extern void abort(void); #include void reach_error() { assert(0); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; struct qspinlock { atomic_t val ; }; typedef struct qspinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct device; struct net_device; struct file_operations; struct completion; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_16 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_17 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_18 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_15 { struct __anonstruct_futex_16 futex ; struct __anonstruct_nanosleep_17 nanosleep ; struct __anonstruct_poll_18 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_15 __annonCompField7 ; }; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_19 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_19 __annonCompField8 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct fregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_29 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_30 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_28 { struct __anonstruct____missing_field_name_29 __annonCompField12 ; struct __anonstruct____missing_field_name_30 __annonCompField13 ; }; union __anonunion____missing_field_name_31 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct fxregs_state { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_28 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_31 __annonCompField15 ; }; struct swregs_state { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xstate_header { u64 xfeatures ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xregs_state { struct fxregs_state i387 ; struct xstate_header header ; u8 __reserved[464U] ; }; union fpregs_state { struct fregs_state fsave ; struct fxregs_state fxsave ; struct swregs_state soft ; struct xregs_state xsave ; }; struct fpu { union fpregs_state state ; unsigned int last_cpu ; unsigned char fpstate_active ; unsigned char fpregs_active ; unsigned char counter ; }; struct seq_operations; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct fpu fpu ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; unsigned int pin_count ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_35 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_34 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_35 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_34 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_36 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_36 rwlock_t; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_46 { uid_t val ; }; typedef struct __anonstruct_kuid_t_46 kuid_t; struct __anonstruct_kgid_t_47 { gid_t val ; }; typedef struct __anonstruct_kgid_t_47 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct vm_area_struct; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_48 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_48 nodemask_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct notifier_block; struct timer_list { struct hlist_node entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; u32 flags ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct ctl_table; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_50 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_49 { struct __anonstruct____missing_field_name_50 __annonCompField19 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_49 __annonCompField20 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct wake_irq; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; struct wake_irq *wakeirq ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; int (*activate)(struct device * ) ; void (*sync)(struct device * ) ; void (*dismiss)(struct device * ) ; }; struct pci_bus; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct bio_vec; struct llist_node; struct llist_node { struct llist_node *next ; }; struct cred; struct inode; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_148 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_149 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_147 { struct __anonstruct____missing_field_name_148 __annonCompField33 ; struct __anonstruct____missing_field_name_149 __annonCompField34 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_147 __annonCompField35 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_150 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_152 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_156 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_155 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_156 __annonCompField38 ; int units ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField39 ; atomic_t _count ; }; union __anonunion____missing_field_name_153 { unsigned long counters ; struct __anonstruct____missing_field_name_154 __annonCompField40 ; unsigned int active ; }; struct __anonstruct____missing_field_name_151 { union __anonunion____missing_field_name_152 __annonCompField37 ; union __anonunion____missing_field_name_153 __annonCompField41 ; }; struct __anonstruct____missing_field_name_158 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_159 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_157 { struct list_head lru ; struct __anonstruct____missing_field_name_158 __annonCompField43 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_159 __annonCompField44 ; pgtable_t pmd_huge_pte ; }; struct kmem_cache; union __anonunion____missing_field_name_160 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct __anonstruct____missing_field_name_151 __annonCompField42 ; union __anonunion____missing_field_name_157 __annonCompField45 ; union __anonunion____missing_field_name_160 __annonCompField46 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_161 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_161 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; union __anonunion____missing_field_name_166 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_166 __annonCompField47 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_171 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_171 __annonCompField48 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_172 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct module *mod ; struct kernel_param_ops const *ops ; u16 const perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_172 __annonCompField49 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct latch_tree_node { struct rb_node node[2U] ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct mod_tree_node { struct module *mod ; struct latch_tree_node node ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct trace_event_call; struct trace_enum_map; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct mutex param_lock ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; bool async_probe_requested ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_tree_node mtn_core ; struct mod_tree_node mtn_init ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct trace_event_call **trace_events ; unsigned int num_trace_events ; struct trace_enum_map **trace_enums ; unsigned int num_trace_enums ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; bool klp_alive ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_180 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_180 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_183 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_184 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_185 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_187 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_186 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_187 _addr_bnd ; }; struct __anonstruct__sigpoll_188 { long _band ; int _fd ; }; struct __anonstruct__sigsys_189 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_181 { int _pad[28U] ; struct __anonstruct__kill_182 _kill ; struct __anonstruct__timer_183 _timer ; struct __anonstruct__rt_184 _rt ; struct __anonstruct__sigchld_185 _sigchld ; struct __anonstruct__sigfault_186 _sigfault ; struct __anonstruct__sigpoll_188 _sigpoll ; struct __anonstruct__sigsys_189 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_181 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t (*get_time)(void) ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; seqcount_t seq ; struct hrtimer *running ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set_seq ; bool migration_enabled ; bool nohz_active ; unsigned char in_hrtirq : 1 ; unsigned char hres_active : 1 ; unsigned char hang_detected : 1 ; ktime_t expires_next ; struct hrtimer *next_timer ; unsigned int nr_events ; unsigned int nr_retries ; unsigned int nr_hangs ; unsigned int max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_196 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_197 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_199 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_198 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_199 __annonCompField52 ; }; union __anonunion_type_data_200 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_202 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_201 { union __anonunion_payload_202 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_196 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_197 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_198 __annonCompField53 ; union __anonunion_type_data_200 type_data ; union __anonunion____missing_field_name_201 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *procs_kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct nameidata; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct task_cputime_atomic { atomic64_t utime ; atomic64_t stime ; atomic64_t sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic ; int running ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct wake_q_node { struct wake_q_node *next ; }; struct io_context; struct pipe_inode_info; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; unsigned long utilization_avg_contrib ; u32 runnable_avg_sum ; u32 avg_period ; u32 running_avg_sum ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned long jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char sched_migrated : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned char brk_randomized : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; struct nameidata *nameidata ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct wake_q_node wake_q ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[3U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; int pagefault_disabled ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct cphy; struct cmac; struct ethtool_pauseparam; struct ethtool_cmd; struct ethtool_coalesce; struct ethtool_ringparam; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; enum probe_type probe_type ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct fwnode_handle *fwnode ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct wake_irq *wakeirq ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_217 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_217 __annonCompField58 ; unsigned long nr_segs ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct bdi_writeback; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*pfn_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct kiocb; struct __anonstruct_sync_serial_settings_219 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_219 sync_serial_settings; struct __anonstruct_te1_settings_220 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_220 te1_settings; struct __anonstruct_raw_hdlc_proto_221 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_221 raw_hdlc_proto; struct __anonstruct_fr_proto_222 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_222 fr_proto; struct __anonstruct_fr_proto_pvc_223 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_223 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_224 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_224 fr_proto_pvc_info; struct __anonstruct_cisco_proto_225 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_225 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_226 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_226 ifs_ifsu ; }; union __anonunion_ifr_ifrn_227 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_228 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_227 ifr_ifrn ; union __anonunion_ifr_ifru_228 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_233 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_232 { struct __anonstruct____missing_field_name_233 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_232 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_235 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_234 { struct __anonstruct____missing_field_name_235 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_234 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_236 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_236 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; struct inode *(*d_select_inode)(struct dentry * , unsigned int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_240 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_239 { struct __anonstruct____missing_field_name_240 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_239 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct export_operations; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_244 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_244 kprojid_t; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_245 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_245 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; int (*get_projid)(struct inode * , kprojid_t * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct qc_type_state { unsigned int flags ; unsigned int spc_timelimit ; unsigned int ino_timelimit ; unsigned int rt_spc_timelimit ; unsigned int spc_warnlimit ; unsigned int ino_warnlimit ; unsigned int rt_spc_warnlimit ; unsigned long long ino ; blkcnt_t blocks ; blkcnt_t nextents ; }; struct qc_state { unsigned int s_incoredqs ; struct qc_type_state s_state[3U] ; }; struct qc_info { int i_fieldmask ; unsigned int i_flags ; unsigned int i_spc_timelimit ; unsigned int i_ino_timelimit ; unsigned int i_rt_spc_timelimit ; unsigned int i_spc_warnlimit ; unsigned int i_ino_warnlimit ; unsigned int i_rt_spc_warnlimit ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*set_info)(struct super_block * , int , struct qc_info * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_state)(struct super_block * , struct qc_state * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[3U] ; struct mem_dqinfo info[3U] ; struct quota_format_ops const *ops[3U] ; }; struct kiocb { struct file *ki_filp ; loff_t ki_pos ; void (*ki_complete)(struct kiocb * , long , long ) ; void *private ; int ki_flags ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_248 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_249 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_250 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; char *i_link ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_248 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; unsigned long dirtied_time_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct bdi_writeback *i_wb ; int i_wb_frn_winner ; u16 i_wb_frn_avg_time ; u16 i_wb_frn_history ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_249 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_250 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_251 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_251 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; fl_owner_t (*lm_get_owner)(fl_owner_t ) ; void (*lm_put_owner)(fl_owner_t ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_253 { struct list_head link ; int state ; }; union __anonunion_fl_u_252 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_253 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_252 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_iflags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; char const *(*follow_link)(struct dentry * , void ** ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct inode * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; union __anonunion_in6_u_268 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_268 in6_u ; }; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct pipe_buf_operations; struct pipe_buffer { struct page *page ; unsigned int offset ; unsigned int len ; struct pipe_buf_operations const *ops ; unsigned int flags ; unsigned long private ; }; struct pipe_inode_info { struct mutex mutex ; wait_queue_head_t wait ; unsigned int nrbufs ; unsigned int curbuf ; unsigned int buffers ; unsigned int readers ; unsigned int writers ; unsigned int files ; unsigned int waiting_writers ; unsigned int r_counter ; unsigned int w_counter ; struct page *tmp_page ; struct fasync_struct *fasync_readers ; struct fasync_struct *fasync_writers ; struct pipe_buffer *bufs ; }; struct pipe_buf_operations { int can_merge ; int (*confirm)(struct pipe_inode_info * , struct pipe_buffer * ) ; void (*release)(struct pipe_inode_info * , struct pipe_buffer * ) ; int (*steal)(struct pipe_inode_info * , struct pipe_buffer * ) ; void (*get)(struct pipe_inode_info * , struct pipe_buffer * ) ; }; struct napi_struct; struct nf_conntrack { atomic_t use ; }; union __anonunion____missing_field_name_273 { struct net_device *physoutdev ; char neigh_header[8U] ; }; union __anonunion____missing_field_name_274 { __be32 ipv4_daddr ; struct in6_addr ipv6_daddr ; }; struct nf_bridge_info { atomic_t use ; unsigned char orig_proto ; bool pkt_otherhost ; __u16 frag_max_size ; unsigned int mask ; struct net_device *physindev ; union __anonunion____missing_field_name_273 __annonCompField73 ; union __anonunion____missing_field_name_274 __annonCompField74 ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_277 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_276 { u64 v64 ; struct __anonstruct____missing_field_name_277 __annonCompField75 ; }; struct skb_mstamp { union __anonunion____missing_field_name_276 __annonCompField76 ; }; union __anonunion____missing_field_name_280 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_279 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_280 __annonCompField77 ; }; union __anonunion____missing_field_name_278 { struct __anonstruct____missing_field_name_279 __annonCompField78 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_282 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_281 { __wsum csum ; struct __anonstruct____missing_field_name_282 __annonCompField80 ; }; union __anonunion____missing_field_name_283 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_284 { __u32 mark ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_285 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_278 __annonCompField79 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_281 __annonCompField81 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_283 __annonCompField82 ; __u32 secmark ; union __anonunion____missing_field_name_284 __annonCompField83 ; union __anonunion____missing_field_name_285 __annonCompField84 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[115U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; bool warned ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; bool fib_offload_disabled ; struct sock *fibnl ; struct sock **icmp_sk ; struct sock *mc_autojoin_sk ; struct inet_peer_base *peers ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_tcp_ecn_fallback ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; int sysctl_tcp_probe_threshold ; u32 sysctl_tcp_probe_interval ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; int idgen_retries ; int idgen_delay ; int flowlabel_state_ranges ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct sock *mc_autojoin_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; bool clusterip_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; struct nft_af_info *netdev ; unsigned int base_seq ; u8 gencursor ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct mpls_route; struct netns_mpls { size_t platform_labels ; struct mpls_route **platform_label ; struct ctl_table_header *ctl ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; atomic64_t cookie_gen ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; spinlock_t nsid_lock ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct netns_mpls mpls ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct __anonstruct_possible_net_t_302 { struct net *net ; }; typedef struct __anonstruct_possible_net_t_302 possible_net_t; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2, FWNODE_PDATA = 3 } ; struct fwnode_handle { enum fwnode_type type ; struct fwnode_handle *secondary ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; enum ldv_27901 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_27901 phy_interface_t; enum ldv_27955 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_27955 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; u32 phy_ignore_ta_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; struct net_device *of_netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; enum dsa_tag_protocol tag_protocol ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; int (*port_join_bridge)(struct dsa_switch * , int , u32 ) ; int (*port_leave_bridge)(struct dsa_switch * , int , u32 ) ; int (*port_stp_update)(struct dsa_switch * , int , u8 ) ; int (*fdb_add)(struct dsa_switch * , int , unsigned char const * , u16 ) ; int (*fdb_del)(struct dsa_switch * , int , unsigned char const * , u16 ) ; int (*fdb_getnext)(struct dsa_switch * , int , unsigned char * , bool * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_qcn { __u8 rpg_enable[8U] ; __u32 rppp_max_rps[8U] ; __u32 rpg_time_reset[8U] ; __u32 rpg_byte_reset[8U] ; __u32 rpg_threshold[8U] ; __u32 rpg_max_rate[8U] ; __u32 rpg_ai_rate[8U] ; __u32 rpg_hai_rate[8U] ; __u32 rpg_gd[8U] ; __u32 rpg_min_dec_fac[8U] ; __u32 rpg_min_rate[8U] ; __u32 cndd_state_machine[8U] ; }; struct ieee_qcn_stats { __u64 rppp_rp_centiseconds[8U] ; __u32 rppp_created_rps[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getqcn)(struct net_device * , struct ieee_qcn * ) ; int (*ieee_setqcn)(struct net_device * , struct ieee_qcn * ) ; int (*ieee_getqcnstats)(struct net_device * , struct ieee_qcn_stats * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_stats { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 broadcast ; __u64 multicast ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; __u32 rss_query_en ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; struct mpls_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; unsigned long tx_maxrate ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_get_vf_stats)(struct net_device * , int , struct ifla_vf_stats * ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_set_vf_rss_query_en)(struct net_device * , int , bool ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 , int ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_get_phys_port_name)(struct net_device * , char * , size_t ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_set_tx_maxrate)(struct net_device * , int , u32 ) ; int (*ndo_get_iflink)(struct net_device const * ) ; }; struct __anonstruct_adj_list_315 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_316 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct switchdev_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct tcf_proto; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_317 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; atomic_t carrier_changes ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_315 adj_list ; struct __anonstruct_all_adj_list_316 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int group ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct switchdev_ops const *switchdev_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; unsigned char name_assign_type ; bool uc_promisc ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; struct mpls_dev *mpls_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct tcf_proto *ingress_cl_list ; struct netdev_queue *ingress_queue ; struct list_head nf_hooks_ingress ; unsigned char broadcast[32U] ; struct cpu_rmap *rx_cpu_rmap ; struct hlist_node index_hlist ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; int watchdog_timeo ; struct xps_dev_maps *xps_maps ; unsigned long trans_start ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; possible_net_t nd_net ; union __anonunion____missing_field_name_317 __annonCompField94 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_322 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; unsigned char has_secondary_link : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_322 __annonCompField95 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct mdio_if_info { int prtad ; u32 mmds ; unsigned int mode_support ; struct net_device *dev ; int (*mdio_read)(struct net_device * , int , int , u16 ) ; int (*mdio_write)(struct net_device * , int , int , u16 , u16 ) ; }; struct adapter; typedef struct adapter adapter_t; struct t1_rx_mode { struct net_device *dev ; }; struct sge_params { unsigned int cmdQ_size[2U] ; unsigned int freelQ_size[2U] ; unsigned int large_buf_capacity ; unsigned int rx_coalesce_usecs ; unsigned int last_rx_coalesce_raw ; unsigned int default_rx_coalesce_usecs ; unsigned int sample_interval_usecs ; unsigned int coalesce_enable ; unsigned int polling ; }; struct chelsio_pci_params { unsigned short speed ; unsigned char width ; unsigned char is_pcix ; }; struct tp_params { unsigned int pm_size ; unsigned int cm_size ; unsigned int pm_rx_base ; unsigned int pm_tx_base ; unsigned int pm_rx_pg_size ; unsigned int pm_tx_pg_size ; unsigned int pm_rx_num_pgs ; unsigned int pm_tx_num_pgs ; unsigned int rx_coalescing_size ; unsigned int use_5tuple_mode ; }; struct mc5_params { unsigned int mode ; unsigned int nservers ; unsigned int nroutes ; }; struct board_info; struct adapter_params { struct sge_params sge ; struct mc5_params mc5 ; struct tp_params tp ; struct chelsio_pci_params pci ; struct board_info const *brd_info ; unsigned short mtus[8U] ; unsigned int nports ; unsigned int stats_update_period ; unsigned short chip_revision ; unsigned char chip_version ; unsigned char is_asic ; unsigned char has_msi ; }; struct link_config { unsigned int supported ; unsigned int advertising ; unsigned short requested_speed ; unsigned short speed ; unsigned char requested_duplex ; unsigned char duplex ; unsigned char requested_fc ; unsigned char fc ; unsigned char autoneg ; }; struct port_info { struct net_device *dev ; struct cmac *mac ; struct cphy *phy ; struct link_config link_config ; struct net_device_stats netstats ; }; struct sge; struct peespi; struct petp; struct adapter { u8 *regs ; struct pci_dev *pdev ; unsigned long registered_device_map ; unsigned long open_device_map ; unsigned long flags ; char const *name ; int msg_enable ; u32 mmio_len ; struct work_struct ext_intr_handler_task ; struct adapter_params params ; struct sge *sge ; struct peespi *espi ; struct petp *tp ; struct napi_struct napi ; struct port_info port[4U] ; struct delayed_work stats_update_task ; struct timer_list stats_update_timer ; spinlock_t tpi_lock ; spinlock_t work_lock ; spinlock_t mac_lock ; spinlock_t async_lock ; u32 slow_intr_mask ; int t1powersave ; }; struct mdio_ops; struct gmac; struct gphy; struct board_info { unsigned char board ; unsigned char port_number ; unsigned long caps ; unsigned char chip_term ; unsigned char chip_mac ; unsigned char chip_phy ; unsigned int clock_core ; unsigned int clock_mc3 ; unsigned int clock_mc4 ; unsigned int espi_nports ; unsigned int clock_elmer0 ; unsigned char mdio_mdien ; unsigned char mdio_mdiinv ; unsigned char mdio_mdc ; unsigned char mdio_phybaseaddr ; struct gmac const *gmac ; struct gphy const *gphy ; struct mdio_ops const *mdio_ops ; char const *desc ; }; struct cmac_statistics { u64 TxOctetsOK ; u64 TxOctetsBad ; u64 TxUnicastFramesOK ; u64 TxMulticastFramesOK ; u64 TxBroadcastFramesOK ; u64 TxPauseFrames ; u64 TxFramesWithDeferredXmissions ; u64 TxLateCollisions ; u64 TxTotalCollisions ; u64 TxFramesAbortedDueToXSCollisions ; u64 TxUnderrun ; u64 TxLengthErrors ; u64 TxInternalMACXmitError ; u64 TxFramesWithExcessiveDeferral ; u64 TxFCSErrors ; u64 TxJumboFramesOK ; u64 TxJumboOctetsOK ; u64 RxOctetsOK ; u64 RxOctetsBad ; u64 RxUnicastFramesOK ; u64 RxMulticastFramesOK ; u64 RxBroadcastFramesOK ; u64 RxPauseFrames ; u64 RxFCSErrors ; u64 RxAlignErrors ; u64 RxSymbolErrors ; u64 RxDataErrors ; u64 RxSequenceErrors ; u64 RxRuntErrors ; u64 RxJabberErrors ; u64 RxInternalMACRcvError ; u64 RxInRangeLengthErrors ; u64 RxOutOfRangeLengthField ; u64 RxFrameTooLongErrors ; u64 RxJumboFramesOK ; u64 RxJumboOctetsOK ; }; struct cmac_ops { void (*destroy)(struct cmac * ) ; int (*reset)(struct cmac * ) ; int (*interrupt_enable)(struct cmac * ) ; int (*interrupt_disable)(struct cmac * ) ; int (*interrupt_clear)(struct cmac * ) ; int (*interrupt_handler)(struct cmac * ) ; int (*enable)(struct cmac * , int ) ; int (*disable)(struct cmac * , int ) ; int (*loopback_enable)(struct cmac * ) ; int (*loopback_disable)(struct cmac * ) ; int (*set_mtu)(struct cmac * , int ) ; int (*set_rx_mode)(struct cmac * , struct t1_rx_mode * ) ; int (*set_speed_duplex_fc)(struct cmac * , int , int , int ) ; int (*get_speed_duplex_fc)(struct cmac * , int * , int * , int * ) ; struct cmac_statistics const *(*statistics_update)(struct cmac * , int ) ; int (*macaddress_get)(struct cmac * , u8 * ) ; int (*macaddress_set)(struct cmac * , u8 * ) ; }; struct _cmac_instance; typedef struct _cmac_instance cmac_instance; struct cmac { struct cmac_statistics stats ; adapter_t *adapter ; struct cmac_ops const *ops ; cmac_instance *instance ; }; struct gmac { unsigned int stats_update_period ; struct cmac *(*create)(adapter_t * , int ) ; int (*reset)(adapter_t * ) ; }; struct mdio_ops { void (*init)(adapter_t * , struct board_info const * ) ; int (*read)(struct net_device * , int , int , u16 ) ; int (*write)(struct net_device * , int , int , u16 , u16 ) ; unsigned int mode_support ; }; struct cphy_ops { void (*destroy)(struct cphy * ) ; int (*reset)(struct cphy * , int ) ; int (*interrupt_enable)(struct cphy * ) ; int (*interrupt_disable)(struct cphy * ) ; int (*interrupt_clear)(struct cphy * ) ; int (*interrupt_handler)(struct cphy * ) ; int (*autoneg_enable)(struct cphy * ) ; int (*autoneg_disable)(struct cphy * ) ; int (*autoneg_restart)(struct cphy * ) ; int (*advertise)(struct cphy * , unsigned int ) ; int (*set_loopback)(struct cphy * , int ) ; int (*set_speed_duplex)(struct cphy * , int , int ) ; int (*get_link_status)(struct cphy * , int * , int * , int * , int * ) ; u32 mmds ; }; struct cphy_instance; struct cphy { int state ; adapter_t *adapter ; struct delayed_work phy_update ; u16 bmsr ; int count ; int act_count ; int act_on ; u32 elmer_gpo ; struct cphy_ops const *ops ; struct mdio_if_info mdio ; struct cphy_instance *instance ; }; struct gphy { struct cphy *(*create)(struct net_device * , int , struct mdio_ops const * ) ; int (*reset)(adapter_t * ) ; }; struct sge_intr_counts { unsigned int rx_drops ; unsigned int pure_rsps ; unsigned int unhandled_irqs ; unsigned int respQ_empty ; unsigned int respQ_overflow ; unsigned int freelistQ_empty ; unsigned int pkt_too_big ; unsigned int pkt_mismatch ; unsigned int cmdQ_full[3U] ; unsigned int cmdQ_restarted[3U] ; }; struct sge_port_stats { u64 rx_cso_good ; u64 tx_cso ; u64 tx_tso ; u64 vlan_xtract ; u64 vlan_insert ; u64 tx_need_hdrroom ; }; struct espi_intr_counts { unsigned int DIP4_err ; unsigned int rx_drops ; unsigned int tx_drops ; unsigned int rx_ovflw ; unsigned int parity_err ; unsigned int DIP2_parity_err ; }; typedef bool ldv_func_ret_type___2; typedef bool ldv_func_ret_type___3; typedef bool ldv_func_ret_type___4; typedef bool ldv_func_ret_type___5; typedef bool ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; enum hrtimer_restart; struct peespi { adapter_t *adapter ; struct espi_intr_counts intr_cnt ; u32 misc_ctrl ; spinlock_t lock ; }; typedef int ldv_func_ret_type; enum hrtimer_restart; struct petp { adapter_t *adapter ; }; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; enum hrtimer_restart; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct _cmac_instance { u8 enabled ; u8 fc ; u8 mac_addr[6U] ; }; typedef short __s16; typedef __u16 __sum16; enum hrtimer_restart; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; struct kiocb *msg_iocb ; }; enum ldv_23627 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_23627 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_275 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_275 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; u32 tskey ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; struct rtable; struct xfrm_policy; struct xfrm_state; struct request_sock; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct page_counter { atomic_long_t count ; unsigned long limit ; struct page_counter *parent ; unsigned long watermark ; unsigned long failcnt ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct bpf_insn { __u8 code ; unsigned char dst_reg : 4 ; unsigned char src_reg : 4 ; __s16 off ; __s32 imm ; }; enum bpf_prog_type { BPF_PROG_TYPE_UNSPEC = 0, BPF_PROG_TYPE_SOCKET_FILTER = 1, BPF_PROG_TYPE_KPROBE = 2, BPF_PROG_TYPE_SCHED_CLS = 3, BPF_PROG_TYPE_SCHED_ACT = 4 } ; struct bpf_prog_aux; struct sock_fprog_kern { u16 len ; struct sock_filter *filter ; }; union __anonunion____missing_field_name_337 { struct sock_filter insns[0U] ; struct bpf_insn insnsi[0U] ; }; struct bpf_prog { u16 pages ; bool jited ; bool gpl_compatible ; u32 len ; enum bpf_prog_type type ; struct bpf_prog_aux *aux ; struct sock_fprog_kern *orig_prog ; unsigned int (*bpf_func)(struct sk_buff const * , struct bpf_insn const * ) ; union __anonunion____missing_field_name_337 __annonCompField100 ; }; struct sk_filter { atomic_t refcnt ; struct callback_head rcu ; struct bpf_prog *prog ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; struct net *(*get_link_net)(struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { possible_net_t net ; struct net_device *dev ; struct list_head list ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[13U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; possible_net_t net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { int family ; int entry_size ; int key_len ; __be16 protocol ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; bool (*key_eq)(struct neighbour const * , void const * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; struct list_head parms_list ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_345 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sock * , struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_345 __annonCompField101 ; }; struct __anonstruct_socket_lock_t_346 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_346 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_348 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_347 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_348 __annonCompField102 ; }; union __anonunion____missing_field_name_349 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_351 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_350 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_351 __annonCompField105 ; }; union __anonunion____missing_field_name_352 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_353 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_347 __annonCompField103 ; union __anonunion____missing_field_name_349 __annonCompField104 ; union __anonunion____missing_field_name_350 __annonCompField106 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 1 ; unsigned char skc_ipv6only : 1 ; unsigned char skc_net_refcnt : 1 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_352 __annonCompField107 ; struct proto *skc_prot ; possible_net_t skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; atomic64_t skc_cookie ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_353 __annonCompField108 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_354 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_354 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; u16 sk_incoming_cpu ; __u32 sk_txhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check_tx : 1 ; unsigned char sk_no_check_rx : 1 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; u32 sk_ack_backlog ; u32 sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; struct timer_list sk_timer ; ktime_t sk_stamp ; u16 sk_tsflags ; u32 sk_tskey ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_357 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_357 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct page_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct request_sock const * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; struct sock *rsk_listener ; u16 mss ; u8 num_retrans ; unsigned char cookie_ts : 1 ; unsigned char num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; struct timer_list rsk_timer ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 *saved_syn ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; unsigned char res1 : 4 ; unsigned char doff : 4 ; unsigned char fin : 1 ; unsigned char syn : 1 ; unsigned char rst : 1 ; unsigned char psh : 1 ; unsigned char ack : 1 ; unsigned char urg : 1 ; unsigned char ece : 1 ; unsigned char cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct iphdr { unsigned char ihl : 4 ; unsigned char version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct arphdr { __be16 ar_hrd ; __be16 ar_pro ; unsigned char ar_hln ; unsigned char ar_pln ; __be16 ar_op ; }; struct cpl_tx_pkt { u8 opcode ; unsigned char iff : 4 ; unsigned char ip_csum_dis : 1 ; unsigned char l4_csum_dis : 1 ; unsigned char vlan_valid : 1 ; unsigned char rsvd : 1 ; u16 vlan ; u16 len_hi ; u16 len_lo ; }; struct cpl_tx_pkt_lso { u8 opcode ; unsigned char iff : 4 ; unsigned char ip_csum_dis : 1 ; unsigned char l4_csum_dis : 1 ; unsigned char vlan_valid : 1 ; unsigned char ; u16 vlan ; __be32 len ; u8 rsvd[5U] ; unsigned char tcp_hdr_words : 4 ; unsigned char ip_hdr_words : 4 ; __be16 eth_type_mss ; }; struct cpl_rx_pkt { u8 opcode ; unsigned char iff : 4 ; unsigned char csum_valid : 1 ; unsigned char bad_pkt : 1 ; unsigned char vlan_valid : 1 ; unsigned char rsvd : 1 ; u16 csum ; u16 vlan ; u16 len ; }; struct cmdQ_e { u32 len_gen ; u32 addr_lo ; u32 addr_hi ; u32 flags ; }; struct freelQ_e { u32 len_gen ; u32 addr_lo ; u32 addr_hi ; u32 gen2 ; }; struct respQ_e { u32 BufferLength ; unsigned char GenerationBit : 1 ; unsigned char Sop : 1 ; unsigned char Eop : 1 ; unsigned char Offload : 1 ; unsigned char DataValid : 1 ; unsigned char CreditValid : 1 ; unsigned char FreelistQid : 2 ; unsigned char Cmdq0DmaComplete : 5 ; unsigned char Cmdq0CreditReturn : 5 ; unsigned char Cmdq1DmaComplete : 5 ; unsigned char Cmdq1CreditReturn : 5 ; unsigned char Qsleeping : 4 ; }; struct cmdQ_ce { struct sk_buff *skb ; dma_addr_t dma_addr ; __u32 dma_len ; }; struct freelQ_ce { struct sk_buff *skb ; dma_addr_t dma_addr ; __u32 dma_len ; }; struct cmdQ { unsigned long status ; unsigned int in_use ; unsigned int size ; unsigned int processed ; unsigned int cleaned ; unsigned int stop_thres ; u16 pidx ; u16 cidx ; u8 genbit ; u8 sop ; struct cmdQ_e *entries ; struct cmdQ_ce *centries ; dma_addr_t dma_addr ; spinlock_t lock ; }; struct freelQ { unsigned int credits ; unsigned int size ; u16 pidx ; u16 cidx ; u16 rx_buffer_size ; u16 dma_offset ; u16 recycleq_idx ; u8 genbit ; struct freelQ_e *entries ; struct freelQ_ce *centries ; dma_addr_t dma_addr ; }; struct respQ { unsigned int credits ; unsigned int size ; u16 cidx ; u8 genbit ; struct respQ_e *entries ; dma_addr_t dma_addr ; }; struct sched_port { unsigned int avail ; unsigned int drain_bits_per_1024ns ; unsigned int speed ; unsigned int mtu ; struct sk_buff_head skbq ; }; struct sched { ktime_t last_updated ; unsigned int max_avail ; unsigned int port ; unsigned int num ; struct sched_port p[4U] ; struct tasklet_struct sched_tsk ; }; struct sge { struct adapter *adapter ; struct net_device *netdev ; struct freelQ freelQ[2U] ; struct respQ respQ ; unsigned long stopped_tx_queues ; unsigned int rx_pkt_pad ; unsigned int jumbo_fl ; unsigned int intrtimer_nres ; unsigned int fixed_intrtimer ; struct timer_list tx_reclaim_timer ; struct timer_list espibug_timer ; unsigned long espibug_timeout ; struct sk_buff *espibug_skb[4U] ; u32 sge_control ; struct sge_intr_counts stats ; struct sge_port_stats *port_stats[4U] ; struct sched *tx_sched ; struct cmdQ cmdQ[2U] ; }; typedef int ldv_func_ret_type___10; typedef int ldv_func_ret_type___11; typedef int ldv_func_ret_type___12; typedef int ldv_func_ret_type___13; enum hrtimer_restart; struct chelsio_vpd_t { u32 format_version ; u8 serial_number[16U] ; u8 mac_base_address[6U] ; u8 pad[2U] ; }; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; typedef struct _cmac_instance___0 cmac_instance___0; struct cmac___0 { struct cmac_statistics stats ; adapter_t *adapter ; struct cmac_ops const *ops ; cmac_instance___0 *instance ; }; struct init_table { u32 addr ; u32 data ; }; struct _cmac_instance___0 { u32 index ; u32 ticks ; }; struct __anonstruct_hw_stats_333 { unsigned int reg ; unsigned int offset ; }; struct __anonstruct_p_334 { unsigned int reg ; unsigned int offset ; }; struct __anonstruct_337 { unsigned int reg ; unsigned int offset ; }; __inline static long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void __set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } extern int printk(char const * , ...) ; void ldv_spin_lock(void) ; void ldv_spin_unlock(void) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_init_zalloc(size_t size ) { void *p ; void *tmp ; { tmp = calloc(1UL, size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } void *ldv_memset(void *s , int c , size_t n ) { void *tmp ; { tmp = memset(s, c, n); return (tmp); } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } __inline static long ldv__builtin_expect(long exp , long c ) { { return (exp); } } __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern size_t strlcpy(char * , char const * , size_t ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (831), "i" (12UL)); ldv_4964: ; goto ldv_4964; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (43UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void arch_local_irq_restore(unsigned long f ) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.restore_fl.