/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "linux-4.0-rc1---drivers--media--usb--dvb-usb-v2--dvb-usb-mxl111sf.ko.cil.c.cil.c", 5, "reach_error"); } typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct urb; struct device; struct completion; struct usb_device; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct net_device; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; typedef unsigned long kernel_ulong_t; struct usb_device_id { __u16 match_flags ; __u16 idVendor ; __u16 idProduct ; __u16 bcdDevice_lo ; __u16 bcdDevice_hi ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 bInterfaceNumber ; kernel_ulong_t driver_info ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct input_device_id { kernel_ulong_t flags ; __u16 bustype ; __u16 vendor ; __u16 product ; __u16 version ; kernel_ulong_t evbit[1U] ; kernel_ulong_t keybit[12U] ; kernel_ulong_t relbit[1U] ; kernel_ulong_t absbit[1U] ; kernel_ulong_t mscbit[1U] ; kernel_ulong_t ledbit[1U] ; kernel_ulong_t sndbit[1U] ; kernel_ulong_t ffbit[2U] ; kernel_ulong_t swbit[1U] ; kernel_ulong_t driver_info ; }; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct timespec; struct compat_timespec; struct __anonstruct_futex_33 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_34 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_35 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_32 { struct __anonstruct_futex_33 futex ; struct __anonstruct_nanosleep_34 nanosleep ; struct __anonstruct_poll_35 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_32 __annonCompField19 ; }; struct vm_area_struct; struct llist_node; struct llist_node { struct llist_node *next ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_112 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_112 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct __anonstruct_nodemask_t_113 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_113 nodemask_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct __anonstruct_mm_context_t_114 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_114 mm_context_t; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct bio_vec; struct notifier_block; struct device_node; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct proc_dir_entry; struct exception_table_entry { int insn ; int fixup ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct kref { atomic_t refcount ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; union __anonunion____missing_field_name_145 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_145 __annonCompField33 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_146 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_146 __annonCompField34 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_147 { uid_t val ; }; typedef struct __anonstruct_kuid_t_147 kuid_t; struct __anonstruct_kgid_t_148 { gid_t val ; }; typedef struct __anonstruct_kgid_t_148 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_150 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_149 { struct __anonstruct____missing_field_name_150 __annonCompField35 ; }; struct lockref { union __anonunion____missing_field_name_149 __annonCompField36 ; }; struct vfsmount; struct __anonstruct____missing_field_name_152 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_151 { struct __anonstruct____missing_field_name_152 __annonCompField37 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_151 __annonCompField38 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_153 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_153 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct mem_cgroup; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_155 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_154 { struct __anonstruct____missing_field_name_155 __annonCompField39 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_154 __annonCompField40 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct backing_dev_info; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_158 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_158 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_159 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_159 __annonCompField42 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_162 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_163 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_164 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_162 __annonCompField43 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_163 __annonCompField44 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_164 __annonCompField45 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_165 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_165 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_167 { struct list_head link ; int state ; }; union __anonunion_fl_u_166 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_167 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_166 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_173 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_174 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_172 { struct __anonstruct____missing_field_name_173 __annonCompField48 ; struct __anonstruct____missing_field_name_174 __annonCompField49 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_172 __annonCompField50 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_175 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_177 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_181 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_180 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_181 __annonCompField53 ; int units ; }; struct __anonstruct____missing_field_name_179 { union __anonunion____missing_field_name_180 __annonCompField54 ; atomic_t _count ; }; union __anonunion____missing_field_name_178 { unsigned long counters ; struct __anonstruct____missing_field_name_179 __annonCompField55 ; unsigned int active ; }; struct __anonstruct____missing_field_name_176 { union __anonunion____missing_field_name_177 __annonCompField52 ; union __anonunion____missing_field_name_178 __annonCompField56 ; }; struct __anonstruct____missing_field_name_183 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_184 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_182 { struct list_head lru ; struct __anonstruct____missing_field_name_183 __annonCompField58 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_184 __annonCompField59 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_185 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_175 __annonCompField51 ; struct __anonstruct____missing_field_name_176 __annonCompField57 ; union __anonunion____missing_field_name_182 __annonCompField60 ; union __anonunion____missing_field_name_185 __annonCompField61 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_186 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_186 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_188 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_188 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_190 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_191 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_192 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_193 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_195 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_194 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_195 _addr_bnd ; }; struct __anonstruct__sigpoll_196 { long _band ; int _fd ; }; struct __anonstruct__sigsys_197 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_189 { int _pad[28U] ; struct __anonstruct__kill_190 _kill ; struct __anonstruct__timer_191 _timer ; struct __anonstruct__rt_192 _rt ; struct __anonstruct__sigchld_193 _sigchld ; struct __anonstruct__sigfault_194 _sigfault ; struct __anonstruct__sigpoll_196 _sigpoll ; struct __anonstruct__sigsys_197 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_189 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct rb_root waiters ; struct rb_node *waiters_leftmost ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_201 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_200 { struct __anonstruct____missing_field_name_201 __annonCompField62 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_200 __annonCompField63 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_202 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_203 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_205 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_204 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_205 __annonCompField66 ; }; union __anonunion_type_data_206 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_208 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_207 { union __anonunion_payload_208 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_202 __annonCompField64 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_203 __annonCompField65 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_204 __annonCompField67 ; union __anonunion_type_data_206 type_data ; union __anonunion____missing_field_name_207 __annonCompField68 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct usb_driver; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; int streams ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned char sysfs_files_created : 1 ; unsigned char ep_devs_created : 1 ; unsigned char unregistering : 1 ; unsigned char needs_remote_wakeup : 1 ; unsigned char needs_altsetting0 : 1 ; unsigned char needs_binding : 1 ; unsigned char resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned char is_b_host : 1 ; unsigned char b_hnp_enable : 1 ; unsigned char no_stop_on_short : 1 ; unsigned char no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; struct mutex usb_address0_mutex ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned char can_submit : 1 ; unsigned char persist_enabled : 1 ; unsigned char have_langid : 1 ; unsigned char authorized : 1 ; unsigned char authenticated : 1 ; unsigned char wusb : 1 ; unsigned char lpm_capable : 1 ; unsigned char usb2_hw_lpm_capable : 1 ; unsigned char usb2_hw_lpm_besl_capable : 1 ; unsigned char usb2_hw_lpm_enabled : 1 ; unsigned char usb2_hw_lpm_allowed : 1 ; unsigned char usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned char do_remote_wakeup : 1 ; unsigned char reset_resume : 1 ; unsigned char port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_dynids { spinlock_t lock ; struct list_head list ; }; struct usbdrv_wrap { struct device_driver driver ; int for_devices ; }; struct usb_driver { char const *name ; int (*probe)(struct usb_interface * , struct usb_device_id const * ) ; void (*disconnect)(struct usb_interface * ) ; int (*unlocked_ioctl)(struct usb_interface * , unsigned int , void * ) ; int (*suspend)(struct usb_interface * , pm_message_t ) ; int (*resume)(struct usb_interface * ) ; int (*reset_resume)(struct usb_interface * ) ; int (*pre_reset)(struct usb_interface * ) ; int (*post_reset)(struct usb_interface * ) ; struct usb_device_id const *id_table ; struct usb_dynids dynids ; struct usbdrv_wrap drvwrap ; unsigned char no_dynamic_id : 1 ; unsigned char supports_autosuspend : 1 ; unsigned char disable_hub_initiated_lpm : 1 ; unsigned char soft_unbind : 1 ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned char poisoned : 1 ; }; struct scatterlist; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_adapter; struct i2c_client; enum i2c_slave_event; enum i2c_slave_event; struct i2c_client { unsigned short flags ; unsigned short addr ; char name[20U] ; struct i2c_adapter *adapter ; struct device dev ; int irq ; struct list_head detected ; int (*slave_cb)(struct i2c_client * , enum i2c_slave_event , u8 * ) ; }; enum i2c_slave_event { I2C_SLAVE_REQ_READ_START = 0, I2C_SLAVE_REQ_READ_END = 1, I2C_SLAVE_REQ_WRITE_START = 2, I2C_SLAVE_REQ_WRITE_END = 3, I2C_SLAVE_STOP = 4 } ; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; int (*reg_slave)(struct i2c_client * ) ; int (*unreg_slave)(struct i2c_client * ) ; }; struct i2c_bus_recovery_info { int (*recover_bus)(struct i2c_adapter * ) ; int (*get_scl)(struct i2c_adapter * ) ; void (*set_scl)(struct i2c_adapter * , int ) ; int (*get_sda)(struct i2c_adapter * ) ; void (*prepare_recovery)(struct i2c_bus_recovery_info * ) ; void (*unprepare_recovery)(struct i2c_bus_recovery_info * ) ; int scl_gpio ; int sda_gpio ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; struct i2c_bus_recovery_info *bus_recovery_info ; }; struct input_id { __u16 bustype ; __u16 vendor ; __u16 product ; __u16 version ; }; struct input_absinfo { __s32 value ; __s32 minimum ; __s32 maximum ; __s32 fuzz ; __s32 flat ; __s32 resolution ; }; struct input_keymap_entry { __u8 flags ; __u8 len ; __u16 index ; __u32 keycode ; __u8 scancode[32U] ; }; struct ff_replay { __u16 length ; __u16 delay ; }; struct ff_trigger { __u16 button ; __u16 interval ; }; struct ff_envelope { __u16 attack_length ; __u16 attack_level ; __u16 fade_length ; __u16 fade_level ; }; struct ff_constant_effect { __s16 level ; struct ff_envelope envelope ; }; struct ff_ramp_effect { __s16 start_level ; __s16 end_level ; struct ff_envelope envelope ; }; struct ff_condition_effect { __u16 right_saturation ; __u16 left_saturation ; __s16 right_coeff ; __s16 left_coeff ; __u16 deadband ; __s16 center ; }; struct ff_periodic_effect { __u16 waveform ; __u16 period ; __s16 magnitude ; __s16 offset ; __u16 phase ; struct ff_envelope envelope ; __u32 custom_len ; __s16 *custom_data ; }; struct ff_rumble_effect { __u16 strong_magnitude ; __u16 weak_magnitude ; }; union __anonunion_u_211 { struct ff_constant_effect constant ; struct ff_ramp_effect ramp ; struct ff_periodic_effect periodic ; struct ff_condition_effect condition[2U] ; struct ff_rumble_effect rumble ; }; struct ff_effect { __u16 type ; __s16 id ; __u16 direction ; struct ff_trigger trigger ; struct ff_replay replay ; union __anonunion_u_211 u ; }; struct input_value { __u16 type ; __u16 code ; __s32 value ; }; struct ff_device; struct input_mt; struct input_handle; struct input_dev { char const *name ; char const *phys ; char const *uniq ; struct input_id id ; unsigned long propbit[1U] ; unsigned long evbit[1U] ; unsigned long keybit[12U] ; unsigned long relbit[1U] ; unsigned long absbit[1U] ; unsigned long mscbit[1U] ; unsigned long ledbit[1U] ; unsigned long sndbit[1U] ; unsigned long ffbit[2U] ; unsigned long swbit[1U] ; unsigned int hint_events_per_packet ; unsigned int keycodemax ; unsigned int keycodesize ; void *keycode ; int (*setkeycode)(struct input_dev * , struct input_keymap_entry const * , unsigned int * ) ; int (*getkeycode)(struct input_dev * , struct input_keymap_entry * ) ; struct ff_device *ff ; unsigned int repeat_key ; struct timer_list timer ; int rep[2U] ; struct input_mt *mt ; struct input_absinfo *absinfo ; unsigned long key[12U] ; unsigned long led[1U] ; unsigned long snd[1U] ; unsigned long sw[1U] ; int (*open)(struct input_dev * ) ; void (*close)(struct input_dev * ) ; int (*flush)(struct input_dev * , struct file * ) ; int (*event)(struct input_dev * , unsigned int , unsigned int , int ) ; struct input_handle *grab ; spinlock_t event_lock ; struct mutex mutex ; unsigned int users ; bool going_away ; struct device dev ; struct list_head h_list ; struct list_head node ; unsigned int num_vals ; unsigned int max_vals ; struct input_value *vals ; bool devres_managed ; }; struct input_handler { void *private ; void (*event)(struct input_handle * , unsigned int , unsigned int , int ) ; void (*events)(struct input_handle * , struct input_value const * , unsigned int ) ; bool (*filter)(struct input_handle * , unsigned int , unsigned int , int ) ; bool (*match)(struct input_handler * , struct input_dev * ) ; int (*connect)(struct input_handler * , struct input_dev * , struct input_device_id const * ) ; void (*disconnect)(struct input_handle * ) ; void (*start)(struct input_handle * ) ; bool legacy_minors ; int minor ; char const *name ; struct input_device_id const *id_table ; struct list_head h_list ; struct list_head node ; }; struct input_handle { void *private ; int open ; char const *name ; struct input_dev *dev ; struct input_handler *handler ; struct list_head d_node ; struct list_head h_node ; }; struct ff_device { int (*upload)(struct input_dev * , struct ff_effect * , struct ff_effect * ) ; int (*erase)(struct input_dev * , int ) ; int (*playback)(struct input_dev * , int , int ) ; void (*set_gain)(struct input_dev * , u16 ) ; void (*set_autocenter)(struct input_dev * , u16 ) ; void (*destroy)(struct ff_device * ) ; void *private ; unsigned long ffbit[2U] ; struct mutex mutex ; int max_effects ; struct ff_effect *effects ; struct file *effect_owners[] ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; enum rc_type { RC_TYPE_UNKNOWN = 0, RC_TYPE_OTHER = 1, RC_TYPE_LIRC = 2, RC_TYPE_RC5 = 3, RC_TYPE_RC5X = 4, RC_TYPE_RC5_SZ = 5, RC_TYPE_JVC = 6, RC_TYPE_SONY12 = 7, RC_TYPE_SONY15 = 8, RC_TYPE_SONY20 = 9, RC_TYPE_NEC = 10, RC_TYPE_SANYO = 11, RC_TYPE_MCE_KBD = 12, RC_TYPE_RC6_0 = 13, RC_TYPE_RC6_6A_20 = 14, RC_TYPE_RC6_6A_24 = 15, RC_TYPE_RC6_6A_32 = 16, RC_TYPE_RC6_MCE = 17, RC_TYPE_SHARP = 18, RC_TYPE_XMP = 19 } ; struct rc_map_table { u32 scancode ; u32 keycode ; }; struct rc_map { struct rc_map_table *scan ; unsigned int size ; unsigned int len ; unsigned int alloc ; enum rc_type rc_type ; char const *name ; spinlock_t lock ; }; enum rc_driver_type { RC_DRIVER_SCANCODE = 0, RC_DRIVER_IR_RAW = 1 } ; struct rc_scancode_filter { u32 data ; u32 mask ; }; struct ir_raw_event_ctrl; struct rc_dev { struct device dev ; struct attribute_group const *sysfs_groups[5U] ; char const *input_name ; char const *input_phys ; struct input_id input_id ; char *driver_name ; char const *map_name ; struct rc_map rc_map ; struct mutex lock ; unsigned long devno ; struct ir_raw_event_ctrl *raw ; struct input_dev *input_dev ; enum rc_driver_type driver_type ; bool idle ; u64 allowed_protocols ; u64 enabled_protocols ; u64 allowed_wakeup_protocols ; u64 enabled_wakeup_protocols ; struct rc_scancode_filter scancode_filter ; struct rc_scancode_filter scancode_wakeup_filter ; u32 scancode_mask ; u32 users ; void *priv ; spinlock_t keylock ; bool keypressed ; unsigned long keyup_jiffies ; struct timer_list timer_keyup ; u32 last_keycode ; enum rc_type last_protocol ; u32 last_scancode ; u8 last_toggle ; u32 timeout ; u32 min_timeout ; u32 max_timeout ; u32 rx_resolution ; u32 tx_resolution ; int (*change_protocol)(struct rc_dev * , u64 * ) ; int (*change_wakeup_protocol)(struct rc_dev * , u64 * ) ; int (*open)(struct rc_dev * ) ; void (*close)(struct rc_dev * ) ; int (*s_tx_mask)(struct rc_dev * , u32 ) ; int (*s_tx_carrier)(struct rc_dev * , u32 ) ; int (*s_tx_duty_cycle)(struct rc_dev * , u32 ) ; int (*s_rx_carrier_range)(struct rc_dev * , u32 , u32 ) ; int (*tx_ir)(struct rc_dev * , unsigned int * , unsigned int ) ; void (*s_idle)(struct rc_dev * , bool ) ; int (*s_learning_mode)(struct rc_dev * , int ) ; int (*s_carrier_report)(struct rc_dev * , int ) ; int (*s_filter)(struct rc_dev * , struct rc_scancode_filter * ) ; int (*s_wakeup_filter)(struct rc_dev * , struct