_len ; unsigned char *vpd_pg80 ; unsigned char current_tag ; struct scsi_target *sdev_target ; unsigned int sdev_bflags ; unsigned int eh_timeout ; unsigned char removable : 1 ; unsigned char changed : 1 ; unsigned char busy : 1 ; unsigned char lockable : 1 ; unsigned char locked : 1 ; unsigned char borken : 1 ; unsigned char disconnect : 1 ; unsigned char soft_reset : 1 ; unsigned char sdtr : 1 ; unsigned char wdtr : 1 ; unsigned char ppr : 1 ; unsigned char tagged_supported : 1 ; unsigned char simple_tags : 1 ; unsigned char was_reset : 1 ; unsigned char expecting_cc_ua : 1 ; unsigned char use_10_for_rw : 1 ; unsigned char use_10_for_ms : 1 ; unsigned char no_report_opcodes : 1 ; unsigned char no_write_same : 1 ; unsigned char use_16_for_rw : 1 ; unsigned char skip_ms_page_8 : 1 ; unsigned char skip_ms_page_3f : 1 ; unsigned char skip_vpd_pages : 1 ; unsigned char try_vpd_pages : 1 ; unsigned char use_192_bytes_for_3f : 1 ; unsigned char no_start_on_add : 1 ; unsigned char allow_restart : 1 ; unsigned char manage_start_stop : 1 ; unsigned char start_stop_pwr_cond : 1 ; unsigned char no_uld_attach : 1 ; unsigned char select_no_atn : 1 ; unsigned char fix_capacity : 1 ; unsigned char guess_capacity : 1 ; unsigned char retry_hwerror : 1 ; unsigned char last_sector_bug : 1 ; unsigned char no_read_disc_info : 1 ; unsigned char no_read_capacity_16 : 1 ; unsigned char try_rc_10_first : 1 ; unsigned char is_visible : 1 ; unsigned char wce_default_on : 1 ; unsigned char no_dif : 1 ; unsigned char broken_fua : 1 ; unsigned char lun_in_cdb : 1 ; atomic_t disk_events_disable_depth ; unsigned long supported_events[1U] ; unsigned long pending_events[1U] ; struct list_head event_list ; struct work_struct event_work ; unsigned int max_device_blocked ; atomic_t iorequest_cnt ; atomic_t iodone_cnt ; atomic_t ioerr_cnt ; struct device sdev_gendev ; struct device sdev_dev ; struct execute_work ew ; struct work_struct requeue_work ; struct scsi_dh_data *scsi_dh_data ; enum scsi_device_state sdev_state ; unsigned long sdev_data[0U] ; }; struct scsi_device_handler { struct list_head list ; struct module *module ; char const *name ; int (*check_sense)(struct scsi_device * , struct scsi_sense_hdr * ) ; struct scsi_dh_data *(*attach)(struct scsi_device * ) ; void (*detach)(struct scsi_device * ) ; int (*activate)(struct scsi_device * , void (*)(void * , int ) , void * ) ; int (*prep_fn)(struct scsi_device * , struct request * ) ; int (*set_params)(struct scsi_device * , char const * ) ; bool (*match)(struct scsi_device * ) ; }; struct scsi_dh_data { struct scsi_device_handler *scsi_dh ; struct scsi_device *sdev ; struct kref kref ; }; enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING = 2, STARGET_DEL = 3 } ; struct scsi_target { struct scsi_device *starget_sdev_user ; struct list_head siblings ; struct list_head devices ; struct device dev ; struct kref reap_ref ; unsigned int channel ; unsigned int id ; unsigned char create : 1 ; unsigned char single_lun : 1 ; unsigned char pdt_1f_for_no_lun : 1 ; unsigned char no_report_luns : 1 ; unsigned char expecting_lun_change : 1 ; atomic_t target_busy ; atomic_t target_blocked ; unsigned int can_queue ; unsigned int max_target_blocked ; char scsi_level ; enum scsi_target_state state ; void *hostdata ; unsigned long starget_data[0U] ; }; struct scsi_data_buffer { struct sg_table table ; unsigned int length ; int resid ; }; struct scsi_pointer { char *ptr ; int this_residual ; struct scatterlist *buffer ; int buffers_residual ; dma_addr_t dma_handle ; int volatile Status ; int volatile Message ; int volatile have_data_in ; int volatile sent_command ; int volatile phase ; }; struct scsi_cmnd { struct scsi_device *device ; struct list_head list ; struct list_head eh_entry ; struct delayed_work abort_work ; int eh_eflags ; unsigned long serial_number ; unsigned long jiffies_at_alloc ; int retries ; int allowed ; unsigned char prot_op ; unsigned char prot_type ; unsigned char prot_flags ; unsigned short cmd_len ; enum dma_data_direction sc_data_direction ; unsigned char *cmnd ; struct scsi_data_buffer sdb ; struct scsi_data_buffer *prot_sdb ; unsigned int underflow ; unsigned int transfersize ; struct request *request ; unsigned char *sense_buffer ; void (*scsi_done)(struct scsi_cmnd * ) ; struct scsi_pointer SCp ; unsigned char *host_scribble ; int result ; int flags ; unsigned char tag ; }; struct blk_mq_tags; struct blk_mq_cpu_notifier { struct list_head list ; void *data ; int (*notify)(void * , unsigned long , unsigned int ) ; }; struct blk_align_bitmap; struct blk_mq_ctxmap { unsigned int size ; unsigned int bits_per_word ; struct blk_align_bitmap *map ; }; struct __anonstruct____missing_field_name_290 { spinlock_t lock ; struct list_head dispatch ; }; struct blk_mq_hw_ctx { struct __anonstruct____missing_field_name_290 __annonCompField85 ; unsigned long state ; struct delayed_work run_work ; struct delayed_work delay_work ; cpumask_var_t cpumask ; int next_cpu ; int next_cpu_batch ; unsigned long flags ; struct request_queue *queue ; struct blk_flush_queue *fq ; void *driver_data ; struct blk_mq_ctxmap ctx_map ; unsigned int nr_ctx ; struct blk_mq_ctx **ctxs ; atomic_t wait_index ; struct blk_mq_tags *tags ; unsigned long queued ; unsigned long run ; unsigned long dispatched[10U] ; unsigned int numa_node ; unsigned int queue_num ; atomic_t nr_active ; struct blk_mq_cpu_notifier cpu_notifier ; struct kobject kobj ; }; struct blk_mq_tag_set { struct blk_mq_ops *ops ; unsigned int nr_hw_queues ; unsigned int queue_depth ; unsigned int reserved_tags ; unsigned int cmd_size ; int numa_node ; unsigned int timeout ; unsigned int flags ; void *driver_data ; struct blk_mq_tags **tags ; struct mutex tag_list_lock ; struct list_head tag_list ; }; struct blk_mq_queue_data { struct request *rq ; struct list_head *list ; bool last ; }; typedef int queue_rq_fn(struct blk_mq_hw_ctx * , struct blk_mq_queue_data const * ); typedef struct blk_mq_hw_ctx *map_queue_fn(struct request_queue * , int const ); typedef enum blk_eh_timer_return timeout_fn(struct request * , bool ); typedef int init_hctx_fn(struct blk_mq_hw_ctx * , void * , unsigned int ); typedef void exit_hctx_fn(struct blk_mq_hw_ctx * , unsigned int ); typedef int init_request_fn(void * , struct request * , unsigned int , unsigned int , unsigned int ); typedef void exit_request_fn(void * , struct request * , unsigned int , unsigned int ); struct blk_mq_ops { queue_rq_fn *queue_rq ; map_queue_fn *map_queue ; timeout_fn *timeout ; softirq_done_fn *complete ; init_hctx_fn *init_hctx ; exit_hctx_fn *exit_hctx ; init_request_fn *init_request ; exit_request_fn *exit_request ; }; struct scsi_host_cmd_pool; struct scsi_transport_template; struct scsi_host_template { struct module *module ; char const *name ; int (*detect)(struct scsi_host_template * ) ; int (*release)(struct Scsi_Host * ) ; char const *(*info)(struct Scsi_Host * ) ; int (*ioctl)(struct scsi_device * , int , void * ) ; int (*compat_ioctl)(struct scsi_device * , int , void * ) ; int (*queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*eh_abort_handler)(struct scsi_cmnd * ) ; int (*eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*eh_target_reset_handler)(struct scsi_cmnd * ) ; int (*eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*eh_host_reset_handler)(struct scsi_cmnd * ) ; int (*slave_alloc)(struct scsi_device * ) ; int (*slave_configure)(struct scsi_device * ) ; void (*slave_destroy)(struct scsi_device * ) ; int (*target_alloc)(struct scsi_target * ) ; void (*target_destroy)(struct scsi_target * ) ; int (*scan_finished)(struct Scsi_Host * , unsigned long ) ; void (*scan_start)(struct Scsi_Host * ) ; int (*change_queue_depth)(struct scsi_device * , int ) ; int (*bios_param)(struct scsi_device * , struct block_device * , sector_t , int * ) ; void (*unlock_native_capacity)(struct scsi_device * ) ; int (*show_info)(struct seq_file * , struct Scsi_Host * ) ; int (*write_info)(struct Scsi_Host * , char * , int ) ; enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd * ) ; int (*host_reset)(struct Scsi_Host * , int ) ; char const *proc_name ; struct proc_dir_entry *proc_dir ; int can_queue ; int this_id ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; short cmd_per_lun ; unsigned char present ; int tag_alloc_policy ; unsigned char use_blk_tags : 1 ; unsigned char track_queue_depth : 1 ; unsigned char supported_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char emulated : 1 ; unsigned char skip_settle_delay : 1 ; unsigned char no_write_same : 1 ; unsigned char no_async_abort : 1 ; unsigned int max_host_blocked ; struct device_attribute **shost_attrs ; struct device_attribute **sdev_attrs ; struct list_head legacy_hosts ; u64 vendor_id ; unsigned int cmd_size ; struct scsi_host_cmd_pool *cmd_pool ; bool disable_blk_mq ; }; enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING = 2, SHOST_CANCEL = 3, SHOST_DEL = 4, SHOST_RECOVERY = 5, SHOST_CANCEL_RECOVERY = 6, SHOST_DEL_RECOVERY = 7 } ; union __anonunion____missing_field_name_291 { struct blk_queue_tag *bqt ; struct blk_mq_tag_set tag_set ; }; struct Scsi_Host { struct list_head __devices ; struct list_head __targets ; struct scsi_host_cmd_pool *cmd_pool ; spinlock_t free_list_lock ; struct list_head free_list ; struct list_head starved_list ; spinlock_t default_lock ; spinlock_t *host_lock ; struct mutex scan_mutex ; struct list_head eh_cmd_q ; struct task_struct *ehandler ; struct completion *eh_action ; wait_queue_head_t host_wait ; struct scsi_host_template *hostt ; struct scsi_transport_template *transportt ; union __anonunion____missing_field_name_291 __annonCompField86 ; atomic_t host_busy ; atomic_t host_blocked ; unsigned int host_failed ; unsigned int host_eh_scheduled ; unsigned int host_no ; int eh_deadline ; unsigned long last_reset ; unsigned int max_channel ; unsigned int max_id ; u64 max_lun ; unsigned int unique_id ; unsigned short max_cmd_len ; int this_id ; int can_queue ; short cmd_per_lun ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; unsigned int nr_hw_queues ; unsigned long cmd_serial_number ; unsigned char active_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char host_self_blocked : 1 ; unsigned char reverse_ordering : 1 ; unsigned char tmf_in_progress : 1 ; unsigned char async_scan : 1 ; unsigned char eh_noresume : 1 ; unsigned char no_write_same : 1 ; unsigned char use_blk_mq : 1 ; unsigned char use_cmd_list : 1 ; char work_q_name[20U] ; struct workqueue_struct *work_q ; struct workqueue_struct *tmf_work_q ; unsigned char no_scsi2_lun_in_cdb : 1 ; unsigned int max_host_blocked ; unsigned int prot_capabilities ; unsigned char prot_guard_type ; struct request_queue *uspace_req_q ; unsigned long base ; unsigned long io_port ; unsigned char n_io_port ; unsigned char dma_channel ; unsigned int irq ; enum scsi_host_state shost_state ; struct device shost_gendev ; struct device shost_dev ; struct list_head sht_legacy_list ; void *shost_data ; struct device *dma_dev ; unsigned long hostdata[0U] ; }; struct __anonstruct_PeripDev_294 { __u8 Dev ; unsigned char Bus : 6 ; unsigned char Mode : 2 ; }; struct __anonstruct_LogDev_295 { __u8 DevLSB ; unsigned char DevMSB : 6 ; unsigned char Mode : 2 ; }; struct __anonstruct_LogUnit_296 { unsigned char Dev : 5 ; unsigned char Bus : 3 ; unsigned char Targ : 6 ; unsigned char Mode : 2 ; }; union _SCSI3Addr_struct { struct __anonstruct_PeripDev_294 PeripDev ; struct __anonstruct_LogDev_295 LogDev ; struct __anonstruct_LogUnit_296 LogUnit ; }; typedef union _SCSI3Addr_struct SCSI3Addr_struct; struct _PhysDevAddr_struct { unsigned int TargetId : 24 ; unsigned char Bus : 6 ; unsigned char Mode : 2 ; SCSI3Addr_struct Target[2U] ; }; typedef struct _PhysDevAddr_struct PhysDevAddr_struct; struct _LogDevAddr_struct { unsigned int VolId : 30 ; unsigned char Mode : 2 ; __u8 reserved[4U] ; }; typedef struct _LogDevAddr_struct LogDevAddr_struct; union _LUNAddr_struct { __u8 LunAddrBytes[8U] ; SCSI3Addr_struct SCSI3Lun[4U] ; PhysDevAddr_struct PhysDev ; LogDevAddr_struct LogDev ; }; typedef union _LUNAddr_struct LUNAddr_struct; struct __anonstruct_Type_297 { unsigned char Type : 3 ; unsigned char Attribute : 3 ; unsigned char Direction : 2 ; }; struct _RequestBlock_struct { __u8 CDBLen ; struct __anonstruct_Type_297 Type ; __u16 Timeout ; __u8 CDB[16U] ; }; typedef struct _RequestBlock_struct RequestBlock_struct; struct __anonstruct_Common_Info_298 { __u8 Reserved[3U] ; __u8 Type ; __u32 ErrorInfo ; }; struct __anonstruct_Invalid_Cmd_299 { __u8 Reserved[2U] ; __u8 offense_size ; __u8 offense_num ; __u32 offense_value ; }; union _MoreErrInfo_struct { struct __anonstruct_Common_Info_298 Common_Info ; struct __anonstruct_Invalid_Cmd_299 Invalid_Cmd ; }; typedef union _MoreErrInfo_struct MoreErrInfo_struct; struct _ErrorInfo_struct { __u8 ScsiStatus ; __u8 SenseLen ; __u16 CommandStatus ; __u32 ResidualCnt ; MoreErrInfo_struct MoreErrInfo ; __u8 SenseInfo[32U] ; }; typedef struct _ErrorInfo_struct ErrorInfo_struct; typedef __u32 DriverVer_type; struct _IOCTL_Command_struct { LUNAddr_struct LUN_info ; RequestBlock_struct Request ; ErrorInfo_struct error_info ; __u16 buf_size ; __u8 *buf ; }; typedef struct _IOCTL_Command_struct IOCTL_Command_struct; struct _BIG_IOCTL_Command_struct { LUNAddr_struct LUN_info ; RequestBlock_struct Request ; ErrorInfo_struct error_info ; __u32 malloc_size ; __u32 buf_size ; __u8 *buf ; }; typedef struct _BIG_IOCTL_Command_struct BIG_IOCTL_Command_struct; struct _IOCTL32_Command_struct { LUNAddr_struct LUN_info ; RequestBlock_struct Request ; ErrorInfo_struct error_info ; __u16 buf_size ; __u32 buf ; }; typedef struct _IOCTL32_Command_struct IOCTL32_Command_struct; struct _BIG_IOCTL32_Command_struct { LUNAddr_struct LUN_info ; RequestBlock_struct Request ; ErrorInfo_struct error_info ; __u32 malloc_size ; __u32 buf_size ; __u32 buf ; }; typedef struct _BIG_IOCTL32_Command_struct BIG_IOCTL32_Command_struct; struct vals32 { u32 lower ; u32 upper ; }; struct raid_map_disk_data { u32 ioaccel_handle ; u8 xor_mult[2U] ; u8 reserved[2U] ; }; struct raid_map_data { __le32 structure_size ; __le32 volume_blk_size ; __le64 volume_blk_cnt ; u8 phys_blk_shift ; u8 parity_rotation_shift ; __le16 strip_size ; __le64 disk_starting_blk ; __le64 disk_blk_cnt ; __le16 data_disks_per_row ; __le16 metadata_disks_per_row ; __le16 row_cnt ; __le16 layout_map_count ; __le16 flags ; __le16 dekindex ; u8 reserved[16U] ; struct raid_map_disk_data data[256U] ; }; struct ReportLUNdata { u8 LUNListLength[4U] ; u8 extended_response_flag ; u8 reserved[3U] ; u8 LUN[1024U][8U] ; }; struct ext_report_lun_entry { u8 lunid[8U] ; u8 wwid[8U] ; u8 device_type ; u8 device_flags ; u8 lun_count ; u8 redundant_paths ; u32 ioaccel_handle ; }; struct ReportExtendedLUNdata { u8 LUNListLength[4U] ; u8 extended_response_flag ; u8 reserved[3U] ; struct ext_report_lun_entry LUN[1024U] ; }; struct __anonstruct_PeripDev_300 { u8 Dev ; unsigned char Bus : 6 ; unsigned char Mode : 2 ; }; struct __anonstruct_LogDev_301 { u8 DevLSB ; unsigned char DevMSB : 6 ; unsigned char Mode : 2 ; }; struct __anonstruct_LogUnit_302 { unsigned char Dev : 5 ; unsigned char Bus : 3 ; unsigned char Targ : 6 ; unsigned char Mode : 2 ; }; union SCSI3Addr { struct __anonstruct_PeripDev_300 PeripDev ; struct __anonstruct_LogDev_301 LogDev ; struct __anonstruct_LogUnit_302 LogUnit ; }; struct PhysDevAddr { unsigned int TargetId : 24 ; unsigned char Bus : 6 ; unsigned char Mode : 2 ; union SCSI3Addr Target[2U] ; }; struct LogDevAddr { unsigned int VolId : 30 ; unsigned char Mode : 2 ; u8 reserved[4U] ; }; union LUNAddr { u8 LunAddrBytes[8U] ; union SCSI3Addr SCSI3Lun[4U] ; struct PhysDevAddr PhysDev ; struct LogDevAddr LogDev ; }; struct CommandListHeader { u8 ReplyQueue ; u8 SGList ; __le16 SGTotal ; __le64 tag ; union LUNAddr LUN ; }; struct RequestBlock { u8 CDBLen ; u8 type_attr_dir ; u16 Timeout ; u8 CDB[16U] ; }; struct ErrDescriptor { __le64 Addr ; __le32 Len ; }; struct SGDescriptor { __le64 Addr ; __le32 Len ; __le32 Ext ; }; struct __anonstruct_Common_Info_303 { u8 Reserved[3U] ; u8 Type ; u32 ErrorInfo ; }; struct __anonstruct_Invalid_Cmd_304 { u8 Reserved[2U] ; u8 offense_size ; u8 offense_num ; u32 offense_value ; }; union MoreErrInfo { struct __anonstruct_Common_Info_303 Common_Info ; struct __anonstruct_Invalid_Cmd_304 Invalid_Cmd ; }; struct ErrorInfo { u8 ScsiStatus ; u8 SenseLen ; u16 CommandStatus ; u32 ResidualCnt ; union MoreErrInfo MoreErrInfo ; u8 SenseInfo[32U] ; }; struct hpsa_scsi_dev_t; struct CommandList { struct CommandListHeader Header ; struct RequestBlock Request ; struct ErrDescriptor ErrDesc ; struct SGDescriptor SG[32U] ; u32 busaddr ; struct ErrorInfo *err_info ; struct ctlr_info *h ; int cmd_type ; long cmdindex ; struct completion *waiting ; struct scsi_cmnd *scsi_cmd ; struct work_struct work ; struct hpsa_scsi_dev_t *phys_disk ; int abort_pending ; struct hpsa_scsi_dev_t *reset_pending ; atomic_t refcount ; }; struct io_accel1_cmd { __le16 dev_handle ; u8 reserved1 ; u8 function ; u8 reserved2[8U] ; u32 err_info ; u8 reserved3[2U] ; u8 err_info_len ; u8 reserved4 ; u8 sgl_offset ; u8 reserved5[7U] ; __le32 transfer_len ; u8 reserved6[4U] ; __le16 io_flags ; u8 reserved7[14U] ; u8 LUN[8U] ; __le32 control ; u8 CDB[16U] ; u8 reserved8[16U] ; __le16 host_context_flags ; __le16 timeout_sec ; u8 ReplyQueue ; u8 reserved9[3U] ; __le64 tag ; __le64 host_addr ; u8 CISS_LUN[8U] ; struct SGDescriptor SG[24U] ; }; struct ioaccel2_sg_element { __le64 address ; __le32 length ; u8 reserved[3U] ; u8 chain_indicator ; }; struct io_accel2_scsi_response { u8 IU_type ; u8 reserved1[3U] ; u8 req_id[4U] ; u8 reserved2[4U] ; u8 serv_response ; u8 status ; u8 data_present ; u8 sense_data_len ; u8 resid_cnt[4U] ; u8 sense_data_buff[32U] ; }; struct io_accel2_cmd { u8 IU_type ; u8 direction ; u8 reply_queue ; u8 reserved1 ; __le32 scsi_nexus ; __le32 Tag ; __le32 tweak_lower ; u8 cdb[16U] ; u8 cciss_lun[8U] ; __le32 data_len ; u8 cmd_priority_task_attr ; u8 sg_count ; __le16 dekindex ; __le64 err_ptr ; __le32 err_len ; __le32 tweak_upper ; struct ioaccel2_sg_element sg[28U] ; struct io_accel2_scsi_response error_data ; }; struct hpsa_tmf_struct { u8 iu_type ; u8 reply_queue ; u8 tmf ; u8 reserved1 ; __le32 it_nexus ; u8 lun_id[8U] ; __le64 tag ; __le64 abort_tag ; __le64 error_ptr ; __le32 error_len ; }; struct HostWrite { __le32 TransportRequest ; __le32 command_pool_addr_hi ; __le32 CoalIntDelay ; __le32 CoalIntCount ; }; struct CfgTable { u8 Signature[4U] ; __le32 SpecValence ; __le32 TransportSupport ; __le32 TransportActive ; struct HostWrite HostWrite ; __le32 CmdsOutMax ; __le32 BusTypes ; __le32 TransMethodOffset ; u8 ServerName[16U] ; __le32 HeartBeat ; __le32 driver_support ; __le32 MaxScatterGatherElements ; __le32 MaxLogicalUnits ; __le32 MaxPhysicalDevices ; __le32 MaxPhysicalDrivesPerLogicalUnit ; __le32 MaxPerformantModeCommands ; __le32 MaxBlockFetch ; __le32 PowerConservationSupport ; __le32 PowerConservationEnable ; __le32 TMFSupportFlags ; u8 TMFTagMask[8U] ; u8 reserved[8U] ; __le32 misc_fw_support ; u8 driver_version[32U] ; __le32 max_cached_write_size ; u8 driver_scratchpad[16U] ; __le32 max_error_info_length ; __le32 io_accel_max_embedded_sg_count ; __le32 io_accel_request_size_offset ; __le32 event_notify ; __le32 clear_event_notify ; }; struct TransTable_struct { __le32 BlockFetch[8U] ; __le32 RepQSize ; __le32 RepQCount ; __le32 RepQCtrAddrLow32 ; __le32 RepQCtrAddrHigh32 ; struct vals32 RepQAddr[64U] ; }; struct hpsa_pci_info { unsigned char bus ; unsigned char dev_fn ; unsigned short domain ; u32 board_id ; }; struct bmic_identify_physical_device { u8 scsi_bus ; u8 scsi_id ; __le16 block_size ; __le32 total_blocks ; __le32 reserved_blocks ; u8 model[40U] ; u8 serial_number[40U] ; u8 firmware_revision[8U] ; u8 scsi_inquiry_bits ; u8 compaq_drive_stamp ; u8 last_failure_reason ; u8 flags ; u8 more_flags ; u8 scsi_lun ; u8 yet_more_flags ; u8 even_more_flags ; __le32 spi_speed_rules ; u8 phys_connector[2U] ; u8 phys_box_on_bus ; u8 phys_bay_in_box ; __le32 rpm ; u8 device_type ; u8 sata_version ; __le64 big_total_block_count ; __le64 ris_starting_lba ; __le32 ris_size ; u8 wwid[20U] ; u8 controller_phy_map[32U] ; __le16 phy_count ; u8 phy_connected_dev_type[256U] ; u8 phy_to_drive_bay_num[256U] ; __le16 phy_to_attached_dev_index[256U] ; u8 box_index ; u8 reserved ; __le16 extra_physical_drive_flags ; u8 negotiated_link_rate[256U] ; u8 phy_to_phy_map[256U] ; u8 redundant_path_present_map ; u8 redundant_path_failure_map ; u8 active_path_number ; __le16 alternate_paths_phys_connector[8U] ; u8 alternate_paths_phys_box_on_port[8U] ; u8 multi_lun_device_lun_count ; u8 minimum_good_fw_revision[8U] ; u8 unique_inquiry_bytes[20U] ; u8 current_temperature_degreesC ; u8 temperature_threshold_degreesC ; u8 max_temperature_degreesC ; u8 logical_blocks_per_phys_block_exp ; __le16 current_queue_depth_limit ; u8 switch_name[10U] ; __le16 switch_port ; u8 alternate_paths_switch_name[40U] ; u8 alternate_paths_switch_port[8U] ; __le16 power_on_hours ; __le16 percent_endurance_used ; u8 drive_authentication ; u8 smart_carrier_authentication ; u8 smart_carrier_app_fw_version ; u8 smart_carrier_bootloader_fw_version ; u8 encryption_key_name[64U] ; __le32 misc_drive_flags ; __le16 dek_index ; u8 padding[112U] ; }; struct access_method { void (*submit_command)(struct ctlr_info * , struct CommandList * ) ; void (*set_intr_mask)(struct ctlr_info * , unsigned long ) ; bool (*intr_pending)(struct ctlr_info * ) ; unsigned long (*command_completed)(struct ctlr_info * , u8 ) ; }; struct hpsa_scsi_dev_t { int devtype ; int bus ; int target ; int lun ; unsigned char scsi3addr[8U] ; unsigned char device_id[16U] ; unsigned char vendor[8U] ; unsigned char model[16U] ; unsigned char raid_level ; unsigned char volume_offline ; u16 queue_depth ; atomic_t reset_cmds_out ; atomic_t ioaccel_cmds_out ; u32 ioaccel_handle ; int offload_config ; int offload_enabled ; int offload_to_be_enabled ; int hba_ioaccel_enabled ; int offload_to_mirror ; struct raid_map_data raid_map ; struct hpsa_scsi_dev_t *phys_disk[256U] ; int nphysical_disks ; int supports_aborts ; u8 expose_state ; }; struct reply_queue_buffer { u64 *head ; size_t size ; u8 wraparound ; u32 current_entry ; dma_addr_t busaddr ; }; struct bmic_controller_parameters { u8 led_flags ; u8 enable_command_list_verification ; u8 backed_out_write_drives ; u16 stripes_for_parity ; u8 parity_distribution_mode_flags ; u16 max_driver_requests ; u16 elevator_trend_count ; u8 disable_elevator ; u8 force_scan_complete ; u8 scsi_transfer_mode ; u8 force_narrow ; u8 rebuild_priority ; u8 expand_priority ; u8 host_sdb_asic_fix ; u8 pdpi_burst_from_host_disabled ; char software_name[64U] ; char hardware_name[32U] ; u8 bridge_revision ; u8 snapshot_priority ; u32 os_specific ; u8 post_prompt_timeout ; u8 automatic_drive_slamming ; u8 reserved1 ; u8 nvram_flags ; u8 cache_nvram_flags ; u8 drive_config_flags ; u16 reserved2 ; u8 temp_warning_level ; u8 temp_shutdown_level ; u8 temp_condition_reset ; u8 max_coalesce_commands ; u32 max_coalesce_delay ; u8 orca_password[4U] ; u8 access_id[16U] ; u8 reserved[356U] ; }; struct ctlr_info { int ctlr ; char devname[8U] ; char *product_name ; struct pci_dev *pdev ; u32 board_id ; void *vaddr ; unsigned long paddr ; int nr_cmds ; struct CfgTable *cfgtable ; int interrupts_enabled ; int max_commands ; atomic_t commands_outstanding ; unsigned int intr[64U] ; unsigned int msix_vector ; unsigned int msi_vector ; int intr_mode ; struct access_method access ; char hba_mode_enabled ; unsigned int Qdepth ; unsigned int maxSG ; spinlock_t lock ; int maxsgentries ; u8 max_cmd_sg_entries ; int chainsize ; struct SGDescriptor **cmd_sg_list ; struct ioaccel2_sg_element **ioaccel2_cmd_sg_list ; struct CommandList *cmd_pool ; dma_addr_t cmd_pool_dhandle ; struct io_accel1_cmd *ioaccel_cmd_pool ; dma_addr_t ioaccel_cmd_pool_dhandle ; struct io_accel2_cmd *ioaccel2_cmd_pool ; dma_addr_t ioaccel2_cmd_pool_dhandle ; struct ErrorInfo *errinfo_pool ; dma_addr_t errinfo_pool_dhandle ; unsigned long *cmd_pool_bits ; int scan_finished ; spinlock_t scan_lock ; wait_queue_head_t scan_wait_queue ; struct Scsi_Host *scsi_host ; spinlock_t devlock ; int ndevices ; struct hpsa_scsi_dev_t *dev[2081U] ; u32 trans_support ; u32 trans_offset ; struct TransTable_struct *transtable ; unsigned long transMethod ; atomic_t passthru_cmds_avail ; size_t reply_queue_size ; struct reply_queue_buffer reply_queue[64U] ; u8 nreply_queues ; u32 *blockFetchTable ; u32 *ioaccel1_blockFetchTable ; u32 *ioaccel2_blockFetchTable ; u32 *ioaccel2_bft2_regs ; unsigned char *hba_inquiry_data ; u32 driver_support ; u32 fw_support ; int ioaccel_support ; int ioaccel_maxsg ; u64 last_intr_timestamp ; u32 last_heartbeat ; u64 last_heartbeat_timestamp ; u32 heartbeat_sample_interval ; atomic_t firmware_flash_in_progress ; u32 *lockup_detected ; struct delayed_work monitor_ctlr_work ; struct delayed_work rescan_ctlr_work ; int remove_in_progress ; u8 q[64U] ; char intrname[64U][16U] ; u32 TMFSupportFlags ; u32 events ; spinlock_t offline_device_lock ; struct list_head offline_device_list ; int acciopath_status ; int raid_offload_debug ; int needs_abort_tags_swizzled ; struct workqueue_struct *resubmit_wq ; struct workqueue_struct *rescan_ctlr_wq ; atomic_t abort_cmds_available ; wait_queue_head_t abort_cmd_wait_queue ; wait_queue_head_t event_sync_wait_queue ; struct mutex reset_mutex ; }; struct offline_device_entry { unsigned char scsi3addr[8U] ; struct list_head offline_list ; }; struct board_type { u32 board_id ; char *product_name ; struct access_method *access ; }; struct Command { struct CommandListHeader CommandHeader ; struct RequestBlock Request ; struct ErrDescriptor ErrorDescriptor ; }; typedef bool ldv_func_ret_type; typedef bool ldv_func_ret_type___0; typedef bool ldv_func_ret_type___1; typedef bool ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef bool ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef struct Scsi_Host *ldv_func_ret_type___7; typedef bool ldv_func_ret_type___8; typedef bool ldv_func_ret_type___9; typedef int ldv_func_ret_type___10; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void __set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } extern unsigned long find_next_bit(unsigned long const * , unsigned long , unsigned long ) ; extern unsigned long find_next_zero_bit(unsigned long const * , unsigned long , unsigned long ) ; extern unsigned long find_first_bit(unsigned long const * , unsigned long ) ; extern unsigned long find_first_zero_bit(unsigned long const * , unsigned long ) ; __inline static __u32 __arch_swab32(__u32 val ) { { __asm__ ("bswapl %0": "=r" (val): "0" (val)); return (val); } } __inline static __u64 __arch_swab64(__u64 val ) { { __asm__ ("bswapq %0": "=r" (val): "0" (val)); return (val); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { __u32 tmp ; { tmp = __arch_swab32(val); return (tmp); } } __inline static __u64 __fswab64(__u64 val ) { __u64 tmp ; { tmp = __arch_swab64(val); return (tmp); } } __inline static __u16 __swab16p(__u16 const *p ) { __u16 tmp ; { tmp = __fswab16((int )*p); return (tmp); } } __inline static __u32 __swab32p(__u32 const *p ) { __u32 tmp ; { tmp = __fswab32(*p); return (tmp); } } __inline static __u64 __swab64p(__u64 const *p ) { __u64 tmp ; { tmp = __fswab64(*p); return (tmp); } } __inline static __u64 __be64_to_cpup(__be64 const *p ) { __u64 tmp ; { tmp = __swab64p(p); return (tmp); } } __inline static __u32 __be32_to_cpup(__be32 const *p ) { __u32 tmp ; { tmp = __swab32p(p); return (tmp); } } __inline static __u16 __be16_to_cpup(__be16 const *p ) { __u16 tmp ; { tmp = __swab16p(p); return (tmp); } } extern unsigned int reset_devices ; extern int printk(char const * , ...) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern void __might_fault(char const * , int ) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int sscanf(char const * , char const * , ...) ; extern void __bad_percpu_size(void) ; extern void __bad_size_call_parameter(void) ; extern unsigned long __per_cpu_offset[8192U] ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void list_del(struct list_head * ) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memmove(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern char *strncpy(char * , char const * , __kernel_size_t ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; extern int __bitmap_weight(unsigned long const * , unsigned int ) ; __inline static void bitmap_zero(unsigned long *dst , unsigned int nbits ) { unsigned int len ; { len = (unsigned int )(((unsigned long )nbits + 63UL) / 64UL) * 8U; memset((void *)dst, 0, (size_t )len); return; } } __inline static int bitmap_weight(unsigned long const *src , unsigned int nbits ) { int tmp___0 ; { tmp___0 = __bitmap_weight(src, nbits); return (tmp___0); } } extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_online_mask ; __inline static unsigned int cpumask_check(unsigned int cpu ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; { __ret_warn_once = (unsigned int )nr_cpu_ids <= cpu; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); if (tmp___1 != 0L) { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_null("include/linux/cpumask.h", 117); } else { } tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { __warned = 1; } else { } } else { } ldv__builtin_expect(__ret_warn_once != 0, 0L); return (cpu); } } __inline static unsigned int cpumask_first(struct cpumask const *srcp ) { unsigned long tmp ; { tmp = find_first_bit((unsigned long const *)(& srcp->bits), (unsigned long )nr_cpu_ids); return ((unsigned int )tmp); } } __inline static unsigned int cpumask_next(int n , struct cpumask const *srcp ) { unsigned long tmp ; { if (n != -1) { cpumask_check((unsigned int )n); } else { } tmp = find_next_bit((unsigned long const *)(& srcp->bits), (unsigned long )nr_cpu_ids, (unsigned long )(n + 1)); return ((unsigned int )tmp); } } __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), (unsigned int )nr_cpu_ids); return ((unsigned int )tmp); } } extern unsigned long const cpu_bit_bitmap[65U][128U] ; __inline static struct cpumask const *get_cpu_mask(unsigned int cpu ) { unsigned long const *p ; { p = (unsigned long const *)(& cpu_bit_bitmap) + (unsigned long )((cpu & 63U) + 1U); p = p + - ((unsigned long )(cpu / 64U)); return ((struct cpumask const *)p); } } extern void __cmpxchg_wrong_size(void) ; extern void __xadd_wrong_size(void) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0; sete %1": "+m" (v->counter), "=qm" (c): : "memory"); return ((int )((signed char )c) != 0); } } __inline static int atomic_add_return(int i , atomic_t *v ) { int __ret ; { __ret = i; switch (4UL) { case 1UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddb %b0, %1\n": "+q" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5596; case 2UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddw %w0, %1\n": "+r" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5596; case 4UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddl %0, %1\n": "+r" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5596; case 8UL: __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; xaddq %q0, %1\n": "+r" (__ret), "+m" (v->counter): : "memory", "cc"); goto ldv_5596; default: __xadd_wrong_size(); } ldv_5596: ; return (__ret + i); } } __inline static int atomic_cmpxchg(atomic_t *v , int old , int new ) { int __ret ; int __old ; int __new ; u8 volatile *__ptr ; u16 volatile *__ptr___0 ; u32 volatile *__ptr___1 ; u64 volatile *__ptr___2 ; { __old = old; __new = new; switch (4UL) { case 1UL: __ptr = (u8 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgb %2,%1": "=a" (__ret), "+m" (*__ptr): "q" (__new), "0" (__old): "memory"); goto ldv_5616; case 2UL: __ptr___0 = (u16 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgw %2,%1": "=a" (__ret), "+m" (*__ptr___0): "r" (__new), "0" (__old): "memory"); goto ldv_5616; case 4UL: __ptr___1 = (u32 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgl %2,%1": "=a" (__ret), "+m" (*__ptr___1): "r" (__new), "0" (__old): "memory"); goto ldv_5616; case 8UL: __ptr___2 = (u64 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgq %2,%1": "=a" (__ret), "+m" (*__ptr___2): "r" (__new), "0" (__old): "memory"); goto ldv_5616; default: __cmpxchg_wrong_size(); } ldv_5616: ; return (__ret); } } __inline static int atomic_dec_if_positive(atomic_t *v ) { int c ; int old ; int dec ; long tmp ; long tmp___0 ; { c = atomic_read((atomic_t const *)v); ldv_5790: dec = c + -1; tmp = ldv__builtin_expect(dec < 0, 0L); if (tmp != 0L) { goto ldv_5789; } else { } old = atomic_cmpxchg(v, c, dec); tmp___0 = ldv__builtin_expect(old == c, 1L); if (tmp___0 != 0L) { goto ldv_5789; } else { } c = old; goto ldv_5790; ldv_5789: ; return (dec); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } extern int mutex_lock_interruptible(struct mutex * ) ; int ldv_mutex_lock_interruptible_19(struct mutex *ldv_func_arg1 ) ; extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_lock_interruptible_reset_mutex_of_ctlr_info(struct mutex *lock ) ; void ldv_mutex_unlock_reset_mutex_of_ctlr_info(struct mutex *lock ) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; switch (4UL) { case 1UL: ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6569; case 2UL: ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6569; case 4UL: ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6569; case 8UL: ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (val)); } goto ldv_6569; default: __bad_percpu_size(); } ldv_6569: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; switch (4UL) { case 1UL: ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6581; case 2UL: ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6581; case 4UL: ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6581; case 8UL: ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6581; default: __bad_percpu_size(); } ldv_6581: ; return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField17.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->__annonCompField17.rlock, flags); return; } } extern unsigned long volatile jiffies ; __inline static u64 get_jiffies_64(void) { { return ((u64 )jiffies); } } extern unsigned long __msecs_to_jiffies(unsigned int const ) ; __inline static unsigned long msecs_to_jiffies(unsigned int const m ) { unsigned long tmp___0 ; { tmp___0 = __msecs_to_jiffies(m); return (tmp___0); } } extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { x->done = 0U; __init_waitqueue_head(& x->wait, "&x->wait", & __key); return; } } extern void wait_for_completion_io(struct completion * ) ; extern unsigned long wait_for_completion_io_timeout(struct completion * , unsigned long ) ; extern void complete(struct completion * ) ; extern void delayed_work_timer_fn(unsigned long ) ; __inline static struct delayed_work *to_delayed_work(struct work_struct *work ) { struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; return ((struct delayed_work *)__mptr); } } extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; void ldv_destroy_workqueue_23(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_destroy_workqueue_24(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_destroy_workqueue_26(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_destroy_workqueue_27(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_destroy_workqueue_30(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_destroy_workqueue_31(struct workqueue_struct *ldv_func_arg1 ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_18(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) ; void ldv_flush_workqueue_25(struct workqueue_struct *ldv_func_arg1 ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; bool ldv_cancel_delayed_work_sync_28(struct delayed_work *ldv_func_arg1 ) ; bool ldv_cancel_delayed_work_sync_29(struct delayed_work *ldv_func_arg1 ) ; __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = ldv_queue_delayed_work_on_6(8192, wq, dwork, delay); return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = queue_delayed_work(system_wq, dwork, delay); return (tmp); } } __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; extern void iounmap(void volatile * ) ; extern int cpu_number ; extern void *__alloc_percpu(size_t , size_t ) ; extern void free_percpu(void * ) ; extern bool capable(int ) ; extern long schedule_timeout(long ) ; extern void schedule(void) ; extern void kfree(void const * ) ; extern void *ldv_malloc(size_t); void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } void *ldv_zalloc(size_t size ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } int ldv_state_variable_8 ; int ldv_state_variable_15 ; struct ctlr_info *SA5_ioaccel_mode2_access_group0 ; int ldv_state_variable_20 ; int pci_counter ; struct work_struct *ldv_work_struct_3_1 ; struct work_struct *ldv_work_struct_1_3 ; int ldv_state_variable_0 ; int ldv_state_variable_21 ; int ldv_state_variable_5 ; int ldv_state_variable_13 ; int ldv_work_1_1 ; int ldv_state_variable_12 ; struct Scsi_Host *hpsa_driver_template_group1 ; int ldv_work_3_2 ; int ldv_state_variable_22 ; int ldv_state_variable_14 ; int ldv_work_3_0 ; struct scsi_cmnd *hpsa_driver_template_group0 ; int ldv_state_variable_17 ; struct work_struct *ldv_work_struct_2_3 ; struct work_struct *ldv_work_struct_2_0 ; struct pci_dev *hpsa_pci_driver_group1 ; int ldv_state_variable_19 ; int ldv_state_variable_9 ; struct work_struct *ldv_work_struct_2_2 ; int ref_cnt ; int ldv_work_3_3 ; int ldv_state_variable_1 ; int ldv_state_variable_7 ; struct ctlr_info *SA5_performant_access_group0 ; struct work_struct *ldv_work_struct_3_3 ; struct work_struct *ldv_work_struct_1_0 ; struct work_struct *ldv_work_struct_1_1 ; int ldv_state_variable_10 ; int ldv_work_1_3 ; struct work_struct *ldv_work_struct_2_1 ; struct work_struct *ldv_work_struct_3_2 ; int ldv_state_variable_6 ; struct ctlr_info *SA5_performant_access_no_read_group0 ; struct ctlr_info *SA5_access_group0 ; int ldv_work_3_1 ; int ldv_state_variable_16 ; struct device_attribute *dev_attr_hp_ssd_smart_path_status_group0 ; int ldv_state_variable_2 ; int ldv_work_2_0 ; struct scsi_device *hpsa_driver_template_group2 ; struct work_struct *ldv_work_struct_3_0 ; int ldv_state_variable_11 ; int ldv_work_1_2 ; int LDV_IN_INTERRUPT = 1; int ldv_state_variable_18 ; struct device *dev_attr_hp_ssd_smart_path_status_group1 ; struct ctlr_info *SA5_ioaccel_mode1_access_group0 ; struct work_struct *ldv_work_struct_1_2 ; int ldv_work_2_2 ; int ldv_state_variable_3 ; int ldv_work_1_0 ; int ldv_work_2_3 ; int ldv_state_variable_4 ; int ldv_work_2_1 ; void ldv_initialize_device_attribute_12(void) ; void work_init_3(void) ; void call_and_disable_work_1(struct work_struct *work ) ; void ldv_initialize_access_method_22(void) ; void work_init_2(void) ; void call_and_disable_all_2(int state ) ; void call_and_disable_all_1(int state ) ; void activate_work_2(struct work_struct *work , int state ) ; void activate_work_3(struct work_struct *work , int state ) ; void ldv_initialize_scsi_host_template_5(void) ; void ldv_initialize_access_method_20(void) ; void ldv_pci_driver_4(void) ; void activate_work_1(struct work_struct *work , int state ) ; void call_and_disable_work_3(struct work_struct *work ) ; void disable_work_3(struct work_struct *work ) ; void disable_work_2(struct work_struct *work ) ; void disable_work_1(struct work_struct *work ) ; void invoke_work_3(void) ; void work_init_1(void) ; void ldv_initialize_access_method_18(void) ; void invoke_work_1(void) ; void call_and_disable_all_3(int state ) ; void ldv_initialize_access_method_21(void) ; void ldv_initialize_access_method_19(void) ; void call_and_disable_work_2(struct work_struct *work ) ; void invoke_work_2(void) ; extern int check_signature(void const volatile * , unsigned char const * , int ) ; extern unsigned long copy_in_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; unsigned long tmp ; long tmp___0 ; { tmp = __builtin_object_size((void const *)to, 0); sz = (int )tmp; __might_fault("./arch/x86/include/asm/uaccess.h", 697); tmp___0 = ldv__builtin_expect((long )(sz < 0 || (unsigned long )sz >= n), 1L); if (tmp___0 != 0L) { n = _copy_from_user(to, from, (unsigned int )n); } else { __copy_from_user_overflow(); } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; unsigned long tmp ; long tmp___0 ; { tmp = __builtin_object_size(from, 0); sz = (int )tmp; __might_fault("./arch/x86/include/asm/uaccess.h", 732); tmp___0 = ldv__builtin_expect((long )(sz < 0 || (unsigned long )sz >= n), 1L); if (tmp___0 != 0L) { n = _copy_to_user(to, from, (unsigned int )n); } else { __copy_to_user_overflow(); } return (n); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); return (tmp); } } extern void free_irq(unsigned int , void * ) ; extern int irq_set_affinity_hint(unsigned int , struct cpumask const * ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_printk(char const * , struct device const * , char const * , ...) ; extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern int pci_find_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; int ldv___pci_register_driver_33(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; void ldv_pci_unregister_driver_34(struct pci_driver *ldv_func_arg1 ) ; extern struct scatterlist *sg_next(struct scatterlist * ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern void pci_disable_msix(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; if (rc < 0) { return (rc); } else { } return (0); } } extern int pci_enable_msix_range(struct pci_dev * , struct msix_entry * , int , int ) ; __inline static int pci_domain_nr(struct pci_bus *bus ) { struct pci_sysdata *sd ; { sd = (struct pci_sysdata *)bus->sysdata; return (sd->domain); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_28221: ; goto ldv_28221; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_28230: ; goto ldv_28230; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; extern void *dma_alloc_attrs(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; extern void dma_free_attrs(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { tmp = dma_supported(dev, mask); if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_mask(& dev->dev, mask); return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_coherent_mask(& dev->dev, mask); return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } extern void *pci_ioremap_bar(struct pci_dev * , int ) ; extern void pci_disable_link_state(struct pci_dev * , int ) ; extern void msleep(unsigned int ) ; __inline static void *compat_ptr(compat_uptr_t uptr ) { { return ((void *)((unsigned long )uptr)); } } extern void *compat_alloc_user_space(unsigned long ) ; extern struct blk_queue_tag *blk_init_tags(int , int ) ; extern char const *scsi_device_type(unsigned int ) ; extern bool scsi_normalize_sense(u8 const * , int , struct scsi_sense_hdr * ) ; extern int scsi_add_device(struct Scsi_Host * , uint , uint , u64 ) ; extern void scsi_remove_device(struct scsi_device * ) ; extern void scsi_device_put(struct scsi_device * ) ; extern struct scsi_device *scsi_device_lookup(struct