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (836), "i" (12UL)); ldv_4974: ; goto ldv_4974; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.restore_fl.func), [paravirt_clobber] "i" (1), "D" (f): "memory", "cc"); return; } } __inline static void arch_local_irq_disable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_disable.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (841), "i" (12UL)); ldv_4983: ; goto ldv_4983; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (45UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_disable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static unsigned long arch_local_irq_save(void) { unsigned long f ; { f = arch_local_save_flags(); arch_local_irq_disable(); return (f); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void trace_hardirqs_on(void) ; extern void trace_hardirqs_off(void) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void ldv_spin_lock_5(spinlock_t *lock ) { { _raw_spin_lock(& lock->__annonCompField18.rlock); return; } } __inline static void spin_lock(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_8(spinlock_t *lock ) { { _raw_spin_lock_irq(& lock->__annonCompField18.rlock); return; } } __inline static void spin_lock_irq(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_9(spinlock_t *lock ) { { _raw_spin_unlock(& lock->__annonCompField18.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_11(spinlock_t *lock ) { { _raw_spin_unlock_irq(& lock->__annonCompField18.rlock); return; } } __inline static void spin_unlock_irq(spinlock_t *lock ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; bool ldv_queue_work_on_15(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_17(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; bool ldv_queue_delayed_work_on_16(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_19(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; extern void flush_workqueue(struct workqueue_struct * ) ; void ldv_flush_workqueue_18(struct workqueue_struct *ldv_func_arg1 ) ; extern bool cancel_delayed_work(struct delayed_work * ) ; bool ldv_cancel_delayed_work_42(struct delayed_work *ldv_func_arg1 ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { tmp = ldv_queue_work_on_15(8192, wq, work); return (tmp); } } __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = ldv_queue_delayed_work_on_16(8192, wq, dwork, delay); return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { tmp = queue_work(system_wq, work); return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = queue_delayed_work(system_wq, dwork, delay); return (tmp); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { tmp = ioremap_nocache(offset, size); return (tmp); } } extern void iounmap(void volatile * ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } void ldv_check_alloc_flags(gfp_t flags ) ; int ldv_timer_state_5 = 0; int ldv_state_variable_8 ; struct timer_list *ldv_timer_list_5 ; struct cphy *mv88e1xxx_ops_group0 ; struct net_device *mi1_mdio_ext_ops_group0 ; int ldv_state_variable_15 ; int ldv_state_variable_20 ; int pci_counter ; struct work_struct *ldv_work_struct_3_1 ; int ldv_state_variable_0 ; int ldv_state_variable_21 ; int ldv_state_variable_5 ; int ldv_state_variable_13 ; int ldv_state_variable_12 ; struct cphy *mv88x201x_ops_group0 ; int ldv_work_3_2 ; int ldv_state_variable_14 ; int ldv_work_3_0 ; int ldv_state_variable_17 ; struct work_struct *ldv_work_struct_2_3 ; struct work_struct *ldv_work_struct_2_0 ; int ldv_state_variable_19 ; int ldv_timer_state_6 = 0; struct work_struct *ldv_work_struct_4_3 ; int ldv_state_variable_9 ; struct cmac *vsc7326_ops_group0 ; struct work_struct *ldv_work_struct_2_2 ; struct ethtool_pauseparam *t1_ethtool_ops_group2 ; int ref_cnt ; struct ethtool_cmd *t1_ethtool_ops_group1 ; int ldv_irq_line_1_1 ; int ldv_work_3_3 ; struct work_struct *ldv_work_struct_4_0 ; int ldv_state_variable_1 ; int ldv_state_variable_7 ; int ldv_irq_line_1_2 ; struct work_struct *ldv_work_struct_3_3 ; int ldv_irq_1_3 = 0; void *ldv_irq_data_1_1 ; int ldv_state_variable_10 ; struct net_device *cxgb_netdev_ops_group1 ; int ldv_irq_1_0 = 0; struct timer_list *ldv_timer_list_6 ; struct work_struct *ldv_work_struct_2_1 ; int ldv_work_4_0 ; struct work_struct *ldv_work_struct_3_2 ; int ldv_state_variable_6 ; void *ldv_irq_data_1_0 ; int ldv_work_4_1 ; int ldv_work_4_3 ; int ldv_state_variable_16 ; int ldv_work_3_1 ; struct cphy *my3126_ops_group0 ; struct net_device *t1_ethtool_ops_group4 ; void *ldv_irq_data_1_3 ; int ldv_state_variable_2 ; int ldv_work_2_0 ; struct work_struct *ldv_work_struct_4_2 ; void *ldv_irq_data_1_2 ; struct ethtool_coalesce *t1_ethtool_ops_group3 ; struct ethtool_ringparam *t1_ethtool_ops_group0 ; struct work_struct *ldv_work_struct_3_0 ; int ldv_work_4_2 ; int ldv_state_variable_11 ; int ldv_irq_1_2 = 0; int LDV_IN_INTERRUPT = 1; int ldv_irq_1_1 = 0; int ldv_state_variable_18 ; struct pci_dev *cxgb_pci_driver_group1 ; struct net_device *mi1_mdio_ops_group0 ; int ldv_irq_line_1_3 ; int ldv_work_2_2 ; int ldv_state_variable_3 ; int ldv_irq_line_1_0 ; struct work_struct *ldv_work_struct_4_1 ; struct cmac *pm3393_ops_group0 ; int ldv_work_2_3 ; int ldv_state_variable_4 ; int ldv_work_2_1 ; void work_init_3(void) ; void ldv_initialize_mdio_ops_16(void) ; void work_init_2(void) ; void ldv_net_device_ops_20(void) ; void ldv_initialize_cphy_ops_14(void) ; void ldv_pci_driver_19(void) ; void ldv_initialize_ethtool_ops_21(void) ; void call_and_disable_all_2(int state ) ; int reg_check_1(irqreturn_t (*handler)(int , void * ) ) ; void activate_work_2(struct work_struct *work , int state ) ; void activate_work_3(struct work_struct *work , int state ) ; void ldv_initialize_cmac_ops_18(void) ; void choose_interrupt_1(void) ; void call_and_disable_work_3(struct work_struct *work ) ; void disable_work_3(struct work_struct *work ) ; void ldv_initialize_cphy_ops_12(void) ; void disable_work_2(struct work_struct *work ) ; void ldv_initialize_mdio_ops_15(void) ; void work_init_4(void) ; void invoke_work_3(void) ; void disable_suitable_irq_1(int line , void *data ) ; int ldv_irq_1(int state , int line , void *data ) ; void activate_suitable_irq_1(int line , void *data ) ; void ldv_initialize_cmac_ops_8(void) ; void call_and_disable_all_3(int state ) ; void call_and_disable_work_2(struct work_struct *work ) ; void ldv_initialize_cphy_ops_10(void) ; void invoke_work_2(void) ; extern void __const_udelay(unsigned long ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } tmp = kobject_name(& dev->kobj); return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { tmp = dma_supported(dev, mask); if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } struct sk_buff *ldv_skb_clone_33(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_41(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_35(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_31(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_39(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_40(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; void *ldv_malloc(size_t size ) ; struct sk_buff *ldv___netdev_alloc_skb_36(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_37(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_38(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); return (tmp); } } __inline static int ldv_request_irq_43(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; void ldv_free_irq_44(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } extern void napi_disable(struct napi_struct * ) ; __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (507), "i" (12UL)); ldv_41784: ; goto ldv_41784; } else { } __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3008U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void free_netdev(struct net_device * ) ; void ldv_free_netdev_46(struct net_device *dev ) ; void ldv_free_netdev_48(struct net_device *dev ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); return (tmp != 0); } } __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern int register_netdev(struct net_device * ) ; int ldv_register_netdev_45(struct net_device *dev ) ; extern void unregister_netdev(struct net_device * ) ; void ldv_unregister_netdev_47(struct net_device *dev ) ; extern void netdev_info(struct net_device const * , char const * , ...) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; int ldv___pci_register_driver_49(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; void ldv_pci_unregister_driver_50(struct pci_driver *ldv_func_arg1 ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; if (rc < 0) { return (rc); } else { } return (0); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_mask(& dev->dev, mask); return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_coherent_mask(& dev->dev, mask); return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { tmp = dev_name(& pdev->dev); return (tmp); } } extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; extern int mdio_mii_ioctl(struct mdio_if_info const * , struct mii_ioctl_data * , int ) ; __inline static int t1_is_asic(adapter_t const *adapter ) { { return ((int )adapter->params.is_asic); } } struct pci_device_id const t1_pci_tbl[8U] ; __inline static int adapter_matches_type(adapter_t const *adapter , int version , int revision ) { { return ((int )adapter->params.chip_version == version && (int )adapter->params.chip_revision == revision); } } __inline static int vlan_tso_capable(adapter_t const *adapter ) { int tmp ; { tmp = adapter_matches_type(adapter, 1, 1); return (tmp == 0); } } int __t1_tpi_read(adapter_t *adapter , u32 addr , u32 *valp ) ; int __t1_tpi_write(adapter_t *adapter , u32 addr , u32 value ) ; void t1_interrupts_enable(adapter_t *adapter ) ; void t1_interrupts_disable(adapter_t *adapter ) ; void t1_interrupts_clear(adapter_t *adapter ) ; int t1_elmer0_ext_intr_handler(adapter_t *adapter ) ; void t1_elmer0_ext_intr(struct adapter *adapter ) ; int t1_link_start(struct cphy *phy , struct cmac *mac , struct link_config *lc ) ; struct board_info const *t1_get_board_info(unsigned int board_id ) ; int t1_seeprom_read(adapter_t *adapter , u32 addr , __le32 *data ) ; int t1_get_board_rev(adapter_t *adapter , struct board_info const *bi , struct adapter_params *p ) ; int t1_init_hw_modules(adapter_t *adapter ) ; int t1_init_sw_modules(adapter_t *adapter , struct board_info const *bi ) ; void t1_free_sw_modules(adapter_t *adapter ) ; void t1_fatal_err(struct adapter *adapter ) ; void t1_link_negotiated(struct adapter *adapter , int port_id , int link_stat , int speed , int duplex , int pause ) ; int t1_sge_set_coalesce_params(struct sge *sge , struct sge_params *p ) ; irqreturn_t t1_interrupt(int irq , void *data ) ; int t1_poll(struct napi_struct *napi , int budget ) ; netdev_tx_t t1_start_xmit(struct sk_buff *skb , struct net_device *dev ) ; void t1_vlan_mode(struct adapter *adapter , netdev_features_t features ) ; void t1_sge_start(struct sge *sge ) ; void t1_sge_stop(struct sge *sge ) ; struct sge_intr_counts const *t1_sge_get_intr_counts(struct sge const *sge ) ; void t1_sge_get_port_stats(struct sge const *sge , int port , struct sge_port_stats *ss ) ; unsigned int t1_sched_update_parms(struct sge *sge , unsigned int port , unsigned int mtu , unsigned int speed ) ; void t1_tp_set_tcp_checksum_offload(struct petp *tp , int enable ) ; void t1_tp_set_ip_checksum_offload(struct petp *tp , int enable ) ; struct espi_intr_counts const *t1_espi_get_intr_counts(struct peespi *espi ) ; __inline static void schedule_mac_stats_update(struct adapter *ap , int secs ) { { schedule_delayed_work(& ap->stats_update_task, (unsigned long )(secs * 250)); return; } } __inline static void cancel_mac_stats_update(struct adapter *ap ) { { ldv_cancel_delayed_work_42(& ap->stats_update_task); return; } } static int dflt_msg_enable = 255; static int t1_clock(struct adapter *adapter , int mode ) ; static int t1powersave = 1; static int disable_msi = 0; static void t1_set_rxmode(struct net_device *dev ) { struct adapter *adapter ; struct cmac *mac ; struct t1_rx_mode rm ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; mac = adapter->port[(int )dev->if_port].mac; rm.dev = dev; (*((mac->ops)->set_rx_mode))(mac, & rm); return; } } static void link_report(struct port_info *p ) { char const *s ; bool tmp ; int tmp___0 ; { tmp = netif_carrier_ok((struct net_device const *)p->dev); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { netdev_info((struct net_device const *)p->dev, "link down\n"); } else { s = "10Mbps"; switch ((int )p->link_config.speed) { case 10000: s = "10Gbps"; goto ldv_47534; case 1000: s = "1000Mbps"; goto ldv_47534; case 100: s = "100Mbps"; goto ldv_47534; } ldv_47534: netdev_info((struct net_device const *)p->dev, "link up, %s, %s-duplex\n", s, (unsigned int )p->link_config.duplex == 1U ? (char *)"full" : (char *)"half"); } return; } } void t1_link_negotiated(struct adapter *adapter , int port_id , int link_stat , int speed , int duplex , int pause ) { struct port_info *p ; unsigned int sched_speed ; bool tmp ; { p = (struct port_info *)(& adapter->port) + (unsigned long )port_id; tmp = netif_carrier_ok((struct net_device const *)p->dev); if ((int )tmp != link_stat) { if (link_stat != 0) { netif_carrier_on(p->dev); } else { netif_carrier_off(p->dev); } link_report(p); if (speed > 0 && adapter->params.nports > 1U) { sched_speed = 10U; switch (speed) { case 1000: sched_speed = 1000U; goto ldv_47548; case 100: sched_speed = 100U; goto ldv_47548; case 10: sched_speed = 10U; goto ldv_47548; } ldv_47548: t1_sched_update_parms(adapter->sge, (unsigned int )port_id, 0U, sched_speed); } else { } } else { } return; } } static void link_start(struct port_info *p ) { struct cmac *mac ; { mac = p->mac; (*((mac->ops)->reset))(mac); if ((unsigned long )(mac->ops)->macaddress_set != (unsigned long )((int (*/* const */)(struct cmac * , u8 * ))0)) { (*((mac->ops)->macaddress_set))(mac, (p->dev)->dev_addr); } else { } t1_set_rxmode(p->dev); t1_link_start(p->phy, mac, & p->link_config); (*((mac->ops)->enable))(mac, 3); return; } } static void enable_hw_csum(struct adapter *adapter ) { { if (((adapter->port[0].dev)->hw_features & 65536ULL) != 0ULL) { t1_tp_set_ip_checksum_offload(adapter->tp, 1); } else { } t1_tp_set_tcp_checksum_offload(adapter->tp, 1); return; } } static int cxgb_up(struct adapter *adapter ) { int err ; int tmp ; int tmp___0 ; { err = 0; if ((adapter->flags & 1UL) == 0UL) { err = t1_init_hw_modules(adapter); if (err != 0) { goto out_err; } else { } enable_hw_csum(adapter); adapter->flags = adapter->flags | 1UL; } else { } t1_interrupts_clear(adapter); if (disable_msi == 0) { tmp = pci_enable_msi_exact(adapter->pdev, 1); if (tmp == 0) { tmp___0 = 1; } else { tmp___0 = 0; } } else { tmp___0 = 0; } adapter->params.has_msi = (unsigned char )tmp___0; err = ldv_request_irq_43((adapter->pdev)->irq, & t1_interrupt, (unsigned int )adapter->params.has_msi != 0U ? 0UL : 128UL, adapter->name, (void *)adapter); if (err != 0) { if ((unsigned int )adapter->params.has_msi != 0U) { pci_disable_msi(adapter->pdev); } else { } goto out_err; } else { } t1_sge_start(adapter->sge); t1_interrupts_enable(adapter); out_err: ; return (err); } } static void cxgb_down(struct adapter *adapter ) { { t1_sge_stop(adapter->sge); t1_interrupts_disable(adapter); ldv_free_irq_44((adapter->pdev)->irq, (void *)adapter); if ((unsigned int )adapter->params.has_msi != 0U) { pci_disable_msi(adapter->pdev); } else { } return; } } static int cxgb_open(struct net_device *dev ) { int err ; struct adapter *adapter ; int other_ports ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; other_ports = (int )adapter->open_device_map & 15; napi_enable(& adapter->napi); if (adapter->open_device_map == 0UL) { err = cxgb_up(adapter); if (err < 0) { napi_disable(& adapter->napi); return (err); } else { } } else { } __set_bit((long )dev->if_port, (unsigned long volatile *)(& adapter->open_device_map)); link_start((struct port_info *)(& adapter->port) + (unsigned long )dev->if_port); netif_start_queue(dev); if (other_ports == 0 && adapter->params.stats_update_period != 0U) { schedule_mac_stats_update(adapter, (int )adapter->params.stats_update_period); } else { } t1_vlan_mode(adapter, dev->features); return (0); } } static int cxgb_close(struct net_device *dev ) { struct adapter *adapter ; struct port_info *p ; struct cmac *mac ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; p = (struct port_info *)(& adapter->port) + (unsigned long )dev->if_port; mac = p->mac; netif_stop_queue(dev); napi_disable(& adapter->napi); (*((mac->ops)->disable))(mac, 3); netif_carrier_off(dev); clear_bit((long )dev->if_port, (unsigned long volatile *)(& adapter->open_device_map)); if (adapter->params.stats_update_period != 0U && (adapter->open_device_map & 15UL) == 0UL) { __asm__ volatile ("": : : "memory"); spin_lock(& adapter->work_lock); spin_unlock(& adapter->work_lock); cancel_mac_stats_update(adapter); } else { } if (adapter->open_device_map == 0UL) { cxgb_down(adapter); } else { } return (0); } } static struct net_device_stats *t1_get_stats(struct net_device *dev ) { struct adapter *adapter ; struct port_info *p ; struct net_device_stats *ns ; struct cmac_statistics const *pstats ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; p = (struct port_info *)(& adapter->port) + (unsigned long )dev->if_port; ns = & p->netstats; pstats = (*(((p->mac)->ops)->statistics_update))(p->mac, 1); ns->tx_packets = (unsigned long )(((unsigned long long )pstats->TxUnicastFramesOK + (unsigned long long )pstats->TxMulticastFramesOK) + (unsigned long long )pstats->TxBroadcastFramesOK); ns->rx_packets = (unsigned long )(((unsigned long long )pstats->RxUnicastFramesOK + (unsigned long long )pstats->RxMulticastFramesOK) + (unsigned long long )pstats->RxBroadcastFramesOK); ns->tx_bytes = (unsigned long )pstats->TxOctetsOK; ns->rx_bytes = (unsigned long )pstats->RxOctetsOK; ns->tx_errors = (unsigned long )((((unsigned long long )pstats->TxLateCollisions + (unsigned long long )pstats->TxLengthErrors) + (unsigned long long )pstats->TxUnderrun) + (unsigned long long )pstats->TxFramesAbortedDueToXSCollisions); ns->rx_errors = (unsigned long )((((((((unsigned long long )pstats->RxDataErrors + (unsigned long long )pstats->RxJabberErrors) + (unsigned long long )pstats->RxFCSErrors) + (unsigned long long )pstats->RxAlignErrors) + (unsigned long long )pstats->RxSequenceErrors) + (unsigned long long )pstats->RxFrameTooLongErrors) + (unsigned long long )pstats->RxSymbolErrors) + (unsigned long long )pstats->RxRuntErrors); ns->multicast = (unsigned long )pstats->RxMulticastFramesOK; ns->collisions = (unsigned long )pstats->TxTotalCollisions; ns->rx_length_errors = (unsigned long )((unsigned long long )pstats->RxFrameTooLongErrors + (unsigned long long )pstats->RxJabberErrors); ns->rx_over_errors = 0UL; ns->rx_crc_errors = (unsigned long )pstats->RxFCSErrors; ns->rx_frame_errors = (unsigned long )pstats->RxAlignErrors; ns->rx_fifo_errors = 0UL; ns->rx_missed_errors = 0UL; ns->tx_aborted_errors = (unsigned long )pstats->TxFramesAbortedDueToXSCollisions; ns->tx_carrier_errors = 0UL; ns->tx_fifo_errors = (unsigned long )pstats->TxUnderrun; ns->tx_heartbeat_errors = 0UL; ns->tx_window_errors = (unsigned long )pstats->TxLateCollisions; return (ns); } } static u32 get_msglevel(struct net_device *dev ) { struct adapter *adapter ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; return ((u32 )adapter->msg_enable); } } static void set_msglevel(struct net_device *dev , u32 val ) { struct adapter *adapter ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; adapter->msg_enable = (int )val; return; } } static char const stats_strings[58U][32U] = { { 'T', 'x', 'O', 'c', 't', 'e', 't', 's', 'O', 'K', '\000'}, { 'T', 'x', 'O', 'c', 't', 'e', 't', 's', 'B', 'a', 'd', '\000'}, { 'T', 'x', 'U', 'n', 'i', 'c', 'a', 's', 't', 'F', 'r', 'a', 'm', 'e', 's', 'O', 'K', '\000'}, { 'T', 'x', 'M', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', 'F', 'r', 'a', 'm', 'e', 's', 'O', 'K', '\000'}, { 'T', 'x', 'B', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', 'F', 'r', 'a', 'm', 'e', 's', 'O', 'K', '\000'}, { 'T', 'x', 'P', 'a', 'u', 's', 'e', 'F', 'r', 'a', 'm', 'e', 's', '\000'}, { 'T', 'x', 'F', 'r', 'a', 'm', 'e', 's', 'W', 'i', 't', 'h', 'D', 'e', 'f', 'e', 'r', 'r', 'e', 'd', 'X', 'm', 'i', 's', 's', 'i', 'o', 'n', 's', '\000'}, { 'T', 'x', 'L', 'a', 't', 'e', 'C', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, { 'T', 'x', 'T', 'o', 't', 'a', 'l', 'C', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, { 'T', 'x', 'F', 'r', 'a', 'm', 'e', 's', 'A', 'b', 'o', 'r', 't', 'e', 'd', 'D', 'u', 'e', 'T', 'o', 'X', 'S', 'C', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's'}, { 'T', 'x', 'U', 'n', 'd', 'e', 'r', 'r', 'u', 'n', '\000'}, { 'T', 'x', 'L', 'e', 'n', 'g', 't', 'h', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'T', 'x', 'I', 'n', 't', 'e', 'r', 'n', 'a', 'l', 'M', 'A', 'C', 'X', 'm', 'i', 't', 'E', 'r', 'r', 'o', 'r', '\000'}, { 'T', 'x', 'F', 'r', 'a', 'm', 'e', 's', 'W', 'i', 't', 'h', 'E', 'x', 'c', 'e', 's', 's', 'i', 'v', 'e', 'D', 'e', 'f', 'e', 'r', 'r', 'a', 'l', '\000'}, { 'T', 'x', 'F', 'C', 'S', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'T', 'x', 'J', 'u', 'm', 'b', 'o', 'F', 'r', 'a', 'm', 'e', 's', 'O', 'k', '\000'}, { 'T', 'x', 'J', 'u', 'm', 'b', 'o', 'O', 'c', 't', 'e', 't', 's', 'O', 'k', '\000'}, { 'R', 'x', 'O', 'c', 't', 'e', 't', 's', 'O', 'K', '\000'}, { 'R', 'x', 'O', 'c', 't', 'e', 't', 's', 'B', 'a', 'd', '\000'}, { 'R', 'x', 'U', 'n', 'i', 'c', 'a', 's', 't', 'F', 'r', 'a', 'm', 'e', 's', 'O', 'K', '\000'}, { 'R', 'x', 'M', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', 'F', 'r', 'a', 'm', 'e', 's', 'O', 'K', '\000'}, { 'R', 'x', 'B', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', 'F', 'r', 'a', 'm', 'e', 's', 'O', 'K', '\000'}, { 'R', 'x', 'P', 'a', 'u', 's', 'e', 'F', 'r', 'a', 'm', 'e', 's', '\000'}, { 'R', 'x', 'F', 'C', 'S', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'R', 'x', 'A', 'l', 'i', 'g', 'n', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'R', 'x', 'S', 'y', 'm', 'b', 'o', 'l', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'R', 'x', 'D', 'a', 't', 'a', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'R', 'x', 'S', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'R', 'x', 'R', 'u', 'n', 't', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'R', 'x', 'J', 'a', 'b', 'b', 'e', 'r', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'R', 'x', 'I', 'n', 't', 'e', 'r', 'n', 'a', 'l', 'M', 'A', 'C', 'R', 'c', 'v', 'E', 'r', 'r', 'o', 'r', '\000'}, { 'R', 'x', 'I', 'n', 'R', 'a', 'n', 'g', 'e', 'L', 'e', 'n', 'g', 't', 'h', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'R', 'x', 'O', 'u', 't', 'O', 'f', 'R', 'a', 'n', 'g', 'e', 'L', 'e', 'n', 'g', 't', 'h', 'F', 'i', 'e', 'l', 'd', '\000'}, { 'R', 'x', 'F', 'r', 'a', 'm', 'e', 'T', 'o', 'o', 'L', 'o', 'n', 'g', 'E', 'r', 'r', 'o', 'r', 's', '\000'}, { 'R', 'x', 'J', 'u', 'm', 'b', 'o', 'F', 'r', 'a', 'm', 'e', 's', 'O', 'k', '\000'}, { 'R', 'x', 'J', 'u', 'm', 'b', 'o', 'O', 'c', 't', 'e', 't', 's', 'O', 'k', '\000'}, { 'R', 'x', 'C', 's', 'u', 'm', 'G', 'o', 'o', 'd', '\000'}, { 'T', 'x', 'C', 's', 'u', 'm', 'O', 'f', 'f', 'l', 'o', 'a', 'd', '\000'}, { 'T', 'x', 'T', 's', 'o', '\000'}, { 'R', 'x', 'V', 'l', 'a', 'n', '\000'}, { 'T', 'x', 'V', 'l', 'a', 'n', '\000'}, { 'T', 'x', 'N', 'e', 'e', 'd', 'H', 'e', 'a', 'd', 'r', 'o', 'o', 'm', '\000'}, { 'r', 'x', ' ', 'd', 'r', 'o', 'p', 's', '\000'}, { 'p', 'u', 'r', 'e', '_', 'r', 's', 'p', 's', '\000'}, { 'u', 'n', 'h', 'a', 'n', 'd', 'l', 'e', 'd', ' ', 'i', 'r', 'q', 's', '\000'}, { 'r', 'e', 's', 'p', 'Q', '_', 'e', 'm', 'p', 't', 'y', '\000'}, { 'r', 'e', 's', 'p', 'Q', '_', 'o', 'v', 'e', 'r', 'f', 'l', 'o', 'w', '\000'}, { 'f', 'r', 'e', 'e', 'l', 'i', 's', 't', 'Q', '_', 'e', 'm', 'p', 't', 'y', '\000'}, { 'p', 'k', 't', '_', 't', 'o', 'o', '_', 'b', 'i', 'g', '\000'}, { 'p', 'k', 't', '_', 'm', 'i', 's', 'm', 'a', 't', 'c', 'h', '\000'}, { 'c', 'm', 'd', 'Q', '_', 'f', 'u', 'l', 'l', '0', '\000'}, { 'c', 'm', 'd', 'Q', '_', 'f', 'u', 'l', 'l', '1', '\000'}, { 'e', 's', 'p', 'i', '_', 'D', 'I', 'P', '2', 'P', 'a', 'r', 'i', 't', 'y', 'E', 'r', 'r', '\000'}, { 'e', 's', 'p', 'i', '_', 'D', 'I', 'P', '4', 'E', 'r', 'r', '\000'}, { 'e', 's', 'p', 'i', '_', 'R', 'x', 'D', 'r', 'o', 'p', 's', '\000'}, { 'e', 's', 'p', 'i', '_', 'T', 'x', 'D', 'r', 'o', 'p', 's', '\000'}, { 'e', 's', 'p', 'i', '_', 'R', 'x', 'O', 'v', 'f', 'l', '\000'}, { 'e', 's', 'p', 'i', '_', 'P', 'a', 'r', 'i', 't', 'y', 'E', 'r', 'r', '\000'}}; static int get_regs_len(struct net_device *dev ) { { return (3072); } } static void get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct adapter *adapter ; char const *tmp ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; strlcpy((char *)(& info->driver), "cxgb", 32UL); strlcpy((char *)(& info->version), "2.2", 32UL); tmp = pci_name((struct pci_dev const *)adapter->pdev); strlcpy((char *)(& info->bus_info), tmp, 32UL); return; } } static int get_sset_count(struct net_device *dev , int sset ) { { switch (sset) { case 1: ; return (58); default: ; return (-95); } } } static void get_strings(struct net_device *dev , u32 stringset , u8 *data ) { { if (stringset == 1U) { memcpy((void *)data, (void const *)(& stats_strings), 1856UL); } else { } return; } } static void get_stats(struct net_device *dev , struct ethtool_stats *stats , u64 *data ) { struct adapter *adapter ; struct cmac *mac ; struct cmac_statistics const *s ; struct sge_intr_counts const *t ; struct sge_port_stats ss ; u64 *tmp ; u64 *tmp___0 ; u64 *tmp___1 ; u64 *tmp___2 ; u64 *tmp___3 ; u64 *tmp___4 ; u64 *tmp___5 ; u64 *tmp___6 ; u64 *tmp___7 ; u64 *tmp___8 ; u64 *tmp___9 ; u64 *tmp___10 ; u64 *tmp___11 ; u64 *tmp___12 ; u64 *tmp___13 ; u64 *tmp___14 ; u64 *tmp___15 ; u64 *tmp___16 ; u64 *tmp___17 ; u64 *tmp___18 ; u64 *tmp___19 ; u64 *tmp___20 ; u64 *tmp___21 ; u64 *tmp___22 ; u64 *tmp___23 ; u64 *tmp___24 ; u64 *tmp___25 ; u64 *tmp___26 ; u64 *tmp___27 ; u64 *tmp___28 ; u64 *tmp___29 ; u64 *tmp___30 ; u64 *tmp___31 ; u64 *tmp___32 ; u64 *tmp___33 ; u64 *tmp___34 ; u64 *tmp___35 ; u64 *tmp___36 ; u64 *tmp___37 ; u64 *tmp___38 ; u64 *tmp___39 ; u64 *tmp___40 ; u64 *tmp___41 ; u64 *tmp___42 ; u64 *tmp___43 ; u64 *tmp___44 ; u64 *tmp___45 ; u64 *tmp___46 ; u64 *tmp___47 ; u64 *tmp___48 ; u64 *tmp___49 ; u64 *tmp___50 ; struct espi_intr_counts const *e ; u64 *tmp___51 ; u64 *tmp___52 ; u64 *tmp___53 ; u64 *tmp___54 ; u64 *tmp___55 ; u64 *tmp___56 ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; mac = adapter->port[(int )dev->if_port].mac; s = (*((mac->ops)->statistics_update))(mac, 1); t = t1_sge_get_intr_counts((struct sge const *)adapter->sge); t1_sge_get_port_stats((struct sge const *)adapter->sge, (int )dev->if_port, & ss); tmp = data; data = data + 1; *tmp = s->TxOctetsOK; tmp___0 = data; data = data + 1; *tmp___0 = s->TxOctetsBad; tmp___1 = data; data = data + 1; *tmp___1 = s->TxUnicastFramesOK; tmp___2 = data; data = data + 1; *tmp___2 = s->TxMulticastFramesOK; tmp___3 = data; data = data + 1; *tmp___3 = s->TxBroadcastFramesOK; tmp___4 = data; data = data + 1; *tmp___4 = s->TxPauseFrames; tmp___5 = data; data = data + 1; *tmp___5 = s->TxFramesWithDeferredXmissions; tmp___6 = data; data = data + 1; *tmp___6 = s->TxLateCollisions; tmp___7 = data; data = data + 1; *tmp___7 = s->TxTotalCollisions; tmp___8 = data; data = data + 1; *tmp___8 = s->TxFramesAbortedDueToXSCollisions; tmp___9 = data; data = data + 1; *tmp___9 = s->TxUnderrun; tmp___10 = data; data = data + 1; *tmp___10 = s->TxLengthErrors; tmp___11 = data; data = data + 1; *tmp___11 = s->TxInternalMACXmitError; tmp___12 = data; data = data + 1; *tmp___12 = s->TxFramesWithExcessiveDeferral; tmp___13 = data; data = data + 1; *tmp___13 = s->TxFCSErrors; tmp___14 = data; data = data + 1; *tmp___14 = s->TxJumboFramesOK; tmp___15 = data; data = data + 1; *tmp___15 = s->TxJumboOctetsOK; tmp___16 = data; data = data + 1; *tmp___16 = s->RxOctetsOK; tmp___17 = data; data = data + 1; *tmp___17 = s->RxOctetsBad; tmp___18 = data; data = data + 1; *tmp___18 = s->RxUnicastFramesOK; tmp___19 = data; data = data + 1; *tmp___19 = s->RxMulticastFramesOK; tmp___20 = data; data = data + 1; *tmp___20 = s->RxBroadcastFramesOK; tmp___21 = data; data = data + 1; *tmp___21 = s->RxPauseFrames; tmp___22 = data; data = data + 1; *tmp___22 = s->RxFCSErrors; tmp___23 = data; data = data + 1; *tmp___23 = s->RxAlignErrors; tmp___24 = data; data = data + 1; *tmp___24 = s->RxSymbolErrors; tmp___25 = data; data = data + 1; *tmp___25 = s->RxDataErrors; tmp___26 = data; data = data + 1; *tmp___26 = s->RxSequenceErrors; tmp___27 = data; data = data + 1; *tmp___27 = s->RxRuntErrors; tmp___28 = data; data = data + 1; *tmp___28 = s->RxJabberErrors; tmp___29 = data; data = data + 1; *tmp___29 = s->RxInternalMACRcvError; tmp___30 = data; data = data + 1; *tmp___30 = s->RxInRangeLengthErrors; tmp___31 = data; data = data + 1; *tmp___31 = s->RxOutOfRangeLengthField; tmp___32 = data; data = data + 1; *tmp___32 = s->RxFrameTooLongErrors; tmp___33 = data; data = data + 1; *tmp___33 = s->RxJumboFramesOK; tmp___34 = data; data = data + 1; *tmp___34 = s->RxJumboOctetsOK; tmp___35 = data; data = data + 1; *tmp___35 = ss.rx_cso_good; tmp___36 = data; data = data + 1; *tmp___36 = ss.tx_cso; tmp___37 = data; data = data + 1; *tmp___37 = ss.tx_tso; tmp___38 = data; data = data + 1; *tmp___38 = ss.vlan_xtract; tmp___39 = data; data = data + 1; *tmp___39 = ss.vlan_insert; tmp___40 = data; data = data + 1; *tmp___40 = ss.tx_need_hdrroom; tmp___41 = data; data = data + 1; *tmp___41 = (u64 )t->rx_drops; tmp___42 = data; data = data + 1; *tmp___42 = (u64 )t->pure_rsps; tmp___43 = data; data = data + 1; *tmp___43 = (u64 )t->unhandled_irqs; tmp___44 = data; data = data + 1; *tmp___44 = (u64 )t->respQ_empty; tmp___45 = data; data = data + 1; *tmp___45 = (u64 )t->respQ_overflow; tmp___46 = data; data = data + 1; *tmp___46 = (u64 )t->freelistQ_empty; tmp___47 = data; data = data + 1; *tmp___47 = (u64 )t->pkt_too_big; tmp___48 = data; data = data + 1; *tmp___48 = (u64 )t->pkt_mismatch; tmp___49 = data; data = data + 1; *tmp___49 = (u64 )t->cmdQ_full[0]; tmp___50 = data; data = data + 1; *tmp___50 = (u64 )t->cmdQ_full[1]; if ((unsigned long )adapter->espi != (unsigned long )((struct peespi *)0)) { e = t1_espi_get_intr_counts(adapter->espi); tmp___51 = data; data = data + 1; *tmp___51 = (u64 )e->DIP2_parity_err; tmp___52 = data; data = data + 1; *tmp___52 = (u64 )e->DIP4_err; tmp___53 = data; data = data + 1; *tmp___53 = (u64 )e->rx_drops; tmp___54 = data; data = data + 1; *tmp___54 = (u64 )e->tx_drops; tmp___55 = data; data = data + 1; *tmp___55 = (u64 )e->rx_ovflw; tmp___56 = data; data = data + 1; *tmp___56 = (u64 )e->parity_err; } else { } return; } } __inline static void reg_block_dump(struct adapter *ap , void *buf , unsigned int start , unsigned int end ) { u32 *p ; u32 *tmp ; { p = (u32 *)buf + (unsigned long )start; goto ldv_47635; ldv_47634: tmp = p; p = p + 1; *tmp = readl((void const volatile *)ap->regs + (unsigned long )start); start = start + 4U; ldv_47635: ; if (start <= end) { goto ldv_47634; } else { } return; } } static void get_regs(struct net_device *dev , struct ethtool_regs *regs , void *buf ) { struct adapter *ap ; { ap = (struct adapter *)dev->__annonCompField94.ml_priv; regs->version = 2U; memset(buf, 0, 3072UL); reg_block_dump(ap, buf, 0U, 192U); reg_block_dump(ap, buf, 256U, 508U); reg_block_dump(ap, buf, 640U, 668U); reg_block_dump(ap, buf, 768U, 1212U); reg_block_dump(ap, buf, 1408U, 1428U); reg_block_dump(ap, buf, 2064U, 2124U); reg_block_dump(ap, buf, 2176U, 2300U); reg_block_dump(ap, buf, 2432U, 2456U); reg_block_dump(ap, buf, 2560U, 2564U); reg_block_dump(ap, buf, 3076U, 3324U); return; } } static int get_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct adapter *adapter ; struct port_info *p ; bool tmp ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; p = (struct port_info *)(& adapter->port) + (unsigned long )dev->if_port; cmd->supported = p->link_config.supported; cmd->advertising = p->link_config.advertising; tmp = netif_carrier_ok((struct net_device const *)dev); if ((int )tmp) { ethtool_cmd_speed_set(cmd, (__u32 )p->link_config.speed); cmd->duplex = p->link_config.duplex; } else { ethtool_cmd_speed_set(cmd, 4294967295U); cmd->duplex = 255U; } cmd->port = (cmd->supported & 128U) != 0U ? 0U : 3U; cmd->phy_address = (__u8 )(p->phy)->mdio.prtad; cmd->transceiver = 1U; cmd->autoneg = p->link_config.autoneg; cmd->maxtxpkt = 0U; cmd->maxrxpkt = 0U; return (0); } } static int speed_duplex_to_caps(int speed , int duplex ) { int cap ; { cap = 0; switch (speed) { case 10: ; if (duplex == 1) { cap = 2; } else { cap = 1; } goto ldv_47655; case 100: ; if (duplex == 1) { cap = 8; } else { cap = 4; } goto ldv_47655; case 1000: ; if (duplex == 1) { cap = 32; } else { cap = 16; } goto ldv_47655; case 10000: ; if (duplex == 1) { cap = 4096; } else { } } ldv_47655: ; return (cap); } } static int set_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct adapter *adapter ; struct port_info *p ; struct link_config *lc ; u32 speed ; __u32 tmp ; int cap ; int tmp___0 ; bool tmp___1 ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; p = (struct port_info *)(& adapter->port) + (unsigned long )dev->if_port; lc = & p->link_config; if ((lc->supported & 64U) == 0U) { return (-95); } else { } if ((unsigned int )cmd->autoneg == 0U) { tmp = ethtool_cmd_speed((struct ethtool_cmd const *)cmd); speed = tmp; tmp___0 = speed_duplex_to_caps((int )speed, (int )cmd->duplex); cap = tmp___0; if ((lc->supported & (unsigned int )cap) == 0U || speed == 1000U) { return (-22); } else { } lc->requested_speed = (unsigned short )speed; lc->requested_duplex = cmd->duplex; lc->advertising = 0U; } else { cmd->advertising = cmd->advertising & 4159U; if ((cmd->advertising & (cmd->advertising - 1U)) != 0U) { cmd->advertising = lc->supported; } else { } cmd->advertising = cmd->advertising & lc->supported; if (cmd->advertising == 0U) { return (-22); } else { } lc->requested_speed = 65535U; lc->requested_duplex = 255U; lc->advertising = cmd->advertising | 64U; } lc->autoneg = cmd->autoneg; tmp___1 = netif_running((struct net_device const *)dev); if ((int )tmp___1) { t1_link_start(p->phy, p->mac, lc); } else { } return (0); } } static void get_pauseparam(struct net_device *dev , struct ethtool_pauseparam *epause ) { struct adapter *adapter ; struct port_info *p ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; p = (struct port_info *)(& adapter->port) + (unsigned long )dev->if_port; epause->autoneg = ((int )p->link_config.requested_fc & 4) != 0; epause->rx_pause = (__u32 )p->link_config.fc & 1U; epause->tx_pause = ((int )p->link_config.fc & 2) != 0; return; } } static int set_pauseparam(struct net_device *dev , struct ethtool_pauseparam *epause ) { struct adapter *adapter ; struct port_info *p ; struct link_config *lc ; bool tmp ; bool tmp___0 ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; p = (struct port_info *)(& adapter->port) + (unsigned long )dev->if_port; lc = & p->link_config; if (epause->autoneg == 0U) { lc->requested_fc = 0U; } else if ((lc->supported & 64U) != 0U) { lc->requested_fc = 4U; } else { return (-22); } if (epause->rx_pause != 0U) { lc->requested_fc = (unsigned int )lc->requested_fc | 1U; } else { } if (epause->tx_pause != 0U) { lc->requested_fc = (unsigned int )lc->requested_fc | 2U; } else { } if ((unsigned int )lc->autoneg == 1U) { tmp = netif_running((struct net_device const *)dev); if ((int )tmp) { t1_link_start(p->phy, p->mac, lc); } else { } } else { lc->fc = (unsigned int )lc->requested_fc & 3U; tmp___0 = netif_running((struct net_device const *)dev); if ((int )tmp___0) { (*(((p->mac)->ops)->set_speed_duplex_fc))(p->mac, -1, -1, (int )lc->fc); } else { } } return (0); } } static void get_sge_param(struct net_device *dev , struct ethtool_ringparam *e ) { struct adapter *adapter ; int jumbo_fl ; int tmp ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; tmp = adapter_matches_type((adapter_t const *)adapter, 1, 1); jumbo_fl = tmp != 0; e->rx_max_pending = 16384U; e->rx_jumbo_max_pending = 16384U; e->tx_max_pending = 16384U; e->rx_pending = adapter->params.sge.freelQ_size[jumbo_fl == 0]; e->rx_jumbo_pending = adapter->params.sge.freelQ_size[jumbo_fl]; e->tx_pending = adapter->params.sge.cmdQ_size[0]; return; } } static int set_sge_param(struct net_device *dev , struct ethtool_ringparam *e ) { struct adapter *adapter ; int jumbo_fl ; int tmp ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; tmp = adapter_matches_type((adapter_t const *)adapter, 1, 1); jumbo_fl = tmp != 0; if ((((((e->rx_pending > 16384U || e->rx_mini_pending != 0U) || e->rx_jumbo_pending > 16384U) || e->tx_pending > 16384U) || e->rx_pending <= 31U) || e->rx_jumbo_pending <= 31U) || (unsigned long )e->tx_pending < (unsigned long )(adapter->params.nports + 1U) * 18UL) { return (-22); } else { } if ((int )adapter->flags & 1) { return (-16); } else { } adapter->params.sge.freelQ_size[jumbo_fl == 0] = e->rx_pending; adapter->params.sge.freelQ_size[jumbo_fl] = e->rx_jumbo_pending; adapter->params.sge.cmdQ_size[0] = e->tx_pending; adapter->params.sge.cmdQ_size[1] = 1024U < e->tx_pending ? 1024U : e->tx_pending; return (0); } } static int set_coalesce(struct net_device *dev , struct ethtool_coalesce *c ) { struct adapter *adapter ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; adapter->params.sge.rx_coalesce_usecs = c->rx_coalesce_usecs; adapter->params.sge.coalesce_enable = c->use_adaptive_rx_coalesce; adapter->params.sge.sample_interval_usecs = c->rate_sample_interval; t1_sge_set_coalesce_params(adapter->sge, & adapter->params.sge); return (0); } } static int get_coalesce(struct net_device *dev , struct ethtool_coalesce *c ) { struct adapter *adapter ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; c->rx_coalesce_usecs = adapter->params.sge.rx_coalesce_usecs; c->rate_sample_interval = adapter->params.sge.sample_interval_usecs; c->use_adaptive_rx_coalesce = adapter->params.sge.coalesce_enable; return (0); } } static int get_eeprom_len(struct net_device *dev ) { struct adapter *adapter ; int tmp ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; tmp = t1_is_asic((adapter_t const *)adapter); return (tmp != 0 ? 32 : 0); } } static int get_eeprom(struct net_device *dev , struct ethtool_eeprom *e , u8 *data ) { int i ; u8 buf[32U] ; struct adapter *adapter ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; e->magic = (__u32 )(((int )adapter->params.chip_version << 16) | 5157); i = (int )e->offset & -4; goto ldv_47716; ldv_47715: t1_seeprom_read(adapter, (u32 )i, (__le32 *)(& buf) + (unsigned long )i); i = (int )((unsigned int )i + 4U); ldv_47716: ; if ((__u32 )i < e->offset + e->len) { goto ldv_47715; } else { } memcpy((void *)data, (void const *)(& buf) + (unsigned long )e->offset, (size_t )e->len); return (0); } } static struct ethtool_ops const t1_ethtool_ops = {& get_settings, & set_settings, & get_drvinfo, & get_regs_len, & get_regs, 0, 0, & get_msglevel, & set_msglevel, 0, & ethtool_op_get_link, & get_eeprom_len, & get_eeprom, 0, & get_coalesce, & set_coalesce, & get_sge_param, & set_sge_param, & get_pauseparam, & set_pauseparam, 0, & get_strings, 0, & get_stats, 0, 0, 0, 0, & get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int t1_ioctl(struct net_device *dev , struct ifreq *req , int cmd ) { struct adapter *adapter ; struct mdio_if_info *mdio ; struct mii_ioctl_data *tmp ; int tmp___0 ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; mdio = & (adapter->port[(int )dev->if_port].phy)->mdio; tmp = if_mii(req); tmp___0 = mdio_mii_ioctl((struct mdio_if_info const *)mdio, tmp, cmd); return (tmp___0); } } static int t1_change_mtu(struct net_device *dev , int new_mtu ) { int ret ; struct adapter *adapter ; struct cmac *mac ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; mac = adapter->port[(int )dev->if_port].mac; if ((unsigned long )(mac->ops)->set_mtu == (unsigned long )((int (*/* const */)(struct cmac * , int ))0)) { return (-95); } else { } if (new_mtu <= 67) { return (-22); } else { } ret = (*((mac->ops)->set_mtu))(mac, new_mtu); if (ret != 0) { return (ret); } else { } dev->mtu = (unsigned int )new_mtu; return (0); } } static int t1_set_mac_addr(struct net_device *dev , void *p ) { struct adapter *adapter ; struct cmac *mac ; struct sockaddr *addr ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; mac = adapter->port[(int )dev->if_port].mac; addr = (struct sockaddr *)p; if ((unsigned long )(mac->ops)->macaddress_set == (unsigned long )((int (*/* const */)(struct cmac * , u8 * ))0)) { return (-95); } else { } memcpy((void *)dev->dev_addr, (void const *)(& addr->sa_data), (size_t )dev->addr_len); (*((mac->ops)->macaddress_set))(mac, dev->dev_addr); return (0); } } static netdev_features_t t1_fix_features(struct net_device *dev , netdev_features_t features ) { { if ((features & 256ULL) != 0ULL) { features = features | 128ULL; } else { features = features & 0xffffffffffffff7fULL; } return (features); } } static int t1_set_features(struct net_device *dev , netdev_features_t features ) { netdev_features_t changed ; struct adapter *adapter ; { changed = dev->features ^ features; adapter = (struct adapter *)dev->__annonCompField94.ml_priv; if ((changed & 256ULL) != 0ULL) { t1_vlan_mode(adapter, features); } else { } return (0); } } static void t1_netpoll(struct net_device *dev ) { unsigned long flags ; struct adapter *adapter ; int tmp ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; flags = arch_local_irq_save(); trace_hardirqs_off(); t1_interrupt((int )(adapter->pdev)->irq, (void *)adapter); tmp = arch_irqs_disabled_flags(flags); if (tmp != 0) { arch_local_irq_restore(flags); trace_hardirqs_off(); } else { trace_hardirqs_on(); arch_local_irq_restore(flags); } return; } } static void mac_stats_task(struct work_struct *work ) { int i ; struct adapter *adapter ; struct work_struct const *__mptr ; struct port_info *p ; bool tmp ; { __mptr = (struct work_struct const *)work; adapter = (struct adapter *)__mptr + 0xfffffffffffffa18UL; i = 0; goto ldv_47777; ldv_47776: p = (struct port_info *)(& adapter->port) + (unsigned long )i; tmp = netif_running((struct net_device const *)p->dev); if ((int )tmp) { (*(((p->mac)->ops)->statistics_update))(p->mac, 0); } else { } i = i + 1; ldv_47777: ; if ((unsigned int )i < adapter->params.nports) { goto ldv_47776; } else { } spin_lock(& adapter->work_lock); if ((adapter->open_device_map & 15UL) != 0UL) { schedule_mac_stats_update(adapter, (int )adapter->params.stats_update_period); } else { } spin_unlock(& adapter->work_lock); return; } } static void ext_intr_task(struct work_struct *work ) { struct adapter *adapter ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; adapter = (struct adapter *)__mptr + 0xffffffffffffffc8UL; t1_elmer0_ext_intr_handler(adapter); spin_lock_irq(& adapter->async_lock); adapter->slow_intr_mask = adapter->slow_intr_mask | 2048U; writel(2048U, (void volatile *)adapter->regs + 2564U); writel(adapter->slow_intr_mask | 2U, (void volatile *)adapter->regs + 2560U); spin_unlock_irq(& adapter->async_lock); return; } } void t1_elmer0_ext_intr(struct adapter *adapter ) { { adapter->slow_intr_mask = adapter->slow_intr_mask & 4294965247U; writel(adapter->slow_intr_mask | 2U, (void volatile *)adapter->regs + 2560U); schedule_work(& adapter->ext_intr_handler_task); return; } } void t1_fatal_err(struct adapter *adapter ) { { if ((int )adapter->flags & 1) { t1_sge_stop(adapter->sge); t1_interrupts_disable(adapter); } else { } printk("\tcxgb: %s: encountered fatal error, operation suspended\n", adapter->name); return; } } static struct net_device_ops const cxgb_netdev_ops = {0, 0, & cxgb_open, & cxgb_close, & t1_start_xmit, 0, 0, & t1_set_rxmode, & t1_set_mac_addr, & eth_validate_addr, & t1_ioctl, 0, & t1_change_mtu, 0, 0, 0, & t1_get_stats, 0, 0, & t1_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & t1_fix_features, & t1_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { int i ; int err ; int pci_using_dac ; unsigned long mmio_start ; unsigned long mmio_len ; struct board_info const *bi ; struct adapter *adapter ; struct port_info *pi ; bool __print_once ; char const *tmp ; char const *tmp___0 ; int tmp___1 ; char const *tmp___2 ; int tmp___3 ; char const *tmp___4 ; struct net_device *netdev ; void *tmp___5 ; void *tmp___6 ; char const *tmp___7 ; int tmp___8 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___4 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___5 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; char const *tmp___12 ; char const *tmp___13 ; int tmp___14 ; { pci_using_dac = 0; adapter = (struct adapter *)0; if (! __print_once) { __print_once = 1; printk("\016cxgb: %s - version %s\n", (char *)"Chelsio 10Gb Ethernet Driver", (char *)"2.2"); } else { } err = pci_enable_device(pdev); if (err != 0) { return (err); } else { } if ((pdev->resource[0].flags & 512UL) == 0UL) { tmp = pci_name((struct pci_dev const *)pdev); printk("\vcxgb: %s: cannot find PCI device memory base address\n", tmp); err = -19; goto out_disable_pdev; } else { } tmp___3 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); if (tmp___3 == 0) { pci_using_dac = 1; tmp___1 = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); if (tmp___1 != 0) { tmp___0 = pci_name((struct pci_dev const *)pdev); printk("\vcxgb: %s: unable to obtain 64-bit DMA for consistent allocations\n", tmp___0); err = -19; goto out_disable_pdev; } else { } } else { err = pci_set_dma_mask(pdev, 4294967295ULL); if (err != 0) { tmp___2 = pci_name((struct pci_dev const *)pdev); printk("\vcxgb: %s: no usable DMA configuration\n", tmp___2); goto out_disable_pdev; } else { } } err = pci_request_regions(pdev, "cxgb"); if (err != 0) { tmp___4 = pci_name((struct pci_dev const *)pdev); printk("\vcxgb: %s: cannot obtain PCI resources\n", tmp___4); goto out_disable_pdev; } else { } pci_set_master(pdev); mmio_start = (unsigned long )pdev->resource[0].start; mmio_len = pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL) : 0UL; bi = t1_get_board_info((unsigned int )ent->driver_data); i = 0; goto ldv_47818; ldv_47817: netdev = alloc_etherdev_mqs((unsigned long )adapter != (unsigned long )((struct adapter *)0) ? 