rc_scancode_filter * ) ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_221 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_221 __annonCompField75 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; enum fe_type { FE_QPSK = 0, FE_QAM = 1, FE_OFDM = 2, FE_ATSC = 3 } ; typedef enum fe_type fe_type_t; enum fe_caps { FE_IS_STUPID = 0, FE_CAN_INVERSION_AUTO = 1, FE_CAN_FEC_1_2 = 2, FE_CAN_FEC_2_3 = 4, FE_CAN_FEC_3_4 = 8, FE_CAN_FEC_4_5 = 16, FE_CAN_FEC_5_6 = 32, FE_CAN_FEC_6_7 = 64, FE_CAN_FEC_7_8 = 128, FE_CAN_FEC_8_9 = 256, FE_CAN_FEC_AUTO = 512, FE_CAN_QPSK = 1024, FE_CAN_QAM_16 = 2048, FE_CAN_QAM_32 = 4096, FE_CAN_QAM_64 = 8192, FE_CAN_QAM_128 = 16384, FE_CAN_QAM_256 = 32768, FE_CAN_QAM_AUTO = 65536, FE_CAN_TRANSMISSION_MODE_AUTO = 131072, FE_CAN_BANDWIDTH_AUTO = 262144, FE_CAN_GUARD_INTERVAL_AUTO = 524288, FE_CAN_HIERARCHY_AUTO = 1048576, FE_CAN_8VSB = 2097152, FE_CAN_16VSB = 4194304, FE_HAS_EXTENDED_CAPS = 8388608, FE_CAN_MULTISTREAM = 67108864, FE_CAN_TURBO_FEC = 134217728, FE_CAN_2G_MODULATION = 268435456, FE_NEEDS_BENDING = 536870912, FE_CAN_RECOVER = 1073741824, FE_CAN_MUTE_TS = 2147483648U } ; typedef enum fe_caps fe_caps_t; struct dvb_frontend_info { char name[128U] ; fe_type_t type ; __u32 frequency_min ; __u32 frequency_max ; __u32 frequency_stepsize ; __u32 frequency_tolerance ; __u32 symbol_rate_min ; __u32 symbol_rate_max ; __u32 symbol_rate_tolerance ; __u32 notifier_delay ; fe_caps_t caps ; }; struct dvb_diseqc_master_cmd { __u8 msg[6U] ; __u8 msg_len ; }; struct dvb_diseqc_slave_reply { __u8 msg[4U] ; __u8 msg_len ; int timeout ; }; enum fe_sec_voltage { SEC_VOLTAGE_13 = 0, SEC_VOLTAGE_18 = 1, SEC_VOLTAGE_OFF = 2 } ; typedef enum fe_sec_voltage fe_sec_voltage_t; enum fe_sec_tone_mode { SEC_TONE_ON = 0, SEC_TONE_OFF = 1 } ; typedef enum fe_sec_tone_mode fe_sec_tone_mode_t; enum fe_sec_mini_cmd { SEC_MINI_A = 0, SEC_MINI_B = 1 } ; typedef enum fe_sec_mini_cmd fe_sec_mini_cmd_t; enum fe_status { FE_HAS_SIGNAL = 1, FE_HAS_CARRIER = 2, FE_HAS_VITERBI = 4, FE_HAS_SYNC = 8, FE_HAS_LOCK = 16, FE_TIMEDOUT = 32, FE_REINIT = 64 } ; typedef enum fe_status fe_status_t; enum fe_spectral_inversion { INVERSION_OFF = 0, INVERSION_ON = 1, INVERSION_AUTO = 2 } ; typedef enum fe_spectral_inversion fe_spectral_inversion_t; enum fe_code_rate { FEC_NONE = 0, FEC_1_2 = 1, FEC_2_3 = 2, FEC_3_4 = 3, FEC_4_5 = 4, FEC_5_6 = 5, FEC_6_7 = 6, FEC_7_8 = 7, FEC_8_9 = 8, FEC_AUTO = 9, FEC_3_5 = 10, FEC_9_10 = 11, FEC_2_5 = 12 } ; typedef enum fe_code_rate fe_code_rate_t; enum fe_modulation { QPSK = 0, QAM_16 = 1, QAM_32 = 2, QAM_64 = 3, QAM_128 = 4, QAM_256 = 5, QAM_AUTO = 6, VSB_8 = 7, VSB_16 = 8, PSK_8 = 9, APSK_16 = 10, APSK_32 = 11, DQPSK = 12, QAM_4_NR = 13 } ; typedef enum fe_modulation fe_modulation_t; enum fe_transmit_mode { TRANSMISSION_MODE_2K = 0, TRANSMISSION_MODE_8K = 1, TRANSMISSION_MODE_AUTO = 2, TRANSMISSION_MODE_4K = 3, TRANSMISSION_MODE_1K = 4, TRANSMISSION_MODE_16K = 5, TRANSMISSION_MODE_32K = 6, TRANSMISSION_MODE_C1 = 7, TRANSMISSION_MODE_C3780 = 8 } ; typedef enum fe_transmit_mode fe_transmit_mode_t; enum fe_guard_interval { GUARD_INTERVAL_1_32 = 0, GUARD_INTERVAL_1_16 = 1, GUARD_INTERVAL_1_8 = 2, GUARD_INTERVAL_1_4 = 3, GUARD_INTERVAL_AUTO = 4, GUARD_INTERVAL_1_128 = 5, GUARD_INTERVAL_19_128 = 6, GUARD_INTERVAL_19_256 = 7, GUARD_INTERVAL_PN420 = 8, GUARD_INTERVAL_PN595 = 9, GUARD_INTERVAL_PN945 = 10 } ; typedef enum fe_guard_interval fe_guard_interval_t; enum fe_hierarchy { HIERARCHY_NONE = 0, HIERARCHY_1 = 1, HIERARCHY_2 = 2, HIERARCHY_4 = 3, HIERARCHY_AUTO = 4 } ; typedef enum fe_hierarchy fe_hierarchy_t; enum fe_interleaving { INTERLEAVING_NONE = 0, INTERLEAVING_AUTO = 1, INTERLEAVING_240 = 2, INTERLEAVING_720 = 3 } ; enum fe_pilot { PILOT_ON = 0, PILOT_OFF = 1, PILOT_AUTO = 2 } ; typedef enum fe_pilot fe_pilot_t; enum fe_rolloff { ROLLOFF_35 = 0, ROLLOFF_20 = 1, ROLLOFF_25 = 2, ROLLOFF_AUTO = 3 } ; typedef enum fe_rolloff fe_rolloff_t; enum fe_delivery_system { SYS_UNDEFINED = 0, SYS_DVBC_ANNEX_A = 1, SYS_DVBC_ANNEX_B = 2, SYS_DVBT = 3, SYS_DSS = 4, SYS_DVBS = 5, SYS_DVBS2 = 6, SYS_DVBH = 7, SYS_ISDBT = 8, SYS_ISDBS = 9, SYS_ISDBC = 10, SYS_ATSC = 11, SYS_ATSCMH = 12, SYS_DTMB = 13, SYS_CMMB = 14, SYS_DAB = 15, SYS_DVBT2 = 16, SYS_TURBO = 17, SYS_DVBC_ANNEX_C = 18 } ; typedef enum fe_delivery_system fe_delivery_system_t; union __anonunion____missing_field_name_224 { __u64 uvalue ; __s64 svalue ; }; struct dtv_stats { __u8 scale ; union __anonunion____missing_field_name_224 __annonCompField78 ; }; struct dtv_fe_stats { __u8 len ; struct dtv_stats stat[4U] ; }; struct __anonstruct_buffer_226 { __u8 data[32U] ; __u32 len ; __u32 reserved1[3U] ; void *reserved2 ; }; union __anonunion_u_225 { __u32 data ; struct dtv_fe_stats st ; struct __anonstruct_buffer_226 buffer ; }; struct dtv_property { __u32 cmd ; __u32 reserved[3U] ; union __anonunion_u_225 u ; int result ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct dvb_frontend; struct dvb_device; struct dvb_adapter { int num ; struct list_head list_head ; struct list_head device_list ; char const *name ; u8 proposed_mac[6U] ; void *priv ; struct device *device ; struct module *module ; int mfe_shared ; struct dvb_device *mfe_dvbdev ; struct mutex mfe_lock ; }; struct dvb_device { struct list_head list_head ; struct file_operations const *fops ; struct dvb_adapter *adapter ; int type ; int minor ; u32 id ; int readers ; int writers ; int users ; wait_queue_head_t wait_queue ; int (*kernel_ioctl)(struct file * , unsigned int , void * ) ; void *priv ; }; struct dvb_frontend_tune_settings { int min_delay_ms ; int step_size ; int max_drift ; }; struct dvb_tuner_info { char name[128U] ; u32 frequency_min ; u32 frequency_max ; u32 frequency_step ; u32 bandwidth_min ; u32 bandwidth_max ; u32 bandwidth_step ; }; struct analog_parameters { unsigned int frequency ; unsigned int mode ; unsigned int audmode ; u64 std ; }; enum tuner_param { DVBFE_TUNER_FREQUENCY = 1, DVBFE_TUNER_TUNERSTEP = 2, DVBFE_TUNER_IFFREQ = 4, DVBFE_TUNER_BANDWIDTH = 8, DVBFE_TUNER_REFCLOCK = 16, DVBFE_TUNER_IQSENSE = 32, DVBFE_TUNER_DUMMY = (-0x7FFFFFFF-1) } ; enum dvbfe_algo { DVBFE_ALGO_HW = 1, DVBFE_ALGO_SW = 2, DVBFE_ALGO_CUSTOM = 4, DVBFE_ALGO_RECOVERY = (-0x7FFFFFFF-1) } ; struct tuner_state { u32 frequency ; u32 tunerstep ; u32 ifreq ; u32 bandwidth ; u32 iqsense ; u32 refclock ; }; enum dvbfe_search { DVBFE_ALGO_SEARCH_SUCCESS = 1, DVBFE_ALGO_SEARCH_ASLEEP = 2, DVBFE_ALGO_SEARCH_FAILED = 4, DVBFE_ALGO_SEARCH_INVALID = 8, DVBFE_ALGO_SEARCH_AGAIN = 16, DVBFE_ALGO_SEARCH_ERROR = (-0x7FFFFFFF-1) } ; struct dvb_tuner_ops { struct dvb_tuner_info info ; int (*release)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*suspend)(struct dvb_frontend * ) ; int (*resume)(struct dvb_frontend * ) ; int (*set_params)(struct dvb_frontend * ) ; int (*set_analog_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*calc_regs)(struct dvb_frontend * , u8 * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; int (*get_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_bandwidth)(struct dvb_frontend * , u32 * ) ; int (*get_if_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_status)(struct dvb_frontend * , u32 * ) ; int (*get_rf_strength)(struct dvb_frontend * , u16 * ) ; int (*get_afc)(struct dvb_frontend * , s32 * ) ; int (*set_frequency)(struct dvb_frontend * , u32 ) ; int (*set_bandwidth)(struct dvb_frontend * , u32 ) ; int (*set_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; int (*get_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; }; struct analog_demod_info { char *name ; }; struct analog_demod_ops { struct analog_demod_info info ; void (*set_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*has_signal)(struct dvb_frontend * , u16 * ) ; int (*get_afc)(struct dvb_frontend * , s32 * ) ; void (*tuner_status)(struct dvb_frontend * ) ; void (*standby)(struct dvb_frontend * ) ; void (*release)(struct dvb_frontend * ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; }; struct dtv_frontend_properties; struct dvb_frontend_ops { struct dvb_frontend_info info ; u8 delsys[8U] ; void (*release)(struct dvb_frontend * ) ; void (*release_sec)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*write)(struct dvb_frontend * , u8 const * , int ) ; int (*tune)(struct dvb_frontend * , bool , unsigned int , unsigned int * , fe_status_t * ) ; enum dvbfe_algo (*get_frontend_algo)(struct dvb_frontend * ) ; int (*set_frontend)(struct dvb_frontend * ) ; int (*get_tune_settings)(struct dvb_frontend * , struct dvb_frontend_tune_settings * ) ; int (*get_frontend)(struct dvb_frontend * ) ; int (*read_status)(struct dvb_frontend * , fe_status_t * ) ; int (*read_ber)(struct dvb_frontend * , u32 * ) ; int (*read_signal_strength)(struct dvb_frontend * , u16 * ) ; int (*read_snr)(struct dvb_frontend * , u16 * ) ; int (*read_ucblocks)(struct dvb_frontend * , u32 * ) ; int (*diseqc_reset_overload)(struct dvb_frontend * ) ; int (*diseqc_send_master_cmd)(struct dvb_frontend * , struct dvb_diseqc_master_cmd * ) ; int (*diseqc_recv_slave_reply)(struct dvb_frontend * , struct dvb_diseqc_slave_reply * ) ; int (*diseqc_send_burst)(struct dvb_frontend * , fe_sec_mini_cmd_t ) ; int (*set_tone)(struct dvb_frontend * , fe_sec_tone_mode_t ) ; int (*set_voltage)(struct dvb_frontend * , fe_sec_voltage_t ) ; int (*enable_high_lnb_voltage)(struct dvb_frontend * , long ) ; int (*dishnetwork_send_legacy_command)(struct dvb_frontend * , unsigned long ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*ts_bus_ctrl)(struct dvb_frontend * , int ) ; int (*set_lna)(struct dvb_frontend * ) ; enum dvbfe_search (*search)(struct dvb_frontend * ) ; struct dvb_tuner_ops tuner_ops ; struct analog_demod_ops analog_ops ; int (*set_property)(struct dvb_frontend * , struct dtv_property * ) ; int (*get_property)(struct dvb_frontend * , struct dtv_property * ) ; }; struct __anonstruct_layer_228 { u8 segment_count ; fe_code_rate_t fec ; fe_modulation_t modulation ; u8 interleaving ; }; struct dtv_frontend_properties { u32 state ; u32 frequency ; fe_modulation_t modulation ; fe_sec_voltage_t voltage ; fe_sec_tone_mode_t sectone ; fe_spectral_inversion_t inversion ; fe_code_rate_t fec_inner ; fe_transmit_mode_t transmission_mode ; u32 bandwidth_hz ; fe_guard_interval_t guard_interval ; fe_hierarchy_t hierarchy ; u32 symbol_rate ; fe_code_rate_t code_rate_HP ; fe_code_rate_t code_rate_LP ; fe_pilot_t pilot ; fe_rolloff_t rolloff ; fe_delivery_system_t delivery_system ; enum fe_interleaving interleaving ; u8 isdbt_partial_reception ; u8 isdbt_sb_mode ; u8 isdbt_sb_subchannel ; u32 isdbt_sb_segment_idx ; u32 isdbt_sb_segment_count ; u8 isdbt_layer_enabled ; struct __anonstruct_layer_228 layer[3U] ; u32 stream_id ; u8 atscmh_fic_ver ; u8 atscmh_parade_id ; u8 atscmh_nog ; u8 atscmh_tnog ; u8 atscmh_sgn ; u8 atscmh_prc ; u8 atscmh_rs_frame_mode ; u8 atscmh_rs_frame_ensemble ; u8 atscmh_rs_code_mode_pri ; u8 atscmh_rs_code_mode_sec ; u8 atscmh_sccc_block_mode ; u8 atscmh_sccc_code_mode_a ; u8 atscmh_sccc_code_mode_b ; u8 atscmh_sccc_code_mode_c ; u8 atscmh_sccc_code_mode_d ; u32 lna ; struct dtv_fe_stats strength ; struct dtv_fe_stats cnr ; struct dtv_fe_stats pre_bit_error ; struct dtv_fe_stats pre_bit_count ; struct dtv_fe_stats post_bit_error ; struct dtv_fe_stats post_bit_count ; struct dtv_fe_stats block_error ; struct dtv_fe_stats block_count ; }; struct dvb_frontend { struct dvb_frontend_ops ops ; struct dvb_adapter *dvb ; void *demodulator_priv ; void *tuner_priv ; void *frontend_priv ; void *sec_priv ; void *analog_demod_priv ; struct dtv_frontend_properties dtv_property_cache ; int (*callback)(void * , int , int , int ) ; int id ; unsigned int exit ; }; enum ldv_25271 { DMX_OUT_DECODER = 0, DMX_OUT_TAP = 1, DMX_OUT_TS_TAP = 2, DMX_OUT_TSDEMUX_TAP = 3 } ; typedef enum ldv_25271 dmx_output_t; enum ldv_25273 { DMX_IN_FRONTEND = 0, DMX_IN_DVR = 1 } ; typedef enum ldv_25273 dmx_input_t; enum dmx_ts_pes { DMX_PES_AUDIO0 = 0, DMX_PES_VIDEO0 = 1, DMX_PES_TELETEXT0 = 2, DMX_PES_SUBTITLE0 = 3, DMX_PES_PCR0 = 4, DMX_PES_AUDIO1 = 5, DMX_PES_VIDEO1 = 6, DMX_PES_TELETEXT1 = 7, DMX_PES_SUBTITLE1 = 8, DMX_PES_PCR1 = 9, DMX_PES_AUDIO2 = 10, DMX_PES_VIDEO2 = 11, DMX_PES_TELETEXT2 = 12, DMX_PES_SUBTITLE2 = 13, DMX_PES_PCR2 = 14, DMX_PES_AUDIO3 = 15, DMX_PES_VIDEO3 = 16, DMX_PES_TELETEXT3 = 17, DMX_PES_SUBTITLE3 = 18, DMX_PES_PCR3 = 19, DMX_PES_OTHER = 20 } ; typedef enum dmx_ts_pes dmx_pes_type_t; struct dmx_filter { __u8 filter[16U] ; __u8 mask[16U] ; __u8 mode[16U] ; }; typedef struct dmx_filter dmx_filter_t; struct dmx_sct_filter_params { __u16 pid ; dmx_filter_t filter ; __u32 timeout ; __u32 flags ; }; struct dmx_pes_filter_params { __u16 pid ; dmx_input_t input ; dmx_output_t output ; dmx_pes_type_t pes_type ; __u32 flags ; }; struct dmx_caps { __u32 caps ; int num_decoders ; }; enum ldv_25289 { DMX_SOURCE_FRONT0 = 0, DMX_SOURCE_FRONT1 = 1, DMX_SOURCE_FRONT2 = 2, DMX_SOURCE_FRONT3 = 3, DMX_SOURCE_DVR0 = 16, DMX_SOURCE_DVR1 = 17, DMX_SOURCE_DVR2 = 18, DMX_SOURCE_DVR3 = 19 } ; typedef enum ldv_25289 dmx_source_t; enum dmx_success { DMX_OK = 0, DMX_LENGTH_ERROR = 1, DMX_OVERRUN_ERROR = 2, DMX_CRC_ERROR = 3, DMX_FRAME_ERROR = 4, DMX_FIFO_ERROR = 5, DMX_MISSED_ERROR = 6 } ; struct dmx_demux; struct dmx_ts_feed { int is_filtering ; struct dmx_demux *parent ; void *priv ; int (*set)(struct dmx_ts_feed * , u16 , int , enum dmx_ts_pes , size_t , struct timespec ) ; int (*start_filtering)(struct dmx_ts_feed * ) ; int (*stop_filtering)(struct dmx_ts_feed * ) ; }; struct dmx_section_feed; struct dmx_section_filter { u8 filter_value[18U] ; u8 filter_mask[18U] ; u8 filter_mode[18U] ; struct dmx_section_feed *parent ; void *priv ; }; struct dmx_section_feed { int is_filtering ; struct dmx_demux *parent ; void *priv ; int check_crc ; u32 crc_val ; u8 *secbuf ; u8 secbuf_base[4284U] ; u16 secbufp ; u16 seclen ; u16 tsfeedp ; int (*set)(struct dmx_section_feed * , u16 , size_t , int ) ; int (*allocate_filter)(struct dmx_section_feed * , struct dmx_section_filter ** ) ; int (*release_filter)(struct dmx_section_feed * , struct dmx_section_filter * ) ; int (*start_filtering)(struct dmx_section_feed * ) ; int (*stop_filtering)(struct dmx_section_feed * ) ; }; enum dmx_frontend_source { DMX_MEMORY_FE = 0, DMX_FRONTEND_0 = 1, DMX_FRONTEND_1 = 2, DMX_FRONTEND_2 = 3, DMX_FRONTEND_3 = 4, DMX_STREAM_0 = 5, DMX_STREAM_1 = 6, DMX_STREAM_2 = 7, DMX_STREAM_3 = 8 } ; struct dmx_frontend { struct list_head connectivity_list ; enum dmx_frontend_source source ; }; struct dmx_demux { u32 capabilities ; struct dmx_frontend *frontend ; void *priv ; int (*open)(struct dmx_demux * ) ; int (*close)(struct dmx_demux * ) ; int (*write)(struct dmx_demux * , char const * , size_t ) ; int (*allocate_ts_feed)(struct dmx_demux * , struct dmx_ts_feed ** , int (*)(u8 const * , size_t , u8 const * , size_t , struct dmx_ts_feed * , enum dmx_success ) ) ; int (*release_ts_feed)(struct dmx_demux * , struct dmx_ts_feed * ) ; int (*allocate_section_feed)(struct dmx_demux * , struct dmx_section_feed ** , int (*)(u8 const * , size_t , u8 const * , size_t , struct dmx_section_filter * , enum dmx_success ) ) ; int (*release_section_feed)(struct dmx_demux * , struct dmx_section_feed * ) ; int (*add_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; int (*remove_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; struct list_head *(*get_frontends)(struct dmx_demux * ) ; int (*connect_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; int (*disconnect_frontend)(struct dmx_demux * ) ; int (*get_pes_pids)(struct dmx_demux * , u16 * ) ; int (*get_caps)(struct dmx_demux * , struct dmx_caps * ) ; int (*set_source)(struct dmx_demux * , dmx_source_t const * ) ; int (*get_stc)(struct dmx_demux * , unsigned int , u64 * , unsigned int * ) ; }; struct dvb_demux_feed; struct dvb_demux_filter { struct dmx_section_filter filter ; u8 maskandmode[18U] ; u8 maskandnotmode[18U] ; int doneq ; struct dvb_demux_filter *next ; struct dvb_demux_feed *feed ; int index ; int state ; int type ; u16 hw_handle ; struct timer_list timer ; }; union __anonunion_feed_229 { struct dmx_ts_feed ts ; struct dmx_section_feed sec ; }; union __anonunion_cb_230 { int (*ts)(u8 const * , size_t , u8 const * , size_t , struct dmx_ts_feed * , enum dmx_success ) ; int (*sec)(u8 const * , size_t , u8 const * , size_t , struct dmx_section_filter * , enum dmx_success ) ; }; struct dvb_demux; struct dvb_demux_feed { union __anonunion_feed_229 feed ; union __anonunion_cb_230 cb ; struct dvb_demux *demux ; void *priv ; int type ; int state ; u16 pid ; u8 *buffer ; int buffer_size ; struct timespec timeout ; struct dvb_demux_filter *filter ; int ts_type ; enum dmx_ts_pes pes_type ; int cc ; int pusi_seen ; u16 peslen ; struct list_head list_head ; unsigned int index ; }; struct dvb_demux { struct dmx_demux dmx ; void *priv ; int filternum ; int feednum ; int (*start_feed)(struct dvb_demux_feed * ) ; int (*stop_feed)(struct dvb_demux_feed * ) ; int (*write_to_decoder)(struct dvb_demux_feed * , u8 const * , size_t ) ; u32 (*check_crc32)(struct dvb_demux_feed * , u8 const * , size_t ) ; void (*memcopy)(struct dvb_demux_feed * , u8 * , u8 const * , size_t ) ; int users ; struct dvb_demux_filter *filter ; struct dvb_demux_feed *feed ; struct list_head frontend_list ; struct dvb_demux_feed *pesfilter[20U] ; u16 pids[20U] ; int playing ; int recording ; struct list_head feed_list ; u8 tsbuf[204U] ; int tsbufp ; struct mutex mutex ; spinlock_t lock ; uint8_t *cnt_storage ; struct timespec speed_last_time ; uint32_t speed_pkts_cnt ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_231 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_231 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_232 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_232 __annonCompField79 ; unsigned long nr_segs ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct __anonstruct_sync_serial_settings_234 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_234 sync_serial_settings; struct __anonstruct_te1_settings_235 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_235 te1_settings; struct __anonstruct_raw_hdlc_proto_236 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_236 raw_hdlc_proto; struct __anonstruct_fr_proto_237 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_237 fr_proto; struct __anonstruct_fr_proto_pvc_238 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_238 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_239 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_239 fr_proto_pvc_info; struct __anonstruct_cisco_proto_240 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_240 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_241 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_241 ifs_ifsu ; }; union __anonunion_ifr_ifrn_242 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_243 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_242 ifr_ifrn ; union __anonunion_ifr_ifru_243 ifr_ifru ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_262 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_261 { u64 v64 ; struct __anonstruct____missing_field_name_262 __annonCompField81 ; }; struct skb_mstamp { union __anonunion____missing_field_name_261 __annonCompField82 ; }; union __anonunion____missing_field_name_265 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_264 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_265 __annonCompField83 ; }; union __anonunion____missing_field_name_263 { struct __anonstruct____missing_field_name_264 __annonCompField84 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_267 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_266 { __wsum csum ; struct __anonstruct____missing_field_name_267 __annonCompField86 ; }; union __anonunion____missing_field_name_268 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_269 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_270 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_263 __annonCompField85 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_266 __annonCompField87 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_268 __annonCompField88 ; __u32 secmark ; union __anonunion____missing_field_name_269 __annonCompField89 ; union __anonunion____missing_field_name_270 __annonCompField90 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; enum ldv_29181 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_29181 phy_interface_t; enum ldv_29234 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_29234 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_282 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_283 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_284 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_282 adj_list ; struct __anonstruct_all_adj_list_283 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_284 __annonCompField93 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; struct ipv4_devconf { void *sysctl ; int data[28U] ; unsigned long state[1U] ; }; struct in_ifaddr; struct ip_mc_list; struct in_device { struct net_device *dev ; atomic_t refcnt ; int dead ; struct in_ifaddr *ifa_list ; struct ip_mc_list *mc_list ; struct ip_mc_list **mc_hash ; int mc_count ; spinlock_t mc_tomb_lock ; struct ip_mc_list *mc_tomb ; unsigned long mr_v1_seen ; unsigned long mr_v2_seen ; unsigned long mr_maxdelay ; unsigned char mr_qrv ; unsigned char mr_gq_running ; unsigned char mr_ifc_count ; struct timer_list mr_gq_timer ; struct timer_list mr_ifc_timer ; struct neigh_parms *arp_parms ; struct ipv4_devconf cnf ; struct callback_head callback_head ; }; struct in_ifaddr { struct hlist_node hash ; struct in_ifaddr *ifa_next ; struct in_device *ifa_dev ; struct callback_head callback_head ; __be32 ifa_local ; __be32 ifa_address ; __be32 ifa_mask ; __be32 ifa_broadcast ; unsigned char ifa_scope ; unsigned char ifa_prefixlen ; __u32 ifa_flags ; char ifa_label[16U] ; __u32 ifa_valid_lft ; __u32 ifa_preferred_lft ; unsigned long ifa_cstamp ; unsigned long ifa_tstamp ; }; struct dvb_net { struct dvb_device *dvbdev ; struct net_device *device[10U] ; int state[10U] ; unsigned char exit : 1 ; struct dmx_demux *demux ; struct mutex ioctl_mutex ; }; struct dvb_ringbuffer { u8 *data ; ssize_t size ; ssize_t pread ; ssize_t pwrite ; int error ; wait_queue_head_t queue ; spinlock_t lock ; }; enum dmxdev_type { DMXDEV_TYPE_NONE = 0, DMXDEV_TYPE_SEC = 1, DMXDEV_TYPE_PES = 2 } ; enum dmxdev_state { DMXDEV_STATE_FREE = 0, DMXDEV_STATE_ALLOCATED = 1, DMXDEV_STATE_SET = 2, DMXDEV_STATE_GO = 3, DMXDEV_STATE_DONE = 4, DMXDEV_STATE_TIMEDOUT = 5 } ; union __anonunion_filter_288 { struct dmx_section_filter *sec ; }; union __anonunion_feed_289 { struct list_head ts ; struct dmx_section_feed *sec ; }; union __anonunion_params_290 { struct dmx_sct_filter_params sec ; struct dmx_pes_filter_params pes ; }; struct dmxdev; struct dmxdev_filter { union __anonunion_filter_288 filter ; union __anonunion_feed_289 feed ; union __anonunion_params_290 params ; enum dmxdev_type type ; enum dmxdev_state state ; struct dmxdev *dev ; struct dvb_ringbuffer buffer ; struct mutex mutex ; struct timer_list timer ; int todo ; u8 secheader[3U] ; }; struct dmxdev { struct dvb_device *dvbdev ; struct dvb_device *dvr_dvbdev ; struct dmxdev_filter *filter ; struct dmx_demux *demux ; int filternum ; int capabilities ; unsigned char exit : 1 ; struct dmx_frontend *dvr_orig_fe ; struct dvb_ringbuffer dvr_buffer ; struct mutex mutex ; spinlock_t lock ; }; struct dvb_usb_device; struct dvb_usb_adapter; struct dvb_usb_device_properties; struct dvb_usb_driver_info { char const *name ; char const *rc_map ; struct dvb_usb_device_properties const *props ; }; struct dvb_usb_rc { char const *map_name ; u64 allowed_protos ; int (*change_protocol)(struct rc_dev * , u64 * ) ; int (*query)(struct dvb_usb_device * ) ; unsigned int interval ; enum rc_driver_type driver_type ; bool bulk_mode ; }; struct __anonstruct_bulk_292 { unsigned int buffersize ; }; struct __anonstruct_isoc_293 { int framesperurb ; int framesize ; int interval ; }; union __anonunion_u_291 { struct __anonstruct_bulk_292 bulk ; struct __anonstruct_isoc_293 isoc ; }; struct usb_data_stream_properties { u8 type ; u8 count ; u8 endpoint ; union __anonunion_u_291 u ; }; struct dvb_usb_adapter_properties { u8 caps ; u8 pid_filter_count ; int (*pid_filter_ctrl)(struct dvb_usb_adapter * , int ) ; int (*pid_filter)(struct dvb_usb_adapter * , int , u16 , int ) ; struct usb_data_stream_properties stream ; }; struct dvb_usb_device_properties { char const *driver_name ; struct module *owner ; short *adapter_nr ; u8 bInterfaceNumber ; unsigned int size_of_priv ; u8 generic_bulk_ctrl_endpoint ; u8 generic_bulk_ctrl_endpoint_response ; unsigned int generic_bulk_ctrl_delay ; int (*identify_state)(struct dvb_usb_device * , char const ** ) ; char const *firmware ; int (*download_firmware)(struct dvb_usb_device * , struct firmware const * ) ; struct i2c_algorithm *i2c_algo ; unsigned int num_adapters ; int (*get_adapter_count)(struct dvb_usb_device * ) ; struct dvb_usb_adapter_properties adapter[2U] ; int (*power_ctrl)(struct dvb_usb_device * , int ) ; int (*read_config)(struct dvb_usb_device * ) ; int (*read_mac_address)(struct dvb_usb_adapter * , u8 * ) ; int (*frontend_attach)(struct dvb_usb_adapter * ) ; int (*frontend_detach)(struct dvb_usb_adapter * ) ; int (*tuner_attach)(struct dvb_usb_adapter * ) ; int (*tuner_detach)(struct dvb_usb_adapter * ) ; int (*frontend_ctrl)(struct dvb_frontend * , int ) ; int (*streaming_ctrl)(struct dvb_frontend * , int ) ; int (*init)(struct dvb_usb_device * ) ; void (*exit)(struct dvb_usb_device * ) ; int (*get_rc_config)(struct dvb_usb_device * , struct dvb_usb_rc * ) ; int (*get_stream_config)(struct dvb_frontend * , u8 * , struct usb_data_stream_properties * ) ; }; struct usb_data_stream { struct usb_device *udev ; struct usb_data_stream_properties props ; u8 state ; void (*complete)(struct usb_data_stream * , u8 * , size_t ) ; struct urb *urb_list[10U] ; int buf_num ; unsigned long buf_size ; u8 *buf_list[10U] ; dma_addr_t dma_addr[10U] ; int urbs_initialized ; int urbs_submitted ; void *user_priv ; }; struct dvb_usb_adapter { struct dvb_usb_adapter_properties const *props ; struct usb_data_stream stream ; u8 id ; u8 ts_type ; bool suspend_resume_active ; bool pid_filtering ; u8 feed_count ; u8 max_feed_count ; s8 active_fe ; unsigned long state_bits ; struct dvb_adapter dvb_adap ; struct dmxdev dmxdev ; struct dvb_demux demux ; struct dvb_net dvb_net ; struct dvb_frontend *fe[3U] ; int (*fe_init[3U])(struct dvb_frontend * ) ; int (*fe_sleep[3U])(struct dvb_frontend * ) ; }; struct dvb_usb_device { struct dvb_usb_device_properties const *props ; char const *name ; char const *rc_map ; bool rc_polling_active ; struct usb_interface *intf ; struct usb_device *udev ; struct dvb_usb_rc rc ; int powered ; struct mutex usb_mutex ; struct mutex i2c_mutex ; struct i2c_adapter i2c_adap ; struct dvb_usb_adapter adapter[2U] ; struct rc_dev *rc_dev ; char rc_phys[64U] ; struct delayed_work rc_query_work ; void *priv ; }; struct tveeprom { u32 has_radio ; u32 has_ir ; u32 has_MAC_address ; u32 tuner_type ; u32 tuner_formats ; u32 tuner_hauppauge_model ; u32 tuner2_type ; u32 tuner2_formats ; u32 tuner2_hauppauge_model ; u32 digitizer ; u32 digitizer_formats ; u32 audio_processor ; u32 decoder_processor ; u32 model ; u32 revision ; u32 serial_number ; char rev_str[5U] ; u8 MAC_address[6U] ; }; enum mxl111sf_gpio_port_expander { mxl111sf_gpio_hw = 0, mxl111sf_PCA9534 = 1 } ; struct mxl111sf_adap_state { int alt_mode ; int gpio_mode ; int device_mode ; int ep6_clockphase ; int (*fe_init)(struct dvb_frontend * ) ; int (*fe_sleep)(struct dvb_frontend * ) ; }; struct mxl111sf_state { struct dvb_usb_device *d ; enum mxl111sf_gpio_port_expander gpio_port_expander ; u8 port_expander_addr ; u8 chip_id ; u8 chip_ver ; u8 chip_rev ; int device_mode ; int alt_mode ; int gpio_mode ; struct tveeprom tv ; struct mutex fe_lock ; u8 num_frontends ; struct mxl111sf_adap_state adap_state[3U] ; }; struct mxl111sf_reg_ctrl_info { u8 addr ; u8 mask ; u8 data ; }; enum mxl111sf_mux_config { PIN_MUX_DEFAULT = 0, PIN_MUX_TS_OUT_PARALLEL = 1, PIN_MUX_TS_OUT_SERIAL = 2, PIN_MUX_GPIO_MODE = 3, PIN_MUX_TS_SERIAL_IN_MODE_0 = 4, PIN_MUX_TS_SERIAL_IN_MODE_1 = 5, PIN_MUX_TS_SPI_IN_MODE_0 = 6, PIN_MUX_TS_SPI_IN_MODE_1 = 7, PIN_MUX_TS_PARALLEL_IN = 8, PIN_MUX_BT656_I2S_MODE = 9 } ; struct mxl111sf_demod_config { int (*read_reg)(struct mxl111sf_state * , u8 , u8 * ) ; int (*write_reg)(struct mxl111sf_state * , u8 , u8 ) ; int (*program_regs)(struct mxl111sf_state * , struct mxl111sf_reg_ctrl_info * ) ; }; enum mxl_if_freq { MXL_IF_4_0 = 1, MXL_IF_4_5 = 2, MXL_IF_4_57 = 3, MXL_IF_5_0 = 4, MXL_IF_5_38 = 5, MXL_IF_6_0 = 6, MXL_IF_6_28 = 7, MXL_IF_7_2 = 8, MXL_IF_35_25 = 9, MXL_IF_36 = 10, MXL_IF_36_15 = 11, MXL_IF_44 = 12 } ; struct mxl111sf_tuner_config { enum mxl_if_freq if_freq ; unsigned char invert_spectrum : 1 ; int (*read_reg)(struct mxl111sf_state * , u8 , u8 * ) ; int (*write_reg)(struct mxl111sf_state * , u8 , u8 ) ; int (*program_regs)(struct mxl111sf_state * , struct mxl111sf_reg_ctrl_info * ) ; int (*top_master_ctrl)(struct mxl111sf_state * , int ) ; int (*ant_hunt)(struct dvb_frontend * ) ; }; enum lgdt3305_mpeg_mode { LGDT3305_MPEG_PARALLEL = 0, LGDT3305_MPEG_SERIAL = 1 } ; enum lgdt3305_tp_clock_edge { LGDT3305_TPCLK_RISING_EDGE = 0, LGDT3305_TPCLK_FALLING_EDGE = 1 } ; enum lgdt3305_tp_clock_mode { LGDT3305_TPCLK_GATED = 0, LGDT3305_TPCLK_FIXED = 1 } ; enum lgdt3305_tp_valid_polarity { LGDT3305_TP_VALID_LOW = 0, LGDT3305_TP_VALID_HIGH = 1 } ; enum lgdt_demod_chip_type { LGDT3305 = 0, LGDT3304 = 1 } ; struct lgdt3305_config { u8 i2c_addr ; u16 qam_if_khz ; u16 vsb_if_khz ; u16 usref_8vsb ; u16 usref_qam64 ; u16 usref_qam256 ; unsigned char deny_i2c_rptr : 1 ; unsigned char spectral_inversion : 1 ; unsigned char rf_agc_loop : 1 ; enum lgdt3305_mpeg_mode mpeg_mode ; enum lgdt3305_tp_clock_edge tpclk_edge ; enum lgdt3305_tp_clock_mode tpclk_mode ; enum lgdt3305_tp_valid_polarity tpvalid_polarity ; enum lgdt_demod_chip_type demod_chip ; }; enum lg_chip_type { LG2160 = 0, LG2161 = 1 } ; enum lg2160_spi_clock { LG2160_SPI_3_125_MHZ = 0, LG2160_SPI_6_25_MHZ = 1, LG2160_SPI_12_5_MHZ = 2 } ; struct lg2160_config { u8 i2c_addr ; u16 if_khz ; unsigned char deny_i2c_rptr : 1 ; unsigned char spectral_inversion : 1 ; unsigned int output_if ; enum lg2160_spi_clock spi_clock ; enum lg_chip_type lg_chip ; }; struct ldv_struct_EMGentry_11 { int signal_pending ; }; struct ldv_struct_usb_instance_7 { struct usb_driver *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___1; enum hrtimer_restart; enum i2c_slave_event; enum i2c_slave_event; enum hrtimer_restart; enum i2c_slave_event; enum i2c_slave_event; enum hrtimer_restart; enum i2c_slave_event; enum i2c_slave_event; struct mxl_gpio_cfg { u8 pin ; u8 dir ; u8 val ; }; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void *is_got ) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(res1); res2 = tmp___0; assume_abort_if_not((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; assume_abort_if_not(res1 == res2); } return (res1); } } int ldv_undef_int(void) ; static void ldv_ldv_initialize_128(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_125(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_129(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_130(int retval ) ; int ldv_pre_usb_register_driver(void) ; static void ldv_ldv_check_final_state_126(void) ; static void ldv_ldv_check_final_state_127(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; static void ldv_mutex_lock_121(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_fe_lock_of_mxl111sf_state(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_fe_lock_of_mxl111sf_state(struct mutex *lock ) ; extern struct module __this_module ; extern int printk(char const * , ...) ; extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void msleep(unsigned int ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_122(struct mutex *ldv_func_arg1 ) ; extern int usb_register_driver(struct usb_driver * , struct module * , char const * ) ; static int ldv_usb_register_driver_123(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void usb_deregister(struct usb_driver * ) ; static void ldv_usb_deregister_124(struct usb_driver *ldv_func_arg1 ) ; extern int usb_set_interface(struct usb_device * , int , int ) ; extern int __request_module(bool , char const * , ...) ; extern void *__symbol_get(char const * ) ; extern void __symbol_put(char const * ) ; extern int dvb_usbv2_probe(struct usb_interface * , struct usb_device_id const * ) ; extern void dvb_usbv2_disconnect(struct usb_interface * ) ; extern int dvb_usbv2_suspend(struct usb_interface * , pm_message_t ) ; extern int dvb_usbv2_resume(struct usb_interface * ) ; extern int dvb_usbv2_generic_rw(struct dvb_usb_device * , u8 * , u16 , u8 * , u16 ) ; extern int dvb_usbv2_generic_write(struct dvb_usb_device * , u8 * , u16 ) ; extern void tveeprom_hauppauge_analog(struct i2c_client * , struct tveeprom * , unsigned char * ) ; extern int tveeprom_read(struct i2c_client * , unsigned char * , int ) ; int mxl111sf_read_reg(struct mxl111sf_state *state , u8 addr , u8 *data ) ; int mxl111sf_write_reg(struct mxl111sf_state *state , u8 addr , u8 data ) ; int mxl111sf_write_reg_mask(struct mxl111sf_state *state , u8 addr , u8 mask , u8 data ) ; int mxl111sf_ctrl_program_regs(struct mxl111sf_state *state , struct mxl111sf_reg_ctrl_info *ctrl_reg_info ) ; int mxl111sf_ctrl_msg(struct dvb_usb_device *d , u8 cmd , u8 *wbuf , int wlen , u8 *rbuf , int rlen ) ; int dvb_usb_mxl111sf_debug ; int mxl1x1sf_soft_reset(struct mxl111sf_state *state ) ; int mxl1x1sf_set_device_mode(struct mxl111sf_state *state , int mode ) ; int mxl1x1sf_top_master_ctrl(struct mxl111sf_state *state , int onoff ) ; int mxl111sf_init_tuner_demod(struct mxl111sf_state *state ) ; int mxl111sf_enable_usb_output(struct mxl111sf_state *state ) ; int mxl111sf_config_mpeg_in(struct mxl111sf_state *state , unsigned int parallel_serial , unsigned int msb_lsb_1st , unsigned int clock_phase , unsigned int mpeg_valid_pol , unsigned int mpeg_sync_pol ) ; int mxl111sf_config_i2s(struct mxl111sf_state *state , u8 msb_start_pos , u8 data_width ) ; int mxl111sf_init_i2s_port(struct mxl111sf_state *state , u8 sample_size ) ; int mxl111sf_disable_i2s_port(struct mxl111sf_state *state ) ; int mxl111sf_config_spi(struct mxl111sf_state *state , int onoff ) ; int mxl111sf_idac_config(struct mxl111sf_state *state , u8 control_mode , u8 current_setting , u8 current_value , u8 hysteresis_value ) ; int mxl111sf_i2c_xfer(struct i2c_adapter *adap , struct i2c_msg *msg , int num ) ; int mxl111sf_init_port_expander(struct mxl111sf_state *state ) ; int mxl111sf_gpio_mode_switch(struct mxl111sf_state *state , unsigned int mode ) ; int mxl111sf_config_pin_mux_modes(struct mxl111sf_state *state , enum mxl111sf_mux_config pin_mux_config ) ; static int dvb_usb_mxl111sf_isoc ; static int dvb_usb_mxl111sf_spi ; static int dvb_usb_mxl111sf_rfswitch = 1; static short adapter_nr[8U] = { -1, -1, -1, -1, -1, -1, -1, -1}; int mxl111sf_ctrl_msg(struct dvb_usb_device *d , u8 cmd , u8 *wbuf , int wlen , u8 *rbuf , int rlen ) { int wo ; int ret ; u8 sndbuf[64U] ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; int __ret ; { wo = (unsigned long )rbuf == (unsigned long )((u8 *)0U) || rlen == 0; if ((unsigned int )(wlen + 1) > 64U) { { printk("\f%s: len=%d is too big!\n", "mxl111sf_ctrl_msg", wlen); } return (-95); } else { } { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_ctrl_msg"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s(wlen = %d, rlen = %d)\n"; descriptor.lineno = 70U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s(wlen = %d, rlen = %d)\n", "mxl111sf_ctrl_msg", wlen, rlen); } } else { } { memset((void *)(& sndbuf), 0, (size_t )(wlen + 1)); sndbuf[0] = cmd; memcpy((void *)(& sndbuf) + 1U, (void const *)wbuf, (size_t )wlen); } if (wo != 0) { { tmp___0 = dvb_usbv2_generic_write(d, (u8 *)(& sndbuf), (int )((unsigned int )((u16 )wlen) + 1U)); ret = tmp___0; } } else { { tmp___1 = dvb_usbv2_generic_rw(d, (u8 *)(& sndbuf), (int )((unsigned int )((u16 )wlen) + 1U), rbuf, (int )((u16 )rlen)); ret = tmp___1; } } __ret = ret < 0; if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_ctrl_msg", ret, 79); } } else { } return (ret); } } int mxl111sf_read_reg(struct mxl111sf_state *state , u8 addr , u8 *data ) { u8 buf[2U] ; int ret ; int __ret ; struct _ddebug descriptor ; long tmp ; { { ret = mxl111sf_ctrl_msg(state->d, 170, & addr, 1, (u8 *)(& buf), 2); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_read_reg", ret, 95); } } else { } if (__ret != 0) { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: error reading reg: 0x%02x\n", "mxl111sf_read_reg", (int )addr); } } else { } goto fail; } else { } if ((int )buf[0] == (int )addr) { *data = buf[1]; } else { { printk("\vinvalid response reading reg: 0x%02x != 0x%02x, 0x%02x", (int )addr, (int )buf[0], (int )buf[1]); ret = -22; } } { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_read_reg"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "R: (0x%02x, 0x%02x)\n"; descriptor.lineno = 108U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "R: (0x%02x, 0x%02x)\n", (int )addr, (int )buf[1]); } } else { } fail: ; return (ret); } } int mxl111sf_write_reg(struct mxl111sf_state *state , u8 addr , u8 data ) { u8 buf[2U] ; int ret ; struct _ddebug descriptor ; long tmp ; int __ret ; { { buf[0] = addr; buf[1] = data; descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_write_reg"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "W: (0x%02x, 0x%02x)\n"; descriptor.lineno = 118U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "W: (0x%02x, 0x%02x)\n", (int )addr, (int )data); } } else { } { ret = mxl111sf_ctrl_msg(state->d, 85, (u8 *)(& buf), 2, (u8 *)0U, 0); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_write_reg", ret, 121); } } else { } if (__ret != 0) { { printk("\verror writing reg: 0x%02x, val: 0x%02x", (int )addr, (int )data); } } else { } return (ret); } } int mxl111sf_write_reg_mask(struct mxl111sf_state *state , u8 addr , u8 mask , u8 data ) { int ret ; u8 val ; int __ret ; int __ret___0 ; int __ret___1 ; { val = 0U; if ((unsigned int )mask != 255U) { { ret = mxl111sf_read_reg(state, (int )addr, & val); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_write_reg_mask", ret, 138); } } else { } if (__ret != 0) { { printk("\verror