Scsi_Host * , uint , uint , u64 ) ; extern int scsi_change_queue_depth(struct scsi_device * , int ) ; __inline static unsigned int sdev_channel(struct scsi_device *sdev ) { { return (sdev->channel); } } __inline static unsigned int sdev_id(struct scsi_device *sdev ) { { return (sdev->id); } } extern int scsi_dma_map(struct scsi_cmnd * ) ; extern void scsi_dma_unmap(struct scsi_cmnd * ) ; __inline static unsigned int scsi_sg_count(struct scsi_cmnd *cmd ) { { return (cmd->sdb.table.nents); } } __inline static struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd ) { { return (cmd->sdb.table.sgl); } } __inline static void scsi_set_resid(struct scsi_cmnd *cmd , int resid ) { { cmd->sdb.resid = resid; return; } } __inline static void *shost_priv(struct Scsi_Host *shost ) { { return ((void *)(& shost->hostdata)); } } __inline static bool shost_use_blk_mq(struct Scsi_Host *shost ) { { return ((int )shost->use_blk_mq != 0); } } extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template * , int ) ; struct Scsi_Host *ldv_scsi_host_alloc_22(struct scsi_host_template *sht , int privsize ) ; extern int scsi_add_host_with_dma(struct Scsi_Host * , struct device * , struct device * ) ; int ldv_scsi_add_host_with_dma_17(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; extern void scsi_scan_host(struct Scsi_Host * ) ; extern void scsi_remove_host(struct Scsi_Host * ) ; void ldv_scsi_remove_host_32(struct Scsi_Host *shost ) ; extern struct Scsi_Host *scsi_host_get(struct Scsi_Host * ) ; extern void scsi_host_put(struct Scsi_Host * ) ; __inline static int scsi_add_host(struct Scsi_Host *host , struct device *dev ) { int tmp ; { tmp = ldv_scsi_add_host_with_dma_17(host, dev, dev); return (tmp); } } extern void scsi_unblock_requests(struct Scsi_Host * ) ; extern void scsi_block_requests(struct Scsi_Host * ) ; __inline static int scsi_init_shared_tag_map(struct Scsi_Host *shost , int depth ) { bool tmp ; { tmp = shost_use_blk_mq(shost); if ((int )tmp) { return (0); } else { } if ((unsigned long )shost->__annonCompField86.bqt == (unsigned long )((struct blk_queue_tag *)0)) { shost->__annonCompField86.bqt = blk_init_tags(depth, (shost->hostt)->tag_alloc_policy); if ((unsigned long )shost->__annonCompField86.bqt == (unsigned long )((struct blk_queue_tag *)0)) { return (-12); } else { } } else { } return (0); } } extern void scsi_print_command(struct scsi_cmnd * ) ; __inline static u16 get_unaligned_be16(void const *p ) { __u16 tmp ; { tmp = __be16_to_cpup((__be16 const *)p); return (tmp); } } __inline static u32 get_unaligned_be32(void const *p ) { __u32 tmp ; { tmp = __be32_to_cpup((__be32 const *)p); return (tmp); } } __inline static u64 get_unaligned_be64(void const *p ) { __u64 tmp ; { tmp = __be64_to_cpup((__be64 const *)p); return (tmp); } } static void SA5_submit_command(struct ctlr_info *h , struct CommandList *c ) { { writel(c->busaddr, (void volatile *)h->vaddr + 64U); readl((void const volatile *)h->vaddr + 176U); return; } } static void SA5_submit_command_no_read(struct ctlr_info *h , struct CommandList *c ) { { writel(c->busaddr, (void volatile *)h->vaddr + 64U); return; } } static void SA5_submit_command_ioaccel2(struct ctlr_info *h , struct CommandList *c ) { { writel(c->busaddr, (void volatile *)h->vaddr + 64U); return; } } static void SA5_intr_mask(struct ctlr_info *h , unsigned long val ) { { if (val != 0UL) { h->interrupts_enabled = 1; writel(0U, (void volatile *)h->vaddr + 52U); readl((void const volatile *)h->vaddr + 52U); } else { h->interrupts_enabled = 0; writel(8U, (void volatile *)h->vaddr + 52U); readl((void const volatile *)h->vaddr + 52U); } return; } } static void SA5_performant_intr_mask(struct ctlr_info *h , unsigned long val ) { { if (val != 0UL) { h->interrupts_enabled = 1; writel(0U, (void volatile *)h->vaddr + 52U); readl((void const volatile *)h->vaddr + 52U); } else { h->interrupts_enabled = 0; writel(5U, (void volatile *)h->vaddr + 52U); readl((void const volatile *)h->vaddr + 52U); } return; } } static unsigned long SA5_performant_completed(struct ctlr_info *h , u8 q ) { struct reply_queue_buffer *rq ; unsigned long register_value ; long tmp ; { rq = (struct reply_queue_buffer *)(& h->reply_queue) + (unsigned long )q; register_value = 4294967295UL; tmp = ldv__builtin_expect((long )(h->msi_vector == 0U && h->msix_vector == 0U), 0L); if (tmp != 0L) { readl((void const volatile *)h->vaddr + 156U); writel(1U, (void volatile *)h->vaddr + 160U); readl((void const volatile *)h->vaddr + 156U); } else { } if (((unsigned int )*(rq->head + (unsigned long )rq->current_entry) & 1U) == (unsigned int )rq->wraparound) { register_value = (unsigned long )*(rq->head + (unsigned long )rq->current_entry); rq->current_entry = rq->current_entry + 1U; atomic_dec(& h->commands_outstanding); } else { register_value = 4294967295UL; } if (rq->current_entry == (u32 )h->max_commands) { rq->current_entry = 0U; rq->wraparound = (u8 )((unsigned int )rq->wraparound ^ 1U); } else { } return (register_value); } } static unsigned long SA5_completed(struct ctlr_info *h , u8 q ) { unsigned long register_value ; unsigned int tmp ; { tmp = readl((void const volatile *)h->vaddr + 68U); register_value = (unsigned long )tmp; if (register_value != 4294967295UL) { atomic_dec(& h->commands_outstanding); } else { } return (register_value); } } static bool SA5_intr_pending(struct ctlr_info *h ) { unsigned long register_value ; unsigned int tmp ; { tmp = readl((void const volatile *)h->vaddr + 48U); register_value = (unsigned long )tmp; return ((register_value & 8UL) != 0UL); } } static bool SA5_performant_intr_pending(struct ctlr_info *h ) { unsigned long register_value ; unsigned int tmp ; unsigned int tmp___0 ; { tmp = readl((void const volatile *)h->vaddr + 48U); register_value = (unsigned long )tmp; if (register_value == 0UL) { return (0); } else { } tmp___0 = readl((void const volatile *)h->vaddr + 156U); register_value = (unsigned long )tmp___0; return ((register_value & 1UL) != 0UL); } } static bool SA5_ioaccel_mode1_intr_pending(struct ctlr_info *h ) { unsigned long register_value ; unsigned int tmp ; { tmp = readl((void const volatile *)h->vaddr + 48U); register_value = (unsigned long )tmp; return ((register_value & 256UL) != 0UL); } } static unsigned long SA5_ioaccel_mode1_completed(struct ctlr_info *h , u8 q ) { u64 register_value ; struct reply_queue_buffer *rq ; long tmp ; { rq = (struct reply_queue_buffer *)(& h->reply_queue) + (unsigned long )q; tmp = ldv__builtin_expect((int )h->nreply_queues <= (int )q, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/inst/current/envs/linux-4.2-rc1.tar.xz/linux-4.2-rc1/drivers/scsi/hpsa.h"), "i" (523), "i" (12UL)); ldv_39726: ; goto ldv_39726; } else { } register_value = *(rq->head + (unsigned long )rq->current_entry); if (register_value != 0xffffffffffffffffULL) { *(rq->head + (unsigned long )rq->current_entry) = 0xffffffffffffffffULL; rq->current_entry = rq->current_entry + 1U; if ((size_t )rq->current_entry == rq->size) { rq->current_entry = 0U; } else { } __asm__ volatile ("sfence": : : "memory"); writel((u32 )((int )q << 24) | rq->current_entry, (void volatile *)h->vaddr + 444U); atomic_dec(& h->commands_outstanding); } else { } return ((unsigned long )register_value); } } static struct access_method SA5_access = {& SA5_submit_command, & SA5_intr_mask, & SA5_intr_pending, & SA5_completed}; static struct access_method SA5_ioaccel_mode1_access = {& SA5_submit_command, & SA5_performant_intr_mask, & SA5_ioaccel_mode1_intr_pending, & SA5_ioaccel_mode1_completed}; static struct access_method SA5_ioaccel_mode2_access = {& SA5_submit_command_ioaccel2, & SA5_performant_intr_mask, & SA5_performant_intr_pending, & SA5_performant_completed}; static struct access_method SA5_performant_access = {& SA5_submit_command, & SA5_performant_intr_mask, & SA5_performant_intr_pending, & SA5_performant_completed}; static struct access_method SA5_performant_access_no_read = {& SA5_submit_command_no_read, & SA5_performant_intr_mask, & SA5_performant_intr_pending, & SA5_performant_completed}; static int hpsa_allow_any ; static int hpsa_simple_mode ; static struct pci_device_id const hpsa_pci_device_id[48U] = { {4156U, 12858U, 4156U, 12865U, 0U, 0U, 0UL}, {4156U, 12858U, 4156U, 12867U, 0U, 0U, 0UL}, {4156U, 12858U, 4156U, 12869U, 0U, 0U, 0UL}, {4156U, 12858U, 4156U, 12871U, 0U, 0U, 0UL}, {4156U, 12858U, 4156U, 12873U, 0U, 0U, 0UL}, {4156U, 12858U, 4156U, 12874U, 0U, 0U, 0UL}, {4156U, 12858U, 4156U, 12875U, 0U, 0U, 0UL}, {4156U, 12858U, 4156U, 12851U, 0U, 0U, 0UL}, {4156U, 12859U, 4156U, 13136U, 0U, 0U, 0UL}, {4156U, 12859U, 4156U, 13137U, 0U, 0U, 0UL}, {4156U, 12859U, 4156U, 13138U, 0U, 0U, 0UL}, {4156U, 12859U, 4156U, 13139U, 0U, 0U, 0UL}, {4156U, 12859U, 4156U, 13140U, 0U, 0U, 0UL}, {4156U, 12859U, 4156U, 13141U, 0U, 0U, 0UL}, {4156U, 12859U, 4156U, 13142U, 0U, 0U, 0UL}, {4156U, 12860U, 4156U, 6433U, 0U, 0U, 0UL}, {4156U, 12860U, 4156U, 6434U, 0U, 0U, 0UL}, {4156U, 12860U, 4156U, 6435U, 0U, 0U, 0UL}, {4156U, 12860U, 4156U, 6436U, 0U, 0U, 0UL}, {4156U, 12860U, 4156U, 6438U, 0U, 0U, 0UL}, {4156U, 12860U, 4156U, 6440U, 0U, 0U, 0UL}, {4156U, 12860U, 4156U, 6441U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8637U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8638U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8639U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8640U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8641U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8642U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8643U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8644U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8645U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8646U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8647U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8648U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8649U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8650U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8651U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8652U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8653U, 0U, 0U, 0UL}, {4156U, 12857U, 4156U, 8654U, 0U, 0U, 0UL}, {36869U, 656U, 36869U, 1408U, 0U, 0U, 0UL}, {5520U, 117U, 5520U, 118U, 0U, 0U, 0UL}, {5520U, 117U, 5520U, 135U, 0U, 0U, 0UL}, {5520U, 117U, 5520U, 125U, 0U, 0U, 0UL}, {5520U, 117U, 5520U, 136U, 0U, 0U, 0UL}, {4156U, 13119U, 4156U, 13119U, 0U, 0U, 0UL}, {4156U, 4294967295U, 4294967295U, 4294967295U, 66560U, 16776960U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__hpsa_pci_device_id_device_table[48U] ; static struct board_type products[47U] = { {843124796U, (char *)"Smart Array P212", & SA5_access}, {843255868U, (char *)"Smart Array P410", & SA5_access}, {843386940U, (char *)"Smart Array P410i", & SA5_access}, {843518012U, (char *)"Smart Array P411", & SA5_access}, {843649084U, (char *)"Smart Array P812", & SA5_access}, {843714620U, (char *)"Smart Array P712m", & SA5_access}, {843780156U, (char *)"Smart Array P711m", & SA5_access}, {842207292U, (char *)"HP StorageWorks 1210m", & SA5_access}, {860885052U, (char *)"Smart Array P222", & SA5_access}, {860950588U, (char *)"Smart Array P420", & SA5_access}, {861016124U, (char *)"Smart Array P421", & SA5_access}, {861081660U, (char *)"Smart Array P822", & SA5_access}, {861147196U, (char *)"Smart Array P420i", & SA5_access}, {861212732U, (char *)"Smart Array P220i", & SA5_access}, {861278268U, (char *)"Smart Array P721m", & SA5_access}, {421597244U, (char *)"Smart Array P830i", & SA5_access}, {421662780U, (char *)"Smart Array P430", & SA5_access}, {421728316U, (char *)"Smart Array P431", & SA5_access}, {421793852U, (char *)"Smart Array P830", & SA5_access}, {421924924U, (char *)"Smart Array P731m", & SA5_access}, {422055996U, (char *)"Smart Array P230i", & SA5_access}, {422121532U, (char *)"Smart Array P530", & SA5_access}, {566038588U, (char *)"Smart Array P244br", & SA5_access}, {566104124U, (char *)"Smart Array P741m", & SA5_access}, {566169660U, (char *)"Smart HBA H240ar", & SA5_access}, {566235196U, (char *)"Smart Array P440ar", & SA5_access}, {566300732U, (char *)"Smart Array P840ar", & SA5_access}, {566366268U, (char *)"Smart Array P440", & SA5_access}, {566431804U, (char *)"Smart Array P441", & SA5_access}, {566497340U, (char *)"Smart Array", & SA5_access}, {566562876U, (char *)"Smart Array P841", & SA5_access}, {566628412U, (char *)"Smart HBA H244br", & SA5_access}, {566693948U, (char *)"Smart HBA H240", & SA5_access}, {566759484U, (char *)"Smart HBA H241", & SA5_access}, {566825020U, (char *)"Smart Array", & SA5_access}, {566890556U, (char *)"Smart Array P246br", & SA5_access}, {566956092U, (char *)"Smart Array P840", & SA5_access}, {567021628U, (char *)"Smart Array", & SA5_access}, {567087164U, (char *)"Smart Array", & SA5_access}, {567152700U, (char *)"Smart HBA", & SA5_access}, {92311557U, (char *)"SmartHBA-SA", & SA5_access}, {7738768U, (char *)"HP Storage P1224 Array Controller", & SA5_access}, {8852880U, (char *)"HP Storage P1224e Array Controller", & SA5_access}, {8197520U, (char *)"HP Storage P1228 Array Controller", & SA5_access}, {8918416U, (char *)"HP Storage P1228e Array Controller", & SA5_access}, {859770940U, (char *)"HP StorageWorks 1210m Array Controller", & SA5_access}, {4294905916U, (char *)"Unknown Smart Array", & SA5_access}}; static struct scsi_cmnd const hpsa_cmd_busy ; static struct scsi_cmnd const hpsa_cmd_idle ; static int number_of_controllers ; static irqreturn_t do_hpsa_intr_intx(int irq , void *queue ) ; static irqreturn_t do_hpsa_intr_msi(int irq , void *queue ) ; static int hpsa_ioctl(struct scsi_device *dev , int cmd , void *arg ) ; static int hpsa_compat_ioctl(struct scsi_device *dev , int cmd , void *arg ) ; static void cmd_free(struct ctlr_info *h , struct CommandList *c ) ; static struct CommandList *cmd_alloc(struct ctlr_info *h ) ; static void cmd_tagged_free(struct ctlr_info *h , struct CommandList *c ) ; static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h , struct scsi_cmnd *scmd ) ; static int fill_cmd(struct CommandList *c , u8 cmd , struct ctlr_info *h , void *buff , size_t size , u16 page_code , unsigned char *scsi3addr , int cmd_type ) ; static void hpsa_free_cmd_pool(struct ctlr_info *h ) ; static int hpsa_scsi_queue_command(struct Scsi_Host *sh , struct scsi_cmnd *cmd ) ; static void hpsa_scan_start(struct Scsi_Host *sh ) ; static int hpsa_scan_finished(struct Scsi_Host *sh , unsigned long elapsed_time ) ; static int hpsa_change_queue_depth(struct scsi_device *sdev , int qdepth ) ; static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd ) ; static int hpsa_eh_abort_handler(struct scsi_cmnd *sc ) ; static int hpsa_slave_alloc(struct scsi_device *sdev ) ; static int hpsa_slave_configure(struct scsi_device *sdev ) ; static void hpsa_slave_destroy(struct scsi_device *sdev ) ; static void hpsa_update_scsi_devices(struct ctlr_info *h , int hostno ) ; static int check_for_unit_attention(struct ctlr_info *h , struct CommandList *c ) ; static void check_ioctl_unit_attention(struct ctlr_info *h , struct CommandList *c ) ; static void calc_bucket_map(int *bucket , int num_buckets , int nsgs , int min_blocks , u32 *bucket_map ) ; static void hpsa_free_performant_mode(struct ctlr_info *h ) ; static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h ) ; __inline static u32 next_command(struct ctlr_info *h , u8 q ) ; static int hpsa_find_cfg_addrs(struct pci_dev *pdev , void *vaddr , u32 *cfg_base_addr , u64 *cfg_base_addr_index , u64 *cfg_offset ) ; static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev , unsigned long *memory_bar ) ; static int hpsa_lookup_board_id(struct pci_dev *pdev , u32 *board_id ) ; static int hpsa_wait_for_board_state(struct pci_dev *pdev , void *vaddr , int wait_for_ready ) ; __inline static void finish_cmd(struct CommandList *c ) ; static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h ) ; static void hpsa_drain_accel_commands(struct ctlr_info *h ) ; static void hpsa_flush_cache(struct ctlr_info *h ) ; static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h , struct CommandList *c , u32 ioaccel_handle , u8 *cdb , int cdb_len , u8 *scsi3addr , struct hpsa_scsi_dev_t *phys_disk ) ; static void hpsa_command_resubmit_worker(struct work_struct *work ) ; static u32 lockup_detected(struct ctlr_info *h ) ; static int detect_controller_lockup(struct ctlr_info *h ) ; __inline static struct ctlr_info *sdev_to_hba(struct scsi_device *sdev ) { unsigned long *priv ; void *tmp ; { tmp = shost_priv(sdev->host); priv = (unsigned long *)tmp; return ((struct ctlr_info *)*priv); } } __inline static struct ctlr_info *shost_to_hba(struct Scsi_Host *sh ) { unsigned long *priv ; void *tmp ; { tmp = shost_priv(sh); priv = (unsigned long *)tmp; return ((struct ctlr_info *)*priv); } } __inline static bool hpsa_is_cmd_idle(struct CommandList *c ) { { return ((unsigned long )c->scsi_cmd == (unsigned long )((struct scsi_cmnd *)(& hpsa_cmd_idle))); } } __inline static bool hpsa_is_pending_event(struct CommandList *c ) { { return ((bool )(c->abort_pending != 0 || (unsigned long )c->reset_pending != (unsigned long )((struct hpsa_scsi_dev_t *)0))); } } static void decode_sense_data(u8 const *sense_data , int sense_data_len , u8 *sense_key , u8 *asc , u8 *ascq ) { struct scsi_sense_hdr sshdr ; bool rc ; { *sense_key = 255U; *asc = 255U; *ascq = 255U; if (sense_data_len <= 0) { return; } else { } rc = scsi_normalize_sense(sense_data, sense_data_len, & sshdr); if ((int )rc) { *sense_key = sshdr.sense_key; *asc = sshdr.asc; *ascq = sshdr.ascq; } else { } return; } } static int check_for_unit_attention(struct ctlr_info *h , struct CommandList *c ) { u8 sense_key ; u8 asc ; u8 ascq ; int sense_len ; { if ((unsigned int )(c->err_info)->SenseLen > 32U) { sense_len = 32; } else { sense_len = (int )(c->err_info)->SenseLen; } decode_sense_data((u8 const *)(& (c->err_info)->SenseInfo), sense_len, & sense_key, & asc, & ascq); if ((unsigned int )sense_key != 6U) { return (0); } else { } switch ((int )asc) { case 42: dev_warn((struct device const *)(& (h->pdev)->dev), "%s: a state change detected, command retried\n", (char *)(& h->devname)); goto ldv_39935; case 62: dev_warn((struct device const *)(& (h->pdev)->dev), "%s: LUN failure detected\n", (char *)(& h->devname)); goto ldv_39935; case 63: dev_warn((struct device const *)(& (h->pdev)->dev), "%s: report LUN data changed\n", (char *)(& h->devname)); goto ldv_39935; case 41: dev_warn((struct device const *)(& (h->pdev)->dev), "%s: a power on or device reset detected\n", (char *)(& h->devname)); goto ldv_39935; case 47: dev_warn((struct device const *)(& (h->pdev)->dev), "%s: unit attention cleared by another initiator\n", (char *)(& h->devname)); goto ldv_39935; default: dev_warn((struct device const *)(& (h->pdev)->dev), "%s: unknown unit attention detected\n", (char *)(& h->devname)); goto ldv_39935; } ldv_39935: ; return (1); } } static int check_for_busy(struct ctlr_info *h , struct CommandList *c ) { { if ((unsigned int )(c->err_info)->CommandStatus != 1U || ((unsigned int )(c->err_info)->ScsiStatus != 8U && (unsigned int )(c->err_info)->ScsiStatus != 40U)) { return (0); } else { } dev_warn((struct device const *)(& (h->pdev)->dev), "hpsadevice busy"); return (1); } } static ssize_t host_show_lockup_detected(struct device *dev , struct device_attribute *attr , char *buf ) { int ld ; struct ctlr_info *h ; struct Scsi_Host *shost ; struct device const *__mptr ; u32 tmp ; int tmp___0 ; { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c0UL; h = shost_to_hba(shost); tmp = lockup_detected(h); ld = (int )tmp; tmp___0 = sprintf(buf, "ld=%d\n", ld); return ((ssize_t )tmp___0); } } static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { int status ; int len ; struct ctlr_info *h ; struct Scsi_Host *shost ; struct device const *__mptr ; char tmpbuf[10U] ; bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c0UL; tmp = capable(21); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-13L); } else { tmp___1 = capable(17); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-13L); } else { } } len = (int )(9UL < count ? 9UL : count); strncpy((char *)(& tmpbuf), buf, (__kernel_size_t )len); tmpbuf[len] = 0; tmp___3 = sscanf((char const *)(& tmpbuf), "%d", & status); if (tmp___3 != 1) { return (-22L); } else { } h = shost_to_hba(shost); h->acciopath_status = status != 0; dev_warn((struct device const *)(& (h->pdev)->dev), "hpsa: HP SSD Smart Path %s via sysfs update.\n", h->acciopath_status != 0 ? (char *)"enabled" : (char *)"disabled"); return ((ssize_t )count); } } static ssize_t host_store_raid_offload_debug(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { int debug_level ; int len ; struct ctlr_info *h ; struct Scsi_Host *shost ; struct device const *__mptr ; char tmpbuf[10U] ; bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c0UL; tmp = capable(21); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-13L); } else { tmp___1 = capable(17); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-13L); } else { } } len = (int )(9UL < count ? 9UL : count); strncpy((char *)(& tmpbuf), buf, (__kernel_size_t )len); tmpbuf[len] = 0; tmp___3 = sscanf((char const *)(& tmpbuf), "%d", & debug_level); if (tmp___3 != 1) { return (-22L); } else { } if (debug_level < 0) { debug_level = 0; } else { } h = shost_to_hba(shost); h->raid_offload_debug = debug_level; dev_warn((struct device const *)(& (h->pdev)->dev), "hpsa: Set raid_offload_debug level = %d\n", h->raid_offload_debug); return ((ssize_t )count); } } static ssize_t host_store_rescan(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct ctlr_info *h ; struct Scsi_Host *shost ; struct device const *__mptr ; { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c0UL; h = shost_to_hba(shost); hpsa_scan_start(h->scsi_host); return ((ssize_t )count); } } static ssize_t host_show_firmware_revision(struct device *dev , struct device_attribute *attr , char *buf ) { struct ctlr_info *h ; struct Scsi_Host *shost ; struct device const *__mptr ; unsigned char *fwrev ; int tmp ; { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c0UL; h = shost_to_hba(shost); if ((unsigned long )h->hba_inquiry_data == (unsigned long )((unsigned char *)0U)) { return (0L); } else { } fwrev = h->hba_inquiry_data + 32UL; tmp = snprintf(buf, 20UL, "%c%c%c%c\n", (int )*fwrev, (int )*(fwrev + 1UL), (int )*(fwrev + 2UL), (int )*(fwrev + 3UL)); return ((ssize_t )tmp); } } static ssize_t host_show_commands_outstanding(struct device *dev , struct device_attribute *attr , char *buf ) { struct Scsi_Host *shost ; struct device const *__mptr ; struct ctlr_info *h ; struct ctlr_info *tmp ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c0UL; tmp = shost_to_hba(shost); h = tmp; tmp___0 = atomic_read((atomic_t const *)(& h->commands_outstanding)); tmp___1 = snprintf(buf, 20UL, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t host_show_transport_mode(struct device *dev , struct device_attribute *attr , char *buf ) { struct ctlr_info *h ; struct Scsi_Host *shost ; struct device const *__mptr ; int tmp ; { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c0UL; h = shost_to_hba(shost); tmp = snprintf(buf, 20UL, "%s\n", (h->transMethod & 4UL) != 0UL ? (char *)"performant" : (char *)"simple"); return ((ssize_t )tmp); } } static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev , struct device_attribute *attr , char *buf ) { struct ctlr_info *h ; struct Scsi_Host *shost ; struct device const *__mptr ; int tmp ; { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c0UL; h = shost_to_hba(shost); tmp = snprintf(buf, 30UL, "HP SSD Smart Path %s\n", h->acciopath_status == 1 ? (char *)"enabled" : (char *)"disabled"); return ((ssize_t )tmp); } } static u32 unresettable_controller[21U] = { 843714620U, 843780156U, 841158716U, 842272828U, 842338364U, 839979068U, 840044604U, 840110140U, 840175676U, 840241212U, 842469436U, 842862652U, 1082134033U, 1083969041U, 1084034577U, 1081085457U, 1082265105U, 1082330641U, 1083837969U, 1083903505U, 1083248145U}; static u32 soft_unresettable_controller[9U] = { 1082134033U, 1081085457U, 1082265105U, 1082330641U, 1083837969U, 1083903505U, 1083248145U, 1083969041U, 1084034577U}; static u32 needs_abort_tags_swizzled[3U] = { 842862652U, 843714620U, 843780156U}; static int board_id_in_array(u32 *a , int nelems , u32 board_id ) { int i ; { i = 0; goto ldv_40040; ldv_40039: ; if (*(a + (unsigned long )i) == board_id) { return (1); } else { } i = i + 1; ldv_40040: ; if (i < nelems) { goto ldv_40039; } else { } return (0); } } static int ctlr_is_hard_resettable(u32 board_id ) { int tmp ; { tmp = board_id_in_array((u32 *)(& unresettable_controller), 21, board_id); return (tmp == 0); } } static int ctlr_is_soft_resettable(u32 board_id ) { int tmp ; { tmp = board_id_in_array((u32 *)(& soft_unresettable_controller), 9, board_id); return (tmp == 0); } } static int ctlr_is_resettable(u32 board_id ) { int tmp ; int tmp___0 ; int tmp___1 ; { tmp = ctlr_is_hard_resettable(board_id); if (tmp != 0) { tmp___1 = 1; } else { tmp___0 = ctlr_is_soft_resettable(board_id); if (tmp___0 != 0) { tmp___1 = 1; } else { tmp___1 = 0; } } return (tmp___1); } } static int ctlr_needs_abort_tags_swizzled(u32 board_id ) { int tmp ; { tmp = board_id_in_array((u32 *)(& needs_abort_tags_swizzled), 3, board_id); return (tmp); } } static ssize_t host_show_resettable(struct device *dev , struct device_attribute *attr , char *buf ) { struct ctlr_info *h ; struct Scsi_Host *shost ; struct device const *__mptr ; int tmp ; int tmp___0 ; { __mptr = (struct device const *)dev; shost = (struct Scsi_Host *)__mptr + 0xfffffffffffff6c0UL; h = shost_to_hba(shost); tmp = ctlr_is_resettable(h->board_id); tmp___0 = snprintf(buf, 20UL, "%d\n", tmp); return ((ssize_t )tmp___0); } } __inline static int is_logical_dev_addr_mode(unsigned char *scsi3addr ) { { return (((int )*(scsi3addr + 3UL) & 192) == 64); } } static char const * const raid_label[8U] = { "0", "4", "1(+0)", "5", "5+1", "6", "1(+0)ADM", "UNKNOWN"}; static ssize_t raid_level_show(struct device *dev , struct device_attribute *attr , char *buf ) { ssize_t l ; unsigned char rlevel ; struct ctlr_info *h ; struct scsi_device *sdev ; struct hpsa_scsi_dev_t *hdev ; unsigned long flags ; struct device const *__mptr ; raw_spinlock_t *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { l = 0L; __mptr = (struct device const *)dev; sdev = (struct scsi_device *)__mptr + 0xfffffffffffffe28UL; h = sdev_to_hba(sdev); tmp = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp); hdev = (struct hpsa_scsi_dev_t *)sdev->hostdata; if ((unsigned long )hdev == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { spin_unlock_irqrestore(& h->lock, flags); return (-19L); } else { } tmp___1 = is_logical_dev_addr_mode((unsigned char *)(& hdev->scsi3addr)); if (tmp___1 == 0) { spin_unlock_irqrestore(& h->lock, flags); tmp___0 = snprintf(buf, 4096UL, "N/A\n"); l = (ssize_t )tmp___0; return (l); } else { } rlevel = hdev->raid_level; spin_unlock_irqrestore(& h->lock, flags); if ((unsigned int )rlevel > 7U) { rlevel = 7U; } else { } tmp___2 = snprintf(buf, 4096UL, "RAID %s\n", raid_label[(int )rlevel]); l = (ssize_t )tmp___2; return (l); } } static ssize_t lunid_show(struct device *dev , struct device_attribute *attr , char *buf ) { struct ctlr_info *h ; struct scsi_device *sdev ; struct hpsa_scsi_dev_t *hdev ; unsigned long flags ; unsigned char lunid[8U] ; struct device const *__mptr ; raw_spinlock_t *tmp ; int tmp___0 ; { __mptr = (struct device const *)dev; sdev = (struct scsi_device *)__mptr + 0xfffffffffffffe28UL; h = sdev_to_hba(sdev); tmp = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp); hdev = (struct hpsa_scsi_dev_t *)sdev->hostdata; if ((unsigned long )hdev == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { spin_unlock_irqrestore(& h->lock, flags); return (-19L); } else { } memmove((void *)(& lunid), (void const *)(& hdev->scsi3addr), 8UL); spin_unlock_irqrestore(& h->lock, flags); tmp___0 = snprintf(buf, 20UL, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", (int )lunid[0], (int )lunid[1], (int )lunid[2], (int )lunid[3], (int )lunid[4], (int )lunid[5], (int )lunid[6], (int )lunid[7]); return ((ssize_t )tmp___0); } } static ssize_t unique_id_show(struct device *dev , struct device_attribute *attr , char *buf ) { struct ctlr_info *h ; struct scsi_device *sdev ; struct hpsa_scsi_dev_t *hdev ; unsigned long flags ; unsigned char sn[16U] ; struct device const *__mptr ; raw_spinlock_t *tmp ; int tmp___0 ; { __mptr = (struct device const *)dev; sdev = (struct scsi_device *)__mptr + 0xfffffffffffffe28UL; h = sdev_to_hba(sdev); tmp = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp); hdev = (struct hpsa_scsi_dev_t *)sdev->hostdata; if ((unsigned long )hdev == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { spin_unlock_irqrestore(& h->lock, flags); return (-19L); } else { } memmove((void *)(& sn), (void const *)(& hdev->device_id), 16UL); spin_unlock_irqrestore(& h->lock, flags); tmp___0 = snprintf(buf, 34UL, "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n", (int )sn[0], (int )sn[1], (int )sn[2], (int )sn[3], (int )sn[4], (int )sn[5], (int )sn[6], (int )sn[7], (int )sn[8], (int )sn[9], (int )sn[10], (int )sn[11], (int )sn[12], (int )sn[13], (int )sn[14], (int )sn[15]); return ((ssize_t )tmp___0); } } static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev , struct device_attribute *attr , char *buf ) { struct ctlr_info *h ; struct scsi_device *sdev ; struct hpsa_scsi_dev_t *hdev ; unsigned long flags ; int offload_enabled ; struct device const *__mptr ; raw_spinlock_t *tmp ; int tmp___0 ; { __mptr = (struct device const *)dev; sdev = (struct scsi_device *)__mptr + 0xfffffffffffffe28UL; h = sdev_to_hba(sdev); tmp = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp); hdev = (struct hpsa_scsi_dev_t *)sdev->hostdata; if ((unsigned long )hdev == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { spin_unlock_irqrestore(& h->lock, flags); return (-19L); } else { } offload_enabled = hdev->offload_enabled; spin_unlock_irqrestore(& h->lock, flags); tmp___0 = snprintf(buf, 20UL, "%d\n", offload_enabled); return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_raid_level = {{"raid_level", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & raid_level_show, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_lunid = {{"lunid", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & lunid_show, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_unique_id = {{"unique_id", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & unique_id_show, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_rescan = {{"rescan", 128U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & host_store_rescan}; static struct device_attribute dev_attr_hp_ssd_smart_path_enabled = {{"hp_ssd_smart_path_enabled", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & host_show_hp_ssd_smart_path_enabled, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_hp_ssd_smart_path_status = {{"hp_ssd_smart_path_status", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & host_show_hp_ssd_smart_path_status, & host_store_hp_ssd_smart_path_status}; static struct device_attribute dev_attr_raid_offload_debug = {{"raid_offload_debug", 128U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & host_store_raid_offload_debug}; static struct device_attribute dev_attr_firmware_revision = {{"firmware_revision", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & host_show_firmware_revision, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_commands_outstanding = {{"commands_outstanding", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & host_show_commands_outstanding, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_transport_mode = {{"transport_mode", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & host_show_transport_mode, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_resettable = {{"resettable", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & host_show_resettable, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute dev_attr_lockup_detected = {{"lockup_detected", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & host_show_lockup_detected, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static struct device_attribute *hpsa_sdev_attrs[6U] = { & dev_attr_raid_level, & dev_attr_lunid, & dev_attr_unique_id, & dev_attr_hp_ssd_smart_path_enabled, & dev_attr_lockup_detected, (struct device_attribute *)0}; static struct device_attribute *hpsa_shost_attrs[8U] = { & dev_attr_rescan, & dev_attr_firmware_revision, & dev_attr_commands_outstanding, & dev_attr_transport_mode, & dev_attr_resettable, & dev_attr_hp_ssd_smart_path_status, & dev_attr_raid_offload_debug, (struct device_attribute *)0}; static struct scsi_host_template hpsa_driver_template = {& __this_module, "hpsa", 0, 0, 0, & hpsa_ioctl, & hpsa_compat_ioctl, & hpsa_scsi_queue_command, & hpsa_eh_abort_handler, & hpsa_eh_device_reset_handler, 0, 0, 0, & hpsa_slave_alloc, & hpsa_slave_configure, & hpsa_slave_destroy, 0, 0, & hpsa_scan_finished, & hpsa_scan_start, & hpsa_change_queue_depth, 0, 0, 0, 0, 0, 0, "hpsa", 0, 0, -1, (unsigned short)0, (unsigned short)0, 8192U, 0UL, (short)0, (unsigned char)0, 0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, (unsigned char)0, 1U, (unsigned char)0, 0U, (struct device_attribute **)(& hpsa_shost_attrs), (struct device_attribute **)(& hpsa_sdev_attrs), {0, 0}, 0ULL, 0U, 0, (_Bool)0}; __inline static u32 next_command(struct ctlr_info *h , u8 q ) { u32 a ; struct reply_queue_buffer *rq ; unsigned long tmp ; unsigned long tmp___0 ; long tmp___1 ; { rq = (struct reply_queue_buffer *)(& h->reply_queue) + (unsigned long )q; if ((h->transMethod & 128UL) != 0UL) { tmp = (*(h->access.command_completed))(h, (int )q); return ((u32 )tmp); } else { } tmp___1 = ldv__builtin_expect((h->transMethod & 4UL) == 0UL, 0L); if (tmp___1 != 0L) { tmp___0 = (*(h->access.command_completed))(h, (int )q); return ((u32 )tmp___0); } else { } if ((*(rq->head + (unsigned long )rq->current_entry) & 1ULL) == (u64 )rq->wraparound) { a = (u32 )*(rq->head + (unsigned long )rq->current_entry); rq->current_entry = rq->current_entry + 1U; atomic_dec(& h->commands_outstanding); } else { a = 4294967295U; } if (rq->current_entry == (u32 )h->max_commands) { rq->current_entry = 0U; rq->wraparound = (u8 )((unsigned int )rq->wraparound ^ 1U); } else { } return (a); } } static void set_performant_mode(struct ctlr_info *h , struct CommandList *c , int reply_queue ) { long tmp ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; long tmp___0 ; long tmp___1 ; { tmp___1 = ldv__builtin_expect((h->transMethod & 4UL) != 0UL, 1L); if (tmp___1 != 0L) { c->busaddr = (c->busaddr | (*(h->blockFetchTable + (unsigned long )c->Header.SGList) << 1)) | 1U; tmp = ldv__builtin_expect(h->msix_vector == 0U, 0L); if (tmp != 0L) { return; } else { } tmp___0 = ldv__builtin_expect(reply_queue == -1, 1L); if (tmp___0 != 0L) { __vpp_verify = (void const *)0; switch (4UL) { case 1UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_40313; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40313; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40313; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40313; default: __bad_percpu_size(); } ldv_40313: pscr_ret__ = pfo_ret__; goto ldv_40319; case 2UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40323; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40323; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40323; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40323; default: __bad_percpu_size(); } ldv_40323: pscr_ret__ = pfo_ret_____0; goto ldv_40319; case 4UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40332; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40332; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40332; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40332; default: __bad_percpu_size(); } ldv_40332: pscr_ret__ = pfo_ret_____1; goto ldv_40319; case 8UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40341; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40341; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40341; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40341; default: __bad_percpu_size(); } ldv_40341: pscr_ret__ = pfo_ret_____2; goto ldv_40319; default: __bad_size_call_parameter(); goto ldv_40319; } ldv_40319: c->Header.ReplyQueue = (u8 )(pscr_ret__ % (int )h->nreply_queues); } else { c->Header.ReplyQueue = (u8 )(reply_queue % (int )h->nreply_queues); } } else { } return; } } static void set_ioaccel1_performant_mode(struct ctlr_info *h , struct CommandList *c , int reply_queue ) { struct io_accel1_cmd *cp ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; long tmp ; { cp = h->ioaccel_cmd_pool + (unsigned long )c->cmdindex; tmp = ldv__builtin_expect(reply_queue == -1, 1L); if (tmp != 0L) { __vpp_verify = (void const *)0; switch (4UL) { case 1UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_40360; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40360; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40360; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40360; default: __bad_percpu_size(); } ldv_40360: pscr_ret__ = pfo_ret__; goto ldv_40366; case 2UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40370; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40370; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40370; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40370; default: __bad_percpu_size(); } ldv_40370: pscr_ret__ = pfo_ret_____0; goto ldv_40366; case 4UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40379; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40379; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40379; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40379; default: __bad_percpu_size(); } ldv_40379: pscr_ret__ = pfo_ret_____1; goto ldv_40366; case 8UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40388; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40388; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40388; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40388; default: __bad_percpu_size(); } ldv_40388: pscr_ret__ = pfo_ret_____2; goto ldv_40366; default: __bad_size_call_parameter(); goto ldv_40366; } ldv_40366: cp->ReplyQueue = (u8 )(pscr_ret__ % (int )h->nreply_queues); } else { cp->ReplyQueue = (u8 )(reply_queue % (int )h->nreply_queues); } c->busaddr = (c->busaddr | (*(h->ioaccel1_blockFetchTable + (unsigned long )c->Header.SGList) << 1)) | 97U; return; } } static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h , struct CommandList *c , int reply_queue ) { struct hpsa_tmf_struct *cp ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; long tmp ; { cp = (struct hpsa_tmf_struct *)h->ioaccel2_cmd_pool + (unsigned long )c->cmdindex; tmp = ldv__builtin_expect(reply_queue == -1, 1L); if (tmp != 0L) { __vpp_verify = (void const *)0; switch (4UL) { case 1UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_40407; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40407; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40407; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40407; default: __bad_percpu_size(); } ldv_40407: pscr_ret__ = pfo_ret__; goto ldv_40413; case 2UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40417; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40417; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40417; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40417; default: __bad_percpu_size(); } ldv_40417: pscr_ret__ = pfo_ret_____0; goto ldv_40413; case 4UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40426; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40426; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40426; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40426; default: __bad_percpu_size(); } ldv_40426: pscr_ret__ = pfo_ret_____1; goto ldv_40413; case 8UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40435; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40435; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40435; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40435; default: __bad_percpu_size(); } ldv_40435: pscr_ret__ = pfo_ret_____2; goto ldv_40413; default: __bad_size_call_parameter(); goto ldv_40413; } ldv_40413: cp->reply_queue = (u8 )(pscr_ret__ % (int )h->nreply_queues); } else { cp->reply_queue = (u8 )(reply_queue % (int )h->nreply_queues); } c->busaddr = c->busaddr | *(h->ioaccel2_blockFetchTable); return; } } static void set_ioaccel2_performant_mode(struct ctlr_info *h , struct CommandList *c , int reply_queue ) { struct io_accel2_cmd *cp ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; long tmp ; { cp = h->ioaccel2_cmd_pool + (unsigned long )c->cmdindex; tmp = ldv__builtin_expect(reply_queue == -1, 1L); if (tmp != 0L) { __vpp_verify = (void const *)0; switch (4UL) { case 1UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_40454; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40454; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40454; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40454; default: __bad_percpu_size(); } ldv_40454: pscr_ret__ = pfo_ret__; goto ldv_40460; case 2UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40464; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40464; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40464; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40464; default: __bad_percpu_size(); } ldv_40464: pscr_ret__ = pfo_ret_____0; goto ldv_40460; case 4UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40473; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40473; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40473; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40473; default: __bad_percpu_size(); } ldv_40473: pscr_ret__ = pfo_ret_____1; goto ldv_40460; case 8UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40482; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40482; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40482; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40482; default: __bad_percpu_size(); } ldv_40482: pscr_ret__ = pfo_ret_____2; goto ldv_40460; default: __bad_size_call_parameter(); goto ldv_40460; } ldv_40460: cp->reply_queue = (u8 )(pscr_ret__ % (int )h->nreply_queues); } else { cp->reply_queue = (u8 )(reply_queue % (int )h->nreply_queues); } c->busaddr = c->busaddr | *(h->ioaccel2_blockFetchTable + (unsigned long )cp->sg_count); return; } } static int is_firmware_flash_cmd(u8 *cdb ) { { return ((unsigned int )*cdb == 39U && (unsigned int )*(cdb + 6UL) == 247U); } } static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h , struct CommandList *c ) { int tmp ; { tmp = is_firmware_flash_cmd((u8 *)(& c->Request.CDB)); if (tmp == 0) { return; } else { } atomic_inc(& h->firmware_flash_in_progress); h->heartbeat_sample_interval = 60000U; return; } } static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h , struct CommandList *c ) { int tmp ; int tmp___0 ; { tmp = is_firmware_flash_cmd((u8 *)(& c->Request.CDB)); if (tmp != 0) { tmp___0 = atomic_dec_and_test(& h->firmware_flash_in_progress); if (tmp___0 != 0) { h->heartbeat_sample_interval = 7500U; } else { } } else { } return; } } static void __enqueue_cmd_and_start_io(struct ctlr_info *h , struct CommandList *c , int reply_queue ) { { dial_down_lockup_detection_during_fw_flash(h, c); atomic_inc(& h->commands_outstanding); switch (c->cmd_type) { case 4: set_ioaccel1_performant_mode(h, c, reply_queue); writel(c->busaddr, (void volatile *)h->vaddr + 64U); goto ldv_40507; case 5: set_ioaccel2_performant_mode(h, c, reply_queue); writel(c->busaddr, (void volatile *)h->vaddr + 72U); goto ldv_40507; case 6: set_ioaccel2_tmf_performant_mode(h, c, reply_queue); writel(c->busaddr, (void volatile *)h->vaddr + 72U); goto ldv_40507; default: set_performant_mode(h, c, reply_queue); (*(h->access.submit_command))(h, c); } ldv_40507: ; return; } } static void enqueue_cmd_and_start_io(struct ctlr_info *h , struct CommandList *c ) { bool tmp ; long tmp___0 ; { tmp = hpsa_is_pending_event(c); tmp___0 = ldv__builtin_expect((long )tmp, 0L); if (tmp___0 != 0L) { return; } else { } __enqueue_cmd_and_start_io(h, c, -1); return; } } __inline static int is_hba_lunid(unsigned char *scsi3addr ) { int tmp ; { tmp = memcmp((void const *)scsi3addr, (void const *)"", 8UL); return (tmp == 0); } } __inline static int is_scsi_rev_5(struct ctlr_info *h ) { { if ((unsigned long )h->hba_inquiry_data == (unsigned long )((unsigned char *)0U)) { return (0); } else { } if (((int )*(h->hba_inquiry_data + 2UL) & 7) == 5) { return (1); } else { } return (0); } } static int hpsa_find_target_lun(struct ctlr_info *h , unsigned char *scsi3addr , int bus , int *target , int *lun ) { int i ; int found ; unsigned long lun_taken[33U] ; unsigned long tmp ; { found = 0; bitmap_zero((unsigned long *)(& lun_taken), 2081U); i = 0; goto ldv_40532; ldv_40531: ; if ((h->dev[i])->bus == bus && (h->dev[i])->target != -1) { __set_bit((long )(h->dev[i])->target, (unsigned long volatile *)(& lun_taken)); } else { } i = i + 1; ldv_40532: ; if (h->ndevices > i) { goto ldv_40531; } else { } tmp = find_first_zero_bit((unsigned long const *)(& lun_taken), 2081UL); i = (int )tmp; if (i <= 2080) { *target = i; *lun = 0; found = 1; } else { } return (found == 0); } } __inline static void hpsa_show_dev_msg(char const *level , struct ctlr_info *h , struct hpsa_scsi_dev_t *dev , char *description ) { char const *tmp ; { tmp = scsi_device_type((unsigned int )dev->devtype); dev_printk(level, (struct device const *)(& (h->pdev)->dev), "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n", (h->scsi_host)->host_no, dev->bus, dev->target, dev->lun, description, tmp, (unsigned char *)(& dev->vendor), (unsigned char *)(& dev->model), (unsigned int )dev->raid_level <= 7U ? raid_label[(int )dev->raid_level] : (char const */* const */)"RAID-?", dev->offload_config != 0 ? 