0 : 2240, 1U, 1U); if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { err = -12; goto out_free_dev; } else { } netdev->dev.parent = & pdev->dev; if ((unsigned long )adapter == (unsigned long )((struct adapter *)0)) { tmp___5 = netdev_priv((struct net_device const *)netdev); adapter = (struct adapter *)tmp___5; adapter->pdev = pdev; adapter->port[0].dev = netdev; tmp___6 = ioremap((resource_size_t )mmio_start, mmio_len); adapter->regs = (u8 *)tmp___6; if ((unsigned long )adapter->regs == (unsigned long )((u8 *)0U)) { tmp___7 = pci_name((struct pci_dev const *)pdev); printk("\vcxgb: %s: cannot map device registers\n", tmp___7); err = -12; goto out_free_dev; } else { } tmp___8 = t1_get_board_rev(adapter, bi, & adapter->params); if (tmp___8 != 0) { err = -19; goto out_free_dev; } else { } adapter->name = pci_name((struct pci_dev const *)pdev); adapter->msg_enable = dflt_msg_enable; adapter->mmio_len = (u32 )mmio_len; spinlock_check(& adapter->tpi_lock); __raw_spin_lock_init(& adapter->tpi_lock.__annonCompField18.rlock, "&(&adapter->tpi_lock)->rlock", & __key); spinlock_check(& adapter->work_lock); __raw_spin_lock_init(& adapter->work_lock.__annonCompField18.rlock, "&(&adapter->work_lock)->rlock", & __key___0); spinlock_check(& adapter->async_lock); __raw_spin_lock_init(& adapter->async_lock.__annonCompField18.rlock, "&(&adapter->async_lock)->rlock", & __key___1); spinlock_check(& adapter->mac_lock); __raw_spin_lock_init(& adapter->mac_lock.__annonCompField18.rlock, "&(&adapter->mac_lock)->rlock", & __key___2); __init_work(& adapter->ext_intr_handler_task, 0); __constr_expr_0.counter = 137438953408L; adapter->ext_intr_handler_task.data = __constr_expr_0; lockdep_init_map(& adapter->ext_intr_handler_task.lockdep_map, "(&adapter->ext_intr_handler_task)", & __key___3, 0); INIT_LIST_HEAD(& adapter->ext_intr_handler_task.entry); adapter->ext_intr_handler_task.func = & ext_intr_task; __init_work(& adapter->stats_update_task.work, 0); __constr_expr_1.counter = 137438953408L; adapter->stats_update_task.work.data = __constr_expr_1; lockdep_init_map(& adapter->stats_update_task.work.lockdep_map, "(&(&adapter->stats_update_task)->work)", & __key___4, 0); INIT_LIST_HEAD(& adapter->stats_update_task.work.entry); adapter->stats_update_task.work.func = & mac_stats_task; init_timer_key(& adapter->stats_update_task.timer, 2097152U, "(&(&adapter->stats_update_task)->timer)", & __key___5); adapter->stats_update_task.timer.function = & delayed_work_timer_fn; adapter->stats_update_task.timer.data = (unsigned long )(& adapter->stats_update_task); pci_set_drvdata(pdev, (void *)netdev); } else { } pi = (struct port_info *)(& adapter->port) + (unsigned long )i; pi->dev = netdev; netif_carrier_off(netdev); netdev->irq = (int )pdev->irq; netdev->if_port = (unsigned char )i; netdev->mem_start = mmio_start; netdev->mem_end = (mmio_start + mmio_len) - 1UL; netdev->__annonCompField94.ml_priv = (void *)adapter; netdev->hw_features = netdev->hw_features | 17179869187ULL; netdev->features = netdev->features | 17179873283ULL; if (pci_using_dac != 0) { netdev->features = netdev->features | 32ULL; } else { } tmp___10 = vlan_tso_capable((adapter_t const *)adapter); if (tmp___10 != 0) { netdev->features = netdev->features | 384ULL; netdev->hw_features = netdev->hw_features | 256ULL; tmp___9 = adapter_matches_type((adapter_t const *)adapter, 2, 3); if (tmp___9 == 0 || (unsigned int )((unsigned char )bi->port_number) != 4U) { netdev->hw_features = netdev->hw_features | 65536ULL; netdev->features = netdev->features | 65536ULL; } else { } } else { } netdev->netdev_ops = & cxgb_netdev_ops; netdev->hard_header_len = (unsigned int )netdev->hard_header_len + ((netdev->hw_features & 65536ULL) != 0ULL ? 16U : 8U); netif_napi_add(netdev, & adapter->napi, & t1_poll, 64); netdev->ethtool_ops = & t1_ethtool_ops; i = i + 1; ldv_47818: ; if ((int )bi->port_number > i) { goto ldv_47817; } else { } tmp___11 = t1_init_sw_modules(adapter, bi); if (tmp___11 < 0) { err = -19; goto out_free_dev; } else { } i = 0; goto ldv_47821; ldv_47820: err = ldv_register_netdev_45(adapter->port[i].dev); if (err != 0) { tmp___12 = pci_name((struct pci_dev const *)pdev); printk("\fcxgb: %s: cannot register net device %s, skipping\n", tmp___12, (char *)(& (adapter->port[i].dev)->name)); } else { if (adapter->registered_device_map == 0UL) { adapter->name = (char const *)(& (adapter->port[i].dev)->name); } else { } __set_bit((long )i, (unsigned long volatile *)(& adapter->registered_device_map)); } i = i + 1; ldv_47821: ; if ((int )bi->port_number > i) { goto ldv_47820; } else { } if (adapter->registered_device_map == 0UL) { tmp___13 = pci_name((struct pci_dev const *)pdev); printk("\vcxgb: %s: could not register any net devices\n", tmp___13); goto out_release_adapter_res; } else { } printk("\016cxgb: %s: %s (rev %d), %s %dMHz/%d-bit\n", adapter->name, bi->desc, (int )adapter->params.chip_revision, (unsigned int )adapter->params.pci.is_pcix != 0U ? (char *)"PCIX" : (char *)"PCI", (int )adapter->params.pci.speed, (int )adapter->params.pci.width); if (t1powersave != 0) { adapter->t1powersave = 1; } else { adapter->t1powersave = 0; } tmp___14 = adapter_matches_type((adapter_t const *)adapter, 1, 1); if (tmp___14 != 0) { t1_clock(adapter, t1powersave); } else { } return (0); out_release_adapter_res: t1_free_sw_modules(adapter); out_free_dev: ; if ((unsigned long )adapter != (unsigned long )((struct adapter *)0)) { if ((unsigned long )adapter->regs != (unsigned long )((u8 *)0U)) { iounmap((void volatile *)adapter->regs); } else { } i = (int )bi->port_number + -1; goto ldv_47825; ldv_47824: ; if ((unsigned long )adapter->port[i].dev != (unsigned long )((struct net_device *)0)) { ldv_free_netdev_46(adapter->port[i].dev); } else { } i = i - 1; ldv_47825: ; if (i >= 0) { goto ldv_47824; } else { } } else { } pci_release_regions(pdev); out_disable_pdev: pci_disable_device(pdev); return (err); } } static void bit_bang(struct adapter *adapter , int bitdata , int nbits ) { int data ; int i ; u32 val ; { i = nbits + -1; goto ldv_47839; ldv_47838: __const_udelay(214750UL); data = (bitdata >> i) & 1; __t1_tpi_read(adapter, 1048600U, & val); if (data != 0) { val = val | 16U; } else { val = val & 4294967279U; } __const_udelay(214750UL); val = val & 4294967287U; __t1_tpi_write(adapter, 1048600U, val); __const_udelay(214750UL); val = val | 8U; __t1_tpi_write(adapter, 1048600U, val); i = i - 1; ldv_47839: ; if (i >= 0) { goto ldv_47838; } else { } return; } } static int t1_clock(struct adapter *adapter , int mode ) { u32 val ; int M_CORE_VAL ; int M_MEM_VAL ; int tmp ; { tmp = adapter_matches_type((adapter_t const *)adapter, 1, 1); if (tmp == 0) { return (-19); } else { } if ((mode & 2) != 0) { return (0); } else { } if (((adapter->t1powersave ^ mode) & 1) == 0) { return (-114); } else { } if ((mode & 1) == 0) { M_CORE_VAL = 20; M_MEM_VAL = 24; adapter->t1powersave = 0; } else { M_CORE_VAL = 14; M_MEM_VAL = 16; adapter->t1powersave = 1; } spin_lock(& adapter->tpi_lock); __t1_tpi_read(adapter, 1048600U, & val); val = val | 131072U; __const_udelay(214750UL); __t1_tpi_write(adapter, 1048600U, val); __const_udelay(214750UL); __t1_tpi_read(adapter, 1048600U, & val); val = val & 4294967231U; val = val & 4294967287U; __t1_tpi_write(adapter, 1048600U, val); __const_udelay(214750UL); bit_bang(adapter, 0, 2); bit_bang(adapter, 0, 2); bit_bang(adapter, M_CORE_VAL, 9); __const_udelay(214750UL); __t1_tpi_read(adapter, 1048600U, & val); val = val | 64U; __const_udelay(214750UL); __t1_tpi_write(adapter, 1048600U, val); __const_udelay(214750UL); __t1_tpi_read(adapter, 1048600U, & val); val = val & 4294967231U; __const_udelay(214750UL); __t1_tpi_write(adapter, 1048600U, val); __const_udelay(214750UL); __t1_tpi_read(adapter, 1048600U, & val); val = val | 131072U; __const_udelay(214750UL); __t1_tpi_write(adapter, 1048600U, val); __const_udelay(214750UL); __t1_tpi_read(adapter, 1048600U, & val); val = val & 4294967263U; val = val & 4294967287U; __const_udelay(214750UL); __t1_tpi_write(adapter, 1048600U, val); __const_udelay(214750UL); bit_bang(adapter, 0, 2); bit_bang(adapter, 0, 2); bit_bang(adapter, M_MEM_VAL, 9); __const_udelay(214750UL); __t1_tpi_read(adapter, 1048600U, & val); val = val | 32U; __const_udelay(214750UL); __t1_tpi_write(adapter, 1048600U, val); __const_udelay(214750UL); __t1_tpi_read(adapter, 1048600U, & val); val = val & 4294967263U; __const_udelay(214750UL); __t1_tpi_write(adapter, 1048600U, val); spin_unlock(& adapter->tpi_lock); return (0); } } __inline static void t1_sw_reset(struct pci_dev *pdev ) { { pci_write_config_dword((struct pci_dev const *)pdev, 68, 3U); pci_write_config_dword((struct pci_dev const *)pdev, 68, 0U); return; } } static void remove_one(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct adapter *adapter ; int i ; int tmp___0 ; { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; adapter = (struct adapter *)dev->__annonCompField94.ml_priv; i = 0; goto ldv_47873; ldv_47872: tmp___0 = variable_test_bit((long )i, (unsigned long const volatile *)(& adapter->registered_device_map)); if (tmp___0 != 0) { ldv_unregister_netdev_47(adapter->port[i].dev); } else { } i = i + 1; ldv_47873: ; if ((unsigned int )i < adapter->params.nports) { goto ldv_47872; } else { } t1_free_sw_modules(adapter); iounmap((void volatile *)adapter->regs); goto ldv_47876; ldv_47875: ; if ((unsigned long )adapter->port[i].dev != (unsigned long )((struct net_device *)0)) { ldv_free_netdev_48(adapter->port[i].dev); } else { } ldv_47876: i = i - 1; if (i >= 0) { goto ldv_47875; } else { } pci_release_regions(pdev); pci_disable_device(pdev); t1_sw_reset(pdev); return; } } static struct pci_driver cxgb_pci_driver = {{0, 0}, "cxgb", (struct pci_device_id const *)(& t1_pci_tbl), & init_one, & remove_one, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int cxgb_pci_driver_init(void) { int tmp ; { tmp = ldv___pci_register_driver_49(& cxgb_pci_driver, & __this_module, "cxgb"); return (tmp); } } static void cxgb_pci_driver_exit(void) { { ldv_pci_unregister_driver_50(& cxgb_pci_driver); return; } } int ldv_retval_2 ; extern int ldv_ndo_uninit_20(void) ; int ldv_retval_0 ; extern int ldv_shutdown_19(void) ; extern int ldv_ndo_init_20(void) ; extern void ldv_initialize(void) ; int ldv_retval_1 ; extern void ldv_check_final_state(void) ; int ldv_retval_3 ; void work_init_3(void) { { ldv_work_3_0 = 0; ldv_work_3_1 = 0; ldv_work_3_2 = 0; ldv_work_3_3 = 0; return; } } void work_init_2(void) { { ldv_work_2_0 = 0; ldv_work_2_1 = 0; ldv_work_2_2 = 0; ldv_work_2_3 = 0; return; } } void ldv_net_device_ops_20(void) { void *tmp ; { tmp = ldv_init_zalloc(3008UL); cxgb_netdev_ops_group1 = (struct net_device *)tmp; return; } } void ldv_pci_driver_19(void) { void *tmp ; { tmp = ldv_init_zalloc(2976UL); cxgb_pci_driver_group1 = (struct pci_dev *)tmp; return; } } void ldv_initialize_ethtool_ops_21(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { tmp = ldv_init_zalloc(92UL); t1_ethtool_ops_group3 = (struct ethtool_coalesce *)tmp; tmp___0 = ldv_init_zalloc(36UL); t1_ethtool_ops_group0 = (struct ethtool_ringparam *)tmp___0; tmp___1 = ldv_init_zalloc(3008UL); t1_ethtool_ops_group4 = (struct net_device *)tmp___1; tmp___2 = ldv_init_zalloc(44UL); t1_ethtool_ops_group1 = (struct ethtool_cmd *)tmp___2; tmp___3 = ldv_init_zalloc(16UL); t1_ethtool_ops_group2 = (struct ethtool_pauseparam *)tmp___3; return; } } void call_and_disable_all_2(int state ) { { if (ldv_work_2_0 == state) { call_and_disable_work_2(ldv_work_struct_2_0); } else { } if (ldv_work_2_1 == state) { call_and_disable_work_2(ldv_work_struct_2_1); } else { } if (ldv_work_2_2 == state) { call_and_disable_work_2(ldv_work_struct_2_2); } else { } if (ldv_work_2_3 == state) { call_and_disable_work_2(ldv_work_struct_2_3); } else { } return; } } int reg_check_1(irqreturn_t (*handler)(int , void * ) ) { { if ((unsigned long )handler == (unsigned long )(& t1_interrupt)) { return (1); } else { } return (0); } } void activate_work_2(struct work_struct *work , int state ) { { if (ldv_work_2_0 == 0) { ldv_work_struct_2_0 = work; ldv_work_2_0 = state; return; } else { } if (ldv_work_2_1 == 0) { ldv_work_struct_2_1 = work; ldv_work_2_1 = state; return; } else { } if (ldv_work_2_2 == 0) { ldv_work_struct_2_2 = work; ldv_work_2_2 = state; return; } else { } if (ldv_work_2_3 == 0) { ldv_work_struct_2_3 = work; ldv_work_2_3 = state; return; } else { } return; } } void activate_work_3(struct work_struct *work , int state ) { { if (ldv_work_3_0 == 0) { ldv_work_struct_3_0 = work; ldv_work_3_0 = state; return; } else { } if (ldv_work_3_1 == 0) { ldv_work_struct_3_1 = work; ldv_work_3_1 = state; return; } else { } if (ldv_work_3_2 == 0) { ldv_work_struct_3_2 = work; ldv_work_3_2 = state; return; } else { } if (ldv_work_3_3 == 0) { ldv_work_struct_3_3 = work; ldv_work_3_3 = state; return; } else { } return; } } void choose_interrupt_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_0, ldv_irq_line_1_0, ldv_irq_data_1_0); goto ldv_47944; case 1: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_1, ldv_irq_line_1_1, ldv_irq_data_1_1); goto ldv_47944; case 2: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_2, ldv_irq_line_1_2, ldv_irq_data_1_2); goto ldv_47944; case 3: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_3, ldv_irq_line_1_3, ldv_irq_data_1_3); goto ldv_47944; default: ldv_stop(); } ldv_47944: ; return; } } void call_and_disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 2 || ldv_work_3_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_0) { mac_stats_task(work); ldv_work_3_0 = 1; return; } else { } if ((ldv_work_3_1 == 2 || ldv_work_3_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_1) { mac_stats_task(work); ldv_work_3_1 = 1; return; } else { } if ((ldv_work_3_2 == 2 || ldv_work_3_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_2) { mac_stats_task(work); ldv_work_3_2 = 1; return; } else { } if ((ldv_work_3_3 == 2 || ldv_work_3_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_3_3) { mac_stats_task(work); ldv_work_3_3 = 1; return; } else { } return; } } void disable_work_3(struct work_struct *work ) { { if ((ldv_work_3_0 == 3 || ldv_work_3_0 == 2) && (unsigned long )ldv_work_struct_3_0 == (unsigned long )work) { ldv_work_3_0 = 1; } else { } if ((ldv_work_3_1 == 3 || ldv_work_3_1 == 2) && (unsigned long )ldv_work_struct_3_1 == (unsigned long )work) { ldv_work_3_1 = 1; } else { } if ((ldv_work_3_2 == 3 || ldv_work_3_2 == 2) && (unsigned long )ldv_work_struct_3_2 == (unsigned long )work) { ldv_work_3_2 = 1; } else { } if ((ldv_work_3_3 == 3 || ldv_work_3_3 == 2) && (unsigned long )ldv_work_struct_3_3 == (unsigned long )work) { ldv_work_3_3 = 1; } else { } return; } } void disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 3 || ldv_work_2_0 == 2) && (unsigned long )ldv_work_struct_2_0 == (unsigned long )work) { ldv_work_2_0 = 1; } else { } if ((ldv_work_2_1 == 3 || ldv_work_2_1 == 2) && (unsigned long )ldv_work_struct_2_1 == (unsigned long )work) { ldv_work_2_1 = 1; } else { } if ((ldv_work_2_2 == 3 || ldv_work_2_2 == 2) && (unsigned long )ldv_work_struct_2_2 == (unsigned long )work) { ldv_work_2_2 = 1; } else { } if ((ldv_work_2_3 == 3 || ldv_work_2_3 == 2) && (unsigned long )ldv_work_struct_2_3 == (unsigned long )work) { ldv_work_2_3 = 1; } else { } return; } } void invoke_work_3(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_3_0 == 2 || ldv_work_3_0 == 3) { ldv_work_3_0 = 4; mac_stats_task(ldv_work_struct_3_0); ldv_work_3_0 = 1; } else { } goto ldv_47966; case 1: ; if (ldv_work_3_1 == 2 || ldv_work_3_1 == 3) { ldv_work_3_1 = 4; mac_stats_task(ldv_work_struct_3_0); ldv_work_3_1 = 1; } else { } goto ldv_47966; case 2: ; if (ldv_work_3_2 == 2 || ldv_work_3_2 == 3) { ldv_work_3_2 = 4; mac_stats_task(ldv_work_struct_3_0); ldv_work_3_2 = 1; } else { } goto ldv_47966; case 3: ; if (ldv_work_3_3 == 2 || ldv_work_3_3 == 3) { ldv_work_3_3 = 4; mac_stats_task(ldv_work_struct_3_0); ldv_work_3_3 = 1; } else { } goto ldv_47966; default: ldv_stop(); } ldv_47966: ; return; } } void disable_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 != 0 && line == ldv_irq_line_1_0) { ldv_irq_1_0 = 0; return; } else { } if (ldv_irq_1_1 != 0 && line == ldv_irq_line_1_1) { ldv_irq_1_1 = 0; return; } else { } if (ldv_irq_1_2 != 0 && line == ldv_irq_line_1_2) { ldv_irq_1_2 = 0; return; } else { } if (ldv_irq_1_3 != 0 && line == ldv_irq_line_1_3) { ldv_irq_1_3 = 0; return; } else { } return; } } int ldv_irq_1(int state , int line , void *data ) { irqreturn_t irq_retval ; int tmp ; int tmp___0 ; { tmp = __VERIFIER_nondet_int(); irq_retval = (irqreturn_t )tmp; if (state != 0) { tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (state == 1) { LDV_IN_INTERRUPT = 2; irq_retval = t1_interrupt(line, data); LDV_IN_INTERRUPT = 1; return (state); } else { } goto ldv_47982; default: ldv_stop(); } ldv_47982: ; } else { } return (state); } } void activate_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 == 0) { ldv_irq_line_1_0 = line; ldv_irq_data_1_0 = data; ldv_irq_1_0 = 1; return; } else { } if (ldv_irq_1_1 == 0) { ldv_irq_line_1_1 = line; ldv_irq_data_1_1 = data; ldv_irq_1_1 = 1; return; } else { } if (ldv_irq_1_2 == 0) { ldv_irq_line_1_2 = line; ldv_irq_data_1_2 = data; ldv_irq_1_2 = 1; return; } else { } if (ldv_irq_1_3 == 0) { ldv_irq_line_1_3 = line; ldv_irq_data_1_3 = data; ldv_irq_1_3 = 1; return; } else { } return; } } void call_and_disable_all_3(int state ) { { if (ldv_work_3_0 == state) { call_and_disable_work_3(ldv_work_struct_3_0); } else { } if (ldv_work_3_1 == state) { call_and_disable_work_3(ldv_work_struct_3_1); } else { } if (ldv_work_3_2 == state) { call_and_disable_work_3(ldv_work_struct_3_2); } else { } if (ldv_work_3_3 == state) { call_and_disable_work_3(ldv_work_struct_3_3); } else { } return; } } void call_and_disable_work_2(struct work_struct *work ) { { if ((ldv_work_2_0 == 2 || ldv_work_2_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_0) { ext_intr_task(work); ldv_work_2_0 = 1; return; } else { } if ((ldv_work_2_1 == 2 || ldv_work_2_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_1) { ext_intr_task(work); ldv_work_2_1 = 1; return; } else { } if ((ldv_work_2_2 == 2 || ldv_work_2_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_2) { ext_intr_task(work); ldv_work_2_2 = 1; return; } else { } if ((ldv_work_2_3 == 2 || ldv_work_2_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_2_3) { ext_intr_task(work); ldv_work_2_3 = 1; return; } else { } return; } } void invoke_work_2(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_2_0 == 2 || ldv_work_2_0 == 3) { ldv_work_2_0 = 4; ext_intr_task(ldv_work_struct_2_0); ldv_work_2_0 = 1; } else { } goto ldv_48004; case 1: ; if (ldv_work_2_1 == 2 || ldv_work_2_1 == 3) { ldv_work_2_1 = 4; ext_intr_task(ldv_work_struct_2_0); ldv_work_2_1 = 1; } else { } goto ldv_48004; case 2: ; if (ldv_work_2_2 == 2 || ldv_work_2_2 == 3) { ldv_work_2_2 = 4; ext_intr_task(ldv_work_struct_2_0); ldv_work_2_2 = 1; } else { } goto ldv_48004; case 3: ; if (ldv_work_2_3 == 2 || ldv_work_2_3 == 3) { ldv_work_2_3 = 4; ext_intr_task(ldv_work_struct_2_0); ldv_work_2_3 = 1; } else { } goto ldv_48004; default: ldv_stop(); } ldv_48004: ; return; } } void ldv_main_exported_13(void) ; void ldv_main_exported_14(void) ; void ldv_main_exported_11(void) ; void ldv_main_exported_12(void) ; void ldv_main_exported_16(void) ; void ldv_main_exported_15(void) ; void ldv_main_exported_18(void) ; void ldv_main_exported_17(void) ; void ldv_main_exported_10(void) ; void ldv_main_exported_9(void) ; void ldv_main_exported_8(void) ; void ldv_main_exported_7(void) ; int main(void) { struct ethtool_regs *ldvarg11 ; void *tmp ; struct ethtool_eeprom *ldvarg7 ; void *tmp___0 ; u64 *ldvarg12 ; void *tmp___1 ; u32 ldvarg5 ; u8 *ldvarg6 ; void *tmp___2 ; u32 ldvarg8 ; struct ethtool_drvinfo *ldvarg14 ; void *tmp___3 ; u8 *ldvarg4 ; void *tmp___4 ; struct ethtool_stats *ldvarg13 ; void *tmp___5 ; void *ldvarg10 ; void *tmp___6 ; int ldvarg9 ; void *ldvarg57 ; void *tmp___7 ; struct ifreq *ldvarg63 ; void *tmp___8 ; int ldvarg58 ; struct sk_buff *ldvarg61 ; void *tmp___9 ; netdev_features_t ldvarg60 ; netdev_features_t ldvarg59 ; int ldvarg62 ; struct pci_device_id *ldvarg89 ; void *tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; { tmp = ldv_init_zalloc(12UL); ldvarg11 = (struct ethtool_regs *)tmp; tmp___0 = ldv_init_zalloc(16UL); ldvarg7 = (struct ethtool_eeprom *)tmp___0; tmp___1 = ldv_init_zalloc(8UL); ldvarg12 = (u64 *)tmp___1; tmp___2 = ldv_init_zalloc(1UL); ldvarg6 = (u8 *)tmp___2; tmp___3 = ldv_init_zalloc(196UL); ldvarg14 = (struct ethtool_drvinfo *)tmp___3; tmp___4 = ldv_init_zalloc(1UL); ldvarg4 = (u8 *)tmp___4; tmp___5 = ldv_init_zalloc(8UL); ldvarg13 = (struct ethtool_stats *)tmp___5; tmp___6 = ldv_init_zalloc(1UL); ldvarg10 = tmp___6; tmp___7 = ldv_init_zalloc(1UL); ldvarg57 = tmp___7; tmp___8 = ldv_init_zalloc(40UL); ldvarg63 = (struct ifreq *)tmp___8; tmp___9 = ldv_init_zalloc(232UL); ldvarg61 = (struct sk_buff *)tmp___9; tmp___10 = ldv_init_zalloc(32UL); ldvarg89 = (struct pci_device_id *)tmp___10; ldv_initialize(); ldv_memset((void *)(& ldvarg5), 0, 4UL); ldv_memset((void *)(& ldvarg8), 0, 4UL); ldv_memset((void *)(& ldvarg9), 0, 4UL); ldv_memset((void *)(& ldvarg58), 0, 4UL); ldv_memset((void *)(& ldvarg60), 0, 8UL); ldv_memset((void *)(& ldvarg59), 0, 8UL); ldv_memset((void *)(& ldvarg62), 0, 4UL); ldv_state_variable_11 = 0; ldv_state_variable_21 = 0; ldv_state_variable_7 = 0; ldv_state_variable_17 = 0; work_init_2(); ldv_state_variable_2 = 1; ldv_state_variable_1 = 1; ldv_state_variable_18 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_16 = 0; ldv_state_variable_13 = 0; ldv_state_variable_6 = 1; work_init_3(); ldv_state_variable_3 = 1; ldv_state_variable_9 = 0; ldv_state_variable_12 = 0; ldv_state_variable_20 = 0; ldv_state_variable_14 = 0; ldv_state_variable_15 = 0; ldv_state_variable_8 = 0; work_init_4(); ldv_state_variable_4 = 1; ldv_state_variable_19 = 0; ldv_state_variable_10 = 0; ldv_state_variable_5 = 1; ldv_48134: tmp___11 = __VERIFIER_nondet_int(); switch (tmp___11) { case 0: ; if (ldv_state_variable_11 != 0) { ldv_main_exported_11(); } else { } goto ldv_48064; case 1: ; if (ldv_state_variable_21 != 0) { tmp___12 = __VERIFIER_nondet_int(); switch (tmp___12) { case 0: ; if (ldv_state_variable_21 == 1) { get_drvinfo(t1_ethtool_ops_group4, ldvarg14); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 1: ; if (ldv_state_variable_21 == 1) { set_pauseparam(t1_ethtool_ops_group4, t1_ethtool_ops_group2); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 2: ; if (ldv_state_variable_21 == 1) { get_stats(t1_ethtool_ops_group4, ldvarg13, ldvarg12); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 3: ; if (ldv_state_variable_21 == 1) { get_coalesce(t1_ethtool_ops_group4, t1_ethtool_ops_group3); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 4: ; if (ldv_state_variable_21 == 1) { get_sge_param(t1_ethtool_ops_group4, t1_ethtool_ops_group0); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 5: ; if (ldv_state_variable_21 == 1) { get_regs(t1_ethtool_ops_group4, ldvarg11, ldvarg10); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 6: ; if (ldv_state_variable_21 == 1) { get_pauseparam(t1_ethtool_ops_group4, t1_ethtool_ops_group2); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 7: ; if (ldv_state_variable_21 == 1) { get_sset_count(t1_ethtool_ops_group4, ldvarg9); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 8: ; if (ldv_state_variable_21 == 1) { get_settings(t1_ethtool_ops_group4, t1_ethtool_ops_group1); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 9: ; if (ldv_state_variable_21 == 1) { set_coalesce(t1_ethtool_ops_group4, t1_ethtool_ops_group3); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 10: ; if (ldv_state_variable_21 == 1) { set_msglevel(t1_ethtool_ops_group4, ldvarg8); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 11: ; if (ldv_state_variable_21 == 1) { get_eeprom_len(t1_ethtool_ops_group4); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 12: ; if (ldv_state_variable_21 == 1) { set_settings(t1_ethtool_ops_group4, t1_ethtool_ops_group1); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 13: ; if (ldv_state_variable_21 == 1) { get_eeprom(t1_ethtool_ops_group4, ldvarg7, ldvarg6); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 14: ; if (ldv_state_variable_21 == 1) { get_strings(t1_ethtool_ops_group4, ldvarg5, ldvarg4); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 15: ; if (ldv_state_variable_21 == 1) { get_msglevel(t1_ethtool_ops_group4); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 16: ; if (ldv_state_variable_21 == 1) { get_regs_len(t1_ethtool_ops_group4); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 17: ; if (ldv_state_variable_21 == 1) { set_sge_param(t1_ethtool_ops_group4, t1_ethtool_ops_group0); ldv_state_variable_21 = 1; } else { } goto ldv_48067; case 18: ; if (ldv_state_variable_21 == 1) { ethtool_op_get_link(t1_ethtool_ops_group4); ldv_state_variable_21 = 1; } else { } goto ldv_48067; default: ldv_stop(); } ldv_48067: ; } else { } goto ldv_48064; case 2: ; if (ldv_state_variable_7 != 0) { ldv_main_exported_7(); } else { } goto ldv_48064; case 3: ; if (ldv_state_variable_17 != 0) { ldv_main_exported_17(); } else { } goto ldv_48064; case 4: ; if (ldv_state_variable_2 != 0) { invoke_work_2(); } else { } goto ldv_48064; case 5: ; if (ldv_state_variable_1 != 0) { choose_interrupt_1(); } else { } goto ldv_48064; case 6: ; if (ldv_state_variable_18 != 0) { ldv_main_exported_18(); } else { } goto ldv_48064; case 7: ; if (ldv_state_variable_0 != 0) { tmp___13 = __VERIFIER_nondet_int(); switch (tmp___13) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { cxgb_pci_driver_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_48095; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_0 = cxgb_pci_driver_init(); if (ldv_retval_0 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_13 = 1; ldv_state_variable_10 = 1; ldv_initialize_cphy_ops_10(); ldv_state_variable_16 = 1; ldv_initialize_mdio_ops_16(); ldv_state_variable_18 = 1; ldv_initialize_cmac_ops_18(); ldv_state_variable_8 = 1; ldv_initialize_cmac_ops_8(); ldv_state_variable_14 = 1; ldv_initialize_cphy_ops_14(); ldv_state_variable_15 = 1; ldv_initialize_mdio_ops_15(); ldv_state_variable_12 = 1; ldv_initialize_cphy_ops_12(); ldv_state_variable_17 = 1; ldv_state_variable_9 = 1; ldv_state_variable_7 = 1; ldv_state_variable_21 = 1; ldv_initialize_ethtool_ops_21(); ldv_state_variable_11 = 1; } else { } if (ldv_retval_0 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_48095; default: ldv_stop(); } ldv_48095: ; } else { } goto ldv_48064; case 8: ; if (ldv_state_variable_16 != 0) { ldv_main_exported_16(); } else { } goto ldv_48064; case 9: ; if (ldv_state_variable_13 != 0) { ldv_main_exported_13(); } else { } goto ldv_48064; case 10: ; goto ldv_48064; case 11: ; if (ldv_state_variable_3 != 0) { invoke_work_3(); } else { } goto ldv_48064; case 12: ; if (ldv_state_variable_9 != 0) { ldv_main_exported_9(); } else { } goto ldv_48064; case 13: ; if (ldv_state_variable_12 != 0) { ldv_main_exported_12(); } else { } goto ldv_48064; case 14: ; if (ldv_state_variable_20 != 0) { tmp___14 = __VERIFIER_nondet_int(); switch (tmp___14) { case 0: ; if (ldv_state_variable_20 == 1) { t1_ioctl(cxgb_netdev_ops_group1, ldvarg63, ldvarg62); ldv_state_variable_20 = 1; } else { } if (ldv_state_variable_20 == 3) { t1_ioctl(cxgb_netdev_ops_group1, ldvarg63, ldvarg62); ldv_state_variable_20 = 3; } else { } if (ldv_state_variable_20 == 2) { t1_ioctl(cxgb_netdev_ops_group1, ldvarg63, ldvarg62); ldv_state_variable_20 = 2; } else { } goto ldv_48106; case 1: ; if (ldv_state_variable_20 == 1) { t1_get_stats(cxgb_netdev_ops_group1); ldv_state_variable_20 = 1; } else { } if (ldv_state_variable_20 == 3) { t1_get_stats(cxgb_netdev_ops_group1); ldv_state_variable_20 = 3; } else { } if (ldv_state_variable_20 == 2) { t1_get_stats(cxgb_netdev_ops_group1); ldv_state_variable_20 = 2; } else { } goto ldv_48106; case 2: ; if (ldv_state_variable_20 == 2) { ldv_retval_2 = cxgb_open(cxgb_netdev_ops_group1); if (ldv_retval_2 == 0) { ldv_state_variable_20 = 3; } else { } } else { } goto ldv_48106; case 3: ; if (ldv_state_variable_20 == 3) { t1_start_xmit(ldvarg61, cxgb_netdev_ops_group1); ldv_state_variable_20 = 3; } else { } goto ldv_48106; case 4: ; if (ldv_state_variable_20 == 1) { t1_fix_features(cxgb_netdev_ops_group1, ldvarg60); ldv_state_variable_20 = 1; } else { } if (ldv_state_variable_20 == 3) { t1_fix_features(cxgb_netdev_ops_group1, ldvarg60); ldv_state_variable_20 = 3; } else { } if (ldv_state_variable_20 == 2) { t1_fix_features(cxgb_netdev_ops_group1, ldvarg60); ldv_state_variable_20 = 2; } else { } goto ldv_48106; case 5: ; if (ldv_state_variable_20 == 3) { cxgb_close(cxgb_netdev_ops_group1); ldv_state_variable_20 = 2; } else { } goto ldv_48106; case 6: ; if (ldv_state_variable_20 == 1) { t1_set_rxmode(cxgb_netdev_ops_group1); ldv_state_variable_20 = 1; } else { } if (ldv_state_variable_20 == 3) { t1_set_rxmode(cxgb_netdev_ops_group1); ldv_state_variable_20 = 3; } else { } if (ldv_state_variable_20 == 2) { t1_set_rxmode(cxgb_netdev_ops_group1); ldv_state_variable_20 = 2; } else { } goto ldv_48106; case 7: ; if (ldv_state_variable_20 == 1) { eth_validate_addr(cxgb_netdev_ops_group1); ldv_state_variable_20 = 1; } else { } if (ldv_state_variable_20 == 3) { eth_validate_addr(cxgb_netdev_ops_group1); ldv_state_variable_20 = 3; } else { } if (ldv_state_variable_20 == 2) { eth_validate_addr(cxgb_netdev_ops_group1); ldv_state_variable_20 = 2; } else { } goto ldv_48106; case 8: ; if (ldv_state_variable_20 == 1) { t1_netpoll(cxgb_netdev_ops_group1); ldv_state_variable_20 = 1; } else { } if (ldv_state_variable_20 == 3) { t1_netpoll(cxgb_netdev_ops_group1); ldv_state_variable_20 = 3; } else { } if (ldv_state_variable_20 == 2) { t1_netpoll(cxgb_netdev_ops_group1); ldv_state_variable_20 = 2; } else { } goto ldv_48106; case 9: ; if (ldv_state_variable_20 == 1) { t1_set_features(cxgb_netdev_ops_group1, ldvarg59); ldv_state_variable_20 = 1; } else { } if (ldv_state_variable_20 == 3) { t1_set_features(cxgb_netdev_ops_group1, ldvarg59); ldv_state_variable_20 = 3; } else { } if (ldv_state_variable_20 == 2) { t1_set_features(cxgb_netdev_ops_group1, ldvarg59); ldv_state_variable_20 = 2; } else { } goto ldv_48106; case 10: ; if (ldv_state_variable_20 == 3) { t1_change_mtu(cxgb_netdev_ops_group1, ldvarg58); ldv_state_variable_20 = 3; } else { } if (ldv_state_variable_20 == 2) { t1_change_mtu(cxgb_netdev_ops_group1, ldvarg58); ldv_state_variable_20 = 2; } else { } goto ldv_48106; case 11: ; if (ldv_state_variable_20 == 1) { t1_set_mac_addr(cxgb_netdev_ops_group1, ldvarg57); ldv_state_variable_20 = 1; } else { } if (ldv_state_variable_20 == 3) { t1_set_mac_addr(cxgb_netdev_ops_group1, ldvarg57); ldv_state_variable_20 = 3; } else { } if (ldv_state_variable_20 == 2) { t1_set_mac_addr(cxgb_netdev_ops_group1, ldvarg57); ldv_state_variable_20 = 2; } else { } goto ldv_48106; case 12: ; if (ldv_state_variable_20 == 1) { ldv_retval_1 = ldv_ndo_init_20(); if (ldv_retval_1 == 0) { ldv_state_variable_20 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_48106; case 13: ; if (ldv_state_variable_20 == 2) { ldv_ndo_uninit_20(); ldv_state_variable_20 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_48106; default: ldv_stop(); } ldv_48106: ; } else { } goto ldv_48064; case 15: ; if (ldv_state_variable_14 != 0) { ldv_main_exported_14(); } else { } goto ldv_48064; case 16: ; if (ldv_state_variable_15 != 0) { ldv_main_exported_15(); } else { } goto ldv_48064; case 17: ; if (ldv_state_variable_8 != 0) { ldv_main_exported_8(); } else { } goto ldv_48064; case 18: ; goto ldv_48064; case 19: ; if (ldv_state_variable_19 != 0) { tmp___15 = __VERIFIER_nondet_int(); switch (tmp___15) { case 0: ; if (ldv_state_variable_19 == 1) { ldv_retval_3 = init_one(cxgb_pci_driver_group1, (struct pci_device_id const *)ldvarg89); if (ldv_retval_3 == 0) { ldv_state_variable_19 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_48127; case 1: ; if (ldv_state_variable_19 == 2) { remove_one(cxgb_pci_driver_group1); ldv_state_variable_19 = 1; } else { } goto ldv_48127; case 2: ; if (ldv_state_variable_19 == 2) { ldv_shutdown_19(); ldv_state_variable_19 = 2; } else { } goto ldv_48127; default: ldv_stop(); } ldv_48127: ; } else { } goto ldv_48064; case 20: ; if (ldv_state_variable_10 != 0) { ldv_main_exported_10(); } else { } goto ldv_48064; case 21: ; goto ldv_48064; default: ldv_stop(); } ldv_48064: ; goto ldv_48134; ldv_final: ldv_check_final_state(); return 0; } } __inline static void spin_lock(spinlock_t *lock ) { { ldv_spin_lock(); ldv_spin_lock_5(lock); return; } } __inline static void spin_lock_irq(spinlock_t *lock ) { { ldv_spin_lock(); ldv_spin_lock_irq_8(lock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { ldv_spin_unlock(); ldv_spin_unlock_9(lock); return; } } __inline static void spin_unlock_irq(spinlock_t *lock ) { { ldv_spin_unlock(); ldv_spin_unlock_irq_11(lock); return; } } bool ldv_queue_work_on_15(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_16(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___3 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_17(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_18(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_19(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_pskb_expand_head_31(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } void *ldv_malloc(size_t size ) ; struct sk_buff *ldv_skb_clone_33(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_35(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_36(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_37(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_38(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_39(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } int ldv_pskb_expand_head_40(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_41(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } bool ldv_cancel_delayed_work_42(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work(ldv_func_arg1); ldv_func_res = tmp; disable_work_2(& ldv_func_arg1->work); return (ldv_func_res); } } __inline static int ldv_request_irq_43(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = reg_check_1(handler); if (tmp___0 != 0 && ldv_func_res == 0) { activate_suitable_irq_1((int )irq, dev); } else { } return (ldv_func_res); } } void ldv_free_irq_44(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_1((int )ldv_func_arg1, ldv_func_arg2); return; } } int ldv_register_netdev_45(struct net_device *dev ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; { tmp = register_netdev(dev); ldv_func_res = tmp; ldv_state_variable_20 = 1; ldv_net_device_ops_20(); return (ldv_func_res); } } void ldv_free_netdev_46(struct net_device *dev ) { { free_netdev(dev); ldv_state_variable_20 = 0; return; } } void ldv_unregister_netdev_47(struct net_device *dev ) { { unregister_netdev(dev); ldv_state_variable_20 = 0; return; } } void ldv_free_netdev_48(struct net_device *dev ) { { free_netdev(dev); ldv_state_variable_20 = 0; return; } } int ldv___pci_register_driver_49(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; ldv_state_variable_19 = 1; ldv_pci_driver_19(); return (ldv_func_res); } } void ldv_pci_unregister_driver_50(struct pci_driver *ldv_func_arg1 ) { { pci_unregister_driver(ldv_func_arg1); ldv_state_variable_19 = 0; return; } } int ldv_spin_trylock(void) ; extern int _raw_spin_trylock(raw_spinlock_t * ) ; __inline static void spin_lock(spinlock_t *lock ) ; __inline static int ldv_spin_trylock_71(spinlock_t *lock ) { int tmp ; { tmp = _raw_spin_trylock(& lock->__annonCompField18.rlock); return (tmp); } } __inline static int spin_trylock(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) ; bool ldv_queue_work_on_79(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_81(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_80(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_83(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_82(struct workqueue_struct *ldv_func_arg1 ) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_97(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_105(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_99(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_95(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_103(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_104(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_100(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_101(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_102(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct peespi *t1_espi_create(adapter_t *adapter ) ; void t1_espi_destroy(struct peespi *espi ) ; int t1_espi_init(struct peespi *espi , int mac_type , int nports ) ; void t1_espi_intr_enable(struct peespi *espi ) ; void t1_espi_intr_clear(struct peespi *espi ) ; void t1_espi_intr_disable(struct peespi *espi ) ; int t1_espi_intr_handler(struct peespi *espi ) ; u32 t1_espi_get_mon(adapter_t *adapter , u32 addr , u8 wait ) ; int t1_espi_get_mon_t204(adapter_t *adapter , u32 *valp , u8 wait ) ; static int tricn_write(adapter_t *adapter , int bundle_addr , int module_addr , int ch_addr , int reg_offset , u32 wr_data ) { int busy ; int attempts ; unsigned int tmp ; { attempts = 10; writel((((((u32 )(reg_offset << 8) | wr_data) | (u32 )(ch_addr << 12)) | (u32 )(module_addr << 16)) | (u32 )(bundle_addr << 20)) | 553648128U, (void volatile *)adapter->regs + 2296U); writel(0U, (void volatile *)adapter->regs + 2300U); ldv_46654: tmp = readl((void const volatile *)adapter->regs + 2300U); busy = (int )tmp & 256; if (busy != 0) { attempts = attempts - 1; if (attempts != 0) { goto ldv_46654; } else { goto ldv_46655; } } else { } ldv_46655: ; if (busy != 0) { printk("\vcxgb: %s: TRICN write timed out\n", adapter->name); } else { } return (busy); } } static int tricn_init(adapter_t *adapter ) { int i ; int sme ; unsigned int tmp ; { sme = 1; tmp = readl((void const volatile *)adapter->regs + 2284U); if ((tmp & 4U) == 0U) { printk("\vcxgb: %s: ESPI clock not ready\n", adapter->name); return (-1); } else { } writel(2U, (void volatile *)adapter->regs + 2284U); if (sme != 0) { tricn_write(adapter, 0, 0, 0, 14, 129U); tricn_write(adapter, 0, 1, 0, 14, 129U); tricn_write(adapter, 0, 2, 0, 14, 129U); } else { } i = 1; goto ldv_46662; ldv_46661: tricn_write(adapter, 0, 0, i, 14, 241U); i = i + 1; ldv_46662: ; if (i <= 8) { goto ldv_46661; } else { } i = 1; goto ldv_46665; ldv_46664: tricn_write(adapter, 0, 1, i, 14, 241U); i = i + 1; ldv_46665: ; if (i <= 2) { goto ldv_46664; } else { } i = 1; goto ldv_46668; ldv_46667: tricn_write(adapter, 0, 2, i, 14, 225U); i = i + 1; ldv_46668: ; if (i <= 3) { goto ldv_46667; } else { } tricn_write(adapter, 0, 2, 4, 14, 241U); tricn_write(adapter, 0, 2, 5, 14, 225U); tricn_write(adapter, 0, 2, 6, 14, 241U); tricn_write(adapter, 0, 2, 7, 14, 128U); tricn_write(adapter, 0, 2, 8, 14, 241U); writel(3U, (void volatile *)adapter->regs + 2284U); return (0); } } void t1_espi_intr_enable(struct peespi *espi ) { u32 enable ; u32 pl_intr ; unsigned int tmp ; int tmp___0 ; { tmp = readl((void const volatile *)(espi->adapter)->regs + 2560U); pl_intr = tmp; tmp___0 = adapter_matches_type((adapter_t const *)espi->adapter, 1, 1); enable = tmp___0 != 0 ? 