writing addr: 0x%02x, mask: 0x%02x, data: 0x%02x, retrying...", (int )addr, (int )mask, (int )data); } } else { } { ret = mxl111sf_read_reg(state, (int )addr, & val); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_write_reg_mask", ret, 144); } } else { } if (__ret___0 != 0) { goto fail; } else { } } else { } { val = (u8 )((int )((signed char )val) & ~ ((int )((signed char )mask))); val = (u8 )((int )val | (int )data); ret = mxl111sf_write_reg(state, (int )addr, (int )val); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_write_reg_mask", ret, 151); } } else { } fail: ; return (ret); } } int mxl111sf_ctrl_program_regs(struct mxl111sf_state *state , struct mxl111sf_reg_ctrl_info *ctrl_reg_info ) { int i ; int ret ; int __ret ; { ret = 0; i = 0; goto ldv_49880; ldv_49879: { ret = mxl111sf_write_reg_mask(state, (int )(ctrl_reg_info + (unsigned long )i)->addr, (int )(ctrl_reg_info + (unsigned long )i)->mask, (int )(ctrl_reg_info + (unsigned long )i)->data); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_ctrl_program_regs", ret, 171); } } else { } if (__ret != 0) { { printk("\vfailed on reg #%d (0x%02x)", i, (int )(ctrl_reg_info + (unsigned long )i)->addr); } goto ldv_49878; } else { } i = i + 1; ldv_49880: ; if ((unsigned int )(((int )(ctrl_reg_info + (unsigned long )i)->addr | (int )(ctrl_reg_info + (unsigned long )i)->mask) | (int )(ctrl_reg_info + (unsigned long )i)->data) != 0U) { goto ldv_49879; } else { } ldv_49878: ; return (ret); } } static int mxl1x1sf_get_chip_info(struct mxl111sf_state *state ) { int ret ; u8 id ; u8 ver ; char *mxl_chip ; char *mxl_rev ; int __ret ; int __ret___0 ; { if ((unsigned int )state->chip_id != 0U && (unsigned int )state->chip_ver != 0U) { return (0); } else { } { ret = mxl111sf_read_reg(state, 252, & id); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl1x1sf_get_chip_info", ret, 192); } } else { } if (__ret != 0) { goto fail; } else { } { state->chip_id = id; ret = mxl111sf_read_reg(state, 250, & ver); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl1x1sf_get_chip_info", ret, 197); } } else { } if (__ret___0 != 0) { goto fail; } else { } state->chip_ver = ver; { if ((int )id == 97) { goto case_97; } else { } if ((int )id == 99) { goto case_99; } else { } goto switch_default; case_97: /* CIL Label */ mxl_chip = (char *)"MxL101SF"; goto ldv_49896; case_99: /* CIL Label */ mxl_chip = (char *)"MxL111SF"; goto ldv_49896; switch_default: /* CIL Label */ mxl_chip = (char *)"UNKNOWN MxL1X1"; goto ldv_49896; switch_break: /* CIL Label */ ; } ldv_49896: ; { if ((int )ver == 54) { goto case_54; } else { } if ((int )ver == 8) { goto case_8; } else { } if ((int )ver == 24) { goto case_24; } else { } goto switch_default___0; case_54: /* CIL Label */ state->chip_rev = 1U; mxl_rev = (char *)"v6"; goto ldv_49900; case_8: /* CIL Label */ state->chip_rev = 2U; mxl_rev = (char *)"v8_100"; goto ldv_49900; case_24: /* CIL Label */ state->chip_rev = 3U; mxl_rev = (char *)"v8_200"; goto ldv_49900; switch_default___0: /* CIL Label */ state->chip_rev = 0U; mxl_rev = (char *)"UNKNOWN REVISION"; goto ldv_49900; switch_break___0: /* CIL Label */ ; } ldv_49900: { printk("\016%s detected, %s (0x%x)", mxl_chip, mxl_rev, (int )ver); } fail: ; return (ret); } } static int mxl111sf_adap_fe_init(struct dvb_frontend *fe ) { struct dvb_usb_device *d ; struct dvb_usb_adapter const *__mptr ; struct mxl111sf_state *state ; struct dvb_usb_adapter const *__mptr___0 ; struct mxl111sf_adap_state *adap_state ; int err ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; int __ret___4 ; int __ret___5 ; int __ret___6 ; int tmp___1 ; int tmp___2 ; { __mptr = (struct dvb_usb_adapter const *)(fe->dvb)->priv; d = (struct dvb_usb_device *)__mptr + - ((unsigned long )((struct dvb_usb_adapter *)(fe->dvb)->priv)->id * 2400UL + 2344UL); __mptr___0 = (struct dvb_usb_adapter const *)(fe->dvb)->priv; state = (struct mxl111sf_state *)((struct dvb_usb_device *)__mptr___0 + - ((unsigned long )((struct dvb_usb_adapter *)(fe->dvb)->priv)->id * 2400UL + 2344UL))->priv; adap_state = (struct mxl111sf_adap_state *)(& state->adap_state) + (unsigned long )fe->id; if ((unsigned int )state->chip_id == 0U) { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: driver not yet initialized, exit.\n", "mxl111sf_adap_fe_init"); } } else { } goto fail; } else { } { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_adap_fe_init"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s()\n"; descriptor.lineno = 275U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s()\n", "mxl111sf_adap_fe_init"); } } else { } { ldv_mutex_lock_121(& state->fe_lock); state->alt_mode = adap_state->alt_mode; tmp___0 = usb_set_interface(d->udev, 0, state->alt_mode); } if (tmp___0 < 0) { { printk("\vset interface failed"); } } else { } { err = mxl1x1sf_soft_reset(state); __ret = err < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_adap_fe_init", err, 285); } } else { } { err = mxl111sf_init_tuner_demod(state); __ret___0 = err < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_adap_fe_init", err, 287); } } else { } { err = mxl1x1sf_set_device_mode(state, adap_state->device_mode); __ret___1 = err < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_adap_fe_init", err, 290); } } else { } { mxl111sf_enable_usb_output(state); __ret___2 = err < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_adap_fe_init", err, 292); } } else { } { mxl1x1sf_top_master_ctrl(state, 1); __ret___3 = err < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_adap_fe_init", err, 294); } } else { } if (adap_state->gpio_mode != 0 && (unsigned int )state->chip_rev > 1U) { { mxl111sf_config_pin_mux_modes(state, 7); __ret___4 = err < 0; } if (__ret___4 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_adap_fe_init", err, 300); } } else { } } else { } { err = mxl111sf_init_port_expander(state); __ret___6 = err < 0; } if (__ret___6 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_adap_fe_init", err, 303); } } else { } if (__ret___6 == 0) { { state->gpio_mode = adap_state->gpio_mode; err = mxl111sf_gpio_mode_switch(state, (unsigned int )state->gpio_mode); __ret___5 = err < 0; } if (__ret___5 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_adap_fe_init", err, 306); } } else { } { msleep(100U); } } else { } if ((unsigned long )adap_state->fe_init != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { tmp___1 = (*(adap_state->fe_init))(fe); tmp___2 = tmp___1; } } else { tmp___2 = 0; } return (tmp___2); fail: ; return (-19); } } static int mxl111sf_adap_fe_sleep(struct dvb_frontend *fe ) { struct mxl111sf_state *state ; struct dvb_usb_adapter const *__mptr ; struct mxl111sf_adap_state *adap_state ; int err ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { __mptr = (struct dvb_usb_adapter const *)(fe->dvb)->priv; state = (struct mxl111sf_state *)((struct dvb_usb_device *)__mptr + - ((unsigned long )((struct dvb_usb_adapter *)(fe->dvb)->priv)->id * 2400UL + 2344UL))->priv; adap_state = (struct mxl111sf_adap_state *)(& state->adap_state) + (unsigned long )fe->id; if ((unsigned int )state->chip_id == 0U) { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: driver not yet initialized, exit.\n", "mxl111sf_adap_fe_sleep"); } } else { } goto fail; } else { } { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_adap_fe_sleep"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s()\n"; descriptor.lineno = 331U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s()\n", "mxl111sf_adap_fe_sleep"); } } else { } if ((unsigned long )adap_state->fe_sleep != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { tmp___0 = (*(adap_state->fe_sleep))(fe); err = tmp___0; } } else { err = 0; } { ldv_mutex_unlock_122(& state->fe_lock); } return (err); fail: ; return (-19); } } static int mxl111sf_ep6_streaming_ctrl(struct dvb_frontend *fe , int onoff ) { struct mxl111sf_state *state ; struct dvb_usb_adapter const *__mptr ; struct mxl111sf_adap_state *adap_state ; int ret ; struct _ddebug descriptor ; long tmp ; int __ret ; int __ret___0 ; { { __mptr = (struct dvb_usb_adapter const *)(fe->dvb)->priv; state = (struct mxl111sf_state *)((struct dvb_usb_device *)__mptr + - ((unsigned long )((struct dvb_usb_adapter *)(fe->dvb)->priv)->id * 2400UL + 2344UL))->priv; adap_state = (struct mxl111sf_adap_state *)(& state->adap_state) + (unsigned long )fe->id; ret = 0; descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_ep6_streaming_ctrl"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s(%d)\n"; descriptor.lineno = 349U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s(%d)\n", "mxl111sf_ep6_streaming_ctrl", onoff); } } else { } if (onoff != 0) { { ret = mxl111sf_enable_usb_output(state); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_ep6_streaming_ctrl", ret, 353); } } else { } { ret = mxl111sf_config_mpeg_in(state, 1U, 1U, (unsigned int )adap_state->ep6_clockphase, 0U, 0U); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_ep6_streaming_ctrl", ret, 357); } } else { } } else { } return (ret); } } static int mxl111sf_ep5_streaming_ctrl(struct dvb_frontend *fe , int onoff ) { struct mxl111sf_state *state ; struct dvb_usb_adapter const *__mptr ; int ret ; struct _ddebug descriptor ; long tmp ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; { { __mptr = (struct dvb_usb_adapter const *)(fe->dvb)->priv; state = (struct mxl111sf_state *)((struct dvb_usb_device *)__mptr + - ((unsigned long )((struct dvb_usb_adapter *)(fe->dvb)->priv)->id * 2400UL + 2344UL))->priv; ret = 0; descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_ep5_streaming_ctrl"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s(%d)\n"; descriptor.lineno = 373U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s(%d)\n", "mxl111sf_ep5_streaming_ctrl", onoff); } } else { } if (onoff != 0) { { ret = mxl111sf_enable_usb_output(state); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_ep5_streaming_ctrl", ret, 377); } } else { } { ret = mxl111sf_init_i2s_port(state, 200); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_ep5_streaming_ctrl", ret, 380); } } else { } { ret = mxl111sf_config_i2s(state, 0, 15); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_ep5_streaming_ctrl", ret, 382); } } else { } } else { { ret = mxl111sf_disable_i2s_port(state); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_ep5_streaming_ctrl", ret, 385); } } else { } } if ((unsigned int )state->chip_rev > 1U) { { ret = mxl111sf_config_spi(state, onoff); } } else { } __ret___3 = ret < 0; if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_ep5_streaming_ctrl", ret, 389); } } else { } return (ret); } } static int mxl111sf_ep4_streaming_ctrl(struct dvb_frontend *fe , int onoff ) { struct mxl111sf_state *state ; struct dvb_usb_adapter const *__mptr ; int ret ; struct _ddebug descriptor ; long tmp ; int __ret ; { { __mptr = (struct dvb_usb_adapter const *)(fe->dvb)->priv; state = (struct mxl111sf_state *)((struct dvb_usb_device *)__mptr + - ((unsigned long )((struct dvb_usb_adapter *)(fe->dvb)->priv)->id * 2400UL + 2344UL))->priv; ret = 0; descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_ep4_streaming_ctrl"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s(%d)\n"; descriptor.lineno = 399U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s(%d)\n", "mxl111sf_ep4_streaming_ctrl", onoff); } } else { } if (onoff != 0) { { ret = mxl111sf_enable_usb_output(state); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_ep4_streaming_ctrl", ret, 403); } } else { } } else { } return (ret); } } static struct lgdt3305_config hauppauge_lgdt3305_config = {89U, 6000U, 6000U, (unsigned short)0, (unsigned short)0, (unsigned short)0, 1U, 0U, (unsigned char)0, 1, 0, 0, 1, 0}; static int mxl111sf_lgdt3305_frontend_attach(struct dvb_usb_adapter *adap , u8 fe_id ) { struct dvb_usb_device *d ; struct dvb_usb_adapter const *__mptr ; struct mxl111sf_state *state ; struct mxl111sf_adap_state *adap_state ; int ret ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; int __ret___4 ; int __ret___5 ; void *__r ; struct dvb_frontend *(*__a)(struct lgdt3305_config const * , struct i2c_adapter * ) ; void *tmp___2 ; struct dvb_frontend *(*tmp___3)(struct lgdt3305_config const * , struct i2c_adapter * ) ; void *tmp___4 ; struct dvb_frontend *tmp___5 ; { { __mptr = (struct dvb_usb_adapter const *)adap; d = (struct dvb_usb_device *)__mptr + - ((unsigned long )adap->id * 2400UL + 2344UL); state = (struct mxl111sf_state *)d->priv; adap_state = (struct mxl111sf_adap_state *)(& state->adap_state) + (unsigned long )fe_id; descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_lgdt3305_frontend_attach"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s()\n"; descriptor.lineno = 429U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s()\n", "mxl111sf_lgdt3305_frontend_attach"); } } else { } { state->d = d; adap_state->alt_mode = dvb_usb_mxl111sf_isoc != 0 ? 2 : 1; state->alt_mode = adap_state->alt_mode; tmp___0 = usb_set_interface(d->udev, 0, state->alt_mode); } if (tmp___0 < 0) { { printk("\vset interface failed"); } } else { } { state->gpio_mode = 2; adap_state->gpio_mode = state->gpio_mode; adap_state->device_mode = 0; adap_state->ep6_clockphase = 1; ret = mxl1x1sf_soft_reset(state); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lgdt3305_frontend_attach", ret, 445); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_init_tuner_demod(state); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lgdt3305_frontend_attach", ret, 448); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl1x1sf_set_device_mode(state, adap_state->device_mode); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lgdt3305_frontend_attach", ret, 452); } } else { } if (__ret___1 != 0) { goto fail; } else { } { ret = mxl111sf_enable_usb_output(state); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lgdt3305_frontend_attach", ret, 456); } } else { } if (__ret___2 != 0) { goto fail; } else { } { ret = mxl1x1sf_top_master_ctrl(state, 1); __ret___3 = ret < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lgdt3305_frontend_attach", ret, 459); } } else { } if (__ret___3 != 0) { goto fail; } else { } { ret = mxl111sf_init_port_expander(state); __ret___4 = ret < 0; } if (__ret___4 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lgdt3305_frontend_attach", ret, 463); } } else { } if (__ret___4 != 0) { goto fail; } else { } { ret = mxl111sf_gpio_mode_switch(state, (unsigned int )state->gpio_mode); __ret___5 = ret < 0; } if (__ret___5 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lgdt3305_frontend_attach", ret, 466); } } else { } if (__ret___5 != 0) { goto fail; } else { } { __r = (void *)0; tmp___4 = __symbol_get("lgdt3305_attach"); tmp___3 = (unsigned long )((struct dvb_frontend *(*)(struct lgdt3305_config const * , struct i2c_adapter * ))tmp___4) != (unsigned long )((struct dvb_frontend *(*)(struct lgdt3305_config const * , struct i2c_adapter * ))0); } if (tmp___3) { } else { { __request_module(1, "symbol:lgdt3305_attach"); tmp___2 = __symbol_get("lgdt3305_attach"); tmp___3 = (struct dvb_frontend *(*)(struct lgdt3305_config const * , struct i2c_adapter * ))tmp___2; } } __a = tmp___3; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct lgdt3305_config const * , struct i2c_adapter * ))0)) { { tmp___5 = (*__a)((struct lgdt3305_config const *)(& hauppauge_lgdt3305_config), & d->i2c_adap); __r = (void *)tmp___5; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("lgdt3305_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol lgdt3305_attach()\n"); } } adap->fe[(int )fe_id] = (struct dvb_frontend *)__r; if ((unsigned long )adap->fe[(int )fe_id] != (unsigned long )((struct dvb_frontend *)0)) { state->num_frontends = (u8 )((int )state->num_frontends + 1); adap_state->fe_init = (adap->fe[(int )fe_id])->ops.init; (adap->fe[(int )fe_id])->ops.init = & mxl111sf_adap_fe_init; adap_state->fe_sleep = (adap->fe[(int )fe_id])->ops.sleep; (adap->fe[(int )fe_id])->ops.sleep = & mxl111sf_adap_fe_sleep; return (0); } else { } ret = -5; fail: ; return (ret); } } static struct lg2160_config hauppauge_lg2160_config = {14U, 6000U, 1U, 0U, 0U, 0, 0}; static int mxl111sf_lg2160_frontend_attach(struct dvb_usb_adapter *adap , u8 fe_id ) { struct dvb_usb_device *d ; struct dvb_usb_adapter const *__mptr ; struct mxl111sf_state *state ; struct mxl111sf_adap_state *adap_state ; int ret ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; int __ret___4 ; int __ret___5 ; int ___ret ; int __ret___6 ; int __ret___7 ; int __ret___8 ; void *__r ; struct dvb_frontend *(*__a)(struct lg2160_config const * , struct i2c_adapter * ) ; void *tmp___2 ; struct dvb_frontend *(*tmp___3)(struct lg2160_config const * , struct i2c_adapter * ) ; void *tmp___4 ; struct dvb_frontend *tmp___5 ; { { __mptr = (struct dvb_usb_adapter const *)adap; d = (struct dvb_usb_device *)__mptr + - ((unsigned long )adap->id * 2400UL + 2344UL); state = (struct mxl111sf_state *)d->priv; adap_state = (struct mxl111sf_adap_state *)(& state->adap_state) + (unsigned long )fe_id; descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_lg2160_frontend_attach"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s()\n"; descriptor.lineno = 500U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s()\n", "mxl111sf_lg2160_frontend_attach"); } } else { } { state->d = d; adap_state->alt_mode = dvb_usb_mxl111sf_isoc != 0 ? 2 : 1; state->alt_mode = adap_state->alt_mode; tmp___0 = usb_set_interface(d->udev, 0, state->alt_mode); } if (tmp___0 < 0) { { printk("\vset interface failed"); } } else { } { state->gpio_mode = 1; adap_state->gpio_mode = state->gpio_mode; adap_state->device_mode = 0; adap_state->ep6_clockphase = 1; ret = mxl1x1sf_soft_reset(state); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2160_frontend_attach", ret, 516); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_init_tuner_demod(state); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2160_frontend_attach", ret, 519); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl1x1sf_set_device_mode(state, adap_state->device_mode); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2160_frontend_attach", ret, 523); } } else { } if (__ret___1 != 0) { goto fail; } else { } { ret = mxl111sf_enable_usb_output(state); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2160_frontend_attach", ret, 527); } } else { } if (__ret___2 != 0) { goto fail; } else { } { ret = mxl1x1sf_top_master_ctrl(state, 1); __ret___3 = ret < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2160_frontend_attach", ret, 530); } } else { } if (__ret___3 != 0) { goto fail; } else { } { ret = mxl111sf_init_port_expander(state); __ret___4 = ret < 0; } if (__ret___4 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2160_frontend_attach", ret, 534); } } else { } if (__ret___4 != 0) { goto fail; } else { } { ret = mxl111sf_gpio_mode_switch(state, (unsigned int )state->gpio_mode); __ret___5 = ret < 0; } if (__ret___5 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2160_frontend_attach", ret, 537); } } else { } if (__ret___5 != 0) { goto fail; } else { } { ___ret = mxl1x1sf_get_chip_info(state); __ret___7 = ___ret < 0; } if (__ret___7 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2160_frontend_attach", ___ret, 540); } } else { } if (__ret___7 != 0) { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: failed to get chip info on first probe attempt\n", "mxl111sf_lg2160_frontend_attach"); } } else { } { ___ret = mxl1x1sf_get_chip_info(state); __ret___6 = ___ret < 0; } if (__ret___6 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2160_frontend_attach", ___ret, 540); } } else { } if (__ret___6 != 0) { { printk("\vfailed to get chip info during probe"); } } else if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: probe needed a retry in order to succeed.