43 : 45, dev->offload_enabled != 0 ? 43 : 45, (int )dev->expose_state); return; } } static int hpsa_scsi_add_entry(struct ctlr_info *h , int hostno , struct hpsa_scsi_dev_t *device , struct hpsa_scsi_dev_t **added , int *nadded ) { int n ; int i ; unsigned char addr1[8U] ; unsigned char addr2[8U] ; struct hpsa_scsi_dev_t *sd ; int tmp ; int tmp___0 ; { n = h->ndevices; if (n > 2080) { dev_err((struct device const *)(& (h->pdev)->dev), "too many devices, some will be inaccessible.\n"); return (-1); } else { } if (device->lun != -1) { goto lun_assigned; } else { } if ((unsigned int )device->scsi3addr[4] == 0U) { tmp = hpsa_find_target_lun(h, (unsigned char *)(& device->scsi3addr), device->bus, & device->target, & device->lun); if (tmp != 0) { return (-1); } else { } goto lun_assigned; } else { } memcpy((void *)(& addr1), (void const *)(& device->scsi3addr), 8UL); addr1[4] = 0U; i = 0; goto ldv_40557; ldv_40556: sd = h->dev[i]; memcpy((void *)(& addr2), (void const *)(& sd->scsi3addr), 8UL); addr2[4] = 0U; tmp___0 = memcmp((void const *)(& addr1), (void const *)(& addr2), 8UL); if (tmp___0 == 0) { device->bus = sd->bus; device->target = sd->target; device->lun = (int )device->scsi3addr[4]; goto ldv_40555; } else { } i = i + 1; ldv_40557: ; if (i < n) { goto ldv_40556; } else { } ldv_40555: ; if (device->lun == -1) { dev_warn((struct device const *)(& (h->pdev)->dev), "physical device with no LUN=0, suspect firmware bug or unsupported hardware configuration.\n"); return (-1); } else { } lun_assigned: h->dev[n] = device; h->ndevices = h->ndevices + 1; *(added + (unsigned long )*nadded) = device; *nadded = *nadded + 1; hpsa_show_dev_msg("\016", h, device, ((int )device->expose_state & 3) != 0 ? (char *)"added" : (char *)"masked"); device->offload_to_be_enabled = device->offload_enabled; device->offload_enabled = 0; return (0); } } static void hpsa_scsi_update_entry(struct ctlr_info *h , int hostno , int entry , struct hpsa_scsi_dev_t *new_entry ) { int offload_enabled ; long tmp ; { tmp = ldv__builtin_expect((long )(entry < 0 || entry > 2080), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (1130), "i" (12UL)); ldv_40565: ; goto ldv_40565; } else { } (h->dev[entry])->raid_level = new_entry->raid_level; if (new_entry->offload_config != 0 && new_entry->offload_enabled != 0) { (h->dev[entry])->raid_map = new_entry->raid_map; (h->dev[entry])->ioaccel_handle = new_entry->ioaccel_handle; } else { } if (new_entry->hba_ioaccel_enabled != 0) { (h->dev[entry])->ioaccel_handle = new_entry->ioaccel_handle; __asm__ volatile ("sfence": : : "memory"); } else { } (h->dev[entry])->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; (h->dev[entry])->offload_config = new_entry->offload_config; (h->dev[entry])->offload_to_mirror = new_entry->offload_to_mirror; (h->dev[entry])->queue_depth = new_entry->queue_depth; (h->dev[entry])->offload_to_be_enabled = new_entry->offload_enabled; if (new_entry->offload_enabled == 0) { (h->dev[entry])->offload_enabled = 0; } else { } offload_enabled = (h->dev[entry])->offload_enabled; (h->dev[entry])->offload_enabled = (h->dev[entry])->offload_to_be_enabled; hpsa_show_dev_msg("\016", h, h->dev[entry], (char *)"updated"); (h->dev[entry])->offload_enabled = offload_enabled; return; } } static void hpsa_scsi_replace_entry(struct ctlr_info *h , int hostno , int entry , struct hpsa_scsi_dev_t *new_entry , struct hpsa_scsi_dev_t **added , int *nadded , struct hpsa_scsi_dev_t **removed , int *nremoved ) { long tmp ; { tmp = ldv__builtin_expect((long )(entry < 0 || entry > 2080), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (1179), "i" (12UL)); ldv_40576: ; goto ldv_40576; } else { } *(removed + (unsigned long )*nremoved) = h->dev[entry]; *nremoved = *nremoved + 1; if (new_entry->target == -1) { new_entry->target = (h->dev[entry])->target; new_entry->lun = (h->dev[entry])->lun; } else { } h->dev[entry] = new_entry; *(added + (unsigned long )*nadded) = new_entry; *nadded = *nadded + 1; hpsa_show_dev_msg("\016", h, new_entry, (char *)"replaced"); new_entry->offload_to_be_enabled = new_entry->offload_enabled; new_entry->offload_enabled = 0; return; } } static void hpsa_scsi_remove_entry(struct ctlr_info *h , int hostno , int entry , struct hpsa_scsi_dev_t **removed , int *nremoved ) { int i ; struct hpsa_scsi_dev_t *sd ; long tmp ; { tmp = ldv__builtin_expect((long )(entry < 0 || entry > 2080), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (1208), "i" (12UL)); ldv_40586: ; goto ldv_40586; } else { } sd = h->dev[entry]; *(removed + (unsigned long )*nremoved) = h->dev[entry]; *nremoved = *nremoved + 1; i = entry; goto ldv_40588; ldv_40587: h->dev[i] = h->dev[i + 1]; i = i + 1; ldv_40588: ; if (h->ndevices + -1 > i) { goto ldv_40587; } else { } h->ndevices = h->ndevices - 1; hpsa_show_dev_msg("\016", h, sd, (char *)"removed"); return; } } static void fixup_botched_add(struct ctlr_info *h , struct hpsa_scsi_dev_t *added ) { unsigned long flags ; int i ; int j ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp); i = 0; goto ldv_40605; ldv_40604: ; if ((unsigned long )h->dev[i] == (unsigned long )added) { j = i; goto ldv_40601; ldv_40600: h->dev[j] = h->dev[j + 1]; j = j + 1; ldv_40601: ; if (h->ndevices + -1 > j) { goto ldv_40600; } else { } h->ndevices = h->ndevices - 1; goto ldv_40603; } else { } i = i + 1; ldv_40605: ; if (h->ndevices > i) { goto ldv_40604; } else { } ldv_40603: spin_unlock_irqrestore(& h->lock, flags); kfree((void const *)added); return; } } __inline static int device_is_the_same(struct hpsa_scsi_dev_t *dev1 , struct hpsa_scsi_dev_t *dev2 ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = memcmp((void const *)(& dev1->scsi3addr), (void const *)(& dev2->scsi3addr), 8UL); if (tmp != 0) { return (0); } else { } tmp___0 = memcmp((void const *)(& dev1->device_id), (void const *)(& dev2->device_id), 16UL); if (tmp___0 != 0) { return (0); } else { } tmp___1 = memcmp((void const *)(& dev1->model), (void const *)(& dev2->model), 16UL); if (tmp___1 != 0) { return (0); } else { } tmp___2 = memcmp((void const *)(& dev1->vendor), (void const *)(& dev2->vendor), 8UL); if (tmp___2 != 0) { return (0); } else { } if (dev1->devtype != dev2->devtype) { return (0); } else { } if (dev1->bus != dev2->bus) { return (0); } else { } return (1); } } __inline static int device_updated(struct hpsa_scsi_dev_t *dev1 , struct hpsa_scsi_dev_t *dev2 ) { { if ((int )dev1->raid_level != (int )dev2->raid_level) { return (1); } else { } if (dev1->offload_config != dev2->offload_config) { return (1); } else { } if (dev1->offload_enabled != dev2->offload_enabled) { return (1); } else { } if ((int )dev1->queue_depth != (int )dev2->queue_depth) { return (1); } else { } return (0); } } static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle , struct hpsa_scsi_dev_t **haystack , int haystack_size , int *index ) { int i ; int tmp ; int tmp___0 ; { i = 0; goto ldv_40623; ldv_40622: ; if ((unsigned long )*(haystack + (unsigned long )i) == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { goto ldv_40621; } else { } if ((((((((int )needle->scsi3addr[7] == (int )(*(haystack + (unsigned long )i))->scsi3addr[7] && (int )needle->scsi3addr[6] == (int )(*(haystack + (unsigned long )i))->scsi3addr[6]) && (int )needle->scsi3addr[5] == (int )(*(haystack + (unsigned long )i))->scsi3addr[5]) && (int )needle->scsi3addr[4] == (int )(*(haystack + (unsigned long )i))->scsi3addr[4]) && (int )needle->scsi3addr[3] == (int )(*(haystack + (unsigned long )i))->scsi3addr[3]) && (int )needle->scsi3addr[2] == (int )(*(haystack + (unsigned long )i))->scsi3addr[2]) && (int )needle->scsi3addr[1] == (int )(*(haystack + (unsigned long )i))->scsi3addr[1]) && (int )needle->scsi3addr[0] == (int )(*(haystack + (unsigned long )i))->scsi3addr[0]) { *index = i; tmp___0 = device_is_the_same(needle, *(haystack + (unsigned long )i)); if (tmp___0 != 0) { tmp = device_updated(needle, *(haystack + (unsigned long )i)); if (tmp != 0) { return (3); } else { } return (2); } else { if ((unsigned int )needle->volume_offline != 0U) { return (0); } else { } return (1); } } else { } ldv_40621: i = i + 1; ldv_40623: ; if (i < haystack_size) { goto ldv_40622; } else { } *index = -1; return (0); } } static void hpsa_monitor_offline_device(struct ctlr_info *h , unsigned char *scsi3addr ) { struct offline_device_entry *device ; unsigned long flags ; raw_spinlock_t *tmp ; struct list_head const *__mptr ; int tmp___0 ; struct list_head const *__mptr___0 ; void *tmp___1 ; raw_spinlock_t *tmp___2 ; { tmp = spinlock_check(& h->offline_device_lock); flags = _raw_spin_lock_irqsave(tmp); __mptr = (struct list_head const *)h->offline_device_list.next; device = (struct offline_device_entry *)__mptr + 0xfffffffffffffff8UL; goto ldv_40639; ldv_40638: tmp___0 = memcmp((void const *)(& device->scsi3addr), (void const *)scsi3addr, 8UL); if (tmp___0 == 0) { spin_unlock_irqrestore(& h->offline_device_lock, flags); return; } else { } __mptr___0 = (struct list_head const *)device->offline_list.next; device = (struct offline_device_entry *)__mptr___0 + 0xfffffffffffffff8UL; ldv_40639: ; if ((unsigned long )(& device->offline_list) != (unsigned long )(& h->offline_device_list)) { goto ldv_40638; } else { } spin_unlock_irqrestore(& h->offline_device_lock, flags); tmp___1 = kmalloc(24UL, 208U); device = (struct offline_device_entry *)tmp___1; if ((unsigned long )device == (unsigned long )((struct offline_device_entry *)0)) { dev_warn((struct device const *)(& (h->pdev)->dev), "out of memory in %s\n", "hpsa_monitor_offline_device"); return; } else { } memcpy((void *)(& device->scsi3addr), (void const *)scsi3addr, 8UL); tmp___2 = spinlock_check(& h->offline_device_lock); flags = _raw_spin_lock_irqsave(tmp___2); list_add_tail(& device->offline_list, & h->offline_device_list); spin_unlock_irqrestore(& h->offline_device_lock, flags); return; } } static void hpsa_show_volume_status(struct ctlr_info *h , struct hpsa_scsi_dev_t *sd ) { { if ((unsigned int )sd->volume_offline == 255U) { _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); } else { } switch ((int )sd->volume_offline) { case 0: ; goto ldv_40650; case 15: _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); goto ldv_40650; case 18: _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); goto ldv_40650; case 19: _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); goto ldv_40650; case 20: _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); goto ldv_40650; case 21: _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); goto ldv_40650; case 22: _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); goto ldv_40650; case 23: _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); goto ldv_40650; case 24: _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); goto ldv_40650; case 25: _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); goto ldv_40650; case 26: _dev_info((struct device const *)(& (h->pdev)->dev), "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", (h->scsi_host)->host_no, sd->bus, sd->target, sd->lun); goto ldv_40650; } ldv_40650: ; return; } } static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h , struct hpsa_scsi_dev_t **dev , int ndevices , struct hpsa_scsi_dev_t *logical_drive ) { struct raid_map_data *map ; struct raid_map_disk_data *dd ; int i ; int j ; int total_disks_per_row ; int nraid_map_entries ; int nphys_disk ; int qdepth ; int tmp ; int _min1 ; int _min2 ; { map = & logical_drive->raid_map; dd = (struct raid_map_disk_data *)(& map->data); total_disks_per_row = (int )map->data_disks_per_row + (int )map->metadata_disks_per_row; nraid_map_entries = ((int )map->row_cnt * (int )map->layout_map_count) * total_disks_per_row; nphys_disk = (int )map->layout_map_count * total_disks_per_row; if (nraid_map_entries > 256) { nraid_map_entries = 256; } else { } logical_drive->nphysical_disks = nraid_map_entries; qdepth = 0; i = 0; goto ldv_40684; ldv_40683: logical_drive->phys_disk[i] = (struct hpsa_scsi_dev_t *)0; if (logical_drive->offload_config == 0) { goto ldv_40675; } else { } j = 0; goto ldv_40682; ldv_40681: ; if ((*(dev + (unsigned long )j))->devtype != 0) { goto ldv_40676; } else { } tmp = is_logical_dev_addr_mode((unsigned char *)(& (*(dev + (unsigned long )j))->scsi3addr)); if (tmp != 0) { goto ldv_40676; } else { } if ((*(dev + (unsigned long )j))->ioaccel_handle != (dd + (unsigned long )i)->ioaccel_handle) { goto ldv_40676; } else { } logical_drive->phys_disk[i] = *(dev + (unsigned long )j); if (i < nphys_disk) { _min1 = h->nr_cmds; _min2 = (int )(logical_drive->phys_disk[i])->queue_depth + qdepth; qdepth = _min1 < _min2 ? _min1 : _min2; } else { } goto ldv_40680; ldv_40676: j = j + 1; ldv_40682: ; if (j < ndevices) { goto ldv_40681; } else { } ldv_40680: ; if ((unsigned long )logical_drive->phys_disk[i] == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { logical_drive->offload_enabled = 0; logical_drive->offload_to_be_enabled = 0; logical_drive->queue_depth = 8U; } else { } ldv_40675: i = i + 1; ldv_40684: ; if (i < nraid_map_entries) { goto ldv_40683; } else { } if (nraid_map_entries != 0) { logical_drive->queue_depth = (u16 )qdepth; } else { logical_drive->queue_depth = (u16 )h->nr_cmds; } return; } } static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h , struct hpsa_scsi_dev_t **dev , int ndevices ) { int i ; int tmp ; { i = 0; goto ldv_40694; ldv_40693: ; if ((*(dev + (unsigned long )i))->devtype != 0) { goto ldv_40692; } else { } tmp = is_logical_dev_addr_mode((unsigned char *)(& (*(dev + (unsigned long )i))->scsi3addr)); if (tmp == 0) { goto ldv_40692; } else { } if ((*(dev + (unsigned long )i))->offload_enabled != 0) { goto ldv_40692; } else { } hpsa_figure_phys_disk_ptrs(h, dev, ndevices, *(dev + (unsigned long )i)); ldv_40692: i = i + 1; ldv_40694: ; if (i < ndevices) { goto ldv_40693; } else { } return; } } static void adjust_hpsa_scsi_table(struct ctlr_info *h , int hostno , struct hpsa_scsi_dev_t **sd , int nsds ) { int i ; int entry ; int device_change ; int changes ; struct hpsa_scsi_dev_t *csd ; unsigned long flags ; struct hpsa_scsi_dev_t **added ; struct hpsa_scsi_dev_t **removed ; int nadded ; int nremoved ; struct Scsi_Host *sh ; void *tmp ; void *tmp___0 ; raw_spinlock_t *tmp___1 ; int tmp___2 ; struct scsi_device *sdev ; struct scsi_device *tmp___3 ; int tmp___4 ; { changes = 0; sh = (struct Scsi_Host *)0; tmp = kzalloc(16648UL, 208U); added = (struct hpsa_scsi_dev_t **)tmp; tmp___0 = kzalloc(16648UL, 208U); removed = (struct hpsa_scsi_dev_t **)tmp___0; if ((unsigned long )added == (unsigned long )((struct hpsa_scsi_dev_t **)0) || (unsigned long )removed == (unsigned long )((struct hpsa_scsi_dev_t **)0)) { dev_warn((struct device const *)(& (h->pdev)->dev), "out of memory in adjust_hpsa_scsi_table\n"); goto free_and_out; } else { } tmp___1 = spinlock_check(& h->devlock); flags = _raw_spin_lock_irqsave(tmp___1); i = 0; nremoved = 0; nadded = 0; goto ldv_40717; ldv_40718: csd = h->dev[i]; device_change = hpsa_scsi_find_entry(csd, sd, nsds, & entry); if (device_change == 0) { changes = changes + 1; hpsa_scsi_remove_entry(h, hostno, i, removed, & nremoved); goto ldv_40717; } else if (device_change == 1) { changes = changes + 1; hpsa_scsi_replace_entry(h, hostno, i, *(sd + (unsigned long )entry), added, & nadded, removed, & nremoved); *(sd + (unsigned long )entry) = (struct hpsa_scsi_dev_t *)0; } else if (device_change == 3) { hpsa_scsi_update_entry(h, hostno, i, *(sd + (unsigned long )entry)); } else { } i = i + 1; ldv_40717: ; if (h->ndevices > i) { goto ldv_40718; } else { } i = 0; goto ldv_40723; ldv_40722: ; if ((unsigned long )*(sd + (unsigned long )i) == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { goto ldv_40720; } else { } if ((unsigned int )(*(sd + (unsigned long )i))->volume_offline != 0U) { hpsa_show_volume_status(h, *(sd + (unsigned long )i)); hpsa_show_dev_msg("\016", h, *(sd + (unsigned long )i), (char *)"offline"); goto ldv_40720; } else { } device_change = hpsa_scsi_find_entry(*(sd + (unsigned long )i), (struct hpsa_scsi_dev_t **)(& h->dev), h->ndevices, & entry); if (device_change == 0) { changes = changes + 1; tmp___2 = hpsa_scsi_add_entry(h, hostno, *(sd + (unsigned long )i), added, & nadded); if (tmp___2 != 0) { goto ldv_40721; } else { } *(sd + (unsigned long )i) = (struct hpsa_scsi_dev_t *)0; } else if (device_change == 1) { changes = changes + 1; dev_warn((struct device const *)(& (h->pdev)->dev), "device unexpectedly changed.\n"); } else { } ldv_40720: i = i + 1; ldv_40723: ; if (i < nsds) { goto ldv_40722; } else { } ldv_40721: hpsa_update_log_drive_phys_drive_ptrs(h, (struct hpsa_scsi_dev_t **)(& h->dev), h->ndevices); i = 0; goto ldv_40725; ldv_40724: (h->dev[i])->offload_enabled = (h->dev[i])->offload_to_be_enabled; i = i + 1; ldv_40725: ; if (h->ndevices > i) { goto ldv_40724; } else { } spin_unlock_irqrestore(& h->devlock, flags); i = 0; goto ldv_40729; ldv_40728: ; if ((unsigned long )*(sd + (unsigned long )i) == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { goto ldv_40727; } else { } if ((unsigned int )(*(sd + (unsigned long )i))->volume_offline != 0U) { hpsa_monitor_offline_device(h, (unsigned char *)(& (*(sd + (unsigned long )i))->scsi3addr)); } else { } ldv_40727: i = i + 1; ldv_40729: ; if (i < nsds) { goto ldv_40728; } else { } if (hostno == -1 || changes == 0) { goto free_and_out; } else { } sh = h->scsi_host; i = 0; goto ldv_40733; ldv_40732: ; if (((int )(*(removed + (unsigned long )i))->expose_state & 3) != 0) { tmp___3 = scsi_device_lookup(sh, (uint )(*(removed + (unsigned long )i))->bus, (uint )(*(removed + (unsigned long )i))->target, (u64 )(*(removed + (unsigned long )i))->lun); sdev = tmp___3; if ((unsigned long )sdev != (unsigned long )((struct scsi_device *)0)) { scsi_remove_device(sdev); scsi_device_put(sdev); } else { hpsa_show_dev_msg("\f", h, *(removed + (unsigned long )i), (char *)"didn\'t find device for removal."); } } else { } kfree((void const *)*(removed + (unsigned long )i)); *(removed + (unsigned long )i) = (struct hpsa_scsi_dev_t *)0; i = i + 1; ldv_40733: ; if (i < nremoved) { goto ldv_40732; } else { } i = 0; goto ldv_40737; ldv_40736: ; if (((int )(*(added + (unsigned long )i))->expose_state & 3) == 0) { goto ldv_40735; } else { } tmp___4 = scsi_add_device(sh, (uint )(*(added + (unsigned long )i))->bus, (uint )(*(added + (unsigned long )i))->target, (u64 )(*(added + (unsigned long )i))->lun); if (tmp___4 == 0) { goto ldv_40735; } else { } hpsa_show_dev_msg("\f", h, *(added + (unsigned long )i), (char *)"addition failed, device not added."); fixup_botched_add(h, *(added + (unsigned long )i)); *(added + (unsigned long )i) = (struct hpsa_scsi_dev_t *)0; ldv_40735: i = i + 1; ldv_40737: ; if (i < nadded) { goto ldv_40736; } else { } free_and_out: kfree((void const *)added); kfree((void const *)removed); return; } } static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h , int bus , int target , int lun ) { int i ; struct hpsa_scsi_dev_t *sd ; { i = 0; goto ldv_40748; ldv_40747: sd = h->dev[i]; if ((sd->bus == bus && sd->target == target) && sd->lun == lun) { return (sd); } else { } i = i + 1; ldv_40748: ; if (h->ndevices > i) { goto ldv_40747; } else { } return ((struct hpsa_scsi_dev_t *)0); } } static int hpsa_slave_alloc(struct scsi_device *sdev ) { struct hpsa_scsi_dev_t *sd ; unsigned long flags ; struct ctlr_info *h ; raw_spinlock_t *tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; long tmp___2 ; { h = sdev_to_hba(sdev); tmp = spinlock_check(& h->devlock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = sdev_id(sdev); tmp___1 = sdev_channel(sdev); sd = lookup_hpsa_scsi_dev(h, (int )tmp___1, (int )tmp___0, (int )sdev->lun); tmp___2 = ldv__builtin_expect((unsigned long )sd != (unsigned long )((struct hpsa_scsi_dev_t *)0), 1L); if (tmp___2 != 0L) { atomic_set(& sd->ioaccel_cmds_out, 0); sdev->hostdata = ((int )sd->expose_state & 3) != 0 ? (void *)sd : (void *)0; } else { sdev->hostdata = (void *)0; } spin_unlock_irqrestore(& h->devlock, flags); return (0); } } static int hpsa_slave_configure(struct scsi_device *sdev ) { struct hpsa_scsi_dev_t *sd ; int queue_depth ; { sd = (struct hpsa_scsi_dev_t *)sdev->hostdata; sdev->no_uld_attach = (unsigned char )((unsigned long )sd == (unsigned long )((struct hpsa_scsi_dev_t *)0) || ((int )sd->expose_state & 2) == 0); if ((unsigned long )sd != (unsigned long )((struct hpsa_scsi_dev_t *)0)) { queue_depth = (unsigned int )sd->queue_depth != 0U ? (int )sd->queue_depth : (sdev->host)->can_queue; } else { queue_depth = (sdev->host)->can_queue; } scsi_change_queue_depth(sdev, queue_depth); return (0); } } static void hpsa_slave_destroy(struct scsi_device *sdev ) { { return; } } static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h ) { int i ; { if ((unsigned long )h->ioaccel2_cmd_sg_list == (unsigned long )((struct ioaccel2_sg_element **)0)) { return; } else { } i = 0; goto ldv_40772; ldv_40771: kfree((void const *)*(h->ioaccel2_cmd_sg_list + (unsigned long )i)); *(h->ioaccel2_cmd_sg_list + (unsigned long )i) = (struct ioaccel2_sg_element *)0; i = i + 1; ldv_40772: ; if (h->nr_cmds > i) { goto ldv_40771; } else { } kfree((void const *)h->ioaccel2_cmd_sg_list); h->ioaccel2_cmd_sg_list = (struct ioaccel2_sg_element **)0; return; } } static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h ) { int i ; void *tmp ; void *tmp___0 ; { if (h->chainsize <= 0) { return (0); } else { } tmp = kzalloc((unsigned long )h->nr_cmds * 8UL, 208U); h->ioaccel2_cmd_sg_list = (struct ioaccel2_sg_element **)tmp; if ((unsigned long )h->ioaccel2_cmd_sg_list == (unsigned long )((struct ioaccel2_sg_element **)0)) { return (-12); } else { } i = 0; goto ldv_40780; ldv_40779: tmp___0 = kmalloc((unsigned long )h->maxsgentries * 16UL, 208U); *(h->ioaccel2_cmd_sg_list + (unsigned long )i) = (struct ioaccel2_sg_element *)tmp___0; if ((unsigned long )*(h->ioaccel2_cmd_sg_list + (unsigned long )i) == (unsigned long )((struct ioaccel2_sg_element *)0)) { goto clean; } else { } i = i + 1; ldv_40780: ; if (h->nr_cmds > i) { goto ldv_40779; } else { } return (0); clean: hpsa_free_ioaccel2_sg_chain_blocks(h); return (-12); } } static void hpsa_free_sg_chain_blocks(struct ctlr_info *h ) { int i ; { if ((unsigned long )h->cmd_sg_list == (unsigned long )((struct SGDescriptor **)0)) { return; } else { } i = 0; goto ldv_40787; ldv_40786: kfree((void const *)*(h->cmd_sg_list + (unsigned long )i)); *(h->cmd_sg_list + (unsigned long )i) = (struct SGDescriptor *)0; i = i + 1; ldv_40787: ; if (h->nr_cmds > i) { goto ldv_40786; } else { } kfree((void const *)h->cmd_sg_list); h->cmd_sg_list = (struct SGDescriptor **)0; return; } } static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h ) { int i ; void *tmp ; void *tmp___0 ; { if (h->chainsize <= 0) { return (0); } else { } tmp = kzalloc((unsigned long )h->nr_cmds * 8UL, 208U); h->cmd_sg_list = (struct SGDescriptor **)tmp; if ((unsigned long )h->cmd_sg_list == (unsigned long )((struct SGDescriptor **)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "Failed to allocate SG list\n"); return (-12); } else { } i = 0; goto ldv_40795; ldv_40794: tmp___0 = kmalloc((unsigned long )h->chainsize * 16UL, 208U); *(h->cmd_sg_list + (unsigned long )i) = (struct SGDescriptor *)tmp___0; if ((unsigned long )*(h->cmd_sg_list + (unsigned long )i) == (unsigned long )((struct SGDescriptor *)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "Failed to allocate cmd SG\n"); goto clean; } else { } i = i + 1; ldv_40795: ; if (h->nr_cmds > i) { goto ldv_40794; } else { } return (0); clean: hpsa_free_sg_chain_blocks(h); return (-12); } } static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h , struct io_accel2_cmd *cp , struct CommandList *c ) { struct ioaccel2_sg_element *chain_block ; u64 temp64 ; u32 chain_size ; int tmp ; { chain_block = *(h->ioaccel2_cmd_sg_list + (unsigned long )c->cmdindex); chain_size = cp->data_len; temp64 = pci_map_single(h->pdev, (void *)chain_block, (size_t )chain_size, 1); tmp = dma_mapping_error(& (h->pdev)->dev, temp64); if (tmp != 0) { ((struct ioaccel2_sg_element *)(& cp->sg))->address = 0ULL; return (-1); } else { } ((struct ioaccel2_sg_element *)(& cp->sg))->address = temp64; return (0); } } static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h , struct io_accel2_cmd *cp ) { struct ioaccel2_sg_element *chain_sg ; u64 temp64 ; u32 chain_size ; { chain_sg = (struct ioaccel2_sg_element *)(& cp->sg); temp64 = chain_sg->address; chain_size = cp->data_len; pci_unmap_single(h->pdev, temp64, (size_t )chain_size, 1); return; } } static int hpsa_map_sg_chain_block(struct ctlr_info *h , struct CommandList *c ) { struct SGDescriptor *chain_sg ; struct SGDescriptor *chain_block ; u64 temp64 ; u32 chain_len ; int tmp ; { chain_sg = (struct SGDescriptor *)(& c->SG) + ((unsigned long )h->max_cmd_sg_entries + 0xffffffffffffffffUL); chain_block = *(h->cmd_sg_list + (unsigned long )c->cmdindex); chain_sg->Ext = 2147483648U; chain_len = (u32 )((unsigned long )((int )c->Header.SGTotal - (int )h->max_cmd_sg_entries)) * 16U; chain_sg->Len = chain_len; temp64 = pci_map_single(h->pdev, (void *)chain_block, (size_t )chain_len, 1); tmp = dma_mapping_error(& (h->pdev)->dev, temp64); if (tmp != 0) { chain_sg->Addr = 0ULL; return (-1); } else { } chain_sg->Addr = temp64; return (0); } } static void hpsa_unmap_sg_chain_block(struct ctlr_info *h , struct CommandList *c ) { struct SGDescriptor *chain_sg ; { if ((int )c->Header.SGTotal <= (int )((unsigned short )h->max_cmd_sg_entries)) { return; } else { } chain_sg = (struct SGDescriptor *)(& c->SG) + ((unsigned long )h->max_cmd_sg_entries + 0xffffffffffffffffUL); pci_unmap_single(h->pdev, chain_sg->Addr, (size_t )chain_sg->Len, 1); return; } } static void hpsa_cmd_resolve_events(struct ctlr_info *h , struct CommandList *c ) { bool do_wake ; unsigned long flags ; struct hpsa_scsi_dev_t *dev ; raw_spinlock_t *tmp ; int tmp___0 ; { do_wake = 0; c->scsi_cmd = (struct scsi_cmnd *)(& hpsa_cmd_idle); __asm__ volatile ("mfence": : : "memory"); if (c->abort_pending != 0) { do_wake = 1; c->abort_pending = 0; } else { } if ((unsigned long )c->reset_pending != (unsigned long )((struct hpsa_scsi_dev_t *)0)) { tmp = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp); dev = c->reset_pending; if ((unsigned long )dev != (unsigned long )((struct hpsa_scsi_dev_t *)0)) { tmp___0 = atomic_dec_and_test(& dev->reset_cmds_out); if (tmp___0 != 0) { do_wake = 1; } else { } } else { } c->reset_pending = (struct hpsa_scsi_dev_t *)0; spin_unlock_irqrestore(& h->lock, flags); } else { } if ((int )do_wake) { __wake_up(& h->event_sync_wait_queue, 3U, 0, (void *)0); } else { } return; } } static void hpsa_cmd_resolve_and_free(struct ctlr_info *h , struct CommandList *c ) { { hpsa_cmd_resolve_events(h, c); cmd_tagged_free(h, c); return; } } static int hpsa_evaluate_tmf_status(struct ctlr_info *h , struct CommandList *cp ) { u8 tmf_status ; { tmf_status = (cp->err_info)->ScsiStatus; switch ((int )tmf_status) { case 0: ; case 8: ; return (0); case 2: ; case 4: ; case 5: ; case 9: ; case 10: ; goto ldv_40952; default: dev_warn((struct device const *)(& (h->pdev)->dev), "Unknown TMF status: 0x%02x\n", (int )tmf_status); goto ldv_40952; } ldv_40952: ; return (- ((int )tmf_status)); } } static void complete_scsi_command(struct CommandList *cp ) { struct scsi_cmnd *cmd ; struct ctlr_info *h ; struct ErrorInfo *ei ; struct hpsa_scsi_dev_t *dev ; struct io_accel2_cmd *c2 ; u8 sense_key ; u8 asc ; u8 ascq ; unsigned long sense_data_size ; long tmp ; bool tmp___0 ; long tmp___1 ; struct io_accel1_cmd *c ; unsigned int tmp___2 ; int tmp___3 ; int tmp___4 ; { ei = cp->err_info; cmd = cp->scsi_cmd; h = cp->h; dev = (struct hpsa_scsi_dev_t *)(cmd->device)->hostdata; c2 = h->ioaccel2_cmd_pool + (unsigned long )cp->cmdindex; scsi_dma_unmap(cmd); if (cp->cmd_type == 3 && (int )cp->Header.SGTotal > (int )((unsigned short )h->max_cmd_sg_entries)) { hpsa_unmap_sg_chain_block(h, cp); } else { } if (cp->cmd_type == 5 && (unsigned int )c2->sg[0].chain_indicator == 128U) { hpsa_unmap_ioaccel2_sg_chain_block(h, c2); } else { } cmd->result = 0; cmd->result = cmd->result; if (cp->cmd_type == 5 || cp->cmd_type == 4) { atomic_dec(& (cp->phys_disk)->ioaccel_cmds_out); } else { } tmp = ldv__builtin_expect((unsigned int )ei->CommandStatus == 65535U, 0L); if (tmp != 0L) { cmd->result = 65536; return; } else { } tmp___0 = hpsa_is_pending_event(cp); tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); if (tmp___1 != 0L) { if ((unsigned long )cp->reset_pending != (unsigned long )((struct hpsa_scsi_dev_t *)0)) { return; } else { } if (cp->abort_pending != 0) { return; } else { } } else { } if (cp->cmd_type == 5) { return; } else { } scsi_set_resid(cmd, (int )ei->ResidualCnt); if ((unsigned int )ei->CommandStatus == 0U) { return; } else { } if (cp->cmd_type == 4) { c = h->ioaccel_cmd_pool + (unsigned long )cp->cmdindex; tmp___2 = scsi_sg_count(cmd); cp->Header.SGList = (u8 )tmp___2; cp->Header.SGTotal = (unsigned short )cp->Header.SGList; cp->Request.CDBLen = (unsigned int )((u8 )c->io_flags) & 31U; cp->Header.tag = c->tag; memcpy((void *)(& cp->Header.LUN.LunAddrBytes), (void const *)(& c->CISS_LUN), 8UL); memcpy((void *)(& cp->Request.CDB), (void const *)(& c->CDB), (size_t )cp->Request.CDBLen); tmp___3 = is_logical_dev_addr_mode((unsigned char *)(& dev->scsi3addr)); if (tmp___3 != 0) { if ((unsigned int )ei->CommandStatus == 14U) { dev->offload_enabled = 0; } else { } return; } else { } } else { } switch ((int )ei->CommandStatus) { case 1: cmd->result = cmd->result | (int )ei->ScsiStatus; sense_data_size = 32UL; if ((unsigned long )ei->SenseLen < sense_data_size) { sense_data_size = (unsigned long )ei->SenseLen; } else { } memcpy((void *)cmd->sense_buffer, (void const *)(& ei->SenseInfo), sense_data_size); if ((unsigned int )ei->ScsiStatus != 0U) { decode_sense_data((u8 const *)(& ei->SenseInfo), (int )sense_data_size, & sense_key, & asc, & ascq); } else { } if ((unsigned int )ei->ScsiStatus == 2U) { if ((unsigned int )sense_key == 11U) { cmd->result = cmd->result | 720896; goto ldv_40968; } else { } goto ldv_40968; } else { } if ((unsigned int )ei->ScsiStatus != 0U) { dev_warn((struct device const *)(& (h->pdev)->dev), "cp %p has status 0x%x Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, Returning result: 0x%x\n", cp, (int )ei->ScsiStatus, (int )sense_key, (int )asc, (int )ascq, cmd->result); } else { dev_warn((struct device const *)(& (h->pdev)->dev), "cp %p SCSI status was 0. Returning no connection.\n", cp); cmd->result = 65536; } goto ldv_40968; case 2: ; goto ldv_40968; case 3: dev_warn((struct device const *)(& (h->pdev)->dev), "CDB %16phN data overrun\n", (u8 *)(& cp->Request.CDB)); goto ldv_40968; case 4: cmd->result = 65536; goto ldv_40968; case 5: cmd->result = 458752; dev_warn((struct device const *)(& (h->pdev)->dev), "CDB %16phN : protocol error\n", (u8 *)(& cp->Request.CDB)); goto ldv_40968; case 6: cmd->result = 458752; dev_warn((struct device const *)(& (h->pdev)->dev), "CDB %16phN : hardware error\n", (u8 *)(& cp->Request.CDB)); goto ldv_40968; case 7: cmd->result = 458752; dev_warn((struct device const *)(& (h->pdev)->dev), "CDB %16phN : connection lost\n", (u8 *)(& cp->Request.CDB)); goto ldv_40968; case 8: ; return; case 9: cmd->result = 458752; dev_warn((struct device const *)(& (h->pdev)->dev), "CDB %16phN : abort failed\n", (u8 *)(& cp->Request.CDB)); goto ldv_40968; case 10: cmd->result = 720896; dev_warn((struct device const *)(& (h->pdev)->dev), "CDB %16phN : unsolicited abort\n", (u8 *)(& cp->Request.CDB)); goto ldv_40968; case 11: cmd->result = 196608; dev_warn((struct device const *)(& (h->pdev)->dev), "CDB %16phN timed out\n", (u8 *)(& cp->Request.CDB)); goto ldv_40968; case 12: cmd->result = 458752; dev_warn((struct device const *)(& (h->pdev)->dev), "Command unabortable\n"); goto ldv_40968; case 13: tmp___4 = hpsa_evaluate_tmf_status(h, cp); if (tmp___4 != 0) { cmd->result = 458752; } else { } goto ldv_40968; case 14: cmd->result = 720896; dev_warn((struct device const *)(& (h->pdev)->dev), "cp %p had HP SSD Smart Path error\n", cp); goto ldv_40968; default: cmd->result = 458752; dev_warn((struct device const *)(& (h->pdev)->dev), "cp %p returned unknown status %x\n", cp, (int )ei->CommandStatus); } ldv_40968: ; return; } } static void hpsa_pci_unmap(struct pci_dev *pdev , struct CommandList *c , int sg_used , int data_direction ) { int i ; { i = 0; goto ldv_40991; ldv_40990: pci_unmap_single(pdev, c->SG[i].Addr, (size_t )c->SG[i].Len, data_direction); i = i + 1; ldv_40991: ; if (i < sg_used) { goto ldv_40990; } else { } return; } } static int hpsa_map_one(struct pci_dev *pdev , struct CommandList *cp , unsigned char *buf , size_t buflen , int data_direction ) { u64 addr64 ; int tmp ; { if (buflen == 0UL || data_direction == 3) { cp->Header.SGList = 0U; cp->Header.SGTotal = 0U; return (0); } else { } addr64 = pci_map_single(pdev, (void *)buf, buflen, data_direction); tmp = dma_mapping_error(& pdev->dev, addr64); if (tmp != 0) { cp->Header.SGList = 0U; cp->Header.SGTotal = 0U; return (-1); } else { } cp->SG[0].Addr = addr64; cp->SG[0].Len = (unsigned int )buflen; cp->SG[0].Ext = 1073741824U; cp->Header.SGList = 1U; cp->Header.SGTotal = 1U; return (0); } } static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h , struct CommandList *c , int reply_queue , unsigned long timeout_msecs ) { struct completion wait ; unsigned long tmp ; unsigned long tmp___0 ; { init_completion(& wait); wait = wait; c->waiting = & wait; __enqueue_cmd_and_start_io(h, c, reply_queue); if (timeout_msecs == 0xffffffffffffffffUL) { wait_for_completion_io(& wait); return (0); } else { } tmp = msecs_to_jiffies((unsigned int const )timeout_msecs); tmp___0 = wait_for_completion_io_timeout(& wait, tmp); if (tmp___0 == 0UL) { dev_warn((struct device const *)(& (h->pdev)->dev), "Command timed out.\n"); return (-110); } else { } return (0); } } static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h , struct CommandList *c , int reply_queue , unsigned long timeout_msecs ) { u32 tmp ; long tmp___0 ; int tmp___1 ; { tmp = lockup_detected(h); tmp___0 = ldv__builtin_expect(tmp != 0U, 0L); if (tmp___0 != 0L) { (c->err_info)->CommandStatus = 65535U; return (0); } else { } tmp___1 = hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); return (tmp___1); } } static u32 lockup_detected(struct ctlr_info *h ) { int cpu ; u32 rc ; u32 *lockup_detected___0 ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; void const *__vpp_verify___0 ; unsigned long __ptr ; { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); __vpp_verify = (void const *)0; switch (4UL) { case 1UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_41026; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_41026; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_41026; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_41026; default: __bad_percpu_size(); } ldv_41026: pscr_ret__ = pfo_ret__; goto ldv_41032; case 2UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_41036; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_41036; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_41036; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_41036; default: __bad_percpu_size(); } ldv_41036: pscr_ret__ = pfo_ret_____0; goto ldv_41032; case 4UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_41045; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_41045; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_41045; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_41045; default: __bad_percpu_size(); } ldv_41045: pscr_ret__ = pfo_ret_____1; goto ldv_41032; case 8UL: ; switch (4UL) { case 1UL: __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_41054; case 2UL: __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_41054; case 4UL: __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_41054; case 8UL: __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_41054; default: __bad_percpu_size(); } ldv_41054: pscr_ret__ = pfo_ret_____2; goto ldv_41032; default: __bad_size_call_parameter(); goto ldv_41032; } ldv_41032: cpu = pscr_ret__; __vpp_verify___0 = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (h->lockup_detected)); lockup_detected___0 = (u32 *)(__per_cpu_offset[cpu] + __ptr); rc = *lockup_detected___0; __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); return (rc); } } static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h , struct CommandList *c , int data_direction , unsigned long timeout_msecs ) { int backoff_time ; int retry_count ; int rc ; int tmp ; int tmp___0 ; { backoff_time = 10; retry_count = 0; ldv_41077: memset((void *)c->err_info, 0, 48UL); rc = hpsa_scsi_do_simple_cmd(h, c, -1, timeout_msecs); if (rc != 0) { goto ldv_41076; } else { } retry_count = retry_count + 1; if (retry_count > 3) { msleep((unsigned int )backoff_time); if (backoff_time <= 999) { backoff_time = backoff_time * 2; } else { } } else { } tmp = check_for_unit_attention(h, c); if (tmp != 0) { goto _L; } else { tmp___0 = check_for_busy(h, c); if (tmp___0 != 0) { _L: /* CIL Label */ if (retry_count <= 25) { goto ldv_41077; } else { goto ldv_41076; } } else { goto ldv_41076; } } ldv_41076: hpsa_pci_unmap(h->pdev, c, 1, data_direction); if (retry_count > 25) { rc = -5; } else { } return (rc); } } static void hpsa_print_cmd(struct ctlr_info *h , char *txt , struct CommandList *c ) { u8 const *cdb ; u8 const *lun ; { cdb = (u8 const *)(& c->Request.CDB); lun = (u8 const *)(& c->Header.LUN.LunAddrBytes); dev_warn((struct device const *)(& (h->pdev)->dev), "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", txt, (int )*lun, (int )*(lun + 1UL), (int )*(lun + 2UL), (int )*(lun + 3UL), (int )*(lun + 4UL), (int )*(lun + 5UL), (int )*(lun + 6UL), (int )*(lun + 7UL), (int )*cdb, (int )*(cdb + 1UL), (int )*(cdb + 2UL), (int )*(cdb + 3UL), (int )*(cdb + 4UL), (int )*(cdb + 5UL), (int )*(cdb + 6UL), (int )*(cdb + 7UL), (int )*(cdb + 8UL), (int )*(cdb + 9UL), (int )*(cdb + 10UL), (int )*(cdb + 11UL), (int )*(cdb + 12UL), (int )*(cdb + 13UL), (int )*(cdb + 14UL), (int )*(cdb + 15UL)); return; } } static void hpsa_scsi_interpret_error(struct ctlr_info *h , struct CommandList *cp ) { struct ErrorInfo const *ei ; struct device *d ; u8 sense_key ; u8 asc ; u8 ascq ; int sense_len ; { ei = (struct ErrorInfo const *)cp->err_info; d = & ((cp->h)->pdev)->dev; switch ((int )ei->CommandStatus) { case 1: ; if ((unsigned int )((unsigned char )ei->SenseLen) > 32U) { sense_len = 32; } else { sense_len = (int )ei->SenseLen; } decode_sense_data((u8 const *)(& ei->SenseInfo), sense_len, & sense_key, & asc, & ascq); hpsa_print_cmd(h, (char *)"SCSI status", cp); if ((unsigned int )((unsigned char )ei->ScsiStatus) == 2U) { dev_warn((struct device const *)d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", (int )sense_key, (int )asc, (int )ascq); } else { dev_warn((struct device const *)d, "SCSI Status = 0x%02x\n", (int )ei->ScsiStatus); } if ((unsigned int )((unsigned char )ei->ScsiStatus) == 0U) { dev_warn((struct device const *)d, "SCSI status is abnormally zero. (probably indicates selection timeout reported incorrectly due to a known firmware bug, circa July, 2001.)