0U : 63U; writel(enable, (void volatile *)(espi->adapter)->regs + 2252U); writel(pl_intr | 256U, (void volatile *)(espi->adapter)->regs + 2560U); return; } } void t1_espi_intr_clear(struct peespi *espi ) { { readl((void const volatile *)(espi->adapter)->regs + 2292U); writel(4294967295U, (void volatile *)(espi->adapter)->regs + 2248U); writel(256U, (void volatile *)(espi->adapter)->regs + 2564U); return; } } void t1_espi_intr_disable(struct peespi *espi ) { u32 pl_intr ; unsigned int tmp ; { tmp = readl((void const volatile *)(espi->adapter)->regs + 2560U); pl_intr = tmp; writel(0U, (void volatile *)(espi->adapter)->regs + 2252U); writel(pl_intr & 4294967039U, (void volatile *)(espi->adapter)->regs + 2560U); return; } } int t1_espi_intr_handler(struct peespi *espi ) { u32 status ; unsigned int tmp ; int tmp___0 ; { tmp = readl((void const volatile *)(espi->adapter)->regs + 2248U); status = tmp; if ((int )status & 1) { espi->intr_cnt.DIP4_err = espi->intr_cnt.DIP4_err + 1U; } else { } if ((status & 2U) != 0U) { espi->intr_cnt.rx_drops = espi->intr_cnt.rx_drops + 1U; } else { } if ((status & 4U) != 0U) { espi->intr_cnt.tx_drops = espi->intr_cnt.tx_drops + 1U; } else { } if ((status & 8U) != 0U) { espi->intr_cnt.rx_ovflw = espi->intr_cnt.rx_ovflw + 1U; } else { } if ((status & 16U) != 0U) { espi->intr_cnt.parity_err = espi->intr_cnt.parity_err + 1U; } else { } if ((status & 32U) != 0U) { espi->intr_cnt.DIP2_parity_err = espi->intr_cnt.DIP2_parity_err + 1U; readl((void const volatile *)(espi->adapter)->regs + 2292U); } else { } if (status != 0U) { tmp___0 = adapter_matches_type((adapter_t const *)espi->adapter, 1, 1); if (tmp___0 != 0) { status = 1U; } else { } } else { } writel(status, (void volatile *)(espi->adapter)->regs + 2248U); return (0); } } struct espi_intr_counts const *t1_espi_get_intr_counts(struct peespi *espi ) { { return ((struct espi_intr_counts const *)(& espi->intr_cnt)); } } static void espi_setup_for_pm3393(adapter_t *adapter ) { u32 wmark ; int tmp ; { tmp = adapter_matches_type((adapter_t const *)adapter, 1, 1); wmark = tmp != 0 ? 16384U : 12800U; writel(500U, (void volatile *)adapter->regs + 2176U); writel(500U, (void volatile *)adapter->regs + 2180U); writel(500U, (void volatile *)adapter->regs + 2184U); writel(500U, (void volatile *)adapter->regs + 2188U); writel(256U, (void volatile *)adapter->regs + 2192U); writel(wmark, (void volatile *)adapter->regs + 2196U); writel(3U, (void volatile *)adapter->regs + 2200U); writel(134217736U, (void volatile *)adapter->regs + 2220U); writel(257U, (void volatile *)adapter->regs + 2204U); return; } } static void espi_setup_for_vsc7321(adapter_t *adapter ) { { writel(500U, (void volatile *)adapter->regs + 2176U); writel(32768500U, (void volatile *)adapter->regs + 2180U); writel(500U, (void volatile *)adapter->regs + 2184U); writel(2560U, (void volatile *)adapter->regs + 2196U); writel(511U, (void volatile *)adapter->regs + 2192U); writel(1U, (void volatile *)adapter->regs + 2200U); writel(1028U, (void volatile *)adapter->regs + 2204U); writel(134217736U, (void volatile *)adapter->regs + 2220U); return; } } static void espi_setup_for_ixf1010(adapter_t *adapter , int nports ) { int tmp ; { writel(1U, (void volatile *)adapter->regs + 2200U); if (nports == 4) { tmp = adapter_matches_type((adapter_t const *)adapter, 2, 3); if (tmp != 0) { writel(3840U, (void volatile *)adapter->regs + 2196U); writel(960U, (void volatile *)adapter->regs + 2192U); } else { writel(2047U, (void volatile *)adapter->regs + 2196U); writel(511U, (void volatile *)adapter->regs + 2192U); } } else { writel(8191U, (void volatile *)adapter->regs + 2196U); writel(2047U, (void volatile *)adapter->regs + 2192U); } writel((unsigned int )((nports << 8) | nports), (void volatile *)adapter->regs + 2204U); return; } } int t1_espi_init(struct peespi *espi , int mac_type , int nports ) { u32 status_enable_extra ; adapter_t *adapter ; int tmp ; struct lock_class_key __key ; int tmp___0 ; { status_enable_extra = 0U; adapter = espi->adapter; writel(0U, (void volatile *)adapter->regs + 2220U); tmp = adapter_matches_type((adapter_t const *)adapter, 2, 3); if (tmp != 0) { writel(612U, (void volatile *)adapter->regs + 2288U); writel(nports == 4 ? 2097216U : 16777344U, (void volatile *)adapter->regs + 2216U); } else { writel(8388864U, (void volatile *)adapter->regs + 2216U); } if (mac_type == 2) { espi_setup_for_pm3393(adapter); } else if (mac_type == 3) { espi_setup_for_vsc7321(adapter); } else if (mac_type == 1) { status_enable_extra = 16U; espi_setup_for_ixf1010(adapter, nports); } else { return (-1); } writel(status_enable_extra | 1U, (void volatile *)adapter->regs + 2208U); tmp___0 = adapter_matches_type((adapter_t const *)adapter, 2, 3); if (tmp___0 != 0) { tricn_init(adapter); espi->misc_ctrl = readl((void const volatile *)adapter->regs + 2288U); espi->misc_ctrl = espi->misc_ctrl & 3791650815U; espi->misc_ctrl = espi->misc_ctrl | 134217728U; if (adapter->params.nports == 1U) { espi->misc_ctrl = espi->misc_ctrl | 268435456U; } else { } writel(espi->misc_ctrl, (void volatile *)adapter->regs + 2288U); spinlock_check(& espi->lock); __raw_spin_lock_init(& espi->lock.__annonCompField18.rlock, "&(&espi->lock)->rlock", & __key); } else { } return (0); } } void t1_espi_destroy(struct peespi *espi ) { { kfree((void const *)espi); return; } } struct peespi *t1_espi_create(adapter_t *adapter ) { struct peespi *espi ; void *tmp ; { tmp = kzalloc(112UL, 208U); espi = (struct peespi *)tmp; if ((unsigned long )espi != (unsigned long )((struct peespi *)0)) { espi->adapter = adapter; } else { } return (espi); } } u32 t1_espi_get_mon(adapter_t *adapter , u32 addr , u8 wait ) { struct peespi *espi ; u32 sel ; int tmp ; int tmp___0 ; { espi = adapter->espi; tmp = adapter_matches_type((adapter_t const *)adapter, 2, 3); if (tmp == 0) { return (0U); } else { } sel = ((addr & 60U) >> 2) << 25; if ((unsigned int )wait == 0U) { tmp___0 = spin_trylock(& espi->lock); if (tmp___0 == 0) { return (0U); } else { } } else { spin_lock(& espi->lock); } if ((espi->misc_ctrl & 503316480U) != sel) { writel((espi->misc_ctrl & 3791650815U) | sel, (void volatile *)adapter->regs + 2288U); sel = readl((void const volatile *)adapter->regs + 2188U); writel(espi->misc_ctrl, (void volatile *)adapter->regs + 2288U); } else { sel = readl((void const volatile *)adapter->regs + 2188U); } spin_unlock(& espi->lock); return (sel); } } int t1_espi_get_mon_t204(adapter_t *adapter , u32 *valp , u8 wait ) { struct peespi *espi ; u8 i ; u8 nport ; int tmp ; { espi = adapter->espi; nport = (unsigned char )adapter->params.nports; if ((unsigned int )wait == 0U) { tmp = spin_trylock(& espi->lock); if (tmp == 0) { return (-1); } else { } } else { spin_lock(& espi->lock); } if ((espi->misc_ctrl & 503316480U) != 134217728U) { espi->misc_ctrl = (espi->misc_ctrl & 3791650815U) | 134217728U; writel(espi->misc_ctrl, (void volatile *)adapter->regs + 2288U); } else { } i = 0U; goto ldv_46731; ldv_46730: ; if ((unsigned int )i != 0U) { writel(espi->misc_ctrl | (u32 )((int )i << 25), (void volatile *)adapter->regs + 2288U); } else { } *valp = readl((void const volatile *)adapter->regs + 2188U); i = (u8 )((int )i + 1); valp = valp + 1; ldv_46731: ; if ((int )i < (int )nport) { goto ldv_46730; } else { } writel(espi->misc_ctrl, (void volatile *)adapter->regs + 2288U); spin_unlock(& espi->lock); return (0); } } __inline static int spin_trylock(spinlock_t *lock ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { tmp = ldv_spin_trylock_71(lock); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock(); return (tmp___0); return (ldv_func_res); } } bool ldv_queue_work_on_79(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_80(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___3 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_81(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_82(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_83(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } void *ldv_zalloc(size_t size ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_zalloc(size); return (tmp); } } int ldv_pskb_expand_head_95(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_97(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_99(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_100(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_101(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_102(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_103(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } int ldv_pskb_expand_head_104(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_105(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } bool ldv_queue_work_on_125(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_127(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_126(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_129(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_128(struct workqueue_struct *ldv_func_arg1 ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_143(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_151(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_145(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_141(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_149(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_150(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_146(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_147(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_148(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct petp *t1_tp_create(adapter_t *adapter , struct tp_params *p ) ; void t1_tp_destroy(struct petp *tp ) ; void t1_tp_intr_disable(struct petp *tp ) ; void t1_tp_intr_enable(struct petp *tp ) ; void t1_tp_intr_clear(struct petp *tp ) ; int t1_tp_intr_handler(struct petp *tp ) ; int t1_tp_reset(struct petp *tp , struct tp_params *p , unsigned int tp_clk ) ; static void tp_init(adapter_t *ap , struct tp_params const *p , unsigned int tp_clk ) { u32 val ; int tmp ; u32 drop_ticks ; int tmp___0 ; { tmp = t1_is_asic((adapter_t const *)ap); if (tmp == 0) { return; } else { } val = 360U; if ((unsigned int )p->pm_size == 0U) { val = val | 16384U; } else { val = val | 12288U; } writel(val, (void volatile *)ap->regs + 768U); writel(3140U, (void volatile *)ap->regs + 772U); writel((unsigned int )(p->use_5tuple_mode << 17) | 1946189888U, (void volatile *)ap->regs + 776U); tmp___0 = adapter_matches_type((adapter_t const *)ap, 2, 3); if (tmp___0 != 0 && ap->params.nports > 1U) { drop_ticks = (tp_clk / 1000U) * 16U; writel((drop_ticks << 4) | 3221225473U, (void volatile *)ap->regs + 1208U); } else { } return; } } void t1_tp_destroy(struct petp *tp ) { { kfree((void const *)tp); return; } } struct petp *t1_tp_create(adapter_t *adapter , struct tp_params *p ) { struct petp *tp ; void *tmp ; { tmp = kzalloc(8UL, 208U); tp = (struct petp *)tmp; if ((unsigned long )tp == (unsigned long )((struct petp *)0)) { return ((struct petp *)0); } else { } tp->adapter = adapter; return (tp); } } void t1_tp_intr_enable(struct petp *tp ) { u32 tp_intr ; unsigned int tmp ; int tmp___0 ; { tmp = readl((void const volatile *)(tp->adapter)->regs + 2560U); tp_intr = tmp; tmp___0 = t1_is_asic((adapter_t const *)tp->adapter); if (tmp___0 == 0) { writel(4294967295U, (void volatile *)(tp->adapter)->regs + 2576U); writel(tp_intr | 4U, (void volatile *)(tp->adapter)->regs + 2560U); } else { writel(0U, (void volatile *)(tp->adapter)->regs + 1136U); writel(tp_intr | 64U, (void volatile *)(tp->adapter)->regs + 2560U); } return; } } void t1_tp_intr_disable(struct petp *tp ) { u32 tp_intr ; unsigned int tmp ; int tmp___0 ; { tmp = readl((void const volatile *)(tp->adapter)->regs + 2560U); tp_intr = tmp; tmp___0 = t1_is_asic((adapter_t const *)tp->adapter); if (tmp___0 == 0) { writel(0U, (void volatile *)(tp->adapter)->regs + 2576U); writel(tp_intr & 4294967291U, (void volatile *)(tp->adapter)->regs + 2560U); } else { writel(0U, (void volatile *)(tp->adapter)->regs + 1136U); writel(tp_intr & 4294967231U, (void volatile *)(tp->adapter)->regs + 2560U); } return; } } void t1_tp_intr_clear(struct petp *tp ) { int tmp ; { tmp = t1_is_asic((adapter_t const *)tp->adapter); if (tmp == 0) { writel(4294967295U, (void volatile *)(tp->adapter)->regs + 2580U); writel(4U, (void volatile *)(tp->adapter)->regs + 2564U); return; } else { } writel(4294967295U, (void volatile *)(tp->adapter)->regs + 1140U); writel(64U, (void volatile *)(tp->adapter)->regs + 2564U); return; } } int t1_tp_intr_handler(struct petp *tp ) { u32 cause ; int tmp ; { tmp = t1_is_asic((adapter_t const *)tp->adapter); if (tmp == 0) { return (1); } else { } cause = readl((void const volatile *)(tp->adapter)->regs + 1140U); writel(cause, (void volatile *)(tp->adapter)->regs + 1140U); return (0); } } static void set_csum_offload(struct petp *tp , u32 csum_bit , int enable ) { u32 val ; unsigned int tmp ; { tmp = readl((void const volatile *)(tp->adapter)->regs + 776U); val = tmp; if (enable != 0) { val = val | csum_bit; } else { val = ~ csum_bit & val; } writel(val, (void volatile *)(tp->adapter)->regs + 776U); return; } } void t1_tp_set_ip_checksum_offload(struct petp *tp , int enable ) { { set_csum_offload(tp, 8192U, enable); return; } } void t1_tp_set_tcp_checksum_offload(struct petp *tp , int enable ) { { set_csum_offload(tp, 2048U, enable); return; } } int t1_tp_reset(struct petp *tp , struct tp_params *p , unsigned int tp_clk ) { adapter_t *adapter ; { adapter = tp->adapter; tp_init(adapter, (struct tp_params const *)p, tp_clk); writel(1U, (void volatile *)adapter->regs + 1100U); return (0); } } bool ldv_queue_work_on_125(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_126(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___3 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_127(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_128(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_129(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_pskb_expand_head_141(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_143(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_145(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_146(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_147(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_148(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_149(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } int ldv_pskb_expand_head_150(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_151(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } __inline static long ldv__builtin_expect(long exp , long c ) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; bool ldv_queue_work_on_171(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_173(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_172(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_175(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_174(struct workqueue_struct *ldv_func_arg1 ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern void msleep(unsigned int ) ; struct sk_buff *ldv_skb_clone_189(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_197(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_191(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_187(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_195(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_196(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_192(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_193(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_194(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; extern u8 const byte_rev_table[256U] ; __inline static u8 __bitrev8(u8 byte ) { { return ((u8 )byte_rev_table[(int )byte]); } } __inline static u16 __bitrev16(u16 x ) { u8 tmp ; u8 tmp___0 ; { tmp = __bitrev8((int )((u8 )x)); tmp___0 = __bitrev8((int )((u8 )((int )x >> 8))); return ((u16 )((int )((short )((int )tmp << 8)) | (int )((short )tmp___0))); } } __inline static u32 __bitrev32(u32 x ) { u16 tmp ; u16 tmp___0 ; { tmp = __bitrev16((int )((u16 )x)); tmp___0 = __bitrev16((int )((u16 )(x >> 16))); return ((u32 )(((int )tmp << 16) | (int )tmp___0)); } } extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; int t1_tpi_write(adapter_t *adapter , u32 addr , u32 value ) ; int t1_tpi_read(adapter_t *adapter , u32 addr , u32 *valp ) ; void t1_link_changed(adapter_t *adapter , int port_id ) ; struct gmac const t1_pm3393_ops ; static int pmread(struct cmac *cmac , u32 reg , u32 *data32 ) { { t1_tpi_read(cmac->adapter, reg << 2, data32); return (0); } } static int pmwrite(struct cmac *cmac , u32 reg , u32 data32 ) { { t1_tpi_write(cmac->adapter, reg << 2, data32); return (0); } } static int pm3393_reset(struct cmac *cmac ) { { return (0); } } static int pm3393_interrupt_enable(struct cmac *cmac ) { u32 pl_intr ; { pmwrite(cmac, 258U, 65535U); pmwrite(cmac, 8328U, 65535U); pmwrite(cmac, 8331U, 65535U); pmwrite(cmac, 8391U, 65535U); pmwrite(cmac, 8453U, 0U); pmwrite(cmac, 8454U, 0U); pmwrite(cmac, 8455U, 0U); pmwrite(cmac, 8456U, 0U); pmwrite(cmac, 8713U, 65535U); pmwrite(cmac, 8834U, 65535U); pmwrite(cmac, 12421U, 65535U); pmwrite(cmac, 12486U, 65535U); pmwrite(cmac, 8258U, 65535U); pmwrite(cmac, 8962U, 65535U); pmwrite(cmac, 12354U, 65535U); pmwrite(cmac, 12930U, 65535U); pmwrite(cmac, 12812U, 65535U); pmwrite(cmac, 14U, 0U); pl_intr = readl((void const volatile *)(cmac->adapter)->regs + 2560U); pl_intr = pl_intr | 2048U; writel(pl_intr, (void volatile *)(cmac->adapter)->regs + 2560U); return (0); } } static int pm3393_interrupt_disable(struct cmac *cmac ) { u32 elmer ; { pmwrite(cmac, 258U, 0U); pmwrite(cmac, 8328U, 0U); pmwrite(cmac, 8331U, 0U); pmwrite(cmac, 8391U, 0U); pmwrite(cmac, 8453U, 0U); pmwrite(cmac, 8454U, 0U); pmwrite(cmac, 8455U, 0U); pmwrite(cmac, 8456U, 0U); pmwrite(cmac, 8713U, 0U); pmwrite(cmac, 8834U, 0U); pmwrite(cmac, 12421U, 0U); pmwrite(cmac, 12486U, 0U); pmwrite(cmac, 8258U, 0U); pmwrite(cmac, 8962U, 0U); pmwrite(cmac, 12354U, 0U); pmwrite(cmac, 12930U, 0U); pmwrite(cmac, 12812U, 0U); pmwrite(cmac, 14U, 0U); t1_tpi_read(cmac->adapter, 1048584U, & elmer); elmer = elmer & 4294967293U; t1_tpi_write(cmac->adapter, 1048584U, elmer); return (0); } } static int pm3393_interrupt_clear(struct cmac *cmac ) { u32 elmer ; u32 pl_intr ; u32 val32 ; { pmread(cmac, 260U, & val32); pmread(cmac, 8329U, & val32); pmread(cmac, 8332U, & val32); pmread(cmac, 8392U, & val32); pmread(cmac, 8835U, & val32); pmread(cmac, 12420U, & val32); pmread(cmac, 8714U, & val32); pmread(cmac, 12487U, & val32); pmread(cmac, 8259U, & val32); pmread(cmac, 12355U, & val32); pmread(cmac, 12931U, & val32); pmread(cmac, 12813U, & val32); pmread(cmac, 8960U, & val32); pmread(cmac, 8961U, & val32); pmread(cmac, 13U, & val32); t1_tpi_read(cmac->adapter, 1048588U, & elmer); elmer = elmer | 2U; t1_tpi_write(cmac->adapter, 1048588U, elmer); pl_intr = readl((void const volatile *)(cmac->adapter)->regs + 2564U); pl_intr = pl_intr | 2048U; writel(pl_intr, (void volatile *)(cmac->adapter)->regs + 2564U); return (0); } } static int pm3393_interrupt_handler(struct cmac *cmac ) { u32 master_intr_status ; struct _ddebug descriptor ; long tmp ; { pmread(cmac, 13U, & master_intr_status); if (((cmac->adapter)->msg_enable & 512) != 0) { descriptor.modname = "cxgb"; descriptor.function = "pm3393_interrupt_handler"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/pm3393.c"; descriptor.format = "PM3393 intr cause 0x%x\n"; descriptor.lineno = 256U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& ((cmac->adapter)->pdev)->dev), "PM3393 intr cause 0x%x\n", master_intr_status); } else { } } else { } pm3393_interrupt_clear(cmac); return (0); } } static int pm3393_enable(struct cmac *cmac , int which ) { u32 val ; { if (which & 1) { pmwrite(cmac, 8256U, 33948U); } else { } if ((which & 2) != 0) { val = 34354U; if ((int )(cmac->instance)->fc & 1) { val = val | 4U; } else { } if (((int )(cmac->instance)->fc & 2) != 0) { val = val | 8U; } else { } pmwrite(cmac, 12352U, val); } else { } (cmac->instance)->enabled = (u8 )((int )((signed char )(cmac->instance)->enabled) | (int )((signed char )which)); return (0); } } static int pm3393_enable_port(struct cmac *cmac , int which ) { { pmwrite(cmac, 8448U, 2U); __const_udelay(8590UL); memset((void *)(& cmac->stats), 0, 288UL); pm3393_enable(cmac, which); t1_link_changed(cmac->adapter, 0); return (0); } } static int pm3393_disable(struct cmac *cmac , int which ) { { if (which & 1) { pmwrite(cmac, 8256U, 1180U); } else { } if ((which & 2) != 0) { pmwrite(cmac, 12352U, 1586U); } else { } __const_udelay(85900UL); (cmac->instance)->enabled = (u8 )((int )((signed char )(cmac->instance)->enabled) & ~ ((int )((signed char )which))); return (0); } } static int pm3393_loopback_enable(struct cmac *cmac ) { { return (0); } } static int pm3393_loopback_disable(struct cmac *cmac ) { { return (0); } } static int pm3393_set_mtu(struct cmac *cmac , int mtu ) { int enabled ; { enabled = (int )(cmac->instance)->enabled; mtu = mtu + 18; if (mtu > 9600) { return (-22); } else { } if (enabled != 0) { pm3393_disable(cmac, 3); } else { } pmwrite(cmac, 8261U, (u32 )mtu); pmwrite(cmac, 12357U, (u32 )mtu); if (enabled != 0) { pm3393_enable(cmac, enabled); } else { } return (0); } } static int pm3393_set_rx_mode(struct cmac *cmac , struct t1_rx_mode *rm ) { int enabled ; u32 rx_mode ; struct netdev_hw_addr *ha ; int bit ; u16 mc_filter[4U] ; unsigned int tmp ; struct list_head const *__mptr ; u32 __x ; u32 tmp___0 ; u32 tmp___1 ; struct list_head const *__mptr___0 ; { enabled = (int )(cmac->instance)->enabled & 1; if (enabled != 0) { pm3393_disable(cmac, 1); } else { } pmread(cmac, 8304U, & rx_mode); rx_mode = rx_mode & 4294967292U; pmwrite(cmac, 8304U, (u32 )((unsigned short )rx_mode)); if (((rm->dev)->flags & 256U) != 0U) { rx_mode = rx_mode | 2U; } else { } if (((rm->dev)->flags & 512U) != 0U) { pmwrite(cmac, 8298U, 65535U); pmwrite(cmac, 8299U, 65535U); pmwrite(cmac, 8300U, 65535U); pmwrite(cmac, 8301U, 65535U); rx_mode = rx_mode | 1U; } else if ((rm->dev)->mc.count != 0) { mc_filter[0] = 0U; tmp = 1U; while (1) { if (tmp >= 4U) { break; } else { } mc_filter[tmp] = (unsigned short)0; tmp = tmp + 1U; } __mptr = (struct list_head const *)(rm->dev)->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_46818; ldv_46817: tmp___0 = crc32_le(4294967295U, (unsigned char const *)(& ha->addr), 6UL); __x = tmp___0; tmp___1 = __bitrev32(__x); bit = (int )(tmp___1 >> 23) & 63; mc_filter[bit >> 4] = (u16 )((int )((short )mc_filter[bit >> 4]) | (int )((short )(1 << (bit & 15)))); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_46818: ; if ((unsigned long )(& ha->list) != (unsigned long )(& (rm->dev)->mc.list)) { goto ldv_46817; } else { } pmwrite(cmac, 8298U, (u32 )mc_filter[0]); pmwrite(cmac, 8299U, (u32 )mc_filter[1]); pmwrite(cmac, 8300U, (u32 )mc_filter[2]); pmwrite(cmac, 8301U, (u32 )mc_filter[3]); rx_mode = rx_mode | 1U; } else { } pmwrite(cmac, 8304U, (u32 )((unsigned short )rx_mode)); if (enabled != 0) { pm3393_enable(cmac, 1); } else { } return (0); } } static int pm3393_get_speed_duplex_fc(struct cmac *cmac , int *speed , int *duplex , int *fc ) { { if ((unsigned long )speed != (unsigned long )((int *)0)) { *speed = 10000; } else { } if ((unsigned long )duplex != (unsigned long )((int *)0)) { *duplex = 1; } else { } if ((unsigned long )fc != (unsigned long )((int *)0)) { *fc = (int )(cmac->instance)->fc; } else { } return (0); } } static int pm3393_set_speed_duplex_fc(struct cmac *cmac , int speed , int duplex , int fc ) { { if (speed >= 0 && speed != 10000) { return (-1); } else { } if (duplex >= 0 && duplex != 1) { return (-1); } else { } if ((fc & -4) != 0) { return (-1); } else { } if ((int )(cmac->instance)->fc != fc) { (cmac->instance)->fc = (unsigned char )fc; if (((int )(cmac->instance)->enabled & 2) != 0) { pm3393_enable(cmac, 2); } else { } } else { } return (0); } } static struct cmac_statistics const *pm3393_update_statistics(struct cmac *mac , int flag ) { u64 ro ; u32 val0 ; u32 val1 ; u32 val2 ; u32 val3 ; { pmwrite(mac, 8448U, 1U); pmread(mac, 8449U, & val0); pmread(mac, 8450U, & val1); pmread(mac, 8451U, & val2); pmread(mac, 8452U, & val3); ro = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 65535ULL) << 32)) | ((unsigned long long )val3 << 48); t1_tpi_read(mac->adapter, 33872U, & val0); t1_tpi_read(mac->adapter, 33876U, & val1); t1_tpi_read(mac->adapter, 33880U, & val2); mac->stats.RxOctetsOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxOctetsOK & 0xffffff0000000000ULL); if ((ro & 2ULL) != 0ULL) { mac->stats.RxOctetsOK = mac->stats.RxOctetsOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 33920U, & val0); t1_tpi_read(mac->adapter, 33924U, & val1); t1_tpi_read(mac->adapter, 33928U, & val2); mac->stats.RxUnicastFramesOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxUnicastFramesOK & 0xffffff0000000000ULL); if ((ro & 16ULL) != 0ULL) { mac->stats.RxUnicastFramesOK = mac->stats.RxUnicastFramesOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 33936U, & val0); t1_tpi_read(mac->adapter, 33940U, & val1); t1_tpi_read(mac->adapter, 33944U, & val2); mac->stats.RxMulticastFramesOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxMulticastFramesOK & 0xffffff0000000000ULL); if ((ro & 32ULL) != 0ULL) { mac->stats.RxMulticastFramesOK = mac->stats.RxMulticastFramesOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 33952U, & val0); t1_tpi_read(mac->adapter, 33956U, & val1); t1_tpi_read(mac->adapter, 33960U, & val2); mac->stats.RxBroadcastFramesOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxBroadcastFramesOK & 0xffffff0000000000ULL); if ((ro & 64ULL) != 0ULL) { mac->stats.RxBroadcastFramesOK = mac->stats.RxBroadcastFramesOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 33984U, & val0); t1_tpi_read(mac->adapter, 33988U, & val1); t1_tpi_read(mac->adapter, 33992U, & val2); mac->stats.RxPauseFrames = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxPauseFrames & 0xffffff0000000000ULL); if ((ro & 256ULL) != 0ULL) { mac->stats.RxPauseFrames = mac->stats.RxPauseFrames + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34016U, & val0); t1_tpi_read(mac->adapter, 34020U, & val1); t1_tpi_read(mac->adapter, 34024U, & val2); mac->stats.RxFCSErrors = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxFCSErrors & 0xffffff0000000000ULL); if ((ro & 1024ULL) != 0ULL) { mac->stats.RxFCSErrors = mac->stats.RxFCSErrors + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34032U, & val0); t1_tpi_read(mac->adapter, 34036U, & val1); t1_tpi_read(mac->adapter, 34040U, & val2); mac->stats.RxInternalMACRcvError = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxInternalMACRcvError & 0xffffff0000000000ULL); if ((ro & 2048ULL) != 0ULL) { mac->stats.RxInternalMACRcvError = mac->stats.RxInternalMACRcvError + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34048U, & val0); t1_tpi_read(mac->adapter, 34052U, & val1); t1_tpi_read(mac->adapter, 34056U, & val2); mac->stats.RxSymbolErrors = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxSymbolErrors & 0xffffff0000000000ULL); if ((ro & 4096ULL) != 0ULL) { mac->stats.RxSymbolErrors = mac->stats.RxSymbolErrors + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34064U, & val0); t1_tpi_read(mac->adapter, 34068U, & val1); t1_tpi_read(mac->adapter, 34072U, & val2); mac->stats.RxInRangeLengthErrors = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxInRangeLengthErrors & 0xffffff0000000000ULL); if ((ro & 8192ULL) != 0ULL) { mac->stats.RxInRangeLengthErrors = mac->stats.RxInRangeLengthErrors + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34096U, & val0); t1_tpi_read(mac->adapter, 34100U, & val1); t1_tpi_read(mac->adapter, 34104U, & val2); mac->stats.RxFrameTooLongErrors = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxFrameTooLongErrors & 0xffffff0000000000ULL); if ((ro & 32768ULL) != 0ULL) { mac->stats.RxFrameTooLongErrors = mac->stats.RxFrameTooLongErrors + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34112U, & val0); t1_tpi_read(mac->adapter, 34116U, & val1); t1_tpi_read(mac->adapter, 34120U, & val2); mac->stats.RxJabberErrors = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxJabberErrors & 0xffffff0000000000ULL); if ((ro & 65536ULL) != 0ULL) { mac->stats.RxJabberErrors = mac->stats.RxJabberErrors + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34128U, & val0); t1_tpi_read(mac->adapter, 34132U, & val1); t1_tpi_read(mac->adapter, 34136U, & val2); mac->stats.RxRuntErrors = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxRuntErrors & 0xffffff0000000000ULL); if ((ro & 131072ULL) != 0ULL) { mac->stats.RxRuntErrors = mac->stats.RxRuntErrors + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34144U, & val0); t1_tpi_read(mac->adapter, 34148U, & val1); t1_tpi_read(mac->adapter, 34152U, & val2); mac->stats.RxRuntErrors = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxRuntErrors & 0xffffff0000000000ULL); if ((ro & 262144ULL) != 0ULL) { mac->stats.RxRuntErrors = mac->stats.RxRuntErrors + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34256U, & val0); t1_tpi_read(mac->adapter, 34260U, & val1); t1_tpi_read(mac->adapter, 34264U, & val2); mac->stats.RxJumboFramesOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxJumboFramesOK & 0xffffff0000000000ULL); if ((ro & 33554432ULL) != 0ULL) { mac->stats.RxJumboFramesOK = mac->stats.RxJumboFramesOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34272U, & val0); t1_tpi_read(mac->adapter, 34276U, & val1); t1_tpi_read(mac->adapter, 34280U, & val2); mac->stats.RxJumboOctetsOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.RxJumboOctetsOK & 0xffffff0000000000ULL); if ((ro & 67108864ULL) != 0ULL) { mac->stats.RxJumboOctetsOK = mac->stats.RxJumboOctetsOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34384U, & val0); t1_tpi_read(mac->adapter, 34388U, & val1); t1_tpi_read(mac->adapter, 34392U, & val2); mac->stats.TxOctetsOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.TxOctetsOK & 0xffffff0000000000ULL); if ((ro & 8589934592ULL) != 0ULL) { mac->stats.TxOctetsOK = mac->stats.TxOctetsOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34416U, & val0); t1_tpi_read(mac->adapter, 34420U, & val1); t1_tpi_read(mac->adapter, 34424U, & val2); mac->stats.TxInternalMACXmitError = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.TxInternalMACXmitError & 0xffffff0000000000ULL); if ((ro & 34359738368ULL) != 0ULL) { mac->stats.TxInternalMACXmitError = mac->stats.TxInternalMACXmitError + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34432U, & val0); t1_tpi_read(mac->adapter, 34436U, & val1); t1_tpi_read(mac->adapter, 34440U, & val2); mac->stats.TxFCSErrors = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.TxFCSErrors & 0xffffff0000000000ULL); if ((ro & 68719476736ULL) != 0ULL) { mac->stats.TxFCSErrors = mac->stats.TxFCSErrors + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34464U, & val0); t1_tpi_read(mac->adapter, 34468U, & val1); t1_tpi_read(mac->adapter, 34472U, & val2); mac->stats.TxUnicastFramesOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.TxUnicastFramesOK & 0xffffff0000000000ULL); if ((ro & 274877906944ULL) != 0ULL) { mac->stats.TxUnicastFramesOK = mac->stats.TxUnicastFramesOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34496U, & val0); t1_tpi_read(mac->adapter, 34500U, & val1); t1_tpi_read(mac->adapter, 34504U, & val2); mac->stats.TxMulticastFramesOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.TxMulticastFramesOK & 0xffffff0000000000ULL); if ((ro & 1099511627776ULL) != 0ULL) { mac->stats.TxMulticastFramesOK = mac->stats.TxMulticastFramesOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34528U, & val0); t1_tpi_read(mac->adapter, 34532U, & val1); t1_tpi_read(mac->adapter, 34536U, & val2); mac->stats.TxBroadcastFramesOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.TxBroadcastFramesOK & 0xffffff0000000000ULL); if ((ro & 4398046511104ULL) != 0ULL) { mac->stats.TxBroadcastFramesOK = mac->stats.TxBroadcastFramesOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34544U, & val0); t1_tpi_read(mac->adapter, 34548U, & val1); t1_tpi_read(mac->adapter, 34552U, & val2); mac->stats.TxPauseFrames = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.TxPauseFrames & 0xffffff0000000000ULL); if ((ro & 8796093022208ULL) != 0ULL) { mac->stats.TxPauseFrames = mac->stats.TxPauseFrames + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34672U, & val0); t1_tpi_read(mac->adapter, 34676U, & val1); t1_tpi_read(mac->adapter, 34680U, & val2); mac->stats.TxJumboFramesOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.TxJumboFramesOK & 0xffffff0000000000ULL); if ((ro & 2251799813685248ULL) != 0ULL) { mac->stats.TxJumboFramesOK = mac->stats.TxJumboFramesOK + 1099511627776ULL; } else { } t1_tpi_read(mac->adapter, 34688U, & val0); t1_tpi_read(mac->adapter, 34692U, & val1); t1_tpi_read(mac->adapter, 34696U, & val2); mac->stats.TxJumboOctetsOK = ((((unsigned long long )val0 & 65535ULL) | (((unsigned long long )val1 << 16) & 4294967295ULL)) | (((unsigned long long )val2 & 255ULL) << 32)) | (mac->stats.TxJumboOctetsOK & 0xffffff0000000000ULL); if ((ro & 4503599627370496ULL) != 0ULL) { mac->stats.TxJumboOctetsOK = mac->stats.TxJumboOctetsOK + 1099511627776ULL; } else { } return ((struct cmac_statistics const *)(& mac->stats)); } } static int pm3393_macaddress_get(struct cmac *cmac , u8 *mac_addr ) { { memcpy((void *)mac_addr, (void const *)(& (cmac->instance)->mac_addr), 6UL); return (0); } } static int pm3393_macaddress_set(struct cmac *cmac , u8 *ma ) { u32 val ; u32 lo ; u32 mid ; u32 hi ; u32 enabled ; { enabled = (u32 )(cmac->instance)->enabled; memcpy((void *)(& (cmac->instance)->mac_addr), (void const *)ma, 6UL); lo = ((unsigned int )*(ma + 1UL) << 8) | (unsigned int )*ma; mid = ((unsigned int )*(ma + 3UL) << 8) | (unsigned int )*(ma + 2UL); hi = ((unsigned int )*(ma + 5UL) << 8) | (unsigned int )*(ma + 4UL); if (enabled != 0U) { pm3393_disable(cmac, 3); } else { } pmwrite(cmac, 8262U, lo); pmwrite(cmac, 8263U, mid); pmwrite(cmac, 8264U, hi); pmwrite(cmac, 12359U, lo); pmwrite(cmac, 12360U, mid); pmwrite(cmac, 12361U, hi); pmread(cmac, 8302U, & val); val = val & 65295U; pmwrite(cmac, 8302U, val); pmwrite(cmac, 8269U, lo); pmwrite(cmac, 8270U, mid); pmwrite(cmac, 8271U, hi); val = val | 144U; pmwrite(cmac, 8302U, val); if (enabled != 0U) { pm3393_enable(cmac, (int )enabled); } else { } return (0); } } static void pm3393_destroy(struct cmac *cmac ) { { kfree((void const *)cmac); return; } } static struct cmac_ops pm3393_ops = {& pm3393_destroy, & pm3393_reset, & pm3393_interrupt_enable, & pm3393_interrupt_disable, & pm3393_interrupt_clear, & pm3393_interrupt_handler, & pm3393_enable_port, & pm3393_disable, & pm3393_loopback_enable, & pm3393_loopback_disable, & pm3393_set_mtu, & pm3393_set_rx_mode, & pm3393_set_speed_duplex_fc, & pm3393_get_speed_duplex_fc, & pm3393_update_statistics, & pm3393_macaddress_get, & pm3393_macaddress_set}; static struct cmac *pm3393_mac_create(adapter_t *adapter , int index ) { struct cmac *cmac ; void *tmp ; { tmp = kzalloc(320UL, 208U); cmac = (struct cmac *)tmp; if ((unsigned long )cmac == (unsigned long )((struct cmac *)0)) { return ((struct cmac *)0); } else { } cmac->ops = (struct cmac_ops const *)(& pm3393_ops); cmac->instance = (cmac_instance *)cmac + 1U; cmac->adapter = adapter; (cmac->instance)->fc = 3U; t1_tpi_write(adapter, 4U, 32768U); t1_tpi_write(adapter, 4U, 0U); t1_tpi_write(adapter, 35872U, 38912U); t1_tpi_write(adapter, 35860U, 4097U); t1_tpi_write(adapter, 35968U, 34816U); t1_tpi_write(adapter, 35972U, 34816U); t1_tpi_write(adapter, 35976U, 34816U); t1_tpi_write(adapter, 35980U, 34816U); t1_tpi_write(adapter, 35984U, 34816U); t1_tpi_write(adapter, 35988U, 34816U); t1_tpi_write(adapter, 35992U, 34816U); t1_tpi_write(adapter, 35996U, 34816U); t1_tpi_write(adapter, 36000U, 34816U); t1_tpi_write(adapter, 36004U, 34816U); t1_tpi_write(adapter, 36008U, 34816U); t1_tpi_write(adapter, 36012U, 34816U); t1_tpi_write(adapter, 36016U, 34816U); t1_tpi_write(adapter, 36020U, 34816U); t1_tpi_write(adapter, 36024U, 34816U); t1_tpi_write(adapter, 36028U, 34816U); t1_tpi_write(adapter, 35892U, 39936U); t1_tpi_write(adapter, 35856U, 514U); t1_tpi_write(adapter, 51200U, 32896U); t1_tpi_write(adapter, 51264U, 0U); t1_tpi_write(adapter, 51212U, 0U); t1_tpi_write(adapter, 51216U, 64U); t1_tpi_write(adapter, 51220U, 716U); t1_tpi_write(adapter, 51224U, 409U); t1_tpi_write(adapter, 51228U, 576U); t1_tpi_write(adapter, 51208U, 0U); t1_tpi_write(adapter, 51264U, 1U); t1_tpi_write(adapter, 51232U, 65535U); t1_tpi_write(adapter, 51240U, 65535U); t1_tpi_write(adapter, 51248U, 65535U); t1_tpi_write(adapter, 51256U, 65535U); t1_tpi_write(adapter, 34816U, 49152U); t1_tpi_write(adapter, 34820U, 0U); t1_tpi_write(adapter, 34872U, 0U); t1_tpi_write(adapter, 34876U, 256U); t1_tpi_write(adapter, 34880U, 3072U); t1_tpi_write(adapter, 34884U, 1433U); t1_tpi_write(adapter, 34868U, 0U); t1_tpi_write(adapter, 34820U, 1U); t1_tpi_write(adapter, 34828U, 65535U); t1_tpi_write(adapter, 34836U, 65535U); t1_tpi_write(adapter, 34852U, 65535U); t1_tpi_write(adapter, 35076U, 4294967294U); t1_tpi_write(adapter, 35080U, 65535U); t1_tpi_write(adapter, 35084U, 8U); t1_tpi_write(adapter, 35088U, 8U); t1_tpi_write(adapter, 35092U, 8U); t1_tpi_write(adapter, 35072U, 5U); t1_tpi_write(adapter, 35328U, 8451U); t1_tpi_write(adapter, 35344U, 0U); t1_tpi_write(adapter, 51712U, 135U); t1_tpi_write(adapter, 51720U, 31U); t1_tpi_write(adapter, 49408U, 3122U); t1_tpi_write(adapter, 49460U, 32768U); t1_tpi_write(adapter, 33024U, 1436U); t1_tpi_write(adapter, 33060U, 1U); t1_tpi_write(adapter, 33216U, 0U); t1_tpi_write(adapter, 33208U, 0U); t1_tpi_write(adapter, 33064U, 65535U); t1_tpi_write(adapter, 33068U, 65535U); t1_tpi_write(adapter, 33072U, 65535U); t1_tpi_write(adapter, 33208U, 9U); t1_tpi_write(adapter, 12U, 0U); t1_tpi_write(adapter, 1024U, 4080U); t1_tpi_write(adapter, 1028U, 3855U); return (cmac); } } static int pm3393_mac_reset(adapter_t *adapter ) { u32 val ; u32 x ; u32 is_pl4_reset_finished ; u32 is_pl4_outof_lock ; u32 is_xaui_mabc_pll_locked ; u32 successful_reset ; int i ; struct _ddebug descriptor ; long tmp ; { successful_reset = 0U; i = 0; goto ldv_46876; ldv_46875: t1_tpi_read(adapter, 1048600U, & val); val = val & 4294967294U; t1_tpi_write(adapter, 1048600U, val); msleep(1U); msleep(1U); msleep(2U); val = val | 1U; t1_tpi_write(adapter, 1048600U, val); msleep(15U); msleep(1U); t1_tpi_read(adapter, 16U, & val); is_pl4_reset_finished = val & 64U; x = 23U; is_pl4_outof_lock = val & x; is_xaui_mabc_pll_locked = val & 512U; successful_reset = (u32 )((is_pl4_reset_finished != 0U && is_pl4_outof_lock == 0U) && is_xaui_mabc_pll_locked != 0U); if ((adapter->msg_enable & 8192) != 0) { descriptor.modname = "cxgb"; descriptor.function = "pm3393_mac_reset"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/pm3393.c"; descriptor.format = "PM3393 HW reset %d: pl4_reset 0x%x, val 0x%x, is_pl4_outof_lock 0x%x, xaui_locked 0x%x\n"; descriptor.lineno = 786U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (adapter->pdev)->dev), "PM3393 HW reset %d: pl4_reset 0x%x, val 0x%x, is_pl4_outof_lock 0x%x, xaui_locked 0x%x\n", i, is_pl4_reset_finished, val, is_pl4_outof_lock, is_xaui_mabc_pll_locked); } else { } } else { } i = i + 1; ldv_46876: ; if (i <= 2 && successful_reset == 0U) { goto ldv_46875; } else { } return (successful_reset == 0U); } } struct gmac const t1_pm3393_ops = {900U, & pm3393_mac_create, & pm3393_mac_reset}; void ldv_initialize_cmac_ops_18(void) { void *tmp ; { tmp = ldv_init_zalloc(312UL); pm3393_ops_group0 = (struct cmac *)tmp; return; } } void ldv_main_exported_18(void) { int *ldvarg28 ; void *tmp ; int ldvarg22 ; int *ldvarg29 ; void *tmp___0 ; int ldvarg25 ; struct t1_rx_mode *ldvarg21 ; void *tmp___1 ; int ldvarg30 ; u8 *ldvarg33 ; void *tmp___2 ; int ldvarg23 ; int ldvarg31 ; u8 *ldvarg32 ; void *tmp___3 ; int ldvarg26 ; int *ldvarg27 ; void *tmp___4 ; int ldvarg24 ; int tmp___5 ; { tmp = ldv_init_zalloc(4UL); ldvarg28 = (int *)tmp; tmp___0 = ldv_init_zalloc(4UL); ldvarg29 = (int *)tmp___0; tmp___1 = ldv_init_zalloc(8UL); ldvarg21 = (struct t1_rx_mode *)tmp___1; tmp___2 = ldv_init_zalloc(1UL); ldvarg33 = (u8 *)tmp___2; tmp___3 = ldv_init_zalloc(1UL); ldvarg32 = (u8 *)tmp___3; tmp___4 = ldv_init_zalloc(4UL); ldvarg27 = (int *)tmp___4; ldv_memset((void *)(& ldvarg22), 0, 4UL); ldv_memset((void *)(& ldvarg25), 0, 4UL); ldv_memset((void *)(& ldvarg30), 0, 4UL); ldv_memset((void *)(& ldvarg23), 0, 4UL); ldv_memset((void *)(& ldvarg31), 0, 4UL); ldv_memset((void *)(& ldvarg26), 0, 4UL); ldv_memset((void *)(& ldvarg24), 0, 4UL); tmp___5 = __VERIFIER_nondet_int(); switch (tmp___5) { case 0: ; if (ldv_state_variable_18 == 1) { pm3393_interrupt_clear(pm3393_ops_group0); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 1: ; if (ldv_state_variable_18 == 1) { pm3393_interrupt_handler(pm3393_ops_group0); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 2: ; if (ldv_state_variable_18 == 1) { pm3393_macaddress_set(pm3393_ops_group0, ldvarg33); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 3: ; if (ldv_state_variable_18 == 1) { pm3393_macaddress_get(pm3393_ops_group0, ldvarg32); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 4: ; if (ldv_state_variable_18 == 1) { pm3393_enable_port(pm3393_ops_group0, ldvarg31); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 5: ; if (ldv_state_variable_18 == 1) { pm3393_interrupt_disable(pm3393_ops_group0); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 6: ; if (ldv_state_variable_18 == 1) { pm3393_disable(pm3393_ops_group0, ldvarg30); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 7: ; if (ldv_state_variable_18 == 1) { pm3393_get_speed_duplex_fc(pm3393_ops_group0, ldvarg29, ldvarg28, ldvarg27); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 8: ; if (ldv_state_variable_18 == 1) { pm3393_destroy(pm3393_ops_group0); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 9: ; if (ldv_state_variable_18 == 1) { pm3393_interrupt_enable(pm3393_ops_group0); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 10: ; if (ldv_state_variable_18 == 1) { pm3393_reset(pm3393_ops_group0); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 