\n", "mxl111sf_lg2160_frontend_attach"); } } else { } } else { } ret = ___ret; __ret___8 = ret < 0; if (__ret___8 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2160_frontend_attach", ret, 541); } } else { } if (__ret___8 != 0) { goto fail; } else { } { __r = (void *)0; tmp___4 = __symbol_get("lg2160_attach"); tmp___3 = (unsigned long )((struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))tmp___4) != (unsigned long )((struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))0); } if (tmp___3) { } else { { __request_module(1, "symbol:lg2160_attach"); tmp___2 = __symbol_get("lg2160_attach"); tmp___3 = (struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))tmp___2; } } __a = tmp___3; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))0)) { { tmp___5 = (*__a)((struct lg2160_config const *)(& hauppauge_lg2160_config), & d->i2c_adap); __r = (void *)tmp___5; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("lg2160_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol lg2160_attach()\n"); } } adap->fe[(int )fe_id] = (struct dvb_frontend *)__r; if ((unsigned long )adap->fe[(int )fe_id] != (unsigned long )((struct dvb_frontend *)0)) { state->num_frontends = (u8 )((int )state->num_frontends + 1); adap_state->fe_init = (adap->fe[(int )fe_id])->ops.init; (adap->fe[(int )fe_id])->ops.init = & mxl111sf_adap_fe_init; adap_state->fe_sleep = (adap->fe[(int )fe_id])->ops.sleep; (adap->fe[(int )fe_id])->ops.sleep = & mxl111sf_adap_fe_sleep; return (0); } else { } ret = -5; fail: ; return (ret); } } static struct lg2160_config hauppauge_lg2161_1019_config = {14U, 6000U, 1U, 0U, 2U, 0, 1}; static struct lg2160_config hauppauge_lg2161_1040_config = {14U, 6000U, 1U, 0U, 4U, 0, 1}; static int mxl111sf_lg2161_frontend_attach(struct dvb_usb_adapter *adap , u8 fe_id ) { struct dvb_usb_device *d ; struct dvb_usb_adapter const *__mptr ; struct mxl111sf_state *state ; struct mxl111sf_adap_state *adap_state ; int ret ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; int __ret___4 ; int __ret___5 ; int ___ret ; int __ret___6 ; int __ret___7 ; int __ret___8 ; void *__r ; struct dvb_frontend *(*__a)(struct lg2160_config const * , struct i2c_adapter * ) ; void *tmp___2 ; struct dvb_frontend *(*tmp___3)(struct lg2160_config const * , struct i2c_adapter * ) ; void *tmp___4 ; struct dvb_frontend *tmp___5 ; { { __mptr = (struct dvb_usb_adapter const *)adap; d = (struct dvb_usb_device *)__mptr + - ((unsigned long )adap->id * 2400UL + 2344UL); state = (struct mxl111sf_state *)d->priv; adap_state = (struct mxl111sf_adap_state *)(& state->adap_state) + (unsigned long )fe_id; descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_lg2161_frontend_attach"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s()\n"; descriptor.lineno = 585U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s()\n", "mxl111sf_lg2161_frontend_attach"); } } else { } { state->d = d; adap_state->alt_mode = dvb_usb_mxl111sf_isoc != 0 ? 2 : 1; state->alt_mode = adap_state->alt_mode; tmp___0 = usb_set_interface(d->udev, 0, state->alt_mode); } if (tmp___0 < 0) { { printk("\vset interface failed"); } } else { } { state->gpio_mode = 1; adap_state->gpio_mode = state->gpio_mode; adap_state->device_mode = 0; adap_state->ep6_clockphase = 1; ret = mxl1x1sf_soft_reset(state); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_frontend_attach", ret, 601); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_init_tuner_demod(state); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_frontend_attach", ret, 604); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl1x1sf_set_device_mode(state, adap_state->device_mode); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_frontend_attach", ret, 608); } } else { } if (__ret___1 != 0) { goto fail; } else { } { ret = mxl111sf_enable_usb_output(state); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_frontend_attach", ret, 612); } } else { } if (__ret___2 != 0) { goto fail; } else { } { ret = mxl1x1sf_top_master_ctrl(state, 1); __ret___3 = ret < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_frontend_attach", ret, 615); } } else { } if (__ret___3 != 0) { goto fail; } else { } { ret = mxl111sf_init_port_expander(state); __ret___4 = ret < 0; } if (__ret___4 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_frontend_attach", ret, 619); } } else { } if (__ret___4 != 0) { goto fail; } else { } { ret = mxl111sf_gpio_mode_switch(state, (unsigned int )state->gpio_mode); __ret___5 = ret < 0; } if (__ret___5 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_frontend_attach", ret, 622); } } else { } if (__ret___5 != 0) { goto fail; } else { } { ___ret = mxl1x1sf_get_chip_info(state); __ret___7 = ___ret < 0; } if (__ret___7 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_frontend_attach", ___ret, 625); } } else { } if (__ret___7 != 0) { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: failed to get chip info on first probe attempt\n", "mxl111sf_lg2161_frontend_attach"); } } else { } { ___ret = mxl1x1sf_get_chip_info(state); __ret___6 = ___ret < 0; } if (__ret___6 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_frontend_attach", ___ret, 625); } } else { } if (__ret___6 != 0) { { printk("\vfailed to get chip info during probe"); } } else if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: probe needed a retry in order to succeed.\n", "mxl111sf_lg2161_frontend_attach"); } } else { } } else { } ret = ___ret; __ret___8 = ret < 0; if (__ret___8 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_frontend_attach", ret, 626); } } else { } if (__ret___8 != 0) { goto fail; } else { } { __r = (void *)0; tmp___4 = __symbol_get("lg2160_attach"); tmp___3 = (unsigned long )((struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))tmp___4) != (unsigned long )((struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))0); } if (tmp___3) { } else { { __request_module(1, "symbol:lg2160_attach"); tmp___2 = __symbol_get("lg2160_attach"); tmp___3 = (struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))tmp___2; } } __a = tmp___3; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))0)) { { tmp___5 = (*__a)((struct lg2160_config const *)((unsigned int )state->chip_rev == 3U ? & hauppauge_lg2161_1040_config : & hauppauge_lg2161_1019_config), & d->i2c_adap); __r = (void *)tmp___5; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("lg2160_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol lg2160_attach()\n"); } } adap->fe[(int )fe_id] = (struct dvb_frontend *)__r; if ((unsigned long )adap->fe[(int )fe_id] != (unsigned long )((struct dvb_frontend *)0)) { state->num_frontends = (u8 )((int )state->num_frontends + 1); adap_state->fe_init = (adap->fe[(int )fe_id])->ops.init; (adap->fe[(int )fe_id])->ops.init = & mxl111sf_adap_fe_init; adap_state->fe_sleep = (adap->fe[(int )fe_id])->ops.sleep; (adap->fe[(int )fe_id])->ops.sleep = & mxl111sf_adap_fe_sleep; return (0); } else { } ret = -5; fail: ; return (ret); } } static struct lg2160_config hauppauge_lg2161_1019_ep6_config = {14U, 6000U, 1U, 0U, 1U, 0, 1}; static struct lg2160_config hauppauge_lg2161_1040_ep6_config = {14U, 6000U, 1U, 0U, 7U, 0, 1}; static int mxl111sf_lg2161_ep6_frontend_attach(struct dvb_usb_adapter *adap , u8 fe_id ) { struct dvb_usb_device *d ; struct dvb_usb_adapter const *__mptr ; struct mxl111sf_state *state ; struct mxl111sf_adap_state *adap_state ; int ret ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; int __ret___4 ; int __ret___5 ; int ___ret ; int __ret___6 ; int __ret___7 ; int __ret___8 ; void *__r ; struct dvb_frontend *(*__a)(struct lg2160_config const * , struct i2c_adapter * ) ; void *tmp___2 ; struct dvb_frontend *(*tmp___3)(struct lg2160_config const * , struct i2c_adapter * ) ; void *tmp___4 ; struct dvb_frontend *tmp___5 ; { { __mptr = (struct dvb_usb_adapter const *)adap; d = (struct dvb_usb_device *)__mptr + - ((unsigned long )adap->id * 2400UL + 2344UL); state = (struct mxl111sf_state *)d->priv; adap_state = (struct mxl111sf_adap_state *)(& state->adap_state) + (unsigned long )fe_id; descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_lg2161_ep6_frontend_attach"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s()\n"; descriptor.lineno = 672U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s()\n", "mxl111sf_lg2161_ep6_frontend_attach"); } } else { } { state->d = d; adap_state->alt_mode = dvb_usb_mxl111sf_isoc != 0 ? 2 : 1; state->alt_mode = adap_state->alt_mode; tmp___0 = usb_set_interface(d->udev, 0, state->alt_mode); } if (tmp___0 < 0) { { printk("\vset interface failed"); } } else { } { state->gpio_mode = 1; adap_state->gpio_mode = state->gpio_mode; adap_state->device_mode = 0; adap_state->ep6_clockphase = 0; ret = mxl1x1sf_soft_reset(state); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_ep6_frontend_attach", ret, 688); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_init_tuner_demod(state); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_ep6_frontend_attach", ret, 691); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl1x1sf_set_device_mode(state, adap_state->device_mode); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_ep6_frontend_attach", ret, 695); } } else { } if (__ret___1 != 0) { goto fail; } else { } { ret = mxl111sf_enable_usb_output(state); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_ep6_frontend_attach", ret, 699); } } else { } if (__ret___2 != 0) { goto fail; } else { } { ret = mxl1x1sf_top_master_ctrl(state, 1); __ret___3 = ret < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_ep6_frontend_attach", ret, 702); } } else { } if (__ret___3 != 0) { goto fail; } else { } { ret = mxl111sf_init_port_expander(state); __ret___4 = ret < 0; } if (__ret___4 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_ep6_frontend_attach", ret, 706); } } else { } if (__ret___4 != 0) { goto fail; } else { } { ret = mxl111sf_gpio_mode_switch(state, (unsigned int )state->gpio_mode); __ret___5 = ret < 0; } if (__ret___5 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_ep6_frontend_attach", ret, 709); } } else { } if (__ret___5 != 0) { goto fail; } else { } { ___ret = mxl1x1sf_get_chip_info(state); __ret___7 = ___ret < 0; } if (__ret___7 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_ep6_frontend_attach", ___ret, 712); } } else { } if (__ret___7 != 0) { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: failed to get chip info on first probe attempt\n", "mxl111sf_lg2161_ep6_frontend_attach"); } } else { } { ___ret = mxl1x1sf_get_chip_info(state); __ret___6 = ___ret < 0; } if (__ret___6 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_ep6_frontend_attach", ___ret, 712); } } else { } if (__ret___6 != 0) { { printk("\vfailed to get chip info during probe"); } } else if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: probe needed a retry in order to succeed.\n", "mxl111sf_lg2161_ep6_frontend_attach"); } } else { } } else { } ret = ___ret; __ret___8 = ret < 0; if (__ret___8 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_lg2161_ep6_frontend_attach", ret, 713); } } else { } if (__ret___8 != 0) { goto fail; } else { } { __r = (void *)0; tmp___4 = __symbol_get("lg2160_attach"); tmp___3 = (unsigned long )((struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))tmp___4) != (unsigned long )((struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))0); } if (tmp___3) { } else { { __request_module(1, "symbol:lg2160_attach"); tmp___2 = __symbol_get("lg2160_attach"); tmp___3 = (struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))tmp___2; } } __a = tmp___3; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct lg2160_config const * , struct i2c_adapter * ))0)) { { tmp___5 = (*__a)((struct lg2160_config const *)((unsigned int )state->chip_rev == 3U ? & hauppauge_lg2161_1040_ep6_config : & hauppauge_lg2161_1019_ep6_config), & d->i2c_adap); __r = (void *)tmp___5; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("lg2160_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol lg2160_attach()\n"); } } adap->fe[(int )fe_id] = (struct dvb_frontend *)__r; if ((unsigned long )adap->fe[(int )fe_id] != (unsigned long )((struct dvb_frontend *)0)) { state->num_frontends = (u8 )((int )state->num_frontends + 1); adap_state->fe_init = (adap->fe[(int )fe_id])->ops.init; (adap->fe[(int )fe_id])->ops.init = & mxl111sf_adap_fe_init; adap_state->fe_sleep = (adap->fe[(int )fe_id])->ops.sleep; (adap->fe[(int )fe_id])->ops.sleep = & mxl111sf_adap_fe_sleep; return (0); } else { } ret = -5; fail: ; return (ret); } } static struct mxl111sf_demod_config mxl_demod_config = {& mxl111sf_read_reg, & mxl111sf_write_reg, & mxl111sf_ctrl_program_regs}; static int mxl111sf_attach_demod(struct dvb_usb_adapter *adap , u8 fe_id ) { struct dvb_usb_device *d ; struct dvb_usb_adapter const *__mptr ; struct mxl111sf_state *state ; struct mxl111sf_adap_state *adap_state ; int ret ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; void *__r ; struct dvb_frontend *(*__a)(struct mxl111sf_state * , struct mxl111sf_demod_config * ) ; void *tmp___2 ; struct dvb_frontend *(*tmp___3)(struct mxl111sf_state * , struct mxl111sf_demod_config * ) ; void *tmp___4 ; struct dvb_frontend *tmp___5 ; { { __mptr = (struct dvb_usb_adapter const *)adap; d = (struct dvb_usb_device *)__mptr + - ((unsigned long )adap->id * 2400UL + 2344UL); state = (struct mxl111sf_state *)d->priv; adap_state = (struct mxl111sf_adap_state *)(& state->adap_state) + (unsigned long )fe_id; descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_attach_demod"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s()\n"; descriptor.lineno = 747U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s()\n", "mxl111sf_attach_demod"); } } else { } { state->d = d; adap_state->alt_mode = dvb_usb_mxl111sf_isoc != 0 ? 1 : 2; state->alt_mode = adap_state->alt_mode; tmp___0 = usb_set_interface(d->udev, 0, state->alt_mode); } if (tmp___0 < 0) { { printk("\vset interface failed"); } } else { } { state->gpio_mode = 0; adap_state->gpio_mode = state->gpio_mode; adap_state->device_mode = 1; adap_state->ep6_clockphase = 1; ret = mxl1x1sf_soft_reset(state); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_attach_demod", ret, 763); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_init_tuner_demod(state); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_attach_demod", ret, 766); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl1x1sf_set_device_mode(state, adap_state->device_mode); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_attach_demod", ret, 770); } } else { } if (__ret___1 != 0) { goto fail; } else { } { ret = mxl111sf_enable_usb_output(state); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_attach_demod", ret, 774); } } else { } if (__ret___2 != 0) { goto fail; } else { } { ret = mxl1x1sf_top_master_ctrl(state, 1); __ret___3 = ret < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_attach_demod", ret, 777); } } else { } if (__ret___3 != 0) { goto fail; } else { } { mxl111sf_init_port_expander(state); __r = (void *)0; tmp___4 = __symbol_get("mxl111sf_demod_attach"); tmp___3 = (unsigned long )((struct dvb_frontend *(*)(struct mxl111sf_state * , struct mxl111sf_demod_config * ))tmp___4) != (unsigned long )((struct dvb_frontend *(*)(struct mxl111sf_state * , struct mxl111sf_demod_config * ))0); } if (tmp___3) { } else { { __request_module(1, "symbol:mxl111sf_demod_attach"); tmp___2 = __symbol_get("mxl111sf_demod_attach"); tmp___3 = (struct dvb_frontend *(*)(struct mxl111sf_state * , struct mxl111sf_demod_config * ))tmp___2; } } __a = tmp___3; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct mxl111sf_state * , struct mxl111sf_demod_config * ))0)) { { tmp___5 = (*__a)(state, & mxl_demod_config); __r = (void *)tmp___5; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("mxl111sf_demod_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol mxl111sf_demod_attach()\n"); } } adap->fe[(int )fe_id] = (struct dvb_frontend *)__r; if ((unsigned long )adap->fe[(int )fe_id] != (unsigned long )((struct dvb_frontend *)0)) { state->num_frontends = (u8 )((int )state->num_frontends + 1); adap_state->fe_init = (adap->fe[(int )fe_id])->ops.init; (adap->fe[(int )fe_id])->ops.init = & mxl111sf_adap_fe_init; adap_state->fe_sleep = (adap->fe[(int )fe_id])->ops.sleep; (adap->fe[(int )fe_id])->ops.sleep = & mxl111sf_adap_fe_sleep; return (0); } else { } ret = -5; fail: ; return (ret); } } __inline static int mxl111sf_set_ant_path(struct mxl111sf_state *state , int antpath ) { int tmp ; { { tmp = mxl111sf_idac_config(state, 1, 1, antpath == 2 ? 