\n"); } else { } goto ldv_41096; case 2: ; goto ldv_41096; case 3: hpsa_print_cmd(h, (char *)"overrun condition", cp); goto ldv_41096; case 4: hpsa_print_cmd(h, (char *)"invalid command", cp); dev_warn((struct device const *)d, "probably means device no longer present\n"); goto ldv_41096; case 5: hpsa_print_cmd(h, (char *)"protocol error", cp); goto ldv_41096; case 6: hpsa_print_cmd(h, (char *)"hardware error", cp); goto ldv_41096; case 7: hpsa_print_cmd(h, (char *)"connection lost", cp); goto ldv_41096; case 8: hpsa_print_cmd(h, (char *)"aborted", cp); goto ldv_41096; case 9: hpsa_print_cmd(h, (char *)"abort failed", cp); goto ldv_41096; case 10: hpsa_print_cmd(h, (char *)"unsolicited abort", cp); goto ldv_41096; case 11: hpsa_print_cmd(h, (char *)"timed out", cp); goto ldv_41096; case 12: hpsa_print_cmd(h, (char *)"unabortable", cp); goto ldv_41096; case 65535: hpsa_print_cmd(h, (char *)"controller lockup detected", cp); goto ldv_41096; default: hpsa_print_cmd(h, (char *)"unknown status", cp); dev_warn((struct device const *)d, "Unknown command status %x\n", (int )ei->CommandStatus); } ldv_41096: ; return; } } static int hpsa_scsi_do_inquiry(struct ctlr_info *h , unsigned char *scsi3addr , u16 page , unsigned char *buf , unsigned char bufsize ) { int rc ; struct CommandList *c ; struct ErrorInfo *ei ; int tmp ; { rc = 0; c = cmd_alloc(h); tmp = fill_cmd(c, 18, h, (void *)buf, (size_t )bufsize, (int )page, scsi3addr, 0); if (tmp != 0) { rc = -1; goto out; } else { } rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 2, 0xffffffffffffffffUL); if (rc != 0) { goto out; } else { } ei = c->err_info; if ((unsigned int )ei->CommandStatus != 0U && (unsigned int )ei->CommandStatus != 2U) { hpsa_scsi_interpret_error(h, c); rc = -1; } else { } out: cmd_free(h, c); return (rc); } } static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h , unsigned char *scsi3addr , unsigned char page , struct bmic_controller_parameters *buf , size_t bufsize ) { int rc ; struct CommandList *c ; struct ErrorInfo *ei ; int tmp ; { rc = 0; c = cmd_alloc(h); tmp = fill_cmd(c, 100, h, (void *)buf, bufsize, (int )page, scsi3addr, 0); if (tmp != 0) { rc = -1; goto out; } else { } rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 2, 0xffffffffffffffffUL); if (rc != 0) { goto out; } else { } ei = c->err_info; if ((unsigned int )ei->CommandStatus != 0U && (unsigned int )ei->CommandStatus != 2U) { hpsa_scsi_interpret_error(h, c); rc = -1; } else { } out: cmd_free(h, c); return (rc); } } static int hpsa_send_reset(struct ctlr_info *h , unsigned char *scsi3addr , u8 reset_type , int reply_queue ) { int rc ; struct CommandList *c ; struct ErrorInfo *ei ; { rc = 0; c = cmd_alloc(h); fill_cmd(c, 1, h, (void *)0, 0UL, 0, scsi3addr, 1); c->Request.CDB[1] = reset_type; rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, 0xffffffffffffffffUL); if (rc != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "Failed to send reset command\n"); goto out; } else { } ei = c->err_info; if ((unsigned int )ei->CommandStatus != 0U) { hpsa_scsi_interpret_error(h, c); rc = -1; } else { } out: cmd_free(h, c); return (rc); } } static bool hpsa_cmd_dev_match(struct ctlr_info *h , struct CommandList *c , struct hpsa_scsi_dev_t *dev , unsigned char *scsi3addr ) { int i ; bool match ; struct io_accel2_cmd *c2 ; struct hpsa_tmf_struct *ac ; bool tmp ; int tmp___0 ; { match = 0; c2 = h->ioaccel2_cmd_pool + (unsigned long )c->cmdindex; ac = (struct hpsa_tmf_struct *)c2; tmp = hpsa_is_cmd_idle(c); if ((int )tmp) { return (0); } else { } switch (c->cmd_type) { case 3: ; case 1: tmp___0 = memcmp((void const *)scsi3addr, (void const *)(& c->Header.LUN.LunAddrBytes), 8UL); match = tmp___0 == 0; goto ldv_41154; case 4: ; case 5: ; if ((unsigned long )c->phys_disk == (unsigned long )dev) { match = 1; } else { i = 0; goto ldv_41158; ldv_41157: match = (unsigned long )dev->phys_disk[i] == (unsigned long )c->phys_disk; i = i + 1; ldv_41158: ; if (dev->nphysical_disks > i && ! match) { goto ldv_41157; } else { } } goto ldv_41154; case 6: i = 0; goto ldv_41162; ldv_41161: match = (dev->phys_disk[i])->ioaccel_handle == ac->it_nexus; i = i + 1; ldv_41162: ; if (dev->nphysical_disks > i && ! match) { goto ldv_41161; } else { } goto ldv_41154; case 0: match = 0; goto ldv_41154; default: dev_err((struct device const *)(& (h->pdev)->dev), "unexpected cmd_type: %d\n", c->cmd_type); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (2700), "i" (12UL)); ldv_41166: ; goto ldv_41166; } ldv_41154: ; return (match); } } static int hpsa_do_reset(struct ctlr_info *h , struct hpsa_scsi_dev_t *dev , unsigned char *scsi3addr , u8 reset_type , int reply_queue ) { int i ; int rc ; int tmp ; int tmp___0 ; long tmp___1 ; struct CommandList *c ; int refcount ; int tmp___2 ; unsigned long flags ; raw_spinlock_t *tmp___3 ; bool tmp___4 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; u32 tmp___8 ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___9 ; int tmp___10 ; u32 tmp___11 ; u32 tmp___12 ; long tmp___13 ; long tmp___14 ; { rc = 0; tmp = ldv_mutex_lock_interruptible_19(& h->reset_mutex); if (tmp == -4) { dev_warn((struct device const *)(& (h->pdev)->dev), "concurrent reset wait interrupted.\n"); return (-4); } else { } tmp___0 = atomic_read((atomic_t const *)(& dev->reset_cmds_out)); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (2718), "i" (12UL)); ldv_41176: ; goto ldv_41176; } else { } i = 0; goto ldv_41184; ldv_41183: c = h->cmd_pool + (unsigned long )i; tmp___2 = atomic_add_return(1, & c->refcount); refcount = tmp___2; if (refcount > 1) { tmp___6 = hpsa_cmd_dev_match(h, c, dev, scsi3addr); if ((int )tmp___6) { c->reset_pending = dev; tmp___3 = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp___3); tmp___4 = hpsa_is_cmd_idle(c); if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { atomic_inc(& dev->reset_cmds_out); } else { c->reset_pending = (struct hpsa_scsi_dev_t *)0; } spin_unlock_irqrestore(& h->lock, flags); } else { } } else { } cmd_free(h, c); i = i + 1; ldv_41184: ; if (h->nr_cmds > i) { goto ldv_41183; } else { } rc = hpsa_send_reset(h, scsi3addr, (int )reset_type, reply_queue); if (rc == 0) { __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c", 2749, 0); tmp___7 = atomic_read((atomic_t const *)(& dev->reset_cmds_out)); if (tmp___7 == 0) { goto ldv_41186; } else { tmp___8 = lockup_detected(h); if (tmp___8 != 0U) { goto ldv_41186; } else { } } __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_41192: tmp___9 = prepare_to_wait_event(& h->event_sync_wait_queue, & __wait, 2); __int = tmp___9; tmp___10 = atomic_read((atomic_t const *)(& dev->reset_cmds_out)); if (tmp___10 == 0) { goto ldv_41191; } else { tmp___11 = lockup_detected(h); if (tmp___11 != 0U) { goto ldv_41191; } else { } } schedule(); goto ldv_41192; ldv_41191: finish_wait(& h->event_sync_wait_queue, & __wait); ldv_41186: ; } else { } tmp___12 = lockup_detected(h); tmp___13 = ldv__builtin_expect(tmp___12 != 0U, 0L); if (tmp___13 != 0L) { dev_warn((struct device const *)(& (h->pdev)->dev), "Controller lockup detected during reset wait\n"); ldv_mutex_unlock_20(& h->reset_mutex); rc = -19; } else { } tmp___14 = ldv__builtin_expect(rc != 0, 0L); if (tmp___14 != 0L) { atomic_set(& dev->reset_cmds_out, 0); } else { } ldv_mutex_unlock_21(& h->reset_mutex); return (rc); } } static void hpsa_get_raid_level(struct ctlr_info *h , unsigned char *scsi3addr , unsigned char *raid_level ) { int rc ; unsigned char *buf ; void *tmp ; { *raid_level = 7U; tmp = kzalloc(64UL, 208U); buf = (unsigned char *)tmp; if ((unsigned long )buf == (unsigned long )((unsigned char *)0U)) { return; } else { } rc = hpsa_scsi_do_inquiry(h, scsi3addr, 449, buf, 64); if (rc == 0) { *raid_level = *(buf + 8UL); } else { } if ((unsigned int )*raid_level > 7U) { *raid_level = 7U; } else { } kfree((void const *)buf); return; } } static void hpsa_debug_map_buff(struct ctlr_info *h , int rc , struct raid_map_data *map_buff ) { struct raid_map_disk_data *dd ; int map ; int row ; int col ; u16 map_cnt ; u16 row_cnt ; u16 disks_per_row ; { dd = (struct raid_map_disk_data *)(& map_buff->data); if (rc != 0) { return; } else { } if (h->raid_offload_debug <= 1) { return; } else { } _dev_info((struct device const *)(& (h->pdev)->dev), "structure_size = %u\n", map_buff->structure_size); _dev_info((struct device const *)(& (h->pdev)->dev), "volume_blk_size = %u\n", map_buff->volume_blk_size); _dev_info((struct device const *)(& (h->pdev)->dev), "volume_blk_cnt = 0x%llx\n", map_buff->volume_blk_cnt); _dev_info((struct device const *)(& (h->pdev)->dev), "physicalBlockShift = %u\n", (int )map_buff->phys_blk_shift); _dev_info((struct device const *)(& (h->pdev)->dev), "parity_rotation_shift = %u\n", (int )map_buff->parity_rotation_shift); _dev_info((struct device const *)(& (h->pdev)->dev), "strip_size = %u\n", (int )map_buff->strip_size); _dev_info((struct device const *)(& (h->pdev)->dev), "disk_starting_blk = 0x%llx\n", map_buff->disk_starting_blk); _dev_info((struct device const *)(& (h->pdev)->dev), "disk_blk_cnt = 0x%llx\n", map_buff->disk_blk_cnt); _dev_info((struct device const *)(& (h->pdev)->dev), "data_disks_per_row = %u\n", (int )map_buff->data_disks_per_row); _dev_info((struct device const *)(& (h->pdev)->dev), "metadata_disks_per_row = %u\n", (int )map_buff->metadata_disks_per_row); _dev_info((struct device const *)(& (h->pdev)->dev), "row_cnt = %u\n", (int )map_buff->row_cnt); _dev_info((struct device const *)(& (h->pdev)->dev), "layout_map_count = %u\n", (int )map_buff->layout_map_count); _dev_info((struct device const *)(& (h->pdev)->dev), "flags = 0x%x\n", (int )map_buff->flags); _dev_info((struct device const *)(& (h->pdev)->dev), "encrypytion = %s\n", (int )map_buff->flags & 1 ? (char *)"ON" : (char *)"OFF"); _dev_info((struct device const *)(& (h->pdev)->dev), "dekindex = %u\n", (int )map_buff->dekindex); map_cnt = map_buff->layout_map_count; map = 0; goto ldv_41229; ldv_41228: _dev_info((struct device const *)(& (h->pdev)->dev), "Map%u:\n", map); row_cnt = map_buff->row_cnt; row = 0; goto ldv_41226; ldv_41225: _dev_info((struct device const *)(& (h->pdev)->dev), " Row%u:\n", row); disks_per_row = map_buff->data_disks_per_row; col = 0; goto ldv_41220; ldv_41219: _dev_info((struct device const *)(& (h->pdev)->dev), " D%02u: h=0x%04x xor=%u,%u\n", col, dd->ioaccel_handle, (int )dd->xor_mult[0], (int )dd->xor_mult[1]); col = col + 1; dd = dd + 1; ldv_41220: ; if ((int )disks_per_row > col) { goto ldv_41219; } else { } disks_per_row = map_buff->metadata_disks_per_row; col = 0; goto ldv_41223; ldv_41222: _dev_info((struct device const *)(& (h->pdev)->dev), " M%02u: h=0x%04x xor=%u,%u\n", col, dd->ioaccel_handle, (int )dd->xor_mult[0], (int )dd->xor_mult[1]); col = col + 1; dd = dd + 1; ldv_41223: ; if ((int )disks_per_row > col) { goto ldv_41222; } else { } row = row + 1; ldv_41226: ; if ((int )row_cnt > row) { goto ldv_41225; } else { } map = map + 1; ldv_41229: ; if ((int )map_cnt > map) { goto ldv_41228; } else { } return; } } static int hpsa_get_raid_map(struct ctlr_info *h , unsigned char *scsi3addr , struct hpsa_scsi_dev_t *this_device ) { int rc ; struct CommandList *c ; struct ErrorInfo *ei ; int tmp ; { rc = 0; c = cmd_alloc(h); tmp = fill_cmd(c, 200, h, (void *)(& this_device->raid_map), 2112UL, 0, scsi3addr, 0); if (tmp != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "hpsa_get_raid_map fill_cmd failed\n"); cmd_free(h, c); return (-1); } else { } rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 2, 0xffffffffffffffffUL); if (rc != 0) { goto out; } else { } ei = c->err_info; if ((unsigned int )ei->CommandStatus != 0U && (unsigned int )ei->CommandStatus != 2U) { hpsa_scsi_interpret_error(h, c); rc = -1; goto out; } else { } cmd_free(h, c); if (this_device->raid_map.structure_size > 2112U) { dev_warn((struct device const *)(& (h->pdev)->dev), "RAID map size is too large!\n"); rc = -1; } else { } hpsa_debug_map_buff(h, rc, & this_device->raid_map); return (rc); out: cmd_free(h, c); return (rc); } } static int hpsa_bmic_id_physical_device(struct ctlr_info *h , unsigned char *scsi3addr , u16 bmic_device_index , struct bmic_identify_physical_device *buf , size_t bufsize ) { int rc ; struct CommandList *c ; struct ErrorInfo *ei ; { rc = 0; c = cmd_alloc(h); rc = fill_cmd(c, 21, h, (void *)buf, bufsize, 0, (unsigned char *)"", 0); if (rc != 0) { goto out; } else { } c->Request.CDB[2] = (u8 )bmic_device_index; c->Request.CDB[9] = (u8 )((int )bmic_device_index >> 8); hpsa_scsi_do_simple_cmd_with_retry(h, c, 2, 0xffffffffffffffffUL); ei = c->err_info; if ((unsigned int )ei->CommandStatus != 0U && (unsigned int )ei->CommandStatus != 2U) { hpsa_scsi_interpret_error(h, c); rc = -1; } else { } out: cmd_free(h, c); return (rc); } } static int hpsa_vpd_page_supported(struct ctlr_info *h , unsigned char *scsi3addr , u8 page ) { int rc ; int i ; int pages ; unsigned char *buf ; unsigned char bufsize ; void *tmp ; { tmp = kzalloc(256UL, 208U); buf = (unsigned char *)tmp; if ((unsigned long )buf == (unsigned long )((unsigned char *)0U)) { return (0); } else { } rc = hpsa_scsi_do_inquiry(h, scsi3addr, 256, buf, 4); if (rc != 0) { goto exit_unsupported; } else { } pages = (int )*(buf + 3UL); if (pages + 4 <= 255) { bufsize = (unsigned int )((unsigned char )pages) + 4U; } else { bufsize = 255U; } rc = hpsa_scsi_do_inquiry(h, scsi3addr, 256, buf, (int )bufsize); if (rc != 0) { goto exit_unsupported; } else { } pages = (int )*(buf + 3UL); i = 1; goto ldv_41264; ldv_41263: ; if ((int )*(buf + (unsigned long )(i + 3)) == (int )page) { goto exit_supported; } else { } i = i + 1; ldv_41264: ; if (i <= pages) { goto ldv_41263; } else { } exit_unsupported: kfree((void const *)buf); return (0); exit_supported: kfree((void const *)buf); return (1); } } static void hpsa_get_ioaccel_status(struct ctlr_info *h , unsigned char *scsi3addr , struct hpsa_scsi_dev_t *this_device ) { int rc ; unsigned char *buf ; u8 ioaccel_status ; void *tmp ; int tmp___0 ; int tmp___1 ; { this_device->offload_config = 0; this_device->offload_enabled = 0; this_device->offload_to_be_enabled = 0; tmp = kzalloc(64UL, 208U); buf = (unsigned char *)tmp; if ((unsigned long )buf == (unsigned long )((unsigned char *)0U)) { return; } else { } tmp___0 = hpsa_vpd_page_supported(h, scsi3addr, 194); if (tmp___0 == 0) { goto out; } else { } rc = hpsa_scsi_do_inquiry(h, scsi3addr, 450, buf, 64); if (rc != 0) { goto out; } else { } ioaccel_status = *(buf + 4UL); this_device->offload_config = (int )ioaccel_status & 1; if (this_device->offload_config != 0) { this_device->offload_enabled = ((int )ioaccel_status & 2) != 0; tmp___1 = hpsa_get_raid_map(h, scsi3addr, this_device); if (tmp___1 != 0) { this_device->offload_enabled = 0; } else { } } else { } this_device->offload_to_be_enabled = this_device->offload_enabled; out: kfree((void const *)buf); return; } } static int hpsa_get_device_id(struct ctlr_info *h , unsigned char *scsi3addr , unsigned char *device_id , int buflen ) { int rc ; unsigned char *buf ; void *tmp ; { if (buflen > 16) { buflen = 16; } else { } tmp = kzalloc(64UL, 208U); buf = (unsigned char *)tmp; if ((unsigned long )buf == (unsigned long )((unsigned char *)0U)) { return (-12); } else { } rc = hpsa_scsi_do_inquiry(h, scsi3addr, 387, buf, 64); if (rc == 0) { memcpy((void *)device_id, (void const *)buf + 8U, (size_t )buflen); } else { } kfree((void const *)buf); return (rc != 0); } } static int hpsa_scsi_do_report_luns(struct ctlr_info *h , int logical , void *buf , int bufsize , int extended_response ) { int rc ; struct CommandList *c ; unsigned char scsi3addr[8U] ; struct ErrorInfo *ei ; int tmp ; struct ReportLUNdata *rld ; { rc = 0; c = cmd_alloc(h); memset((void *)(& scsi3addr), 0, 8UL); tmp = fill_cmd(c, logical != 0 ? 194 : 195, h, buf, (size_t )bufsize, 0, (unsigned char *)(& scsi3addr), 0); if (tmp != 0) { rc = -1; goto out; } else { } if (extended_response != 0) { c->Request.CDB[1] = (u8 )extended_response; } else { } rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 2, 0xffffffffffffffffUL); if (rc != 0) { goto out; } else { } ei = c->err_info; if ((unsigned int )ei->CommandStatus != 0U && (unsigned int )ei->CommandStatus != 2U) { hpsa_scsi_interpret_error(h, c); rc = -1; } else { rld = (struct ReportLUNdata *)buf; if ((int )rld->extended_response_flag != extended_response) { dev_err((struct device const *)(& (h->pdev)->dev), "report luns requested format %u, got %u\n", extended_response, (int )rld->extended_response_flag); rc = -1; } else { } } out: cmd_free(h, c); return (rc); } } __inline static int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h , struct ReportExtendedLUNdata *buf , int bufsize ) { int tmp ; { tmp = hpsa_scsi_do_report_luns(h, 0, (void *)buf, bufsize, 2); return (tmp); } } __inline static int hpsa_scsi_do_report_log_luns(struct ctlr_info *h , struct ReportLUNdata *buf , int bufsize ) { int tmp ; { tmp = hpsa_scsi_do_report_luns(h, 1, (void *)buf, bufsize, 0); return (tmp); } } __inline static void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device , int bus , int target , int lun ) { { device->bus = bus; device->target = target; device->lun = lun; return; } } static int hpsa_get_volume_status(struct ctlr_info *h , unsigned char *scsi3addr ) { int rc ; int status ; int size ; unsigned char *buf ; void *tmp ; int tmp___0 ; { tmp = kzalloc(64UL, 208U); buf = (unsigned char *)tmp; if ((unsigned long )buf == (unsigned long )((unsigned char *)0U)) { return (255); } else { } tmp___0 = hpsa_vpd_page_supported(h, scsi3addr, 195); if (tmp___0 == 0) { goto exit_failed; } else { } rc = hpsa_scsi_do_inquiry(h, scsi3addr, 451, buf, 4); if (rc != 0) { goto exit_failed; } else { } size = (int )*(buf + 3UL); rc = hpsa_scsi_do_inquiry(h, scsi3addr, 451, buf, (int )((unsigned int )((unsigned char )size) + 4U)); if (rc != 0) { goto exit_failed; } else { } status = (int )*(buf + 4UL); kfree((void const *)buf); return (status); exit_failed: kfree((void const *)buf); return (255); } } static int hpsa_volume_offline(struct ctlr_info *h , unsigned char *scsi3addr ) { struct CommandList *c ; unsigned char *sense ; u8 sense_key ; u8 asc ; u8 ascq ; int sense_len ; int rc ; int ldstat ; u16 cmd_status ; u8 scsi_status ; { ldstat = 0; c = cmd_alloc(h); fill_cmd(c, 0, h, (void *)0, 0UL, 0, scsi3addr, 0); rc = hpsa_scsi_do_simple_cmd(h, c, -1, 0xffffffffffffffffUL); if (rc != 0) { cmd_free(h, c); return (0); } else { } sense = (unsigned char *)(& (c->err_info)->SenseInfo); if ((unsigned int )(c->err_info)->SenseLen > 32U) { sense_len = 32; } else { sense_len = (int )(c->err_info)->SenseLen; } decode_sense_data((u8 const *)sense, sense_len, & sense_key, & asc, & ascq); cmd_status = (c->err_info)->CommandStatus; scsi_status = (c->err_info)->ScsiStatus; cmd_free(h, c); if ((((unsigned int )cmd_status != 1U || (unsigned int )scsi_status != 2U) || (unsigned int )sense_key != 2U) || (unsigned int )asc != 4U) { return (0); } else { } ldstat = hpsa_get_volume_status(h, scsi3addr); switch (ldstat) { case 15: ; case 18: ; case 19: ; case 20: ; case 21: ; case 22: ; case 23: ; case 24: ; return (ldstat); case 255: ; if ((unsigned int )ascq == 4U || (unsigned int )ascq == 2U) { return (ldstat); } else { } goto ldv_41344; default: ; goto ldv_41344; } ldv_41344: ; return (0); } } static int hpsa_device_supports_aborts(struct ctlr_info *h , unsigned char *scsi3addr ) { struct CommandList *c ; struct ErrorInfo *ei ; int rc ; u64 tag ; int tmp ; { rc = 0; tag = 0xffffffffffffffffULL; tmp = is_logical_dev_addr_mode(scsi3addr); if (tmp == 0) { return (1); } else { } c = cmd_alloc(h); fill_cmd(c, 0, h, (void *)(& tag), 0UL, 0, scsi3addr, 1); hpsa_scsi_do_simple_cmd(h, c, -1, 0xffffffffffffffffUL); ei = c->err_info; switch ((int )ei->CommandStatus) { case 4: rc = 0; goto ldv_41355; case 12: ; case 9: rc = 1; goto ldv_41355; case 13: rc = hpsa_evaluate_tmf_status(h, c); goto ldv_41355; default: rc = 0; goto ldv_41355; } ldv_41355: cmd_free(h, c); return (rc); } } static int hpsa_update_device_info(struct ctlr_info *h , unsigned char *scsi3addr , struct hpsa_scsi_dev_t *this_device , unsigned char *is_OBDR_device ) { unsigned char *inq_buff ; unsigned char *obdr_sig ; void *tmp ; int tmp___0 ; int volume_offline ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { tmp = kzalloc(49UL, 208U); inq_buff = (unsigned char *)tmp; if ((unsigned long )inq_buff == (unsigned long )((unsigned char *)0U)) { goto bail_out; } else { } tmp___0 = hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 49); if (tmp___0 != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "hpsa_update_device_info: inquiry failed\n"); goto bail_out; } else { } this_device->devtype = (int )*inq_buff & 31; memcpy((void *)(& this_device->scsi3addr), (void const *)scsi3addr, 8UL); memcpy((void *)(& this_device->vendor), (void const *)inq_buff + 8U, 8UL); memcpy((void *)(& this_device->model), (void const *)inq_buff + 16U, 16UL); memset((void *)(& this_device->device_id), 0, 16UL); hpsa_get_device_id(h, scsi3addr, (unsigned char *)(& this_device->device_id), 16); if (this_device->devtype == 0) { tmp___1 = is_logical_dev_addr_mode(scsi3addr); if (tmp___1 != 0) { hpsa_get_raid_level(h, scsi3addr, & this_device->raid_level); if ((h->fw_support & 32U) != 0U) { hpsa_get_ioaccel_status(h, scsi3addr, this_device); } else { } volume_offline = hpsa_volume_offline(h, scsi3addr); if (volume_offline < 0 || volume_offline > 255) { volume_offline = 255; } else { } this_device->volume_offline = (unsigned char )volume_offline; } else { goto _L; } } else { _L: /* CIL Label */ this_device->raid_level = 7U; this_device->offload_config = 0; this_device->offload_enabled = 0; this_device->offload_to_be_enabled = 0; this_device->hba_ioaccel_enabled = 0; this_device->volume_offline = 0U; this_device->queue_depth = (u16 )h->nr_cmds; } if ((unsigned long )is_OBDR_device != (unsigned long )((unsigned char *)0U)) { obdr_sig = inq_buff + 43UL; if (this_device->devtype == 5) { tmp___2 = strncmp((char const *)obdr_sig, "$DR-10", 6UL); if (tmp___2 == 0) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } *is_OBDR_device = (unsigned char )tmp___3; } else { } kfree((void const *)inq_buff); return (0); bail_out: kfree((void const *)inq_buff); return (1); } } static void hpsa_update_device_supports_aborts(struct ctlr_info *h , struct hpsa_scsi_dev_t *dev , u8 *scsi3addr ) { unsigned long flags ; int rc ; int entry ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& h->devlock); flags = _raw_spin_lock_irqsave(tmp); rc = hpsa_scsi_find_entry(dev, (struct hpsa_scsi_dev_t **)(& h->dev), h->ndevices, & entry); if (((rc == 2 || rc == 3) && entry >= 0) && h->ndevices > entry) { dev->supports_aborts = (h->dev[entry])->supports_aborts; spin_unlock_irqrestore(& h->devlock, flags); } else { spin_unlock_irqrestore(& h->devlock, flags); dev->supports_aborts = hpsa_device_supports_aborts(h, scsi3addr); if (dev->supports_aborts < 0) { dev->supports_aborts = 0; } else { } } return; } } static unsigned char *ext_target_model[7U] = { (unsigned char *)"MSA2012", (unsigned char *)"MSA2024", (unsigned char *)"MSA2312", (unsigned char *)"MSA2324", (unsigned char *)"P2000 G3 SAS", (unsigned char *)"MSA 2040 SAS", (unsigned char *)0U}; static int is_ext_target(struct ctlr_info *h , struct hpsa_scsi_dev_t *device ) { int i ; size_t tmp ; int tmp___0 ; { i = 0; goto ldv_41390; ldv_41389: tmp = strlen((char const *)ext_target_model[i]); tmp___0 = strncmp((char const *)(& device->model), (char const *)ext_target_model[i], tmp); if (tmp___0 == 0) { return (1); } else { } i = i + 1; ldv_41390: ; if ((unsigned long )ext_target_model[i] != (unsigned long )((unsigned char *)0U)) { goto ldv_41389; } else { } return (0); } } static void figure_bus_target_lun(struct ctlr_info *h , u8 *lunaddrbytes , struct hpsa_scsi_dev_t *device ) { u32 lunid ; int tmp ; int tmp___0 ; int tmp___1 ; { lunid = *((__le32 *)lunaddrbytes); tmp___0 = is_logical_dev_addr_mode(lunaddrbytes); if (tmp___0 == 0) { tmp = is_hba_lunid(lunaddrbytes); if (tmp != 0) { hpsa_set_bus_target_lun(device, 3, 0, (int )lunid & 16383); } else { hpsa_set_bus_target_lun(device, 2, -1, -1); } return; } else { } tmp___1 = is_ext_target(h, device); if (tmp___1 != 0) { hpsa_set_bus_target_lun(device, 1, (int )(lunid >> 16) & 16383, (int )lunid & 255); return; } else { } hpsa_set_bus_target_lun(device, 0, 0, (int )lunid & 16383); return; } } static int add_ext_target_dev(struct ctlr_info *h , struct hpsa_scsi_dev_t *tmpdevice , struct hpsa_scsi_dev_t *this_device , u8 *lunaddrbytes , unsigned long *lunzerobits , int *n_ext_target_devs ) { unsigned char scsi3addr[8U] ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { tmp = variable_test_bit((long )tmpdevice->target, (unsigned long const volatile *)lunzerobits); if (tmp != 0) { return (0); } else { } tmp___0 = is_logical_dev_addr_mode(lunaddrbytes); if (tmp___0 == 0) { return (0); } else { } tmp___1 = is_ext_target(h, tmpdevice); if (tmp___1 == 0) { return (0); } else { } if (tmpdevice->lun == 0) { return (0); } else { } memset((void *)(& scsi3addr), 0, 8UL); scsi3addr[3] = (unsigned char )tmpdevice->target; tmp___2 = is_hba_lunid((unsigned char *)(& scsi3addr)); if (tmp___2 != 0) { return (0); } else { } tmp___3 = is_scsi_rev_5(h); if (tmp___3 != 0) { return (0); } else { } if (*n_ext_target_devs > 31) { dev_warn((struct device const *)(& (h->pdev)->dev), "Maximum number of external target devices exceeded. Check your hardware configuration."); return (0); } else { } tmp___4 = hpsa_update_device_info(h, (unsigned char *)(& scsi3addr), this_device, (unsigned char *)0U); if (tmp___4 != 0) { return (0); } else { } *n_ext_target_devs = *n_ext_target_devs + 1; hpsa_set_bus_target_lun(this_device, tmpdevice->bus, tmpdevice->target, 0); hpsa_update_device_supports_aborts(h, this_device, (u8 *)(& scsi3addr)); set_bit((long )tmpdevice->target, (unsigned long volatile *)lunzerobits); return (1); } } static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h , struct CommandList *ioaccel2_cmd_to_abort , unsigned char *scsi3addr ) { struct io_accel2_cmd *c2 ; unsigned long flags ; int i ; raw_spinlock_t *tmp ; { c2 = h->ioaccel2_cmd_pool + (unsigned long )ioaccel2_cmd_to_abort->cmdindex; tmp = spinlock_check(& h->devlock); flags = _raw_spin_lock_irqsave(tmp); i = 0; goto ldv_41419; ldv_41418: ; if ((h->dev[i])->ioaccel_handle == c2->scsi_nexus) { memcpy((void *)scsi3addr, (void const *)(& (h->dev[i])->scsi3addr), 8UL); spin_unlock_irqrestore(& h->devlock, flags); return (1); } else { } i = i + 1; ldv_41419: ; if (h->ndevices > i) { goto ldv_41418; } else { } spin_unlock_irqrestore(& h->devlock, flags); return (0); } } static int hpsa_gather_lun_info(struct ctlr_info *h , struct ReportExtendedLUNdata *physdev , u32 *nphysicals , struct ReportLUNdata *logdev , u32 *nlogicals ) { int tmp ; __u32 tmp___0 ; int tmp___1 ; __u32 tmp___2 ; { tmp = hpsa_scsi_do_report_phys_luns(h, physdev, 24584); if (tmp != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "report physical LUNs failed.\n"); return (-1); } else { } tmp___0 = __fswab32(*((__be32 *)(& physdev->LUNListLength))); *nphysicals = tmp___0 / 24U; if (*nphysicals > 1024U) { dev_warn((struct device const *)(& (h->pdev)->dev), "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", 1024, *nphysicals - 1024U); *nphysicals = 1024U; } else { } tmp___1 = hpsa_scsi_do_report_log_luns(h, logdev, 8200); if (tmp___1 != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "report logical LUNs failed.\n"); return (-1); } else { } tmp___2 = __fswab32(*((__be32 *)(& logdev->LUNListLength))); *nlogicals = tmp___2 / 8U; if (*nlogicals > 1024U) { dev_warn((struct device const *)(& (h->pdev)->dev), "maximum logical LUNs (%d) exceeded. %d LUNs ignored.\n", 1024, *nlogicals - 1024U); *nlogicals = 1024U; } else { } if (*nlogicals + *nphysicals > 1024U) { dev_warn((struct device const *)(& (h->pdev)->dev), "maximum logical + physical LUNs (%d) exceeded. %d LUNs ignored.\n", 1024, (*nphysicals + *nlogicals) - 1024U); *nlogicals = 1024U - *nphysicals; } else { } return (0); } } static u8 *figure_lunaddrbytes(struct ctlr_info *h , int raid_ctlr_position , int i , int nphysicals , int nlogicals , struct ReportExtendedLUNdata *physdev_list , struct ReportLUNdata *logdev_list ) { int logicals_start ; int last_device ; { logicals_start = (raid_ctlr_position == 0) + nphysicals; last_device = (nphysicals + nlogicals) + (raid_ctlr_position == 0); if (i == raid_ctlr_position) { return ((u8 *)""); } else { } if (i < logicals_start) { return ((u8 *)(& physdev_list->LUN[i - (raid_ctlr_position == 0)].lunid)); } else { } if (i < last_device) { return ((u8 *)(& logdev_list->LUN) + (unsigned long )((i - nphysicals) - (raid_ctlr_position == 0))); } else { } __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (3561), "i" (12UL)); ldv_41439: ; goto ldv_41439; return ((u8 *)0U); } } static int hpsa_hba_mode_enabled(struct ctlr_info *h ) { int rc ; int hba_mode_enabled ; struct bmic_controller_parameters *ctlr_params ; void *tmp ; { tmp = kzalloc(512UL, 208U); ctlr_params = (struct bmic_controller_parameters *)tmp; if ((unsigned long )ctlr_params == (unsigned long )((struct bmic_controller_parameters *)0)) { return (-12); } else { } rc = hpsa_bmic_ctrl_mode_sense(h, (unsigned char *)"", 0, ctlr_params, 512UL); if (rc != 0) { kfree((void const *)ctlr_params); return (rc); } else { } hba_mode_enabled = ((int )ctlr_params->nvram_flags & 8) != 0; kfree((void const *)ctlr_params); return (hba_mode_enabled); } } static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h , struct hpsa_scsi_dev_t *dev , u8 *lunaddrbytes , struct bmic_identify_physical_device *id_phys ) { int rc ; struct ext_report_lun_entry *rle ; { rle = (struct ext_report_lun_entry *)lunaddrbytes; dev->ioaccel_handle = rle->ioaccel_handle; if (((int )*(lunaddrbytes + 17UL) & 8) != 0 && dev->ioaccel_handle != 0U) { dev->hba_ioaccel_enabled = 1; } else { } memset((void *)id_phys, 0, 2048UL); rc = hpsa_bmic_id_physical_device(h, lunaddrbytes, (int )(((((unsigned int )((u16 )*(lunaddrbytes + 7UL)) & 63U) + 65535U) << 8U) + (unsigned int )((u16 )*(lunaddrbytes + 6UL))), id_phys, 2048UL); if (rc == 0) { dev->queue_depth = (unsigned int )id_phys->current_queue_depth_limit + 65534U; } else { dev->queue_depth = 7U; } atomic_set(& dev->ioaccel_cmds_out, 0); atomic_set(& dev->reset_cmds_out, 0); return; } } static void hpsa_update_scsi_devices(struct ctlr_info *h , int hostno ) { struct ReportExtendedLUNdata *physdev_list ; struct ReportLUNdata *logdev_list ; struct bmic_identify_physical_device *id_phys ; u32 nphysicals ; u32 nlogicals ; u32 ndev_allocated ; struct hpsa_scsi_dev_t **currentsd ; struct hpsa_scsi_dev_t *this_device ; struct hpsa_scsi_dev_t *tmpdevice ; int ncurrent ; int i ; int n_ext_target_devs ; int ndevs_to_allocate ; int raid_ctlr_position ; int rescan_hba_mode ; unsigned long lunzerobits[1U] ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; void *tmp___5 ; int tmp___6 ; u8 *lunaddrbytes ; u8 is_OBDR ; int tmp___7 ; int tmp___8 ; int tmp___9 ; { physdev_list = (struct ReportExtendedLUNdata *)0; logdev_list = (struct ReportLUNdata *)0; id_phys = (struct bmic_identify_physical_device *)0; nphysicals = 0U; nlogicals = 0U; ndev_allocated = 0U; ncurrent = 0; tmp = kzalloc(16648UL, 208U); currentsd = (struct hpsa_scsi_dev_t **)tmp; tmp___0 = kzalloc(24584UL, 208U); physdev_list = (struct ReportExtendedLUNdata *)tmp___0; tmp___1 = kzalloc(8200UL, 208U); logdev_list = (struct ReportLUNdata *)tmp___1; tmp___2 = kzalloc(4280UL, 208U); tmpdevice = (struct hpsa_scsi_dev_t *)tmp___2; tmp___3 = kzalloc(2048UL, 208U); id_phys = (struct bmic_identify_physical_device *)tmp___3; if (((((unsigned long )currentsd == (unsigned long )((struct hpsa_scsi_dev_t **)0) || (unsigned long )physdev_list == (unsigned long )((struct ReportExtendedLUNdata *)0)) || (unsigned long )logdev_list == (unsigned long )((struct ReportLUNdata *)0)) || (unsigned long )tmpdevice == (unsigned long )((struct hpsa_scsi_dev_t *)0)) || (unsigned long )id_phys == (unsigned long )((struct bmic_identify_physical_device *)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "out of memory\n"); goto out; } else { } memset((void *)(& lunzerobits), 0, 8UL); rescan_hba_mode = hpsa_hba_mode_enabled(h); if (rescan_hba_mode < 0) { goto out; } else { } if ((int )((signed char )h->hba_mode_enabled) == 0 && rescan_hba_mode != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "HBA mode enabled\n"); } else if ((int )((signed char )h->hba_mode_enabled) != 0 && rescan_hba_mode == 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "HBA mode disabled\n"); } else { } h->hba_mode_enabled = (char )rescan_hba_mode; tmp___4 = hpsa_gather_lun_info(h, physdev_list, & nphysicals, logdev_list, & nlogicals); if (tmp___4 != 0) { goto out; } else { } ndevs_to_allocate = (int )((nphysicals + nlogicals) + 33U); i = 0; goto ldv_41477; ldv_41476: ; if (i > 2080) { dev_warn((struct device const *)(& (h->pdev)->dev), "maximum devices (%d) exceeded. %d devices ignored.\n", 2081, ndevs_to_allocate + -2081); goto ldv_41475; } else { } tmp___5 = kzalloc(4280UL, 208U); *(currentsd + (unsigned long )i) = (struct hpsa_scsi_dev_t *)tmp___5; if ((unsigned long )*(currentsd + (unsigned long )i) == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { dev_warn((struct device const *)(& (h->pdev)->dev), "out of memory at %s:%d\n", (char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c", 3689); goto out; } else { } ndev_allocated = ndev_allocated + 1U; i = i + 1; ldv_41477: ; if (i < ndevs_to_allocate) { goto ldv_41476; } else { } ldv_41475: tmp___6 = is_scsi_rev_5(h); if (tmp___6 != 0) { raid_ctlr_position = 0; } else { raid_ctlr_position = (int )(nphysicals + nlogicals); } n_ext_target_devs = 0; i = 0; goto ldv_41491; ldv_41490: is_OBDR = 0U; lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, i, (int )nphysicals, (int )nlogicals, physdev_list, logdev_list); if (((int )*(lunaddrbytes + 3UL) & 192) != 0) { if ((u32 )i < (u32 )(raid_ctlr_position == 0) + nphysicals && (int )*(lunaddrbytes + 17UL) & 1) { goto ldv_41480; } else { } } else { } tmp___7 = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, & is_OBDR); if (tmp___7 != 0) { goto ldv_41480; } else { } figure_bus_target_lun(h, lunaddrbytes, tmpdevice); hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes); this_device = *(currentsd + (unsigned long )ncurrent); tmp___8 = add_ext_target_dev(h, tmpdevice, this_device, lunaddrbytes, (unsigned long *)(& lunzerobits), & n_ext_target_devs); if (tmp___8 != 0) { ncurrent = ncurrent + 1; this_device = *(currentsd + (unsigned long )ncurrent); } else { } *this_device = *tmpdevice; if (((int )*(lunaddrbytes + 3UL) & 192) != 0 && (u32 )i < (u32 )(raid_ctlr_position == 0) + nphysicals) { if ((int )((signed char )h->hba_mode_enabled) != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "Masked physical device detected\n"); } else { } this_device->expose_state = 0U; } else { this_device->expose_state = 3U; } switch (this_device->devtype) { case 5: ; if ((unsigned int )is_OBDR != 0U) { ncurrent = ncurrent + 1; } else { } goto ldv_41482; case 0: ; if ((u32 )i >= nphysicals) { ncurrent = ncurrent + 1; goto ldv_41482; } else { } if ((int )((signed char )h->hba_mode_enabled) != 0) { this_device->offload_enabled = 0; } else if ((h->transMethod & 128UL) == 0UL && (h->transMethod & 256UL) == 0UL) { goto ldv_41482; } else { } hpsa_get_ioaccel_drive_info(h, this_device, lunaddrbytes, id_phys); atomic_set(& this_device->ioaccel_cmds_out, 0); ncurrent = ncurrent + 1; goto ldv_41482; case 1: ; case 8: ncurrent = ncurrent + 1; goto ldv_41482; case 13: ; if ((int )((signed char )h->hba_mode_enabled) != 0) { ncurrent = ncurrent + 1; } else { } goto ldv_41482; case 12: tmp___9 = is_hba_lunid(lunaddrbytes); if (tmp___9 == 0) { goto ldv_41482; } else { } ncurrent = ncurrent + 1; goto ldv_41482; default: ; goto ldv_41482; } ldv_41482: ; if (ncurrent > 2080) { goto ldv_41489; } else { } ldv_41480: i = i + 1; ldv_41491: ; if ((u32 )i < (nphysicals + nlogicals) + 1U) { goto ldv_41490; } else { } ldv_41489: adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); out: kfree((void const *)tmpdevice); i = 0; goto ldv_41493; ldv_41492: kfree((void const *)*(currentsd + (unsigned long )i)); i = i + 1; ldv_41493: ; if ((u32 )i < ndev_allocated) { goto ldv_41492; } else { } kfree((void const *)currentsd); kfree((void const *)physdev_list); kfree((void const *)logdev_list); kfree((void const *)id_phys); return; } } static void hpsa_set_sg_descriptor(struct SGDescriptor *desc , struct scatterlist *sg ) { u64 addr64 ; unsigned int len ; { addr64 = sg->dma_address; len = sg->dma_length; desc->Addr = addr64; desc->Len = len; desc->Ext = 0U; return; } } static int hpsa_scatter_gather(struct ctlr_info *h , struct CommandList *cp , struct scsi_cmnd *cmd ) { struct scatterlist *sg ; int use_sg ; int i ; int sg_limit ; int chained ; int last_sg ; struct SGDescriptor *curr_sg ; unsigned int tmp ; long tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; { tmp = scsi_sg_count(cmd); tmp___0 = ldv__builtin_expect(tmp > (unsigned int )h->maxsgentries, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (3840), "i" (12UL)); ldv_41513: ; goto ldv_41513; } else { } use_sg = scsi_dma_map(cmd); if (use_sg < 0) { return (use_sg); } else { } if (use_sg == 0) { goto sglist_finished; } else { } curr_sg = (struct SGDescriptor *)(& cp->SG); chained = (int )h->max_cmd_sg_entries < use_sg; sg_limit = chained != 0 ? (int )h->max_cmd_sg_entries + -1 : use_sg; tmp___1 = scsi_sg_count(cmd); last_sg = (int )(tmp___1 - 1U); i = 0; sg = scsi_sglist(cmd); goto ldv_41516; ldv_41515: hpsa_set_sg_descriptor(curr_sg, sg); curr_sg = curr_sg + 1; i = i + 1; sg = sg_next(sg); ldv_41516: ; if (i < sg_limit) { goto ldv_41515; } else { } if (chained != 0) { curr_sg = *(h->cmd_sg_list + (unsigned long )cp->cmdindex); sg_limit = use_sg - sg_limit; i = 0; sg = sg; goto ldv_41519; ldv_41518: hpsa_set_sg_descriptor(curr_sg, sg); curr_sg = curr_sg + 1; i = i + 1; sg = sg_next(sg); ldv_41519: ; if (i < sg_limit) { goto ldv_41518; } else { } } else { } (curr_sg + 0xffffffffffffffffUL)->Ext = 1073741824U; if ((unsigned int )(use_sg + chained) > h->maxSG) { h->maxSG = (unsigned int )(use_sg + chained); } else { } if (chained != 0) { cp->Header.SGList = h->max_cmd_sg_entries; cp->Header.SGTotal = (unsigned int )((unsigned short )use_sg) + 1U; tmp___2 = hpsa_map_sg_chain_block(h, cp); if (tmp___2 != 0) { scsi_dma_unmap(cmd); return (-1); } else { } return (0); } else { } sglist_finished: cp->Header.SGList = (unsigned char )use_sg; cp->Header.SGTotal = (unsigned short )use_sg; return (0); } } static int fixup_ioaccel_cdb(u8 *cdb , int *cdb_len ) { int is_write ; u32 block ; u32 block_cnt ; long tmp ; { is_write = 0; switch ((int )*cdb) { case 10: ; case 170: is_write = 1; case 8: ; case 168: ; if (*cdb_len == 6) { block = ((unsigned int )*(cdb + 2UL) << 8) | (unsigned int )*(cdb + 3UL); block_cnt = (u32 )*(cdb + 4UL); } else { tmp = ldv__builtin_expect(*cdb_len != 12, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (3921), "i" (12UL)); ldv_41532: ; goto ldv_41532; } else { } block = ((((unsigned int )*(cdb + 2UL) << 24) | ((unsigned int )*(cdb + 3UL) << 16)) | ((unsigned int )*(cdb + 4UL) << 8)) | (unsigned int )*(cdb + 5UL); block_cnt = ((((unsigned int )*(cdb + 6UL) << 24) | ((unsigned int )*(cdb + 7UL) << 16)) | ((unsigned int )*(cdb + 8UL) << 8)) | (unsigned int )*(cdb + 9UL); } if (block_cnt > 65535U) { return (1); } else { } *cdb = is_write != 0 ? 