11: ; if (ldv_state_variable_18 == 1) { pm3393_loopback_enable(pm3393_ops_group0); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 12: ; if (ldv_state_variable_18 == 1) { pm3393_loopback_disable(pm3393_ops_group0); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 13: ; if (ldv_state_variable_18 == 1) { pm3393_set_mtu(pm3393_ops_group0, ldvarg26); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 14: ; if (ldv_state_variable_18 == 1) { pm3393_set_speed_duplex_fc(pm3393_ops_group0, ldvarg25, ldvarg24, ldvarg23); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 15: ; if (ldv_state_variable_18 == 1) { pm3393_update_statistics(pm3393_ops_group0, ldvarg22); ldv_state_variable_18 = 1; } else { } goto ldv_46899; case 16: ; if (ldv_state_variable_18 == 1) { pm3393_set_rx_mode(pm3393_ops_group0, ldvarg21); ldv_state_variable_18 = 1; } else { } goto ldv_46899; default: ldv_stop(); } ldv_46899: ; return; } } void ldv_main_exported_17(void) { adapter_t *ldvarg19 ; void *tmp ; int ldvarg20 ; adapter_t *ldvarg18 ; void *tmp___0 ; int tmp___1 ; { tmp = ldv_init_zalloc(2240UL); ldvarg19 = (adapter_t *)tmp; tmp___0 = ldv_init_zalloc(2240UL); ldvarg18 = (adapter_t *)tmp___0; ldv_memset((void *)(& ldvarg20), 0, 4UL); tmp___1 = __VERIFIER_nondet_int(); switch (tmp___1) { case 0: ; if (ldv_state_variable_17 == 1) { pm3393_mac_create(ldvarg19, ldvarg20); ldv_state_variable_17 = 1; } else { } goto ldv_46924; case 1: ; if (ldv_state_variable_17 == 1) { pm3393_mac_reset(ldvarg18); ldv_state_variable_17 = 1; } else { } goto ldv_46924; default: ldv_stop(); } ldv_46924: ; return; } } bool ldv_queue_work_on_171(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_172(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___3 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_173(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_174(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_175(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_pskb_expand_head_187(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_189(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_191(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_192(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_193(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_194(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_195(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } int ldv_pskb_expand_head_196(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_197(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } void __builtin_prefetch(void const * , ...) ; __inline static long ldv__builtin_expect(long exp , long c ) ; __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %2, %0; setc %1": "+m" (*addr), "=qm" (c): "Ir" (nr): "memory"); return ((int )((signed char )c) != 0); } } __inline static int test_and_clear_bit(long nr , unsigned long volatile *addr ) { char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %2, %0; setc %1": "+m" (*addr), "=qm" (c): "Ir" (nr): "memory"); return ((int )((signed char )c) != 0); } } extern unsigned long find_next_bit(unsigned long const * , unsigned long , unsigned long ) ; __inline static __u32 __arch_swab32(__u32 val ) { { __asm__ ("bswapl %0": "=r" (val): "0" (val)); return (val); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { __u32 tmp ; { tmp = __arch_swab32(val); return (tmp); } } extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern unsigned long __per_cpu_offset[8192U] ; extern unsigned long this_cpu_off ; extern void warn_slowpath_null(char const * , int const ) ; extern unsigned long __phys_addr(unsigned long ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_possible_mask ; __inline static unsigned int cpumask_check(unsigned int cpu ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; { __ret_warn_once = (unsigned int )nr_cpu_ids <= cpu; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); if (tmp___1 != 0L) { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_null("include/linux/cpumask.h", 117); } else { } tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { __warned = 1; } else { } } else { } ldv__builtin_expect(__ret_warn_once != 0, 0L); return (cpu); } } __inline static unsigned int cpumask_next(int n , struct cpumask const *srcp ) { unsigned long tmp ; { if (n != -1) { cpumask_check((unsigned int )n); } else { } tmp = find_next_bit((unsigned long const *)(& srcp->bits), (unsigned long )nr_cpu_ids, (unsigned long )(n + 1)); return ((unsigned int )tmp); } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void spin_lock(spinlock_t *lock ) ; __inline static int spin_trylock(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) ; extern unsigned long volatile jiffies ; extern ktime_t ktime_get(void) ; extern int mod_timer(struct timer_list * , unsigned long ) ; int ldv_mod_timer_245(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; int ldv_mod_timer_248(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; int ldv_mod_timer_249(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; int ldv_mod_timer_250(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; int ldv_mod_timer_251(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; int ldv_del_timer_sync_246(struct timer_list *ldv_func_arg1 ) ; int ldv_del_timer_sync_247(struct timer_list *ldv_func_arg1 ) ; bool ldv_queue_work_on_217(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_219(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_218(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_221(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_220(struct workqueue_struct *ldv_func_arg1 ) ; extern void *__alloc_percpu(size_t , size_t ) ; extern void free_percpu(void * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; void choose_timer_5(struct timer_list *timer ) ; void choose_timer_6(struct timer_list *timer ) ; int reg_timer_6(struct timer_list *timer ) ; void activate_pending_timer_5(struct timer_list *timer , unsigned long data , int pending_flag ) ; void disable_suitable_timer_6(struct timer_list *timer ) ; void disable_suitable_timer_5(struct timer_list *timer ) ; int reg_timer_5(struct timer_list *timer ) ; void activate_pending_timer_6(struct timer_list *timer , unsigned long data , int pending_flag ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_31593: ; goto ldv_31593; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_31602: ; goto ldv_31602; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (84), "i" (12UL)); ldv_31637: ; goto ldv_31637; } else { } addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); return (addr); } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (108), "i" (12UL)); ldv_31653: ; goto ldv_31653; } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (120), "i" (12UL)); ldv_31661: ; goto ldv_31661; } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_device))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_device(dev, addr, size, (int )dir); return; } } extern void *dma_alloc_attrs(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; extern void dma_free_attrs(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void kfree_skb(struct sk_buff * ) ; extern void consume_skb(struct sk_buff * ) ; struct sk_buff *ldv_skb_clone_235(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_243(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_237(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_233(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_241(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_242(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; extern struct sk_buff *skb_realloc_headroom(struct sk_buff * , unsigned int ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static struct sk_buff *skb_get(struct sk_buff *skb ) { { atomic_inc(& skb->users); return (skb); } } __inline static struct sk_buff *skb_peek(struct sk_buff_head const *list_ ) { struct sk_buff *skb ; { skb = list_->next; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)list_)) { skb = (struct sk_buff *)0; } else { } return (skb); } } __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { spinlock_check(& list->lock); __raw_spin_lock_init(& list->lock.__annonCompField18.rlock, "&(&list->lock)->rlock", & __key); __skb_queue_head_init(list); return; } } __inline static void __skb_insert(struct sk_buff *newsk , struct sk_buff *prev , struct sk_buff *next , struct sk_buff_head *list ) { struct sk_buff *tmp ; { newsk->__annonCompField79.__annonCompField78.next = next; newsk->__annonCompField79.__annonCompField78.prev = prev; tmp = newsk; prev->__annonCompField79.__annonCompField78.next = tmp; next->__annonCompField79.__annonCompField78.prev = tmp; list->qlen = list->qlen + 1U; return; } } __inline static void __skb_queue_before(struct sk_buff_head *list , struct sk_buff *next , struct sk_buff *newsk ) { { __skb_insert(newsk, next->__annonCompField79.__annonCompField78.prev, next, list); return; } } __inline static void __skb_queue_tail(struct sk_buff_head *list , struct sk_buff *newsk ) { { __skb_queue_before(list, (struct sk_buff *)list, newsk); return; } } __inline static void __skb_unlink(struct sk_buff *skb , struct sk_buff_head *list ) { struct sk_buff *next ; struct sk_buff *prev ; struct sk_buff *tmp ; { list->qlen = list->qlen - 1U; next = skb->__annonCompField79.__annonCompField78.next; prev = skb->__annonCompField79.__annonCompField78.prev; tmp = (struct sk_buff *)0; skb->__annonCompField79.__annonCompField78.prev = tmp; skb->__annonCompField79.__annonCompField78.next = tmp; next->__annonCompField79.__annonCompField78.prev = prev; prev->__annonCompField79.__annonCompField78.next = next; return; } } __inline static struct sk_buff *__skb_dequeue(struct sk_buff_head *list ) { struct sk_buff *skb ; struct sk_buff *tmp ; { tmp = skb_peek((struct sk_buff_head const *)list); skb = tmp; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { __skb_unlink(skb, list); } else { } return (skb); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; __inline static unsigned char *__skb_push(struct sk_buff *skb , unsigned int len ) { { skb->data = skb->data + - ((unsigned long )len); skb->len = skb->len + len; return (skb->data); } } __inline static unsigned char *__skb_pull(struct sk_buff *skb , unsigned int len ) { long tmp ; unsigned char *tmp___0 ; { skb->len = skb->len - len; tmp = ldv__builtin_expect(skb->len < skb->data_len, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/skbuff.h"), "i" (1714), "i" (12UL)); ldv_33050: ; goto ldv_33050; } else { } tmp___0 = skb->data + (unsigned long )len; skb->data = tmp___0; return (tmp___0); } } __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static void __skb_queue_purge(struct sk_buff_head *list ) { struct sk_buff *skb ; { goto ldv_33238; ldv_33237: kfree_skb(skb); ldv_33238: skb = __skb_dequeue(list); if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_33237; } else { } return; } } struct sk_buff *ldv___netdev_alloc_skb_238(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_239(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_240(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { tmp = ldv___netdev_alloc_skb_238(dev, length, 32U); return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { tmp = netdev_alloc_skb((struct net_device *)0, length); return (tmp); } } extern struct sk_buff *__napi_alloc_skb(struct napi_struct * , unsigned int , gfp_t ) ; __inline static struct sk_buff *napi_alloc_skb(struct napi_struct *napi , unsigned int length ) { struct sk_buff *tmp ; { tmp = __napi_alloc_skb(napi, length, 32U); return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); return (tmp___0); } } __inline static void skb_copy_from_linear_data(struct sk_buff const *skb , void *to , unsigned int const len ) { { memcpy(to, (void const *)skb->data, (size_t )len); return; } } __inline static void skb_copy_to_linear_data_offset(struct sk_buff *skb , int const offset , void const *from , unsigned int const len ) { { memcpy((void *)skb->data + (unsigned long )offset, from, (size_t )len); return; } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } extern void __tasklet_hi_schedule(struct tasklet_struct * ) ; __inline static void tasklet_hi_schedule(struct tasklet_struct *t ) { int tmp ; { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); if (tmp == 0) { __tasklet_hi_schedule(t); } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = napi_disable_pending(n); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_complete(struct napi_struct *n ) { { return; } } __inline static void napi_enable___0(struct napi_struct *n ) { int tmp ; long tmp___0 ; { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (507), "i" (12UL)); ldv_41795: ; goto ldv_41795; } else { } __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); return; } } extern void netif_tx_wake_queue(struct netdev_queue * ) ; __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); return (tmp___0); } } extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { __dev_kfree_skb_any(skb, 1); return; } } extern int netif_receive_skb_sk(struct sock * , struct sk_buff * ) ; __inline static int netif_receive_skb(struct sk_buff *skb ) { int tmp ; { tmp = netif_receive_skb_sk(skb->sk, skb); return (tmp); } } extern int skb_checksum_help(struct sk_buff * ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); return; } } __inline static void pci_dma_sync_single_for_device(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { dma_sync_single_for_device((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); return; } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; __inline static void __vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return; } } __inline static unsigned int core_ticks_per_usec(adapter_t const *adap ) { { return ((unsigned int )(adap->params.brd_info)->clock_core / 1000000U); } } int t1_slow_intr_handler(adapter_t *adapter ) ; __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_transport_header(skb); return ((struct tcphdr *)tmp); } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((struct iphdr *)tmp); } } __inline static struct arphdr *arp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((struct arphdr *)tmp); } } struct sge *t1_sge_create(struct adapter *adapter , struct sge_params *p ) ; int t1_sge_configure(struct sge *sge , struct sge_params *p ) ; void t1_sge_destroy(struct sge *sge ) ; int t1_sge_intr_error_handler(struct sge *sge ) ; void t1_sge_intr_enable(struct sge *sge ) ; void t1_sge_intr_disable(struct sge *sge ) ; void t1_sge_intr_clear(struct sge *sge ) ; static void restart_sched(unsigned long arg ) ; static u8 const ch_mac_addr[6U] = { 0U, 7U, 67U, 0U, 0U, 0U}; static void tx_sched_stop(struct sge *sge ) { struct sched *s ; int i ; { s = sge->tx_sched; tasklet_kill(& s->sched_tsk); i = 0; goto ldv_51746; ldv_51745: __skb_queue_purge(& s->p[s->port].skbq); i = i + 1; ldv_51746: ; if (i <= 3) { goto ldv_51745; } else { } return; } } unsigned int t1_sched_update_parms(struct sge *sge , unsigned int port , unsigned int mtu , unsigned int speed ) { struct sched *s ; struct sched_port *p ; unsigned int max_avail_segs ; struct _ddebug descriptor ; long tmp ; unsigned long long drain ; uint32_t __base ; uint32_t __rem ; unsigned int _max1 ; unsigned int _max2 ; unsigned int _max1___0 ; unsigned int _max2___0 ; unsigned int _max1___1 ; unsigned int _max2___1 ; struct _ddebug descriptor___0 ; long tmp___0 ; { s = sge->tx_sched; p = (struct sched_port *)(& s->p) + (unsigned long )port; descriptor.modname = "cxgb"; descriptor.function = "t1_sched_update_parms"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"; descriptor.format = "%s mtu=%d speed=%d\n"; descriptor.lineno = 304U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "cxgb: %s mtu=%d speed=%d\n", "t1_sched_update_parms", mtu, speed); } else { } if (speed != 0U) { p->speed = speed; } else { } if (mtu != 0U) { p->mtu = mtu; } else { } if (speed != 0U || mtu != 0U) { drain = ((unsigned long long )p->speed * (unsigned long long )(p->mtu - 40U)) * 1024ULL; __base = p->mtu * 1000U + 50000U; __rem = (uint32_t )(drain % (unsigned long long )__base); drain = drain / (unsigned long long )__base; p->drain_bits_per_1024ns = (unsigned int )drain; if (p->speed <= 999U) { p->drain_bits_per_1024ns = (p->drain_bits_per_1024ns * 90U) / 100U; } else { } } else { } if ((unsigned int )((unsigned char )((sge->adapter)->params.brd_info)->board) == 7U) { p->drain_bits_per_1024ns = p->drain_bits_per_1024ns - 16U; _max1 = 4096U; _max2 = p->mtu + 34U; s->max_avail = _max1 > _max2 ? _max1 : _max2; _max1___0 = 1U; _max2___0 = 4096U / (p->mtu - 40U); max_avail_segs = _max1___0 > _max2___0 ? _max1___0 : _max2___0; } else { s->max_avail = 16384U; _max1___1 = 1U; _max2___1 = 9000U / (p->mtu - 40U); max_avail_segs = _max1___1 > _max2___1 ? _max1___1 : _max2___1; } descriptor___0.modname = "cxgb"; descriptor___0.function = "t1_sched_update_parms"; descriptor___0.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"; descriptor___0.format = "t1_sched_update_parms: mtu %u speed %u max_avail %u max_avail_segs %u drain_bits_per_1024ns %u\n"; descriptor___0.lineno = 332U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_pr_debug(& descriptor___0, "cxgb: t1_sched_update_parms: mtu %u speed %u max_avail %u max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu, p->speed, s->max_avail, max_avail_segs, p->drain_bits_per_1024ns); } else { } return ((p->mtu - 40U) * max_avail_segs); } } static int tx_sched_init(struct sge *sge ) { struct sched *s ; int i ; void *tmp ; struct _ddebug descriptor ; long tmp___0 ; { tmp = kzalloc(512UL, 208U); s = (struct sched *)tmp; if ((unsigned long )s == (unsigned long )((struct sched *)0)) { return (-12); } else { } descriptor.modname = "cxgb"; descriptor.function = "tx_sched_init"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"; descriptor.format = "tx_sched_init\n"; descriptor.lineno = 380U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_pr_debug(& descriptor, "cxgb: tx_sched_init\n"); } else { } tasklet_init(& s->sched_tsk, & restart_sched, (unsigned long )sge); sge->tx_sched = s; i = 0; goto ldv_51781; ldv_51780: skb_queue_head_init(& s->p[i].skbq); t1_sched_update_parms(sge, (unsigned int )i, 1500U, 1000U); i = i + 1; ldv_51781: ; if (i <= 3) { goto ldv_51780; } else { } return (0); } } __inline static int sched_update_avail(struct sge *sge ) { struct sched *s ; ktime_t now ; ktime_t tmp ; unsigned int i ; long long delta_time_ns ; ktime_t __constr_expr_0 ; struct _ddebug descriptor ; long tmp___0 ; struct sched_port *p ; unsigned int delta_avail ; unsigned int _min1 ; unsigned int _min2 ; { s = sge->tx_sched; tmp = ktime_get(); now = tmp; __constr_expr_0.tv64 = now.tv64 - s->last_updated.tv64; delta_time_ns = __constr_expr_0.tv64; descriptor.modname = "cxgb"; descriptor.function = "sched_update_avail"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"; descriptor.format = "sched_update_avail delta=%lld\n"; descriptor.lineno = 406U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_pr_debug(& descriptor, "cxgb: sched_update_avail delta=%lld\n", delta_time_ns); } else { } if (delta_time_ns <= 14999LL) { return (0); } else { } i = 0U; goto ldv_51799; ldv_51798: p = (struct sched_port *)(& s->p) + (unsigned long )i; delta_avail = (unsigned int )((long long )p->drain_bits_per_1024ns * delta_time_ns >> 13); _min1 = p->avail + delta_avail; _min2 = s->max_avail; p->avail = _min1 < _min2 ? _min1 : _min2; i = i + 1U; ldv_51799: ; if (i <= 3U) { goto ldv_51798; } else { } s->last_updated = now; return (1); } } static struct sk_buff *sched_skb(struct sge *sge , struct sk_buff *skb , unsigned int credits ) { struct sched *s ; struct sk_buff_head *skbq ; unsigned int i ; unsigned int len ; unsigned int update ; struct _ddebug descriptor ; long tmp ; unsigned int tmp___0 ; int tmp___1 ; struct cmdQ *q ; int tmp___2 ; struct _ddebug descriptor___0 ; long tmp___3 ; { s = sge->tx_sched; update = 1U; descriptor.modname = "cxgb"; descriptor.function = "sched_skb"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"; descriptor.format = "sched_skb %p\n"; descriptor.lineno = 438U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "cxgb: sched_skb %p\n", skb); } else { } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { if (s->num == 0U) { return ((struct sk_buff *)0); } else { } } else { skbq = & s->p[(int )(skb->dev)->if_port].skbq; __skb_queue_tail(skbq, skb); s->num = s->num + 1U; skb = (struct sk_buff *)0; } if (credits <= 17U) { goto out; } else { } again: i = 0U; goto ldv_51817; ldv_51816: s->port = (s->port + 1U) & 3U; skbq = & s->p[s->port].skbq; skb = skb_peek((struct sk_buff_head const *)skbq); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_51815; } else { } len = skb->len; if (s->p[s->port].avail >= len) { s->p[s->port].avail = s->p[s->port].avail - len; s->num = s->num - 1U; __skb_unlink(skb, skbq); goto out; } else { } skb = (struct sk_buff *)0; ldv_51815: i = i + 1U; ldv_51817: ; if (i <= 3U) { goto ldv_51816; } else { } tmp___0 = update; update = update - 1U; if (tmp___0 != 0U) { tmp___1 = sched_update_avail(sge); if (tmp___1 != 0) { goto again; } else { } } else { } out: ; if (s->num != 0U && (unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { q = (struct cmdQ *)(& sge->cmdQ); clear_bit(2L, (unsigned long volatile *)(& q->status)); tmp___2 = test_and_set_bit(1L, (unsigned long volatile *)(& q->status)); if (tmp___2 == 0) { set_bit(2L, (unsigned long volatile *)(& q->status)); writel(1U, (void volatile *)(sge->adapter)->regs + 4U); } else { } } else { } descriptor___0.modname = "cxgb"; descriptor___0.function = "sched_skb"; descriptor___0.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"; descriptor___0.format = "sched_skb ret %p\n"; descriptor___0.lineno = 487U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_pr_debug(& descriptor___0, "cxgb: sched_skb ret %p\n", skb); } else { } return (skb); } } __inline static void doorbell_pio(struct adapter *adapter , u32 val ) { { __asm__ volatile ("sfence": : : "memory"); writel(val, (void volatile *)adapter->regs + 4U); return; } } static void free_freelQ_buffers(struct pci_dev *pdev , struct freelQ *q ) { unsigned int cidx ; struct freelQ_ce *ce ; unsigned int tmp ; { cidx = (unsigned int )q->cidx; goto ldv_51832; ldv_51831: ce = q->centries + (unsigned long )cidx; pci_unmap_single(pdev, ce->dma_addr, (size_t )ce->dma_len, 2); consume_skb(ce->skb); ce->skb = (struct sk_buff *)0; cidx = cidx + 1U; if (cidx == q->size) { cidx = 0U; } else { } ldv_51832: tmp = q->credits; q->credits = q->credits - 1U; if (tmp != 0U) { goto ldv_51831; } else { } return; } } static void free_rx_resources(struct sge *sge ) { struct pci_dev *pdev ; unsigned int size ; unsigned int i ; struct freelQ *q ; { pdev = (sge->adapter)->pdev; if ((unsigned long )sge->respQ.entries != (unsigned long )((struct respQ_e *)0)) { size = sge->respQ.size * 8U; pci_free_consistent(pdev, (size_t )size, (void *)sge->respQ.entries, sge->respQ.dma_addr); } else { } i = 0U; goto ldv_51842; ldv_51841: q = (struct freelQ *)(& sge->freelQ) + (unsigned long )i; if ((unsigned long )q->centries != (unsigned long )((struct freelQ_ce *)0)) { free_freelQ_buffers(pdev, q); kfree((void const *)q->centries); } else { } if ((unsigned long )q->entries != (unsigned long )((struct freelQ_e *)0)) { size = q->size * 16U; pci_free_consistent(pdev, (size_t )size, (void *)q->entries, q->dma_addr); } else { } i = i + 1U; ldv_51842: ; if (i <= 1U) { goto ldv_51841; } else { } return; } } static int alloc_rx_resources(struct sge *sge , struct sge_params *p ) { struct pci_dev *pdev ; unsigned int size ; unsigned int i ; struct freelQ *q ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { pdev = (sge->adapter)->pdev; i = 0U; goto ldv_51854; ldv_51853: q = (struct freelQ *)(& sge->freelQ) + (unsigned long )i; q->genbit = 1U; q->size = p->freelQ_size[i]; q->dma_offset = 0U; size = q->size * 16U; tmp = pci_alloc_consistent(pdev, (size_t )size, & q->dma_addr); q->entries = (struct freelQ_e *)tmp; if ((unsigned long )q->entries == (unsigned long )((struct freelQ_e *)0)) { goto err_no_mem; } else { } size = q->size * 24U; tmp___0 = kzalloc((size_t )size, 208U); q->centries = (struct freelQ_ce *)tmp___0; if ((unsigned long )q->centries == (unsigned long )((struct freelQ_ce *)0)) { goto err_no_mem; } else { } i = i + 1U; ldv_51854: ; if (i <= 1U) { goto ldv_51853; } else { } sge->freelQ[sge->jumbo_fl == 0U].rx_buffer_size = (unsigned int )sge->freelQ[sge->jumbo_fl == 0U].dma_offset + 1552U; size = 16064U; sge->freelQ[sge->jumbo_fl].rx_buffer_size = (u16 )size; sge->freelQ[sge->jumbo_fl == 0U].recycleq_idx = 0U; sge->freelQ[sge->jumbo_fl].recycleq_idx = 1U; sge->respQ.genbit = 1U; sge->respQ.size = 1024U; sge->respQ.credits = 0U; size = sge->respQ.size * 8U; tmp___1 = pci_alloc_consistent(pdev, (size_t )size, & sge->respQ.dma_addr); sge->respQ.entries = (struct respQ_e *)tmp___1; if ((unsigned long )sge->respQ.entries == (unsigned long )((struct respQ_e *)0)) { goto err_no_mem; } else { } return (0); err_no_mem: free_rx_resources(sge); return (-12); } } static void free_cmdQ_buffers(struct sge *sge , struct cmdQ *q , unsigned int n ) { struct cmdQ_ce *ce ; struct pci_dev *pdev ; unsigned int cidx ; long tmp ; unsigned int tmp___0 ; { pdev = (sge->adapter)->pdev; cidx = (unsigned int )q->cidx; q->in_use = q->in_use - n; ce = q->centries + (unsigned long )cidx; goto ldv_51865; ldv_51864: tmp = ldv__builtin_expect(ce->dma_len != 0U, 1L); if (tmp != 0L) { pci_unmap_single(pdev, ce->dma_addr, (size_t )ce->dma_len, 1); if ((unsigned int )q->sop != 0U) { q->sop = 0U; } else { } } else { } if ((unsigned long )ce->skb != (unsigned long )((struct sk_buff *)0)) { dev_kfree_skb_any(ce->skb); q->sop = 1U; } else { } ce = ce + 1; cidx = cidx + 1U; if (cidx == q->size) { cidx = 0U; ce = q->centries; } else { } ldv_51865: tmp___0 = n; n = n - 1U; if (tmp___0 != 0U) { goto ldv_51864; } else { } q->cidx = (u16 )cidx; return; } } static void free_tx_resources(struct sge *sge ) { struct pci_dev *pdev ; unsigned int size ; unsigned int i ; struct cmdQ *q ; { pdev = (sge->adapter)->pdev; i = 0U; goto ldv_51875; ldv_51874: q = (struct cmdQ *)(& sge->cmdQ) + (unsigned long )i; if ((unsigned long )q->centries != (unsigned long )((struct cmdQ_ce *)0)) { if (q->in_use != 0U) { free_cmdQ_buffers(sge, q, q->in_use); } else { } kfree((void const *)q->centries); } else { } if ((unsigned long )q->entries != (unsigned long )((struct cmdQ_e *)0)) { size = q->size * 16U; pci_free_consistent(pdev, (size_t )size, (void *)q->entries, q->dma_addr); } else { } i = i + 1U; ldv_51875: ; if (i <= 1U) { goto ldv_51874; } else { } return; } } static int alloc_tx_resources(struct sge *sge , struct sge_params *p ) { struct pci_dev *pdev ; unsigned int size ; unsigned int i ; struct cmdQ *q ; unsigned int tmp ; struct lock_class_key __key ; void *tmp___0 ; void *tmp___1 ; { pdev = (sge->adapter)->pdev; i = 0U; goto ldv_51888; ldv_51887: q = (struct cmdQ *)(& sge->cmdQ) + (unsigned long )i; q->genbit = 1U; q->sop = 1U; q->size = p->cmdQ_size[i]; q->in_use = 0U; q->status = 0UL; tmp = 0U; q->cleaned = tmp; q->processed = tmp; q->stop_thres = 0U; spinlock_check(& q->lock); __raw_spin_lock_init(& q->lock.__annonCompField18.rlock, "&(&q->lock)->rlock", & __key); size = q->size * 16U; tmp___0 = pci_alloc_consistent(pdev, (size_t )size, & q->dma_addr); q->entries = (struct cmdQ_e *)tmp___0; if ((unsigned long )q->entries == (unsigned long )((struct cmdQ_e *)0)) { goto err_no_mem; } else { } size = q->size * 24U; tmp___1 = kzalloc((size_t )size, 208U); q->centries = (struct cmdQ_ce *)tmp___1; if ((unsigned long )q->centries == (unsigned long )((struct cmdQ_ce *)0)) { goto err_no_mem; } else { } i = i + 1U; ldv_51888: ; if (i <= 1U) { goto ldv_51887; } else { } sge->cmdQ[0].stop_thres = (sge->adapter)->params.nports * 18U; return (0); err_no_mem: free_tx_resources(sge); return (-12); } } __inline static void setup_ring_params(struct adapter *adapter , u64 addr , u32 size , int base_reg_lo , int base_reg_hi , int size_reg ) { { writel((unsigned int )addr, (void volatile *)adapter->regs + (unsigned long )base_reg_lo); writel((unsigned int )(addr >> 32), (void volatile *)adapter->regs + (unsigned long )base_reg_hi); writel(size, (void volatile *)adapter->regs + (unsigned long )size_reg); return; } } void t1_vlan_mode(struct adapter *adapter , netdev_features_t features ) { struct sge *sge ; { sge = adapter->sge; if ((features & 256ULL) != 0ULL) { sge->sge_control = sge->sge_control | 262144U; } else { sge->sge_control = sge->sge_control & 4294705151U; } if (adapter->open_device_map != 0UL) { writel(sge->sge_control, (void volatile *)adapter->regs); readl((void const volatile *)adapter->regs); } else { } return; } } static void configure_sge(struct sge *sge , struct sge_params *p ) { struct adapter *ap ; unsigned int tmp ; { ap = sge->adapter; writel(0U, (void volatile *)ap->regs); setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size, 8, 12, 40); setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size, 16, 20, 176); setup_ring_params(ap, sge->freelQ[0].dma_addr, sge->freelQ[0].size, 24, 28, 44); setup_ring_params(ap, sge->freelQ[1].dma_addr, sge->freelQ[1].size, 32, 36, 180); writel(1537U, (void volatile *)ap->regs + 60U); setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size, 52, 56, 48); writel(sge->respQ.size - 1U, (void volatile *)ap->regs + 64U); sge->sge_control = (sge->rx_pkt_pad << 15) | 17087U; tmp = core_ticks_per_usec((adapter_t const *)ap); sge->intrtimer_nres = tmp * 1000U; t1_sge_set_coalesce_params(sge, p); return; } } __inline static unsigned int jumbo_payload_capacity(struct sge const *sge ) { { return ((unsigned int )((int )sge->freelQ[sge->jumbo_fl].rx_buffer_size - (int )sge->freelQ[sge->jumbo_fl].dma_offset) - 16U); } } void t1_sge_destroy(struct sge *sge ) { int i ; { i = 0; goto ldv_51916; ldv_51915: free_percpu((void *)sge->port_stats[i]); i = i + 1; ldv_51916: ; if ((unsigned int )i < (sge->adapter)->params.nports) { goto ldv_51915; } else { } kfree((void const *)sge->tx_sched); free_tx_resources(sge); free_rx_resources(sge); kfree((void const *)sge); return; } } static void refill_free_list(struct sge *sge , struct freelQ *q ) { struct pci_dev *pdev ; struct freelQ_ce *ce ; struct freelQ_e *e ; unsigned int dma_len ; struct sk_buff *skb ; dma_addr_t mapping ; { pdev = (sge->adapter)->pdev; ce = q->centries + (unsigned long )q->pidx; e = q->entries + (unsigned long )q->pidx; dma_len = (unsigned int )((int )q->rx_buffer_size - (int )q->dma_offset); goto ldv_51930; ldv_51929: skb = dev_alloc_skb((unsigned int )q->rx_buffer_size); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_51928; } else { } skb_reserve(skb, (int )q->dma_offset); mapping = pci_map_single(pdev, (void *)skb->data, (size_t )dma_len, 2); skb_reserve(skb, (int )sge->rx_pkt_pad); ce->skb = skb; ce->dma_addr = mapping; ce->dma_len = dma_len; e->addr_lo = (unsigned int )mapping; e->addr_hi = (u32 )(mapping >> 32); e->len_gen = (unsigned int )((int )q->genbit << 31) | dma_len; __asm__ volatile ("sfence": : : "memory"); e->gen2 = (u32 )q->genbit; e = e + 1; ce = ce + 1; q->pidx = (u16 )((int )q->pidx + 1); if ((unsigned int )q->pidx == q->size) { q->pidx = 0U; q->genbit = (u8 )((unsigned int )q->genbit ^ 1U); ce = q->centries; e = q->entries; } else { } q->credits = q->credits + 1U; ldv_51930: ; if (q->credits < q->size) { goto ldv_51929; } else { } ldv_51928: ; return; } } static void freelQs_empty(struct sge *sge ) { struct adapter *adapter ; u32 irq_reg ; unsigned int tmp ; u32 irqholdoff_reg ; { adapter = sge->adapter; tmp = readl((void const volatile *)adapter->regs + 184U); irq_reg = tmp; refill_free_list(sge, (struct freelQ *)(& sge->freelQ)); refill_free_list(sge, (struct freelQ *)(& sge->freelQ) + 1UL); if (sge->freelQ[0].credits > sge->freelQ[0].size >> 2 && sge->freelQ[1].credits > sge->freelQ[1].size >> 2) { irq_reg = irq_reg | 4U; irqholdoff_reg = sge->fixed_intrtimer; } else { irq_reg = irq_reg & 4294967291U; irqholdoff_reg = sge->intrtimer_nres; } writel(irqholdoff_reg, (void volatile *)adapter->regs + 76U); writel(irq_reg, (void volatile *)adapter->regs + 184U); doorbell_pio(adapter, 12U); return; } } void t1_sge_intr_disable(struct sge *sge ) { u32 val ; unsigned int tmp ; { tmp = readl((void const volatile *)(sge->adapter)->regs + 2560U); val = tmp; writel(val & 4294967292U, (void volatile *)(sge->adapter)->regs + 2560U); writel(0U, (void volatile *)(sge->adapter)->regs + 184U); return; } } void t1_sge_intr_enable(struct sge *sge ) { u32 en ; u32 val ; unsigned int tmp ; { en = 31U; tmp = readl((void const volatile *)(sge->adapter)->regs + 2560U); val = tmp; if ((((sge->adapter)->port[0].dev)->hw_features & 65536ULL) != 0ULL) { en = en & 4294967287U; } else { } writel(en, (void volatile *)(sge->adapter)->regs + 184U); writel(val | 3U, (void volatile *)(sge->adapter)->regs + 2560U); return; } } void t1_sge_intr_clear(struct sge *sge ) { { writel(3U, (void volatile *)(sge->adapter)->regs + 2564U); writel(4294967295U, (void volatile *)(sge->adapter)->regs + 188U); return; } } int t1_sge_intr_error_handler(struct sge *sge ) { struct adapter *adapter ; u32 cause ; unsigned int tmp ; { adapter = sge->adapter; tmp = readl((void const volatile *)adapter->regs + 188U); cause = tmp; if (((adapter->port[0].dev)->hw_features & 65536ULL) != 0ULL) { cause = cause & 4294967287U; } else { } if ((int )cause & 1) { sge->stats.respQ_empty = sge->stats.respQ_empty + 1U; } else { } if ((cause & 2U) != 0U) { sge->stats.respQ_overflow = sge->stats.respQ_overflow + 1U; printk("\tcxgb: %s: SGE response queue overflow\n", adapter->name); } else { } if ((cause & 4U) != 0U) { sge->stats.freelistQ_empty = sge->stats.freelistQ_empty + 1U; freelQs_empty(sge); } else { } if ((cause & 8U) != 0U) { sge->stats.pkt_too_big = sge->stats.pkt_too_big + 1U; printk("\tcxgb: %s: SGE max packet size exceeded\n", adapter->name); } else { } if ((cause & 16U) != 0U) { sge->stats.pkt_mismatch = sge->stats.pkt_mismatch + 1U; printk("\tcxgb: %s: SGE packet mismatch\n", adapter->name); } else { } if ((cause & 26U) != 0U) { t1_fatal_err(adapter); } else { } writel(cause, (void volatile *)adapter->regs + 188U); return (0); } } struct sge_intr_counts const *t1_sge_get_intr_counts(struct sge const *sge ) { { return (& sge->stats); } } void t1_sge_get_port_stats(struct sge const *sge , int port , struct sge_port_stats *ss ) { int cpu ; struct sge_port_stats *st ; void const *__vpp_verify ; unsigned long __ptr ; unsigned int tmp ; { memset((void *)ss, 0, 48UL); cpu = -1; goto ldv_51969; ldv_51968: __vpp_verify = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (sge->port_stats[port])); st = (struct sge_port_stats *)(__per_cpu_offset[cpu] + __ptr); ss->rx_cso_good = ss->rx_cso_good + st->rx_cso_good; ss->tx_cso = ss->tx_cso + st->tx_cso; ss->tx_tso = ss->tx_tso + st->tx_tso; ss->tx_need_hdrroom = ss->tx_need_hdrroom + st->tx_need_hdrroom; ss->vlan_xtract = ss->vlan_xtract + st->vlan_xtract; ss->vlan_insert = ss->vlan_insert + st->vlan_insert; ldv_51969: tmp = cpumask_next(cpu, cpu_possible_mask); cpu = (int )tmp; if (cpu < nr_cpu_ids) { goto ldv_51968; } else { } return; } } static void recycle_fl_buf(struct freelQ *fl , int idx ) { struct freelQ_e *from ; struct freelQ_e *to ; { from = fl->entries + (unsigned long )idx; to = fl->entries + (unsigned long )fl->pidx; *(fl->centries + (unsigned long )fl->pidx) = *(fl->centries + (unsigned long )idx); to->addr_lo = from->addr_lo; to->addr_hi = from->addr_hi; to->len_gen = (from->len_gen & 2147483647U) | (u32 )((int )fl->genbit << 31); __asm__ volatile ("sfence": : : "memory"); to->gen2 = (u32 )fl->genbit; fl->credits = fl->credits + 1U; fl->pidx = (u16 )((int )fl->pidx + 1); if ((unsigned int )fl->pidx == fl->size) { fl->pidx = 0U; fl->genbit = (u8 )((unsigned int )fl->genbit ^ 1U); } else { } return; } } static int copybreak = 256; __inline static struct sk_buff *get_packet(struct adapter *adapter , struct freelQ *fl , unsigned int len ) { struct freelQ_ce const *ce ; struct pci_dev *pdev ; struct sk_buff *skb ; { ce = (struct freelQ_ce const *)fl->centries + (unsigned long )fl->cidx; pdev = adapter->pdev; if ((unsigned int )copybreak > len) { skb = napi_alloc_skb(& adapter->napi, len); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto use_orig_buf; } else { } skb_put(skb, len); pci_dma_sync_single_for_cpu(pdev, ce->dma_addr, (size_t )ce->dma_len, 2); skb_copy_from_linear_data((struct sk_buff const *)ce->skb, (void *)skb->data, len); pci_dma_sync_single_for_device(pdev, ce->dma_addr, (size_t )ce->dma_len, 2); recycle_fl_buf(fl, (int )fl->cidx); return (skb); } else { } use_orig_buf: ; if (fl->credits <= 1U) { recycle_fl_buf(fl, (int )fl->cidx); return ((struct sk_buff *)0); } else { } pci_unmap_single(pdev, ce->dma_addr, (size_t )ce->dma_len, 2); skb = ce->skb; __builtin_prefetch((void const *)skb->data); skb_put(skb, len); return (skb); } } static void unexpected_offload(struct adapter *adapter , struct freelQ *fl ) { struct freelQ_ce *ce ; struct sk_buff *skb ; { ce = fl->centries + (unsigned long )fl->cidx; skb = ce->skb; pci_dma_sync_single_for_cpu(adapter->pdev, ce->dma_addr, (size_t )ce->dma_len, 2); printk("\vcxgb: %s: unexpected offload packet, cmd %u\n", adapter->name, (int )*(skb->data)); recycle_fl_buf(fl, (int )fl->cidx); return; } } __inline static unsigned int compute_large_page_tx_descs(struct sk_buff *skb ) { unsigned int count ; unsigned int nfrags ; unsigned char *tmp ; unsigned int i ; unsigned int len ; unsigned int tmp___0 ; skb_frag_t const *frag ; unsigned char *tmp___1 ; unsigned int tmp___2 ; { count = 0U; if (0) { tmp = skb_end_pointer((struct sk_buff const *)skb); nfrags = (unsigned int )((struct skb_shared_info *)tmp)->nr_frags; tmp___0 = skb_headlen((struct sk_buff const *)skb); len = tmp___0; goto ldv_52020; ldv_52019: count = count + 1U; len = len - 16384U; ldv_52020: ; if (len > 16384U) { goto ldv_52019; } else { } i = 0U; goto ldv_52027; ldv_52026: tmp___1 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp___1)->frags) + (unsigned long )i; len = skb_frag_size(frag); goto ldv_52024; ldv_52023: count = count + 1U; len = len - 16384U; ldv_52024: ; if (len > 16384U) { goto ldv_52023; } else { } i = i + 1U; ldv_52027: tmp___2 = nfrags; nfrags = nfrags - 1U; if (tmp___2 != 0U) { goto ldv_52026; } else { } } else { } return (count); } } __inline static void write_tx_desc(struct cmdQ_e *e , dma_addr_t mapping , unsigned int len , unsigned int gen , unsigned int eop ) { long tmp ; { tmp = ldv__builtin_expect(len > 16384U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"), "i" (1145), "i" (12UL)); ldv_52036: ; goto ldv_52036; } else { } e->addr_lo = (unsigned int )mapping; e->addr_hi = (u32 )(mapping >> 32); e->len_gen = (gen << 31) | len; e->flags = ((eop << 3) | gen) | 2U; return; } } __inline static unsigned int write_large_page_tx_descs(unsigned int pidx , struct cmdQ_e **e , struct cmdQ_ce **ce , unsigned int *gen , dma_addr_t *desc_mapping , unsigned int *desc_len , unsigned int nfrags , struct cmdQ *q ) { struct cmdQ_e *e1 ; struct cmdQ_ce *ce1 ; { if (0) { e1 = *e; ce1 = *ce; goto ldv_52050; ldv_52049: *desc_len = *desc_len - 16384U; write_tx_desc(e1, *desc_mapping, 16384U, *gen, (unsigned int )(nfrags == 0U && *desc_len == 0U)); ce1->skb = (struct sk_buff *)0; ce1->dma_len = 0U; *desc_mapping = *desc_mapping + 16384ULL; if (*desc_len != 0U) { ce1 = ce1 + 1; e1 = e1 + 1; pidx = pidx + 1U; if (pidx == q->size) { pidx = 0U; *gen = *gen ^ 1U; ce1 = q->centries; e1 = q->entries; } else { } } else { } ldv_52050: ; if (*desc_len > 16384U) { goto ldv_52049; } else { } *e = e1; *ce = ce1; } else { } return (pidx); } } __inline static void write_tx_descs(struct adapter *adapter , struct sk_buff *skb , unsigned int pidx , unsigned int gen , struct cmdQ *q ) { dma_addr_t mapping ; dma_addr_t desc_mapping ; struct cmdQ_e *e ; struct cmdQ_e *e1 ; struct cmdQ_ce *ce ; unsigned int i ; unsigned int flags ; unsigned int first_desc_len ; unsigned int desc_len ; unsigned int nfrags ; unsigned char *tmp ; unsigned int tmp___0 ; skb_frag_t *frag ; unsigned char *tmp___2 ; unsigned int tmp___3 ; long tmp___4 ; unsigned int tmp___5 ; { tmp = skb_end_pointer((struct sk_buff const *)skb); nfrags = (unsigned int )((struct skb_shared_info *)tmp)->nr_frags; e1 = q->entries + (unsigned long )pidx; e = e1; ce = q->centries + (unsigned long )pidx; tmp___0 = skb_headlen((struct sk_buff const *)skb); mapping = pci_map_single(adapter->pdev, (void *)skb->data, (size_t )tmp___0, 1); desc_mapping = mapping; desc_len = skb_headlen((struct sk_buff const *)skb); flags = ((unsigned int )((nfrags == 0U && desc_len <= 16384U) << 3) | gen) | 6U; first_desc_len = 16384U < desc_len ? 