63 : 0, 0); } return (tmp); } } static int mxl111sf_ant_hunt(struct dvb_frontend *fe ) { struct mxl111sf_state *state ; struct dvb_usb_adapter const *__mptr ; int antctrl ; u16 rxPwrA ; u16 rxPwr0 ; u16 rxPwr1 ; u16 rxPwr2 ; { { __mptr = (struct dvb_usb_adapter const *)(fe->dvb)->priv; state = (struct mxl111sf_state *)((struct dvb_usb_device *)__mptr + - ((unsigned long )((struct dvb_usb_adapter *)(fe->dvb)->priv)->id * 2400UL + 2344UL))->priv; antctrl = dvb_usb_mxl111sf_rfswitch; mxl111sf_set_ant_path(state, antctrl != 0 ? antctrl : 1); } if (antctrl == 0) { { (*(fe->ops.tuner_ops.get_rf_strength))(fe, & rxPwrA); mxl111sf_set_ant_path(state, 1); msleep(90U); (*(fe->ops.tuner_ops.get_rf_strength))(fe, & rxPwr0); mxl111sf_set_ant_path(state, 1); msleep(90U); (*(fe->ops.tuner_ops.get_rf_strength))(fe, & rxPwr1); mxl111sf_set_ant_path(state, 2); msleep(90U); (*(fe->ops.tuner_ops.get_rf_strength))(fe, & rxPwr2); } if ((int )rxPwr1 >= (int )rxPwr2) { { mxl111sf_set_ant_path(state, 1); printk("\v%s(%d) FINAL input set to %s rxPwr:%d|%d|%d|%d\n", "mxl111sf_ant_hunt", 848, (char *)"EXTERNAL", (int )rxPwrA, (int )rxPwr0, (int )rxPwr1, (int )rxPwr2); } } else { { printk("\v%s(%d) FINAL input set to %s rxPwr:%d|%d|%d|%d\n", "mxl111sf_ant_hunt", 852, (char *)"INTERNAL", (int )rxPwrA, (int )rxPwr0, (int )rxPwr1, (int )rxPwr2); } } } else { } return (0); } } static struct mxl111sf_tuner_config mxl_tuner_config = {6, 0U, & mxl111sf_read_reg, & mxl111sf_write_reg, & mxl111sf_ctrl_program_regs, & mxl1x1sf_top_master_ctrl, & mxl111sf_ant_hunt}; static int mxl111sf_attach_tuner(struct dvb_usb_adapter *adap ) { struct mxl111sf_state *state ; struct dvb_usb_adapter const *__mptr ; int i ; struct _ddebug descriptor ; long tmp ; void *__r ; struct dvb_frontend *(*__a)(struct dvb_frontend * , struct mxl111sf_state * , struct mxl111sf_tuner_config * ) ; void *tmp___1 ; struct dvb_frontend *(*tmp___2)(struct dvb_frontend * , struct mxl111sf_state * , struct mxl111sf_tuner_config * ) ; void *tmp___3 ; struct dvb_frontend *tmp___4 ; { { __mptr = (struct dvb_usb_adapter const *)adap; state = (struct mxl111sf_state *)((struct dvb_usb_device *)__mptr + - ((unsigned long )adap->id * 2400UL + 2344UL))->priv; descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_attach_tuner"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s()\n"; descriptor.lineno = 873U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s()\n", "mxl111sf_attach_tuner"); } } else { } i = 0; goto ldv_50199; ldv_50198: { __r = (void *)0; tmp___3 = __symbol_get("mxl111sf_tuner_attach"); tmp___2 = (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct mxl111sf_state * , struct mxl111sf_tuner_config * ))tmp___3) != (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct mxl111sf_state * , struct mxl111sf_tuner_config * ))0); } if (tmp___2) { } else { { __request_module(1, "symbol:mxl111sf_tuner_attach"); tmp___1 = __symbol_get("mxl111sf_tuner_attach"); tmp___2 = (struct dvb_frontend *(*)(struct dvb_frontend * , struct mxl111sf_state * , struct mxl111sf_tuner_config * ))tmp___1; } } __a = tmp___2; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct mxl111sf_state * , struct mxl111sf_tuner_config * ))0)) { { tmp___4 = (*__a)(adap->fe[i], state, & mxl_tuner_config); __r = (void *)tmp___4; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("mxl111sf_tuner_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol mxl111sf_tuner_attach()\n"); } } if ((unsigned long )__r == (unsigned long )((void *)0)) { return (-5); } else { } (adap->fe[i])->ops.read_signal_strength = (adap->fe[i])->ops.tuner_ops.get_rf_strength; i = i + 1; ldv_50199: ; if (i < (int )state->num_frontends) { goto ldv_50198; } else { } return (0); } } static u32 mxl111sf_i2c_func(struct i2c_adapter *adapter ) { { return (1U); } } static struct i2c_algorithm mxl111sf_i2c_algo = {& mxl111sf_i2c_xfer, 0, & mxl111sf_i2c_func, 0, 0}; static int mxl111sf_init(struct dvb_usb_device *d ) { struct mxl111sf_state *state ; int ret ; u8 eeprom[256U] ; struct i2c_client c ; int ___ret ; int __ret ; int __ret___0 ; int __ret___1 ; struct lock_class_key __key ; int __ret___2 ; { { state = (struct mxl111sf_state *)d->priv; ___ret = mxl1x1sf_get_chip_info(state); __ret___0 = ___ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_init", ___ret, 905); } } else { } if (__ret___0 != 0) { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: failed to get chip info on first probe attempt\n", "mxl111sf_init"); } } else { } { ___ret = mxl1x1sf_get_chip_info(state); __ret = ___ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_init", ___ret, 905); } } else { } if (__ret != 0) { { printk("\vfailed to get chip info during probe"); } } else if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: probe needed a retry in order to succeed.\n", "mxl111sf_init"); } } else { } } else { } ret = ___ret; __ret___1 = ret < 0; if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_init", ret, 906); } } else { } if (__ret___1 != 0) { { printk("\vfailed to get chip info during probe"); } } else { } { __mutex_init(& state->fe_lock, "&state->fe_lock", & __key); } if ((unsigned int )state->chip_rev > 1U) { { mxl111sf_config_pin_mux_modes(state, 7); } } else { } { c.adapter = & d->i2c_adap; c.addr = 80U; ret = tveeprom_read(& c, (unsigned char *)(& eeprom), 256); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_init", ret, 918); } } else { } if (__ret___2 != 0) { return (0); } else { } { tveeprom_hauppauge_analog(& c, & state->tv, (unsigned int )eeprom[160] == 132U ? (unsigned char *)(& eeprom) + 160U : (unsigned char *)(& eeprom) + 128U); } return (0); } } static int mxl111sf_frontend_attach_dvbt(struct dvb_usb_adapter *adap ) { int tmp ; { { tmp = mxl111sf_attach_demod(adap, 0); } return (tmp); } } static int mxl111sf_frontend_attach_atsc(struct dvb_usb_adapter *adap ) { int tmp ; { { tmp = mxl111sf_lgdt3305_frontend_attach(adap, 0); } return (tmp); } } static int mxl111sf_frontend_attach_mh(struct dvb_usb_adapter *adap ) { int tmp ; { { tmp = mxl111sf_lg2160_frontend_attach(adap, 0); } return (tmp); } } static int mxl111sf_frontend_attach_atsc_mh(struct dvb_usb_adapter *adap ) { int ret ; struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_frontend_attach_atsc_mh"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s\n"; descriptor.lineno = 955U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s\n", "mxl111sf_frontend_attach_atsc_mh"); } } else { } { ret = mxl111sf_lgdt3305_frontend_attach(adap, 0); } if (ret < 0) { return (ret); } else { } { ret = mxl111sf_attach_demod(adap, 1); } if (ret < 0) { return (ret); } else { } { ret = mxl111sf_lg2160_frontend_attach(adap, 2); } if (ret < 0) { return (ret); } else { } return (ret); } } static int mxl111sf_frontend_attach_mercury(struct dvb_usb_adapter *adap ) { int ret ; struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_frontend_attach_mercury"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s\n"; descriptor.lineno = 975U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s\n", "mxl111sf_frontend_attach_mercury"); } } else { } { ret = mxl111sf_lgdt3305_frontend_attach(adap, 0); } if (ret < 0) { return (ret); } else { } { ret = mxl111sf_attach_demod(adap, 1); } if (ret < 0) { return (ret); } else { } { ret = mxl111sf_lg2161_ep6_frontend_attach(adap, 2); } if (ret < 0) { return (ret); } else { } return (ret); } } static int mxl111sf_frontend_attach_mercury_mh(struct dvb_usb_adapter *adap ) { int ret ; struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_frontend_attach_mercury_mh"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s\n"; descriptor.lineno = 995U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s\n", "mxl111sf_frontend_attach_mercury_mh"); } } else { } { ret = mxl111sf_attach_demod(adap, 0); } if (ret < 0) { return (ret); } else { } if (dvb_usb_mxl111sf_spi != 0) { { ret = mxl111sf_lg2161_frontend_attach(adap, 1); } } else { { ret = mxl111sf_lg2161_ep6_frontend_attach(adap, 1); } } return (ret); } } static void mxl111sf_stream_config_bulk(struct usb_data_stream_properties *stream , u8 endpoint ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_stream_config_bulk"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: endpoint=%d size=8192\n"; descriptor.lineno = 1011U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: endpoint=%d size=8192\n", "mxl111sf_stream_config_bulk", (int )endpoint); } } else { } stream->type = 1U; stream->count = 5U; stream->endpoint = endpoint; stream->u.bulk.buffersize = 8192U; return; } } static void mxl111sf_stream_config_isoc(struct usb_data_stream_properties *stream , u8 endpoint , int framesperurb , int framesize ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_stream_config_isoc"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: endpoint=%d size=%d\n"; descriptor.lineno = 1022U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: endpoint=%d size=%d\n", "mxl111sf_stream_config_isoc", (int )endpoint, framesperurb * framesize); } } else { } stream->type = 2U; stream->count = 5U; stream->endpoint = endpoint; stream->u.isoc.framesperurb = framesperurb; stream->u.isoc.framesize = framesize; stream->u.isoc.interval = 1; return; } } static int mxl111sf_get_stream_config_dvbt(struct dvb_frontend *fe , u8 *ts_type , struct usb_data_stream_properties *stream ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_get_stream_config_dvbt"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: fe=%d\n"; descriptor.lineno = 1040U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: fe=%d\n", "mxl111sf_get_stream_config_dvbt", fe->id); } } else { } *ts_type = 0U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 4, 96, 564); } } else { { mxl111sf_stream_config_bulk(stream, 4); } } return (0); } } static struct dvb_usb_device_properties mxl111sf_props_dvbt = {"dvb_usb_mxl111sf", & __this_module, (short *)(& adapter_nr), (unsigned char)0, 368U, 2U, 129U, 0U, 0, 0, 0, & mxl111sf_i2c_algo, 1U, 0, {{(unsigned char)0, (unsigned char)0, 0, 0, {2U, 5U, 6U, {.isoc = {24, 3072, 1}}}}}, 0, 0, 0, & mxl111sf_frontend_attach_dvbt, 0, & mxl111sf_attach_tuner, 0, 0, & mxl111sf_ep4_streaming_ctrl, & mxl111sf_init, 0, 0, & mxl111sf_get_stream_config_dvbt}; static int mxl111sf_get_stream_config_atsc(struct dvb_frontend *fe , u8 *ts_type , struct usb_data_stream_properties *stream ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_get_stream_config_atsc"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: fe=%d\n"; descriptor.lineno = 1081U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: fe=%d\n", "mxl111sf_get_stream_config_atsc", fe->id); } } else { } *ts_type = 0U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 6, 24, 3072); } } else { { mxl111sf_stream_config_bulk(stream, 6); } } return (0); } } static struct dvb_usb_device_properties mxl111sf_props_atsc = {"dvb_usb_mxl111sf", & __this_module, (short *)(& adapter_nr), (unsigned char)0, 368U, 2U, 129U, 0U, 0, 0, 0, & mxl111sf_i2c_algo, 1U, 0, {{(unsigned char)0, (unsigned char)0, 0, 0, {2U, 5U, 6U, {.isoc = {24, 3072, 1}}}}}, 0, 0, 0, & mxl111sf_frontend_attach_atsc, 0, & mxl111sf_attach_tuner, 0, 0, & mxl111sf_ep6_streaming_ctrl, & mxl111sf_init, 0, 0, & mxl111sf_get_stream_config_atsc}; static int mxl111sf_get_stream_config_mh(struct dvb_frontend *fe , u8 *ts_type , struct usb_data_stream_properties *stream ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_get_stream_config_mh"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: fe=%d\n"; descriptor.lineno = 1122U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: fe=%d\n", "mxl111sf_get_stream_config_mh", fe->id); } } else { } *ts_type = 2U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 5, 96, 200); } } else { { mxl111sf_stream_config_bulk(stream, 5); } } return (0); } } static struct dvb_usb_device_properties mxl111sf_props_mh = {"dvb_usb_mxl111sf", & __this_module, (short *)(& adapter_nr), (unsigned char)0, 368U, 2U, 129U, 0U, 0, 0, 0, & mxl111sf_i2c_algo, 1U, 0, {{(unsigned char)0, (unsigned char)0, 0, 0, {2U, 5U, 6U, {.isoc = {24, 3072, 1}}}}}, 0, 0, 0, & mxl111sf_frontend_attach_mh, 0, & mxl111sf_attach_tuner, 0, 0, & mxl111sf_ep5_streaming_ctrl, & mxl111sf_init, 0, 0, & mxl111sf_get_stream_config_mh}; static int mxl111sf_get_stream_config_atsc_mh(struct dvb_frontend *fe , u8 *ts_type , struct usb_data_stream_properties *stream ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_get_stream_config_atsc_mh"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: fe=%d\n"; descriptor.lineno = 1163U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: fe=%d\n", "mxl111sf_get_stream_config_atsc_mh", fe->id); } } else { } if (fe->id == 0) { *ts_type = 0U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 6, 24, 3072); } } else { { mxl111sf_stream_config_bulk(stream, 6); } } } else if (fe->id == 1) { *ts_type = 0U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 4, 96, 564); } } else { { mxl111sf_stream_config_bulk(stream, 4); } } } else if (fe->id == 2) { *ts_type = 2U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 5, 96, 200); } } else { { mxl111sf_stream_config_bulk(stream, 5); } } } else { } return (0); } } static int mxl111sf_streaming_ctrl_atsc_mh(struct dvb_frontend *fe , int onoff ) { struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_streaming_ctrl_atsc_mh"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: fe=%d onoff=%d\n"; descriptor.lineno = 1189U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: fe=%d onoff=%d\n", "mxl111sf_streaming_ctrl_atsc_mh", fe->id, onoff); } } else { } if (fe->id == 0) { { tmp___0 = mxl111sf_ep6_streaming_ctrl(fe, onoff); } return (tmp___0); } else if (fe->id == 1) { { tmp___1 = mxl111sf_ep4_streaming_ctrl(fe, onoff); } return (tmp___1); } else if (fe->id == 2) { { tmp___2 = mxl111sf_ep5_streaming_ctrl(fe, onoff); } return (tmp___2); } else { } return (0); } } static struct dvb_usb_device_properties mxl111sf_props_atsc_mh = {"dvb_usb_mxl111sf", & __this_module, (short *)(& adapter_nr), (unsigned char)0, 368U, 2U, 129U, 0U, 0, 0, 0, & mxl111sf_i2c_algo, 1U, 0, {{(unsigned char)0, (unsigned char)0, 0, 0, {2U, 5U, 6U, {.isoc = {24, 3072, 1}}}}}, 0, 0, 0, & mxl111sf_frontend_attach_atsc_mh, 0, & mxl111sf_attach_tuner, 0, 0, & mxl111sf_streaming_ctrl_atsc_mh, & mxl111sf_init, 0, 0, & mxl111sf_get_stream_config_atsc_mh}; static int mxl111sf_get_stream_config_mercury(struct dvb_frontend *fe , u8 *ts_type , struct usb_data_stream_properties *stream ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_get_stream_config_mercury"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: fe=%d\n"; descriptor.lineno = 1233U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: fe=%d\n", "mxl111sf_get_stream_config_mercury", fe->id); } } else { } if (fe->id == 0) { *ts_type = 0U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 6, 24, 3072); } } else { { mxl111sf_stream_config_bulk(stream, 6); } } } else if (fe->id == 1) { *ts_type = 0U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 4, 96, 564); } } else { { mxl111sf_stream_config_bulk(stream, 4); } } } else if (fe->id == 2 && dvb_usb_mxl111sf_spi != 0) { *ts_type = 2U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 5, 96, 200); } } else { { mxl111sf_stream_config_bulk(stream, 5); } } } else if (fe->id == 2 && dvb_usb_mxl111sf_spi == 0) { *ts_type = 2U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 6, 24, 3072); } } else { { mxl111sf_stream_config_bulk(stream, 6); } } } else { } return (0); } } static int mxl111sf_streaming_ctrl_mercury(struct dvb_frontend *fe , int onoff ) { struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_streaming_ctrl_mercury"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: fe=%d onoff=%d\n"; descriptor.lineno = 1265U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: fe=%d onoff=%d\n", "mxl111sf_streaming_ctrl_mercury", fe->id, onoff); } } else { } if (fe->id == 0) { { tmp___0 = mxl111sf_ep6_streaming_ctrl(fe, onoff); } return (tmp___0); } else if (fe->id == 1) { { tmp___1 = mxl111sf_ep4_streaming_ctrl(fe, onoff); } return (tmp___1); } else if (fe->id == 2 && dvb_usb_mxl111sf_spi != 0) { { tmp___2 = mxl111sf_ep5_streaming_ctrl(fe, onoff); } return (tmp___2); } else if (fe->id == 2 && dvb_usb_mxl111sf_spi == 0) { { tmp___3 = mxl111sf_ep6_streaming_ctrl(fe, onoff); } return (tmp___3); } else { } return (0); } } static struct dvb_usb_device_properties mxl111sf_props_mercury = {"dvb_usb_mxl111sf", & __this_module, (short *)(& adapter_nr), (unsigned char)0, 368U, 2U, 129U, 0U, 0, 0, 0, & mxl111sf_i2c_algo, 1U, 0, {{(unsigned char)0, (unsigned char)0, 0, 0, {2U, 5U, 6U, {.isoc = {24, 3072, 1}}}}}, 0, 0, 0, & mxl111sf_frontend_attach_mercury, 0, & mxl111sf_attach_tuner, 0, 0, & mxl111sf_streaming_ctrl_mercury, & mxl111sf_init, 0, 0, & mxl111sf_get_stream_config_mercury}; static int mxl111sf_get_stream_config_mercury_mh(struct dvb_frontend *fe , u8 *ts_type , struct usb_data_stream_properties *stream ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_get_stream_config_mercury_mh"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: fe=%d\n"; descriptor.lineno = 1311U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: fe=%d\n", "mxl111sf_get_stream_config_mercury_mh", fe->id); } } else { } if (fe->id == 0) { *ts_type = 0U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 4, 96, 564); } } else { { mxl111sf_stream_config_bulk(stream, 4); } } } else if (fe->id == 1 && dvb_usb_mxl111sf_spi != 0) { *ts_type = 2U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 5, 96, 200); } } else { { mxl111sf_stream_config_bulk(stream, 5); } } } else if (fe->id == 1 && dvb_usb_mxl111sf_spi == 0) { *ts_type = 2U; if (dvb_usb_mxl111sf_isoc != 0) { { mxl111sf_stream_config_isoc(stream, 6, 24, 3072); } } else { { mxl111sf_stream_config_bulk(stream, 6); } } } else { } return (0); } } static int mxl111sf_streaming_ctrl_mercury_mh(struct dvb_frontend *fe , int onoff ) { struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { descriptor.modname = "dvb_usb_mxl111sf"; descriptor.function = "mxl111sf_streaming_ctrl_mercury_mh"; descriptor.filename = "drivers/media/usb/dvb-usb-v2/mxl111sf.c"; descriptor.format = "%s: fe=%d onoff=%d\n"; descriptor.lineno = 1337U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "%s: fe=%d onoff=%d\n", "mxl111sf_streaming_ctrl_mercury_mh", fe->id, onoff); } } else { } if (fe->id == 0) { { tmp___0 = mxl111sf_ep4_streaming_ctrl(fe, onoff); } return (tmp___0); } else if (fe->id == 1 && dvb_usb_mxl111sf_spi != 0) { { tmp___1 = mxl111sf_ep5_streaming_ctrl(fe, onoff); } return (tmp___1); } else if (fe->id == 1 && dvb_usb_mxl111sf_spi == 0) { { tmp___2 = mxl111sf_ep6_streaming_ctrl(fe, onoff); } return (tmp___2); } else { } return (0); } } static struct dvb_usb_device_properties mxl111sf_props_mercury_mh = {"dvb_usb_mxl111sf", & __this_module, (short *)(& adapter_nr), (unsigned char)0, 368U, 2U, 129U, 0U, 0, 0, 0, & mxl111sf_i2c_algo, 1U, 0, {{(unsigned char)0, (unsigned char)0, 0, 0, {2U, 5U, 6U, {.isoc = {24, 3072, 1}}}}}, 0, 0, 0, & mxl111sf_frontend_attach_mercury_mh, 0, & mxl111sf_attach_tuner, 0, 0, & mxl111sf_streaming_ctrl_mercury_mh, & mxl111sf_init, 0, 0, & mxl111sf_get_stream_config_mercury_mh}; static struct dvb_usb_driver_info const __constr_expr_0 = {"Hauppauge 126xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct dvb_usb_driver_info const __constr_expr_1 = {"Hauppauge 126xxx ATSC", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc)}; static struct dvb_usb_driver_info const __constr_expr_2 = {"HCW 126xxx", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mh)}; static struct dvb_usb_driver_info const __constr_expr_3 = {"Hauppauge 126xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct dvb_usb_driver_info const __constr_expr_4 = {"Hauppauge 126xxx DVBT", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_dvbt)}; static struct dvb_usb_driver_info const __constr_expr_5 = {"Hauppauge 126xxx ATSC", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc)}; static struct dvb_usb_driver_info const __constr_expr_6 = {"HCW 126xxx", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mh)}; static struct dvb_usb_driver_info const __constr_expr_7 = {"Hauppauge 126xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct dvb_usb_driver_info const __constr_expr_8 = {"Hauppauge 126xxx DVBT", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_dvbt)}; static struct dvb_usb_driver_info const __constr_expr_9 = {"Hauppauge 126xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct dvb_usb_driver_info const __constr_expr_10 = {"Hauppauge 126xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct dvb_usb_driver_info const __constr_expr_11 = {"Hauppauge 117xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct dvb_usb_driver_info const __constr_expr_12 = {"Hauppauge 126xxx ATSC", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc)}; static struct dvb_usb_driver_info const __constr_expr_13 = {"HCW 117xxx", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mh)}; static struct dvb_usb_driver_info const __constr_expr_14 = {"Hauppauge 117xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct dvb_usb_driver_info const __constr_expr_15 = {"Hauppauge 117xxx DVBT", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_dvbt)}; static struct dvb_usb_driver_info const __constr_expr_16 = {"Hauppauge 117xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct dvb_usb_driver_info const __constr_expr_17 = {"Hauppauge 117xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct dvb_usb_driver_info const __constr_expr_18 = {"Hauppauge 117xxx DVBT", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_dvbt)}; static struct dvb_usb_driver_info const __constr_expr_19 = {"Hauppauge Mercury", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mercury)}; static struct dvb_usb_driver_info const __constr_expr_20 = {"Hauppauge 138xxx DVBT", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_dvbt)}; static struct dvb_usb_driver_info const __constr_expr_21 = {"Hauppauge Mercury", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mercury)}; static struct dvb_usb_driver_info const __constr_expr_22 = {"Hauppauge 138xxx DVBT", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_dvbt)}; static struct dvb_usb_driver_info const __constr_expr_23 = {"Hauppauge Mercury", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mercury)}; static struct dvb_usb_driver_info const __constr_expr_24 = {"Hauppauge 138xxx DVBT", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_dvbt)}; static struct dvb_usb_driver_info const __constr_expr_25 = {"Hauppauge Mercury", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mercury)}; static struct dvb_usb_driver_info const __constr_expr_26 = {"Hauppauge 138xxx DVBT", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_dvbt)}; static struct dvb_usb_driver_info const __constr_expr_27 = {"Hauppauge Mercury", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mercury)}; static struct dvb_usb_driver_info const __constr_expr_28 = {"Hauppauge 126xxx", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mercury_mh)}; static struct dvb_usb_driver_info const __constr_expr_29 = {"Hauppauge WinTV-Aero-M", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mercury)}; static struct dvb_usb_driver_info const __constr_expr_30 = {"Hauppauge 126xxx", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mercury_mh)}; static struct dvb_usb_driver_info const __constr_expr_31 = {"Hauppauge WinTV-Aero-M", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_mercury)}; static struct dvb_usb_driver_info const __constr_expr_32 = {"Hauppauge 117xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct dvb_usb_driver_info const __constr_expr_33 = {"Hauppauge 117xxx ATSC+", (char const *)0, (struct dvb_usb_device_properties const *)(& mxl111sf_props_atsc_mh)}; static struct usb_device_id const mxl111sf_id_table[35U] = { {3U, 8256U, 50688U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_0)}, {3U, 8256U, 50689U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_1)}, {3U, 8256U, 50690U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_2)}, {3U, 8256U, 50691U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_3)}, {3U, 8256U, 50692U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_4)}, {3U, 8256U, 50697U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_5)}, {3U, 8256U, 50698U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_6)}, {3U, 8256U, 50699U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_7)}, {3U, 8256U, 50700U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_8)}, {3U, 8256U, 50771U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_9)}, {3U, 8256U, 50779U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_10)}, {3U, 8256U, 46848U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_11)}, {3U, 8256U, 46849U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_12)}, {3U, 8256U, 46850U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_13)}, {3U, 8256U, 46851U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_14)}, {3U, 8256U, 46852U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_15)}, {3U, 8256U, 46931U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_16)}, {3U, 8256U, 46947U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_17)}, {3U, 8256U, 46948U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_18)}, {3U, 8256U, 55379U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_19)}, {3U, 8256U, 55380U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_20)}, {3U, 8256U, 55395U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_21)}, {3U, 8256U, 55396U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_22)}, {3U, 8256U, 55507U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_23)}, {3U, 8256U, 55508U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_24)}, {3U, 8256U, 55523U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_25)}, {3U, 8256U, 55524U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_26)}, {3U, 8256U, 55551U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_27)}, {3U, 8256U, 50706U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_28)}, {3U, 8256U, 50707U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_29)}, {3U, 8256U, 50714U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_30)}, {3U, 8256U, 50715U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_31)}, {3U, 8256U, 46935U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_32)}, {3U, 8256U, 46951U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned long )(& __constr_expr_33)}}; struct usb_device_id const __mod_usb__mxl111sf_id_table_device_table[35U] ; static struct usb_driver mxl111sf_usb_driver = {"dvb_usb_mxl111sf", & dvb_usbv2_probe, & dvb_usbv2_disconnect, 0, & dvb_usbv2_suspend, & dvb_usbv2_resume, 0, 0, 0, (struct usb_device_id const *)(& mxl111sf_id_table), {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, {{0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0}, 1U, (unsigned char)0, (unsigned char)0, 1U}; static int mxl111sf_usb_driver_init(void) { int tmp ; { { tmp = ldv_usb_register_driver_123(& mxl111sf_usb_driver, & __this_module, "dvb_usb_mxl111sf"); } return (tmp); } } static void mxl111sf_usb_driver_exit(void) { { { ldv_usb_deregister_124(& mxl111sf_usb_driver); } return; } } void ldv_EMGentry_exit_mxl111sf_usb_driver_exit_11_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_mxl111sf_usb_driver_init_11_11(int (*arg0)(void) ) ; void ldv_dispatch_deregister_9_1(struct usb_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_3_11_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_4_11_5(void) ; void ldv_dispatch_instance_deregister_8_2(struct usb_driver *arg0 ) ; void ldv_dispatch_instance_register_8_3(struct usb_driver *arg0 ) ; void ldv_dispatch_register_10_2(struct usb_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_3_11_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_4_11_7(void) ; void ldv_dummy_resourceless_instance_callback_0_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_0_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_0_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_0_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_0_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_0_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_0_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_11(int (*arg0)(struct mxl111sf_state * , int ) , struct mxl111sf_state *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_14(int (*arg0)(struct mxl111sf_state * , unsigned char , unsigned char ) , struct mxl111sf_state *arg1 , unsigned char arg2 , unsigned char arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct dvb_frontend * ) , struct dvb_frontend *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_7(int (*arg0)(struct mxl111sf_state * , struct mxl111sf_reg_ctrl_info * ) , struct mxl111sf_state *arg1 , struct mxl111sf_reg_ctrl_info *arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_8(int (*arg0)(struct mxl111sf_state * , unsigned char , unsigned char * ) , struct mxl111sf_state *arg1 , unsigned char arg2 , unsigned char *arg3 ) ; void ldv_entry_EMGentry_11(void *arg0 ) ; int main(void) ; void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_0(void *arg0 ) ; void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_1(void *arg0 ) ; void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_2(void *arg0 ) ; void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_mxl111sf_tuner_config_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_usb_deregister(void *arg0 , struct usb_driver *arg1 ) ; void ldv_usb_dummy_factory_8(void *arg0 ) ; void ldv_usb_instance_post_7_9(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_pre_7_10(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; int ldv_usb_instance_probe_7_13(int (*arg0)(struct usb_interface * , struct usb_device_id * ) , struct usb_interface *arg1 , struct usb_device_id *arg2 ) ; void ldv_usb_instance_release_7_4(void (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_resume_7_7(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_suspend_7_8(int (*arg0)(struct usb_interface * , struct pm_message ) , struct usb_interface *arg1 , struct pm_message *arg2 ) ; int ldv_usb_register_driver(int arg0 , struct usb_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_usb_usb_instance_7(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; void ldv_EMGentry_exit_mxl111sf_usb_driver_exit_11_2(void (*arg0)(void) ) { { { mxl111sf_usb_driver_exit(); } return; } } int ldv_EMGentry_init_mxl111sf_usb_driver_init_11_11(int (*arg0)(void) ) { int tmp ; { { tmp = mxl111sf_usb_driver_init(); } return (tmp); } } void ldv_dispatch_deregister_9_1(struct usb_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_3_11_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_4_11_5(void) { { return; } } void ldv_dispatch_instance_deregister_8_2(struct usb_driver *arg0 ) { { return; } } void ldv_dispatch_instance_register_8_3(struct usb_driver *arg0 ) { struct ldv_struct_usb_instance_7 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_7 = (struct ldv_struct_usb_instance_7 *)tmp; cf_arg_7->arg0 = arg0; ldv_usb_usb_instance_7((void *)cf_arg_7); } return; } } void ldv_dispatch_register_10_2(struct usb_driver *arg0 ) { struct ldv_struct_usb_instance_7 *cf_arg_8 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_8 = (struct ldv_struct_usb_instance_7 *)tmp; cf_arg_8->arg0 = arg0; ldv_usb_dummy_factory_8((void *)cf_arg_8); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_3_11_6(void) { struct ldv_struct_EMGentry_11 *cf_arg_0 ; struct ldv_struct_EMGentry_11 *cf_arg_1 ; struct ldv_struct_EMGentry_11 *cf_arg_2 ; struct ldv_struct_EMGentry_11 *cf_arg_3 ; struct ldv_struct_EMGentry_11 *cf_arg_4 ; struct ldv_struct_EMGentry_11 *cf_arg_5 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_EMGentry_11 *)tmp; ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_0((void *)cf_arg_0); tmp___0 = ldv_xmalloc(4UL); cf_arg_1 = (struct ldv_struct_EMGentry_11 *)tmp___0; ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_1((void *)cf_arg_1); tmp___1 = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_EMGentry_11 *)tmp___1; ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_2((void *)cf_arg_2); tmp___2 = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_EMGentry_11 *)tmp___2; ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_3((void *)cf_arg_3); tmp___3 = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_EMGentry_11 *)tmp___3; ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_4((void *)cf_arg_4); tmp___4 = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_EMGentry_11 *)tmp___4; ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_5((void *)cf_arg_5); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_4_11_7(void) { struct ldv_struct_EMGentry_11 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_EMGentry_11 *)tmp; ldv_struct_mxl111sf_tuner_config_dummy_resourceless_instance_6((void *)cf_arg_6); } return; } } void ldv_dummy_resourceless_instance_callback_0_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) { { { mxl111sf_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_0_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) { { { mxl111sf_i2c_xfer(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_0_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) { { { mxl111sf_ep6_streaming_ctrl(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_0_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_attach_tuner(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_0_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_frontend_attach_atsc(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_0_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) { { { mxl111sf_i2c_func(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_0_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) { { { mxl111sf_get_stream_config_atsc(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) { { { mxl111sf_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) { { { mxl111sf_i2c_xfer(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) { { { mxl111sf_streaming_ctrl_atsc_mh(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_attach_tuner(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_frontend_attach_atsc_mh(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) { { { mxl111sf_i2c_func(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) { { { mxl111sf_get_stream_config_atsc_mh(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) { { { mxl111sf_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) { { { mxl111sf_i2c_xfer(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) { { { mxl111sf_ep4_streaming_ctrl(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_attach_tuner(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_frontend_attach_dvbt(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) { { { mxl111sf_i2c_func(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) { { { mxl111sf_get_stream_config_dvbt(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) { { { mxl111sf_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) { { { mxl111sf_i2c_xfer(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) { { { mxl111sf_streaming_ctrl_mercury(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_attach_tuner(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_frontend_attach_mercury(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) { { { mxl111sf_i2c_func(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) { { { mxl111sf_get_stream_config_mercury(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) { { { mxl111sf_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) { { { mxl111sf_i2c_xfer(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) { { { mxl111sf_streaming_ctrl_mercury_mh(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_attach_tuner(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_frontend_attach_mercury_mh(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) { { { mxl111sf_i2c_func(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) { { { mxl111sf_get_stream_config_mercury_mh(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_11(int (*arg0)(struct dvb_usb_device * ) , struct dvb_usb_device *arg1 ) { { { mxl111sf_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_12(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) { { { mxl111sf_i2c_xfer(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_15(int (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) { { { mxl111sf_streaming_ctrl_mercury_mh(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_18(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_attach_tuner(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(int (*arg0)(struct dvb_usb_adapter * ) , struct dvb_usb_adapter *arg1 ) { { { mxl111sf_frontend_attach_mh(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_7(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) { { { mxl111sf_i2c_func(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_8(int (*arg0)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) , struct dvb_frontend *arg1 , unsigned char *arg2 , struct usb_data_stream_properties *arg3 ) { { { mxl111sf_get_stream_config_mh(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_11(int (*arg0)(struct mxl111sf_state * , int ) , struct mxl111sf_state *arg1 , int arg2 ) { { { mxl1x1sf_top_master_ctrl(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_14(int (*arg0)(struct mxl111sf_state * , unsigned char , unsigned char ) , struct mxl111sf_state *arg1 , unsigned char arg2 , unsigned char arg3 ) { { { mxl111sf_write_reg(arg1, (int )arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct dvb_frontend * ) , struct dvb_frontend *arg1 ) { { { mxl111sf_ant_hunt(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_7(int (*arg0)(struct mxl111sf_state * , struct mxl111sf_reg_ctrl_info * ) , struct mxl111sf_state *arg1 , struct mxl111sf_reg_ctrl_info *arg2 ) { { { mxl111sf_ctrl_program_regs(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_8(int (*arg0)(struct mxl111sf_state * , unsigned char , unsigned char * ) , struct mxl111sf_state *arg1 , unsigned char arg2 , unsigned char *arg3 ) { { { mxl111sf_read_reg(arg1, (int )arg2, arg3); } return; } } void ldv_entry_EMGentry_11(void *arg0 ) { void (*ldv_11_exit_mxl111sf_usb_driver_exit_default)(void) ; int (*ldv_11_init_mxl111sf_usb_driver_init_default)(void) ; int ldv_11_ret_default ; int tmp ; int tmp___0 ; { { ldv_11_ret_default = ldv_EMGentry_init_mxl111sf_usb_driver_init_11_11(ldv_11_init_mxl111sf_usb_driver_init_default); ldv_11_ret_default = ldv_ldv_post_init_125(ldv_11_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { assume_abort_if_not(ldv_11_ret_default != 0); ldv_ldv_check_final_state_126(); assume_abort_if_not(0); } return; } else { { assume_abort_if_not(ldv_11_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_4_11_7(); ldv_dispatch_register_dummy_resourceless_instance_3_11_6(); ldv_dispatch_deregister_dummy_resourceless_instance_4_11_5(); ldv_dispatch_deregister_dummy_resourceless_instance_3_11_4(); } } else { } { ldv_EMGentry_exit_mxl111sf_usb_driver_exit_11_2(ldv_11_exit_mxl111sf_usb_driver_exit_default); ldv_ldv_check_final_state_127(); assume_abort_if_not(0); } return; } return; } } int main(void) { { { ldv_ldv_initialize_128(); ldv_entry_EMGentry_11((void *)0); } return 0; } } void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_0(void *arg0 ) { int (*ldv_0_callback_frontend_attach)(struct dvb_usb_adapter * ) ; unsigned int (*ldv_0_callback_functionality)(struct i2c_adapter * ) ; int (*ldv_0_callback_get_stream_config)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) ; int (*ldv_0_callback_init)(struct dvb_usb_device * ) ; int (*ldv_0_callback_master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*ldv_0_callback_streaming_ctrl)(struct dvb_frontend * , int ) ; int (*ldv_0_callback_tuner_attach)(struct dvb_usb_adapter * ) ; struct dvb_frontend *ldv_0_container_struct_dvb_frontend_ptr ; struct dvb_usb_adapter *ldv_0_container_struct_dvb_usb_adapter_ptr ; struct dvb_usb_device *ldv_0_container_struct_dvb_usb_device_ptr ; struct i2c_adapter *ldv_0_container_struct_i2c_adapter_ptr ; struct i2c_msg *ldv_0_container_struct_i2c_msg_ptr ; struct usb_data_stream_properties *ldv_0_container_struct_usb_data_stream_properties_ptr ; int ldv_0_ldv_param_12_2_default ; int ldv_0_ldv_param_15_1_default ; unsigned char *ldv_0_ldv_param_8_1_default ; int tmp ; void *tmp___0 ; { goto