42U : 40U; *(cdb + 1UL) = 0U; *(cdb + 2UL) = (unsigned char )(block >> 24); *(cdb + 3UL) = (unsigned char )(block >> 16); *(cdb + 4UL) = (unsigned char )(block >> 8); *(cdb + 5UL) = (unsigned char )block; *(cdb + 6UL) = 0U; *(cdb + 7UL) = (unsigned char )(block_cnt >> 8); *(cdb + 8UL) = (unsigned char )block_cnt; *(cdb + 9UL) = 0U; *cdb_len = 10; goto ldv_41533; } ldv_41533: ; return (0); } } static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h , struct CommandList *c , u32 ioaccel_handle , u8 *cdb , int cdb_len , u8 *scsi3addr , struct hpsa_scsi_dev_t *phys_disk ) { struct scsi_cmnd *cmd ; struct io_accel1_cmd *cp ; unsigned int len ; unsigned int total_len ; struct scatterlist *sg ; u64 addr64 ; int use_sg ; int i ; struct SGDescriptor *curr_sg ; u32 control ; unsigned int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { cmd = c->scsi_cmd; cp = h->ioaccel_cmd_pool + (unsigned long )c->cmdindex; total_len = 0U; control = 0U; tmp = scsi_sg_count(cmd); if (tmp > (unsigned int )h->ioaccel_maxsg) { atomic_dec(& phys_disk->ioaccel_cmds_out); return (1); } else { } tmp___0 = ldv__builtin_expect((unsigned int )cmd->cmd_len > 16U, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (3971), "i" (12UL)); ldv_41553: ; goto ldv_41553; } else { } tmp___1 = fixup_ioaccel_cdb(cdb, & cdb_len); if (tmp___1 != 0) { atomic_dec(& phys_disk->ioaccel_cmds_out); return (1); } else { } c->cmd_type = 4; c->busaddr = (u32 )h->ioaccel_cmd_pool_dhandle + (u32 )c->cmdindex * 512U; tmp___2 = ldv__builtin_expect((c->busaddr & 127U) != 0U, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (3983), "i" (12UL)); ldv_41554: ; goto ldv_41554; } else { } use_sg = scsi_dma_map(cmd); if (use_sg < 0) { atomic_dec(& phys_disk->ioaccel_cmds_out); return (use_sg); } else { } if (use_sg != 0) { curr_sg = (struct SGDescriptor *)(& cp->SG); i = 0; sg = scsi_sglist(cmd); goto ldv_41556; ldv_41555: addr64 = sg->dma_address; len = sg->dma_length; total_len = total_len + len; curr_sg->Addr = addr64; curr_sg->Len = len; curr_sg->Ext = 0U; curr_sg = curr_sg + 1; i = i + 1; sg = sg_next(sg); ldv_41556: ; if (i < use_sg) { goto ldv_41555; } else { } curr_sg = curr_sg - 1; curr_sg->Ext = 1073741824U; switch ((unsigned int )cmd->sc_data_direction) { case 1U: control = control | 16777216U; goto ldv_41559; case 2U: control = control | 33554432U; goto ldv_41559; case 3U: control = control; goto ldv_41559; default: dev_err((struct device const *)(& (h->pdev)->dev), "unknown data direction: %d\n", (unsigned int )cmd->sc_data_direction); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4017), "i" (12UL)); ldv_41563: ; goto ldv_41563; } ldv_41559: ; } else { control = control; } c->Header.SGList = (u8 )use_sg; cp->dev_handle = (unsigned short )ioaccel_handle; cp->transfer_len = total_len; cp->io_flags = (unsigned short )(((int )((short )cdb_len) & 31) | 16384); cp->control = control; memcpy((void *)(& cp->CDB), (void const *)cdb, (size_t )cdb_len); memcpy((void *)(& cp->CISS_LUN), (void const *)scsi3addr, 8UL); enqueue_cmd_and_start_io(h, c); return (0); } } static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h , struct CommandList *c ) { struct scsi_cmnd *cmd ; struct hpsa_scsi_dev_t *dev ; int tmp ; { cmd = c->scsi_cmd; dev = (struct hpsa_scsi_dev_t *)(cmd->device)->hostdata; c->phys_disk = dev; tmp = hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, cmd->cmnd, (int )cmd->cmd_len, (u8 *)(& dev->scsi3addr), dev); return (tmp); } } static void set_encrypt_ioaccel2(struct ctlr_info *h , struct CommandList *c , struct io_accel2_cmd *cp ) { struct scsi_cmnd *cmd ; struct hpsa_scsi_dev_t *dev ; struct raid_map_data *map ; u64 first_block ; u16 tmp ; u32 tmp___0 ; { cmd = c->scsi_cmd; dev = (struct hpsa_scsi_dev_t *)(cmd->device)->hostdata; map = & dev->raid_map; if (((int )map->flags & 1) == 0) { return; } else { } cp->dekindex = map->dekindex; cp->direction = (u8 )((unsigned int )cp->direction | 8U); switch ((int )*(cmd->cmnd)) { case 10: ; case 8: tmp = get_unaligned_be16((void const *)cmd->cmnd + 2U); first_block = (u64 )tmp; goto ldv_41581; case 42: ; case 40: ; case 170: ; case 168: tmp___0 = get_unaligned_be32((void const *)cmd->cmnd + 2U); first_block = (u64 )tmp___0; goto ldv_41581; case 138: ; case 136: first_block = get_unaligned_be64((void const *)cmd->cmnd + 2U); goto ldv_41581; default: dev_err((struct device const *)(& (h->pdev)->dev), "OLD_ERROR: %s: size (0x%x) not supported for encryption\n", "set_encrypt_ioaccel2", (int )*(cmd->cmnd)); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4099), "i" (12UL)); ldv_41590: ; goto ldv_41590; } ldv_41581: ; if (map->volume_blk_size != 512U) { first_block = ((u64 )map->volume_blk_size * first_block) / 512ULL; } else { } cp->tweak_lower = (unsigned int )first_block; cp->tweak_upper = (unsigned int )(first_block >> 32); return; } } static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h , struct CommandList *c , u32 ioaccel_handle , u8 *cdb , int cdb_len , u8 *scsi3addr , struct hpsa_scsi_dev_t *phys_disk ) { struct scsi_cmnd *cmd ; struct io_accel2_cmd *cp ; struct ioaccel2_sg_element *curr_sg ; int use_sg ; int i ; struct scatterlist *sg ; u64 addr64 ; u32 len ; u32 total_len ; unsigned int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; { cmd = c->scsi_cmd; cp = h->ioaccel2_cmd_pool + (unsigned long )c->cmdindex; total_len = 0U; tmp = scsi_sg_count(cmd); tmp___0 = ldv__builtin_expect(tmp > (unsigned int )h->maxsgentries, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4124), "i" (12UL)); ldv_41609: ; goto ldv_41609; } else { } tmp___1 = fixup_ioaccel_cdb(cdb, & cdb_len); if (tmp___1 != 0) { atomic_dec(& phys_disk->ioaccel_cmds_out); return (1); } else { } c->cmd_type = 5; c->busaddr = (u32 )h->ioaccel2_cmd_pool_dhandle + (u32 )c->cmdindex * 640U; tmp___2 = ldv__builtin_expect((c->busaddr & 127U) != 0U, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4135), "i" (12UL)); ldv_41610: ; goto ldv_41610; } else { } memset((void *)cp, 0, 640UL); cp->IU_type = 64U; use_sg = scsi_dma_map(cmd); if (use_sg < 0) { atomic_dec(& phys_disk->ioaccel_cmds_out); return (use_sg); } else { } if (use_sg != 0) { curr_sg = (struct ioaccel2_sg_element *)(& cp->sg); if (h->ioaccel_maxsg < use_sg) { addr64 = (*(h->ioaccel2_cmd_sg_list + (unsigned long )c->cmdindex))->address; curr_sg->address = addr64; curr_sg->length = 0U; curr_sg->reserved[0] = 0U; curr_sg->reserved[1] = 0U; curr_sg->reserved[2] = 0U; curr_sg->chain_indicator = 128U; curr_sg = *(h->ioaccel2_cmd_sg_list + (unsigned long )c->cmdindex); } else { } i = 0; sg = scsi_sglist(cmd); goto ldv_41612; ldv_41611: addr64 = sg->dma_address; len = sg->dma_length; total_len = total_len + len; curr_sg->address = addr64; curr_sg->length = len; curr_sg->reserved[0] = 0U; curr_sg->reserved[1] = 0U; curr_sg->reserved[2] = 0U; curr_sg->chain_indicator = 0U; curr_sg = curr_sg + 1; i = i + 1; sg = sg_next(sg); ldv_41612: ; if (i < use_sg) { goto ldv_41611; } else { } switch ((unsigned int )cmd->sc_data_direction) { case 1U: cp->direction = (unsigned int )cp->direction & 252U; cp->direction = (u8 )((unsigned int )cp->direction | 2U); goto ldv_41615; case 2U: cp->direction = (unsigned int )cp->direction & 252U; cp->direction = (u8 )((unsigned int )cp->direction | 1U); goto ldv_41615; case 3U: cp->direction = (unsigned int )cp->direction & 252U; cp->direction = cp->direction; goto ldv_41615; default: dev_err((struct device const *)(& (h->pdev)->dev), "unknown data direction: %d\n", (unsigned int )cmd->sc_data_direction); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4189), "i" (12UL)); ldv_41619: ; goto ldv_41619; } ldv_41615: ; } else { cp->direction = (unsigned int )cp->direction & 252U; cp->direction = cp->direction; } set_encrypt_ioaccel2(h, c, cp); cp->scsi_nexus = ioaccel_handle; cp->Tag = (unsigned int )c->cmdindex << 4U; memcpy((void *)(& cp->cdb), (void const *)cdb, 16UL); cp->data_len = total_len; cp->err_ptr = (unsigned long long )((unsigned long )c->busaddr + 512UL); cp->err_len = 52U; if (h->ioaccel_maxsg < use_sg) { cp->sg_count = 1U; tmp___3 = hpsa_map_ioaccel2_sg_chain_block(h, cp, c); if (tmp___3 != 0) { atomic_dec(& phys_disk->ioaccel_cmds_out); scsi_dma_unmap(cmd); return (-1); } else { } } else { cp->sg_count = (unsigned char )use_sg; } enqueue_cmd_and_start_io(h, c); return (0); } } static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h , struct CommandList *c , u32 ioaccel_handle , u8 *cdb , int cdb_len , u8 *scsi3addr , struct hpsa_scsi_dev_t *phys_disk ) { int tmp ; int tmp___0 ; int tmp___1 ; { tmp = atomic_add_return(1, & phys_disk->ioaccel_cmds_out); if (tmp > (int )phys_disk->queue_depth) { atomic_dec(& phys_disk->ioaccel_cmds_out); return (1); } else { } if ((h->transMethod & 128UL) != 0UL) { tmp___0 = hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, cdb, cdb_len, scsi3addr, phys_disk); return (tmp___0); } else { tmp___1 = hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, cdb, cdb_len, scsi3addr, phys_disk); return (tmp___1); } } } static void raid_map_helper(struct raid_map_data *map , int offload_to_mirror , u32 *map_index , u32 *current_group ) { { if (offload_to_mirror == 0) { *map_index = *map_index % (u32 )map->data_disks_per_row; return; } else { } ldv_41636: *current_group = *map_index / (u32 )map->data_disks_per_row; if ((u32 )offload_to_mirror == *current_group) { goto ldv_41635; } else { } if (*current_group < (u32 )((int )map->layout_map_count + -1)) { *map_index = *map_index + (u32 )map->data_disks_per_row; *current_group = *current_group + 1U; } else { *map_index = *map_index % (u32 )map->data_disks_per_row; *current_group = 0U; } ldv_41635: ; if ((u32 )offload_to_mirror != *current_group) { goto ldv_41636; } else { } return; } } static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h , struct CommandList *c ) { struct scsi_cmnd *cmd ; struct hpsa_scsi_dev_t *dev ; struct raid_map_data *map ; struct raid_map_disk_data *dd ; int is_write ; u32 map_index ; u64 first_block ; u64 last_block ; u32 block_cnt ; u32 blocks_per_row ; u64 first_row ; u64 last_row ; u32 first_row_offset ; u32 last_row_offset ; u32 first_column ; u32 last_column ; u64 r0_first_row ; u64 r0_last_row ; u32 r5or6_blocks_per_row ; u64 r5or6_first_row ; u64 r5or6_last_row ; u32 r5or6_first_row_offset ; u32 r5or6_last_row_offset ; u32 r5or6_first_column ; u32 r5or6_last_column ; u32 total_disks_per_row ; u32 stripesize ; u32 first_group ; u32 last_group ; u32 current_group ; u32 map_row ; u32 disk_handle ; u64 disk_block ; u32 disk_block_cnt ; u8 cdb[16U] ; u8 cdb_len ; u16 strip_size ; int offload_to_mirror ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; { cmd = c->scsi_cmd; dev = (struct hpsa_scsi_dev_t *)(cmd->device)->hostdata; map = & dev->raid_map; dd = (struct raid_map_disk_data *)(& map->data); is_write = 0; switch ((int )*(cmd->cmnd)) { case 10: is_write = 1; case 8: first_block = ((unsigned long long )*(cmd->cmnd + 2UL) << 8) | (unsigned long long )*(cmd->cmnd + 3UL); block_cnt = (u32 )*(cmd->cmnd + 4UL); if (block_cnt == 0U) { block_cnt = 256U; } else { } goto ldv_41682; case 42: is_write = 1; case 40: first_block = ((((unsigned long long )*(cmd->cmnd + 2UL) << 24) | ((unsigned long long )*(cmd->cmnd + 3UL) << 16)) | ((unsigned long long )*(cmd->cmnd + 4UL) << 8)) | (unsigned long long )*(cmd->cmnd + 5UL); block_cnt = ((unsigned int )*(cmd->cmnd + 7UL) << 8) | (unsigned int )*(cmd->cmnd + 8UL); goto ldv_41682; case 170: is_write = 1; case 168: first_block = ((((unsigned long long )*(cmd->cmnd + 2UL) << 24) | ((unsigned long long )*(cmd->cmnd + 3UL) << 16)) | ((unsigned long long )*(cmd->cmnd + 4UL) << 8)) | (unsigned long long )*(cmd->cmnd + 5UL); block_cnt = ((((unsigned int )*(cmd->cmnd + 6UL) << 24) | ((unsigned int )*(cmd->cmnd + 7UL) << 16)) | ((unsigned int )*(cmd->cmnd + 8UL) << 8)) | (unsigned int )*(cmd->cmnd + 9UL); goto ldv_41682; case 138: is_write = 1; case 136: first_block = ((((((((unsigned long long )*(cmd->cmnd + 2UL) << 56) | ((unsigned long long )*(cmd->cmnd + 3UL) << 48)) | ((unsigned long long )*(cmd->cmnd + 4UL) << 40)) | ((unsigned long long )*(cmd->cmnd + 5UL) << 32)) | ((unsigned long long )*(cmd->cmnd + 6UL) << 24)) | ((unsigned long long )*(cmd->cmnd + 7UL) << 16)) | ((unsigned long long )*(cmd->cmnd + 8UL) << 8)) | (unsigned long long )*(cmd->cmnd + 9UL); block_cnt = ((((unsigned int )*(cmd->cmnd + 10UL) << 24) | ((unsigned int )*(cmd->cmnd + 11UL) << 16)) | ((unsigned int )*(cmd->cmnd + 12UL) << 8)) | (unsigned int )*(cmd->cmnd + 13UL); goto ldv_41682; default: ; return (1); } ldv_41682: last_block = ((u64 )block_cnt + first_block) - 1ULL; if (is_write != 0 && (unsigned int )dev->raid_level != 0U) { return (1); } else { } if (map->volume_blk_cnt <= last_block || last_block < first_block) { return (1); } else { } blocks_per_row = (u32 )((int )map->data_disks_per_row * (int )map->strip_size); strip_size = map->strip_size; first_row = first_block / (u64 )blocks_per_row; last_row = last_block / (u64 )blocks_per_row; first_row_offset = (unsigned int )first_block - (unsigned int )first_row * blocks_per_row; last_row_offset = (unsigned int )last_block - (unsigned int )last_row * blocks_per_row; first_column = first_row_offset / (u32 )strip_size; last_column = last_row_offset / (u32 )strip_size; if (first_row != last_row || first_column != last_column) { return (1); } else { } total_disks_per_row = (u32 )((int )map->data_disks_per_row + (int )map->metadata_disks_per_row); map_row = (unsigned int )(first_row >> (int )map->parity_rotation_shift) % (unsigned int )map->row_cnt; map_index = map_row * total_disks_per_row + first_column; switch ((int )dev->raid_level) { case 0: ; goto ldv_41691; case 2: tmp = ldv__builtin_expect((unsigned int )map->layout_map_count != 2U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4428), "i" (12UL)); ldv_41693: ; goto ldv_41693; } else { } if (dev->offload_to_mirror != 0) { map_index = (u32 )map->data_disks_per_row + map_index; } else { } dev->offload_to_mirror = dev->offload_to_mirror == 0; goto ldv_41691; case 6: tmp___0 = ldv__builtin_expect((unsigned int )map->layout_map_count != 3U, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4437), "i" (12UL)); ldv_41695: ; goto ldv_41695; } else { } offload_to_mirror = dev->offload_to_mirror; raid_map_helper(map, offload_to_mirror, & map_index, & current_group); offload_to_mirror = (int )map->layout_map_count + -1 > offload_to_mirror ? offload_to_mirror + 1 : 0; dev->offload_to_mirror = offload_to_mirror; goto ldv_41691; case 3: ; case 5: ; if ((unsigned int )map->layout_map_count <= 1U) { goto ldv_41691; } else { } r5or6_blocks_per_row = (u32 )((int )map->strip_size * (int )map->data_disks_per_row); tmp___1 = ldv__builtin_expect(r5or6_blocks_per_row == 0U, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4462), "i" (12UL)); ldv_41698: ; goto ldv_41698; } else { } stripesize = (u32 )map->layout_map_count * r5or6_blocks_per_row; first_group = (u32 )((first_block % (u64 )stripesize) / (u64 )r5or6_blocks_per_row); last_group = (u32 )((last_block % (u64 )stripesize) / (u64 )r5or6_blocks_per_row); if (first_group != last_group) { return (1); } else { } r0_first_row = first_block / (u64 )stripesize; r5or6_first_row = r0_first_row; first_row = r5or6_first_row; r0_last_row = last_block / (u64 )stripesize; r5or6_last_row = r0_last_row; if (r5or6_first_row != r5or6_last_row) { return (1); } else { } r5or6_first_row_offset = (unsigned int )((first_block % (u64 )stripesize) % (u64 )r5or6_blocks_per_row); first_row_offset = r5or6_first_row_offset; r5or6_last_row_offset = (unsigned int )((last_block % (u64 )stripesize) % (u64 )r5or6_blocks_per_row); r5or6_first_column = r5or6_first_row_offset / (u32 )map->strip_size; first_column = r5or6_first_column; r5or6_last_column = r5or6_last_row_offset / (u32 )map->strip_size; if (r5or6_first_column != r5or6_last_column) { return (1); } else { } map_row = (unsigned int )(first_row >> (int )map->parity_rotation_shift) % (unsigned int )map->row_cnt; map_index = (((u32 )map->row_cnt * total_disks_per_row) * first_group + map_row * total_disks_per_row) + first_column; goto ldv_41691; default: ; return (1); } ldv_41691: tmp___2 = ldv__builtin_expect(map_index > 255U, 0L); if (tmp___2 != 0L) { return (1); } else { } c->phys_disk = dev->phys_disk[map_index]; disk_handle = (dd + (unsigned long )map_index)->ioaccel_handle; disk_block = (map->disk_starting_blk + (u64 )map->strip_size * first_row) + (unsigned long long )(first_row_offset - (u32 )map->strip_size * first_column); disk_block_cnt = block_cnt; if ((unsigned int )map->phys_blk_shift != 0U) { disk_block = disk_block << (int )map->phys_blk_shift; disk_block_cnt = disk_block_cnt << (int )map->phys_blk_shift; } else { } tmp___3 = ldv__builtin_expect(disk_block_cnt > 65535U, 0L); if (tmp___3 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4563), "i" (12UL)); ldv_41700: ; goto ldv_41700; } else { } if (disk_block > 4294967295ULL) { cdb[0] = is_write != 0 ? 138U : 136U; cdb[1] = 0U; cdb[2] = (unsigned char )(disk_block >> 56); cdb[3] = (unsigned char )(disk_block >> 48); cdb[4] = (unsigned char )(disk_block >> 40); cdb[5] = (unsigned char )(disk_block >> 32); cdb[6] = (unsigned char )(disk_block >> 24); cdb[7] = (unsigned char )(disk_block >> 16); cdb[8] = (unsigned char )(disk_block >> 8); cdb[9] = (unsigned char )disk_block; cdb[10] = (unsigned char )(disk_block_cnt >> 24); cdb[11] = (unsigned char )(disk_block_cnt >> 16); cdb[12] = (unsigned char )(disk_block_cnt >> 8); cdb[13] = (unsigned char )disk_block_cnt; cdb[14] = 0U; cdb[15] = 0U; cdb_len = 16U; } else { cdb[0] = is_write != 0 ? 42U : 40U; cdb[1] = 0U; cdb[2] = (unsigned char )(disk_block >> 24); cdb[3] = (unsigned char )(disk_block >> 16); cdb[4] = (unsigned char )(disk_block >> 8); cdb[5] = (unsigned char )disk_block; cdb[6] = 0U; cdb[7] = (unsigned char )(disk_block_cnt >> 8); cdb[8] = (unsigned char )disk_block_cnt; cdb[9] = 0U; cdb_len = 10U; } tmp___4 = hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, (u8 *)(& cdb), (int )cdb_len, (u8 *)(& dev->scsi3addr), dev->phys_disk[map_index]); return (tmp___4); } } static int hpsa_ciss_submit(struct ctlr_info *h , struct CommandList *c , struct scsi_cmnd *cmd , unsigned char *scsi3addr ) { long tmp ; int tmp___0 ; { cmd->host_scribble = (unsigned char *)c; c->cmd_type = 3; c->scsi_cmd = cmd; c->Header.ReplyQueue = 0U; memcpy((void *)(& c->Header.LUN.LunAddrBytes), (void const *)scsi3addr, 8UL); c->Header.tag = (unsigned long long )(c->cmdindex << 4); c->Request.Timeout = 0U; tmp = ldv__builtin_expect((unsigned int )cmd->cmd_len > 16U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4621), "i" (12UL)); ldv_41707: ; goto ldv_41707; } else { } c->Request.CDBLen = (u8 )cmd->cmd_len; memcpy((void *)(& c->Request.CDB), (void const *)cmd->cmnd, (size_t )cmd->cmd_len); switch ((unsigned int )cmd->sc_data_direction) { case 1U: c->Request.type_attr_dir = 96U; goto ldv_41709; case 2U: c->Request.type_attr_dir = 160U; goto ldv_41709; case 3U: c->Request.type_attr_dir = 32U; goto ldv_41709; case 0U: c->Request.type_attr_dir = 224U; goto ldv_41709; default: dev_err((struct device const *)(& (h->pdev)->dev), "unknown data direction: %d\n", (unsigned int )cmd->sc_data_direction); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4658), "i" (12UL)); ldv_41714: ; goto ldv_41714; } ldv_41709: tmp___0 = hpsa_scatter_gather(h, c, cmd); if (tmp___0 < 0) { hpsa_cmd_resolve_and_free(h, c); return (4181); } else { } enqueue_cmd_and_start_io(h, c); return (0); } } static void hpsa_cmd_init(struct ctlr_info *h , int index , struct CommandList *c ) { dma_addr_t cmd_dma_handle ; dma_addr_t err_dma_handle ; { memset((void *)c, 0, 712UL); c->Header.tag = (unsigned long long )(index << 4); cmd_dma_handle = h->cmd_pool_dhandle + (unsigned long long )((unsigned long )index * 768UL); c->err_info = h->errinfo_pool + (unsigned long )index; memset((void *)c->err_info, 0, 48UL); err_dma_handle = h->errinfo_pool_dhandle + (unsigned long long )((unsigned long )index * 48UL); c->cmdindex = (long )index; c->busaddr = (unsigned int )cmd_dma_handle; c->ErrDesc.Addr = err_dma_handle; c->ErrDesc.Len = 48U; c->h = h; c->scsi_cmd = (struct scsi_cmnd *)(& hpsa_cmd_idle); return; } } static void hpsa_preinitialize_commands(struct ctlr_info *h ) { int i ; struct CommandList *c ; { i = 0; goto ldv_41728; ldv_41727: c = h->cmd_pool + (unsigned long )i; hpsa_cmd_init(h, i, c); atomic_set(& c->refcount, 0); i = i + 1; ldv_41728: ; if (h->nr_cmds > i) { goto ldv_41727; } else { } return; } } __inline static void hpsa_cmd_partial_init(struct ctlr_info *h , int index , struct CommandList *c ) { dma_addr_t cmd_dma_handle ; long tmp ; { cmd_dma_handle = h->cmd_pool_dhandle + (unsigned long long )((unsigned long )index * 768UL); tmp = ldv__builtin_expect(c->cmdindex != (long )index, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4709), "i" (12UL)); ldv_41736: ; goto ldv_41736; } else { } memset((void *)(& c->Request.CDB), 0, 16UL); memset((void *)c->err_info, 0, 48UL); c->busaddr = (unsigned int )cmd_dma_handle; return; } } static int hpsa_ioaccel_submit(struct ctlr_info *h , struct CommandList *c , struct scsi_cmnd *cmd , unsigned char *scsi3addr ) { struct hpsa_scsi_dev_t *dev ; int rc ; { dev = (struct hpsa_scsi_dev_t *)(cmd->device)->hostdata; rc = 1; cmd->host_scribble = (unsigned char *)c; if (dev->offload_enabled != 0) { hpsa_cmd_init(h, (int )c->cmdindex, c); c->cmd_type = 3; c->scsi_cmd = cmd; rc = hpsa_scsi_ioaccel_raid_map(h, c); if (rc < 0) { rc = 4181; } else { } } else if (dev->hba_ioaccel_enabled != 0) { hpsa_cmd_init(h, (int )c->cmdindex, c); c->cmd_type = 3; c->scsi_cmd = cmd; rc = hpsa_scsi_ioaccel_direct_map(h, c); if (rc < 0) { rc = 4181; } else { } } else { } return (rc); } } static void hpsa_command_resubmit_worker(struct work_struct *work ) { struct scsi_cmnd *cmd ; struct hpsa_scsi_dev_t *dev ; struct CommandList *c ; struct work_struct const *__mptr ; struct ctlr_info *h ; struct io_accel2_cmd *c2 ; int rc ; int tmp ; { __mptr = (struct work_struct const *)work; c = (struct CommandList *)__mptr + 0xfffffffffffffd9cUL; cmd = c->scsi_cmd; dev = (struct hpsa_scsi_dev_t *)(cmd->device)->hostdata; if ((unsigned long )dev == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { cmd->result = 65536; return; } else { } if ((unsigned long )c->reset_pending != (unsigned long )((struct hpsa_scsi_dev_t *)0)) { return; } else { } if (c->abort_pending != 0) { return; } else { } if (c->cmd_type == 5) { h = c->h; c2 = h->ioaccel2_cmd_pool + (unsigned long )c->cmdindex; if ((unsigned int )c2->error_data.serv_response == 40U) { rc = hpsa_ioaccel_submit(h, c, cmd, (unsigned char *)(& dev->scsi3addr)); if (rc == 0) { return; } else { } if (rc == 4181) { cmd->result = 786432; return; } else { } } else { } } else { } hpsa_cmd_partial_init(c->h, (int )c->cmdindex, c); tmp = hpsa_ciss_submit(c->h, c, cmd, (unsigned char *)(& dev->scsi3addr)); if (tmp != 0) { cmd->result = 786432; (*(cmd->scsi_done))(cmd); } else { } return; } } static int hpsa_scsi_queue_command(struct Scsi_Host *sh , struct scsi_cmnd *cmd ) { struct ctlr_info *h ; struct hpsa_scsi_dev_t *dev ; unsigned char scsi3addr[8U] ; struct CommandList *c ; int rc ; long tmp ; u32 tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; { rc = 0; h = sdev_to_hba(cmd->device); tmp = ldv__builtin_expect((cmd->request)->tag < 0, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (4808), "i" (12UL)); ldv_41765: ; goto ldv_41765; } else { } dev = (struct hpsa_scsi_dev_t *)(cmd->device)->hostdata; if ((unsigned long )dev == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { cmd->result = 65536; (*(cmd->scsi_done))(cmd); return (0); } else { } memcpy((void *)(& scsi3addr), (void const *)(& dev->scsi3addr), 8UL); tmp___0 = lockup_detected(h); tmp___1 = ldv__builtin_expect(tmp___0 != 0U, 0L); if (tmp___1 != 0L) { cmd->result = 65536; (*(cmd->scsi_done))(cmd); return (0); } else { } c = cmd_tagged_alloc(h, cmd); tmp___2 = ldv__builtin_expect((long )((cmd->retries == 0 && (cmd->request)->cmd_type == 1U) && h->acciopath_status != 0), 1L); if (tmp___2 != 0L) { rc = hpsa_ioaccel_submit(h, c, cmd, (unsigned char *)(& scsi3addr)); if (rc == 0) { return (0); } else { } if (rc == 4181) { hpsa_cmd_resolve_and_free(h, c); return (4181); } else { } } else { } tmp___3 = hpsa_ciss_submit(h, c, cmd, (unsigned char *)(& scsi3addr)); return (tmp___3); } } static void hpsa_scan_complete(struct ctlr_info *h ) { unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& h->scan_lock); flags = _raw_spin_lock_irqsave(tmp); h->scan_finished = 1; __wake_up(& h->scan_wait_queue, 3U, 0, (void *)0); spin_unlock_irqrestore(& h->scan_lock, flags); return; } } static void hpsa_scan_start(struct Scsi_Host *sh ) { struct ctlr_info *h ; struct ctlr_info *tmp ; unsigned long flags ; u32 tmp___0 ; long tmp___1 ; raw_spinlock_t *tmp___2 ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___3 ; u32 tmp___4 ; long tmp___5 ; { tmp = shost_to_hba(sh); h = tmp; tmp___0 = lockup_detected(h); tmp___1 = ldv__builtin_expect(tmp___0 != 0U, 0L); if (tmp___1 != 0L) { return; } else { } ldv_41790: tmp___2 = spinlock_check(& h->scan_lock); flags = _raw_spin_lock_irqsave(tmp___2); if (h->scan_finished != 0) { goto ldv_41781; } else { } spin_unlock_irqrestore(& h->scan_lock, flags); __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c", 4874, 0); if (h->scan_finished != 0) { goto ldv_41782; } else { } __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_41788: tmp___3 = prepare_to_wait_event(& h->scan_wait_queue, & __wait, 2); __int = tmp___3; if (h->scan_finished != 0) { goto ldv_41787; } else { } schedule(); goto ldv_41788; ldv_41787: finish_wait(& h->scan_wait_queue, & __wait); ldv_41782: ; goto ldv_41790; ldv_41781: h->scan_finished = 0; spin_unlock_irqrestore(& h->scan_lock, flags); tmp___4 = lockup_detected(h); tmp___5 = ldv__builtin_expect(tmp___4 != 0U, 0L); if (tmp___5 != 0L) { return; } else { } hpsa_update_scsi_devices(h, (int )(h->scsi_host)->host_no); hpsa_scan_complete(h); return; } } static int hpsa_change_queue_depth(struct scsi_device *sdev , int qdepth ) { struct hpsa_scsi_dev_t *logical_drive ; int tmp ; { logical_drive = (struct hpsa_scsi_dev_t *)sdev->hostdata; if ((unsigned long )logical_drive == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { return (-19); } else { } if (qdepth <= 0) { qdepth = 1; } else if ((int )logical_drive->queue_depth < qdepth) { qdepth = (int )logical_drive->queue_depth; } else { } tmp = scsi_change_queue_depth(sdev, qdepth); return (tmp); } } static int hpsa_scan_finished(struct Scsi_Host *sh , unsigned long elapsed_time ) { struct ctlr_info *h ; struct ctlr_info *tmp ; unsigned long flags ; int finished ; raw_spinlock_t *tmp___0 ; { tmp = shost_to_hba(sh); h = tmp; tmp___0 = spinlock_check(& h->scan_lock); flags = _raw_spin_lock_irqsave(tmp___0); finished = h->scan_finished; spin_unlock_irqrestore(& h->scan_lock, flags); return (finished); } } static int hpsa_scsi_host_alloc(struct ctlr_info *h ) { struct Scsi_Host *sh ; int error ; { sh = ldv_scsi_host_alloc_22(& hpsa_driver_template, 8); if ((unsigned long )sh == (unsigned long )((struct Scsi_Host *)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "scsi_host_alloc failed\n"); return (-12); } else { } sh->io_port = 0UL; sh->n_io_port = 0U; sh->this_id = -1; sh->max_channel = 3U; sh->max_cmd_len = 16U; sh->max_lun = 1024ULL; sh->max_id = 1024U; sh->can_queue = h->nr_cmds + -13; sh->cmd_per_lun = (short )sh->can_queue; sh->sg_tablesize = (unsigned short )h->maxsgentries; sh->hostdata[0] = (unsigned long )h; sh->irq = h->intr[h->intr_mode]; sh->unique_id = sh->irq; error = scsi_init_shared_tag_map(sh, sh->can_queue); if (error != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "%s: scsi_init_shared_tag_map failed for controller %d\n", "hpsa_scsi_host_alloc", h->ctlr); scsi_host_put(sh); return (error); } else { } h->scsi_host = sh; return (0); } } static int hpsa_scsi_add_host(struct ctlr_info *h ) { int rv ; { rv = scsi_add_host(h->scsi_host, & (h->pdev)->dev); if (rv != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "scsi_add_host failed\n"); return (rv); } else { } scsi_scan_host(h->scsi_host); return (0); } } static int hpsa_get_cmd_index(struct scsi_cmnd *scmd ) { int idx ; { idx = (scmd->request)->tag; if (idx < 0) { return (idx); } else { } idx = idx + 13; return (idx); } } static int hpsa_send_test_unit_ready(struct ctlr_info *h , struct CommandList *c , unsigned char *lunaddr , int reply_queue ) { int rc ; { fill_cmd(c, 0, h, (void *)0, 0UL, 0, lunaddr, 0); rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, 0xffffffffffffffffUL); if (rc != 0) { return (rc); } else { } if ((unsigned int )(c->err_info)->CommandStatus == 0U) { return (0); } else { } if (((unsigned int )(c->err_info)->CommandStatus == 1U && (unsigned int )(c->err_info)->ScsiStatus == 2U) && ((unsigned int )(c->err_info)->SenseInfo[2] == 0U || (unsigned int )(c->err_info)->SenseInfo[2] == 6U)) { return (0); } else { } return (1); } } static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h , struct CommandList *c , unsigned char *lunaddr , int reply_queue ) { int rc ; int count ; int waittime ; { count = 0; waittime = 1; count = 0; goto ldv_41838; ldv_41837: msleep((unsigned int )(waittime * 1000)); rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); if (rc == 0) { goto ldv_41836; } else { } if (waittime <= 29) { waittime = waittime * 2; } else { } dev_warn((struct device const *)(& (h->pdev)->dev), "waiting %d secs for device to become ready.\n", waittime); count = count + 1; ldv_41838: ; if (count <= 19) { goto ldv_41837; } else { } ldv_41836: ; return (rc); } } static int wait_for_device_to_become_ready(struct ctlr_info *h , unsigned char *lunaddr , int reply_queue ) { int first_queue ; int last_queue ; int rq ; int rc ; struct CommandList *c ; { rc = 0; c = cmd_alloc(h); if (reply_queue == -1) { first_queue = 0; last_queue = (int )h->nreply_queues + -1; } else { first_queue = reply_queue; last_queue = reply_queue; } rq = first_queue; goto ldv_41851; ldv_41850: rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); if (rc != 0) { goto ldv_41849; } else { } rq = rq + 1; ldv_41851: ; if (rq <= last_queue) { goto ldv_41850; } else { } ldv_41849: ; if (rc != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "giving up on device.\n"); } else { dev_warn((struct device const *)(& (h->pdev)->dev), "device is ready.\n"); } cmd_free(h, c); return (rc); } } static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd ) { int rc ; struct ctlr_info *h ; struct hpsa_scsi_dev_t *dev ; char msg[40U] ; u32 tmp ; int tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { h = sdev_to_hba(scsicmd->device); if ((unsigned long )h == (unsigned long )((struct ctlr_info *)0)) { return (8195); } else { } tmp = lockup_detected(h); if (tmp != 0U) { return (8195); } else { } dev = (struct hpsa_scsi_dev_t *)(scsicmd->device)->hostdata; if ((unsigned long )dev == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "%s: device lookup failed\n", "hpsa_eh_device_reset_handler"); return (8195); } else { } tmp___1 = lockup_detected(h); if (tmp___1 != 0U) { tmp___0 = hpsa_get_cmd_index(scsicmd); sprintf((char *)(& msg), "cmd %d RESET FAILED, lockup detected", tmp___0); hpsa_show_dev_msg("\f", h, dev, (char *)(& msg)); return (8195); } else { } tmp___3 = detect_controller_lockup(h); if (tmp___3 != 0) { tmp___2 = hpsa_get_cmd_index(scsicmd); sprintf((char *)(& msg), "cmd %d RESET FAILED, new lockup detected", tmp___2); hpsa_show_dev_msg("\f", h, dev, (char *)(& msg)); return (8195); } else { } tmp___4 = is_hba_lunid((unsigned char *)(& dev->scsi3addr)); if (tmp___4 != 0) { return (8194); } else { } hpsa_show_dev_msg("\f", h, dev, (char *)"resetting"); rc = hpsa_do_reset(h, dev, (unsigned char *)(& dev->scsi3addr), 4, -1); sprintf((char *)(& msg), "reset %s", rc == 0 ? (char *)"completed successfully" : (char *)"failed"); hpsa_show_dev_msg("\f", h, dev, (char *)(& msg)); return (rc == 0 ? 8194 : 8195); } } static void swizzle_abort_tag(u8 *tag ) { u8 original_tag[8U] ; { memcpy((void *)(& original_tag), (void const *)tag, 8UL); *tag = original_tag[3]; *(tag + 1UL) = original_tag[2]; *(tag + 2UL) = original_tag[1]; *(tag + 3UL) = original_tag[0]; *(tag + 4UL) = original_tag[7]; *(tag + 5UL) = original_tag[6]; *(tag + 6UL) = original_tag[5]; *(tag + 7UL) = original_tag[4]; return; } } static void hpsa_get_tag(struct ctlr_info *h , struct CommandList *c , __le32 *taglower , __le32 *tagupper ) { u64 tag ; struct io_accel1_cmd *cm1 ; struct io_accel2_cmd *cm2 ; { if (c->cmd_type == 4) { cm1 = h->ioaccel_cmd_pool + (unsigned long )c->cmdindex; tag = cm1->tag; *tagupper = (unsigned int )(tag >> 32); *taglower = (unsigned int )tag; return; } else { } if (c->cmd_type == 5) { cm2 = h->ioaccel2_cmd_pool + (unsigned long )c->cmdindex; memset((void *)tagupper, 0, 4UL); *taglower = cm2->Tag; return; } else { } tag = c->Header.tag; *tagupper = (unsigned int )(tag >> 32); *taglower = (unsigned int )tag; return; } } static int hpsa_send_abort(struct ctlr_info *h , unsigned char *scsi3addr , struct CommandList *abort , int reply_queue ) { int rc ; struct CommandList *c ; struct ErrorInfo *ei ; __le32 tagupper ; __le32 taglower ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { rc = 0; c = cmd_alloc(h); fill_cmd(c, 0, h, (void *)(& abort->Header.tag), 0UL, 0, scsi3addr, 1); if (h->needs_abort_tags_swizzled != 0) { swizzle_abort_tag((u8 *)(& c->Request.CDB) + 4UL); } else { } hpsa_scsi_do_simple_cmd(h, c, reply_queue, 0xffffffffffffffffUL); hpsa_get_tag(h, abort, & taglower, & tagupper); descriptor.modname = "hpsa"; descriptor.function = "hpsa_send_abort"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"; descriptor.format = "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n"; descriptor.lineno = 5211U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (h->pdev)->dev), "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n", "hpsa_send_abort", tagupper, taglower); } else { } ei = c->err_info; switch ((int )ei->CommandStatus) { case 0: ; goto ldv_41887; case 13: rc = hpsa_evaluate_tmf_status(h, c); goto ldv_41887; case 12: rc = -1; goto ldv_41887; default: descriptor___0.modname = "hpsa"; descriptor___0.function = "hpsa_send_abort"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"; descriptor___0.format = "%s: Tag:0x%08x:%08x: interpreting error.\n"; descriptor___0.lineno = 5226U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (h->pdev)->dev), "%s: Tag:0x%08x:%08x: interpreting error.\n", "hpsa_send_abort", tagupper, taglower); } else { } hpsa_scsi_interpret_error(h, c); rc = -1; goto ldv_41887; } ldv_41887: cmd_free(h, c); descriptor___1.modname = "hpsa"; descriptor___1.function = "hpsa_send_abort"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"; descriptor___1.format = "%s: Tag:0x%08x:%08x: Finished.\n"; descriptor___1.lineno = 5233U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (h->pdev)->dev), "%s: Tag:0x%08x:%08x: Finished.\n", "hpsa_send_abort", tagupper, taglower); } else { } return (rc); } } static void setup_ioaccel2_abort_cmd(struct CommandList *c , struct ctlr_info *h , struct CommandList *command_to_abort , int reply_queue ) { struct io_accel2_cmd *c2 ; struct hpsa_tmf_struct *ac ; struct io_accel2_cmd *c2a ; struct scsi_cmnd *scmd ; struct hpsa_scsi_dev_t *dev ; long tmp ; long tmp___0 ; { c2 = h->ioaccel2_cmd_pool + (unsigned long )c->cmdindex; ac = (struct hpsa_tmf_struct *)c2; c2a = h->ioaccel2_cmd_pool + (unsigned long )command_to_abort->cmdindex; scmd = command_to_abort->scsi_cmd; dev = (struct hpsa_scsi_dev_t *)(scmd->device)->hostdata; tmp = ldv__builtin_expect(0L, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (5256), "i" (12UL)); ldv_41904: ; goto ldv_41904; } else { } c->cmd_type = 6; c->scsi_cmd = (struct scsi_cmnd *)(& hpsa_cmd_busy); c->busaddr = (u32 )h->ioaccel2_cmd_pool_dhandle + (u32 )c->cmdindex * 640U; tmp___0 = ldv__builtin_expect((c->busaddr & 127U) != 0U, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (5264), "i" (12UL)); ldv_41905: ; goto ldv_41905; } else { } memset((void *)ac, 0, 640UL); ac->iu_type = 65U; ac->reply_queue = (u8 )reply_queue; ac->tmf = 1U; ac->it_nexus = dev->ioaccel_handle; memset((void *)(& ac->lun_id), 0, 8UL); ac->tag = (unsigned long long )(c->cmdindex << 4); ac->abort_tag = (unsigned long long )c2a->Tag; ac->error_ptr = (unsigned long long )((unsigned long )c->busaddr + 512UL); ac->error_len = 52U; return; } } static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h , unsigned char *scsi3addr , struct CommandList *abort , int reply_queue ) { int rc ; struct scsi_cmnd *scmd ; struct hpsa_scsi_dev_t *dev ; unsigned char phys_scsi3addr[8U] ; unsigned char *psa ; int tmp ; int tmp___0 ; { rc = 0; psa = (unsigned char *)(& phys_scsi3addr); scmd = abort->scsi_cmd; dev = (struct hpsa_scsi_dev_t *)(scmd->device)->hostdata; if ((unsigned long )dev == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { dev_warn((struct device const *)(& (h->pdev)->dev), "Cannot abort: no device pointer for command.\n"); return (-1); } else { } if (h->raid_offload_debug > 0) { _dev_info((struct device const *)(& (h->pdev)->dev), "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", (h->scsi_host)->host_no, dev->bus, dev->target, dev->lun, (char *)"Reset as abort", (int )*scsi3addr, (int )*(scsi3addr + 1UL), (int )*(scsi3addr + 2UL), (int )*(scsi3addr + 3UL), (int )*(scsi3addr + 4UL), (int )*(scsi3addr + 5UL), (int )*(scsi3addr + 6UL), (int )*(scsi3addr + 7UL)); } else { } if (dev->offload_enabled == 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "Can\'t abort: device is not operating in HP SSD Smart Path mode.\n"); return (-1); } else { } tmp = hpsa_get_pdisk_of_ioaccel2(h, abort, psa); if (tmp == 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "Can\'t abort: Failed lookup of physical address.\n"); return (-1); } else { } if (h->raid_offload_debug > 0) { _dev_info((struct device const *)(& (h->pdev)->dev), "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", (int )*psa, (int )*(psa + 1UL), (int )*(psa + 2UL), (int )*(psa + 3UL), (int )*(psa + 4UL), (int )*(psa + 5UL), (int )*(psa + 6UL), (int )*(psa + 7UL)); } else { } rc = hpsa_do_reset(h, dev, psa, 3, reply_queue); if (rc != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", (int )*psa, (int )*(psa + 1UL), (int )*(psa + 2UL), (int )*(psa + 3UL), (int )*(psa + 4UL), (int )*(psa + 5UL), (int )*(psa + 6UL), (int )*(psa + 7UL)); return (rc); } else { } tmp___0 = wait_for_device_to_become_ready(h, psa, reply_queue); if (tmp___0 != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", (int )*psa, (int )*(psa + 1UL), (int )*(psa + 2UL), (int )*(psa + 3UL), (int )*(psa + 4UL), (int )*(psa + 5UL), (int )*(psa + 6UL), (int )*(psa + 7UL)); return (-1); } else { } _dev_info((struct device const *)(& (h->pdev)->dev), "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", (int )*psa, (int )*(psa + 1UL), (int )*(psa + 2UL), (int )*(psa + 3UL), (int )*(psa + 4UL), (int )*(psa + 5UL), (int )*(psa + 6UL), (int )*(psa + 7UL)); return (rc); } } static int hpsa_send_abort_ioaccel2(struct ctlr_info *h , struct CommandList *abort , int reply_queue ) { int rc ; struct CommandList *c ; __le32 taglower ; __le32 tagupper ; struct hpsa_scsi_dev_t *dev ; struct io_accel2_cmd *c2 ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { rc = 0; dev = (struct hpsa_scsi_dev_t *)((abort->scsi_cmd)->device)->hostdata; if (dev->offload_enabled == 0 && dev->hba_ioaccel_enabled == 0) { return (-1); } else { } c = cmd_alloc(h); setup_ioaccel2_abort_cmd(c, h, abort, reply_queue); c2 = h->ioaccel2_cmd_pool + (unsigned long )c->cmdindex; hpsa_scsi_do_simple_cmd(h, c, reply_queue, 0xffffffffffffffffUL); hpsa_get_tag(h, abort, & taglower, & tagupper); descriptor.modname = "hpsa"; descriptor.function = "hpsa_send_abort_ioaccel2"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"; descriptor.format = "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n"; descriptor.lineno = 5377U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (h->pdev)->dev), "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n", "hpsa_send_abort_ioaccel2", tagupper, taglower); } else { } descriptor___0.modname = "hpsa"; descriptor___0.function = "hpsa_send_abort_ioaccel2"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"; descriptor___0.format = "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n"; descriptor___0.lineno = 5382U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (h->pdev)->dev), "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n", "hpsa_send_abort_ioaccel2", tagupper, taglower, (int )c2->error_data.serv_response); } else { } switch ((int )c2->error_data.serv_response) { case 2: ; case 3: rc = 0; goto ldv_41933; case 4: ; case 1: ; case 5: rc = -1; goto ldv_41933; default: dev_warn((struct device const *)(& (h->pdev)->dev), "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n", "hpsa_send_abort_ioaccel2", tagupper, taglower, (int )c2->error_data.serv_response); rc = -1; } ldv_41933: cmd_free(h, c); descriptor___1.modname = "hpsa"; descriptor___1.function = "hpsa_send_abort_ioaccel2"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"; descriptor___1.format = "%s: Tag:0x%08x:%08x: Finished.\n"; descriptor___1.lineno = 5402U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (h->pdev)->dev), "%s: Tag:0x%08x:%08x: Finished.\n", "hpsa_send_abort_ioaccel2", tagupper, taglower); } else { } return (rc); } } static int hpsa_send_abort_both_ways(struct ctlr_info *h , unsigned char *scsi3addr , struct CommandList *abort , int reply_queue ) { int tmp ; int tmp___0 ; int tmp___1 ; { if (abort->cmd_type == 5) { if ((h->TMFSupportFlags & 32768U) != 0U) { tmp = hpsa_send_abort_ioaccel2(h, abort, reply_queue); return (tmp); } else { tmp___0 = hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort, reply_queue); return (tmp___0); } } else { } tmp___1 = hpsa_send_abort(h, scsi3addr, abort, reply_queue); return (tmp___1); } } static int hpsa_extract_reply_queue(struct ctlr_info *h , struct CommandList *c ) { { if (c->cmd_type == 5) { return ((int )(h->ioaccel2_cmd_pool + (unsigned long )c->cmdindex)->reply_queue); } else { } return ((int )c->Header.ReplyQueue); } } __inline static int wait_for_available_abort_cmd(struct ctlr_info *h ) { long __ret ; unsigned long tmp ; wait_queue_t __wait ; long __ret___0 ; unsigned long tmp___0 ; long __int ; long tmp___1 ; bool __cond ; int tmp___2 ; bool __cond___0 ; int tmp___3 ; { tmp = msecs_to_jiffies(5000U); __ret = (long )tmp; __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c", 5444, 0); tmp___3 = atomic_dec_if_positive(& h->abort_cmds_available); __cond___0 = tmp___3 >= 0; if ((int )__cond___0 && __ret == 0L) { __ret = 1L; } else { } if (((int )__cond___0 || __ret == 0L) == 0) { tmp___0 = msecs_to_jiffies(5000U); __ret___0 = (long )tmp___0; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_41962: tmp___1 = prepare_to_wait_event(& h->abort_cmd_wait_queue, & __wait, 2); __int = tmp___1; tmp___2 = atomic_dec_if_positive(& h->abort_cmds_available); __cond = tmp___2 >= 0; if ((int )__cond && __ret___0 == 0L) { __ret___0 = 1L; } else { } if (((int )__cond || __ret___0 == 0L) != 0) { goto ldv_41961; } else { } __ret___0 = schedule_timeout(__ret___0); goto ldv_41962; ldv_41961: finish_wait(& h->abort_cmd_wait_queue, & __wait); __ret = __ret___0; } else { } return (__ret == 0L); } } static int hpsa_eh_abort_handler(struct scsi_cmnd *sc ) { int rc ; struct ctlr_info *h ; struct hpsa_scsi_dev_t *dev ; struct CommandList *abort ; struct scsi_cmnd *as ; char msg[256U] ; int ml ; __le32 tagupper ; __le32 taglower ; int refcount ; int reply_queue ; u32 tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; u32 tmp___5 ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; { ml = 0; if ((unsigned long )sc == (unsigned long )((struct scsi_cmnd *)0)) { return (8195); } else { } if ((unsigned long )sc->device == (unsigned long )((struct scsi_device *)0)) { return (8195); } else { } h = sdev_to_hba(sc->device); if ((unsigned long )h == (unsigned long )((struct ctlr_info *)0)) { return (8195); } else { } dev = (struct hpsa_scsi_dev_t *)(sc->device)->hostdata; if ((unsigned long )dev == (unsigned long )((struct hpsa_scsi_dev_t *)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "%s FAILED, Device lookup failed.\n", (char *)(& msg)); return (8195); } else { } tmp = lockup_detected(h); if (tmp != 0U) { hpsa_show_dev_msg("\f", h, dev, (char *)"ABORT FAILED, lockup detected"); return (8195); } else { } tmp___0 = detect_controller_lockup(h); if (tmp___0 != 0) { hpsa_show_dev_msg("\f", h, dev, (char *)"ABORT FAILED, new lockup detected"); return (8195); } else { } if ((h->TMFSupportFlags & 8U) == 0U && (h->TMFSupportFlags & 524288U) == 0U) { return (8195); } else { } memset((void *)(& msg), 0, 256UL); tmp___1 = sprintf((char *)(& msg) + (unsigned long )ml, "scsi %d:%d:%d:%llu %s %p", (h->scsi_host)->host_no, (sc->device)->channel, (sc->device)->id, (sc->device)->lun, (char *)"Aborting command", sc); ml = tmp___1 + ml; abort = (struct CommandList *)sc->host_scribble; if ((unsigned long )abort == (unsigned long )((struct CommandList *)0)) { return (8194); } else { } refcount = atomic_add_return(1, & abort->refcount); if (refcount == 1) { cmd_free(h, abort); return (8194); } else { } if ((abort->cmd_type != 5 && abort->cmd_type != 4) && dev->supports_aborts == 0) { cmd_free(h, abort); return (8195); } else { } if ((unsigned long )abort->scsi_cmd != (unsigned long )sc) { cmd_free(h, abort); return (8194); } else { } abort->abort_pending = 1; hpsa_get_tag(h, abort, & taglower, & tagupper); reply_queue = hpsa_extract_reply_queue(h, abort); tmp___2 = sprintf((char *)(& msg) + (unsigned long )ml, "Tag:0x%08x:%08x ", tagupper, taglower); ml = tmp___2 + ml; as = abort->scsi_cmd; if ((unsigned long )as != (unsigned long )((struct scsi_cmnd *)0)) { tmp___3 = sprintf((char *)(& msg) + (unsigned long )ml, "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ", (int )as->cmd_len, (int )*(as->cmnd), (int )*(as->cmnd + 1UL), as->serial_number); ml = tmp___3 + ml; } else { } dev_warn((struct device const *)(& (h->pdev)->dev), "%s BEING SENT\n", (char *)(& msg)); hpsa_show_dev_msg("\f", h, dev, (char *)"Aborting command"); tmp___4 = wait_for_available_abort_cmd(h); if (tmp___4 != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "%s FAILED, timeout waiting for an abort command to become available.\n", (char *)(& msg)); cmd_free(h, abort); return (8195); } else { } rc = hpsa_send_abort_both_ways(h, (unsigned char *)(& dev->scsi3addr), abort, reply_queue); atomic_inc(& h->abort_cmds_available); __wake_up(& h->abort_cmd_wait_queue, 3U, 0, (void *)0); if (rc != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "%s SENT, FAILED\n", (char *)(& msg)); hpsa_show_dev_msg("\f", h, dev, (char *)"FAILED to abort command"); cmd_free(h, abort); return (8195); } else { } _dev_info((struct device const *)(& (h->pdev)->dev), "%s SENT, SUCCESS\n", (char *)(& msg)); __might_sleep("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c", 5573, 0); if ((unsigned long )abort->scsi_cmd != (unsigned long )sc) { goto ldv_41979; } else { tmp___5 = lockup_detected(h); if (tmp___5 != 0U) { goto ldv_41979; } else { } } __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; ldv_41985: tmp___6 = prepare_to_wait_event(& h->event_sync_wait_queue, & __wait, 2); __int = tmp___6; if ((unsigned long )abort->scsi_cmd != (unsigned long )sc) { goto ldv_41984; } else { tmp___7 = lockup_detected(h); if (tmp___7 != 0U) { goto ldv_41984; } else { } } schedule(); goto ldv_41985; ldv_41984: finish_wait(& h->event_sync_wait_queue, & __wait); ldv_41979: cmd_free(h, abort); tmp___8 = lockup_detected(h); return (tmp___8 == 0U ? 