16384U : desc_len; e->addr_lo = (unsigned int )desc_mapping; e->addr_hi = (u32 )(desc_mapping >> 32); e->len_gen = (gen << 31) | first_desc_len; ce->skb = (struct sk_buff *)0; ce->dma_len = 0U; ce->skb = (struct sk_buff *)0; ce->dma_addr = mapping; ce->dma_len = skb_headlen((struct sk_buff const *)skb); i = 0U; goto ldv_52071; ldv_52070: tmp___2 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___2)->frags) + (unsigned long )i; e1 = e1 + 1; ce = ce + 1; pidx = pidx + 1U; if (pidx == q->size) { pidx = 0U; gen = gen ^ 1U; e1 = q->entries; ce = q->centries; } else { } tmp___3 = skb_frag_size((skb_frag_t const *)frag); mapping = skb_frag_dma_map(& (adapter->pdev)->dev, (skb_frag_t const *)frag, 0UL, (size_t )tmp___3, 1); desc_mapping = mapping; desc_len = skb_frag_size((skb_frag_t const *)frag); pidx = write_large_page_tx_descs(pidx, & e1, & ce, & gen, & desc_mapping, & desc_len, nfrags, q); tmp___4 = ldv__builtin_expect(desc_len != 0U, 1L); if (tmp___4 != 0L) { write_tx_desc(e1, desc_mapping, desc_len, gen, nfrags == 0U); } else { } ce->skb = (struct sk_buff *)0; ce->dma_addr = mapping; ce->dma_len = skb_frag_size((skb_frag_t const *)frag); i = i + 1U; ldv_52071: tmp___5 = nfrags; nfrags = nfrags - 1U; if (tmp___5 != 0U) { goto ldv_52070; } else { } ce->skb = skb; __asm__ volatile ("sfence": : : "memory"); e->flags = flags; return; } } __inline static void reclaim_completed_tx(struct sge *sge , struct cmdQ *q ) { unsigned int reclaim ; struct _ddebug descriptor ; long tmp ; { reclaim = q->processed - q->cleaned; if (reclaim != 0U) { descriptor.modname = "cxgb"; descriptor.function = "reclaim_completed_tx"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"; descriptor.format = "reclaim_completed_tx processed:%d cleaned:%d\n"; descriptor.lineno = 1295U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "cxgb: reclaim_completed_tx processed:%d cleaned:%d\n", q->processed, q->cleaned); } else { } free_cmdQ_buffers(sge, q, reclaim); q->cleaned = q->cleaned + reclaim; } else { } return; } } static void restart_sched(unsigned long arg ) { struct sge *sge ; struct adapter *adapter ; struct cmdQ *q ; struct sk_buff *skb ; unsigned int credits ; unsigned int queued_skb ; struct _ddebug descriptor ; long tmp ; unsigned int genbit ; unsigned int pidx ; unsigned int count ; unsigned char *tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; { sge = (struct sge *)arg; adapter = sge->adapter; q = (struct cmdQ *)(& sge->cmdQ); queued_skb = 0U; spin_lock(& q->lock); reclaim_completed_tx(sge, q); credits = q->size - q->in_use; descriptor.modname = "cxgb"; descriptor.function = "restart_sched"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"; descriptor.format = "restart_sched credits=%d\n"; descriptor.lineno = 1317U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "cxgb: restart_sched credits=%d\n", credits); } else { } goto ldv_52095; ldv_52094: tmp___0 = skb_end_pointer((struct sk_buff const *)skb); count = (unsigned int )((int )((struct skb_shared_info *)tmp___0)->nr_frags + 1); tmp___1 = compute_large_page_tx_descs(skb); count = tmp___1 + count; q->in_use = q->in_use + count; genbit = (unsigned int )q->genbit; pidx = (unsigned int )q->pidx; q->pidx = (int )q->pidx + (int )((u16 )count); if ((unsigned int )q->pidx >= q->size) { q->pidx = (int )q->pidx - (int )((u16 )q->size); q->genbit = (u8 )((unsigned int )q->genbit ^ 1U); } else { } write_tx_descs(adapter, skb, pidx, genbit, q); credits = q->size - q->in_use; queued_skb = 1U; ldv_52095: skb = sched_skb(sge, (struct sk_buff *)0, credits); if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_52094; } else { } if (queued_skb != 0U) { clear_bit(2L, (unsigned long volatile *)(& q->status)); tmp___2 = test_and_set_bit(1L, (unsigned long volatile *)(& q->status)); if (tmp___2 == 0) { set_bit(2L, (unsigned long volatile *)(& q->status)); writel(1U, (void volatile *)adapter->regs + 4U); } else { } } else { } spin_unlock(& q->lock); return; } } static void sge_rx(struct sge *sge , struct freelQ *fl , unsigned int len ) { struct sk_buff *skb ; struct cpl_rx_pkt const *p ; struct adapter *adapter ; struct sge_port_stats *st ; struct net_device *dev ; long tmp ; void const *__vpp_verify ; unsigned long tcp_ptr__ ; __u16 tmp___0 ; { adapter = sge->adapter; skb = get_packet(adapter, fl, len - sge->rx_pkt_pad); tmp = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); if (tmp != 0L) { sge->stats.rx_drops = sge->stats.rx_drops + 1U; return; } else { } p = (struct cpl_rx_pkt const *)skb->data; if ((unsigned int )p->iff >= adapter->params.nports) { kfree_skb(skb); return; } else { } __skb_pull(skb, 8U); __vpp_verify = (void const *)0; __asm__ volatile ("add %%gs:%1, %0": "=r" (tcp_ptr__): "m" (this_cpu_off), "0" (sge->port_stats[(int )p->iff])); st = (struct sge_port_stats *)tcp_ptr__; dev = adapter->port[(int )p->iff].dev; skb->protocol = eth_type_trans(skb, dev); if ((((dev->features & 17179869184ULL) != 0ULL && (unsigned int )((unsigned short )p->csum) == 65535U) && (unsigned int )skb->protocol == 8U) && ((unsigned int )*(skb->data + 9UL) == 6U || (unsigned int )*(skb->data + 9UL) == 17U)) { st->rx_cso_good = st->rx_cso_good + 1ULL; skb->ip_summed = 1U; } else { skb_checksum_none_assert((struct sk_buff const *)skb); } if ((unsigned int )*((unsigned char *)p + 1UL) != 0U) { st->vlan_xtract = st->vlan_xtract + 1ULL; tmp___0 = __fswab16((int )p->vlan); __vlan_hwaccel_put_tag(skb, 129, (int )tmp___0); } else { } netif_receive_skb(skb); return; } } __inline static int enough_free_Tx_descs(struct cmdQ const *q ) { unsigned int r ; { r = (unsigned int )q->processed - (unsigned int )q->cleaned; return ((unsigned int )q->in_use - r < (unsigned int )(q->size >> 1)); } } static void restart_tx_queues(struct sge *sge ) { struct adapter *adap ; int i ; int tmp ; struct net_device *nd ; int tmp___0 ; bool tmp___1 ; { adap = sge->adapter; tmp = enough_free_Tx_descs((struct cmdQ const *)(& sge->cmdQ)); if (tmp == 0) { return; } else { } i = 0; goto ldv_52122; ldv_52121: nd = adap->port[i].dev; tmp___0 = test_and_clear_bit((long )nd->if_port, (unsigned long volatile *)(& sge->stopped_tx_queues)); if (tmp___0 != 0) { tmp___1 = netif_running((struct net_device const *)nd); if ((int )tmp___1) { sge->stats.cmdQ_restarted[2] = sge->stats.cmdQ_restarted[2] + 1U; netif_wake_queue(nd); } else { } } else { } i = i + 1; ldv_52122: ; if ((unsigned int )i < adap->params.nports) { goto ldv_52121; } else { } return; } } static unsigned int update_tx_info(struct adapter *adapter , unsigned int flags , unsigned int pr0 ) { struct sge *sge ; struct cmdQ *cmdq ; int tmp ; long tmp___0 ; { sge = adapter->sge; cmdq = (struct cmdQ *)(& sge->cmdQ); cmdq->processed = cmdq->processed + pr0; if ((flags & 12U) != 0U) { freelQs_empty(sge); flags = flags & 4294967283U; } else { } if ((int )flags & 1) { clear_bit(1L, (unsigned long volatile *)(& cmdq->status)); if (cmdq->cleaned + cmdq->in_use != cmdq->processed) { tmp = test_and_set_bit(2L, (unsigned long volatile *)(& cmdq->status)); if (tmp == 0) { set_bit(1L, (unsigned long volatile *)(& cmdq->status)); writel(1U, (void volatile *)adapter->regs + 4U); } else { } } else { } if ((unsigned long )sge->tx_sched != (unsigned long )((struct sched *)0)) { tasklet_hi_schedule(& (sge->tx_sched)->sched_tsk); } else { } flags = flags & 4294967294U; } else { } tmp___0 = ldv__builtin_expect(sge->stopped_tx_queues != 0UL, 0L); if (tmp___0 != 0L) { restart_tx_queues(sge); } else { } return (flags); } } static int process_responses(struct adapter *adapter , int budget ) { struct sge *sge ; struct respQ *q ; struct respQ_e *e ; int done ; unsigned int flags ; unsigned int cmdq_processed[2U] ; long tmp ; long tmp___0 ; struct freelQ *fl ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; { sge = adapter->sge; q = & sge->respQ; e = q->entries + (unsigned long )q->cidx; done = 0; flags = 0U; cmdq_processed[0] = 0U; cmdq_processed[1] = 0U; goto ldv_52144; ldv_52143: flags = (unsigned int )e->Qsleeping | flags; cmdq_processed[0] = cmdq_processed[0] + (unsigned int )e->Cmdq0CreditReturn; cmdq_processed[1] = cmdq_processed[1] + (unsigned int )e->Cmdq1CreditReturn; tmp = ldv__builtin_expect((long )((int )flags & 1 || cmdq_processed[0] > 64U), 0L); if (tmp != 0L) { flags = update_tx_info(adapter, flags, cmdq_processed[0]); cmdq_processed[0] = 0U; } else { } tmp___0 = ldv__builtin_expect(cmdq_processed[1] > 16U, 0L); if (tmp___0 != 0L) { sge->cmdQ[1].processed = sge->cmdQ[1].processed + cmdq_processed[1]; cmdq_processed[1] = 0U; } else { } tmp___4 = ldv__builtin_expect((unsigned int )*((unsigned char *)e + 4UL) != 0U, 1L); if (tmp___4 != 0L) { fl = (struct freelQ *)(& sge->freelQ) + (unsigned long )e->FreelistQid; tmp___1 = ldv__builtin_expect((long )((unsigned int )*((unsigned char *)e + 4UL) == 0U || (unsigned int )*((unsigned char *)e + 4UL) == 0U), 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"), "i" (1499), "i" (12UL)); ldv_52142: ; goto ldv_52142; } else { } tmp___2 = ldv__builtin_expect((unsigned int )*((unsigned char *)e + 4UL) != 0U, 0L); if (tmp___2 != 0L) { unexpected_offload(adapter, fl); } else { sge_rx(sge, fl, e->BufferLength); } done = done + 1; fl->cidx = (u16 )((int )fl->cidx + 1); if ((unsigned int )fl->cidx == fl->size) { fl->cidx = 0U; } else { } __builtin_prefetch((void const *)(fl->centries + (unsigned long )fl->cidx)->skb); fl->credits = fl->credits - 1U; tmp___3 = ldv__builtin_expect(fl->credits < fl->size - 16U, 0L); if (tmp___3 != 0L) { refill_free_list(sge, fl); } else { } } else { sge->stats.pure_rsps = sge->stats.pure_rsps + 1U; } e = e + 1; q->cidx = (u16 )((int )q->cidx + 1); tmp___5 = ldv__builtin_expect((unsigned int )q->cidx == q->size, 0L); if (tmp___5 != 0L) { q->cidx = 0U; q->genbit = (u8 )((unsigned int )q->genbit ^ 1U); e = q->entries; } else { } __builtin_prefetch((void const *)e); q->credits = q->credits + 1U; if (q->credits > 256U) { writel(q->credits, (void volatile *)adapter->regs + 64U); q->credits = 0U; } else { } ldv_52144: ; if (done < budget && (int )e->GenerationBit == (int )q->genbit) { goto ldv_52143; } else { } flags = update_tx_info(adapter, flags, cmdq_processed[0]); sge->cmdQ[1].processed = sge->cmdQ[1].processed + cmdq_processed[1]; return (done); } } __inline static int responses_pending(struct adapter const *adapter ) { struct respQ const *Q ; struct respQ_e const *e ; { Q = (struct respQ const *)(& (adapter->sge)->respQ); e = (struct respQ_e const *)Q->entries + (unsigned long )Q->cidx; return ((int )e->GenerationBit == (int )Q->genbit); } } static int process_pure_responses(struct adapter *adapter ) { struct sge *sge ; struct respQ *q ; struct respQ_e *e ; struct freelQ const *fl ; unsigned int flags ; unsigned int cmdq_processed[2U] ; long tmp ; { sge = adapter->sge; q = & sge->respQ; e = q->entries + (unsigned long )q->cidx; fl = (struct freelQ const *)(& sge->freelQ) + (unsigned long )e->FreelistQid; flags = 0U; cmdq_processed[0] = 0U; cmdq_processed[1] = 0U; __builtin_prefetch((void const *)(fl->centries + (unsigned long )fl->cidx)->skb); if ((unsigned int )*((unsigned char *)e + 4UL) != 0U) { return (1); } else { } ldv_52160: flags = (unsigned int )e->Qsleeping | flags; cmdq_processed[0] = cmdq_processed[0] + (unsigned int )e->Cmdq0CreditReturn; cmdq_processed[1] = cmdq_processed[1] + (unsigned int )e->Cmdq1CreditReturn; e = e + 1; q->cidx = (u16 )((int )q->cidx + 1); tmp = ldv__builtin_expect((unsigned int )q->cidx == q->size, 0L); if (tmp != 0L) { q->cidx = 0U; q->genbit = (u8 )((unsigned int )q->genbit ^ 1U); e = q->entries; } else { } __builtin_prefetch((void const *)e); q->credits = q->credits + 1U; if (q->credits > 256U) { writel(q->credits, (void volatile *)adapter->regs + 64U); q->credits = 0U; } else { } sge->stats.pure_rsps = sge->stats.pure_rsps + 1U; if ((int )e->GenerationBit == (int )q->genbit && (unsigned int )*((unsigned char *)e + 4UL) == 0U) { goto ldv_52160; } else { } flags = update_tx_info(adapter, flags, cmdq_processed[0]); sge->cmdQ[1].processed = sge->cmdQ[1].processed + cmdq_processed[1]; return ((int )e->GenerationBit == (int )q->genbit); } } int t1_poll(struct napi_struct *napi , int budget ) { struct adapter *adapter ; struct napi_struct const *__mptr ; int work_done ; int tmp ; long tmp___0 ; { __mptr = (struct napi_struct const *)napi; adapter = (struct adapter *)__mptr + 0xfffffffffffffed0UL; tmp = process_responses(adapter, budget); work_done = tmp; tmp___0 = ldv__builtin_expect(work_done < budget, 1L); if (tmp___0 != 0L) { napi_complete(napi); writel((unsigned int )(adapter->sge)->respQ.cidx, (void volatile *)adapter->regs + 72U); } else { } return (work_done); } } irqreturn_t t1_interrupt(int irq , void *data ) { struct adapter *adapter ; struct sge *sge ; int handled ; int tmp ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; { adapter = (struct adapter *)data; sge = adapter->sge; tmp___1 = responses_pending((struct adapter const *)adapter); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 1L); if (tmp___2 != 0L) { writel(2U, (void volatile *)adapter->regs + 2564U); tmp___0 = napi_schedule_prep(& adapter->napi); if ((int )tmp___0) { tmp = process_pure_responses(adapter); if (tmp != 0) { __napi_schedule(& adapter->napi); } else { writel((unsigned int )sge->respQ.cidx, (void volatile *)adapter->regs + 72U); napi_enable___0(& adapter->napi); } } else { } return (1); } else { } spin_lock(& adapter->async_lock); handled = t1_slow_intr_handler(adapter); spin_unlock(& adapter->async_lock); if (handled == 0) { sge->stats.unhandled_irqs = sge->stats.unhandled_irqs + 1U; } else { } return (handled != 0); } } static int t1_sge_tx(struct sk_buff *skb , struct adapter *adapter , unsigned int qid , struct net_device *dev ) { struct sge *sge ; struct cmdQ *q ; unsigned int credits ; unsigned int pidx ; unsigned int genbit ; unsigned int count ; unsigned int use_sched_skb ; int tmp ; unsigned char *tmp___0 ; unsigned int tmp___1 ; bool tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; unsigned char *tmp___6 ; unsigned int tmp___7 ; int tmp___8 ; int tmp___9 ; { sge = adapter->sge; q = (struct cmdQ *)(& sge->cmdQ) + (unsigned long )qid; use_sched_skb = 0U; tmp = spin_trylock(& q->lock); if (tmp == 0) { return (32); } else { } reclaim_completed_tx(sge, q); pidx = (unsigned int )q->pidx; credits = q->size - q->in_use; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); count = (unsigned int )((int )((struct skb_shared_info *)tmp___0)->nr_frags + 1); tmp___1 = compute_large_page_tx_descs(skb); count = tmp___1 + count; tmp___4 = ldv__builtin_expect(credits < count, 0L); if (tmp___4 != 0L) { tmp___2 = netif_queue_stopped((struct net_device const *)dev); if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { netif_stop_queue(dev); set_bit((long )dev->if_port, (unsigned long volatile *)(& sge->stopped_tx_queues)); sge->stats.cmdQ_full[2] = sge->stats.cmdQ_full[2] + 1U; printk("\vcxgb: %s: Tx ring full while queue awake!\n", adapter->name); } else { } spin_unlock(& q->lock); return (16); } else { } tmp___5 = ldv__builtin_expect(credits - count < q->stop_thres, 0L); if (tmp___5 != 0L) { netif_stop_queue(dev); set_bit((long )dev->if_port, (unsigned long volatile *)(& sge->stopped_tx_queues)); sge->stats.cmdQ_full[2] = sge->stats.cmdQ_full[2] + 1U; } else { } if (((unsigned long )sge->tx_sched != (unsigned long )((struct sched *)0) && qid == 0U) && (unsigned long )skb->dev != (unsigned long )((struct net_device *)0)) { use_sched: use_sched_skb = 1U; skb = sched_skb(sge, skb, credits); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { spin_unlock(& q->lock); return (0); } else { } pidx = (unsigned int )q->pidx; tmp___6 = skb_end_pointer((struct sk_buff const *)skb); count = (unsigned int )((int )((struct skb_shared_info *)tmp___6)->nr_frags + 1); tmp___7 = compute_large_page_tx_descs(skb); count = tmp___7 + count; } else { } q->in_use = q->in_use + count; genbit = (unsigned int )q->genbit; pidx = (unsigned int )q->pidx; q->pidx = (int )q->pidx + (int )((u16 )count); if ((unsigned int )q->pidx >= q->size) { q->pidx = (int )q->pidx - (int )((u16 )q->size); q->genbit = (u8 )((unsigned int )q->genbit ^ 1U); } else { } spin_unlock(& q->lock); write_tx_descs(adapter, skb, pidx, genbit, q); if (qid != 0U) { doorbell_pio(adapter, 2U); } else { clear_bit(2L, (unsigned long volatile *)(& q->status)); tmp___8 = test_and_set_bit(1L, (unsigned long volatile *)(& q->status)); if (tmp___8 == 0) { set_bit(2L, (unsigned long volatile *)(& q->status)); writel(1U, (void volatile *)adapter->regs + 4U); } else { } } if (use_sched_skb != 0U) { tmp___9 = spin_trylock(& q->lock); if (tmp___9 != 0) { credits = q->size - q->in_use; skb = (struct sk_buff *)0; goto use_sched; } else { } } else { } return (0); } } __inline static int eth_hdr_len(void const *data ) { struct ethhdr const *e ; { e = (struct ethhdr const *)data; return ((unsigned int )((unsigned short )e->h_proto) == 129U ? 18 : 14); } } netdev_tx_t t1_start_xmit(struct sk_buff *skb , struct net_device *dev ) { struct adapter *adapter ; struct sge *sge ; struct sge_port_stats *st ; void const *__vpp_verify ; unsigned long tcp_ptr__ ; struct cpl_tx_pkt *cpl ; struct sk_buff *orig_skb ; int ret ; unsigned int tmp ; long tmp___0 ; int eth_type ; struct cpl_tx_pkt_lso *hdr ; int tmp___1 ; unsigned char *tmp___2 ; unsigned char tmp___3 ; struct iphdr *tmp___4 ; struct tcphdr *tmp___5 ; unsigned char *tmp___6 ; __u16 tmp___7 ; __u32 tmp___8 ; struct _ddebug descriptor ; int tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; struct _ddebug descriptor___0 ; long tmp___14 ; int tmp___15 ; long tmp___16 ; struct iphdr *tmp___17 ; struct arphdr *tmp___18 ; long tmp___19 ; unsigned char *tmp___20 ; unsigned char *tmp___21 ; __u16 tmp___22 ; long tmp___23 ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; sge = adapter->sge; __vpp_verify = (void const *)0; __asm__ volatile ("add %%gs:%1, %0": "=r" (tcp_ptr__): "m" (this_cpu_off), "0" (sge->port_stats[(int )dev->if_port])); st = (struct sge_port_stats *)tcp_ptr__; orig_skb = skb; if ((unsigned int )skb->protocol == 3840U) { goto send; } else { } tmp = skb_headroom((struct sk_buff const *)skb); tmp___0 = ldv__builtin_expect(tmp < (unsigned int )((int )dev->hard_header_len + -14), 0L); if (tmp___0 != 0L) { skb = skb_realloc_headroom(skb, 16U); st->tx_need_hdrroom = st->tx_need_hdrroom + 1ULL; dev_kfree_skb_any(orig_skb); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (0); } else { } } else { } tmp___21 = skb_end_pointer((struct sk_buff const *)skb); if ((unsigned int )((struct skb_shared_info *)tmp___21)->gso_size != 0U) { st->tx_tso = st->tx_tso + 1ULL; tmp___1 = skb_network_offset((struct sk_buff const *)skb); eth_type = tmp___1 != 14; tmp___2 = skb_push(skb, 16U); hdr = (struct cpl_tx_pkt_lso *)tmp___2; hdr->opcode = 182U; tmp___3 = 0U; hdr->l4_csum_dis = tmp___3; hdr->ip_csum_dis = tmp___3; tmp___4 = ip_hdr((struct sk_buff const *)skb); hdr->ip_hdr_words = tmp___4->ihl; tmp___5 = tcp_hdr((struct sk_buff const *)skb); hdr->tcp_hdr_words = tmp___5->doff; tmp___6 = skb_end_pointer((struct sk_buff const *)skb); tmp___7 = __fswab16((int )((__u16 )(((int )((short )((struct skb_shared_info *)tmp___6)->gso_size) & 16383) | (int )((short )(eth_type << 14))))); hdr->eth_type_mss = tmp___7; tmp___8 = __fswab32(skb->len - 16U); hdr->len = tmp___8; cpl = (struct cpl_tx_pkt *)hdr; } else { if (skb->len <= 13U) { tmp___12 = 1; } else { tmp___11 = eth_hdr_len((void const *)skb->data); if (skb->len > dev->mtu + (unsigned int )tmp___11) { tmp___12 = 1; } else { tmp___12 = 0; } } tmp___13 = ldv__builtin_expect((long )tmp___12, 0L); if (tmp___13 != 0L) { descriptor.modname = "cxgb"; descriptor.function = "t1_start_xmit"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"; descriptor.format = "packet size %d hdr %d mtu%d\n"; descriptor.lineno = 1824U; descriptor.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___10 != 0L) { tmp___9 = eth_hdr_len((void const *)skb->data); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)dev, "packet size %d hdr %d mtu%d\n", skb->len, tmp___9, dev->mtu); } else { } dev_kfree_skb_any(skb); return (0); } else { } if ((unsigned int )*((unsigned char *)skb + 145UL) == 6U) { tmp___17 = ip_hdr((struct sk_buff const *)skb); if ((unsigned int )tmp___17->protocol == 17U) { tmp___15 = skb_checksum_help(skb); tmp___16 = ldv__builtin_expect(tmp___15 != 0, 0L); if (tmp___16 != 0L) { descriptor___0.modname = "cxgb"; descriptor___0.function = "t1_start_xmit"; descriptor___0.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/sge.c"; descriptor___0.format = "unable to do udp checksum\n"; descriptor___0.lineno = 1832U; descriptor___0.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___14 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)dev, "unable to do udp checksum\n"); } else { } dev_kfree_skb_any(skb); return (0); } else { } } else { } } else { } tmp___19 = ldv__builtin_expect((unsigned long )(adapter->sge)->espibug_skb[(int )dev->if_port] == (unsigned long )((struct sk_buff *)0), 0L); if (tmp___19 != 0L) { if ((unsigned int )skb->protocol == 1544U) { tmp___18 = arp_hdr((struct sk_buff const *)skb); if ((unsigned int )tmp___18->ar_op == 256U) { (adapter->sge)->espibug_skb[(int )dev->if_port] = skb; skb = skb_get(skb); } else { } } else { } } else { } tmp___20 = __skb_push(skb, 8U); cpl = (struct cpl_tx_pkt *)tmp___20; cpl->opcode = 178U; cpl->ip_csum_dis = 1U; cpl->l4_csum_dis = (unsigned int )*((unsigned char *)skb + 145UL) != 6U; st->tx_cso = st->tx_cso + (u64 )((unsigned int )*((unsigned char *)skb + 145UL) == 6U); } cpl->iff = dev->if_port; if (((int )skb->vlan_tci & 4096) != 0) { cpl->vlan_valid = 1U; tmp___22 = __fswab16((int )skb->vlan_tci & 61439); cpl->vlan = tmp___22; st->vlan_insert = st->vlan_insert + 1ULL; } else { cpl->vlan_valid = 0U; } send: ret = t1_sge_tx(skb, adapter, 0U, dev); tmp___23 = ldv__builtin_expect((long )(ret != 0 && (unsigned long )skb != (unsigned long )orig_skb), 0L); if (tmp___23 != 0L) { dev_kfree_skb_any(skb); ret = 0; } else { } return ((netdev_tx_t )ret); } } static void sge_tx_reclaim_cb(unsigned long data ) { int i ; struct sge *sge ; struct cmdQ *q ; int tmp ; { sge = (struct sge *)data; i = 0; goto ldv_52223; ldv_52222: q = (struct cmdQ *)(& sge->cmdQ) + (unsigned long )i; tmp = spin_trylock(& q->lock); if (tmp == 0) { goto ldv_52221; } else { } reclaim_completed_tx(sge, q); if (i == 0 && q->in_use != 0U) { writel(1U, (void volatile *)(sge->adapter)->regs + 4U); } else { } spin_unlock(& q->lock); ldv_52221: i = i + 1; ldv_52223: ; if (i <= 1) { goto ldv_52222; } else { } ldv_mod_timer_245(& sge->tx_reclaim_timer, (unsigned long )jiffies + 62UL); return; } } int t1_sge_set_coalesce_params(struct sge *sge , struct sge_params *p ) { unsigned int tmp ; { tmp = core_ticks_per_usec((adapter_t const *)sge->adapter); sge->fixed_intrtimer = p->rx_coalesce_usecs * tmp; writel(sge->fixed_intrtimer, (void volatile *)(sge->adapter)->regs + 76U); return (0); } } int t1_sge_configure(struct sge *sge , struct sge_params *p ) { int tmp ; int tmp___0 ; { tmp = alloc_rx_resources(sge, p); if (tmp != 0) { return (-12); } else { } tmp___0 = alloc_tx_resources(sge, p); if (tmp___0 != 0) { free_rx_resources(sge); return (-12); } else { } configure_sge(sge, p); p->large_buf_capacity = jumbo_payload_capacity((struct sge const *)sge); return (0); } } void t1_sge_stop(struct sge *sge ) { int i ; int tmp ; { writel(0U, (void volatile *)(sge->adapter)->regs); readl((void const volatile *)(sge->adapter)->regs); tmp = adapter_matches_type((adapter_t const *)sge->adapter, 2, 3); if (tmp != 0) { ldv_del_timer_sync_246(& sge->espibug_timer); } else { } ldv_del_timer_sync_247(& sge->tx_reclaim_timer); if ((unsigned long )sge->tx_sched != (unsigned long )((struct sched *)0)) { tx_sched_stop(sge); } else { } i = 0; goto ldv_52238; ldv_52237: kfree_skb(sge->espibug_skb[i]); i = i + 1; ldv_52238: ; if (i <= 3) { goto ldv_52237; } else { } return; } } void t1_sge_start(struct sge *sge ) { int tmp ; { refill_free_list(sge, (struct freelQ *)(& sge->freelQ)); refill_free_list(sge, (struct freelQ *)(& sge->freelQ) + 1UL); writel(sge->sge_control, (void volatile *)(sge->adapter)->regs); doorbell_pio(sge->adapter, 12U); readl((void const volatile *)(sge->adapter)->regs); ldv_mod_timer_248(& sge->tx_reclaim_timer, (unsigned long )jiffies + 62UL); tmp = adapter_matches_type((adapter_t const *)sge->adapter, 2, 3); if (tmp != 0) { ldv_mod_timer_249(& sge->espibug_timer, sge->espibug_timeout + (unsigned long )jiffies); } else { } return; } } static void espibug_workaround_t204(unsigned long data ) { struct adapter *adapter ; struct sge *sge ; unsigned int nports ; u32 seop[4U] ; int i ; int tmp ; struct sk_buff *skb ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; { adapter = (struct adapter *)data; sge = adapter->sge; nports = adapter->params.nports; if ((adapter->open_device_map & 15UL) != 0UL) { tmp = t1_espi_get_mon_t204(adapter, (u32 *)(& seop), 0); if (tmp < 0) { return; } else { } i = 0; goto ldv_52254; ldv_52253: skb = sge->espibug_skb[i]; tmp___0 = netif_running((struct net_device const *)adapter->port[i].dev); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { goto ldv_52252; } else { tmp___2 = netif_queue_stopped((struct net_device const *)adapter->port[i].dev); if ((int )tmp___2) { goto ldv_52252; } else if (seop[i] == 0U) { goto ldv_52252; } else if ((seop[i] & 4095U) != 0U) { goto ldv_52252; } else if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_52252; } else { } } if ((int )((signed char )skb->cb[0]) == 0) { skb_copy_to_linear_data_offset(skb, 8, (void const *)(& ch_mac_addr), 6U); skb_copy_to_linear_data_offset(skb, (int const )(skb->len - 10U), (void const *)(& ch_mac_addr), 6U); skb->cb[0] = -1; } else { } skb = skb_get(skb); t1_sge_tx(skb, adapter, 0U, adapter->port[i].dev); ldv_52252: i = i + 1; ldv_52254: ; if ((unsigned int )i < nports) { goto ldv_52253; } else { } } else { } ldv_mod_timer_250(& sge->espibug_timer, sge->espibug_timeout + (unsigned long )jiffies); return; } } static void espibug_workaround(unsigned long data ) { struct adapter *adapter ; struct sge *sge ; struct sk_buff *skb ; u32 seop ; u32 tmp ; bool tmp___0 ; { adapter = (struct adapter *)data; sge = adapter->sge; tmp___0 = netif_running((struct net_device const *)adapter->port[0].dev); if ((int )tmp___0) { skb = sge->espibug_skb[0]; tmp = t1_espi_get_mon(adapter, 2352U, 0); seop = tmp; if ((seop & 268374015U) == 4095U && (unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { if ((int )((signed char )skb->cb[0]) == 0) { skb_copy_to_linear_data_offset(skb, 8, (void const *)(& ch_mac_addr), 6U); skb_copy_to_linear_data_offset(skb, (int const )(skb->len - 10U), (void const *)(& ch_mac_addr), 6U); skb->cb[0] = -1; } else { } skb = skb_get(skb); t1_sge_tx(skb, adapter, 0U, adapter->port[0].dev); } else { } } else { } ldv_mod_timer_251(& sge->espibug_timer, sge->espibug_timeout + (unsigned long )jiffies); return; } } struct sge *t1_sge_create(struct adapter *adapter , struct sge_params *p ) { struct sge *sge ; void *tmp ; int i ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; { tmp = kzalloc(896UL, 208U); sge = (struct sge *)tmp; if ((unsigned long )sge == (unsigned long )((struct sge *)0)) { return ((struct sge *)0); } else { } sge->adapter = adapter; sge->netdev = adapter->port[0].dev; tmp___0 = adapter_matches_type((adapter_t const *)adapter, 1, 1); sge->rx_pkt_pad = tmp___0 != 0 ? 0U : 2U; tmp___1 = adapter_matches_type((adapter_t const *)adapter, 1, 1); sge->jumbo_fl = tmp___1 != 0; i = 0; goto ldv_52271; ldv_52270: tmp___2 = __alloc_percpu(48UL, 8UL); sge->port_stats[i] = (struct sge_port_stats *)tmp___2; if ((unsigned long )sge->port_stats[i] == (unsigned long )((struct sge_port_stats *)0)) { goto nomem_port; } else { } i = i + 1; ldv_52271: ; if ((unsigned int )i < adapter->params.nports) { goto ldv_52270; } else { } reg_timer_6(& sge->tx_reclaim_timer); sge->tx_reclaim_timer.data = (unsigned long )sge; sge->tx_reclaim_timer.function = & sge_tx_reclaim_cb; tmp___3 = adapter_matches_type((adapter_t const *)sge->adapter, 2, 3); if (tmp___3 != 0) { reg_timer_6(& sge->espibug_timer); if (adapter->params.nports > 1U) { tx_sched_init(sge); sge->espibug_timer.function = & espibug_workaround_t204; } else { sge->espibug_timer.function = & espibug_workaround; } sge->espibug_timer.data = (unsigned long )sge->adapter; sge->espibug_timeout = 1UL; if (adapter->params.nports > 1U) { sge->espibug_timeout = 2UL; } else { } } else { } p->cmdQ_size[0] = 1024U; p->cmdQ_size[1] = 128U; p->freelQ_size[sge->jumbo_fl == 0U] = 4096U; p->freelQ_size[sge->jumbo_fl] = 512U; if ((unsigned long )sge->tx_sched != (unsigned long )((struct sched *)0)) { if ((unsigned int )((unsigned char )((sge->adapter)->params.brd_info)->board) == 7U) { p->rx_coalesce_usecs = 15U; } else { p->rx_coalesce_usecs = 50U; } } else { p->rx_coalesce_usecs = 50U; } p->coalesce_enable = 0U; p->sample_interval_usecs = 0U; return (sge); nomem_port: ; goto ldv_52274; ldv_52273: free_percpu((void *)sge->port_stats[i]); i = i - 1; ldv_52274: ; if (i >= 0) { goto ldv_52273; } else { } kfree((void const *)sge); return ((struct sge *)0); } } void choose_timer_5(struct timer_list *timer ) { { LDV_IN_INTERRUPT = 2; (*(timer->function))(timer->data); LDV_IN_INTERRUPT = 1; ldv_timer_state_5 = 2; return; } } void choose_timer_6(struct timer_list *timer ) { { LDV_IN_INTERRUPT = 2; (*(timer->function))(timer->data); LDV_IN_INTERRUPT = 1; ldv_timer_state_6 = 2; return; } } int reg_timer_6(struct timer_list *timer ) { { ldv_timer_list_6 = timer; ldv_timer_state_6 = 1; return (0); } } void activate_pending_timer_5(struct timer_list *timer , unsigned long data , int pending_flag ) { { if ((unsigned long )ldv_timer_list_5 == (unsigned long )timer) { if (ldv_timer_state_5 == 2 || pending_flag != 0) { ldv_timer_list_5 = timer; ldv_timer_list_5->data = data; ldv_timer_state_5 = 1; } else { } return; } else { } reg_timer_5(timer); ldv_timer_list_5->data = data; return; } } void disable_suitable_timer_6(struct timer_list *timer ) { { if ((unsigned long )timer == (unsigned long )ldv_timer_list_6) { ldv_timer_state_6 = 0; return; } else { } return; } } void disable_suitable_timer_5(struct timer_list *timer ) { { if ((unsigned long )timer == (unsigned long )ldv_timer_list_5) { ldv_timer_state_5 = 0; return; } else { } return; } } int reg_timer_5(struct timer_list *timer ) { { ldv_timer_list_5 = timer; ldv_timer_state_5 = 1; return (0); } } void activate_pending_timer_6(struct timer_list *timer , unsigned long data , int pending_flag ) { { if ((unsigned long )ldv_timer_list_6 == (unsigned long )timer) { if (ldv_timer_state_6 == 2 || pending_flag != 0) { ldv_timer_list_6 = timer; ldv_timer_list_6->data = data; ldv_timer_state_6 = 1; } else { } return; } else { } reg_timer_6(timer); ldv_timer_list_6->data = data; return; } } bool ldv_queue_work_on_217(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_218(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___3 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_219(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_220(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_221(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_pskb_expand_head_233(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_235(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_237(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_238(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_239(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_240(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_241(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } int ldv_pskb_expand_head_242(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_243(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_mod_timer_245(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_6(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } int ldv_del_timer_sync_246(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_6(ldv_func_arg1); return (ldv_func_res); } } int ldv_del_timer_sync_247(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_6(ldv_func_arg1); return (ldv_func_res); } } int ldv_mod_timer_248(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_6(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } int ldv_mod_timer_249(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___11 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_6(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } int ldv_mod_timer_250(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___12 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_6(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } int ldv_mod_timer_251(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___13 ldv_func_res ; int tmp ; { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; activate_pending_timer_6(ldv_func_arg1, ldv_func_arg2, 1); return (ldv_func_res); } } __inline static long ldv__builtin_expect(long exp , long c ) ; __inline static void spin_lock(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) ; bool ldv_queue_work_on_278(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_280(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_279(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_282(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_281(struct workqueue_struct *ldv_func_arg1 ) ; extern void __udelay(unsigned long ) ; extern void _dev_info(struct device const * , char const * , ...) ; struct sk_buff *ldv_skb_clone_296(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_304(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_298(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_294(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_302(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_303(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_299(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_300(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_301(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); return (tmp); } } struct gmac const t1_vsc7326_ops ; struct gphy const t1_my3126_ops ; struct gphy const t1_mv88e1xxx_ops ; struct gphy const t1_mv88x201x_ops ; static int t1_wait_op_done(adapter_t *adapter , int reg , u32 mask , int polarity , int attempts , int delay ) { u32 val ; unsigned int tmp ; { ldv_47003: tmp = readl((void const volatile *)adapter->regs + (unsigned long )reg); val = tmp & mask; if ((val != 0U) == polarity) { return (0); } else { } attempts = attempts - 1; if (attempts == 0) { return (1); } else { } if (delay != 0) { __udelay((unsigned long )delay); } else { } goto ldv_47003; } } int __t1_tpi_write(adapter_t *adapter , u32 addr , u32 value ) { int tpi_busy ; { writel(addr, (void volatile *)adapter->regs + 640U); writel(value, (void volatile *)adapter->regs + 644U); writel(1U, (void volatile *)adapter->regs + 652U); tpi_busy = t1_wait_op_done(adapter, 652, 2U, 1, 50, 3); if (tpi_busy != 0) { printk("\tcxgb: %s: TPI write to 0x%x failed\n", adapter->name, addr); } else { } return (tpi_busy); } } int t1_tpi_write(adapter_t *adapter , u32 addr , u32 value ) { int ret ; { spin_lock(& adapter->tpi_lock); ret = __t1_tpi_write(adapter, addr, value); spin_unlock(& adapter->tpi_lock); return (ret); } } int __t1_tpi_read(adapter_t *adapter , u32 addr , u32 *valp ) { int tpi_busy ; { writel(addr, (void volatile *)adapter->regs + 640U); writel(0U, (void volatile *)adapter->regs + 652U); tpi_busy = t1_wait_op_done(adapter, 652, 2U, 1, 50, 3); if (tpi_busy != 0) { printk("\tcxgb: %s: TPI read from 0x%x failed\n", adapter->name, addr); } else { *valp = readl((void const volatile *)adapter->regs + 648U); } return (tpi_busy); } } int t1_tpi_read(adapter_t *adapter , u32 addr , u32 *valp ) { int ret ; { spin_lock(& adapter->tpi_lock); ret = __t1_tpi_read(adapter, addr, valp); spin_unlock(& adapter->tpi_lock); return (ret); } } static void t1_tpi_par(adapter_t *adapter , u32 value ) { { writel(value, (void volatile *)adapter->regs + 668U); return; } } void t1_link_changed(adapter_t *adapter , int port_id ) { int link_ok ; int speed ; int duplex ; int fc ; struct cphy *phy ; struct link_config *lc ; struct cmac *mac ; { phy = adapter->port[port_id].phy; lc = & adapter->port[port_id].link_config; (*((phy->ops)->get_link_status))(phy, & link_ok, & speed, & duplex, & fc); lc->speed = speed >= 0 ? (unsigned short )speed : 65535U; lc->duplex = duplex >= 0 ? (unsigned char )duplex : 255U; if (((int )lc->requested_fc & 4) == 0) { fc = (int )lc->requested_fc & 3; } else { } if ((link_ok != 0 && speed >= 0) && (unsigned int )lc->autoneg == 1U) { mac = adapter->port[port_id].mac; (*((mac->ops)->set_speed_duplex_fc))(mac, speed, duplex, fc); lc->fc = (unsigned char )fc; } else { } t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc); return; } } static int t1_pci_intr_handler(adapter_t *adapter ) { u32 pcix_cause ; { pci_read_config_dword((struct pci_dev const *)adapter->pdev, 248, & pcix_cause); if (pcix_cause != 0U) { pci_write_config_dword((struct pci_dev const *)adapter->pdev, 248, pcix_cause); t1_fatal_err(adapter); } else { } return (0); } } static int fpga_phy_intr_handler(adapter_t *adapter ) { int p ; u32 cause ; unsigned int tmp ; struct cphy *phy ; int phy_cause ; int tmp___0 ; { tmp = readl((void const volatile *)adapter->regs + 2612U); cause = tmp; p = 0; goto ldv_47055; ldv_47054: ; if (((u32 )(1 << p) & cause) != 0U) { phy = adapter->port[p].phy; tmp___0 = (*((phy->ops)->interrupt_handler))(phy); phy_cause = tmp___0; if (phy_cause & 1) { t1_link_changed(adapter, p); } else { } } else { } p = p + 1; ldv_47055: ; if ((unsigned int )p < adapter->params.nports) { goto ldv_47054; } else { } writel(cause, (void volatile *)adapter->regs + 2612U); return (0); } } static int fpga_slow_intr(adapter_t *adapter ) { u32 cause ; unsigned int tmp ; u32 tp_cause ; unsigned int tmp___0 ; { tmp = readl((void const volatile *)adapter->regs + 2564U); cause = tmp; cause = cause & 4294967293U; if ((int )cause & 1) { t1_sge_intr_error_handler(adapter->sge); } else { } if ((cause & 16U) != 0U) { fpga_phy_intr_handler(adapter); } else { } if ((cause & 4U) != 0U) { tmp___0 = readl((void const volatile *)adapter->regs + 2580U); tp_cause = tmp___0; writel(tp_cause, (void volatile *)adapter->regs + 2580U); } else { } if ((cause & 32U) != 0U) { t1_pci_intr_handler(adapter); } else { } if (cause != 0U) { writel(cause, (void volatile *)adapter->regs + 2564U); } else { } return (cause != 0U); } } static int mi1_wait_until_ready(adapter_t *adapter , int mi1_reg ) { int attempts ; int busy ; u32 val ; { attempts = 100; ldv_47069: __t1_tpi_read(adapter, (u32 )mi1_reg, & val); busy = (long )((int )val) & (-0x7FFFFFFF-1); if (busy != 0) { __const_udelay(42950UL); } else { } if (busy != 0) { attempts = attempts - 1; if (attempts != 0) { goto ldv_47069; } else { goto ldv_47070; } } else { } ldv_47070: ; if (busy != 0) { printk("\tcxgb: %s: MDIO operation timed out\n", adapter->name); } else { } return (busy); } } static void mi1_mdio_init(adapter_t *adapter , struct board_info const *bi ) { u32 clkdiv ; u32 val ; { clkdiv = (unsigned int )bi->clock_elmer0 / (unsigned int )((int )bi->mdio_mdc * 2) - 1U; val = (((unsigned int )((int )bi->mdio_mdiinv << 1) | (unsigned int )bi->mdio_mdien) | (clkdiv << 5)) | 4U; if (((unsigned long )bi->caps & 4096UL) == 0UL) { val = val | 8U; } else { } t1_tpi_write(adapter, 4194304U, val); return; } } static int mi1_mdio_read(struct net_device *dev , int phy_addr , int mmd_addr , u16 reg_addr ) { struct adapter *adapter ; u32 addr ; unsigned int val ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; addr = (u32 )((int )reg_addr | (phy_addr << 5)); spin_lock(& adapter->tpi_lock); __t1_tpi_write(adapter, 4194308U, addr); __t1_tpi_write(adapter, 4194316U, 2U); mi1_wait_until_ready(adapter, 4194316); __t1_tpi_read(adapter, 4194312U, & val); spin_unlock(& adapter->tpi_lock); return ((int )val); } } static int mi1_mdio_write(struct net_device *dev , int phy_addr , int mmd_addr , u16 reg_addr , u16 val ) { struct adapter *adapter ; u32 addr ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; addr = (u32 )((int )reg_addr | (phy_addr << 5)); spin_lock(& adapter->tpi_lock); __t1_tpi_write(adapter, 4194308U, addr); __t1_tpi_write(adapter, 4194312U, (u32 )val); __t1_tpi_write(adapter, 4194316U, 1U); mi1_wait_until_ready(adapter, 4194316); spin_unlock(& adapter->tpi_lock); return (0); } } static struct mdio_ops const mi1_mdio_ops = {& mi1_mdio_init, & mi1_mdio_read, & mi1_mdio_write, 1U}; static int mi1_mdio_ext_read(struct net_device *dev , int phy_addr , int mmd_addr , u16 reg_addr ) { struct adapter *adapter ; u32 addr ; unsigned int val ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; addr = (u32 )((phy_addr << 5) | mmd_addr); spin_lock(& adapter->tpi_lock); __t1_tpi_write(adapter, 4194308U, addr); __t1_tpi_write(adapter, 4194312U, (u32 )reg_addr); __t1_tpi_write(adapter, 4194316U, 0U); mi1_wait_until_ready(adapter, 4194316); __t1_tpi_write(adapter, 4194316U, 3U); mi1_wait_until_ready(adapter, 4194316); __t1_tpi_read(adapter, 4194312U, & val); spin_unlock(& adapter->tpi_lock); return ((int )val); } } static int mi1_mdio_ext_write(struct net_device *dev , int phy_addr , int mmd_addr , u16 reg_addr , u16 val ) { struct adapter *adapter ; u32 addr ; { adapter = (struct adapter *)dev->__annonCompField94.ml_priv; addr = (u32 )((phy_addr << 5) | mmd_addr); spin_lock(& adapter->tpi_lock); __t1_tpi_write(adapter, 4194308U, addr); __t1_tpi_write(adapter, 4194312U, (u32 )reg_addr); __t1_tpi_write(adapter, 4194316U, 0U); mi1_wait_until_ready(adapter, 4194316); __t1_tpi_write(adapter, 4194312U, (u32 )val); __t1_tpi_write(adapter, 4194316U, 1U); mi1_wait_until_ready(adapter, 4194316); spin_unlock(& adapter->tpi_lock); return (0); } } static struct mdio_ops const mi1_mdio_ext_ops = {& mi1_mdio_init, & mi1_mdio_ext_read, & mi1_mdio_ext_write, 6U}; static struct board_info const t1_board[6U] = { {5U, 1U, 4096UL, 1U, 2U, 4U, 125000000U, 150000000U, 125000000U, 1U, 44U, 1U, 1U, 1U, 1U, & t1_pm3393_ops, & t1_my3126_ops, & mi1_mdio_ext_ops, "Chelsio T110 1x10GBase-CX4 TOE"}, {0U, 1U, 5120UL, 1U, 2U, 2U, 125000000U, 0U, 0U, 1U, 44U, 0U, 0U, 1U, 0U, & t1_pm3393_ops, & t1_mv88x201x_ops, & mi1_mdio_ext_ops, "Chelsio N110 1x10GBaseX NIC"}, {1U, 1U, 5120UL, 2U, 2U, 2U, 125000000U, 0U, 0U, 1U, 44U, 0U, 0U, 1U, 0U, & t1_pm3393_ops, & t1_mv88x201x_ops, & mi1_mdio_ext_ops, "Chelsio N210 1x10GBaseX NIC"}, {6U, 1U, 4096UL, 2U, 2U, 2U, 125000000U, 133000000U, 125000000U, 1U, 44U, 0U, 0U, 1U, 0U, & t1_pm3393_ops, & t1_mv88x201x_ops, & mi1_mdio_ext_ops, "Chelsio T210 1x10GBaseX TOE"}, {6U, 1U, 4096UL, 2U, 2U, 4U, 125000000U, 133000000U, 125000000U, 1U, 44U, 1U, 1U, 1U, 1U, & t1_pm3393_ops, & t1_my3126_ops, & mi1_mdio_ext_ops, "Chelsio T210 1x10GBase-CX4 TOE"}, {10U, 4U, 8431UL, 2U, 3U, 1U, 100000000U, 0U, 0U, 4U, 44U, 0U, 0U, 0U, 4U, & t1_vsc7326_ops, & t1_mv88e1xxx_ops, & mi1_mdio_ops, "Chelsio N204 4x100/1000BaseT NIC"}}; struct pci_device_id const t1_pci_tbl[8U] = { {5157U, 8U, 4294967295U, 0U, 0U, 0U, 0UL}, {5157U, 8U, 4294967295U, 1U, 0U, 0U, 0UL}, {5157U, 7U, 4294967295U, 0U, 0U, 0U, 1UL}, {5157U, 10U, 4294967295U, 1U, 0U, 0U, 2UL}, {5157U, 11U, 4294967295U, 1U, 0U, 0U, 3UL}, {5157U, 14U, 4294967295U, 1U, 0U, 0U, 4UL}, {5157U, 16U, 4294967295U, 1U, 0U, 0U, 5UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__t1_pci_tbl_device_table[8U] ; struct board_info const *t1_get_board_info(unsigned int board_id ) { { return (board_id <= 5U ? (struct board_info const *)(& t1_board) + (unsigned long )board_id : (struct board_info const *)0); } } int t1_seeprom_read(adapter_t *adapter , u32 addr , __le32 *data ) { int i ; u16 val ; u32 v ; { i = 4; if (addr > 8191U || (addr & 3U) != 0U) { return (-22); } else { } pci_write_config_word((struct pci_dev const *)adapter->pdev, 74, (int )((unsigned short )addr)); ldv_47143: __const_udelay(214750UL); pci_read_config_word((struct pci_dev const *)adapter->pdev, 74, & val); if ((int )((short )val) >= 0) { i = i - 1; if (i != 0) { goto ldv_47143; } else { goto ldv_47144; } } else { } ldv_47144: ; if ((int )((short )val) >= 0) { printk("\vcxgb: %s: reading EEPROM address 0x%x failed\n", adapter->name, addr); return (-5); } else { } pci_read_config_dword((struct pci_dev const *)adapter->pdev, 76, & v); *data = v; return (0); } } static int t1_eeprom_vpd_get(adapter_t *adapter , struct chelsio_vpd_t *vpd ) { int addr ; int ret ; { ret = 0; addr = 0; goto ldv_47152; ldv_47151: ret = t1_seeprom_read(adapter, (u32 )addr, (__le32 *)vpd + (unsigned long )addr); addr = (int )((unsigned int )addr + 4U); ldv_47152: ; if (ret == 0 && (unsigned int )addr <= 27U) { goto ldv_47151; } else { } return (ret); } } static int vpd_macaddress_get(adapter_t *adapter , int index , u8 *mac_addr ) { struct chelsio_vpd_t vpd ; int tmp ; { tmp = t1_eeprom_vpd_get(adapter, & vpd); if (tmp != 0) { return (1); } else { } memcpy((void *)mac_addr, (void const *)(& vpd.mac_base_address), 5UL); *(mac_addr + 5UL) = (int )vpd.mac_base_address[5] + (int )((u8 )index); return (0); } } int t1_link_start(struct cphy *phy , struct cmac *mac , struct link_config *lc ) { unsigned int fc ; { fc = (unsigned int )lc->requested_fc & 3U; if ((lc->supported & 64U) != 0U) { lc->advertising = lc->advertising & 4294942719U; if (fc != 0U) { if ((unsigned int )((mac->adapter)->params.nports <= 1U) == fc) { lc->advertising = lc->advertising | 8192U; } else { lc->advertising = lc->advertising | 16384U; if (fc == 1U) { lc->advertising = lc->advertising | 8192U; } else { } } } else { } (*((phy->ops)->advertise))(phy, lc->advertising); if ((unsigned int )lc->autoneg == 0U) { lc->speed = lc->requested_speed; lc->duplex = lc->requested_duplex; lc->fc = (unsigned char )fc; (*((mac->ops)->set_speed_duplex_fc))(mac, (int )lc->speed, (int )lc->duplex, (int )fc); phy->state = 2; (*((phy->ops)->set_speed_duplex))(phy, (int )lc->speed, (int )lc->duplex); (*((phy->ops)->reset))(phy, 0); } else { phy->state = 4; (*((phy->ops)->autoneg_enable))(phy); } } else { phy->state = 2; (*((mac->ops)->set_speed_duplex_fc))(mac, -1, -1, (int )fc); lc->fc = (unsigned char )fc; (*((phy->ops)->reset))(phy, 0); } return (0); } } int t1_elmer0_ext_intr_handler(adapter_t *adapter ) { struct cphy *phy ; int phy_cause ; u32 cause ; int i ; int port_bit ; int p ; struct _ddebug descriptor ; long tmp ; struct cmac *mac ; u32 mod_detect ; { t1_tpi_read(adapter, 1048588U, & cause); switch ((int )(adapter->params.brd_info)->board) { case 7: ; case 9: ; case 10: ; case 8: i = 0; goto ldv_47180; ldv_47179: port_bit = i + 1; if (((u32 )(1 << port_bit) & cause) == 0U) { goto ldv_47178; } else { } phy = adapter->port[i].phy; phy_cause = (*((phy->ops)->interrupt_handler))(phy); if (phy_cause & 1) { t1_link_changed(adapter, i); } else { } ldv_47178: i = i + 1; ldv_47180: ; if ((unsigned int )i < adapter->params.nports) { goto ldv_47179; } else { } goto ldv_47182; case 4: ; if ((cause & 2U) != 0U) { phy = adapter->port[0].phy; phy_cause = (*((phy->ops)->interrupt_handler))(phy); if (phy_cause & 1) { t1_link_changed(adapter, 0); } else { } } else { } goto ldv_47182; case 2: p = 0; goto ldv_47187; ldv_47186: phy = adapter->port[p].phy; phy_cause = (*((phy->ops)->interrupt_handler))(phy); if (phy_cause & 1) { t1_link_changed(adapter, p); } else { } p = p + 1; ldv_47187: ; if ((unsigned int )p < adapter->params.nports) { goto ldv_47186; } else { } goto ldv_47182; case 6: ; case 1: ; case 0: ; if ((cause & 64U) != 0U) { phy = adapter->port[0].phy; phy_cause = (*((phy->ops)->interrupt_handler))(phy); if (phy_cause & 1) { t1_link_changed(adapter, 0); } else { } } else { } goto ldv_47182; case 3: ; case 5: ; if ((adapter->msg_enable & 512) != 0) { descriptor.modname = "cxgb"; descriptor.function = "t1_elmer0_ext_intr_handler"; descriptor.filename = "/home/ldvuser/mutilin/launch/work/current--X--drivers/--X--defaultlinux-4.2-rc1.tar.xz--X--43_2a--X--cpachecker/linux-4.2-rc1.tar.xz/csd_deg_dscv/10265/dscv_tempdir/dscv/ri/43_2a/drivers/net/ethernet/chelsio/cxgb/subr.c"; descriptor.format = "External interrupt cause 0x%x\n"; descriptor.lineno = 733U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (adapter->pdev)->dev), "External interrupt cause 0x%x\n", cause); } else { } } else { } if ((cause & 2U) != 0U) { mac = adapter->port[0].mac; (*((mac->ops)->interrupt_handler))(mac); } else { } if ((cause & 32U) != 0U) { t1_tpi_read(adapter, 1048596U, & mod_detect); if ((adapter->msg_enable & 4) != 0) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "XPAK %s\n", mod_detect != 0U ? (char *)"removed" : (char *)"inserted"); } else { } } else { } goto ldv_47182; } ldv_47182: t1_tpi_write(adapter, 1048588U, cause); return (0); } } void t1_interrupts_enable(adapter_t *adapter ) { unsigned int i ; u32 pl_intr ; unsigned int tmp ; int tmp___0 ; { adapter->slow_intr_mask = 65U; t1_sge_intr_enable(adapter->sge); t1_tp_intr_enable(adapter->tp); if ((unsigned long )adapter->espi != (unsigned long )((struct peespi *)0)) { adapter->slow_intr_mask = adapter->slow_intr_mask | 256U; t1_espi_intr_enable(adapter->espi); } else { } i = 0U; goto ldv_47203; ldv_47202: (*(((adapter->port[i].mac)->ops)->interrupt_enable))(adapter->port[i].mac); (*(((adapter->port[i].phy)->ops)->interrupt_enable))(adapter->port[i].phy); i = i + 1U; ldv_47203: ; if (adapter->params.nports > i) { goto ldv_47202; } else { } tmp___0 = t1_is_asic((adapter_t const *)adapter); if (tmp___0 != 0) { tmp = readl((void const volatile *)adapter->regs + 2560U); pl_intr = tmp; pci_write_config_dword((struct pci_dev const *)adapter->pdev, 244, 4294967295U); adapter->slow_intr_mask = adapter->slow_intr_mask | 3072U; pl_intr = pl_intr | 3072U; writel(pl_intr, (void volatile *)adapter->regs + 2560U); } else { } return; } } void t1_interrupts_disable(adapter_t *adapter ) { unsigned int i ; int tmp ; { t1_sge_intr_disable(adapter->sge); t1_tp_intr_disable(adapter->tp); if ((unsigned long )adapter->espi != (unsigned long )((struct peespi *)0)) { t1_espi_intr_disable(adapter->espi); } else { } i = 0U; goto ldv_47211; ldv_47210: (*(((adapter->port[i].mac)->ops)->interrupt_disable))(adapter->port[i].mac); (*(((adapter->port[i].phy)->ops)->interrupt_disable))(adapter->port[i].phy); i = i + 1U; ldv_47211: ; if (adapter->params.nports > i) { goto ldv_47210; } else { } tmp = t1_is_asic((adapter_t const *)adapter); if (tmp != 0) { writel(0U, (void volatile *)adapter->regs + 2560U); } else { } pci_write_config_dword((struct pci_dev const *)adapter->pdev, 244, 0U); adapter->slow_intr_mask = 0U; return; } } void t1_interrupts_clear(adapter_t *adapter ) { unsigned int i ; u32 pl_intr ; unsigned int tmp ; int tmp___0 ; { t1_sge_intr_clear(adapter->sge); t1_tp_intr_clear(adapter->tp); if ((unsigned long )adapter->espi != (unsigned long )((struct peespi *)0)) { t1_espi_intr_clear(adapter->espi); } else { } i = 0U; goto ldv_47218; ldv_47217: (*(((adapter->port[i].mac)->ops)->interrupt_clear))(adapter->port[i].mac); (*(((adapter->port[i].phy)->ops)->interrupt_clear))(adapter->port[i].phy); i = i + 1U; ldv_47218: ; if (adapter->params.nports > i) { goto ldv_47217; } else { } tmp___0 = t1_is_asic((adapter_t const *)adapter); if (tmp___0 != 0) { tmp = readl((void const volatile *)adapter->regs + 2564U); pl_intr = tmp; writel(pl_intr | 3072U, (void volatile *)adapter->regs + 2564U); } else { } pci_write_config_dword((struct pci_dev const *)adapter->pdev, 248, 4294967295U); return; } } static int asic_slow_intr(adapter_t *adapter ) { u32 cause ; unsigned int tmp ; { tmp = readl((void const volatile *)adapter->regs + 2564U); cause = tmp; cause = adapter->slow_intr_mask & cause; if (cause == 0U) { return (0); } else { } if ((int )cause & 1) { t1_sge_intr_error_handler(adapter->sge); } else { } if ((cause & 64U) != 0U) { t1_tp_intr_handler(adapter->tp); } else { } if ((cause & 256U) != 0U) { t1_espi_intr_handler(adapter->espi); } else { } if ((cause & 1024U) != 0U) { t1_pci_intr_handler(adapter); } else { } if ((cause & 2048U) != 0U) { t1_elmer0_ext_intr(adapter); } else { } writel(cause, (void volatile *)adapter->regs + 2564U); readl((void const volatile *)adapter->regs + 2564U); return (1); } } int t1_slow_intr_handler(adapter_t *adapter ) { int tmp ; int tmp___0 ; int tmp___1 ; { tmp___0 = t1_is_asic((adapter_t const *)adapter); if (tmp___0 == 0) { tmp = fpga_slow_intr(adapter); return (tmp); } else { } tmp___1 = asic_slow_intr(adapter); return (tmp___1); } } static void power_sequence_xpak(adapter_t *adapter ) { u32 mod_detect ; u32 gpo ; { t1_tpi_read(adapter, 1048596U, & mod_detect); if ((mod_detect & 32U) == 0U) { t1_tpi_read(adapter, 1048600U, & gpo); gpo = gpo | 262144U; t1_tpi_write(adapter, 1048600U, gpo); } else { } return; } } int t1_get_board_rev(adapter_t *adapter , struct board_info const *bi , struct adapter_params *p ) { u32 val ; unsigned int tmp ; { p->chip_version = bi->chip_term; p->is_asic = (unsigned int )p->chip_version != 0U; if (((unsigned int )p->chip_version == 1U || (unsigned int )p->chip_version == 2U) || (unsigned int )p->chip_version == 0U) { tmp = readl((void const volatile *)adapter->regs + 840U); val = tmp; val = val >> 30; if (val == 2U) { p->chip_revision = 1U; } else if (val == 3U) { p->chip_revision = 3U; } else { return (-1); } } else { return (-1); } return (0); } } static int board_init(adapter_t *adapter , struct board_info const *bi ) { { switch ((int )bi->board) { case 3: ; case 0: ; case 1: ; case 6: t1_tpi_par(adapter, 15U); t1_tpi_write(adapter, 1048600U, 2048U); goto ldv_47247; case 5: t1_tpi_par(adapter, 15U); t1_tpi_write(adapter, 1048600U, 6144U); power_sequence_xpak(adapter); goto ldv_47247; case 9: ; case 7: ; case 8: ; case 10: t1_tpi_par(adapter, 15U); t1_tpi_write(adapter, 1048600U, 2052U); goto ldv_47247; case 4: ; case 2: t1_tpi_par(adapter, 15U); t1_tpi_write(adapter, 1048600U, 6148U); goto ldv_47247; } ldv_47247: ; return (0); } } int t1_init_hw_modules(adapter_t *adapter ) { int err ; struct board_info const *bi ; u32 val ; unsigned int tmp ; int tmp___0 ; int tmp___1 ; { err = -5; bi = adapter->params.brd_info; if ((unsigned int )bi->clock_mc4 == 0U) { tmp = readl((void const volatile *)adapter->regs + 384U); val = tmp; writel(val | 33554434U, (void volatile *)adapter->regs + 384U); writel(34U, (void volatile *)adapter->regs + 3076U); } else { } if ((unsigned long )adapter->espi != (unsigned long )((struct peespi *)0)) { tmp___0 = t1_espi_init(adapter->espi, (int )bi->chip_mac, (int )bi->espi_nports); if (tmp___0 != 0) { goto out_err; } else { } } else { } tmp___1 = t1_tp_reset(adapter->tp, & adapter->params.tp, bi->clock_core); if (tmp___1 != 0) { goto out_err; } else { } err = t1_sge_configure(adapter->sge, & adapter->params.sge); if (err != 0) { goto out_err; } else { } err = 0; out_err: ; return (err); } } static void get_pci_mode(adapter_t *adapter , struct chelsio_pci_params *p ) { unsigned short speed_map[4U] ; u32 pci_mode ; { speed_map[0] = 33U; speed_map[1] = 66U; speed_map[2] = 100U; speed_map[3] = 133U; pci_read_config_dword((struct pci_dev const *)adapter->pdev, 252, & pci_mode); p->speed = speed_map[(pci_mode >> 6) & 3U]; p->width = (int )pci_mode & 1 ? 64U : 32U; p->is_pcix = (pci_mode & 32U) != 0U; return; } } void t1_free_sw_modules(adapter_t *adapter ) { unsigned int i ; struct cmac *mac ; struct cphy *phy ; { i = 0U; goto ldv_47275; ldv_47274: mac = adapter->port[i].mac; phy = adapter->port[i].phy; if ((unsigned long )mac != (unsigned long )((struct cmac *)0)) { (*((mac->ops)->destroy))(mac); } else { } if ((unsigned long )phy != (unsigned long )((struct cphy *)0)) { (*((phy->ops)->destroy))(phy); } else { } i = i + 1U; ldv_47275: ; if (adapter->params.nports > i) { goto ldv_47274; } else { } if ((unsigned long )adapter->sge != (unsigned long )((struct sge *)0)) { t1_sge_destroy(adapter->sge); } else { } if ((unsigned long )adapter->tp != (unsigned long )((struct petp *)0)) { t1_tp_destroy(adapter->tp); } else { } if ((unsigned long )adapter->espi != (unsigned long )((struct peespi *)0)) { t1_espi_destroy(adapter->espi); } else { } return; } } static void init_link_config(struct link_config *lc , struct board_info const *bi ) { unsigned short tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; { lc->supported = (unsigned int )bi->caps; tmp = 65535U; lc->speed = tmp; lc->requested_speed = tmp; tmp___0 = 255U; lc->duplex = tmp___0; lc->requested_duplex = tmp___0; tmp___1 = 3U; lc->fc = tmp___1; lc->requested_fc = tmp___1; if ((lc->supported & 64U) != 0U) { lc->advertising = lc->supported; lc->autoneg = 1U; lc->requested_fc = (unsigned int )lc->requested_fc | 4U; } else { lc->advertising = 0U; lc->autoneg = 0U; } return; } } int t1_init_sw_modules(adapter_t *adapter , struct board_info const *bi ) { unsigned int i ; struct peespi *tmp ; u8 hw_addr[6U] ; struct cmac *mac ; int phy_addr ; int tmp___0 ; int tmp___1 ; { adapter->params.brd_info = bi; adapter->params.nports = (unsigned int )bi->port_number; adapter->params.stats_update_period = (bi->gmac)->stats_update_period; adapter->sge = t1_sge_create(adapter, & adapter->params.sge); if ((unsigned long )adapter->sge == (unsigned long )((struct sge *)0)) { printk("\vcxgb: %s: SGE initialization failed\n", adapter->name); goto error; } else { } if ((unsigned int )bi->espi_nports != 0U) { tmp = t1_espi_create(adapter); adapter->espi = tmp; if ((unsigned long )tmp == (unsigned long )((struct peespi *)0)) { printk("\vcxgb: %s: ESPI initialization failed\n", adapter->name); goto error; } else { } } else { } adapter->tp = t1_tp_create(adapter, & adapter->params.tp); if ((unsigned long )adapter->tp == (unsigned long )((struct petp *)0)) { printk("\vcxgb: %s: TP initialization failed\n", adapter->name); goto error; } else { } board_init(adapter, bi); (*((bi->mdio_ops)->init))(adapter, bi); if ((unsigned long )(bi->gphy)->reset != (unsigned long )((int (*/* const */)(adapter_t * ))0)) { (*((bi->gphy)->reset))(adapter); } else { } if ((unsigned long )(bi->gmac)->reset != (unsigned long )((int (*/* const */)(adapter_t * ))0)) { (*((bi->gmac)->reset))(adapter); } else { } i = 0U; goto ldv_47291; ldv_47290: phy_addr = (int )((unsigned int )bi->mdio_phybaseaddr + i); adapter->port[i].phy = (*((bi->gphy)->create))(adapter->port[i].dev, phy_addr, bi->mdio_ops); if ((unsigned long )adapter->port[i].phy == (unsigned long )((struct cphy *)0)) { printk("\vcxgb: %s: PHY %d initialization failed\n", adapter->name, i); goto error; } else { } mac = (*((bi->gmac)->create))(adapter, (int )i); adapter->port[i].mac = mac; if ((unsigned long )mac == (unsigned long )((struct cmac *)0)) { printk("\vcxgb: %s: MAC %d initialization failed\n", adapter->name, i); goto error; } else { } tmp___1 = t1_is_asic((adapter_t const *)adapter); if (tmp___1 == 0 || (unsigned int )((unsigned char )bi->chip_mac) == 4U) { (*((mac->ops)->macaddress_get))(mac, (u8 *)(& hw_addr)); } else { tmp___0 = vpd_macaddress_get(adapter, (int )i, (u8 *)(& hw_addr)); if (tmp___0 != 0) { printk("\vcxgb: %s: could not read MAC address from VPD ROM\n", (char *)(& (adapter->port[i].dev)->name)); goto error; } else { } } memcpy((void *)(adapter->port[i].dev)->dev_addr, (void const *)(& hw_addr), 6UL); init_link_config(& adapter->port[i].link_config, bi); i = i + 1U; ldv_47291: ; if (adapter->params.nports > i) { goto ldv_47290; } else { } get_pci_mode(adapter, & adapter->params.pci); t1_interrupts_clear(adapter); return (0); error: t1_free_sw_modules(adapter); return (-1); } } extern int ldv_setup_16(void) ; extern int ldv_release_16(void) ; extern int ldv_setup_15(void) ; extern int ldv_release_15(void) ; void ldv_initialize_mdio_ops_16(void) { void *tmp ; { tmp = ldv_init_zalloc(3008UL); mi1_mdio_ops_group0 = (struct net_device *)tmp; return; } } void ldv_initialize_mdio_ops_15(void) { void *tmp ; { tmp = ldv_init_zalloc(3008UL); mi1_mdio_ext_ops_group0 = (struct net_device *)tmp; return; } } void ldv_main_exported_16(void) { adapter_t *ldvarg34 ; void *tmp ; int ldvarg40 ; u16 ldvarg36 ; int ldvarg37 ; int ldvarg38 ; u16 ldvarg42 ; int ldvarg41 ; struct board_info *ldvarg35 ; void *tmp___0 ; u16 ldvarg39 ; int tmp___1 ; { tmp = ldv_init_zalloc(2240UL); ldvarg34 = (adapter_t *)tmp; tmp___0 = ldv_init_zalloc(80UL); ldvarg35 = (struct board_info *)tmp___0; ldv_memset((void *)(& ldvarg40), 0, 4UL); ldv_memset((void *)(& ldvarg36), 0, 2UL); ldv_memset((void *)(& ldvarg37), 0, 4UL); ldv_memset((void *)(& ldvarg38), 0, 4UL); ldv_memset((void *)(& ldvarg42), 0, 2UL); ldv_memset((void *)(& ldvarg41), 0, 4UL); ldv_memset((void *)(& ldvarg39), 0, 2UL); tmp___1 = __VERIFIER_nondet_int(); switch (tmp___1) { case 0: ; if (ldv_state_variable_16 == 3) { mi1_mdio_write(mi1_mdio_ops_group0, ldvarg41, ldvarg40, (int )ldvarg39, (int )ldvarg42); ldv_state_variable_16 = 3; } else { } goto ldv_47320; case 1: ; if (ldv_state_variable_16 == 3) { mi1_mdio_read(mi1_mdio_ops_group0, ldvarg38, ldvarg37, (int )ldvarg36); ldv_state_variable_16 = 3; } else { } goto ldv_47320; case 2: ; if (ldv_state_variable_16 == 2) { mi1_mdio_init(ldvarg34, (struct board_info const *)ldvarg35); ldv_state_variable_16 = 3; } else { } goto ldv_47320; case 3: ; if (ldv_state_variable_16 == 1) { ldv_setup_16(); ldv_state_variable_16 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_47320; case 4: ; if (ldv_state_variable_16 == 3) { ldv_release_16(); ldv_state_variable_16 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_16 == 2) { ldv_release_16(); ldv_state_variable_16 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_47320; default: ldv_stop(); } ldv_47320: ; return; } } void ldv_main_exported_15(void) { u16 ldvarg75 ; int ldvarg76 ; int ldvarg74 ; u16 ldvarg72 ; struct board_info *ldvarg71 ; void *tmp ; u16 ldvarg78 ; adapter_t *ldvarg70 ; void *tmp___0 ; int ldvarg73 ; int ldvarg77 ; int tmp___1 ; { tmp = ldv_init_zalloc(80UL); ldvarg71 = (struct board_info *)tmp; tmp___0 = ldv_init_zalloc(2240UL); ldvarg70 = (adapter_t *)tmp___0; ldv_memset((void *)(& ldvarg75), 0, 2UL); ldv_memset((void *)(& ldvarg76), 0, 4UL); ldv_memset((void *)(& ldvarg74), 0, 4UL); ldv_memset((void *)(& ldvarg72), 0, 2UL); ldv_memset((void *)(& ldvarg78), 0, 2UL); ldv_memset((void *)(& ldvarg73), 0, 4UL); ldv_memset((void *)(& ldvarg77), 0, 4UL); tmp___1 = __VERIFIER_nondet_int(); switch (tmp___1) { case 0: ; if (ldv_state_variable_15 == 3) { mi1_mdio_ext_write(mi1_mdio_ext_ops_group0, ldvarg77, ldvarg76, (int )ldvarg75, (int )ldvarg78); ldv_state_variable_15 = 3; } else { } goto ldv_47339; case 1: ; if (ldv_state_variable_15 == 3) { mi1_mdio_ext_read(mi1_mdio_ext_ops_group0, ldvarg74, ldvarg73, (int )ldvarg72); ldv_state_variable_15 = 3; } else { } goto ldv_47339; case 2: ; if (ldv_state_variable_15 == 2) { mi1_mdio_init(ldvarg70, (struct board_info const *)ldvarg71); ldv_state_variable_15 = 3; } else { } goto ldv_47339; case 3: ; if (ldv_state_variable_15 == 1) { ldv_setup_15(); ldv_state_variable_15 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_47339; case 4: ; if (ldv_state_variable_15 == 3) { ldv_release_15(); ldv_state_variable_15 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_15 == 2) { ldv_release_15(); ldv_state_variable_15 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_47339; default: ldv_stop(); } ldv_47339: ; return; } } bool ldv_queue_work_on_278(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_279(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___3 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_280(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_281(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_282(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_pskb_expand_head_294(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_296(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_298(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_299(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_300(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_301(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_302(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } int ldv_pskb_expand_head_303(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_304(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } bool ldv_queue_work_on_324(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_326(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_325(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_328(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_327(struct workqueue_struct *ldv_func_arg1 ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_342(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_350(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_344(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_340(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_348(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_349(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_345(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_346(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_347(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static int cphy_mdio_read(struct cphy *cphy , int mmd , int reg , unsigned int *valp ) { int rc ; int tmp ; { tmp = (*(cphy->mdio.mdio_read))(cphy->mdio.dev, cphy->mdio.prtad, mmd, (int )((u16 )reg)); rc = tmp; *valp = (unsigned int )(-1 > rc ? -1 : rc); return (0 < rc ? 0 : rc); } } __inline static int cphy_mdio_write(struct cphy *cphy , int mmd , int reg , unsigned int val ) { int tmp ; { tmp = (*(cphy->mdio.mdio_write))(cphy->mdio.dev, cphy->mdio.prtad, mmd, (int )((u16 )reg), (int )((u16 )val)); return (tmp); } } __inline static void cphy_init(struct cphy *phy , struct net_device *dev , int phy_addr , struct cphy_ops *phy_ops , struct mdio_ops const *mdio_ops ) { struct adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct adapter *)tmp; phy->adapter = adapter; phy->ops = (struct cphy_ops const *)phy_ops; if ((unsigned long )mdio_ops != (unsigned long )((struct mdio_ops const *)0)) { phy->mdio.prtad = phy_addr; phy->mdio.mmds = phy_ops->mmds; phy->mdio.mode_support = mdio_ops->mode_support; phy->mdio.mdio_read = mdio_ops->read; phy->mdio.mdio_write = mdio_ops->write; } else { } phy->mdio.dev = dev; return; } } static int led_init(struct cphy *cphy ) { { cphy_mdio_write(cphy, 3, 33540, 56797U); return (0); } } static int led_link(struct cphy *cphy , u32 do_enable ) { u32 led ; { led = 0U; cphy_mdio_read(cphy, 1, 7, & led); if ((int )do_enable & 1) { led = led | 1U; cphy_mdio_write(cphy, 1, 7, led); } else { led = led & 4294967294U; cphy_mdio_write(cphy, 1, 7, led); } return (0); } } static int mv88x201x_reset(struct cphy *cphy , int wait ) { { return (0); } } static int mv88x201x_interrupt_enable(struct cphy *cphy ) { u32 elmer ; int tmp ; { cphy_mdio_write(cphy, 1, 36866, 1U); tmp = t1_is_asic((adapter_t const *)cphy->adapter); if (tmp != 0) { t1_tpi_read(cphy->adapter, 1048584U, & elmer); elmer = elmer | 64U; t1_tpi_write(cphy->adapter, 1048584U, elmer); } else { } return (0); } } static int mv88x201x_interrupt_disable(struct cphy *cphy ) { u32 elmer ; int tmp ; { cphy_mdio_write(cphy, 1, 36866, 0U); tmp = t1_is_asic((adapter_t const *)cphy->adapter); if (tmp != 0) { t1_tpi_read(cphy->adapter, 1048584U, & elmer); elmer = elmer & 4294967231U; t1_tpi_write(cphy->adapter, 1048584U, elmer); } else { } return (0); } } static int mv88x201x_interrupt_clear(struct cphy *cphy ) { u32 elmer ; u32 val ; int tmp ; { cphy_mdio_read(cphy, 1, 36867, & val); cphy_mdio_read(cphy, 1, 36868, & val); cphy_mdio_read(cphy, 1, 36869, & val); cphy_mdio_read(cphy, 1, 1, & val); cphy_mdio_read(cphy, 1, 1, & val); cphy_mdio_read(cphy, 1, 36869, & val); cphy_mdio_read(cphy, 1, 36867, & val); cphy_mdio_read(cphy, 1, 36868, & val); tmp = t1_is_asic((adapter_t const *)cphy->adapter); if (tmp != 0) { t1_tpi_read(cphy->adapter, 1048588U, & elmer); elmer = elmer | 64U; t1_tpi_write(cphy->adapter, 1048588U, elmer); } else { } return (0); } } static int mv88x201x_interrupt_handler(struct cphy *cphy ) { { mv88x201x_interrupt_clear(cphy); return (1); } } static int mv88x201x_set_loopback(struct cphy *cphy , int on ) { { return (0); } } static int mv88x201x_get_link_status(struct cphy *cphy , int *link_ok , int *speed , int *duplex , int *fc ) { u32 val ; { val = 0U; if ((unsigned long )link_ok != (unsigned long )((int *)0)) { cphy_mdio_read(cphy, 1, 1, & val); val = val & 4U; *link_ok = val == 4U; led_link(cphy, (u32 )*link_ok); } else { } if ((unsigned long )speed != (unsigned long )((int *)0)) { *speed = 10000; } else { } if ((unsigned long )duplex != (unsigned long )((int *)0)) { *duplex = 1; } else { } if ((unsigned long )fc != (unsigned long )((int *)0)) { *fc = 3; } else { } return (0); } } static void mv88x201x_destroy(struct cphy *cphy ) { { kfree((void const *)cphy); return; } } static struct cphy_ops mv88x201x_ops = {& mv88x201x_destroy, & mv88x201x_reset, & mv88x201x_interrupt_enable, & mv88x201x_interrupt_disable, & mv88x201x_interrupt_clear, & mv88x201x_interrupt_handler, 0, 0, 0, 0, & mv88x201x_set_loopback, 0, & mv88x201x_get_link_status, 30U}; static struct cphy *mv88x201x_phy_create(struct net_device *dev , int phy_addr , struct mdio_ops const *mdio_ops ) { u32 val ; struct cphy *cphy ; void *tmp ; { tmp = kzalloc(320UL, 208U); cphy = (struct cphy *)tmp; if ((unsigned long )cphy == (unsigned long )((struct cphy *)0)) { return ((struct cphy *)0); } else { } cphy_init(cphy, dev, phy_addr, & mv88x201x_ops, mdio_ops); cphy_mdio_read(cphy, 3, 33536, & val); cphy_mdio_write(cphy, 3, 33536, val | 1U); cphy_mdio_read(cphy, 1, 8, & val); cphy_mdio_read(cphy, 3, 8, & val); led_init(cphy); return (cphy); } } static int mv88x201x_phy_reset(adapter_t *adapter ) { u32 val ; { t1_tpi_read(adapter, 1048600U, & val); val = val & 4294967291U; t1_tpi_write(adapter, 1048600U, val); msleep(100U); t1_tpi_write(adapter, 1048600U, val | 4U); msleep(1000U); t1_tpi_read(adapter, 1048600U, & val); val = val | 32768U; t1_tpi_write(adapter, 1048600U, val); __const_udelay(429500UL); return (0); } } struct gphy const t1_mv88x201x_ops = {& mv88x201x_phy_create, & mv88x201x_phy_reset}; extern int ldv_probe_14(void) ; void ldv_initialize_cphy_ops_14(void) { void *tmp ; { tmp = ldv_init_zalloc(320UL); mv88x201x_ops_group0 = (struct cphy *)tmp; return; } } void ldv_main_exported_13(void) { int ldvarg46 ; struct net_device *ldvarg44 ; void *tmp ; adapter_t *ldvarg43 ; void *tmp___0 ; struct mdio_ops *ldvarg45 ; void *tmp___1 ; int tmp___2 ; { tmp = ldv_init_zalloc(3008UL); ldvarg44 = (struct net_device *)tmp; tmp___0 = ldv_init_zalloc(2240UL); ldvarg43 = (adapter_t *)tmp___0; tmp___1 = ldv_init_zalloc(32UL); ldvarg45 = (struct mdio_ops *)tmp___1; ldv_memset((void *)(& ldvarg46), 0, 4UL); tmp___2 = __VERIFIER_nondet_int(); switch (tmp___2) { case 0: ; if (ldv_state_variable_13 == 1) { mv88x201x_phy_create(ldvarg44, ldvarg46, (struct mdio_ops const *)ldvarg45); ldv_state_variable_13 = 1; } else { } goto ldv_46792; case 1: ; if (ldv_state_variable_13 == 1) { mv88x201x_phy_reset(ldvarg43); ldv_state_variable_13 = 1; } else { } goto ldv_46792; default: ldv_stop(); } ldv_46792: ; return; } } void ldv_main_exported_14(void) { int ldvarg69 ; int ldvarg68 ; int *ldvarg64 ; void *tmp ; int *ldvarg66 ; void *tmp___0 ; int *ldvarg67 ; void *tmp___1 ; int *ldvarg65 ; void *tmp___2 ; int tmp___3 ; { tmp = ldv_init_zalloc(4UL); ldvarg64 = (int *)tmp; tmp___0 = ldv_init_zalloc(4UL); ldvarg66 = (int *)tmp___0; tmp___1 = ldv_init_zalloc(4UL); ldvarg67 = (int *)tmp___1; tmp___2 = ldv_init_zalloc(4UL); ldvarg65 = (int *)tmp___2; ldv_memset((void *)(& ldvarg69), 0, 4UL); ldv_memset((void *)(& ldvarg68), 0, 4UL); tmp___3 = __VERIFIER_nondet_int(); switch (tmp___3) { case 0: ; if (ldv_state_variable_14 == 1) { mv88x201x_interrupt_clear(mv88x201x_ops_group0); ldv_state_variable_14 = 1; } else { } if (ldv_state_variable_14 == 2) { mv88x201x_interrupt_clear(mv88x201x_ops_group0); ldv_state_variable_14 = 2; } else { } goto ldv_46805; case 1: ; if (ldv_state_variable_14 == 1) { mv88x201x_interrupt_handler(mv88x201x_ops_group0); ldv_state_variable_14 = 1; } else { } if (ldv_state_variable_14 == 2) { mv88x201x_interrupt_handler(mv88x201x_ops_group0); ldv_state_variable_14 = 2; } else { } goto ldv_46805; case 2: ; if (ldv_state_variable_14 == 1) { mv88x201x_interrupt_disable(mv88x201x_ops_group0); ldv_state_variable_14 = 1; } else { } if (ldv_state_variable_14 == 2) { mv88x201x_interrupt_disable(mv88x201x_ops_group0); ldv_state_variable_14 = 2; } else { } goto ldv_46805; case 3: ; if (ldv_state_variable_14 == 2) { mv88x201x_destroy(mv88x201x_ops_group0); ldv_state_variable_14 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_46805; case 4: ; if (ldv_state_variable_14 == 1) { mv88x201x_interrupt_enable(mv88x201x_ops_group0); ldv_state_variable_14 = 1; } else { } if (ldv_state_variable_14 == 2) { mv88x201x_interrupt_enable(mv88x201x_ops_group0); ldv_state_variable_14 = 2; } else { } goto ldv_46805; case 5: ; if (ldv_state_variable_14 == 1) { mv88x201x_set_loopback(mv88x201x_ops_group0, ldvarg69); ldv_state_variable_14 = 1; } else { } if (ldv_state_variable_14 == 2) { mv88x201x_set_loopback(mv88x201x_ops_group0, ldvarg69); ldv_state_variable_14 = 2; } else { } goto ldv_46805; case 6: ; if (ldv_state_variable_14 == 1) { mv88x201x_reset(mv88x201x_ops_group0, ldvarg68); ldv_state_variable_14 = 1; } else { } if (ldv_state_variable_14 == 2) { mv88x201x_reset(mv88x201x_ops_group0, ldvarg68); ldv_state_variable_14 = 2; } else { } goto ldv_46805; case 7: ; if (ldv_state_variable_14 == 1) { mv88x201x_get_link_status(mv88x201x_ops_group0, ldvarg66, ldvarg65, ldvarg64, ldvarg67); ldv_state_variable_14 = 1; } else { } if (ldv_state_variable_14 == 2) { mv88x201x_get_link_status(mv88x201x_ops_group0, ldvarg66, ldvarg65, ldvarg64, ldvarg67); ldv_state_variable_14 = 2; } else { } goto ldv_46805; case 8: ; if (ldv_state_variable_14 == 1) { ldv_probe_14(); ldv_state_variable_14 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_46805; default: ldv_stop(); } ldv_46805: ; return; } } bool ldv_queue_work_on_324(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_325(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___3 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_326(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_327(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_328(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_pskb_expand_head_340(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_342(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_344(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_345(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_346(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_347(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_348(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } int ldv_pskb_expand_head_349(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_350(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } bool ldv_queue_work_on_370(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_372(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_371(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_374(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_373(struct workqueue_struct *ldv_func_arg1 ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; bool ldv_cancel_delayed_work_sync_397(struct delayed_work *ldv_func_arg1 ) ; __inline static bool queue_delayed_work___0(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = ldv_queue_delayed_work_on_371(8192, wq, dwork, delay); return (tmp); } } __inline static bool schedule_delayed_work___0(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = queue_delayed_work___0(system_wq, dwork, delay); return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; void activate_work_4(struct work_struct *work , int state ) ; void call_and_disable_all_4(int state ) ; void disable_work_4(struct work_struct *work ) ; void invoke_work_4(void) ; void call_and_disable_work_4(struct work_struct *work ) ; struct sk_buff *ldv_skb_clone_388(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_396(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_390(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_386(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_394(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_395(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_391(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_392(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_393(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; static int my3126_reset(struct cphy *cphy , int wait ) { { return (0); } } static int my3126_interrupt_enable(struct cphy *cphy ) { { schedule_delayed_work___0(& cphy->phy_update, 8UL); t1_tpi_read(cphy->adapter, 1048600U, & cphy->elmer_gpo); return (0); } } static int my3126_interrupt_disable(struct cphy *cphy ) { { ldv_cancel_delayed_work_sync_397(& cphy->phy_update); return (0); } } static int my3126_interrupt_clear(struct cphy *cphy ) { { return (0); } } static int my3126_interrupt_handler(struct cphy *cphy ) { u32 val ; u16 val16 ; u16 status ; u32 act_count ; adapter_t *adapter ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { adapter = cphy->adapter; if (cphy->count == 50) { cphy_mdio_read(cphy, 1, 1, & val); val16 = (unsigned short )val; status = (u16 )((int )cphy->bmsr ^ (int )val16); if (((int )status & 4) != 0) { t1_link_changed(adapter, 0); } else { } cphy->bmsr = val16; cphy->count = 0; } else { } t1_tpi_write(adapter, 33792U, 1U); t1_tpi_read(adapter, 33872U, & act_count); t1_tpi_read(adapter, 34384U, & val); act_count = act_count + val; t1_tpi_read(adapter, 1048600U, & val); cphy->elmer_gpo = val; if ((((val & 256U) != 0U || (val & 524288U) != 0U) || (u32 )cphy->act_count == act_count) || cphy->act_on != 0) { tmp___0 = adapter_matches_type((adapter_t const *)adapter, 2, 3); if (tmp___0 != 0) { val = val | 512U; } else { tmp = adapter_matches_type((adapter_t const *)adapter, 1, 1); if (tmp != 0) { val = val | 1048576U; } else { } } cphy->act_on = 0; } else { tmp___2 = adapter_matches_type((adapter_t const *)adapter, 2, 3); if (tmp___2 != 0) { val = val & 4294966783U; } else { tmp___1 = adapter_matches_type((adapter_t const *)adapter, 1, 1); if (tmp___1 != 0) { val = val & 4293918719U; } else { } } cphy->act_on = 1; } t1_tpi_write(adapter, 1048600U, val); cphy->elmer_gpo = val; cphy->act_count = (int )act_count; cphy->count = cphy->count + 1; return (1); } } static void my3216_poll(struct work_struct *work ) { struct cphy *cphy ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; cphy = (struct cphy *)__mptr + 0xfffffffffffffff0UL; my3126_interrupt_handler(cphy); return; } } static int my3126_set_loopback(struct cphy *cphy , int on ) { { return (0); } } static int my3126_get_link_status(struct cphy *cphy , int *link_ok , int *speed , int *duplex , int *fc ) { u32 val ; u16 val16 ; adapter_t *adapter ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { adapter = cphy->adapter; cphy_mdio_read(cphy, 1, 1, & val); val16 = (unsigned short )val; t1_tpi_read(adapter, 1048600U, & val); cphy->elmer_gpo = val; *link_ok = (int )val16 & 4; if (*link_ok != 0) { tmp___0 = adapter_matches_type((adapter_t const *)adapter, 2, 3); if (tmp___0 != 0) { val = val & 4294967039U; } else { tmp = adapter_matches_type((adapter_t const *)adapter, 1, 1); if (tmp != 0) { val = val & 4294443007U; } else { } } } else { tmp___2 = adapter_matches_type((adapter_t const *)adapter, 2, 3); if (tmp___2 != 0) { val = val | 256U; } else { tmp___1 = adapter_matches_type((adapter_t const *)adapter, 1, 1); if (tmp___1 != 0) { val = val | 524288U; } else { } } } t1_tpi_write(adapter, 1048600U, val); cphy->elmer_gpo = val; *speed = 10000; *duplex = 1; if ((unsigned long )fc != (unsigned long )((int *)0)) { *fc = 3; } else { } return (0); } } static void my3126_destroy(struct cphy *cphy ) { { kfree((void const *)cphy); return; } } static struct cphy_ops my3126_ops = {& my3126_destroy, & my3126_reset, & my3126_interrupt_enable, & my3126_interrupt_disable, & my3126_interrupt_clear, & my3126_interrupt_handler, 0, 0, 0, 0, & my3126_set_loopback, 0, & my3126_get_link_status, 26U}; static struct cphy *my3126_phy_create(struct net_device *dev , int phy_addr , struct mdio_ops const *mdio_ops ) { struct cphy *cphy ; void *tmp ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; { tmp = kzalloc(320UL, 208U); cphy = (struct cphy *)tmp; if ((unsigned long )cphy == (unsigned long )((struct cphy *)0)) { return ((struct cphy *)0); } else { } cphy_init(cphy, dev, phy_addr, & my3126_ops, mdio_ops); __init_work(& cphy->phy_update.work, 0); __constr_expr_0.counter = 137438953408L; cphy->phy_update.work.data = __constr_expr_0; lockdep_init_map(& cphy->phy_update.work.lockdep_map, "(&(&cphy->phy_update)->work)", & __key, 0); INIT_LIST_HEAD(& cphy->phy_update.work.entry); cphy->phy_update.work.func = & my3216_poll; init_timer_key(& cphy->phy_update.timer, 2097152U, "(&(&cphy->phy_update)->timer)", & __key___0); cphy->phy_update.timer.function = & delayed_work_timer_fn; cphy->phy_update.timer.data = (unsigned long )(& cphy->phy_update); cphy->bmsr = 0U; return (cphy); } } static int my3126_phy_reset(adapter_t *adapter ) { u32 val ; { t1_tpi_read(adapter, 1048600U, & val); val = val & 4294967291U; t1_tpi_write(adapter, 1048600U, val); msleep(100U); t1_tpi_write(adapter, 1048600U, val | 4U); msleep(1000U); t1_tpi_read(adapter, 1048600U, & val); val = val | 32768U; t1_tpi_write(adapter, 1048600U, val); __const_udelay(429500UL); return (0); } } struct gphy const t1_my3126_ops = {& my3126_phy_create, & my3126_phy_reset}; extern int ldv_probe_12(void) ; void activate_work_4(struct work_struct *work , int state ) { { if (ldv_work_4_0 == 0) { ldv_work_struct_4_0 = work; ldv_work_4_0 = state; return; } else { } if (ldv_work_4_1 == 0) { ldv_work_struct_4_1 = work; ldv_work_4_1 = state; return; } else { } if (ldv_work_4_2 == 0) { ldv_work_struct_4_2 = work; ldv_work_4_2 = state; return; } else { } if (ldv_work_4_3 == 0) { ldv_work_struct_4_3 = work; ldv_work_4_3 = state; return; } else { } return; } } void call_and_disable_all_4(int state ) { { if (ldv_work_4_0 == state) { call_and_disable_work_4(ldv_work_struct_4_0); } else { } if (ldv_work_4_1 == state) { call_and_disable_work_4(ldv_work_struct_4_1); } else { } if (ldv_work_4_2 == state) { call_and_disable_work_4(ldv_work_struct_4_2); } else { } if (ldv_work_4_3 == state) { call_and_disable_work_4(ldv_work_struct_4_3); } else { } return; } } void ldv_initialize_cphy_ops_12(void) { void *tmp ; { tmp = ldv_init_zalloc(320UL); my3126_ops_group0 = (struct cphy *)tmp; return; } } void disable_work_4(struct work_struct *work ) { { if ((ldv_work_4_0 == 3 || ldv_work_4_0 == 2) && (unsigned long )ldv_work_struct_4_0 == (unsigned long )work) { ldv_work_4_0 = 1; } else { } if ((ldv_work_4_1 == 3 || ldv_work_4_1 == 2) && (unsigned long )ldv_work_struct_4_1 == (unsigned long )work) { ldv_work_4_1 = 1; } else { } if ((ldv_work_4_2 == 3 || ldv_work_4_2 == 2) && (unsigned long )ldv_work_struct_4_2 == (unsigned long )work) { ldv_work_4_2 = 1; } else { } if ((ldv_work_4_3 == 3 || ldv_work_4_3 == 2) && (unsigned long )ldv_work_struct_4_3 == (unsigned long )work) { ldv_work_4_3 = 1; } else { } return; } } void work_init_4(void) { { ldv_work_4_0 = 0; ldv_work_4_1 = 0; ldv_work_4_2 = 0; ldv_work_4_3 = 0; return; } } void invoke_work_4(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_work_4_0 == 2 || ldv_work_4_0 == 3) { ldv_work_4_0 = 4; my3216_poll(ldv_work_struct_4_0); ldv_work_4_0 = 1; } else { } goto ldv_46810; case 1: ; if (ldv_work_4_1 == 2 || ldv_work_4_1 == 3) { ldv_work_4_1 = 4; my3216_poll(ldv_work_struct_4_0); ldv_work_4_1 = 1; } else { } goto ldv_46810; case 2: ; if (ldv_work_4_2 == 2 || ldv_work_4_2 == 3) { ldv_work_4_2 = 4; my3216_poll(ldv_work_struct_4_0); ldv_work_4_2 = 1; } else { } goto ldv_46810; case 3: ; if (ldv_work_4_3 == 2 || ldv_work_4_3 == 3) { ldv_work_4_3 = 4; my3216_poll(ldv_work_struct_4_0); ldv_work_4_3 = 1; } else { } goto ldv_46810; default: ldv_stop(); } ldv_46810: ; return; } } void call_and_disable_work_4(struct work_struct *work ) { { if ((ldv_work_4_0 == 2 || ldv_work_4_0 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_0) { my3216_poll(work); ldv_work_4_0 = 1; return; } else { } if ((ldv_work_4_1 == 2 || ldv_work_4_1 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_1) { my3216_poll(work); ldv_work_4_1 = 1; return; } else { } if ((ldv_work_4_2 == 2 || ldv_work_4_2 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_2) { my3216_poll(work); ldv_work_4_2 = 1; return; } else { } if ((ldv_work_4_3 == 2 || ldv_work_4_3 == 3) && (unsigned long )work == (unsigned long )ldv_work_struct_4_3) { my3216_poll(work); ldv_work_4_3 = 1; return; } else { } return; } } void ldv_main_exported_11(void) { struct mdio_ops *ldvarg2 ; void *tmp ; adapter_t *ldvarg0 ; void *tmp___0 ; int ldvarg3 ; struct net_device *ldvarg1 ; void *tmp___1 ; int tmp___2 ; { tmp = ldv_init_zalloc(32UL); ldvarg2 = (struct mdio_ops *)tmp; tmp___0 = ldv_init_zalloc(2240UL); ldvarg0 = (adapter_t *)tmp___0; tmp___1 = ldv_init_zalloc(3008UL); ldvarg1 = (struct net_device *)tmp___1; ldv_memset((void *)(& ldvarg3), 0, 4UL); tmp___2 = __VERIFIER_nondet_int(); switch (tmp___2) { case 0: ; if (ldv_state_variable_11 == 1) { my3126_phy_create(ldvarg1, ldvarg3, (struct mdio_ops const *)ldvarg2); ldv_state_variable_11 = 1; } else { } goto ldv_46828; case 1: ; if (ldv_state_variable_11 == 1) { my3126_phy_reset(ldvarg0); ldv_state_variable_11 = 1; } else { } goto ldv_46828; default: ldv_stop(); } ldv_46828: ; return; } } void ldv_main_exported_12(void) { int *ldvarg52 ; void *tmp ; int ldvarg56 ; int ldvarg55 ; int *ldvarg53 ; void *tmp___0 ; int *ldvarg51 ; void *tmp___1 ; int *ldvarg54 ; void *tmp___2 ; int tmp___3 ; { tmp = ldv_init_zalloc(4UL); ldvarg52 = (int *)tmp; tmp___0 = ldv_init_zalloc(4UL); ldvarg53 = (int *)tmp___0; tmp___1 = ldv_init_zalloc(4UL); ldvarg51 = (int *)tmp___1; tmp___2 = ldv_init_zalloc(4UL); ldvarg54 = (int *)tmp___2; ldv_memset((void *)(& ldvarg56), 0, 4UL); ldv_memset((void *)(& ldvarg55), 0, 4UL); tmp___3 = __VERIFIER_nondet_int(); switch (tmp___3) { case 0: ; if (ldv_state_variable_12 == 1) { my3126_interrupt_clear(my3126_ops_group0); ldv_state_variable_12 = 1; } else { } if (ldv_state_variable_12 == 2) { my3126_interrupt_clear(my3126_ops_group0); ldv_state_variable_12 = 2; } else { } goto ldv_46841; case 1: ; if (ldv_state_variable_12 == 1) { my3126_interrupt_handler(my3126_ops_group0); ldv_state_variable_12 = 1; } else { } if (ldv_state_variable_12 == 2) { my3126_interrupt_handler(my3126_ops_group0); ldv_state_variable_12 = 2; } else { } goto ldv_46841; case 2: ; if (ldv_state_variable_12 == 1) { my3126_interrupt_disable(my3126_ops_group0); ldv_state_variable_12 = 1; } else { } if (ldv_state_variable_12 == 2) { my3126_interrupt_disable(my3126_ops_group0); ldv_state_variable_12 = 2; } else { } goto ldv_46841; case 3: ; if (ldv_state_variable_12 == 2) { my3126_destroy(my3126_ops_group0); ldv_state_variable_12 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_46841; case 4: ; if (ldv_state_variable_12 == 1) { my3126_interrupt_enable(my3126_ops_group0); ldv_state_variable_12 = 1; } else { } if (ldv_state_variable_12 == 2) { my3126_interrupt_enable(my3126_ops_group0); ldv_state_variable_12 = 2; } else { } goto ldv_46841; case 5: ; if (ldv_state_variable_12 == 1) { my3126_set_loopback(my3126_ops_group0, ldvarg56); ldv_state_variable_12 = 1; } else { } if (ldv_state_variable_12 == 2) { my3126_set_loopback(my3126_ops_group0, ldvarg56); ldv_state_variable_12 = 2; } else { } goto ldv_46841; case 6: ; if (ldv_state_variable_12 == 1) { my3126_reset(my3126_ops_group0, ldvarg55); ldv_state_variable_12 = 1; } else { } if (ldv_state_variable_12 == 2) { my3126_reset(my3126_ops_group0, ldvarg55); ldv_state_variable_12 = 2; } else { } goto ldv_46841; case 7: ; if (ldv_state_variable_12 == 1) { my3126_get_link_status(my3126_ops_group0, ldvarg53, ldvarg52, ldvarg51, ldvarg54); ldv_state_variable_12 = 1; } else { } if (ldv_state_variable_12 == 2) { my3126_get_link_status(my3126_ops_group0, ldvarg53, ldvarg52, ldvarg51, ldvarg54); ldv_state_variable_12 = 2; } else { } goto ldv_46841; case 8: ; if (ldv_state_variable_12 == 1) { ldv_probe_12(); ldv_state_variable_12 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_46841; default: ldv_stop(); } ldv_46841: ; return; } } bool ldv_queue_work_on_370(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_371(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___3 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_372(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_373(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_374(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_pskb_expand_head_386(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_388(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_390(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_391(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_392(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_393(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_394(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } int ldv_pskb_expand_head_395(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_396(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } bool ldv_cancel_delayed_work_sync_397(struct delayed_work *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; bool tmp ; { tmp = cancel_delayed_work_sync(ldv_func_arg1); ldv_func_res = tmp; disable_work_2(& ldv_func_arg1->work); return (ldv_func_res); } } bool ldv_queue_work_on_418(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_420(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_419(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_422(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_421(struct workqueue_struct *ldv_func_arg1 ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_436(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_444(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_438(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_434(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_442(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_443(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_439(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_440(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_441(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static int simple_mdio_read(struct cphy *cphy , int reg , unsigned int *valp ) { int tmp ; { tmp = cphy_mdio_read(cphy, -1, reg, valp); return (tmp); } } __inline static int simple_mdio_write(struct cphy *cphy , int reg , unsigned int val ) { int tmp ; { tmp = cphy_mdio_write(cphy, -1, reg, val); return (tmp); } } static void mdio_set_bit(struct cphy *cphy , int reg , u32 bitval ) { u32 val ; { simple_mdio_read(cphy, reg, & val); simple_mdio_write(cphy, reg, val | bitval); return; } } static void mdio_clear_bit(struct cphy *cphy , int reg , u32 bitval ) { u32 val ; { simple_mdio_read(cphy, reg, & val); simple_mdio_write(cphy, reg, ~ bitval & val); return; } } static int mv88e1xxx_reset(struct cphy *cphy , int wait ) { u32 ctl ; int time_out ; { time_out = 1000; mdio_set_bit(cphy, 0, 32768U); ldv_46741: simple_mdio_read(cphy, 0, & ctl); ctl = ctl & 32768U; if (ctl != 0U) { __const_udelay(4295UL); } else { } if (ctl != 0U) { time_out = time_out - 1; if (time_out != 0) { goto ldv_46741; } else { goto ldv_46742; } } else { } ldv_46742: ; return (ctl != 0U ? -1 : 0); } } static int mv88e1xxx_interrupt_enable(struct cphy *cphy ) { u32 elmer ; int tmp ; int tmp___0 ; { simple_mdio_write(cphy, 18, 27808U); tmp___0 = t1_is_asic((adapter_t const *)cphy->adapter); if (tmp___0 != 0) { t1_tpi_read(cphy->adapter, 1048584U, & elmer); elmer = elmer | 2U; tmp = adapter_matches_type((adapter_t const *)cphy->adapter, 2, 3); if (tmp != 0) { elmer = elmer | 28U; } else { } t1_tpi_write(cphy->adapter, 1048584U, elmer); } else { } return (0); } } static int mv88e1xxx_interrupt_disable(struct cphy *cphy ) { u32 elmer ; int tmp ; int tmp___0 ; { simple_mdio_write(cphy, 18, 0U); tmp___0 = t1_is_asic((adapter_t const *)cphy->adapter); if (tmp___0 != 0) { t1_tpi_read(cphy->adapter, 1048584U, & elmer); elmer = elmer & 4294967293U; tmp = adapter_matches_type((adapter_t const *)cphy->adapter, 2, 3); if (tmp != 0) { elmer = elmer & 4294967267U; } else { } t1_tpi_write(cphy->adapter, 1048584U, elmer); } else { } return (0); } } static int mv88e1xxx_interrupt_clear(struct cphy *cphy ) { u32 elmer ; int tmp ; int tmp___0 ; { simple_mdio_read(cphy, 19, & elmer); tmp___0 = t1_is_asic((adapter_t const *)cphy->adapter); if (tmp___0 != 0) { t1_tpi_read(cphy->adapter, 1048588U, & elmer); elmer = elmer | 2U; tmp = adapter_matches_type((adapter_t const *)cphy->adapter, 2, 3); if (tmp != 0) { elmer = elmer | 28U; } else { } t1_tpi_write(cphy->adapter, 1048588U, elmer); } else { } return (0); } } static int mv88e1xxx_set_speed_duplex(struct cphy *phy , int speed , int duplex ) { u32 ctl ; { simple_mdio_read(phy, 0, & ctl); if (speed >= 0) { ctl = ctl & 4294954943U; if (speed == 100) { ctl = ctl | 8192U; } else if (speed == 1000) { ctl = ctl | 64U; } else { } } else { } if (duplex >= 0) { ctl = ctl & 4294962943U; if (duplex == 1) { ctl = ctl | 256U; } else { } } else { } if ((ctl & 64U) != 0U) { ctl = ctl | 4096U; } else { } simple_mdio_write(phy, 0, ctl); return (0); } } static int mv88e1xxx_crossover_set(struct cphy *cphy , int crossover ) { u32 data32 ; { simple_mdio_read(cphy, 16, & data32); data32 = data32 & 4294967199U; data32 = (u32 )(crossover << 5) | data32; simple_mdio_write(cphy, 16, data32); return (0); } } static int mv88e1xxx_autoneg_enable(struct cphy *cphy ) { u32 ctl ; { mv88e1xxx_crossover_set(cphy, 3); simple_mdio_read(cphy, 0, & ctl); ctl = ctl | 4608U; simple_mdio_write(cphy, 0, ctl); return (0); } } static int mv88e1xxx_autoneg_disable(struct cphy *cphy ) { u32 ctl ; { mv88e1xxx_crossover_set(cphy, 0); simple_mdio_read(cphy, 0, & ctl); ctl = ctl & 4294963199U; simple_mdio_write(cphy, 0, ctl | 512U); return (0); } } static int mv88e1xxx_autoneg_restart(struct cphy *cphy ) { { mdio_set_bit(cphy, 0, 512U); return (0); } } static int mv88e1xxx_advertise(struct cphy *phy , unsigned int advertise_map ) { u32 val ; { val = 0U; if ((advertise_map & 48U) != 0U) { simple_mdio_read(phy, 9, & val); val = val & 4294966527U; if ((advertise_map & 16U) != 0U) { val = val | 256U; } else { } if ((advertise_map & 32U) != 0U) { val = val | 512U; } else { } } else { } simple_mdio_write(phy, 9, val); val = 1U; if ((int )advertise_map & 1) { val = val | 32U; } else { } if ((advertise_map & 2U) != 0U) { val = val | 64U; } else { } if ((advertise_map & 4U) != 0U) { val = val | 128U; } else { } if ((advertise_map & 8U) != 0U) { val = val | 256U; } else { } if ((advertise_map & 8192U) != 0U) { val = val | 1024U; } else { } if ((advertise_map & 16384U) != 0U) { val = val | 2048U; } else { } simple_mdio_write(phy, 4, val); return (0); } } static int mv88e1xxx_set_loopback(struct cphy *cphy , int on ) { { if (on != 0) { mdio_set_bit(cphy, 0, 16384U); } else { mdio_clear_bit(cphy, 0, 16384U); } return (0); } } static int mv88e1xxx_get_link_status(struct cphy *cphy , int *link_ok , int *speed , int *duplex , int *fc ) { u32 status ; int sp ; int dplx ; int pause ; { sp = -1; dplx = -1; pause = 0; simple_mdio_read(cphy, 17, & status); if ((status & 2048U) != 0U) { if ((status & 4U) != 0U) { pause = pause | 1; } else { } if ((status & 8U) != 0U) { pause = pause | 2; } else { } dplx = (status & 8192U) != 0U; sp = (int )(status >> 14) & 3; if (sp == 0) { sp = 10; } else if (sp == 1) { sp = 100; } else { sp = 1000; } } else { } if ((unsigned long )link_ok != (unsigned long )((int *)0)) { *link_ok = (status & 1024U) != 0U; } else { } if ((unsigned long )speed != (unsigned long )((int *)0)) { *speed = sp; } else { } if ((unsigned long )duplex != (unsigned long )((int *)0)) { *duplex = dplx; } else { } if ((unsigned long )fc != (unsigned long )((int *)0)) { *fc = pause; } else { } return (0); } } static int mv88e1xxx_downshift_set(struct cphy *cphy , int downshift_enable ) { u32 val ; { simple_mdio_read(cphy, 20, & val); val = val & 4294963455U; if (downshift_enable != 0) { val = val | 1280U; } else { } simple_mdio_write(cphy, 20, val); return (0); } } static int mv88e1xxx_interrupt_handler(struct cphy *cphy ) { int cphy_cause ; u32 status ; u32 cause ; { cphy_cause = 0; ldv_46809: simple_mdio_read(cphy, 19, & cause); cause = cause & 27808U; if (cause == 0U) { goto ldv_46808; } else { } if ((cause & 1024U) != 0U) { simple_mdio_read(cphy, 17, & status); if ((status & 1024U) != 0U) { cphy->state = cphy->state | 1; } else { cphy->state = cphy->state & -2; if ((cphy->state & 4) != 0) { cphy->state = cphy->state & -3; } else { } cphy_cause = cphy_cause | 1; } } else { } if ((cause & 2048U) != 0U) { cphy->state = cphy->state | 2; } else { } if ((cphy->state & 3) == 3) { cphy_cause = cphy_cause | 1; } else { } goto ldv_46809; ldv_46808: ; return (cphy_cause); } } static void mv88e1xxx_destroy(struct cphy *cphy ) { { kfree((void const *)cphy); return; } } static struct cphy_ops mv88e1xxx_ops = {& mv88e1xxx_destroy, & mv88e1xxx_reset, & mv88e1xxx_interrupt_enable, & mv88e1xxx_interrupt_disable, & mv88e1xxx_interrupt_clear, & mv88e1xxx_interrupt_handler, & mv88e1xxx_autoneg_enable, & mv88e1xxx_autoneg_disable, & mv88e1xxx_autoneg_restart, & mv88e1xxx_advertise, & mv88e1xxx_set_loopback, & mv88e1xxx_set_speed_duplex, & mv88e1xxx_get_link_status, 0U}; static struct cphy *mv88e1xxx_phy_create(struct net_device *dev , int phy_addr , struct mdio_ops const *mdio_ops ) { struct adapter *adapter ; void *tmp ; struct cphy *cphy ; void *tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct adapter *)tmp; tmp___0 = kzalloc(320UL, 208U); cphy = (struct cphy *)tmp___0; if ((unsigned long )cphy == (unsigned long )((struct cphy *)0)) { return ((struct cphy *)0); } else { } cphy_init(cphy, dev, phy_addr, & mv88e1xxx_ops, mdio_ops); if (((unsigned long )(adapter->params.brd_info)->caps & 128UL) != 0UL && (unsigned int )((unsigned char )(adapter->params.brd_info)->chip_phy) == 1U) { simple_mdio_write(cphy, 29, 11U); simple_mdio_write(cphy, 30, 32772U); } else { } mv88e1xxx_downshift_set(cphy, 1); tmp___1 = adapter_matches_type((adapter_t const *)adapter, 2, 3); if (tmp___1 != 0) { simple_mdio_write(cphy, 24, 1U); } else { } return (cphy); } } static int mv88e1xxx_phy_reset(adapter_t *adapter ) { { return (0); } } struct gphy const t1_mv88e1xxx_ops = {& mv88e1xxx_phy_create, & mv88e1xxx_phy_reset}; extern int ldv_probe_10(void) ; void ldv_initialize_cphy_ops_10(void) { void *tmp ; { tmp = ldv_init_zalloc(320UL); mv88e1xxx_ops_group0 = (struct cphy *)tmp; return; } } void ldv_main_exported_10(void) { unsigned int ldvarg96 ; int *ldvarg92 ; void *tmp ; int ldvarg97 ; int ldvarg98 ; int *ldvarg93 ; void *tmp___0 ; int ldvarg90 ; int ldvarg91 ; int *ldvarg94 ; void *tmp___1 ; int *ldvarg95 ; void *tmp___2 ; int tmp___3 ; { tmp = ldv_init_zalloc(4UL); ldvarg92 = (int *)tmp; tmp___0 = ldv_init_zalloc(4UL); ldvarg93 = (int *)tmp___0; tmp___1 = ldv_init_zalloc(4UL); ldvarg94 = (int *)tmp___1; tmp___2 = ldv_init_zalloc(4UL); ldvarg95 = (int *)tmp___2; ldv_memset((void *)(& ldvarg96), 0, 4UL); ldv_memset((void *)(& ldvarg97), 0, 4UL); ldv_memset((void *)(& ldvarg98), 0, 4UL); ldv_memset((void *)(& ldvarg90), 0, 4UL); ldv_memset((void *)(& ldvarg91), 0, 4UL); tmp___3 = __VERIFIER_nondet_int(); switch (tmp___3) { case 0: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_interrupt_clear(mv88e1xxx_ops_group0); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_interrupt_clear(mv88e1xxx_ops_group0); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 1: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_autoneg_enable(mv88e1xxx_ops_group0); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_autoneg_enable(mv88e1xxx_ops_group0); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 2: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_autoneg_restart(mv88e1xxx_ops_group0); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_autoneg_restart(mv88e1xxx_ops_group0); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 3: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_interrupt_handler(mv88e1xxx_ops_group0); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_interrupt_handler(mv88e1xxx_ops_group0); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 4: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_interrupt_disable(mv88e1xxx_ops_group0); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_interrupt_disable(mv88e1xxx_ops_group0); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 5: ; if (ldv_state_variable_10 == 2) { mv88e1xxx_destroy(mv88e1xxx_ops_group0); ldv_state_variable_10 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_46843; case 6: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_set_loopback(mv88e1xxx_ops_group0, ldvarg98); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_set_loopback(mv88e1xxx_ops_group0, ldvarg98); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 7: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_interrupt_enable(mv88e1xxx_ops_group0); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_interrupt_enable(mv88e1xxx_ops_group0); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 8: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_reset(mv88e1xxx_ops_group0, ldvarg97); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_reset(mv88e1xxx_ops_group0, ldvarg97); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 9: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_autoneg_disable(mv88e1xxx_ops_group0); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_autoneg_disable(mv88e1xxx_ops_group0); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 10: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_advertise(mv88e1xxx_ops_group0, ldvarg96); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_advertise(mv88e1xxx_ops_group0, ldvarg96); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 11: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_get_link_status(mv88e1xxx_ops_group0, ldvarg94, ldvarg93, ldvarg92, ldvarg95); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_get_link_status(mv88e1xxx_ops_group0, ldvarg94, ldvarg93, ldvarg92, ldvarg95); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 12: ; if (ldv_state_variable_10 == 1) { mv88e1xxx_set_speed_duplex(mv88e1xxx_ops_group0, ldvarg91, ldvarg90); ldv_state_variable_10 = 1; } else { } if (ldv_state_variable_10 == 2) { mv88e1xxx_set_speed_duplex(mv88e1xxx_ops_group0, ldvarg91, ldvarg90); ldv_state_variable_10 = 2; } else { } goto ldv_46843; case 13: ; if (ldv_state_variable_10 == 1) { ldv_probe_10(); ldv_state_variable_10 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_46843; default: ldv_stop(); } ldv_46843: ; return; } } void ldv_main_exported_9(void) { adapter_t *ldvarg47 ; void *tmp ; int ldvarg50 ; struct mdio_ops *ldvarg49 ; void *tmp___0 ; struct net_device *ldvarg48 ; void *tmp___1 ; int tmp___2 ; { tmp = ldv_init_zalloc(2240UL); ldvarg47 = (adapter_t *)tmp; tmp___0 = ldv_init_zalloc(32UL); ldvarg49 = (struct mdio_ops *)tmp___0; tmp___1 = ldv_init_zalloc(3008UL); ldvarg48 = (struct net_device *)tmp___1; ldv_memset((void *)(& ldvarg50), 0, 4UL); tmp___2 = __VERIFIER_nondet_int(); switch (tmp___2) { case 0: ; if (ldv_state_variable_9 == 1) { mv88e1xxx_phy_create(ldvarg48, ldvarg50, (struct mdio_ops const *)ldvarg49); ldv_state_variable_9 = 1; } else { } goto ldv_46866; case 1: ; if (ldv_state_variable_9 == 1) { mv88e1xxx_phy_reset(ldvarg47); ldv_state_variable_9 = 1; } else { } goto ldv_46866; default: ldv_stop(); } ldv_46866: ; return; } } bool ldv_queue_work_on_418(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_419(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___3 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_420(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_421(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_422(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_pskb_expand_head_434(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_436(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_438(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_439(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_440(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_441(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_442(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } int ldv_pskb_expand_head_443(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_444(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static void ldv_spin_lock_bh_455(spinlock_t *lock ) { { _raw_spin_lock_bh(& lock->__annonCompField18.rlock); return; } } __inline static void spin_lock_bh(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_459(spinlock_t *lock ) { { _raw_spin_unlock_bh(& lock->__annonCompField18.rlock); return; } } __inline static void spin_unlock_bh(spinlock_t *lock ) ; bool ldv_queue_work_on_464(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_work_on_466(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) ; bool ldv_queue_delayed_work_on_465(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; bool ldv_queue_delayed_work_on_468(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) ; void ldv_flush_workqueue_467(struct workqueue_struct *ldv_func_arg1 ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_482(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_clone_490(struct sk_buff *ldv_func_arg1 , gfp_t flags ) ; struct sk_buff *ldv_skb_copy_484(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; int ldv_pskb_expand_head_480(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_488(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; int ldv_pskb_expand_head_489(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_485(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_486(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; struct sk_buff *ldv___netdev_alloc_skb_487(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; static void vsc_read(adapter_t *adapter , u32 addr , u32 *val ) { u32 status ; u32 vlo ; u32 vhi ; int i ; { spin_lock_bh(& adapter->mac_lock); t1_tpi_read(adapter, (addr << 2) + 4U, & vlo); i = 0; ldv_46792: t1_tpi_read(adapter, 262140U, & vlo); t1_tpi_read(adapter, 262136U, & vhi); status = (vhi << 16) | vlo; i = i + 1; if ((status & 1U) == 0U && i <= 49) { goto ldv_46792; } else { } if (i == 50) { printk("\vcxgb: Invalid tpi read from MAC, breaking loop.\n"); } else { } t1_tpi_read(adapter, 262132U, & vlo); t1_tpi_read(adapter, 262128U, & vhi); *val = (vhi << 16) | vlo; spin_unlock_bh(& adapter->mac_lock); return; } } static void vsc_write(adapter_t *adapter , u32 addr , u32 data ) { { spin_lock_bh(& adapter->mac_lock); t1_tpi_write(adapter, (addr << 2) + 4U, data & 65535U); t1_tpi_write(adapter, addr << 2, data >> 16); spin_unlock_bh(& adapter->mac_lock); return; } } static void vsc7326_full_reset(adapter_t *adapter ) { u32 val ; u32 result ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; { result = 65535U; t1_tpi_read(adapter, 1048600U, & val); val = val & 4294967294U; t1_tpi_write(adapter, 1048600U, val); __const_udelay(8590UL); val = val | 1U; val = val | 2048U; t1_tpi_write(adapter, 1048600U, val); if (1) { __const_udelay(4295000UL); } else { __ms = 1UL; goto ldv_46806; ldv_46805: __const_udelay(4295000UL); ldv_46806: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_46805; } else { } } vsc_write(adapter, 65028U, 2147483649U); ldv_46812: ; if (1) { __const_udelay(4295000UL); } else { __ms___0 = 1UL; goto ldv_46810; ldv_46809: __const_udelay(4295000UL); ldv_46810: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_46809; } else { } } vsc_read(adapter, 65028U, & result); if (result != 0U) { goto ldv_46812; } else { } return; } } static struct init_table vsc7326_reset[15U] = { {65038U, 0U}, {58390U, 32U}, {65074U, 330752U}, {65074U, 330752U}, {58380U, 12052U}, {40960U, 263177U}, {41094U, 524288U}, {40968U, 134742020U}, {40964U, 68227076U}, {40970U, 2147490308U}, {40966U, 33619968U}, {16478U, 0U}, {16990U, 0U}, {16414U, 169869329U}, {16926U, 2684420241U}}; static struct init_table vsc7326_portinit[4U][22U] = { { {8236U, 1264U}, {8242U, 471297U}, {16384U, 34U}, {16896U, 34U}, {16416U, 4128768U}, {16928U, 1179648U}, {16512U, 122029911U}, {17024U, 27271167U}, {16544U, 0U}, {17056U, 0U}, {17984U, 196607U}, {17472U, 196607U}, {16384U, 32U}, {16896U, 32U}, {8196U, 10000U}, {8220U, 2U}, {8202U, 2660U}, {8234U, 16U}, {8212U, 62563184U}, {8214U, 131U}, {8214U, 130U}, {8192U, 33564063U}}, { {8748U, 1264U}, {8754U, 471297U}, {16386U, 34U}, {16898U, 34U}, {16418U, 8257599U}, {16930U, 2359314U}, {16514U, 122029911U}, {17026U, 27271167U}, {16546U, 0U}, {17058U, 0U}, {17986U, 196607U}, {17474U, 196607U}, {16386U, 32U}, {16898U, 32U}, {8708U, 10000U}, {8732U, 2U}, {8714U, 2660U}, {8746U, 16U}, {8724U, 62563184U}, {8726U, 131U}, {8726U, 130U}, {8704U, 33564063U}}, { {9260U, 1264U}, {9266U, 471297U}, {16388U, 34U}, {16900U, 34U}, {16420U, 12386430U}, {16932U, 3538980U}, {16516U, 122029911U}, {17028U, 27271167U}, {16548U, 0U}, {17060U, 0U}, {17988U, 196607U}, {17476U, 196607U}, {16388U, 32U}, {16900U, 32U}, {9220U, 10000U}, {9244U, 2U}, {9226U, 2660U}, {9258U, 16U}, {9236U, 62563184U}, {9238U, 131U}, {9238U, 130U}, {9216U, 33564063U}}, { {9772U, 1264U}, {9778U, 471297U}, {16390U, 34U}, {16902U, 34U}, {16422U, 16515261U}, {16934U, 4718646U}, {16518U, 122029911U}, {17030U, 27271167U}, {16550U, 0U}, {17062U, 0U}, {17990U, 196607U}, {17478U, 196607U}, {16390U, 32U}, {16902U, 32U}, {9732U, 10000U}, {9756U, 2U}, {9738U, 2660U}, {9770U, 16U}, {9748U, 62563184U}, {9750U, 131U}, {9750U, 130U}, {9728U, 33564063U}}}; static void run_table(adapter_t *adapter , struct init_table *ib , int len ) { int i ; { i = 0; goto ldv_46823; ldv_46822: ; if ((ib + (unsigned long )i)->addr == 4294967295U) { __udelay((unsigned long )(ib + (unsigned long )i)->data); printk("\vcxgb: sleep %d us\n", (ib + (unsigned long )i)->data); } else { vsc_write(adapter, (ib + (unsigned long )i)->addr, (ib + (unsigned long )i)->data); } i = i + 1; ldv_46823: ; if (i < len) { goto ldv_46822; } else { } return; } } static int bist_rd(adapter_t *adapter , int moduleid , int address ) { int data ; u32 result ; { data = 0; result = 0U; if ((((address != 0 && address != 1) && address != 2) && address != 13) && address != 14) { printk("\vcxgb: No bist address: 0x%x\n", address); } else { } data = ((address & 255) << 16) | (moduleid & 255); vsc_write(adapter, 57856U, (u32 )data); __const_udelay(42950UL); vsc_read(adapter, 57858U, & result); if ((result & 512U) != 0U) { printk("\vcxgb: Still in bist read: 0x%x\n", result); } else if ((result & 256U) != 0U) { printk("\vcxgb: bist read error: 0x%x\n", result); } else { } return ((int )result & 255); } } static int bist_wr(adapter_t *adapter , int moduleid , int address , int value ) { int data ; u32 result ; { data = 0; result = 0U; if ((((address != 0 && address != 1) && address != 2) && address != 13) && address != 14) { printk("\vcxgb: No bist address: 0x%x\n", address); } else { } if (value > 255) { printk("\vcxgb: Suspicious write out of range value: 0x%x\n", value); } else { } data = ((((address & 255) << 16) | 16777216) | (value << 8)) | (moduleid & 255); vsc_write(adapter, 57856U, (u32 )data); __const_udelay(21475UL); vsc_read(adapter, 57856U, & result); if ((result & 134217728U) != 0U) { printk("\vcxgb: Still in bist write: 0x%x\n", result); } else if ((result & 67108864U) != 0U) { printk("\vcxgb: bist write error: 0x%x\n", result); } else { } return (0); } } static int run_bist(adapter_t *adapter , int moduleid ) { { bist_wr(adapter, moduleid, 0, 2); bist_wr(adapter, moduleid, 1, 1); return (0); } } static int check_bist(adapter_t *adapter , int moduleid ) { int result ; int column ; int tmp ; int tmp___0 ; { result = 0; column = 0; result = bist_rd(adapter, moduleid, 2); tmp = bist_rd(adapter, moduleid, 14); tmp___0 = bist_rd(adapter, moduleid, 13); column = (tmp << 8) + tmp___0; if ((result & 3) != 3) { printk("\vcxgb: Result: 0x%x BIST error in ram %d, column: 0x%04x\n", result, moduleid, column); } else { } return (0); } } static int enable_mem(adapter_t *adapter , int moduleid ) { { bist_wr(adapter, moduleid, 0, 0); return (0); } } static int run_bist_all(adapter_t *adapter ) { int port ; u32 val ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; { port = 0; val = 0U; vsc_write(adapter, 65032U, 5U); vsc_read(adapter, 65032U, & val); port = 0; goto ldv_46860; ldv_46859: vsc_write(adapter, (u32 )(((port & 15) << 9) | 8214), 0U); port = port + 1; ldv_46860: ; if (port <= 11) { goto ldv_46859; } else { } __const_udelay(1288500UL); vsc_write(adapter, 40960U, 263177U); __const_udelay(1288500UL); run_bist(adapter, 13); run_bist(adapter, 14); run_bist(adapter, 20); run_bist(adapter, 21); __ms = 200UL; goto ldv_46864; ldv_46863: __const_udelay(4295000UL); ldv_46864: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_46863; } else { } check_bist(adapter, 13); check_bist(adapter, 14); check_bist(adapter, 20); check_bist(adapter, 21); __const_udelay(429500UL); enable_mem(adapter, 13); enable_mem(adapter, 14); enable_mem(adapter, 20); enable_mem(adapter, 21); __const_udelay(1288500UL); vsc_write(adapter, 40960U, 1610875904U); __const_udelay(1288500UL); port = 0; goto ldv_46867; ldv_46866: vsc_write(adapter, (u32 )(((port & 15) << 9) | 8214), 1U); port = port + 1; ldv_46867: ; if (port <= 11) { goto ldv_46866; } else { } __const_udelay(1288500UL); vsc_write(adapter, 65032U, 0U); __ms___0 = 10UL; goto ldv_46871; ldv_46870: __const_udelay(4295000UL); ldv_46871: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_46870; } else { } return (0); } } static int mac_intr_handler(struct cmac___0 *mac ) { { return (0); } } static int mac_intr_enable(struct cmac___0 *mac ) { { return (0); } } static int mac_intr_disable(struct cmac___0 *mac ) { { return (0); } } static int mac_intr_clear(struct cmac___0 *mac ) { { return (0); } } static int mac_set_address(struct cmac___0 *mac , u8 *addr ) { u32 val ; int port ; { port = (int )(mac->instance)->index; vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8200), (u32 )((((int )*(addr + 3UL) << 16) | ((int )*(addr + 4UL) << 8)) | (int )*(addr + 5UL))); vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8198), (u32 )((((int )*addr << 16) | ((int )*(addr + 1UL) << 8)) | (int )*(addr + 2UL))); vsc_read(mac->adapter, 16410U, & val); val = val & 268435455U; vsc_write(mac->adapter, 16410U, (u32 )(port << 28) | val); vsc_write(mac->adapter, 16538U, ((unsigned int )((int )*(addr + 4UL) << 8) | (unsigned int )*(addr + 5UL)) | 4294901760U); vsc_write(mac->adapter, 16570U, ((unsigned int )((int )*(addr + 2UL) << 8) | (unsigned int )*(addr + 3UL)) | 4294901760U); vsc_write(mac->adapter, 16602U, ((unsigned int )((int )*addr << 8) | (unsigned int )*(addr + 1UL)) | 4294901760U); return (0); } } static int mac_get_address(struct cmac___0 *mac , u8 *addr ) { u32 addr_lo ; u32 addr_hi ; int port ; { port = (int )(mac->instance)->index; vsc_read(mac->adapter, (u32 )(((port & 15) << 9) | 8200), & addr_lo); vsc_read(mac->adapter, (u32 )(((port & 15) << 9) | 8198), & addr_hi); *addr = (unsigned char )(addr_hi >> 16); *(addr + 1UL) = (unsigned char )(addr_hi >> 8); *(addr + 2UL) = (unsigned char )addr_hi; *(addr + 3UL) = (unsigned char )(addr_lo >> 16); *(addr + 4UL) = (unsigned char )(addr_lo >> 8); *(addr + 5UL) = (unsigned char )addr_lo; return (0); } } static int mac_reset(struct cmac___0 *mac ) { int index ; { index = (int )(mac->instance)->index; run_table(mac->adapter, (struct init_table *)(& vsc7326_portinit) + (unsigned long )index, 22); return (0); } } static int mac_set_rx_mode(struct cmac___0 *mac , struct t1_rx_mode *rm ) { u32 v ; int port ; { port = (int )(mac->instance)->index; vsc_read(mac->adapter, 16410U, & v); v = v | 4096U; if (((rm->dev)->flags & 256U) != 0U) { v = (u32 )(~ (1 << (port + 16))) & v; } else { v = (u32 )(1 << (port + 16)) | v; } vsc_write(mac->adapter, 16410U, v); return (0); } } static int mac_set_mtu(struct cmac___0 *mac , int mtu ) { int port ; { port = (int )(mac->instance)->index; if (mtu > 9600) { return (-22); } else { } vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8196), (u32 )(mtu + 18)); return (0); } } static int mac_set_speed_duplex_fc(struct cmac___0 *mac , int speed , int duplex , int fc ) { u32 v ; int enable ; int port ; { port = (int )(mac->instance)->index; if (((speed >= 0 && speed != 10) && speed != 100) && speed != 1000) { return (-1); } else { } if (duplex > 0 && duplex != 1) { return (-1); } else { } if (speed >= 0) { vsc_read(mac->adapter, (u32 )(((port & 15) << 9) | 8192), & v); enable = (int )v & 3; v = v & 4294967280U; v = v | 4U; if (speed == 1000) { v = v | 8U; } else { } enable = (int )((u32 )enable | v); vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8192), v); if (speed == 1000) { v = 130U; } else if (speed == 100) { v = 132U; } else { v = 134U; } vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8214), v | 1U); vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8214), v); vsc_read(mac->adapter, (u32 )(((port & 15) << 9) | 8236), & v); v = v & 4294902015U; if (speed == 1000) { v = v | 1024U; } else if (speed == 100) { v = v | 8192U; } else { v = v | 65280U; } vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8236), v); vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8240), speed == 1000 ? 5U : 17U); if (duplex == 0) { enable = 0; } else if (speed == 1000) { enable = 12; } else { enable = 4; } enable = enable | 9216; enable = enable | 384; enable = enable | 16; enable = enable | 3; vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8192), (u32 )enable); } else { } vsc_read(mac->adapter, (u32 )(((port & 15) << 9) | 8194), & v); v = v & 4293984255U; v = v | 131072U; if (fc & 1) { v = v | 262144U; } else { } if ((fc & 2) != 0) { v = v | 524288U; } else { } if (fc == 3) { v = v | 65536U; } else { } vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8194), v); return (0); } } static int mac_enable(struct cmac___0 *mac , int which ) { u32 val ; int port ; { port = (int )(mac->instance)->index; vsc_write(mac->adapter, (u32 )((((port + 64) & 255) << 1) | 16896), 21627888U); vsc_read(mac->adapter, (u32 )(((port & 15) << 9) | 8192), & val); if (which & 1) { val = val | 2U; } else { } if ((which & 2) != 0) { val = val | 1U; } else { } vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8192), val); return (0); } } static int mac_disable(struct cmac___0 *mac , int which ) { u32 val ; int i ; int port ; { port = (int )(mac->instance)->index; mac_reset(mac); vsc_read(mac->adapter, (u32 )(((port & 15) << 9) | 8192), & val); if (which & 1) { val = val & 4294967293U; } else { } if ((which & 2) != 0) { val = val & 4294967294U; } else { } vsc_write(mac->adapter, (u32 )(((port & 15) << 9) | 8192), val); vsc_read(mac->adapter, (u32 )(((port & 15) << 9) | 8192), & val); i = 0; goto ldv_46938; ldv_46937: vsc_write(mac->adapter, (u32 )((((port & 15) << 9) | 32768) | ((i & 255) << 1)), 0U); i = i + 1; ldv_46938: ; if (i <= 58) { goto ldv_46937; } else { } memset((void *)(& mac->stats), 0, 288UL); return (0); } } static void rmon_update(struct cmac___0 *mac , unsigned int addr , u64 *stat ) { u32 v ; u32 lo ; { vsc_read(mac->adapter, addr, & v); lo = (u32 )*stat; *stat = (*stat - (u64 )lo) + (u64 )v; if (v == 0U) { return; } else { } if (v < lo) { *stat = *stat + 4294967296ULL; } else { } return; } } static void port_stats_update(struct cmac___0 *mac ) { struct __anonstruct_hw_stats_333 hw_stats[18U] ; struct __anonstruct_p_334 *p ; unsigned int port ; u64 *stats ; unsigned int i ; { hw_stats[0].reg = 6U; hw_stats[0].offset = 19U; hw_stats[1].reg = 7U; hw_stats[1].offset = 20U; hw_stats[2].reg = 8U; hw_stats[2].offset = 21U; hw_stats[3].reg = 9U; hw_stats[3].offset = 23U; hw_stats[4].reg = 10U; hw_stats[4].offset = 24U; hw_stats[5].reg = 15U; hw_stats[5].offset = 33U; hw_stats[6].reg = 2U; hw_stats[6].offset = 22U; hw_stats[7].reg = 16U; hw_stats[7].offset = 29U; hw_stats[8].reg = 12U; hw_stats[8].offset = 28U; hw_stats[9].reg = 11U; hw_stats[9].offset = 28U; hw_stats[10].reg = 1U; hw_stats[10].offset = 25U; hw_stats[11].reg = 23U; hw_stats[11].offset = 34U; hw_stats[12].reg = 27U; hw_stats[12].offset = 2U; hw_stats[13].reg = 28U; hw_stats[13].offset = 3U; hw_stats[14].reg = 29U; hw_stats[14].offset = 4U; hw_stats[15].reg = 25U; hw_stats[15].offset = 5U; hw_stats[16].reg = 58U; hw_stats[16].offset = 10U; hw_stats[17].reg = 42U; hw_stats[17].offset = 15U; p = (struct __anonstruct_337 *)(& hw_stats); port = (mac->instance)->index; stats = (u64 *)(& mac->stats); i = 0U; goto ldv_46961; ldv_46960: rmon_update(mac, (((port & 15U) << 9) | ((p->reg & 255U) << 1)) | 32768U, stats + (unsigned long )p->offset); i = i + 1U; ldv_46961: ; if (i <= 17U) { goto ldv_46960; } else { } rmon_update(mac, ((port & 15U) << 9) | 32820U, & mac->stats.TxOctetsOK); rmon_update(mac, ((port & 15U) << 9) | 32776U, & mac->stats.RxOctetsOK); rmon_update(mac, ((port & 15U) << 9) | 32778U, & mac->stats.RxOctetsBad); return; } } static struct cmac_statistics const *mac_update_statistics(struct cmac___0 *mac , int flag ) { int port ; { if (flag == 1 || (mac->instance)->ticks > 119U) { port_stats_update(mac); (mac->instance)->ticks = 0U; } else { port = (int )(mac->instance)->index; rmon_update(mac, (unsigned int )(((port & 15) << 9) | 32776), & mac->stats.RxOctetsOK); rmon_update(mac, (unsigned int )(((port & 15) << 9) | 32778), & mac->stats.RxOctetsBad); rmon_update(mac, (unsigned int )(((port & 15) << 9) | 32820), & mac->stats.TxOctetsOK); (mac->instance)->ticks = (mac->instance)->ticks + 1U; } return ((struct cmac_statistics const *)(& mac->stats)); } } static void mac_destroy(struct cmac___0 *mac ) { { kfree((void const *)mac); return; } } static struct cmac_ops vsc7326_ops = {& mac_destroy, & mac_reset, & mac_intr_enable, & mac_intr_disable, & mac_intr_clear, & mac_intr_handler, & mac_enable, & mac_disable, 0, 0, & mac_set_mtu, & mac_set_rx_mode, & mac_set_speed_duplex_fc, 0, & mac_update_statistics, & mac_get_address, & mac_set_address}; static struct cmac___0 *vsc7326_mac_create(adapter_t *adapter , int index ) { struct cmac___0 *mac ; u32 val ; int i ; void *tmp ; u32 vhi ; u32 vlo ; { tmp = kzalloc(320UL, 208U); mac = (struct cmac___0 *)tmp; if ((unsigned long )mac == (unsigned long )((struct cmac___0 *)0)) { return ((struct cmac___0 *)0); } else { } mac->ops = (struct cmac_ops const *)(& vsc7326_ops); mac->instance = (cmac_instance___0 *)mac + 1U; mac->adapter = adapter; (mac->instance)->index = (u32 )index; (mac->instance)->ticks = 0U; i = 0; ldv_46981: vlo = 0U; vhi = vlo; t1_tpi_read(adapter, 262140U, & vlo); __const_udelay(4295UL); t1_tpi_read(adapter, 262136U, & vhi); __const_udelay(21475UL); val = (vhi << 16) | vlo; i = i + 1; if (i <= 9999 && val == 4294967295U) { goto ldv_46981; } else { } return (mac); } } static int vsc7326_mac_reset(adapter_t *adapter ) { { vsc7326_full_reset(adapter); run_bist_all(adapter); run_table(adapter, (struct init_table *)(& vsc7326_reset), 15); return (0); } } struct gmac const t1_vsc7326_ops = {15U, & vsc7326_mac_create, & vsc7326_mac_reset}; void ldv_initialize_cmac_ops_8(void) { void *tmp ; { tmp = ldv_init_zalloc(312UL); vsc7326_ops_group0 = (struct cmac___0 *)tmp; return; } } void ldv_main_exported_8(void) { int ldvarg83 ; int ldvarg82 ; struct t1_rx_mode *ldvarg79 ; void *tmp ; int ldvarg86 ; u8 *ldvarg87 ; void *tmp___0 ; int ldvarg80 ; u8 *ldvarg88 ; void *tmp___1 ; int ldvarg84 ; int ldvarg85 ; int ldvarg81 ; int tmp___2 ; { tmp = ldv_init_zalloc(8UL); ldvarg79 = (struct t1_rx_mode *)tmp; tmp___0 = ldv_init_zalloc(1UL); ldvarg87 = (u8 *)tmp___0; tmp___1 = ldv_init_zalloc(1UL); ldvarg88 = (u8 *)tmp___1; ldv_memset((void *)(& ldvarg83), 0, 4UL); ldv_memset((void *)(& ldvarg82), 0, 4UL); ldv_memset((void *)(& ldvarg86), 0, 4UL); ldv_memset((void *)(& ldvarg80), 0, 4UL); ldv_memset((void *)(& ldvarg84), 0, 4UL); ldv_memset((void *)(& ldvarg85), 0, 4UL); ldv_memset((void *)(& ldvarg81), 0, 4UL); tmp___2 = __VERIFIER_nondet_int(); switch (tmp___2) { case 0: ; if (ldv_state_variable_8 == 1) { mac_intr_clear(vsc7326_ops_group0); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 1: ; if (ldv_state_variable_8 == 1) { mac_intr_handler(vsc7326_ops_group0); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 2: ; if (ldv_state_variable_8 == 1) { mac_set_address(vsc7326_ops_group0, ldvarg88); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 3: ; if (ldv_state_variable_8 == 1) { mac_get_address(vsc7326_ops_group0, ldvarg87); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 4: ; if (ldv_state_variable_8 == 1) { mac_enable(vsc7326_ops_group0, ldvarg86); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 5: ; if (ldv_state_variable_8 == 1) { mac_intr_disable(vsc7326_ops_group0); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 6: ; if (ldv_state_variable_8 == 1) { mac_disable(vsc7326_ops_group0, ldvarg85); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 7: ; if (ldv_state_variable_8 == 1) { mac_destroy(vsc7326_ops_group0); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 8: ; if (ldv_state_variable_8 == 1) { mac_intr_enable(vsc7326_ops_group0); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 9: ; if (ldv_state_variable_8 == 1) { mac_reset(vsc7326_ops_group0); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 10: ; if (ldv_state_variable_8 == 1) { mac_set_mtu(vsc7326_ops_group0, ldvarg84); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 11: ; if (ldv_state_variable_8 == 1) { mac_set_speed_duplex_fc(vsc7326_ops_group0, ldvarg83, ldvarg82, ldvarg81); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 12: ; if (ldv_state_variable_8 == 1) { mac_update_statistics(vsc7326_ops_group0, ldvarg80); ldv_state_variable_8 = 1; } else { } goto ldv_47006; case 13: ; if (ldv_state_variable_8 == 1) { mac_set_rx_mode(vsc7326_ops_group0, ldvarg79); ldv_state_variable_8 = 1; } else { } goto ldv_47006; default: ldv_stop(); } ldv_47006: ; return; } } void ldv_main_exported_7(void) { adapter_t *ldvarg15 ; void *tmp ; adapter_t *ldvarg16 ; void *tmp___0 ; int ldvarg17 ; int tmp___1 ; { tmp = ldv_init_zalloc(2240UL); ldvarg15 = (adapter_t *)tmp; tmp___0 = ldv_init_zalloc(2240UL); ldvarg16 = (adapter_t *)tmp___0; ldv_memset((void *)(& ldvarg17), 0, 4UL); tmp___1 = __VERIFIER_nondet_int(); switch (tmp___1) { case 0: ; if (ldv_state_variable_7 == 1) { vsc7326_mac_create(ldvarg16, ldvarg17); ldv_state_variable_7 = 1; } else { } goto ldv_47028; case 1: ; if (ldv_state_variable_7 == 1) { vsc7326_mac_reset(ldvarg15); ldv_state_variable_7 = 1; } else { } goto ldv_47028; default: ldv_stop(); } ldv_47028: ; return; } } __inline static void spin_lock_bh(spinlock_t *lock ) { { ldv_spin_lock(); ldv_spin_lock_bh_455(lock); return; } } __inline static void spin_unlock_bh(spinlock_t *lock ) { { ldv_spin_unlock(); ldv_spin_unlock_bh_459(lock); return; } } bool ldv_queue_work_on_464(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } bool ldv_queue_delayed_work_on_465(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___3 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } bool ldv_queue_work_on_466(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct work_struct *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; bool tmp ; { tmp = queue_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; activate_work_2(ldv_func_arg3, 2); return (ldv_func_res); } } void ldv_flush_workqueue_467(struct workqueue_struct *ldv_func_arg1 ) { { flush_workqueue(ldv_func_arg1); call_and_disable_all_2(2); return; } } bool ldv_queue_delayed_work_on_468(int ldv_func_arg1 , struct workqueue_struct *ldv_func_arg2 , struct delayed_work *ldv_func_arg3 , unsigned long ldv_func_arg4 ) { ldv_func_ret_type___5 ldv_func_res ; bool tmp ; { tmp = queue_delayed_work_on(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); ldv_func_res = tmp; activate_work_2(& ldv_func_arg3->work, 2); return (ldv_func_res); } } int ldv_pskb_expand_head_480(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_482(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv_skb_copy_484(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_485(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_486(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } struct sk_buff *ldv___netdev_alloc_skb_487(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } int ldv_pskb_expand_head_488(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } int ldv_pskb_expand_head_489(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { ldv_check_alloc_flags(flags); return __VERIFIER_nondet_int(); } } struct sk_buff *ldv_skb_clone_490(struct sk_buff *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); return ((struct sk_buff *)tmp); } } __inline static void ldv_error(void) { { ERROR: ; {reach_error();} } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { tmp = ldv_is_err(ptr); if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } int ldv_spin = 0; void ldv_check_alloc_flags(gfp_t flags ) { { if (ldv_spin != 0 && (flags & 16U) != 0U) { ldv_error(); } else { } return; } } extern struct page *ldv_some_page(void) ; struct page *ldv_check_alloc_flags_and_return_some_page(gfp_t flags ) { struct page *tmp ; { if (ldv_spin != 0 && (flags & 16U) != 0U) { ldv_error(); } else { } tmp = ldv_some_page(); return (tmp); } } void ldv_check_alloc_nonatomic(void) { { if (ldv_spin != 0) { ldv_error(); } else { } return; } } void ldv_spin_lock(void) { { ldv_spin = 1; return; } } void ldv_spin_unlock(void) { { ldv_spin = 0; return; } } int ldv_spin_trylock(void) { int is_lock ; { is_lock = ldv_undef_int(); if (is_lock != 0) { return (0); } else { ldv_spin = 1; return (1); } } } #include "model/linux-4.2-rc1.tar.xz-43_2a-drivers--net--ethernet--chelsio--cxgb--cxgb.ko-entry_point_true-unreach-call.cil.out.env.c" #include "model/common.env.c"