8194 : 8195); } } static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h , struct scsi_cmnd *scmd ) { int idx ; int tmp ; struct CommandList *c ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; { tmp = hpsa_get_cmd_index(scmd); idx = tmp; c = h->cmd_pool + (unsigned long )idx; if (idx <= 12 || h->nr_cmds <= idx) { dev_err((struct device const *)(& (h->pdev)->dev), "Bad block tag: %d not in [%d..%d]\n", idx, 13, h->nr_cmds + -1); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (5596), "i" (12UL)); ldv_41993: ; goto ldv_41993; } else { } atomic_inc(& c->refcount); tmp___0 = hpsa_is_cmd_idle(c); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } tmp___2 = ldv__builtin_expect((long )tmp___1, 0L); if (tmp___2 != 0L) { dev_err((struct device const *)(& (h->pdev)->dev), "tag collision (tag=%d) in cmd_tagged_alloc().\n", idx); if ((unsigned long )c->scsi_cmd != (unsigned long )((struct scsi_cmnd *)0)) { scsi_print_command(c->scsi_cmd); } else { } scsi_print_command(scmd); } else { } hpsa_cmd_partial_init(h, idx, c); return (c); } } static void cmd_tagged_free(struct ctlr_info *h , struct CommandList *c ) { { atomic_dec(& c->refcount); return; } } static struct CommandList *cmd_alloc(struct ctlr_info *h ) { struct CommandList *c ; int refcount ; int i ; int offset ; unsigned long tmp ; long tmp___0 ; long tmp___1 ; { offset = 0; ldv_42007: tmp = find_next_zero_bit((unsigned long const *)h->cmd_pool_bits, 13UL, (unsigned long )offset); i = (int )tmp; tmp___0 = ldv__builtin_expect(i > 12, 0L); if (tmp___0 != 0L) { offset = 0; goto ldv_42005; } else { } c = h->cmd_pool + (unsigned long )i; refcount = atomic_add_return(1, & c->refcount); tmp___1 = ldv__builtin_expect(refcount > 1, 0L); if (tmp___1 != 0L) { cmd_free(h, c); offset = (i + 1) % 13; goto ldv_42005; } else { } set_bit((long )i & 63L, (unsigned long volatile *)h->cmd_pool_bits + (unsigned long )(i / 64)); goto ldv_42006; ldv_42005: ; goto ldv_42007; ldv_42006: hpsa_cmd_partial_init(h, i, c); return (c); } } static void cmd_free(struct ctlr_info *h , struct CommandList *c ) { int i ; int tmp ; { tmp = atomic_dec_and_test(& c->refcount); if (tmp != 0) { i = (int )(((long )c - (long )h->cmd_pool) / 768L); clear_bit((long )i & 63L, (unsigned long volatile *)h->cmd_pool_bits + (unsigned long )(i / 64)); } else { } return; } } static int hpsa_ioctl32_passthru(struct scsi_device *dev , int cmd , void *arg ) { IOCTL32_Command_struct *arg32 ; IOCTL_Command_struct arg64 ; IOCTL_Command_struct *p ; void *tmp ; int err ; u32 cp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; int __ret_gu ; register unsigned long __val_gu ; int __ret_gu___0 ; register unsigned long __val_gu___0 ; void *tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; { arg32 = (IOCTL32_Command_struct *)arg; tmp = compat_alloc_user_space(88UL); p = (IOCTL_Command_struct *)tmp; memset((void *)(& arg64), 0, 88UL); err = 0; tmp___0 = copy_from_user((void *)(& arg64.LUN_info), (void const *)(& arg32->LUN_info), 8UL); err = (int )((unsigned int )tmp___0 | (unsigned int )err); tmp___1 = copy_from_user((void *)(& arg64.Request), (void const *)(& arg32->Request), 20UL); err = (int )((unsigned int )tmp___1 | (unsigned int )err); tmp___2 = copy_from_user((void *)(& arg64.error_info), (void const *)(& arg32->error_info), 48UL); err = (int )((unsigned int )tmp___2 | (unsigned int )err); __might_fault("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c", 5724); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu), "=r" (__val_gu): "0" (& arg32->buf_size), "i" (2UL)); arg64.buf_size = (unsigned short )__val_gu; err = __ret_gu | err; __might_fault("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c", 5725); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu___0), "=r" (__val_gu___0): "0" (& arg32->buf), "i" (4UL)); cp = (unsigned int )__val_gu___0; err = __ret_gu___0 | err; tmp___3 = compat_ptr(cp); arg64.buf = (__u8 *)tmp___3; tmp___4 = copy_to_user((void *)p, (void const *)(& arg64), 88UL); err = (int )((unsigned int )tmp___4 | (unsigned int )err); if (err != 0) { return (-14); } else { } err = hpsa_ioctl(dev, -1067957749, (void *)p); if (err != 0) { return (err); } else { } tmp___5 = copy_in_user((void *)(& arg32->error_info), (void const *)(& p->error_info), 48U); err = (int )((unsigned int )tmp___5 | (unsigned int )err); if (err != 0) { return (-14); } else { } return (err); } } static int hpsa_ioctl32_big_passthru(struct scsi_device *dev , int cmd , void *arg ) { BIG_IOCTL32_Command_struct *arg32 ; BIG_IOCTL_Command_struct arg64 ; BIG_IOCTL_Command_struct *p ; void *tmp ; int err ; u32 cp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; int __ret_gu ; register unsigned long __val_gu ; int __ret_gu___0 ; register unsigned long __val_gu___0 ; int __ret_gu___1 ; register unsigned long __val_gu___1 ; void *tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; { arg32 = (BIG_IOCTL32_Command_struct *)arg; tmp = compat_alloc_user_space(96UL); p = (BIG_IOCTL_Command_struct *)tmp; memset((void *)(& arg64), 0, 96UL); err = 0; tmp___0 = copy_from_user((void *)(& arg64.LUN_info), (void const *)(& arg32->LUN_info), 8UL); err = (int )((unsigned int )tmp___0 | (unsigned int )err); tmp___1 = copy_from_user((void *)(& arg64.Request), (void const *)(& arg32->Request), 20UL); err = (int )((unsigned int )tmp___1 | (unsigned int )err); tmp___2 = copy_from_user((void *)(& arg64.error_info), (void const *)(& arg32->error_info), 48UL); err = (int )((unsigned int )tmp___2 | (unsigned int )err); __might_fault("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c", 5761); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu), "=r" (__val_gu): "0" (& arg32->buf_size), "i" (4UL)); arg64.buf_size = (unsigned int )__val_gu; err = __ret_gu | err; __might_fault("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c", 5762); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu___0), "=r" (__val_gu___0): "0" (& arg32->malloc_size), "i" (4UL)); arg64.malloc_size = (unsigned int )__val_gu___0; err = __ret_gu___0 | err; __might_fault("/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c", 5763); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu___1), "=r" (__val_gu___1): "0" (& arg32->buf), "i" (4UL)); cp = (unsigned int )__val_gu___1; err = __ret_gu___1 | err; tmp___3 = compat_ptr(cp); arg64.buf = (__u8 *)tmp___3; tmp___4 = copy_to_user((void *)p, (void const *)(& arg64), 96UL); err = (int )((unsigned int )tmp___4 | (unsigned int )err); if (err != 0) { return (-14); } else { } err = hpsa_ioctl(dev, -1067433454, (void *)p); if (err != 0) { return (err); } else { } tmp___5 = copy_in_user((void *)(& arg32->error_info), (void const *)(& p->error_info), 48U); err = (int )((unsigned int )tmp___5 | (unsigned int )err); if (err != 0) { return (-14); } else { } return (err); } } static int hpsa_compat_ioctl(struct scsi_device *dev , int cmd , void *arg ) { int tmp ; int tmp___0 ; int tmp___1 ; { switch (cmd) { case -2146942463: ; case -2146942462: ; case 1074283011: ; case -2146418172: ; case 1074807301: ; case -2147204602: ; case -2147204601: ; case -2147204600: ; case -2147204599: ; case 16906: ; case 16908: ; case 1074020877: ; case 16910: ; case 16912: ; case -2146680303: tmp = hpsa_ioctl(dev, cmd, arg); return (tmp); case -1068219893: tmp___0 = hpsa_ioctl32_passthru(dev, cmd, arg); return (tmp___0); case -1067957742: tmp___1 = hpsa_ioctl32_big_passthru(dev, cmd, arg); return (tmp___1); default: ; return (-515); } } } static int hpsa_getpciinfo_ioctl(struct ctlr_info *h , void *argp ) { struct hpsa_pci_info pciinfo ; int tmp ; unsigned long tmp___0 ; { if ((unsigned long )argp == (unsigned long )((void *)0)) { return (-22); } else { } tmp = pci_domain_nr((h->pdev)->bus); pciinfo.domain = (unsigned short )tmp; pciinfo.bus = ((h->pdev)->bus)->number; pciinfo.dev_fn = (unsigned char )(h->pdev)->devfn; pciinfo.board_id = h->board_id; tmp___0 = copy_to_user(argp, (void const *)(& pciinfo), 8UL); if (tmp___0 != 0UL) { return (-14); } else { } return (0); } } static int hpsa_getdrivver_ioctl(struct ctlr_info *h , void *argp ) { DriverVer_type DriverVer ; unsigned char vmaj ; unsigned char vmin ; unsigned char vsubmin ; int rc ; unsigned long tmp ; { rc = sscanf("3.4.10-0", "%hhu.%hhu.%hhu", & vmaj, & vmin, & vsubmin); if (rc != 3) { _dev_info((struct device const *)(& (h->pdev)->dev), "driver version string \'%s\' unrecognized.", (char *)"3.4.10-0"); vmaj = 0U; vmin = 0U; vsubmin = 0U; } else { } DriverVer = (DriverVer_type )((((int )vmaj << 16) | ((int )vmin << 8)) | (int )vsubmin); if ((unsigned long )argp == (unsigned long )((void *)0)) { return (-22); } else { } tmp = copy_to_user(argp, (void const *)(& DriverVer), 4UL); if (tmp != 0UL) { return (-14); } else { } return (0); } } static int hpsa_passthru_ioctl(struct ctlr_info *h , void *argp ) { IOCTL_Command_struct iocommand ; struct CommandList *c ; char *buff ; u64 temp64 ; int rc ; bool tmp ; int tmp___0 ; unsigned long tmp___1 ; void *tmp___2 ; unsigned long tmp___3 ; int tmp___4 ; unsigned long tmp___5 ; unsigned long tmp___6 ; { buff = (char *)0; rc = 0; if ((unsigned long )argp == (unsigned long )((void *)0)) { return (-22); } else { } tmp = capable(17); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-1); } else { } tmp___1 = copy_from_user((void *)(& iocommand), (void const *)argp, 88UL); if (tmp___1 != 0UL) { return (-14); } else { } if ((unsigned int )iocommand.buf_size == 0U && (unsigned int )*((unsigned char *)(& iocommand) + 9UL) != 0U) { return (-22); } else { } if ((unsigned int )iocommand.buf_size != 0U) { tmp___2 = kmalloc((size_t )iocommand.buf_size, 208U); buff = (char *)tmp___2; if ((unsigned long )buff == (unsigned long )((char *)0)) { return (-12); } else { } if ((int )iocommand.Request.Type.Direction & 1) { tmp___3 = copy_from_user((void *)buff, (void const *)iocommand.buf, (unsigned long )iocommand.buf_size); if (tmp___3 != 0UL) { rc = -14; goto out_kfree; } else { } } else { memset((void *)buff, 0, (size_t )iocommand.buf_size); } } else { } c = cmd_alloc(h); c->cmd_type = 1; c->scsi_cmd = (struct scsi_cmnd *)(& hpsa_cmd_busy); c->Header.ReplyQueue = 0U; if ((unsigned int )iocommand.buf_size != 0U) { c->Header.SGList = 1U; c->Header.SGTotal = 1U; } else { c->Header.SGList = 0U; c->Header.SGTotal = 0U; } memcpy((void *)(& c->Header.LUN), (void const *)(& iocommand.LUN_info), 8UL); memcpy((void *)(& c->Request), (void const *)(& iocommand.Request), 20UL); if ((unsigned int )iocommand.buf_size != 0U) { temp64 = pci_map_single(h->pdev, (void *)buff, (size_t )iocommand.buf_size, 0); tmp___4 = dma_mapping_error(& (h->pdev)->dev, temp64); if (tmp___4 != 0) { c->SG[0].Addr = 0ULL; c->SG[0].Len = 0U; rc = -12; goto out; } else { } c->SG[0].Addr = temp64; c->SG[0].Len = (unsigned int )iocommand.buf_size; c->SG[0].Ext = 1073741824U; } else { } rc = hpsa_scsi_do_simple_cmd(h, c, -1, 0xffffffffffffffffUL); if ((unsigned int )iocommand.buf_size != 0U) { hpsa_pci_unmap(h->pdev, c, 1, 0); } else { } check_ioctl_unit_attention(h, c); if (rc != 0) { rc = -5; goto out; } else { } memcpy((void *)(& iocommand.error_info), (void const *)c->err_info, 48UL); tmp___5 = copy_to_user(argp, (void const *)(& iocommand), 88UL); if (tmp___5 != 0UL) { rc = -14; goto out; } else { } if (((int )iocommand.Request.Type.Direction & 2) != 0 && (unsigned int )iocommand.buf_size != 0U) { tmp___6 = copy_to_user((void *)iocommand.buf, (void const *)buff, (unsigned long )iocommand.buf_size); if (tmp___6 != 0UL) { rc = -14; goto out; } else { } } else { } out: cmd_free(h, c); out_kfree: kfree((void const *)buff); return (rc); } } static int hpsa_big_passthru_ioctl(struct ctlr_info *h , void *argp ) { BIG_IOCTL_Command_struct *ioc ; struct CommandList *c ; unsigned char **buff ; int *buff_size ; u64 temp64 ; __u8 sg_used ; int status ; u32 left ; u32 sz ; __u8 *data_ptr ; bool tmp ; int tmp___0 ; void *tmp___1 ; unsigned long tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; unsigned long tmp___6 ; int i ; int tmp___7 ; unsigned long tmp___8 ; int i___0 ; __u8 *ptr ; unsigned long tmp___9 ; int i___1 ; { buff = (unsigned char **)0U; buff_size = (int *)0; sg_used = 0U; status = 0; if ((unsigned long )argp == (unsigned long )((void *)0)) { return (-22); } else { } tmp = capable(17); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-1); } else { } tmp___1 = kmalloc(96UL, 208U); ioc = (BIG_IOCTL_Command_struct *)tmp___1; if ((unsigned long )ioc == (unsigned long )((BIG_IOCTL_Command_struct *)0)) { status = -12; goto cleanup1; } else { } tmp___2 = copy_from_user((void *)ioc, (void const *)argp, 96UL); if (tmp___2 != 0UL) { status = -14; goto cleanup1; } else { } if (ioc->buf_size == 0U && (unsigned int )*((unsigned char *)ioc + 9UL) != 0U) { status = -22; goto cleanup1; } else { } if (ioc->malloc_size > 128000U) { status = -22; goto cleanup1; } else { } if (ioc->buf_size > ioc->malloc_size * 32U) { status = -22; goto cleanup1; } else { } tmp___3 = kzalloc(256UL, 208U); buff = (unsigned char **)tmp___3; if ((unsigned long )buff == (unsigned long )((unsigned char **)0U)) { status = -12; goto cleanup1; } else { } tmp___4 = kmalloc(128UL, 208U); buff_size = (int *)tmp___4; if ((unsigned long )buff_size == (unsigned long )((int *)0)) { status = -12; goto cleanup1; } else { } left = ioc->buf_size; data_ptr = ioc->buf; goto ldv_42112; ldv_42111: sz = left < ioc->malloc_size ? left : ioc->malloc_size; *(buff_size + (unsigned long )sg_used) = (int )sz; tmp___5 = kmalloc((size_t )sz, 208U); *(buff + (unsigned long )sg_used) = (unsigned char *)tmp___5; if ((unsigned long )*(buff + (unsigned long )sg_used) == (unsigned long )((unsigned char *)0U)) { status = -12; goto cleanup1; } else { } if ((int )ioc->Request.Type.Direction & 1) { tmp___6 = copy_from_user((void *)*(buff + (unsigned long )sg_used), (void const *)data_ptr, (unsigned long )sz); if (tmp___6 != 0UL) { status = -14; goto cleanup1; } else { } } else { memset((void *)*(buff + (unsigned long )sg_used), 0, (size_t )sz); } left = left - sz; data_ptr = data_ptr + (unsigned long )sz; sg_used = (__u8 )((int )sg_used + 1); ldv_42112: ; if (left != 0U) { goto ldv_42111; } else { } c = cmd_alloc(h); c->cmd_type = 1; c->scsi_cmd = (struct scsi_cmnd *)(& hpsa_cmd_busy); c->Header.ReplyQueue = 0U; c->Header.SGList = sg_used; c->Header.SGTotal = (unsigned short )sg_used; memcpy((void *)(& c->Header.LUN), (void const *)(& ioc->LUN_info), 8UL); memcpy((void *)(& c->Request), (void const *)(& ioc->Request), 20UL); if (ioc->buf_size != 0U) { i = 0; goto ldv_42117; ldv_42116: temp64 = pci_map_single(h->pdev, (void *)*(buff + (unsigned long )i), (size_t )*(buff_size + (unsigned long )i), 0); tmp___7 = dma_mapping_error(& (h->pdev)->dev, temp64); if (tmp___7 != 0) { c->SG[i].Addr = 0ULL; c->SG[i].Len = 0U; hpsa_pci_unmap(h->pdev, c, i, 0); status = -12; goto cleanup0; } else { } c->SG[i].Addr = temp64; c->SG[i].Len = (unsigned int )*(buff_size + (unsigned long )i); c->SG[i].Ext = 0U; i = i + 1; ldv_42117: ; if ((int )sg_used > i) { goto ldv_42116; } else { } i = i - 1; c->SG[i].Ext = 1073741824U; } else { } status = hpsa_scsi_do_simple_cmd(h, c, -1, 0xffffffffffffffffUL); if ((unsigned int )sg_used != 0U) { hpsa_pci_unmap(h->pdev, c, (int )sg_used, 0); } else { } check_ioctl_unit_attention(h, c); if (status != 0) { status = -5; goto cleanup0; } else { } memcpy((void *)(& ioc->error_info), (void const *)c->err_info, 48UL); tmp___8 = copy_to_user(argp, (void const *)ioc, 96UL); if (tmp___8 != 0UL) { status = -14; goto cleanup0; } else { } if (((int )ioc->Request.Type.Direction & 2) != 0 && ioc->buf_size != 0U) { ptr = ioc->buf; i___0 = 0; goto ldv_42122; ldv_42121: tmp___9 = copy_to_user((void *)ptr, (void const *)*(buff + (unsigned long )i___0), (unsigned long )*(buff_size + (unsigned long )i___0)); if (tmp___9 != 0UL) { status = -14; goto cleanup0; } else { } ptr = ptr + (unsigned long )*(buff_size + (unsigned long )i___0); i___0 = i___0 + 1; ldv_42122: ; if ((int )sg_used > i___0) { goto ldv_42121; } else { } } else { } status = 0; cleanup0: cmd_free(h, c); cleanup1: ; if ((unsigned long )buff != (unsigned long )((unsigned char **)0U)) { i___1 = 0; goto ldv_42126; ldv_42125: kfree((void const *)*(buff + (unsigned long )i___1)); i___1 = i___1 + 1; ldv_42126: ; if ((int )sg_used > i___1) { goto ldv_42125; } else { } kfree((void const *)buff); } else { } kfree((void const *)buff_size); kfree((void const *)ioc); return (status); } } static void check_ioctl_unit_attention(struct ctlr_info *h , struct CommandList *c ) { { if ((unsigned int )(c->err_info)->CommandStatus == 1U && (unsigned int )(c->err_info)->ScsiStatus != 2U) { check_for_unit_attention(h, c); } else { } return; } } static int hpsa_ioctl(struct scsi_device *dev , int cmd , void *arg ) { struct ctlr_info *h ; void *argp ; int rc ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { argp = arg; h = sdev_to_hba(dev); switch (cmd) { case 16908: ; case 1074020877: ; case 16910: hpsa_scan_start(h->scsi_host); return (0); case -2146942463: tmp = hpsa_getpciinfo_ioctl(h, argp); return (tmp); case -2147204599: tmp___0 = hpsa_getdrivver_ioctl(h, argp); return (tmp___0); case -1067957749: tmp___1 = atomic_dec_if_positive(& h->passthru_cmds_avail); if (tmp___1 < 0) { return (-11); } else { } rc = hpsa_passthru_ioctl(h, argp); atomic_inc(& h->passthru_cmds_avail); return (rc); case -1067433454: tmp___2 = atomic_dec_if_positive(& h->passthru_cmds_avail); if (tmp___2 < 0) { return (-11); } else { } rc = hpsa_big_passthru_ioctl(h, argp); atomic_inc(& h->passthru_cmds_avail); return (rc); default: ; return (-25); } } } static void hpsa_send_host_reset(struct ctlr_info *h , unsigned char *scsi3addr , u8 reset_type ) { struct CommandList *c ; { c = cmd_alloc(h); fill_cmd(c, 1, h, (void *)0, 0UL, 0, (unsigned char *)"", 1); c->Request.CDB[1] = reset_type; c->waiting = (struct completion *)0; enqueue_cmd_and_start_io(h, c); return; } } static int fill_cmd(struct CommandList *c , u8 cmd , struct ctlr_info *h , void *buff , size_t size , u16 page_code , unsigned char *scsi3addr , int cmd_type ) { int pci_dir ; u64 tag ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { pci_dir = 0; c->cmd_type = 1; c->scsi_cmd = (struct scsi_cmnd *)(& hpsa_cmd_busy); c->Header.ReplyQueue = 0U; if ((unsigned long )buff != (unsigned long )((void *)0) && size != 0UL) { c->Header.SGList = 1U; c->Header.SGTotal = 1U; } else { c->Header.SGList = 0U; c->Header.SGTotal = 0U; } memcpy((void *)(& c->Header.LUN.LunAddrBytes), (void const *)scsi3addr, 8UL); if (cmd_type == 0) { switch ((int )cmd) { case 18: ; if (((int )page_code & 256) != 0) { c->Request.CDB[1] = 1U; c->Request.CDB[2] = (u8 )page_code; } else { } c->Request.CDBLen = 6U; c->Request.type_attr_dir = (u8 )(((int )((signed char )cmd_type) & 7) | -96); c->Request.Timeout = 0U; c->Request.CDB[0] = 18U; c->Request.CDB[4] = (u8 )size; goto ldv_42167; case 194: ; case 195: c->Request.CDBLen = 12U; c->Request.type_attr_dir = (u8 )(((int )((signed char )cmd_type) & 7) | -96); c->Request.Timeout = 0U; c->Request.CDB[0] = cmd; c->Request.CDB[6] = (u8 )(size >> 24); c->Request.CDB[7] = (u8 )(size >> 16); c->Request.CDB[8] = (u8 )(size >> 8); c->Request.CDB[9] = (u8 )size; goto ldv_42167; case 1: c->Request.CDBLen = 12U; c->Request.type_attr_dir = (u8 )(((int )((signed char )cmd_type) & 7) | 96); c->Request.Timeout = 0U; c->Request.CDB[0] = 39U; c->Request.CDB[6] = 194U; c->Request.CDB[7] = (u8 )(size >> 8); c->Request.CDB[8] = (u8 )size; goto ldv_42167; case 0: c->Request.CDBLen = 6U; c->Request.type_attr_dir = (u8 )(((int )((signed char )cmd_type) & 7) | 32); c->Request.Timeout = 0U; goto ldv_42167; case 200: c->Request.CDBLen = 12U; c->Request.type_attr_dir = (u8 )(((int )((signed char )cmd_type) & 7) | -96); c->Request.Timeout = 0U; c->Request.CDB[0] = 192U; c->Request.CDB[1] = cmd; c->Request.CDB[6] = (u8 )(size >> 24); c->Request.CDB[7] = (u8 )(size >> 16); c->Request.CDB[8] = (u8 )(size >> 8); c->Request.CDB[9] = (u8 )size; goto ldv_42167; case 100: c->Request.CDBLen = 10U; c->Request.type_attr_dir = (u8 )(((int )((signed char )cmd_type) & 7) | -96); c->Request.Timeout = 0U; c->Request.CDB[0] = 38U; c->Request.CDB[6] = 100U; c->Request.CDB[7] = (u8 )(size >> 16); c->Request.CDB[8] = (u8 )(size >> 8); goto ldv_42167; case 21: c->Request.CDBLen = 10U; c->Request.type_attr_dir = (u8 )(((int )((signed char )cmd_type) & 7) | -96); c->Request.Timeout = 0U; c->Request.CDB[0] = 38U; c->Request.CDB[6] = 21U; c->Request.CDB[7] = (u8 )(size >> 16); c->Request.CDB[8] = (u8 )(size >> 8); goto ldv_42167; default: dev_warn((struct device const *)(& (h->pdev)->dev), "unknown command 0x%c\n", (int )cmd); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (6258), "i" (12UL)); ldv_42176: ; goto ldv_42176; return (-1); } ldv_42167: ; } else if (cmd_type == 1) { switch ((int )cmd) { case 1: c->Request.CDBLen = 16U; c->Request.type_attr_dir = (u8 )(((int )((signed char )cmd_type) & 7) | 32); c->Request.Timeout = 0U; memset((void *)(& c->Request.CDB), 0, 16UL); c->Request.CDB[0] = cmd; c->Request.CDB[1] = 4U; c->Request.CDB[4] = 0U; c->Request.CDB[5] = 0U; c->Request.CDB[6] = 0U; c->Request.CDB[7] = 0U; goto ldv_42178; case 0: memcpy((void *)(& tag), (void const *)buff, 8UL); descriptor.modname = "hpsa"; descriptor.function = "fill_cmd"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"; descriptor.format = "Abort Tag:0x%016llx using rqst Tag:0x%016llx"; descriptor.lineno = 6283U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (h->pdev)->dev), "Abort Tag:0x%016llx using rqst Tag:0x%016llx", tag, c->Header.tag); } else { } c->Request.CDBLen = 16U; c->Request.type_attr_dir = (u8 )(((int )((signed char )cmd_type) & 7) | 96); c->Request.Timeout = 0U; c->Request.CDB[0] = 0U; c->Request.CDB[1] = 0U; c->Request.CDB[2] = 0U; c->Request.CDB[3] = 0U; memcpy((void *)(& c->Request.CDB) + 4U, (void const *)(& tag), 8UL); c->Request.CDB[12] = 0U; c->Request.CDB[13] = 0U; c->Request.CDB[14] = 0U; c->Request.CDB[15] = 0U; goto ldv_42178; default: dev_warn((struct device const *)(& (h->pdev)->dev), "unknown message type %d\n", (int )cmd); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (6303), "i" (12UL)); ldv_42183: ; goto ldv_42183; } ldv_42178: ; } else { dev_warn((struct device const *)(& (h->pdev)->dev), "unknown command type %d\n", cmd_type); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"), "i" (6307), "i" (12UL)); ldv_42184: ; goto ldv_42184; } switch (((int )c->Request.type_attr_dir >> 6) & 3) { case 2: pci_dir = 2; goto ldv_42186; case 1: pci_dir = 1; goto ldv_42186; case 0: pci_dir = 3; goto ldv_42186; default: pci_dir = 0; } ldv_42186: tmp___0 = hpsa_map_one(h->pdev, c, (unsigned char *)buff, size, pci_dir); if (tmp___0 != 0) { return (-1); } else { } return (0); } } static void *remap_pci_mem(ulong base , ulong size ) { ulong page_base ; ulong page_offs ; void *page_remapped ; void *tmp ; { page_base = base & 0xfffffffffffff000UL; page_offs = base - page_base; tmp = ioremap_nocache((resource_size_t )page_base, page_offs + size); page_remapped = tmp; return ((unsigned long )page_remapped != (unsigned long )((void *)0) ? page_remapped + page_offs : (void *)0); } } __inline static unsigned long get_next_completion(struct ctlr_info *h , u8 q ) { unsigned long tmp ; { tmp = (*(h->access.command_completed))(h, (int )q); return (tmp); } } __inline static bool interrupt_pending(struct ctlr_info *h ) { bool tmp ; { tmp = (*(h->access.intr_pending))(h); return (tmp); } } __inline static long interrupt_not_for_us(struct ctlr_info *h ) { bool tmp ; int tmp___0 ; { tmp = (*(h->access.intr_pending))(h); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return ((long )(tmp___0 || h->interrupts_enabled == 0)); } } __inline static int bad_tag(struct ctlr_info *h , u32 tag_index , u32 raw_tag ) { long tmp ; { tmp = ldv__builtin_expect((u32 )h->nr_cmds <= tag_index, 0L); if (tmp != 0L) { dev_warn((struct device const *)(& (h->pdev)->dev), "bad tag 0x%08x ignored.\n", raw_tag); return (1); } else { } return (0); } } __inline static void finish_cmd(struct CommandList *c ) { long tmp ; { dial_up_lockup_detection_on_fw_flash_complete(c->h, c); tmp = ldv__builtin_expect((long )((c->cmd_type == 4 || c->cmd_type == 3) || c->cmd_type == 5), 1L); if (tmp != 0L) { complete_scsi_command(c); } else if (c->cmd_type == 1 || c->cmd_type == 6) { complete(c->waiting); } else { } return; } } __inline static void process_indexed_cmd(struct ctlr_info *h , u32 raw_tag ) { u32 tag_index ; struct CommandList *c ; int tmp ; { tag_index = raw_tag >> 4; tmp = bad_tag(h, tag_index, raw_tag); if (tmp == 0) { c = h->cmd_pool + (unsigned long )tag_index; finish_cmd(c); } else { } return; } } static int ignore_bogus_interrupt(struct ctlr_info *h ) { long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect(reset_devices == 0U, 1L); if (tmp != 0L) { return (0); } else { } tmp___0 = ldv__builtin_expect(h->interrupts_enabled != 0, 1L); if (tmp___0 != 0L) { return (0); } else { } _dev_info((struct device const *)(& (h->pdev)->dev), "Received interrupt while interrupts disabled (known firmware bug.) Ignoring.\n"); return (1); } } static struct ctlr_info *queue_to_hba(u8 *queue ) { u8 const *__mptr ; { __mptr = (u8 const *)(queue + - ((unsigned long )*queue)); return ((struct ctlr_info *)__mptr + 0xffffffffffffb164UL); } } static irqreturn_t hpsa_intx_discard_completions(int irq , void *queue ) { struct ctlr_info *h ; struct ctlr_info *tmp ; u8 q ; u32 raw_tag ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; bool tmp___3 ; { tmp = queue_to_hba((u8 *)queue); h = tmp; q = *((u8 *)queue); tmp___0 = ignore_bogus_interrupt(h); if (tmp___0 != 0) { return (0); } else { } tmp___1 = interrupt_not_for_us(h); if (tmp___1 != 0L) { return (0); } else { } h->last_intr_timestamp = get_jiffies_64(); goto ldv_42244; ldv_42243: tmp___2 = get_next_completion(h, (int )q); raw_tag = (u32 )tmp___2; goto ldv_42241; ldv_42240: raw_tag = next_command(h, (int )q); ldv_42241: ; if (raw_tag != 4294967295U) { goto ldv_42240; } else { } ldv_42244: tmp___3 = interrupt_pending(h); if ((int )tmp___3) { goto ldv_42243; } else { } return (1); } } static irqreturn_t hpsa_msix_discard_completions(int irq , void *queue ) { struct ctlr_info *h ; struct ctlr_info *tmp ; u32 raw_tag ; u8 q ; int tmp___0 ; unsigned long tmp___1 ; { tmp = queue_to_hba((u8 *)queue); h = tmp; q = *((u8 *)queue); tmp___0 = ignore_bogus_interrupt(h); if (tmp___0 != 0) { return (0); } else { } h->last_intr_timestamp = get_jiffies_64(); tmp___1 = get_next_completion(h, (int )q); raw_tag = (u32 )tmp___1; goto ldv_42254; ldv_42253: raw_tag = next_command(h, (int )q); ldv_42254: ; if (raw_tag != 4294967295U) { goto ldv_42253; } else { } return (1); } } static irqreturn_t do_hpsa_intr_intx(int irq , void *queue ) { struct ctlr_info *h ; struct ctlr_info *tmp ; u32 raw_tag ; u8 q ; long tmp___0 ; unsigned long tmp___1 ; bool tmp___2 ; { tmp = queue_to_hba((u8 *)queue); h = tmp; q = *((u8 *)queue); tmp___0 = interrupt_not_for_us(h); if (tmp___0 != 0L) { return (0); } else { } h->last_intr_timestamp = get_jiffies_64(); goto ldv_42267; ldv_42266: tmp___1 = get_next_completion(h, (int )q); raw_tag = (u32 )tmp___1; goto ldv_42264; ldv_42263: process_indexed_cmd(h, raw_tag); raw_tag = next_command(h, (int )q); ldv_42264: ; if (raw_tag != 4294967295U) { goto ldv_42263; } else { } ldv_42267: tmp___2 = interrupt_pending(h); if ((int )tmp___2) { goto ldv_42266; } else { } return (1); } } static irqreturn_t do_hpsa_intr_msi(int irq , void *queue ) { struct ctlr_info *h ; struct ctlr_info *tmp ; u32 raw_tag ; u8 q ; unsigned long tmp___0 ; { tmp = queue_to_hba((u8 *)queue); h = tmp; q = *((u8 *)queue); h->last_intr_timestamp = get_jiffies_64(); tmp___0 = get_next_completion(h, (int )q); raw_tag = (u32 )tmp___0; goto ldv_42277; ldv_42276: process_indexed_cmd(h, raw_tag); raw_tag = next_command(h, (int )q); ldv_42277: ; if (raw_tag != 4294967295U) { goto ldv_42276; } else { } return (1); } } static int hpsa_message(struct pci_dev *pdev , unsigned char opcode , unsigned char type ) { struct Command *cmd ; size_t cmd_sz ; dma_addr_t paddr64 ; __le32 paddr32 ; u32 tag ; void *vaddr ; int i ; int err ; void *tmp ; { cmd_sz = 64UL; vaddr = pci_ioremap_bar(pdev, 0); if ((unsigned long )vaddr == (unsigned long )((void *)0)) { return (-12); } else { } err = pci_set_consistent_dma_mask(pdev, 4294967295ULL); if (err != 0) { iounmap((void volatile *)vaddr); return (err); } else { } tmp = pci_alloc_consistent(pdev, cmd_sz, & paddr64); cmd = (struct Command *)tmp; if ((unsigned long )cmd == (unsigned long )((struct Command *)0)) { iounmap((void volatile *)vaddr); return (-12); } else { } paddr32 = (unsigned int )paddr64; cmd->CommandHeader.ReplyQueue = 0U; cmd->CommandHeader.SGList = 0U; cmd->CommandHeader.SGTotal = 0U; cmd->CommandHeader.tag = paddr64; memset((void *)(& cmd->CommandHeader.LUN.LunAddrBytes), 0, 8UL); cmd->Request.CDBLen = 16U; cmd->Request.type_attr_dir = 41U; cmd->Request.Timeout = 0U; cmd->Request.CDB[0] = opcode; cmd->Request.CDB[1] = type; memset((void *)(& cmd->Request.CDB) + 2U, 0, 14UL); cmd->ErrorDescriptor.Addr = (unsigned long long )((unsigned long )paddr32 + 52UL); cmd->ErrorDescriptor.Len = 48U; writel(paddr32, (void volatile *)vaddr + 64U); i = 0; goto ldv_42298; ldv_42297: tag = readl((void const volatile *)vaddr + 68U); if (((dma_addr_t )tag & 4294967292ULL) == paddr64) { goto ldv_42296; } else { } msleep(10000U); i = i + 1; ldv_42298: ; if (i <= 9) { goto ldv_42297; } else { } ldv_42296: iounmap((void volatile *)vaddr); if (i == 10) { dev_err((struct device const *)(& pdev->dev), "controller message %02x:%02x timed out\n", (int )opcode, (int )type); return (-110); } else { } pci_free_consistent(pdev, cmd_sz, (void *)cmd, paddr64); if ((tag & 2U) != 0U) { dev_err((struct device const *)(& pdev->dev), "controller message %02x:%02x failed\n", (int )opcode, (int )type); return (-5); } else { } _dev_info((struct device const *)(& pdev->dev), "controller message %02x:%02x succeeded\n", (int )opcode, (int )type); return (0); } } static int hpsa_controller_hard_reset(struct pci_dev *pdev , void *vaddr , u32 use_doorbell ) { int rc ; { if (use_doorbell != 0U) { _dev_info((struct device const *)(& pdev->dev), "using doorbell to reset controller\n"); writel(use_doorbell, (void volatile *)vaddr + 32U); msleep(10000U); } else { rc = 0; _dev_info((struct device const *)(& pdev->dev), "using PCI PM to reset controller\n"); rc = pci_set_power_state(pdev, 3); if (rc != 0) { return (rc); } else { } msleep(500U); rc = pci_set_power_state(pdev, 0); if (rc != 0) { return (rc); } else { } msleep(500U); } return (0); } } static void init_driver_version(char *driver_version , int len ) { { memset((void *)driver_version, 0, (size_t )len); strncpy(driver_version, "hpsa 3.4.10-0", (__kernel_size_t )(len + -1)); return; } } static int write_driver_ver_to_cfgtable(struct CfgTable *cfgtable ) { char *driver_version ; int i ; int size ; void *tmp ; { size = 32; tmp = kmalloc((size_t )size, 208U); driver_version = (char *)tmp; if ((unsigned long )driver_version == (unsigned long )((char *)0)) { return (-12); } else { } init_driver_version(driver_version, size); i = 0; goto ldv_42316; ldv_42315: writeb((int )((unsigned char )*(driver_version + (unsigned long )i)), (void volatile *)(& cfgtable->driver_version) + (unsigned long )i); i = i + 1; ldv_42316: ; if (i < size) { goto ldv_42315; } else { } kfree((void const *)driver_version); return (0); } } static void read_driver_ver_from_cfgtable(struct CfgTable *cfgtable , unsigned char *driver_ver ) { int i ; { i = 0; goto ldv_42324; ldv_42323: *(driver_ver + (unsigned long )i) = readb((void const volatile *)(& cfgtable->driver_version) + (unsigned long )i); i = i + 1; ldv_42324: ; if ((unsigned int )i <= 31U) { goto ldv_42323; } else { } return; } } static int controller_reset_failed(struct CfgTable *cfgtable ) { char *driver_ver ; char *old_driver_ver ; int rc ; int size ; void *tmp ; int tmp___0 ; { size = 32; tmp = kmalloc((size_t )(size * 2), 208U); old_driver_ver = (char *)tmp; if ((unsigned long )old_driver_ver == (unsigned long )((char *)0)) { return (-12); } else { } driver_ver = old_driver_ver + (unsigned long )size; init_driver_version(old_driver_ver, size); read_driver_ver_from_cfgtable(cfgtable, (unsigned char *)driver_ver); tmp___0 = memcmp((void const *)driver_ver, (void const *)old_driver_ver, (size_t )size); rc = tmp___0 == 0; kfree((void const *)old_driver_ver); return (rc); } } static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev , u32 board_id ) { u64 cfg_offset ; u32 cfg_base_addr ; u64 cfg_base_addr_index ; void *vaddr ; unsigned long paddr ; u32 misc_fw_support ; int rc ; struct CfgTable *cfgtable ; u32 use_doorbell ; u16 command_register ; int tmp ; int tmp___0 ; void *tmp___1 ; { tmp = ctlr_is_resettable(board_id); if (tmp == 0) { dev_warn((struct device const *)(& pdev->dev), "Controller not resettable\n"); return (-19); } else { } tmp___0 = ctlr_is_hard_resettable(board_id); if (tmp___0 == 0) { return (-524); } else { } pci_read_config_word((struct pci_dev const *)pdev, 4, & command_register); pci_save_state(pdev); rc = hpsa_pci_find_memory_BAR(pdev, & paddr); if (rc != 0) { return (rc); } else { } vaddr = remap_pci_mem(paddr, 592UL); if ((unsigned long )vaddr == (unsigned long )((void *)0)) { return (-12); } else { } rc = hpsa_find_cfg_addrs(pdev, vaddr, & cfg_base_addr, & cfg_base_addr_index, & cfg_offset); if (rc != 0) { goto unmap_vaddr; } else { } tmp___1 = remap_pci_mem((ulong )(pdev->resource[cfg_base_addr_index].start + cfg_offset), 196UL); cfgtable = (struct CfgTable *)tmp___1; if ((unsigned long )cfgtable == (unsigned long )((struct CfgTable *)0)) { rc = -12; goto unmap_vaddr; } else { } rc = write_driver_ver_to_cfgtable(cfgtable); if (rc != 0) { goto unmap_cfgtable; } else { } misc_fw_support = readl((void const volatile *)(& cfgtable->misc_fw_support)); use_doorbell = misc_fw_support & 16U; if (use_doorbell != 0U) { use_doorbell = 32U; } else { use_doorbell = misc_fw_support & 2U; if (use_doorbell != 0U) { dev_warn((struct device const *)(& pdev->dev), "Soft reset not supported. Firmware update is required.\n"); rc = -524; goto unmap_cfgtable; } else { } } rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); if (rc != 0) { goto unmap_cfgtable; } else { } pci_restore_state(pdev); pci_write_config_word((struct pci_dev const *)pdev, 4, (int )command_register); msleep(3000U); rc = hpsa_wait_for_board_state(pdev, vaddr, 1); if (rc != 0) { dev_warn((struct device const *)(& pdev->dev), "Failed waiting for board to become ready after hard reset\n"); goto unmap_cfgtable; } else { } rc = controller_reset_failed((struct CfgTable *)vaddr); if (rc < 0) { goto unmap_cfgtable; } else { } if (rc != 0) { dev_warn((struct device const *)(& pdev->dev), "Unable to successfully reset controller. Will try soft reset.\n"); rc = -524; } else { _dev_info((struct device const *)(& pdev->dev), "board ready after hard reset.\n"); } unmap_cfgtable: iounmap((void volatile *)cfgtable); unmap_vaddr: iounmap((void volatile *)vaddr); return (rc); } } static void print_cfg_table(struct device *dev , struct CfgTable *tb ) { { return; } } static int find_PCI_BAR_index(struct pci_dev *pdev , unsigned long pci_bar_addr ) { int i ; int offset ; int mem_type ; int bar_type ; { if (pci_bar_addr == 16UL) { return (0); } else { } offset = 0; i = 0; goto ldv_42367; ldv_42366: bar_type = (int )pdev->resource[i].flags & 1; if (bar_type == 1) { offset = offset + 4; } else { mem_type = (int )pdev->resource[i].flags & 6; switch (mem_type) { case 0: ; case 2: offset = offset + 4; goto ldv_42363; case 4: offset = offset + 8; goto ldv_42363; default: dev_warn((struct device const *)(& pdev->dev), "base address is invalid\n"); return (-1); } ldv_42363: ; } if ((unsigned long )offset == pci_bar_addr - 16UL) { return (i + 1); } else { } i = i + 1; ldv_42367: ; if (i <= 16) { goto ldv_42366; } else { } return (-1); } } static void hpsa_disable_interrupt_mode(struct ctlr_info *h ) { { if (h->msix_vector != 0U) { if ((unsigned int )*((unsigned char *)h->pdev + 2530UL) != 0U) { pci_disable_msix(h->pdev); } else { } h->msix_vector = 0U; } else if (h->msi_vector != 0U) { if ((unsigned int )*((unsigned char *)h->pdev + 2530UL) != 0U) { pci_disable_msi(h->pdev); } else { } h->msi_vector = 0U; } else { } return; } } static void hpsa_interrupt_mode(struct ctlr_info *h ) { int err ; int i ; struct msix_entry hpsa_msix_entries[64U] ; unsigned int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { i = 0; goto ldv_42379; ldv_42378: hpsa_msix_entries[i].vector = 0U; hpsa_msix_entries[i].entry = (u16 )i; i = i + 1; ldv_42379: ; if (i <= 63) { goto ldv_42378; } else { } if (((h->board_id == 1081085457U || h->board_id == 1082134033U) || h->board_id == 1082265105U) || h->board_id == 1082330641U) { goto default_int_mode; } else { } tmp___0 = pci_find_capability(h->pdev, 17); if (tmp___0 != 0) { _dev_info((struct device const *)(& (h->pdev)->dev), "MSI-X capable controller\n"); h->msix_vector = 64U; tmp = cpumask_weight(cpu_online_mask); if (h->msix_vector > tmp) { h->msix_vector = cpumask_weight(cpu_online_mask); } else { } err = pci_enable_msix_range(h->pdev, (struct msix_entry *)(& hpsa_msix_entries), 1, (int )h->msix_vector); if (err < 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "MSI-X init failed %d\n", err); h->msix_vector = 0U; goto single_msi_mode; } else if ((unsigned int )err < h->msix_vector) { dev_warn((struct device const *)(& (h->pdev)->dev), "only %d MSI-X vectors available\n", err); } else { } h->msix_vector = (unsigned int )err; i = 0; goto ldv_42384; ldv_42383: h->intr[i] = hpsa_msix_entries[i].vector; i = i + 1; ldv_42384: ; if ((unsigned int )i < h->msix_vector) { goto ldv_42383; } else { } return; } else { } single_msi_mode: tmp___2 = pci_find_capability(h->pdev, 5); if (tmp___2 != 0) { _dev_info((struct device const *)(& (h->pdev)->dev), "MSI capable controller\n"); tmp___1 = pci_enable_msi_exact(h->pdev, 1); if (tmp___1 == 0) { h->msi_vector = 1U; } else { dev_warn((struct device const *)(& (h->pdev)->dev), "MSI init failed\n"); } } else { } default_int_mode: h->intr[h->intr_mode] = (h->pdev)->irq; return; } } static int hpsa_lookup_board_id(struct pci_dev *pdev , u32 *board_id ) { int i ; u32 subsystem_vendor_id ; u32 subsystem_device_id ; { subsystem_vendor_id = (u32 )pdev->subsystem_vendor; subsystem_device_id = (u32 )pdev->subsystem_device; *board_id = (subsystem_device_id << 16) | subsystem_vendor_id; i = 0; goto ldv_42396; ldv_42395: ; if (*board_id == products[i].board_id) { return (i); } else { } i = i + 1; ldv_42396: ; if ((unsigned int )i <= 46U) { goto ldv_42395; } else { } if ((subsystem_vendor_id != 4156U && subsystem_vendor_id != 3601U) || hpsa_allow_any == 0) { dev_warn((struct device const *)(& pdev->dev), "unrecognized board ID: 0x%08x, ignoring.\n", *board_id); return (-19); } else { } return (46); } } static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev , unsigned long *memory_bar ) { int i ; struct _ddebug descriptor ; long tmp ; { i = 0; goto ldv_42408; ldv_42407: ; if ((pdev->resource[i].flags & 512UL) != 0UL) { *memory_bar = (unsigned long )pdev->resource[i].start; descriptor.modname = "hpsa"; descriptor.function = "hpsa_pci_find_memory_BAR"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/6305/dscv_tempdir/dscv/ri/32_7a/drivers/scsi/hpsa.c"; descriptor.format = "memory BAR = %lx\n"; descriptor.lineno = 6997U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "memory BAR = %lx\n", *memory_bar); } else { } return (0); } else { } i = i + 1; ldv_42408: ; if (i <= 16) { goto ldv_42407; } else { } dev_warn((struct device const *)(& pdev->dev), "no memory BAR found\n"); return (-19); } } static int hpsa_wait_for_board_state(struct pci_dev *pdev , void *vaddr , int wait_for_ready ) { int i ; int iterations ; u32 scratchpad ; { if (wait_for_ready != 0) { iterations = 1200; } else { iterations = 1000; } i = 0; goto ldv_42419; ldv_42418: scratchpad = readl((void const volatile *)vaddr + 176U); if (wait_for_ready != 0) { if (scratchpad == 4294901760U) { return (0); } else { } } else if (scratchpad != 4294901760U) { return (0); } else { } msleep(100U); i = i + 1; ldv_42419: ; if (i < iterations) { goto ldv_42418; } else { } dev_warn((struct device const *)(& pdev->dev), "board not ready, timed out.\n"); return (-19); } } static int hpsa_find_cfg_addrs(struct pci_dev *pdev , void *vaddr , u32 *cfg_base_addr , u64 *cfg_base_addr_index , u64 *cfg_offset ) { unsigned int tmp ; int tmp___0 ; { *cfg_base_addr = readl((void const volatile *)vaddr + 180U); tmp = readl((void const volatile *)vaddr + 184U); *cfg_offset = (u64 )tmp; *cfg_base_addr = *cfg_base_addr & 65535U; tmp___0 = find_PCI_BAR_index(pdev, (unsigned long )*cfg_base_addr); *cfg_base_addr_index = (u64 )tmp___0; if (*cfg_base_addr_index == 0xffffffffffffffffULL) { dev_warn((struct device const *)(& pdev->dev), "cannot find cfg_base_addr_index\n"); return (-19); } else { } return (0); } } static void hpsa_free_cfgtables(struct ctlr_info *h ) { { if ((unsigned long )h->transtable != (unsigned long )((struct TransTable_struct *)0)) { iounmap((void volatile *)h->transtable); h->transtable = (struct TransTable_struct *)0; } else { } if ((unsigned long )h->cfgtable != (unsigned long )((struct CfgTable *)0)) { iounmap((void volatile *)h->cfgtable); h->cfgtable = (struct CfgTable *)0; } else { } return; } } static int hpsa_find_cfgtables(struct ctlr_info *h ) { u64 cfg_offset ; u32 cfg_base_addr ; u64 cfg_base_addr_index ; u32 trans_offset ; int rc ; void *tmp ; void *tmp___0 ; { rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, & cfg_base_addr, & cfg_base_addr_index, & cfg_offset); if (rc != 0) { return (rc); } else { } tmp = remap_pci_mem((ulong )((h->pdev)->resource[cfg_base_addr_index].start + cfg_offset), 196UL); h->cfgtable = (struct CfgTable *)tmp; if ((unsigned long )h->cfgtable == (unsigned long )((struct CfgTable *)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "Failed mapping cfgtable\n"); return (-12); } else { } rc = write_driver_ver_to_cfgtable(h->cfgtable); if (rc != 0) { return (rc); } else { } trans_offset = readl((void const volatile *)(& (h->cfgtable)->TransMethodOffset)); tmp___0 = remap_pci_mem((ulong )(((h->pdev)->resource[cfg_base_addr_index].start + cfg_offset) + (unsigned long long )trans_offset), 560UL); h->transtable = (struct TransTable_struct *)tmp___0; if ((unsigned long )h->transtable == (unsigned long )((struct TransTable_struct *)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "Failed mapping transfer table\n"); hpsa_free_cfgtables(h); return (-12); } else { } return (0); } } static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h ) { unsigned int tmp ; { tmp = readl((void const volatile *)(& (h->cfgtable)->MaxPerformantModeCommands)); h->max_commands = (int )tmp; if (reset_devices != 0U && h->max_commands > 32) { h->max_commands = 32; } else { } if (h->max_commands <= 15) { dev_warn((struct device const *)(& (h->pdev)->dev), "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", h->max_commands, 16); h->max_commands = 16; } else { } return; } } static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h ) { { return (h->maxsgentries > 512); } } static void hpsa_find_board_params(struct ctlr_info *h ) { unsigned int tmp ; int tmp___0 ; { hpsa_get_max_perf_mode_cmds(h); h->nr_cmds = h->max_commands; tmp = readl((void const volatile *)(& (h->cfgtable)->MaxScatterGatherElements)); h->maxsgentries = (int )tmp; h->fw_support = readl((void const volatile *)(& (h->cfgtable)->misc_fw_support)); tmp___0 = hpsa_supports_chained_sg_blocks(h); if (tmp___0 != 0) { h->max_cmd_sg_entries = 32U; h->chainsize = h->maxsgentries - (int )h->max_cmd_sg_entries; h->maxsgentries = h->maxsgentries - 1; } else { h->max_cmd_sg_entries = 31U; h->maxsgentries = 31; h->chainsize = 0; } h->TMFSupportFlags = readl((void const volatile *)(& (h->cfgtable)->TMFSupportFlags)); if ((h->TMFSupportFlags & 8U) == 0U) { dev_warn((struct device const *)(& (h->pdev)->dev), "Physical aborts not supported\n"); } else { } if ((h->TMFSupportFlags & 524288U) == 0U) { dev_warn((struct device const *)(& (h->pdev)->dev), "Logical aborts not supported\n"); } else { } if ((h->TMFSupportFlags & 32768U) == 0U) { dev_warn((struct device const *)(& (h->pdev)->dev), "HP SSD Smart Path aborts not supported\n"); } else { } return; } } __inline static bool hpsa_CISS_signature_present(struct ctlr_info *h ) { int tmp ; { tmp = check_signature((void const volatile *)(& (h->cfgtable)->Signature), (unsigned char const *)"CISS", 4); if (tmp == 0) { dev_err((struct device const *)(& (h->pdev)->dev), "not a valid CISS config table\n"); return (0); } else { } return (1); } } __inline static void hpsa_set_driver_support_bits(struct ctlr_info *h ) { u32 driver_support ; { driver_support = readl((void const volatile *)(& (h->cfgtable)->driver_support)); driver_support = driver_support | 256U; driver_support = driver_support | 1U; writel(driver_support, (void volatile *)(& (h->cfgtable)->driver_support)); return; } } __inline static void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h ) { u32 dma_prefetch ; { if (h->board_id != 841289788U) { return; } else { } dma_prefetch = readl((void const volatile *)h->vaddr + 532U); dma_prefetch = dma_prefetch | 32768U; writel(dma_prefetch, (void volatile *)h->vaddr + 532U); return; } } static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h ) { int i ; u32 doorbell_value ; unsigned long flags ; raw_spinlock_t *tmp ; { i = 0; goto ldv_42470; ldv_42469: tmp = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp); doorbell_value = readl((void const volatile *)h->vaddr + 32U); spin_unlock_irqrestore(& h->lock, flags); if (((long )doorbell_value & 64L) == 0L) { goto done; } else { } msleep(20U); i = i + 1; ldv_42470: ; if (i <= 29999) { goto ldv_42469; } else { } return (-19); done: ; return (0); } } static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h ) { int i ; u32 doorbell_value ; unsigned long flags ; raw_spinlock_t *tmp ; { i = 0; goto ldv_42483; ldv_42482: ; if (h->remove_in_progress != 0) { goto done; } else { } tmp = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp); doorbell_value = readl((void const volatile *)h->vaddr + 32U); spin_unlock_irqrestore(& h->lock, flags); if (((long )doorbell_value & 1L) == 0L) { goto done; } else { } msleep(10U); i = i + 1; ldv_42483: ; if (i <= 1999) { goto ldv_42482; } else { } return (-19); done: ; return (0); } } static int hpsa_enter_simple_mode(struct ctlr_info *h ) { u32 trans_support ; unsigned int tmp ; int tmp___0 ; unsigned int tmp___1 ; { trans_support = readl((void const volatile *)(& (h->cfgtable)->TransportSupport)); if ((trans_support & 2U) == 0U) { return (-524); } else { } tmp = readl((void const volatile *)(& (h->cfgtable)->CmdsOutMax)); h->max_commands = (int )tmp; writel(2U, (void volatile *)(& (h->cfgtable)->HostWrite.TransportRequest)); writel(0U, (void volatile *)(& (h->cfgtable)->HostWrite.command_pool_addr_hi)); writel(1U, (void volatile *)h->vaddr + 32U); tmp___0 = hpsa_wait_for_mode_change_ack(h); if (tmp___0 != 0) { goto error; } else { } print_cfg_table(& (h->pdev)->dev, h->cfgtable); tmp___1 = readl((void const volatile *)(& (h->cfgtable)->TransportActive)); if (((long )tmp___1 & 2L) == 0L) { goto error; } else { } h->transMethod = 2UL; return (0); error: dev_err((struct device const *)(& (h->pdev)->dev), "failed to enter simple mode\n"); return (-19); } } static void hpsa_free_pci_init(struct ctlr_info *h ) { { hpsa_free_cfgtables(h); iounmap((void volatile *)h->vaddr); h->vaddr = (void *)0; hpsa_disable_interrupt_mode(h); pci_disable_device(h->pdev); pci_release_regions(h->pdev); return; } } static int hpsa_pci_init(struct ctlr_info *h ) { int prod_index ; int err ; bool tmp ; int tmp___0 ; { prod_index = hpsa_lookup_board_id(h->pdev, & h->board_id); if (prod_index < 0) { return (prod_index); } else { } h->product_name = products[prod_index].product_name; h->access = *(products[prod_index].access); h->needs_abort_tags_swizzled = ctlr_needs_abort_tags_swizzled(h->board_id); pci_disable_link_state(h->pdev, 7); err = pci_enable_device(h->pdev); if (err != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "failed to enable PCI device\n"); pci_disable_device(h->pdev); return (err); } else { } err = pci_request_regions(h->pdev, "hpsa"); if (err != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "failed to obtain PCI resources\n"); pci_disable_device(h->pdev); return (err); } else { } pci_set_master(h->pdev); hpsa_interrupt_mode(h); err = hpsa_pci_find_memory_BAR(h->pdev, & h->paddr); if (err != 0) { goto clean2; } else { } h->vaddr = remap_pci_mem(h->paddr, 592UL); if ((unsigned long )h->vaddr == (unsigned long )((void *)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "failed to remap PCI mem\n"); err = -12; goto clean2; } else { } err = hpsa_wait_for_board_state(h->pdev, h->vaddr, 1); if (err != 0) { goto clean3; } else { } err = hpsa_find_cfgtables(h); if (err != 0) { goto clean3; } else { } hpsa_find_board_params(h); tmp = hpsa_CISS_signature_present(h); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { err = -19; goto clean4; } else { } hpsa_set_driver_support_bits(h); hpsa_p600_dma_prefetch_quirk(h); err = hpsa_enter_simple_mode(h); if (err != 0) { goto clean4; } else { } return (0); clean4: hpsa_free_cfgtables(h); clean3: iounmap((void volatile *)h->vaddr); h->vaddr = (void *)0; clean2: hpsa_disable_interrupt_mode(h); pci_disable_device(h->pdev); pci_release_regions(h->pdev); return (err); } } static void hpsa_hba_inquiry(struct ctlr_info *h ) { int rc ; void *tmp ; { tmp = kmalloc(64UL, 208U); h->hba_inquiry_data = (unsigned char *)tmp; if ((unsigned long )h->hba_inquiry_data == (unsigned long )((unsigned char *)0U)) { return; } else { } rc = hpsa_scsi_do_inquiry(h, (unsigned char *)"", 0, h->hba_inquiry_data, 64); if (rc != 0) { kfree((void const *)h->hba_inquiry_data); h->hba_inquiry_data = (unsigned char *)0U; } else { } return; } } static int hpsa_init_reset_devices(struct pci_dev *pdev , u32 board_id ) { int rc ; int i ; void *vaddr ; int tmp ; { if (reset_devices == 0U) { return (0); } else { } rc = pci_enable_device(pdev); if (rc != 0) { dev_warn((struct device const *)(& pdev->dev), "Failed to enable PCI device\n"); return (-19); } else { } pci_disable_device(pdev); msleep(260U); rc = pci_enable_device(pdev); if (rc != 0) { dev_warn((struct device const *)(& pdev->dev), "failed to enable device.\n"); return (-19); } else { } pci_set_master(pdev); vaddr = pci_ioremap_bar(pdev, 0); if ((unsigned long )vaddr == (unsigned long )((void *)0)) { rc = -12; goto out_disable; } else { } writel(8U, (void volatile *)vaddr + 52U); iounmap((void volatile *)vaddr); rc = hpsa_kdump_hard_reset_controller(pdev, board_id); if (rc != 0) { goto out_disable; } else { } _dev_info((struct device const *)(& pdev->dev), "Waiting for controller to respond to no-op\n"); i = 0; goto ldv_42515; ldv_42514: tmp = hpsa_message(pdev, 3, 0); if (tmp == 0) { goto ldv_42513; } else { dev_warn((struct device const *)(& pdev->dev), "no-op failed%s\n", i <= 10 ? (char *)"; re-trying" : (char *)""); } i = i + 1; ldv_42515: ; if (i <= 11) { goto ldv_42514; } else { } ldv_42513: ; out_disable: pci_disable_device(pdev); return (rc); } } static void hpsa_free_cmd_pool(struct ctlr_info *h ) { { kfree((void const *)h->cmd_pool_bits); h->cmd_pool_bits = (unsigned long *)0UL; if ((unsigned long )h->cmd_pool != (unsigned long )((struct CommandList *)0)) { pci_free_consistent(h->pdev, (unsigned long )h->nr_cmds * 768UL, (void *)h->cmd_pool, h->cmd_pool_dhandle); h->cmd_pool = (struct CommandList *)0; h->cmd_pool_dhandle = 0ULL; } else { } if ((unsigned long )h->errinfo_pool != (unsigned long )((struct ErrorInfo *)0)) { pci_free_consistent(h->pdev, (unsigned long )h->nr_cmds * 48UL, (void *)h->errinfo_pool, h->errinfo_pool_dhandle); h->errinfo_pool = (struct ErrorInfo *)0; h->errinfo_pool_dhandle = 0ULL; } else { } return; } } static int hpsa_alloc_cmd_pool(struct ctlr_info *h ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = kzalloc((unsigned long )((h->nr_cmds + 63) / 64) * 8UL, 208U); h->cmd_pool_bits = (unsigned long *)tmp; tmp___0 = pci_alloc_consistent(h->pdev, (unsigned long )h->nr_cmds * 768UL, & h->cmd_pool_dhandle); h->cmd_pool = (struct CommandList *)tmp___0; tmp___1 = pci_alloc_consistent(h->pdev, (unsigned long )h->nr_cmds * 48UL, & h->errinfo_pool_dhandle); h->errinfo_pool = (struct ErrorInfo *)tmp___1; if (((unsigned long )h->cmd_pool_bits == (unsigned long )((unsigned long *)0UL) || (unsigned long )h->cmd_pool == (unsigned long )((struct CommandList *)0)) || (unsigned long )h->errinfo_pool == (unsigned long )((struct ErrorInfo *)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "out of memory in %s", "hpsa_alloc_cmd_pool"); goto clean_up; } else { } hpsa_preinitialize_commands(h); return (0); clean_up: hpsa_free_cmd_pool(h); return (-12); } } static void hpsa_irq_affinity_hints(struct ctlr_info *h ) { int i ; int cpu ; unsigned int tmp ; struct cpumask const *tmp___0 ; unsigned int tmp___1 ; { tmp = cpumask_first(cpu_online_mask); cpu = (int )tmp; i = 0; goto ldv_42530; ldv_42529: tmp___0 = get_cpu_mask((unsigned int )cpu); irq_set_affinity_hint(h->intr[i], tmp___0); tmp___1 = cpumask_next(cpu, cpu_online_mask); cpu = (int )tmp___1; i = i + 1; ldv_42530: ; if ((unsigned int )i < h->msix_vector) { goto ldv_42529; } else { } return; } } static void hpsa_free_irqs(struct ctlr_info *h ) { int i ; { if (h->msix_vector == 0U || h->intr_mode != 0) { i = h->intr_mode; irq_set_affinity_hint(h->intr[i], (struct cpumask const *)0); free_irq(h->intr[i], (void *)(& h->q) + (unsigned long )i); h->q[i] = 0U; return; } else { } i = 0; goto ldv_42537; ldv_42536: irq_set_affinity_hint(h->intr[i], (struct cpumask const *)0); free_irq(h->intr[i], (void *)(& h->q) + (unsigned long )i); h->q[i] = 0U; i = i + 1; ldv_42537: ; if ((unsigned int )i < h->msix_vector) { goto ldv_42536; } else { } goto ldv_42540; ldv_42539: h->q[i] = 0U; i = i + 1; ldv_42540: ; if (i <= 63) { goto ldv_42539; } else { } return; } } static int hpsa_request_irqs(struct ctlr_info *h , irqreturn_t (*msixhandler)(int , void * ) , irqreturn_t (*intxhandler)(int , void * ) ) { int rc ; int i ; int j ; { i = 0; goto ldv_42554; ldv_42553: h->q[i] = (unsigned char )i; i = i + 1; ldv_42554: ; if (i <= 63) { goto ldv_42553; } else { } if (h->intr_mode == 0 && h->msix_vector != 0U) { i = 0; goto ldv_42564; ldv_42563: sprintf((char *)(& h->intrname) + (unsigned long )i, "%s-msix%d", (char *)(& h->devname), i); rc = request_irq(h->intr[i], msixhandler, 0UL, (char const *)(& h->intrname) + (unsigned long )i, (void *)(& h->q) + (unsigned long )i); if (rc != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "failed to get irq %d for %s\n", h->intr[i], (char *)(& h->devname)); j = 0; goto ldv_42558; ldv_42557: free_irq(h->intr[j], (void *)(& h->q) + (unsigned long )j); h->q[j] = 0U; j = j + 1; ldv_42558: ; if (j < i) { goto ldv_42557; } else { } goto ldv_42561; ldv_42560: h->q[j] = 0U; j = j + 1; ldv_42561: ; if (j <= 63) { goto ldv_42560; } else { } return (rc); } else { } i = i + 1; ldv_42564: ; if ((unsigned int )i < h->msix_vector) { goto ldv_42563; } else { } hpsa_irq_affinity_hints(h); } else { if (h->msix_vector != 0U || h->msi_vector != 0U) { if (h->msix_vector != 0U) { sprintf((char *)(& h->intrname) + (unsigned long )h->intr_mode, "%s-msix", (char *)(& h->devname)); } else { sprintf((char *)(& h->intrname) + (unsigned long )h->intr_mode, "%s-msi", (char *)(& h->devname)); } rc = request_irq(h->intr[h->intr_mode], msixhandler, 0UL, (char const *)(& h->intrname) + (unsigned long )h->intr_mode, (void *)(& h->q) + (unsigned long )h->intr_mode); } else { sprintf((char *)(& h->intrname) + (unsigned long )h->intr_mode, "%s-intx", (char *)(& h->devname)); rc = request_irq(h->intr[h->intr_mode], intxhandler, 128UL, (char const *)(& h->intrname) + (unsigned long )h->intr_mode, (void *)(& h->q) + (unsigned long )h->intr_mode); } irq_set_affinity_hint(h->intr[h->intr_mode], (struct cpumask const *)0); } if (rc != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "failed to get irq %d for %s\n", h->intr[h->intr_mode], (char *)(& h->devname)); hpsa_free_irqs(h); return (-19); } else { } return (0); } } static int hpsa_kdump_soft_reset(struct ctlr_info *h ) { int rc ; { hpsa_send_host_reset(h, (unsigned char *)"", 0); _dev_info((struct device const *)(& (h->pdev)->dev), "Waiting for board to soft reset.\n"); rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, 0); if (rc != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "Soft reset had no effect.\n"); return (rc); } else { } _dev_info((struct device const *)(& (h->pdev)->dev), "Board reset, awaiting READY status.\n"); rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, 1); if (rc != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "Board failed to become ready after soft reset.\n"); return (rc); } else { } return (0); } } static void hpsa_free_reply_queues(struct ctlr_info *h ) { int i ; { i = 0; goto ldv_42576; ldv_42575: ; if ((unsigned long )h->reply_queue[i].head == (unsigned long )((u64 *)0ULL)) { goto ldv_42574; } else { } pci_free_consistent(h->pdev, h->reply_queue_size, (void *)h->reply_queue[i].head, h->reply_queue[i].busaddr); h->reply_queue[i].head = (u64 *)0ULL; h->reply_queue[i].busaddr = 0ULL; ldv_42574: i = i + 1; ldv_42576: ; if ((int )h->nreply_queues > i) { goto ldv_42575; } else { } h->reply_queue_size = 0UL; return; } } static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h ) { { hpsa_free_performant_mode(h); hpsa_free_sg_chain_blocks(h); hpsa_free_cmd_pool(h); hpsa_free_irqs(h); scsi_host_put(h->scsi_host); h->scsi_host = (struct Scsi_Host *)0; hpsa_free_pci_init(h); free_percpu((void *)h->lockup_detected); h->lockup_detected = (u32 *)0U; if ((unsigned long )h->resubmit_wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_23(h->resubmit_wq); h->resubmit_wq = (struct workqueue_struct *)0; } else { } if ((unsigned long )h->rescan_ctlr_wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_24(h->rescan_ctlr_wq); h->rescan_ctlr_wq = (struct workqueue_struct *)0; } else { } kfree((void const *)h); return; } } static void fail_all_outstanding_cmds(struct ctlr_info *h ) { int i ; int refcount ; struct CommandList *c ; int failcount ; { failcount = 0; ldv_flush_workqueue_25(h->resubmit_wq); i = 0; goto ldv_42589; ldv_42588: c = h->cmd_pool + (unsigned long )i; refcount = atomic_add_return(1, & c->refcount); if (refcount > 1) { (c->err_info)->CommandStatus = 65535U; finish_cmd(c); atomic_dec(& h->commands_outstanding); failcount = failcount + 1; } else { } cmd_free(h, c); i = i + 1; ldv_42589: ; if (h->nr_cmds > i) { goto ldv_42588; } else { } dev_warn((struct device const *)(& (h->pdev)->dev), "failed %d commands in fail_all\n", failcount); return; } } static void set_lockup_detected_for_all_cpus(struct ctlr_info *h , u32 value ) { int cpu ; u32 *lockup_detected___0 ; void const *__vpp_verify ; unsigned long __ptr ; unsigned int tmp ; { cpu = -1; goto ldv_42602; ldv_42601: __vpp_verify = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (h->lockup_detected)); lockup_detected___0 = (u32 *)(__per_cpu_offset[cpu] + __ptr); *lockup_detected___0 = value; ldv_42602: tmp = cpumask_next(cpu, cpu_online_mask); cpu = (int )tmp; if (cpu < nr_cpu_ids) { goto ldv_42601; } else { } __asm__ volatile ("sfence": : : "memory"); return; } } static void controller_lockup_detected(struct ctlr_info *h ) { unsigned long flags ; u32 lockup_detected___0 ; raw_spinlock_t *tmp ; { (*(h->access.set_intr_mask))(h, 0UL); tmp = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp); lockup_detected___0 = readl((void const volatile *)h->vaddr + 176U); if (lockup_detected___0 == 0U) { dev_warn((struct device const *)(& (h->pdev)->dev), "lockup detected after %d but scratchpad register is zero\n", h->heartbeat_sample_interval / 250U); lockup_detected___0 = 4294967295U; } else { } set_lockup_detected_for_all_cpus(h, lockup_detected___0); spin_unlock_irqrestore(& h->lock, flags); dev_warn((struct device const *)(& (h->pdev)->dev), "Controller lockup detected: 0x%08x after %d\n", lockup_detected___0, h->heartbeat_sample_interval / 250U); pci_disable_device(h->pdev); fail_all_outstanding_cmds(h); return; } } static int detect_controller_lockup(struct ctlr_info *h ) { u64 now ; u32 heartbeat ; unsigned long flags ; raw_spinlock_t *tmp ; { now = get_jiffies_64(); if ((long long )(now - (h->last_intr_timestamp + (u64 )h->heartbeat_sample_interval)) < 0LL) { return (0); } else { } if ((long long )(now - (h->last_heartbeat_timestamp + (u64 )h->heartbeat_sample_interval)) < 0LL) { return (0); } else { } tmp = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp); heartbeat = readl((void const volatile *)(& (h->cfgtable)->HeartBeat)); spin_unlock_irqrestore(& h->lock, flags); if (h->last_heartbeat == heartbeat) { controller_lockup_detected(h); return (1); } else { } h->last_heartbeat = heartbeat; h->last_heartbeat_timestamp = now; return (0); } } static void hpsa_ack_ctlr_events(struct ctlr_info *h ) { int i ; char *event_type ; { if ((h->fw_support & 128U) == 0U) { return; } else { } if ((h->transMethod & 384UL) != 0UL && ((h->events & 1073741824U) != 0U || (int )h->events < 0)) { if ((h->events & 1073741824U) != 0U) { event_type = (char *)"state change"; } else { } if ((int )h->events < 0) { event_type = (char *)"configuration change"; } else { } scsi_block_requests(h->scsi_host); i = 0; goto ldv_42639; ldv_42638: (h->dev[i])->offload_enabled = 0; i = i + 1; ldv_42639: ; if (h->ndevices > i) { goto ldv_42638; } else { } hpsa_drain_accel_commands(h); dev_warn((struct device const *)(& (h->pdev)->dev), "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", h->events, event_type); writel(h->events, (void volatile *)(& (h->cfgtable)->clear_event_notify)); writel(64U, (void volatile *)h->vaddr + 32U); hpsa_wait_for_clear_event_notify_ack(h); scsi_unblock_requests(h->scsi_host); } else { writel(h->events, (void volatile *)(& (h->cfgtable)->clear_event_notify)); writel(64U, (void volatile *)h->vaddr + 32U); hpsa_wait_for_clear_event_notify_ack(h); } return; } } static int hpsa_ctlr_needs_rescan(struct ctlr_info *h ) { { if ((h->fw_support & 128U) == 0U) { return (0); } else { } h->events = readl((void const volatile *)(& (h->cfgtable)->event_notify)); return ((int )h->events & -1073741774); } } static int hpsa_offline_devices_ready(struct ctlr_info *h ) { unsigned long flags ; struct offline_device_entry *d ; struct list_head *this ; struct list_head *tmp ; raw_spinlock_t *tmp___0 ; struct list_head const *__mptr ; raw_spinlock_t *tmp___1 ; int tmp___2 ; raw_spinlock_t *tmp___3 ; { tmp___0 = spinlock_check(& h->offline_device_lock); flags = _raw_spin_lock_irqsave(tmp___0); this = h->offline_device_list.next; tmp = this->next; goto ldv_42663; ldv_42662: __mptr = (struct list_head const *)this; d = (struct offline_device_entry *)__mptr + 0xfffffffffffffff8UL; spin_unlock_irqrestore(& h->offline_device_lock, flags); tmp___2 = hpsa_volume_offline(h, (unsigned char *)(& d->scsi3addr)); if (tmp___2 == 0) { tmp___1 = spinlock_check(& h->offline_device_lock); flags = _raw_spin_lock_irqsave(tmp___1); list_del(& d->offline_list); spin_unlock_irqrestore(& h->offline_device_lock, flags); return (1); } else { } tmp___3 = spinlock_check(& h->offline_device_lock); flags = _raw_spin_lock_irqsave(tmp___3); this = tmp; tmp = this->next; ldv_42663: ; if ((unsigned long )(& h->offline_device_list) != (unsigned long )this) { goto ldv_42662; } else { } spin_unlock_irqrestore(& h->offline_device_lock, flags); return (0); } } static void hpsa_rescan_ctlr_worker(struct work_struct *work ) { unsigned long flags ; struct ctlr_info *h ; struct delayed_work const *__mptr ; struct delayed_work *tmp ; int tmp___0 ; int tmp___1 ; raw_spinlock_t *tmp___2 ; { tmp = to_delayed_work(work); __mptr = (struct delayed_work const *)tmp; h = (struct ctlr_info *)__mptr + 0xffffffffffffb248UL; if (h->remove_in_progress != 0) { return; } else { } tmp___0 = hpsa_ctlr_needs_rescan(h); if (tmp___0 != 0) { scsi_host_get(h->scsi_host); hpsa_ack_ctlr_events(h); hpsa_scan_start(h->scsi_host); scsi_host_put(h->scsi_host); } else { tmp___1 = hpsa_offline_devices_ready(h); if (tmp___1 != 0) { scsi_host_get(h->scsi_host); hpsa_ack_ctlr_events(h); hpsa_scan_start(h->scsi_host); scsi_host_put(h->scsi_host); } else { } } tmp___2 = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp___2); if (h->remove_in_progress == 0) { queue_delayed_work(h->rescan_ctlr_wq, & h->rescan_ctlr_work, (unsigned long )h->heartbeat_sample_interval); } else { } spin_unlock_irqrestore(& h->lock, flags); return; } } static void hpsa_monitor_ctlr_worker(struct work_struct *work ) { unsigned long flags ; struct ctlr_info *h ; struct delayed_work const *__mptr ; struct delayed_work *tmp ; u32 tmp___0 ; raw_spinlock_t *tmp___1 ; { tmp = to_delayed_work(work); __mptr = (struct delayed_work const *)tmp; h = (struct ctlr_info *)__mptr + 0xffffffffffffb328UL; detect_controller_lockup(h); tmp___0 = lockup_detected(h); if (tmp___0 != 0U) { return; } else { } tmp___1 = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp___1); if (h->remove_in_progress == 0) { schedule_delayed_work(& h->monitor_ctlr_work, (unsigned long )h->heartbeat_sample_interval); } else { } spin_unlock_irqrestore(& h->lock, flags); return; } } static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h , char *name ) { struct workqueue_struct *wq ; struct lock_class_key __key ; char const *__lock_name ; struct workqueue_struct *tmp ; { wq = (struct workqueue_struct *)0; __lock_name = "\"%s_%d_hpsa\"name, h->ctlr"; tmp = __alloc_workqueue_key("%s_%d_hpsa", 131074U, 1, & __key, __lock_name, name, h->ctlr); wq = tmp; if ((unsigned long )wq == (unsigned long )((struct workqueue_struct *)0)) { dev_err((struct device const *)(& (h->pdev)->dev), "failed to create %s workqueue\n", name); } else { } return (wq); } } static int hpsa_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { int dac ; int rc ; struct ctlr_info *h ; int try_soft_reset ; unsigned long flags ; u32 board_id ; void *tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; void *tmp___0 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; struct lock_class_key __key___4 ; struct lock_class_key __key___5 ; struct lock_class_key __key___6 ; raw_spinlock_t *tmp___1 ; struct lock_class_key __key___7 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___8 ; struct lock_class_key __key___9 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___10 ; { try_soft_reset = 0; if (number_of_controllers == 0) { printk("\016HP HPSA Driver (v 3.4.10-0)\n"); } else { } rc = hpsa_lookup_board_id(pdev, & board_id); if (rc < 0) { dev_warn((struct device const *)(& pdev->dev), "Board ID not found\n"); return (rc); } else { } rc = hpsa_init_reset_devices(pdev, board_id); if (rc != 0) { if (rc != -524) { return (rc); } else { } try_soft_reset = 1; rc = 0; } else { } reinit_after_soft_reset: tmp = kzalloc(21688UL, 208U); h = (struct ctlr_info *)tmp; if ((unsigned long )h == (unsigned long )((struct ctlr_info *)0)) { dev_err((struct device const *)(& pdev->dev), "Failed to allocate controller head\n"); return (-12); } else { } h->pdev = pdev; h->intr_mode = hpsa_simple_mode != 0 ? 2 : 0; INIT_LIST_HEAD(& h->offline_device_list); spinlock_check(& h->lock); __raw_spin_lock_init(& h->lock.__annonCompField17.rlock, "&(&h->lock)->rlock", & __key); spinlock_check(& h->offline_device_lock); __raw_spin_lock_init(& h->offline_device_lock.__annonCompField17.rlock, "&(&h->offline_device_lock)->rlock", & __key___0); spinlock_check(& h->scan_lock); __raw_spin_lock_init(& h->scan_lock.__annonCompField17.rlock, "&(&h->scan_lock)->rlock", & __key___1); atomic_set(& h->passthru_cmds_avail, 10); atomic_set(& h->abort_cmds_available, 2); tmp___0 = __alloc_percpu(4UL, 4UL); h->lockup_detected = (u32 *)tmp___0; if ((unsigned long )h->lockup_detected == (unsigned long )((u32 *)0U)) { dev_err((struct device const *)(& (h->pdev)->dev), "Failed to allocate lockup detector\n"); rc = -12; goto clean1; } else { } set_lockup_detected_for_all_cpus(h, 0U); rc = hpsa_pci_init(h); if (rc != 0) { goto clean2; } else { } rc = hpsa_scsi_host_alloc(h); if (rc != 0) { goto clean2_5; } else { } sprintf((char *)(& h->devname), "hpsa%d", (h->scsi_host)->host_no); h->ctlr = number_of_controllers; number_of_controllers = number_of_controllers + 1; rc = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); if (rc == 0) { dac = 1; } else { rc = pci_set_dma_mask(pdev, 4294967295ULL); if (rc == 0) { dac = 0; } else { dev_err((struct device const *)(& pdev->dev), "no suitable DMA available\n"); goto clean3; } } (*(h->access.set_intr_mask))(h, 0UL); rc = hpsa_request_irqs(h, & do_hpsa_intr_msi, & do_hpsa_intr_intx); if (rc != 0) { goto clean3; } else { } rc = hpsa_alloc_cmd_pool(h); if (rc != 0) { goto clean4; } else { } rc = hpsa_alloc_sg_chain_blocks(h); if (rc != 0) { goto clean5; } else { } __init_waitqueue_head(& h->scan_wait_queue, "&h->scan_wait_queue", & __key___2); __init_waitqueue_head(& h->abort_cmd_wait_queue, "&h->abort_cmd_wait_queue", & __key___3); __init_waitqueue_head(& h->event_sync_wait_queue, "&h->event_sync_wait_queue", & __key___4); __mutex_init(& h->reset_mutex, "&h->reset_mutex", & __key___5); h->scan_finished = 1; pci_set_drvdata(pdev, (void *)h); h->ndevices = 0; h->hba_mode_enabled = 0; spinlock_check(& h->devlock); __raw_spin_lock_init(& h->devlock.__annonCompField17.rlock, "&(&h->devlock)->rlock", & __key___6); rc = hpsa_put_ctlr_into_performant_mode(h); if (rc != 0) { goto clean6; } else { } rc = hpsa_scsi_add_host(h); if (rc != 0) { goto clean7; } else { } h->rescan_ctlr_wq = hpsa_create_controller_wq(h, (char *)"rescan"); if ((unsigned long )h->rescan_ctlr_wq == (unsigned long )((struct workqueue_struct *)0)) { rc = -12; goto clean7; } else { } h->resubmit_wq = hpsa_create_controller_wq(h, (char *)"resubmit"); if ((unsigned long )h->resubmit_wq == (unsigned long )((struct workqueue_struct *)0)) { rc = -12; goto clean7; } else { } if (try_soft_reset != 0) { tmp___1 = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp___1); (*(h->access.set_intr_mask))(h, 0UL); spin_unlock_irqrestore(& h->lock, flags); hpsa_free_irqs(h); rc = hpsa_request_irqs(h, & hpsa_msix_discard_completions, & hpsa_intx_discard_completions); if (rc != 0) { dev_warn((struct device const *)(& (h->pdev)->dev), "Failed to request_irq after soft reset.\n"); hpsa_free_performant_mode(h); hpsa_free_sg_chain_blocks(h); hpsa_free_cmd_pool(h); goto clean3; } else { } rc = hpsa_kdump_soft_reset(h); if (rc != 0) { goto clean9; } else { } _dev_info((struct device const *)(& (h->pdev)->dev), "Board READY.\n"); _dev_info((struct device const *)(& (h->pdev)->dev), "Waiting for stale completions to drain.\n"); (*(h->access.set_intr_mask))(h, 1UL); msleep(10000U); (*(h->access.set_intr_mask))(h, 0UL); rc = controller_reset_failed(h->cfgtable); if (rc != 0) { _dev_info((struct device const *)(& (h->pdev)->dev), "Soft reset appears to have failed.\n"); } else { } hpsa_undo_allocations_after_kdump_soft_reset(h); try_soft_reset = 0; if (rc != 0) { return (-19); } else { } goto reinit_after_soft_reset; } else { } h->acciopath_status = 1; (*(h->access.set_intr_mask))(h, 1UL); hpsa_hba_inquiry(h); h->heartbeat_sample_interval = 7500U; __init_work(& h->monitor_ctlr_work.work, 0); __constr_expr_0.counter = 137438953408L; h->monitor_ctlr_work.work.data = __constr_expr_0; lockdep_init_map(& h->monitor_ctlr_work.work.lockdep_map, "(&(&h->monitor_ctlr_work)->work)", & __key___7, 0); INIT_LIST_HEAD(& h->monitor_ctlr_work.work.entry); h->monitor_ctlr_work.work.func = & hpsa_monitor_ctlr_worker; init_timer_key(& h->monitor_ctlr_work.timer, 2097152U, "(&(&h->monitor_ctlr_work)->timer)", & __key___8); h->monitor_ctlr_work.timer.function = & delayed_work_timer_fn; h->monitor_ctlr_work.timer.data = (unsigned long )(& h->monitor_ctlr_work); schedule_delayed_work(& h->monitor_ctlr_work, (unsigned long )h->heartbeat_sample_interval); __init_work(& h->rescan_ctlr_work.work, 0); __constr_expr_1.counter = 137438953408L; h->rescan_ctlr_work.work.data = __constr_expr_1; lockdep_init_map(& h->rescan_ctlr_work.work.lockdep_map, "(&(&h->rescan_ctlr_work)->work)", & __key___9, 0); INIT_LIST_HEAD(& h->rescan_ctlr_work.work.entry); h->rescan_ctlr_work.work.func = & hpsa_rescan_ctlr_worker; init_timer_key(& h->rescan_ctlr_work.timer, 2097152U, "(&(&h->rescan_ctlr_work)->timer)", & __key___10); h->rescan_ctlr_work.timer.function = & delayed_work_timer_fn; h->rescan_ctlr_work.timer.data = (unsigned long )(& h->rescan_ctlr_work); queue_delayed_work(h->rescan_ctlr_wq, & h->rescan_ctlr_work, (unsigned long )h->heartbeat_sample_interval); return (0); clean9: kfree((void const *)h->hba_inquiry_data); clean7: hpsa_free_performant_mode(h); (*(h->access.set_intr_mask))(h, 0UL); clean6: hpsa_free_sg_chain_blocks(h); clean5: hpsa_free_cmd_pool(h); clean4: hpsa_free_irqs(h); clean3: scsi_host_put(h->scsi_host); h->scsi_host = (struct Scsi_Host *)0; clean2_5: hpsa_free_pci_init(h); clean2: ; if ((unsigned long )h->lockup_detected != (unsigned long )((u32 *)0U)) { free_percpu((void *)h->lockup_detected); h->lockup_detected = (u32 *)0U; } else { } clean1: ; if ((unsigned long )h->resubmit_wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_26(h->resubmit_wq); h->resubmit_wq = (struct workqueue_struct *)0; } else { } if ((unsigned long )h->rescan_ctlr_wq != (unsigned long )((struct workqueue_struct *)0)) { ldv_destroy_workqueue_27(h->rescan_ctlr_wq); h->rescan_ctlr_wq = (struct workqueue_struct *)0; } else { } kfree((void const *)h); return (rc); } } static void hpsa_flush_cache(struct ctlr_info *h ) { char *flush_buf ; struct CommandList *c ; int rc ; u32 tmp ; long tmp___0 ; void *tmp___1 ; int tmp___2 ; { tmp = lockup_detected(h); tmp___0 = ldv__builtin_expect(tmp != 0U, 0L); if (tmp___0 != 0L) { return; } else { } tmp___1 = kzalloc(4UL, 208U); flush_buf = (char *)tmp___1; if ((unsigned long )flush_buf == (unsigned long )((char *)0)) { return; } else { } c = cmd_alloc(h); tmp___2 = fill_cmd(c, 1, h, (void *)flush_buf, 4UL, 0, (unsigned char *)"", 0); if (tmp___2 != 0) { goto out; } else { } rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 1, 0xffffffffffffffffUL); if (rc != 0) { goto out; } else { } if ((unsigned int )(c->err_info)->CommandStatus != 0U) { out: dev_warn((struct device const *)(& (h->pdev)->dev), "error flushing cache on controller\n"); } else { } cmd_free(h, c); kfree((void const *)flush_buf); return; } } static void hpsa_shutdown(struct pci_dev *pdev ) { struct ctlr_info *h ; void *tmp ; { tmp = pci_get_drvdata(pdev); h = (struct ctlr_info *)tmp; hpsa_flush_cache(h); (*(h->access.set_intr_mask))(h, 0UL); hpsa_free_irqs(h); hpsa_disable_interrupt_mode(h); return; } } static void hpsa_free_device_info(struct ctlr_info *h ) { int i ; { i = 0; goto ldv_42746; ldv_42745: kfree((void const *)h->dev[i]); h->dev[i] = (struct hpsa_scsi_dev_t *)0; i = i + 1; ldv_42746: ; if (h->ndevices > i) { goto ldv_42745; } else { } return; } } static void hpsa_remove_one(struct pci_dev *pdev ) { struct ctlr_info *h ; unsigned long flags ; void *tmp ; void *tmp___0 ; raw_spinlock_t *tmp___1 ; { tmp = pci_get_drvdata(pdev); if ((unsigned long )tmp == (unsigned long )((void *)0)) { dev_err((struct device const *)(& pdev->dev), "unable to remove device\n"); return; } else { } tmp___0 = pci_get_drvdata(pdev); h = (struct ctlr_info *)tmp___0; tmp___1 = spinlock_check(& h->lock); flags = _raw_spin_lock_irqsave(tmp___1); h->remove_in_progress = 1; spin_unlock_irqrestore(& h->lock, flags); ldv_cancel_delayed_work_sync_28(& h->monitor_ctlr_work); ldv_cancel_delayed_work_sync_29(& h->rescan_ctlr_work); ldv_destroy_workqueue_30(h->rescan_ctlr_wq); ldv_destroy_workqueue_31(h->resubmit_wq); hpsa_shutdown(pdev); hpsa_free_device_info(h); kfree((void const *)h->hba_inquiry_data); h->hba_inquiry_data = (unsigned char *)0U; if ((unsigned long )h->scsi_host != (unsigned long )((struct Scsi_Host *)0)) { ldv_scsi_remove_host_32(h->scsi_host); } else { } hpsa_free_ioaccel2_sg_chain_blocks(h); hpsa_free_performant_mode(h); hpsa_free_sg_chain_blocks(h); hpsa_free_cmd_pool(h); scsi_host_put(h->scsi_host); h->scsi_host = (struct Scsi_Host *)0; hpsa_free_pci_init(h); free_percpu((void *)h->lockup_detected); h->lockup_detected = (u32 *)0U; kfree((void const *)h); return; } } static int hpsa_suspend(struct pci_dev *pdev , pm_message_t state ) { { return (-38); } } static int hpsa_resume(struct pci_dev *pdev ) { { return (-38); } } static struct pci_driver hpsa_pci_driver = {{0, 0}, "hpsa", (struct pci_device_id const *)(& hpsa_pci_device_id), & hpsa_init_one, & hpsa_remove_one, & hpsa_suspend, 0, 0, & hpsa_resume, & hpsa_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static void calc_bucket_map(int *bucket , int num_buckets , int nsgs , int min_blocks , u32 *bucket_map ) { int i ; int j ; int b ; int size ; { i = 0; goto ldv_42779; ldv_42778: size = i + min_blocks; b = num_buckets; j = 0; goto ldv_42777; ldv_42776: ; if (*(bucket + (unsigned long )j) >= size) { b = j; goto ldv_42775; } else { } j = j + 1; ldv_42777: ; if (j < num_buckets) { goto ldv_42776; } else { } ldv_42775: *(bucket_map + (unsigned long )i) = (u32 )b; i = i + 1; ldv_42779: ; if (i <= nsgs) { goto ldv_42778; } else { } return; } } static int hpsa_enter_performant_mode(struct ctlr_info *h , u32 trans_support ) { int i ; unsigned long register_value ; unsigned long transMethod ; struct access_method access ; int bft[8U] ; int bft2[16U] ; int tmp ; unsigned int tmp___0 ; struct io_accel1_cmd *cp ; u64 cfg_offset ; u64 cfg_base_addr_index ; u32 bft2_offset ; u32 cfg_base_addr ; int rc ; void *tmp___1 ; int tmp___2 ; { transMethod = (unsigned long )((((long )trans_support & 536870912L) | 1073741828L) | ((long )trans_support & 384L)); access = SA5_performant_access; bft[0] = 5; bft[1] = 6; bft[2] = 8; bft[3] = 10; bft[4] = 12; bft[5] = 20; bft[6] = 28; bft[7] = 36; bft2[0] = 5; bft2[1] = 6; bft2[2] = 7; bft2[3] = 8; bft2[4] = 9; bft2[5] = 10; bft2[6] = 11; bft2[7] = 12; bft2[8] = 13; bft2[9] = 14; bft2[10] = 15; bft2[11] = 16; bft2[12] = 17; bft2[13] = 18; bft2[14] = 19; bft2[15] = 32; if (((long )trans_support & 384L) != 0L) { access = SA5_performant_access_no_read; } else { } i = 0; goto ldv_42792; ldv_42791: memset((void *)h->reply_queue[i].head, 0, h->reply_queue_size); i = i + 1; ldv_42792: ; if ((int )h->nreply_queues > i) { goto ldv_42791; } else { } bft[7] = 36; calc_bucket_map((int *)(& bft), 8, 32, 4, h->blockFetchTable); i = 0; goto ldv_42797; ldv_42796: writel((unsigned int )bft[i], (void volatile *)(& (h->transtable)->BlockFetch) + (unsigned long )i); i = i + 1; ldv_42797: ; if (i <= 7) { goto ldv_42796; } else { } writel((unsigned int )h->max_commands, (void volatile *)(& (h->transtable)->RepQSize)); writel((unsigned int )h->nreply_queues, (void volatile *)(& (h->transtable)->RepQCount)); writel(0U, (void volatile *)(& (h->transtable)->RepQCtrAddrLow32)); writel(0U, (void volatile *)(& (h->transtable)->RepQCtrAddrHigh32)); i = 0; goto ldv_42800; ldv_42799: writel(0U, (void volatile *)(& (h->transtable)->RepQAddr[i].upper)); writel((unsigned int )h->reply_queue[i].busaddr, (void volatile *)(& (h->transtable)->RepQAddr[i].lower)); i = i + 1; ldv_42800: ; if ((int )h->nreply_queues > i) { goto ldv_42799; } else { } writel(0U, (void volatile *)(& (h->cfgtable)->HostWrite.command_pool_addr_hi)); writel((unsigned int )transMethod, (void volatile *)(& (h->cfgtable)->HostWrite.TransportRequest)); if (((long )trans_support & 128L) != 0L) { access = SA5_ioaccel_mode1_access; writel(10U, (void volatile *)(& (h->cfgtable)->HostWrite.CoalIntDelay)); writel(4U, (void volatile *)(& (h->cfgtable)->HostWrite.CoalIntCount)); } else if (((long )trans_support & 256L) != 0L) { access = SA5_ioaccel_mode2_access; writel(10U, (void volatile *)(& (h->cfgtable)->HostWrite.CoalIntDelay)); writel(4U, (void volatile *)(& (h->cfgtable)->HostWrite.CoalIntCount)); } else { } writel(1U, (void volatile *)h->vaddr + 32U); tmp = hpsa_wait_for_mode_change_ack(h); if (tmp != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "performant mode problem - doorbell timeout\n"); return (-19); } else { } tmp___0 = readl((void const volatile *)(& (h->cfgtable)->TransportActive)); register_value = (unsigned long )tmp___0; if ((register_value & 4UL) == 0UL) { dev_err((struct device const *)(& (h->pdev)->dev), "performant mode problem - transport not active\n"); return (-19); } else { } h->access = access; h->transMethod = transMethod; if (((long )trans_support & 128L) == 0L && ((long )trans_support & 256L) == 0L) { return (0); } else { } if (((long )trans_support & 128L) != 0L) { i = 0; goto ldv_42803; ldv_42802: writel((unsigned int )i, (void volatile *)h->vaddr + 416U); h->reply_queue[i].current_entry = readl((void const volatile *)h->vaddr + 440U); i = i + 1; ldv_42803: ; if ((int )h->nreply_queues > i) { goto ldv_42802; } else { } bft[7] = h->ioaccel_maxsg + 8; calc_bucket_map((int *)(& bft), 8, h->ioaccel_maxsg, 8, h->ioaccel1_blockFetchTable); i = 0; goto ldv_42808; ldv_42807: memset((void *)h->reply_queue[i].head, 255, h->reply_queue_size); i = i + 1; ldv_42808: ; if ((int )h->nreply_queues > i) { goto ldv_42807; } else { } i = 0; goto ldv_42812; ldv_42811: cp = h->ioaccel_cmd_pool + (unsigned long )i; cp->function = 0U; cp->err_info = (unsigned int )h->errinfo_pool_dhandle + (unsigned int )((unsigned long )i) * 48U; cp->err_info_len = 48U; cp->sgl_offset = 32U; cp->host_context_flags = 19U; cp->timeout_sec = 0U; cp->ReplyQueue = 0U; cp->tag = (unsigned long long )(i << 4); cp->host_addr = h->ioaccel_cmd_pool_dhandle + (unsigned long long )((unsigned long )i * 512UL); i = i + 1; ldv_42812: ; if (h->nr_cmds > i) { goto ldv_42811; } else { } } else if (((long )trans_support & 256L) != 0L) { rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, & cfg_base_addr, & cfg_base_addr_index, & cfg_offset); bft2[15] = h->ioaccel_maxsg + 4; calc_bucket_map((int *)(& bft2), 16, h->ioaccel_maxsg, 4, h->ioaccel2_blockFetchTable); bft2_offset = readl((void const volatile *)(& (h->cfgtable)->io_accel_request_size_offset)); tmp___1 = remap_pci_mem((ulong )(((h->pdev)->resource[cfg_base_addr_index].start + cfg_offset) + (unsigned long long )bft2_offset), 64UL); h->ioaccel2_bft2_regs = (u32 *)tmp___1; i = 0; goto ldv_42826; ldv_42825: writel((unsigned int )bft2[i], (void volatile *)h->ioaccel2_bft2_regs + (unsigned long )i); i = i + 1; ldv_42826: ; if ((unsigned int )i <= 15U) { goto ldv_42825; } else { } } else { } writel(1U, (void volatile *)h->vaddr + 32U); tmp___2 = hpsa_wait_for_mode_change_ack(h); if (tmp___2 != 0) { dev_err((struct device const *)(& (h->pdev)->dev), "performant mode problem - enabling ioaccel mode\n"); return (-19); } else { } return (0); } } static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h ) { { if ((unsigned long )h->ioaccel_cmd_pool != (unsigned long )((struct io_accel1_cmd *)0)) { pci_free_consistent(h->pdev, (unsigned long )h->nr_cmds * 512UL, (void *)h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle); h->ioaccel_cmd_pool = (struct io_accel1_cmd *)0; h->ioaccel_cmd_pool_dhandle = 0ULL; } else { } kfree((void const *)h->ioaccel1_blockFetchTable); h->ioaccel1_blockFetchTable = (u32 *)0U; return; } } static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h ) { unsigned int tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = readl((void const volatile *)(& (h->cfgtable)->io_accel_max_embedded_sg_count)); h->ioaccel_maxsg = (int )tmp; if (h->ioaccel_maxsg > 24) { h->ioaccel_maxsg = 24; } else { } tmp___0 = pci_alloc_consistent(h->pdev, (unsigned long )h->nr_cmds * 512UL, & h->ioaccel_cmd_pool_dhandle); h->ioaccel_cmd_pool = (struct io_accel1_cmd *)tmp___0; tmp___1 = kmalloc((unsigned long )(h->ioaccel_maxsg + 1) * 4UL, 208U); h->ioaccel1_blockFetchTable = (u32 *)tmp___1; if ((unsigned long )h->ioaccel_cmd_pool == (unsigned long )((struct io_accel1_cmd *)0) || (unsigned long )h->ioaccel1_blockFetchTable == (unsigned long )((u32 *)0U)) { goto clean_up; } else { } memset((void *)h->ioaccel_cmd_pool, 0, (unsigned long )h->nr_cmds * 512UL); return (0); clean_up: hpsa_free_ioaccel1_cmd_and_bft(h); return (-12); } } static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h ) { { hpsa_free_ioaccel2_sg_chain_blocks(h); if ((unsigned long )h->ioaccel2_cmd_pool != (unsigned long )((struct io_accel2_cmd *)0)) { pci_free_consistent(h->pdev, (unsigned long )h->nr_cmds * 640UL, (void *)h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle); h->ioaccel2_cmd_pool = (struct io_accel2_cmd *)0; h->ioaccel2_cmd_pool_dhandle = 0ULL; } else { } kfree((void const *)h->ioaccel2_blockFetchTable); h->ioaccel2_blockFetchTable = (u32 *)0U; return; } } static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h ) { int rc ; unsigned int tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = readl((void const volatile *)(& (h->cfgtable)->io_accel_max_embedded_sg_count)); h->ioaccel_maxsg = (int )tmp; if (h->ioaccel_maxsg > 28) { h->ioaccel_maxsg = 28; } else { } tmp___0 = pci_alloc_consistent(h->pdev, (unsigned long )h->nr_cmds * 640UL, & h->ioaccel2_cmd_pool_dhandle); h->ioaccel2_cmd_pool = (struct io_accel2_cmd *)tmp___0; tmp___1 = kmalloc((unsigned long )(h->ioaccel_maxsg + 1) * 4UL, 208U); h->ioaccel2_blockFetchTable = (u32 *)tmp___1; if ((unsigned long )h->ioaccel2_cmd_pool == (unsigned long )((struct io_accel2_cmd *)0) || (unsigned long )h->ioaccel2_blockFetchTable == (unsigned long )((u32 *)0U)) { rc = -12; goto clean_up; } else { } rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); if (rc != 0) { goto clean_up; } else { } memset((void *)h->ioaccel2_cmd_pool, 0, (unsigned long )h->nr_cmds * 640UL); return (0); clean_up: hpsa_free_ioaccel2_cmd_and_bft(h); return (rc); } } static void hpsa_free_performant_mode(struct ctlr_info *h ) { { kfree((void const *)h->blockFetchTable); h->blockFetchTable = (u32 *)0U; hpsa_free_reply_queues(h); hpsa_free_ioaccel1_cmd_and_bft(h); hpsa_free_ioaccel2_cmd_and_bft(h); return; } } static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h ) { u32 trans_support ; unsigned long transMethod ; int i ; int rc ; void *tmp ; void *tmp___0 ; { transMethod = 536870916UL; if (hpsa_simple_mode != 0) { return (0); } else { } trans_support = readl((void const volatile *)(& (h->cfgtable)->TransportSupport)); if ((trans_support & 4U) == 0U) { return (0); } else { } if (((long )trans_support & 128L) != 0L) { transMethod = transMethod | 1073741952UL; rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); if (rc != 0) { return (rc); } else { } } else if (((long )trans_support & 256L) != 0L) { transMethod = transMethod | 1073742080UL; rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); if (rc != 0) { return (rc); } else { } } else { } h->nreply_queues = h->msix_vector != 0U ? (u8 )h->msix_vector : 1U; hpsa_get_max_perf_mode_cmds(h); h->reply_queue_size = (unsigned long )h->max_commands * 8UL; i = 0; goto ldv_42855; ldv_42854: tmp = pci_alloc_consistent(h->pdev, h->reply_queue_size, & h->reply_queue[i].busaddr); h->reply_queue[i].head = (u64 *)tmp; if ((unsigned long )h->reply_queue[i].head == (unsigned long )((u64 *)0ULL)) { rc = -12; goto clean1; } else { } h->reply_queue[i].size = (size_t )h->max_commands; h->reply_queue[i].wraparound = 1U; h->reply_queue[i].current_entry = 0U; i = i + 1; ldv_42855: ; if ((int )h->nreply_queues > i) { goto ldv_42854; } else { } tmp___0 = kmalloc(132UL, 208U); h->blockFetchTable = (u32 *)tmp___0; if ((unsigned long )h->blockFetchTable == (unsigned long )((u32 *)0U)) { rc = -12; goto clean1; } else { } rc = hpsa_enter_performant_mode(h, trans_support); if (rc != 0) { goto clean2; } else { } return (0); clean2: kfree((void const *)h->blockFetchTable); h->blockFetchTable = (u32 *)0U; clean1: hpsa_free_reply_queues(h); hpsa_free_ioaccel1_cmd_and_bft(h); hpsa_free_ioaccel2_cmd_and_bft(h); return (rc); } } static int is_accelerated_cmd(struct CommandList *c ) { { return (c->cmd_type == 4 || c->cmd_type == 5); } } static void hpsa_drain_accel_commands(struct ctlr_info *h ) { struct CommandList *c ; int i ; int accel_cmds_out ; int refcount ; int tmp ; { c = (struct CommandList *)0; ldv_42872: accel_cmds_out = 0; i = 0; goto ldv_42869; ldv_42868: c = h->cmd_pool + (unsigned long )i; refcount = atomic_add_return(1, & c->refcount); if (refcount > 1) { tmp = is_accelerated_cmd(c); accel_cmds_out = tmp + accel_cmds_out; } else { } cmd_free(h, c); i = i + 1; ldv_42869: ; if (h->nr_cmds > i) { goto ldv_42868; } else { } if (accel_cmds_out <= 0) { goto ldv_42871; } else { } msleep(100U); goto ldv_42872; ldv_42871: ; return; } } static int hpsa_init(void) { int tmp ; { tmp = ldv___pci_register_driver_33(& hpsa_pci_driver, & __this_module, "hpsa"); return (tmp); } } static void hpsa_cleanup(void) { { ldv_pci_unregister_driver_34(& hpsa_pci_driver); return; } } int ldv_retval_2 ; extern int ldv_suspend_late_4(void) ; int ldv_retval_5 ; int ldv_retval_0 ; int ldv_retval_4 ; extern void ldv_initialize(void) ; int ldv_retval_1 ; void ldv_check_final_state(void) ; int ldv_retval_3 ; extern int ldv_resume_early_4(void) ; void ldv_initialize_device_attribute_12(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_init_zalloc(48UL); dev_attr_hp_ssd_smart_path_status_group0 = (struct device_attribute *)tmp; tmp___0 = ldv_init_zalloc(1416UL); dev_attr_hp_ssd_smart_path_status_group1 = (struct device *)tmp___0; return; } } void work_init_3(void) { { ldv_work_3_0 = 0; ldv_work_3_1 = 0; ldv_work_3_2 = 0; ldv_work_3_3 = 0; return; } } void call_and_disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 2 || ldv_work_1_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_0) { hpsa_command_resubmit_worker(work); ldv_work_1_0 = 1; return; } else { } if ((ldv_work_1_1 == 2 || ldv_work_1_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_1) { hpsa_command_resubmit_worker(work); ldv_work_1_1 = 1; return; } else { } if ((ldv_work_1_2 == 2 || ldv_work_1_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_2) { hpsa_command_resubmit_worker(work); ldv_work_1_2 = 1; return; } else { } if ((ldv_work_1_3 == 2 || ldv_work_1_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_1_3) { hpsa_command_resubmit_worker(work); ldv_work_1_3 = 1; return; } else { } return; } } void ldv_initialize_access_method_22(void) { void *tmp ; { tmp = ldv_init_zalloc(21688UL); SA5_access_group0 = (struct ctlr_info *)tmp; return; } } void work_init_2(void) { { ldv_work_2_0 = 0; ldv_work_2_1 = 0; ldv_work_2_2 = 0; ldv_work_2_3 = 0; return; } } void call_and_disable_all_2(int state ) { { if (ldv_work_2_0 == state) { call_and_disable_work_2(ldv_work_struct_2_0); } else { } if (ldv_work_2_1 == state) { call_and_disable_work_2(ldv_work_struct_2_1); } else { } if (ldv_work_2_2 == state) { call_and_disable_work_2(ldv_work_struct_2_2); } else { } if (ldv_work_2_3 == state) { call_and_disable_work_2(ldv_work_struct_2_3); } else { } return; } } void call_and_disable_all_1(int state ) { { if (ldv_work_1_0 == state) { call_and_disable_work_1(ldv_work_struct_1_0); } else { } if (ldv_work_1_1 == state) { call_and_disable_work_1(ldv_work_struct_1_1); } else { } if (ldv_work_1_2 == state) { call_and_disable_work_1(ldv_work_struct_1_2); } else { } if (ldv_work_1_3 == state) { call_and_disable_work_1(ldv_work_struct_1_3); } else { } return; } } void activate_work_2(struct work_struct *work , int state ) { { if (ldv_work_2_0 == 0) { ldv_work_struct_2_0 = work; ldv_work_2_0 = state; return; } else { } if (ldv_work_2_1 == 0) { ldv_work_struct_2_1 = work; ldv_work_2_1 = state; return; } else { } if (ldv_work_2_2 == 0) { ldv_work_struct_2_2 = work; ldv_work_2_2 = state; return; } else { } if (ldv_work_2_3 == 0) { ldv_work_struct_2_3 = work; ldv_work_2_3 = state; return; } else { } return; } } void activate_work_3(struct work_struct *work , int state ) { { if (ldv_work_3_0 == 0) { ldv_work_struct_3_0 = work; ldv_work_3_0 = state; return; } else { } if (ldv_work_3_1 == 0) { ldv_work_struct_3_1 = work; ldv_work_3_1 = state; return; } else { } if (ldv_work_3_2 == 0) { ldv_work_struct_3_2 = work; ldv_work_3_2 = state; return; } else { } if (ldv_work_3_3 == 0) { ldv_work_struct_3_3 = work; ldv_work_3_3 = state; return; } else { } return; } } void ldv_initialize_scsi_host_template_5(void) { void *tmp___0 ; { hpsa_driver_template_group0 = ldv_malloc(sizeof(struct scsi_cmnd)); tmp___0 = ldv_init_zalloc(3816UL); hpsa_driver_template_group1 = (struct Scsi_Host *)tmp___0; hpsa_driver_template_group2 = ldv_malloc(sizeof(struct scsi_device)); return; } } void ldv_initialize_access_method_20(void) { void *tmp ; { tmp = ldv_init_zalloc(21688UL); SA5_ioaccel_mode2_access_group0 = (struct ctlr_info *)tmp; return; } } void ldv_pci_driver_4(void) { void *tmp ; { tmp = ldv_init_zalloc(2976UL); hpsa_pci_driver_group1 = (struct pci_dev *)tmp; return; } } void activate_work_1(struct work_struct *work , int state ) { { if (ldv_work_1_0 == 0) { ldv_work_struct_1_0 = work; ldv_work_1_0 = state; return; } else { } if (ldv_work_1_1 == 0) { ldv_work_struct_1_1 = work; ldv_work_1_1 = state; return; } else { } if (ldv_work_1_2 == 0) { ldv_work_struct_1_2 = work; ldv_work_1_2 = state; return; } else { } if (ldv_work_1_3 == 0) { ldv_work_struct_1_3 = work; ldv_work_1_3 = state; return; } else { } return; } } void call_and_disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 2 || ldv_work_3_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_0) { hpsa_rescan_ctlr_worker(work); ldv_work_3_0 = 1; return; } else { } if ((ldv_work_3_1 == 2 || ldv_work_3_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_1) { hpsa_rescan_ctlr_worker(work); ldv_work_3_1 = 1; return; } else { } if ((ldv_work_3_2 == 2 || ldv_work_3_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_2) { hpsa_rescan_ctlr_worker(work); ldv_work_3_2 = 1; return; } else { } if ((ldv_work_3_3 == 2 || ldv_work_3_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_3) { hpsa_rescan_ctlr_worker(work); ldv_work_3_3 = 1; return; } else { } return; } } void disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 3 || ldv_work_3_0 == 2) && (unsigned long )ldv_work_struct_3_0 == (unsigned long )work) { ldv_work_3_0 = 1; } else { } if ((ldv_work_3_1 == 3 || ldv_work_3_1 == 2) && (unsigned long )ldv_work_struct_3_1 == (unsigned long )work) { ldv_work_3_1 = 1; } else { } if ((ldv_work_3_2 == 3 || ldv_work_3_2 == 2) && (unsigned long )ldv_work_struct_3_2 == (unsigned long )work) { ldv_work_3_2 = 1; } else { } if ((ldv_work_3_3 == 3 || ldv_work_3_3 == 2) && (unsigned long )ldv_work_struct_3_3 == (unsigned long )work) { ldv_work_3_3 = 1; } else { } return; } } void disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 3 || ldv_work_2_0 == 2) && (unsigned long )ldv_work_struct_2_0 == (unsigned long )work) { ldv_work_2_0 = 1; } else { } if ((ldv_work_2_1 == 3 || ldv_work_2_1 == 2) && (unsigned long )ldv_work_struct_2_1 == (unsigned long )work) { ldv_work_2_1 = 1; } else { } if ((ldv_work_2_2 == 3 || ldv_work_2_2 == 2) && (unsigned long )ldv_work_struct_2_2 == (unsigned long )work) { ldv_work_2_2 = 1; } else { } if ((ldv_work_2_3 == 3 || ldv_work_2_3 == 2) && (unsigned long )ldv_work_struct_2_3 == (unsigned long )work) { ldv_work_2_3 = 1; } else { } return; } } void disable_work_1(struct work_struct *work ) { { if ((ldv_work_1_0 == 3 || ldv_work_1_0 == 2) && (unsigned long )ldv_work_struct_1_0 == (unsigned long )work) { ldv_work_1_0 = 1; } else { } if ((ldv_work_1_1 == 3 || ldv_work_1_1 == 2) && (unsigned long )ldv_work_struct_1_1 == (unsigned long )work) { ldv_work_1_1 = 1; } else { } if ((ldv_work_1_2 == 3 || ldv_work_1_2 == 2) && (unsigned long )ldv_work_struct_1_2 == (unsigned long )work) { ldv_work_1_2 = 1; } else { } if ((ldv_work_1_3 == 3 || ldv_work_1_3 == 2) && (unsigned long )ldv_work_struct_1_3 == (unsigned long )work) { ldv_work_1_3 = 1; } else { } return; } } void invoke_work_3(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_3_0 == 2 || ldv_work_3_0 == 3) { ldv_work_3_0 = 4; hpsa_rescan_ctlr_worker(ldv_work_struct_3_0); ldv_work_3_0 = 1; } else { } goto ldv_42970; case 1: ; if (ldv_work_3_1 == 2 || ldv_work_3_1 == 3) { ldv_work_3_1 = 4; hpsa_rescan_ctlr_worker(ldv_work_struct_3_0); ldv_work_3_1 = 1; } else { } goto ldv_42970; case 2: ; if (ldv_work_3_2 == 2 || ldv_work_3_2 == 3) { ldv_work_3_2 = 4; hpsa_rescan_ctlr_worker(ldv_work_struct_3_0); ldv_work_3_2 = 1; } else { } goto ldv_42970; case 3: ; if (ldv_work_3_3 == 2 || ldv_work_3_3 == 3) { ldv_work_3_3 = 4; hpsa_rescan_ctlr_worker(ldv_work_struct_3_0); ldv_work_3_3 = 1; } else { } goto ldv_42970; default: ldv_stop(); } ldv_42970: ; return; } } void work_init_1(void) { { ldv_work_1_0 = 0; ldv_work_1_1 = 0; ldv_work_1_2 = 0; ldv_work_1_3 = 0; return; } } void ldv_initialize_access_method_18(void) { void *tmp ; { tmp = ldv_init_zalloc(21688UL); SA5_performant_access_no_read_group0 = (struct ctlr_info *)tmp; return; } } void invoke_work_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_1_0 == 2 || ldv_work_1_0 == 3) { ldv_work_1_0 = 4; hpsa_command_resubmit_worker(ldv_work_struct_1_0); ldv_work_1_0 = 1; } else { } goto ldv_42987; case 1: ; if (ldv_work_1_1 == 2 || ldv_work_1_1 == 3) { ldv_work_1_1 = 4; hpsa_command_resubmit_worker(ldv_work_struct_1_0); ldv_work_1_1 = 1; } else { } goto ldv_42987; case 2: ; if (ldv_work_1_2 == 2 || ldv_work_1_2 == 3) { ldv_work_1_2 = 4; hpsa_command_resubmit_worker(ldv_work_struct_1_0); ldv_work_1_2 = 1; } else { } goto ldv_42987; case 3: ; if (ldv_work_1_3 == 2 || ldv_work_1_3 == 3) { ldv_work_1_3 = 4; hpsa_command_resubmit_worker(ldv_work_struct_1_0); ldv_work_1_3 = 1; } else { } goto ldv_42987; default: ldv_stop(); } ldv_42987: ; return; } } void call_and_disable_all_3(int state ) { { if (ldv_work_3_0 == state) { call_and_disable_work_3(ldv_work_struct_3_0); } else { } if (ldv_work_3_1 == state) { call_and_disable_work_3(ldv_work_struct_3_1); } else { } if (ldv_work_3_2 == state) { call_and_disable_work_3(ldv_work_struct_3_2); } else { } if (ldv_work_3_3 == state) { call_and_disable_work_3(ldv_work_struct_3_3); } else { } return; } } void ldv_initialize_access_method_21(void) { void *tmp ; { tmp = ldv_init_zalloc(21688UL); SA5_ioaccel_mode1_access_group0 = (struct ctlr_info *)tmp; return; } } void ldv_initialize_access_method_19(void) { void *tmp ; { tmp = ldv_init_zalloc(21688UL); SA5_performant_access_group0 = (struct ctlr_info *)tmp; return; } } void call_and_disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 2 || ldv_work_2_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_0) { hpsa_monitor_ctlr_worker(work); ldv_work_2_0 = 1; return; } else { } if ((ldv_work_2_1 == 2 || ldv_work_2_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_1) { hpsa_monitor_ctlr_worker(work); ldv_work_2_1 = 1; return; } else { } if ((ldv_work_2_2 == 2 || ldv_work_2_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_2) { hpsa_monitor_ctlr_worker(work); ldv_work_2_2 = 1; return; } else { } if ((ldv_work_2_3 == 2 || ldv_work_2_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_3) { hpsa_monitor_ctlr_worker(work); ldv_work_2_3 = 1; return; } else { } return; } } void invoke_work_2(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_2_0 == 2 || ldv_work_2_0 == 3) { ldv_work_2_0 = 4; hpsa_monitor_ctlr_worker(ldv_work_struct_2_0); ldv_work_2_0 = 1; } else { } goto ldv_43014; case 1: ; if (ldv_work_2_1 == 2 || ldv_work_2_1 == 3) { ldv_work_2_1 = 4; hpsa_monitor_ctlr_worker(ldv_work_struct_2_0); ldv_work_2_1 = 1; } else { } goto ldv_43014; case 2: ; if (ldv_work_2_2 == 2 || ldv_work_2_2 == 3) { ldv_work_2_2 = 4; hpsa_monitor_ctlr_worker(ldv_work_struct_2_0); ldv_work_2_2 = 1; } else { } goto ldv_43014; case 3: ; if (ldv_work_2_3 == 2 || ldv_work_2_3 == 3) { ldv_work_2_3 = 4; hpsa_monitor_ctlr_worker(ldv_work_struct_2_0); ldv_work_2_3 = 1; } else { } goto ldv_43014; default: ldv_stop(); } ldv_43014: ; return; } } int main(void) { struct device *ldvarg1 ; void *tmp ; struct device_attribute *ldvarg3 ; void *tmp___0 ; size_t ldvarg0 ; char *ldvarg2 ; void *tmp___1 ; unsigned long ldvarg4 ; struct CommandList *ldvarg5 ; void *tmp___2 ; u8 ldvarg6 ; char *ldvarg8 ; void *tmp___3 ; struct device *ldvarg7 ; void *tmp___4 ; struct device_attribute *ldvarg9 ; void *tmp___5 ; char *ldvarg11 ; void *tmp___6 ; struct device *ldvarg10 ; void *tmp___7 ; struct device_attribute *ldvarg12 ; void *tmp___8 ; struct CommandList *ldvarg14 ; void *tmp___9 ; unsigned long ldvarg13 ; u8 ldvarg15 ; u8 ldvarg18 ; struct CommandList *ldvarg17 ; void *tmp___10 ; unsigned long ldvarg16 ; struct device_attribute *ldvarg21 ; void *tmp___11 ; char *ldvarg20 ; void *tmp___12 ; struct device *ldvarg19 ; void *tmp___13 ; struct device_attribute *ldvarg24 ; void *tmp___14 ; char *ldvarg23 ; void *tmp___15 ; struct device *ldvarg22 ; void *tmp___16 ; struct device_attribute *ldvarg27 ; void *tmp___17 ; char *ldvarg26 ; void *tmp___18 ; struct device *ldvarg25 ; void *tmp___19 ; char *ldvarg29 ; void *tmp___20 ; struct device *ldvarg28 ; void *tmp___21 ; struct device_attribute *ldvarg30 ; void *tmp___22 ; size_t ldvarg32 ; char *ldvarg31 ; void *tmp___23 ; char *ldvarg33 ; void *tmp___24 ; struct CommandList *ldvarg35 ; void *tmp___25 ; u8 ldvarg36 ; unsigned long ldvarg34 ; char *ldvarg39 ; void *tmp___26 ; size_t ldvarg37 ; struct device_attribute *ldvarg40 ; void *tmp___27 ; struct device *ldvarg38 ; void *tmp___28 ; struct device *ldvarg41 ; void *tmp___29 ; struct device_attribute *ldvarg43 ; void *tmp___30 ; char *ldvarg42 ; void *tmp___31 ; char *ldvarg45 ; void *tmp___32 ; struct device *ldvarg44 ; void *tmp___33 ; struct device_attribute *ldvarg46 ; void *tmp___34 ; struct pci_device_id *ldvarg48 ; void *tmp___35 ; pm_message_t ldvarg47 ; u8 ldvarg51 ; unsigned long ldvarg49 ; struct CommandList *ldvarg50 ; void *tmp___36 ; struct device_attribute *ldvarg54 ; void *tmp___37 ; char *ldvarg53 ; void *tmp___38 ; struct device *ldvarg52 ; void *tmp___39 ; void *ldvarg57 ; void *tmp___40 ; int ldvarg58 ; unsigned long ldvarg60 ; void *ldvarg55 ; void *tmp___41 ; int ldvarg59 ; int ldvarg56 ; int tmp___42 ; int tmp___43 ; int tmp___44 ; int tmp___45 ; int tmp___46 ; int tmp___47 ; int tmp___48 ; int tmp___49 ; int tmp___50 ; int tmp___51 ; int tmp___52 ; int tmp___53 ; int tmp___54 ; int tmp___55 ; int tmp___56 ; int tmp___57 ; int tmp___58 ; int tmp___59 ; int tmp___60 ; int tmp___61 ; int tmp___62 ; { tmp = ldv_init_zalloc(1416UL); ldvarg1 = (struct device *)tmp; tmp___0 = ldv_init_zalloc(48UL); ldvarg3 = (struct device_attribute *)tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg2 = (char *)tmp___1; tmp___2 = ldv_init_zalloc(768UL); ldvarg5 = (struct CommandList *)tmp___2; tmp___3 = ldv_init_zalloc(1UL); ldvarg8 = (char *)tmp___3; tmp___4 = ldv_init_zalloc(1416UL); ldvarg7 = (struct device *)tmp___4; tmp___5 = ldv_init_zalloc(48UL); ldvarg9 = (struct device_attribute *)tmp___5; tmp___6 = ldv_init_zalloc(1UL); ldvarg11 = (char *)tmp___6; tmp___7 = ldv_init_zalloc(1416UL); ldvarg10 = (struct device *)tmp___7; tmp___8 = ldv_init_zalloc(48UL); ldvarg12 = (struct device_attribute *)tmp___8; tmp___9 = ldv_init_zalloc(768UL); ldvarg14 = (struct CommandList *)tmp___9; tmp___10 = ldv_init_zalloc(768UL); ldvarg17 = (struct CommandList *)tmp___10; tmp___11 = ldv_init_zalloc(48UL); ldvarg21 = (struct device_attribute *)tmp___11; tmp___12 = ldv_init_zalloc(1UL); ldvarg20 = (char *)tmp___12; tmp___13 = ldv_init_zalloc(1416UL); ldvarg19 = (struct device *)tmp___13; tmp___14 = ldv_init_zalloc(48UL); ldvarg24 = (struct device_attribute *)tmp___14; tmp___15 = ldv_init_zalloc(1UL); ldvarg23 = (char *)tmp___15; tmp___16 = ldv_init_zalloc(1416UL); ldvarg22 = (struct device *)tmp___16; tmp___17 = ldv_init_zalloc(48UL); ldvarg27 = (struct device_attribute *)tmp___17; tmp___18 = ldv_init_zalloc(1UL); ldvarg26 = (char *)tmp___18; tmp___19 = ldv_init_zalloc(1416UL); ldvarg25 = (struct device *)tmp___19; tmp___20 = ldv_init_zalloc(1UL); ldvarg29 = (char *)tmp___20; tmp___21 = ldv_init_zalloc(1416UL); ldvarg28 = (struct device *)tmp___21; tmp___22 = ldv_init_zalloc(48UL); ldvarg30 = (struct device_attribute *)tmp___22; tmp___23 = ldv_init_zalloc(1UL); ldvarg31 = (char *)tmp___23; tmp___24 = ldv_init_zalloc(1UL); ldvarg33 = (char *)tmp___24; tmp___25 = ldv_init_zalloc(768UL); ldvarg35 = (struct CommandList *)tmp___25; tmp___26 = ldv_init_zalloc(1UL); ldvarg39 = (char *)tmp___26; tmp___27 = ldv_init_zalloc(48UL); ldvarg40 = (struct device_attribute *)tmp___27; tmp___28 = ldv_init_zalloc(1416UL); ldvarg38 = (struct device *)tmp___28; tmp___29 = ldv_init_zalloc(1416UL); ldvarg41 = (struct device *)tmp___29; tmp___30 = ldv_init_zalloc(48UL); ldvarg43 = (struct device_attribute *)tmp___30; tmp___31 = ldv_init_zalloc(1UL); ldvarg42 = (char *)tmp___31; tmp___32 = ldv_init_zalloc(1UL); ldvarg45 = (char *)tmp___32; tmp___33 = ldv_init_zalloc(1416UL); ldvarg44 = (struct device *)tmp___33; tmp___34 = ldv_init_zalloc(48UL); ldvarg46 = (struct device_attribute *)tmp___34; tmp___35 = ldv_init_zalloc(32UL); ldvarg48 = (struct pci_device_id *)tmp___35; tmp___36 = ldv_init_zalloc(768UL); ldvarg50 = (struct CommandList *)tmp___36; tmp___37 = ldv_init_zalloc(48UL); ldvarg54 = (struct device_attribute *)tmp___37; tmp___38 = ldv_init_zalloc(1UL); ldvarg53 = (char *)tmp___38; tmp___39 = ldv_init_zalloc(1416UL); ldvarg52 = (struct device *)tmp___39; tmp___40 = ldv_init_zalloc(1UL); ldvarg57 = tmp___40; tmp___41 = ldv_init_zalloc(1UL); ldvarg55 = tmp___41; ldv_initialize(); ldv_memset((void *)(& ldvarg0), 0, 8UL); ldv_memset((void *)(& ldvarg4), 0, 8UL); ldv_memset((void *)(& ldvarg6), 0, 1UL); ldv_memset((void *)(& ldvarg13), 0, 8UL); ldv_memset((void *)(& ldvarg15), 0, 1UL); ldv_memset((void *)(& ldvarg18), 0, 1UL); ldv_memset((void *)(& ldvarg16), 0, 8UL); ldv_memset((void *)(& ldvarg32), 0, 8UL); ldv_memset((void *)(& ldvarg36), 0, 1UL); ldv_memset((void *)(& ldvarg34), 0, 8UL); ldv_memset((void *)(& ldvarg37), 0, 8UL); ldv_memset((void *)(& ldvarg47), 0, 4UL); ldv_memset((void *)(& ldvarg51), 0, 1UL); ldv_memset((void *)(& ldvarg49), 0, 8UL); ldv_memset((void *)(& ldvarg58), 0, 4UL); ldv_memset((void *)(& ldvarg60), 0, 8UL); ldv_memset((void *)(& ldvarg59), 0, 4UL); ldv_memset((void *)(& ldvarg56), 0, 4UL); ldv_state_variable_11 = 0; ldv_state_variable_21 = 0; ldv_state_variable_7 = 0; ldv_state_variable_17 = 0; work_init_2(); ldv_state_variable_2 = 1; ldv_state_variable_22 = 0; work_init_1(); ldv_state_variable_1 = 1; ldv_state_variable_18 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_16 = 0; ldv_state_variable_13 = 0; ldv_state_variable_6 = 0; work_init_3(); ldv_state_variable_3 = 1; ldv_state_variable_9 = 0; ldv_state_variable_12 = 0; ldv_state_variable_20 = 0; ldv_state_variable_14 = 0; ldv_state_variable_15 = 0; ldv_state_variable_8 = 0; ldv_state_variable_4 = 0; ldv_state_variable_19 = 0; ldv_state_variable_10 = 0; ldv_state_variable_5 = 0; ldv_43242: tmp___42 = __VERIFIER_nondet_int(); switch (tmp___42) { case 0: ; if (ldv_state_variable_11 != 0) { tmp___43 = __VERIFIER_nondet_int(); switch (tmp___43) { case 0: ; if (ldv_state_variable_11 == 1) { host_store_raid_offload_debug(ldvarg1, ldvarg3, (char const *)ldvarg2, ldvarg0); ldv_state_variable_11 = 1; } else { } goto ldv_43125; default: ldv_stop(); } ldv_43125: ; } else { } goto ldv_43127; case 1: ; if (ldv_state_variable_21 != 0) { tmp___44 = __VERIFIER_nondet_int(); switch (tmp___44) { case 0: ; if (ldv_state_variable_21 == 1) { SA5_ioaccel_mode1_intr_pending(SA5_ioaccel_mode1_access_group0); ldv_state_variable_21 = 1; } else { } goto ldv_43130; case 1: ; if (ldv_state_variable_21 == 1) { SA5_ioaccel_mode1_completed(SA5_ioaccel_mode1_access_group0, (int )ldvarg6); ldv_state_variable_21 = 1; } else { } goto ldv_43130; case 2: ; if (ldv_state_variable_21 == 1) { SA5_submit_command(SA5_ioaccel_mode1_access_group0, ldvarg5); ldv_state_variable_21 = 1; } else { } goto ldv_43130; case 3: ; if (ldv_state_variable_21 == 1) { SA5_performant_intr_mask(SA5_ioaccel_mode1_access_group0, ldvarg4); ldv_state_variable_21 = 1; } else { } goto ldv_43130; default: ldv_stop(); } ldv_43130: ; } else { } goto ldv_43127; case 2: ; if (ldv_state_variable_7 != 0) { tmp___45 = __VERIFIER_nondet_int(); switch (tmp___45) { case 0: ; if (ldv_state_variable_7 == 1) { host_show_resettable(ldvarg7, ldvarg9, ldvarg8); ldv_state_variable_7 = 1; } else { } goto ldv_43137; default: ldv_stop(); } ldv_43137: ; } else { } goto ldv_43127; case 3: ; if (ldv_state_variable_17 != 0) { tmp___46 = __VERIFIER_nondet_int(); switch (tmp___46) { case 0: ; if (ldv_state_variable_17 == 1) { raid_level_show(ldvarg10, ldvarg12, ldvarg11); ldv_state_variable_17 = 1; } else { } goto ldv_43141; default: ldv_stop(); } ldv_43141: ; } else { } goto ldv_43127; case 4: ; if (ldv_state_variable_2 != 0) { invoke_work_2(); } else { } goto ldv_43127; case 5: ; if (ldv_state_variable_22 != 0) { tmp___47 = __VERIFIER_nondet_int(); switch (tmp___47) { case 0: ; if (ldv_state_variable_22 == 1) { SA5_intr_pending(SA5_access_group0); ldv_state_variable_22 = 1; } else { } goto ldv_43146; case 1: ; if (ldv_state_variable_22 == 1) { SA5_completed(SA5_access_group0, (int )ldvarg15); ldv_state_variable_22 = 1; } else { } goto ldv_43146; case 2: ; if (ldv_state_variable_22 == 1) { SA5_submit_command(SA5_access_group0, ldvarg14); ldv_state_variable_22 = 1; } else { } goto ldv_43146; case 3: ; if (ldv_state_variable_22 == 1) { SA5_intr_mask(SA5_access_group0, ldvarg13); ldv_state_variable_22 = 1; } else { } goto ldv_43146; default: ldv_stop(); } ldv_43146: ; } else { } goto ldv_43127; case 6: ; if (ldv_state_variable_1 != 0) { invoke_work_1(); } else { } goto ldv_43127; case 7: ; if (ldv_state_variable_18 != 0) { tmp___48 = __VERIFIER_nondet_int(); switch (tmp___48) { case 0: ; if (ldv_state_variable_18 == 1) { SA5_performant_intr_pending(SA5_performant_access_no_read_group0); ldv_state_variable_18 = 1; } else { } goto ldv_43154; case 1: ; if (ldv_state_variable_18 == 1) { SA5_performant_completed(SA5_performant_access_no_read_group0, (int )ldvarg18); ldv_state_variable_18 = 1; } else { } goto ldv_43154; case 2: ; if (ldv_state_variable_18 == 1) { SA5_submit_command_no_read(SA5_performant_access_no_read_group0, ldvarg17); ldv_state_variable_18 = 1; } else { } goto ldv_43154; case 3: ; if (ldv_state_variable_18 == 1) { SA5_performant_intr_mask(SA5_performant_access_no_read_group0, ldvarg16); ldv_state_variable_18 = 1; } else { } goto ldv_43154; default: ldv_stop(); } ldv_43154: ; } else { } goto ldv_43127; case 8: ; if (ldv_state_variable_0 != 0) { tmp___49 = __VERIFIER_nondet_int(); switch (tmp___49) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { hpsa_cleanup(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_43162; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_0 = hpsa_init(); if (ldv_retval_0 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_19 = 1; ldv_initialize_access_method_19(); ldv_state_variable_10 = 1; ldv_state_variable_8 = 1; ldv_state_variable_20 = 1; ldv_initialize_access_method_20(); ldv_state_variable_15 = 1; ldv_state_variable_14 = 1; ldv_state_variable_12 = 1; ldv_initialize_device_attribute_12(); ldv_state_variable_9 = 1; ldv_state_variable_6 = 1; ldv_state_variable_13 = 1; ldv_state_variable_16 = 1; ldv_state_variable_18 = 1; ldv_initialize_access_method_18(); ldv_state_variable_22 = 1; ldv_initialize_access_method_22(); ldv_state_variable_17 = 1; ldv_state_variable_7 = 1; ldv_state_variable_21 = 1; ldv_initialize_access_method_21(); ldv_state_variable_11 = 1; } else { } if (ldv_retval_0 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_43162; default: ldv_stop(); } ldv_43162: ; } else { } goto ldv_43127; case 9: ; if (ldv_state_variable_16 != 0) { tmp___50 = __VERIFIER_nondet_int(); switch (tmp___50) { case 0: ; if (ldv_state_variable_16 == 1) { lunid_show(ldvarg19, ldvarg21, ldvarg20); ldv_state_variable_16 = 1; } else { } goto ldv_43167; default: ldv_stop(); } ldv_43167: ; } else { } goto ldv_43127; case 10: ; if (ldv_state_variable_13 != 0) { tmp___51 = __VERIFIER_nondet_int(); switch (tmp___51) { case 0: ; if (ldv_state_variable_13 == 1) { host_show_hp_ssd_smart_path_enabled(ldvarg22, ldvarg24, ldvarg23); ldv_state_variable_13 = 1; } else { } goto ldv_43171; default: ldv_stop(); } ldv_43171: ; } else { } goto ldv_43127; case 11: ; if (ldv_state_variable_6 != 0) { tmp___52 = __VERIFIER_nondet_int(); switch (tmp___52) { case 0: ; if (ldv_state_variable_6 == 1) { host_show_lockup_detected(ldvarg25, ldvarg27, ldvarg26); ldv_state_variable_6 = 1; } else { } goto ldv_43175; default: ldv_stop(); } ldv_43175: ; } else { } goto ldv_43127; case 12: ; if (ldv_state_variable_3 != 0) { invoke_work_3(); } else { } goto ldv_43127; case 13: ; if (ldv_state_variable_9 != 0) { tmp___53 = __VERIFIER_nondet_int(); switch (tmp___53) { case 0: ; if (ldv_state_variable_9 == 1) { host_show_commands_outstanding(ldvarg28, ldvarg30, ldvarg29); ldv_state_variable_9 = 1; } else { } goto ldv_43180; default: ldv_stop(); } ldv_43180: ; } else { } goto ldv_43127; case 14: ; if (ldv_state_variable_12 != 0) { tmp___54 = __VERIFIER_nondet_int(); switch (tmp___54) { case 0: ; if (ldv_state_variable_12 == 1) { host_store_hp_ssd_smart_path_status(dev_attr_hp_ssd_smart_path_status_group1, dev_attr_hp_ssd_smart_path_status_group0, (char const *)ldvarg33, ldvarg32); ldv_state_variable_12 = 1; } else { } goto ldv_43184; case 1: ; if (ldv_state_variable_12 == 1) { host_show_hp_ssd_smart_path_status(dev_attr_hp_ssd_smart_path_status_group1, dev_attr_hp_ssd_smart_path_status_group0, ldvarg31); ldv_state_variable_12 = 1; } else { } goto ldv_43184; default: ldv_stop(); } ldv_43184: ; } else { } goto ldv_43127; case 15: ; if (ldv_state_variable_20 != 0) { tmp___55 = __VERIFIER_nondet_int(); switch (tmp___55) { case 0: ; if (ldv_state_variable_20 == 1) { SA5_performant_intr_pending(SA5_ioaccel_mode2_access_group0); ldv_state_variable_20 = 1; } else { } goto ldv_43189; case 1: ; if (ldv_state_variable_20 == 1) { SA5_performant_completed(SA5_ioaccel_mode2_access_group0, (int )ldvarg36); ldv_state_variable_20 = 1; } else { } goto ldv_43189; case 2: ; if (ldv_state_variable_20 == 1) { SA5_submit_command_ioaccel2(SA5_ioaccel_mode2_access_group0, ldvarg35); ldv_state_variable_20 = 1; } else { } goto ldv_43189; case 3: ; if (ldv_state_variable_20 == 1) { SA5_performant_intr_mask(SA5_ioaccel_mode2_access_group0, ldvarg34); ldv_state_variable_20 = 1; } else { } goto ldv_43189; default: ldv_stop(); } ldv_43189: ; } else { } goto ldv_43127; case 16: ; if (ldv_state_variable_14 != 0) { tmp___56 = __VERIFIER_nondet_int(); switch (tmp___56) { case 0: ; if (ldv_state_variable_14 == 1) { host_store_rescan(ldvarg38, ldvarg40, (char const *)ldvarg39, ldvarg37); ldv_state_variable_14 = 1; } else { } goto ldv_43196; default: ldv_stop(); } ldv_43196: ; } else { } goto ldv_43127; case 17: ; if (ldv_state_variable_15 != 0) { tmp___57 = __VERIFIER_nondet_int(); switch (tmp___57) { case 0: ; if (ldv_state_variable_15 == 1) { unique_id_show(ldvarg41, ldvarg43, ldvarg42); ldv_state_variable_15 = 1; } else { } goto ldv_43200; default: ldv_stop(); } ldv_43200: ; } else { } goto ldv_43127; case 18: ; if (ldv_state_variable_8 != 0) { tmp___58 = __VERIFIER_nondet_int(); switch (tmp___58) { case 0: ; if (ldv_state_variable_8 == 1) { host_show_transport_mode(ldvarg44, ldvarg46, ldvarg45); ldv_state_variable_8 = 1; } else { } goto ldv_43204; default: ldv_stop(); } ldv_43204: ; } else { } goto ldv_43127; case 19: ; if (ldv_state_variable_4 != 0) { tmp___59 = __VERIFIER_nondet_int(); switch (tmp___59) { case 0: ; if (ldv_state_variable_4 == 1) { ldv_retval_5 = hpsa_init_one(hpsa_pci_driver_group1, (struct pci_device_id const *)ldvarg48); if (ldv_retval_5 == 0) { ldv_state_variable_4 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_43208; case 1: ; if (ldv_state_variable_4 == 4) { hpsa_shutdown(hpsa_pci_driver_group1); ldv_state_variable_4 = 4; } else { } if (ldv_state_variable_4 == 3) { hpsa_shutdown(hpsa_pci_driver_group1); ldv_state_variable_4 = 3; } else { } if (ldv_state_variable_4 == 2) { hpsa_shutdown(hpsa_pci_driver_group1); ldv_state_variable_4 = 2; } else { } if (ldv_state_variable_4 == 5) { hpsa_shutdown(hpsa_pci_driver_group1); ldv_state_variable_4 = 5; } else { } goto ldv_43208; case 2: ; if (ldv_state_variable_4 == 2 && pci_counter == 0) { ldv_retval_4 = hpsa_suspend(hpsa_pci_driver_group1, ldvarg47); if (ldv_retval_4 == 0) { ldv_state_variable_4 = 3; } else { } } else { } goto ldv_43208; case 3: ; if (ldv_state_variable_4 == 4) { hpsa_remove_one(hpsa_pci_driver_group1); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 3) { hpsa_remove_one(hpsa_pci_driver_group1); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 2) { hpsa_remove_one(hpsa_pci_driver_group1); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 5) { hpsa_remove_one(hpsa_pci_driver_group1); ldv_state_variable_4 = 1; } else { } goto ldv_43208; case 4: ; if (ldv_state_variable_4 == 4) { ldv_retval_3 = hpsa_resume(hpsa_pci_driver_group1); if (ldv_retval_3 == 0) { ldv_state_variable_4 = 2; } else { } } else { } if (ldv_state_variable_4 == 3) { ldv_retval_3 = hpsa_resume(hpsa_pci_driver_group1); if (ldv_retval_3 == 0) { ldv_state_variable_4 = 2; } else { } } else { } if (ldv_state_variable_4 == 5) { ldv_retval_3 = hpsa_resume(hpsa_pci_driver_group1); if (ldv_retval_3 == 0) { ldv_state_variable_4 = 2; } else { } } else { } goto ldv_43208; case 5: ; if (ldv_state_variable_4 == 3) { ldv_retval_2 = ldv_suspend_late_4(); if (ldv_retval_2 == 0) { ldv_state_variable_4 = 4; } else { } } else { } goto ldv_43208; case 6: ; if (ldv_state_variable_4 == 4) { ldv_retval_1 = ldv_resume_early_4(); if (ldv_retval_1 == 0) { ldv_state_variable_4 = 5; } else { } } else { } if (ldv_state_variable_4 == 3) { ldv_retval_1 = ldv_resume_early_4(); if (ldv_retval_1 == 0) { ldv_state_variable_4 = 5; } else { } } else { } goto ldv_43208; default: ldv_stop(); } ldv_43208: ; } else { } goto ldv_43127; case 20: ; if (ldv_state_variable_19 != 0) { tmp___60 = __VERIFIER_nondet_int(); switch (tmp___60) { case 0: ; if (ldv_state_variable_19 == 1) { SA5_performant_intr_pending(SA5_performant_access_group0); ldv_state_variable_19 = 1; } else { } goto ldv_43218; case 1: ; if (ldv_state_variable_19 == 1) { SA5_performant_completed(SA5_performant_access_group0, (int )ldvarg51); ldv_state_variable_19 = 1; } else { } goto ldv_43218; case 2: ; if (ldv_state_variable_19 == 1) { SA5_submit_command(SA5_performant_access_group0, ldvarg50); ldv_state_variable_19 = 1; } else { } goto ldv_43218; case 3: ; if (ldv_state_variable_19 == 1) { SA5_performant_intr_mask(SA5_performant_access_group0, ldvarg49); ldv_state_variable_19 = 1; } else { } goto ldv_43218; default: ldv_stop(); } ldv_43218: ; } else { } goto ldv_43127; case 21: ; if (ldv_state_variable_10 != 0) { tmp___61 = __VERIFIER_nondet_int(); switch (tmp___61) { case 0: ; if (ldv_state_variable_10 == 1) { host_show_firmware_revision(ldvarg52, ldvarg54, ldvarg53); ldv_state_variable_10 = 1; } else { } goto ldv_43225; default: ldv_stop(); } ldv_43225: ; } else { } goto ldv_43127; case 22: ; if (ldv_state_variable_5 != 0) { tmp___62 = __VERIFIER_nondet_int(); switch (tmp___62) { case 0: ; if (ldv_state_variable_5 == 1) { hpsa_scan_finished(hpsa_driver_template_group1, ldvarg60); ldv_state_variable_5 = 1; } else { } goto ldv_43229; case 1: ; if (ldv_state_variable_5 == 1) { hpsa_slave_configure(hpsa_driver_template_group2); ldv_state_variable_5 = 1; } else { } goto ldv_43229; case 2: ; if (ldv_state_variable_5 == 1) { hpsa_change_queue_depth(hpsa_driver_template_group2, ldvarg59); ldv_state_variable_5 = 1; } else { } goto ldv_43229; case 3: ; if (ldv_state_variable_5 == 1) { hpsa_scsi_queue_command(hpsa_driver_template_group1, hpsa_driver_template_group0); ldv_state_variable_5 = 1; } else { } goto ldv_43229; case 4: ; if (ldv_state_variable_5 == 1) { hpsa_compat_ioctl(hpsa_driver_template_group2, ldvarg58, ldvarg57); ldv_state_variable_5 = 1; } else { } goto ldv_43229; case 5: ; if (ldv_state_variable_5 == 1) { hpsa_eh_device_reset_handler(hpsa_driver_template_group0); ldv_state_variable_5 = 1; } else { } goto ldv_43229; case 6: ; if (ldv_state_variable_5 == 1) { hpsa_scan_start(hpsa_driver_template_group1); ldv_state_variable_5 = 1; } else { } goto ldv_43229; case 7: ; if (ldv_state_variable_5 == 1) { hpsa_eh_abort_handler(hpsa_driver_template_group0); ldv_state_variable_5 = 1; } else { } goto ldv_43229; case 8: ; if (ldv_state_variable_5 == 1) { hpsa_slave_alloc(hpsa_driver_template_group2); ldv_state_variable_5 = 1; } else { } goto ldv_43229; case 9: ; if (ldv_state_variable_5 == 1) { hpsa_ioctl(hpsa_driver_template_group2, ldvarg56, ldvarg55); ldv_state_variable_5 = 1; } else { } goto ldv_43229; case 10: ; if (ldv_state_variable_5 == 1) { hpsa_slave_destroy(hpsa_driver_template_group2); ldv_state_variable_5 = 1; } else { } goto ldv_43229; default: ldv_stop(); } ldv_43229: ; } else { } goto ldv_43127; default: ldv_stop(); } ldv_43127: ; goto ldv_43242; ldv_final: ldv_check_final_state(); return 0; } } bool ldv_queue_work_on_5(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_6(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___0 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_7(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_8(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_9(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_13(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_i_mutex_of_inode(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_i_mutex_of_inode(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_scsi_add_host_with_dma_17(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } bool ldv_queue_work_on_18(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } int ldv_mutex_lock_interruptible_19(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_lock_interruptible(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_lock_interruptible_reset_mutex_of_ctlr_info(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_20(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_reset_mutex_of_ctlr_info(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_reset_mutex_of_ctlr_info(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } struct Scsi_Host *ldv_scsi_host_alloc_22(struct scsi_host_template *sht , int privsize ) { ldv_func_ret_type___7 ldv_func_res ; struct Scsi_Host *tmp ; { tmp = scsi_host_alloc(sht, privsize); ldv_func_res = tmp; if ((unsigned long )ldv_func_res != (unsigned long )((ldv_func_ret_type___7 )0)) { ldv_state_variable_5 = 1; ldv_initialize_scsi_host_template_5(); } else { } return (ldv_func_res); } } void ldv_destroy_workqueue_23(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } void ldv_destroy_workqueue_24(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } void ldv_flush_workqueue_25(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } void ldv_destroy_workqueue_26(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } void ldv_destroy_workqueue_27(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_cancel_delayed_work_sync_28(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_2(& ldv_func_arg1->work); return (ldv_func_res); } } bool ldv_cancel_delayed_work_sync_29(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___9 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_2(& ldv_func_arg1->work); return (ldv_func_res); } } void ldv_destroy_workqueue_30(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } void ldv_destroy_workqueue_31(struct workqueue_struct *ldv_func_arg1 ) { { destroy_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } void ldv_scsi_remove_host_32(struct Scsi_Host *shost ) { { scsi_remove_host(shost); ldv_state_variable_5 = 0; return; } } int ldv___pci_register_driver_33(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; ldv_state_variable_4 = 1; ldv_pci_driver_4(); return (ldv_func_res); } } void ldv_pci_unregister_driver_34(struct pci_driver *ldv_func_arg1 ) { { pci_unregister_driver(ldv_func_arg1); ldv_state_variable_4 = 0; return; } } __inline static void ldv_error(void) { { ERROR: ; {reach_error();} } } __inline static int ldv_undef_int_negative(void) { int ret ; int tmp ; { tmp = ldv_undef_int(); ret = tmp; if (ret >= 0) { ldv_stop(); } else { } return (ret); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } static int ldv_mutex_i_mutex_of_inode = 1; int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_i_mutex_of_inode = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 2; return; } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_i_mutex_of_inode = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_i_mutex_of_inode = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_i_mutex_of_inode == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { if (ldv_mutex_i_mutex_of_inode != 2) { ldv_error(); } else { } ldv_mutex_i_mutex_of_inode = 1; return; } } void ldv_usb_lock_device_i_mutex_of_inode(void) { { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return; } } int ldv_usb_trylock_device_i_mutex_of_inode(void) { int tmp ; { tmp = ldv_mutex_trylock_i_mutex_of_inode((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_i_mutex_of_inode((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_i_mutex_of_inode(void) { { ldv_mutex_unlock_i_mutex_of_inode((struct mutex *)0); return; } } static int ldv_mutex_lock = 1; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 1) { ldv_error(); } else { } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock != 2) { ldv_error(); } else { } ldv_mutex_lock = 1; return; } } void ldv_usb_lock_device_lock(void) { { ldv_mutex_lock_lock((struct mutex *)0); return; } } int ldv_usb_trylock_device_lock(void) { int tmp ; { tmp = ldv_mutex_trylock_lock((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_lock(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_lock((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_lock(void) { { ldv_mutex_unlock_lock((struct mutex *)0); return; } } static int ldv_mutex_mutex_of_device = 1; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device != 2) { ldv_error(); } else { } ldv_mutex_mutex_of_device = 1; return; } } void ldv_usb_lock_device_mutex_of_device(void) { { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return; } } int ldv_usb_trylock_device_mutex_of_device(void) { int tmp ; { tmp = ldv_mutex_trylock_mutex_of_device((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_mutex_of_device(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_mutex_of_device((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_mutex_of_device(void) { { ldv_mutex_unlock_mutex_of_device((struct mutex *)0); return; } } static int ldv_mutex_reset_mutex_of_ctlr_info = 1; int ldv_mutex_lock_interruptible_reset_mutex_of_ctlr_info(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_reset_mutex_of_ctlr_info != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_reset_mutex_of_ctlr_info = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_reset_mutex_of_ctlr_info(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_reset_mutex_of_ctlr_info != 1) { ldv_error(); } else { } nondetermined = ldv_undef_int(); if (nondetermined != 0) { ldv_mutex_reset_mutex_of_ctlr_info = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_reset_mutex_of_ctlr_info(struct mutex *lock ) { { if (ldv_mutex_reset_mutex_of_ctlr_info != 1) { ldv_error(); } else { } ldv_mutex_reset_mutex_of_ctlr_info = 2; return; } } int ldv_mutex_trylock_reset_mutex_of_ctlr_info(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_reset_mutex_of_ctlr_info != 1) { ldv_error(); } else { } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread != 0) { return (0); } else { ldv_mutex_reset_mutex_of_ctlr_info = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_reset_mutex_of_ctlr_info(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_reset_mutex_of_ctlr_info != 1) { ldv_error(); } else { } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_reset_mutex_of_ctlr_info = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_reset_mutex_of_ctlr_info(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_reset_mutex_of_ctlr_info == 1) { nondetermined = ldv_undef_int(); if (nondetermined != 0) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_reset_mutex_of_ctlr_info(struct mutex *lock ) { { if (ldv_mutex_reset_mutex_of_ctlr_info != 2) { ldv_error(); } else { } ldv_mutex_reset_mutex_of_ctlr_info = 1; return; } } void ldv_usb_lock_device_reset_mutex_of_ctlr_info(void) { { ldv_mutex_lock_reset_mutex_of_ctlr_info((struct mutex *)0); return; } } int ldv_usb_trylock_device_reset_mutex_of_ctlr_info(void) { int tmp ; { tmp = ldv_mutex_trylock_reset_mutex_of_ctlr_info((struct mutex *)0); return (tmp); } } int ldv_usb_lock_device_for_reset_reset_mutex_of_ctlr_info(void) { int tmp ; int tmp___0 ; { tmp___0 = ldv_undef_int(); if (tmp___0 != 0) { ldv_mutex_lock_reset_mutex_of_ctlr_info((struct mutex *)0); return (0); } else { tmp = ldv_undef_int_negative(); return (tmp); } } } void ldv_usb_unlock_device_reset_mutex_of_ctlr_info(void) { { ldv_mutex_unlock_reset_mutex_of_ctlr_info((struct mutex *)0); return; } } void ldv_check_final_state(void) { { if (ldv_mutex_i_mutex_of_inode != 1) { ldv_error(); } else { } if (ldv_mutex_lock != 1) { ldv_error(); } else { } if (ldv_mutex_mutex_of_device != 1) { ldv_error(); } else { } if (ldv_mutex_reset_mutex_of_ctlr_info != 1) { ldv_error(); } else { } return; } } #include "model/linux-4.2-rc1.tar.xz-32_7a-drivers--scsi--hpsa.ko-entry_point_true-unreach-call.cil.out.env.c" #include "model/common.env.c"