ldv_call_0; return; ldv_call_0: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_18(ldv_0_callback_tuner_attach, ldv_0_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_15(ldv_0_callback_streaming_ctrl, ldv_0_container_struct_dvb_frontend_ptr, ldv_0_ldv_param_15_1_default); } goto ldv_call_0; goto ldv_call_0; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_12(ldv_0_callback_master_xfer, ldv_0_container_struct_i2c_adapter_ptr, ldv_0_container_struct_i2c_msg_ptr, ldv_0_ldv_param_12_2_default); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_11(ldv_0_callback_init, ldv_0_container_struct_dvb_usb_device_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_5: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_0_ldv_param_8_1_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_0_8(ldv_0_callback_get_stream_config, ldv_0_container_struct_dvb_frontend_ptr, ldv_0_ldv_param_8_1_default, ldv_0_container_struct_usb_data_stream_properties_ptr); ldv_free((void *)ldv_0_ldv_param_8_1_default); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_7(ldv_0_callback_functionality, ldv_0_container_struct_i2c_adapter_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_3(ldv_0_callback_frontend_attach, ldv_0_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_8: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_1(void *arg0 ) { int (*ldv_1_callback_frontend_attach)(struct dvb_usb_adapter * ) ; unsigned int (*ldv_1_callback_functionality)(struct i2c_adapter * ) ; int (*ldv_1_callback_get_stream_config)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) ; int (*ldv_1_callback_init)(struct dvb_usb_device * ) ; int (*ldv_1_callback_master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*ldv_1_callback_streaming_ctrl)(struct dvb_frontend * , int ) ; int (*ldv_1_callback_tuner_attach)(struct dvb_usb_adapter * ) ; struct dvb_frontend *ldv_1_container_struct_dvb_frontend_ptr ; struct dvb_usb_adapter *ldv_1_container_struct_dvb_usb_adapter_ptr ; struct dvb_usb_device *ldv_1_container_struct_dvb_usb_device_ptr ; struct i2c_adapter *ldv_1_container_struct_i2c_adapter_ptr ; struct i2c_msg *ldv_1_container_struct_i2c_msg_ptr ; struct usb_data_stream_properties *ldv_1_container_struct_usb_data_stream_properties_ptr ; int ldv_1_ldv_param_12_2_default ; int ldv_1_ldv_param_15_1_default ; unsigned char *ldv_1_ldv_param_8_1_default ; int tmp ; void *tmp___0 ; { goto ldv_call_1; return; ldv_call_1: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_18(ldv_1_callback_tuner_attach, ldv_1_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_streaming_ctrl, ldv_1_container_struct_dvb_frontend_ptr, ldv_1_ldv_param_15_1_default); } goto ldv_call_1; goto ldv_call_1; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_master_xfer, ldv_1_container_struct_i2c_adapter_ptr, ldv_1_container_struct_i2c_msg_ptr, ldv_1_ldv_param_12_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_init, ldv_1_container_struct_dvb_usb_device_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_5: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_1_ldv_param_8_1_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_1_8(ldv_1_callback_get_stream_config, ldv_1_container_struct_dvb_frontend_ptr, ldv_1_ldv_param_8_1_default, ldv_1_container_struct_usb_data_stream_properties_ptr); ldv_free((void *)ldv_1_ldv_param_8_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_functionality, ldv_1_container_struct_i2c_adapter_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_frontend_attach, ldv_1_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_8: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_2(void *arg0 ) { int (*ldv_2_callback_frontend_attach)(struct dvb_usb_adapter * ) ; unsigned int (*ldv_2_callback_functionality)(struct i2c_adapter * ) ; int (*ldv_2_callback_get_stream_config)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) ; int (*ldv_2_callback_init)(struct dvb_usb_device * ) ; int (*ldv_2_callback_master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*ldv_2_callback_streaming_ctrl)(struct dvb_frontend * , int ) ; int (*ldv_2_callback_tuner_attach)(struct dvb_usb_adapter * ) ; struct dvb_frontend *ldv_2_container_struct_dvb_frontend_ptr ; struct dvb_usb_adapter *ldv_2_container_struct_dvb_usb_adapter_ptr ; struct dvb_usb_device *ldv_2_container_struct_dvb_usb_device_ptr ; struct i2c_adapter *ldv_2_container_struct_i2c_adapter_ptr ; struct i2c_msg *ldv_2_container_struct_i2c_msg_ptr ; struct usb_data_stream_properties *ldv_2_container_struct_usb_data_stream_properties_ptr ; int ldv_2_ldv_param_12_2_default ; int ldv_2_ldv_param_15_1_default ; unsigned char *ldv_2_ldv_param_8_1_default ; int tmp ; void *tmp___0 ; { goto ldv_call_2; return; ldv_call_2: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_18(ldv_2_callback_tuner_attach, ldv_2_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_2; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_15(ldv_2_callback_streaming_ctrl, ldv_2_container_struct_dvb_frontend_ptr, ldv_2_ldv_param_15_1_default); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_12(ldv_2_callback_master_xfer, ldv_2_container_struct_i2c_adapter_ptr, ldv_2_container_struct_i2c_msg_ptr, ldv_2_ldv_param_12_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_11(ldv_2_callback_init, ldv_2_container_struct_dvb_usb_device_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_5: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_2_ldv_param_8_1_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_2_8(ldv_2_callback_get_stream_config, ldv_2_container_struct_dvb_frontend_ptr, ldv_2_ldv_param_8_1_default, ldv_2_container_struct_usb_data_stream_properties_ptr); ldv_free((void *)ldv_2_ldv_param_8_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_7(ldv_2_callback_functionality, ldv_2_container_struct_i2c_adapter_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_frontend_attach, ldv_2_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_8: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_3(void *arg0 ) { int (*ldv_3_callback_frontend_attach)(struct dvb_usb_adapter * ) ; unsigned int (*ldv_3_callback_functionality)(struct i2c_adapter * ) ; int (*ldv_3_callback_get_stream_config)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) ; int (*ldv_3_callback_init)(struct dvb_usb_device * ) ; int (*ldv_3_callback_master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*ldv_3_callback_streaming_ctrl)(struct dvb_frontend * , int ) ; int (*ldv_3_callback_tuner_attach)(struct dvb_usb_adapter * ) ; struct dvb_frontend *ldv_3_container_struct_dvb_frontend_ptr ; struct dvb_usb_adapter *ldv_3_container_struct_dvb_usb_adapter_ptr ; struct dvb_usb_device *ldv_3_container_struct_dvb_usb_device_ptr ; struct i2c_adapter *ldv_3_container_struct_i2c_adapter_ptr ; struct i2c_msg *ldv_3_container_struct_i2c_msg_ptr ; struct usb_data_stream_properties *ldv_3_container_struct_usb_data_stream_properties_ptr ; int ldv_3_ldv_param_12_2_default ; int ldv_3_ldv_param_15_1_default ; unsigned char *ldv_3_ldv_param_8_1_default ; int tmp ; void *tmp___0 ; { goto ldv_call_3; return; ldv_call_3: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_18(ldv_3_callback_tuner_attach, ldv_3_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_3; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_15(ldv_3_callback_streaming_ctrl, ldv_3_container_struct_dvb_frontend_ptr, ldv_3_ldv_param_15_1_default); } goto ldv_call_3; goto ldv_call_3; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_12(ldv_3_callback_master_xfer, ldv_3_container_struct_i2c_adapter_ptr, ldv_3_container_struct_i2c_msg_ptr, ldv_3_ldv_param_12_2_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_11(ldv_3_callback_init, ldv_3_container_struct_dvb_usb_device_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_5: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_3_ldv_param_8_1_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_3_8(ldv_3_callback_get_stream_config, ldv_3_container_struct_dvb_frontend_ptr, ldv_3_ldv_param_8_1_default, ldv_3_container_struct_usb_data_stream_properties_ptr); ldv_free((void *)ldv_3_ldv_param_8_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_7(ldv_3_callback_functionality, ldv_3_container_struct_i2c_adapter_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_frontend_attach, ldv_3_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_8: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_4(void *arg0 ) { int (*ldv_4_callback_frontend_attach)(struct dvb_usb_adapter * ) ; unsigned int (*ldv_4_callback_functionality)(struct i2c_adapter * ) ; int (*ldv_4_callback_get_stream_config)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) ; int (*ldv_4_callback_init)(struct dvb_usb_device * ) ; int (*ldv_4_callback_master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*ldv_4_callback_streaming_ctrl)(struct dvb_frontend * , int ) ; int (*ldv_4_callback_tuner_attach)(struct dvb_usb_adapter * ) ; struct dvb_frontend *ldv_4_container_struct_dvb_frontend_ptr ; struct dvb_usb_adapter *ldv_4_container_struct_dvb_usb_adapter_ptr ; struct dvb_usb_device *ldv_4_container_struct_dvb_usb_device_ptr ; struct i2c_adapter *ldv_4_container_struct_i2c_adapter_ptr ; struct i2c_msg *ldv_4_container_struct_i2c_msg_ptr ; struct usb_data_stream_properties *ldv_4_container_struct_usb_data_stream_properties_ptr ; int ldv_4_ldv_param_12_2_default ; int ldv_4_ldv_param_15_1_default ; unsigned char *ldv_4_ldv_param_8_1_default ; int tmp ; void *tmp___0 ; { goto ldv_call_4; return; ldv_call_4: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_18(ldv_4_callback_tuner_attach, ldv_4_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_4; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_15(ldv_4_callback_streaming_ctrl, ldv_4_container_struct_dvb_frontend_ptr, ldv_4_ldv_param_15_1_default); } goto ldv_call_4; goto ldv_call_4; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_12(ldv_4_callback_master_xfer, ldv_4_container_struct_i2c_adapter_ptr, ldv_4_container_struct_i2c_msg_ptr, ldv_4_ldv_param_12_2_default); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_11(ldv_4_callback_init, ldv_4_container_struct_dvb_usb_device_ptr); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_5: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_4_ldv_param_8_1_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_4_8(ldv_4_callback_get_stream_config, ldv_4_container_struct_dvb_frontend_ptr, ldv_4_ldv_param_8_1_default, ldv_4_container_struct_usb_data_stream_properties_ptr); ldv_free((void *)ldv_4_ldv_param_8_1_default); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_7(ldv_4_callback_functionality, ldv_4_container_struct_i2c_adapter_ptr); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_frontend_attach, ldv_4_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_8: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_dvb_usb_adapter_properties_dummy_resourceless_instance_5(void *arg0 ) { int (*ldv_5_callback_frontend_attach)(struct dvb_usb_adapter * ) ; unsigned int (*ldv_5_callback_functionality)(struct i2c_adapter * ) ; int (*ldv_5_callback_get_stream_config)(struct dvb_frontend * , unsigned char * , struct usb_data_stream_properties * ) ; int (*ldv_5_callback_init)(struct dvb_usb_device * ) ; int (*ldv_5_callback_master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*ldv_5_callback_streaming_ctrl)(struct dvb_frontend * , int ) ; int (*ldv_5_callback_tuner_attach)(struct dvb_usb_adapter * ) ; struct dvb_frontend *ldv_5_container_struct_dvb_frontend_ptr ; struct dvb_usb_adapter *ldv_5_container_struct_dvb_usb_adapter_ptr ; struct dvb_usb_device *ldv_5_container_struct_dvb_usb_device_ptr ; struct i2c_adapter *ldv_5_container_struct_i2c_adapter_ptr ; struct i2c_msg *ldv_5_container_struct_i2c_msg_ptr ; struct usb_data_stream_properties *ldv_5_container_struct_usb_data_stream_properties_ptr ; int ldv_5_ldv_param_12_2_default ; int ldv_5_ldv_param_15_1_default ; unsigned char *ldv_5_ldv_param_8_1_default ; int tmp ; void *tmp___0 ; { goto ldv_call_5; return; ldv_call_5: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_18(ldv_5_callback_tuner_attach, ldv_5_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_5; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_15(ldv_5_callback_streaming_ctrl, ldv_5_container_struct_dvb_frontend_ptr, ldv_5_ldv_param_15_1_default); } goto ldv_call_5; goto ldv_call_5; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_12(ldv_5_callback_master_xfer, ldv_5_container_struct_i2c_adapter_ptr, ldv_5_container_struct_i2c_msg_ptr, ldv_5_ldv_param_12_2_default); } goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_11(ldv_5_callback_init, ldv_5_container_struct_dvb_usb_device_ptr); } goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; case_5: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_5_ldv_param_8_1_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_5_8(ldv_5_callback_get_stream_config, ldv_5_container_struct_dvb_frontend_ptr, ldv_5_ldv_param_8_1_default, ldv_5_container_struct_usb_data_stream_properties_ptr); ldv_free((void *)ldv_5_ldv_param_8_1_default); } goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_7(ldv_5_callback_functionality, ldv_5_container_struct_i2c_adapter_ptr); } goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_frontend_attach, ldv_5_container_struct_dvb_usb_adapter_ptr); } goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; case_8: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_mxl111sf_tuner_config_dummy_resourceless_instance_6(void *arg0 ) { int (*ldv_6_callback_ant_hunt)(struct dvb_frontend * ) ; int (*ldv_6_callback_program_regs)(struct mxl111sf_state * , struct mxl111sf_reg_ctrl_info * ) ; int (*ldv_6_callback_read_reg)(struct mxl111sf_state * , unsigned char , unsigned char * ) ; int (*ldv_6_callback_top_master_ctrl)(struct mxl111sf_state * , int ) ; int (*ldv_6_callback_write_reg)(struct mxl111sf_state * , unsigned char , unsigned char ) ; struct dvb_frontend *ldv_6_container_struct_dvb_frontend_ptr ; struct mxl111sf_reg_ctrl_info *ldv_6_container_struct_mxl111sf_reg_ctrl_info_ptr ; struct mxl111sf_state *ldv_6_container_struct_mxl111sf_state_ptr ; int ldv_6_ldv_param_11_1_default ; unsigned char ldv_6_ldv_param_14_1_default ; unsigned char ldv_6_ldv_param_14_2_default ; unsigned char ldv_6_ldv_param_8_1_default ; unsigned char *ldv_6_ldv_param_8_2_default ; int tmp ; void *tmp___0 ; { goto ldv_call_6; return; ldv_call_6: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_14(ldv_6_callback_write_reg, ldv_6_container_struct_mxl111sf_state_ptr, (int )ldv_6_ldv_param_14_1_default, (int )ldv_6_ldv_param_14_2_default); } goto ldv_call_6; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_11(ldv_6_callback_top_master_ctrl, ldv_6_container_struct_mxl111sf_state_ptr, ldv_6_ldv_param_11_1_default); } goto ldv_call_6; goto ldv_call_6; case_3: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_6_ldv_param_8_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_6_8(ldv_6_callback_read_reg, ldv_6_container_struct_mxl111sf_state_ptr, (int )ldv_6_ldv_param_8_1_default, ldv_6_ldv_param_8_2_default); ldv_free((void *)ldv_6_ldv_param_8_2_default); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_7(ldv_6_callback_program_regs, ldv_6_container_struct_mxl111sf_state_ptr, ldv_6_container_struct_mxl111sf_reg_ctrl_info_ptr); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_ant_hunt, ldv_6_container_struct_dvb_frontend_ptr); } goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; goto ldv_call_6; case_6: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_usb_deregister(void *arg0 , struct usb_driver *arg1 ) { struct usb_driver *ldv_9_usb_driver_usb_driver ; { { ldv_9_usb_driver_usb_driver = arg1; ldv_dispatch_deregister_9_1(ldv_9_usb_driver_usb_driver); } return; return; } } void ldv_usb_dummy_factory_8(void *arg0 ) { struct usb_driver *ldv_8_container_usb_driver ; struct ldv_struct_usb_instance_7 *data ; { data = (struct ldv_struct_usb_instance_7 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_usb_instance_7 *)0)) { { ldv_8_container_usb_driver = data->arg0; ldv_free((void *)data); } } else { } { ldv_dispatch_instance_register_8_3(ldv_8_container_usb_driver); ldv_dispatch_instance_deregister_8_2(ldv_8_container_usb_driver); } return; return; } } void ldv_usb_instance_post_7_9(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_usb_instance_pre_7_10(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_usb_instance_probe_7_13(int (*arg0)(struct usb_interface * , struct usb_device_id * ) , struct usb_interface *arg1 , struct usb_device_id *arg2 ) { int tmp ; { { tmp = dvb_usbv2_probe(arg1, (struct usb_device_id const *)arg2); } return (tmp); } } void ldv_usb_instance_release_7_4(void (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { dvb_usbv2_disconnect(arg1); } return; } } void ldv_usb_instance_resume_7_7(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { dvb_usbv2_resume(arg1); } return; } } void ldv_usb_instance_suspend_7_8(int (*arg0)(struct usb_interface * , struct pm_message ) , struct usb_interface *arg1 , struct pm_message *arg2 ) { { { dvb_usbv2_suspend(arg1, *arg2); } return; } } int ldv_usb_register_driver(int arg0 , struct usb_driver *arg1 , struct module *arg2 , char *arg3 ) { struct usb_driver *ldv_10_usb_driver_usb_driver ; int tmp ; { { arg0 = ldv_pre_usb_register_driver(); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_10_usb_driver_usb_driver = arg1; ldv_dispatch_register_10_2(ldv_10_usb_driver_usb_driver); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_usb_usb_instance_7(void *arg0 ) { struct usb_driver *ldv_7_container_usb_driver ; struct usb_device_id *ldv_7_ldv_param_13_1_default ; struct pm_message *ldv_7_ldv_param_8_1_default ; int ldv_7_probe_retval_default ; _Bool ldv_7_reset_flag_default ; struct usb_interface *ldv_7_resource_usb_interface ; struct usb_device *ldv_7_usb_device_usb_device ; struct ldv_struct_usb_instance_7 *data ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; void *tmp___3 ; int tmp___4 ; { data = (struct ldv_struct_usb_instance_7 *)arg0; ldv_7_reset_flag_default = 0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_usb_instance_7 *)0)) { { ldv_7_container_usb_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(1552UL); ldv_7_resource_usb_interface = (struct usb_interface *)tmp; tmp___0 = ldv_xmalloc(2024UL); ldv_7_usb_device_usb_device = (struct usb_device *)tmp___0; ldv_7_resource_usb_interface->dev.parent = & ldv_7_usb_device_usb_device->dev; tmp___1 = ldv_xmalloc(32UL); ldv_7_ldv_param_13_1_default = (struct usb_device_id *)tmp___1; ldv_ldv_pre_probe_129(); ldv_7_probe_retval_default = ldv_usb_instance_probe_7_13((int (*)(struct usb_interface * , struct usb_device_id * ))ldv_7_container_usb_driver->probe, ldv_7_resource_usb_interface, ldv_7_ldv_param_13_1_default); ldv_7_probe_retval_default = ldv_ldv_post_probe_130(ldv_7_probe_retval_default); ldv_free((void *)ldv_7_ldv_param_13_1_default); tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { assume_abort_if_not(ldv_7_probe_retval_default == 0); tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } if (tmp___2 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(4UL); ldv_7_ldv_param_8_1_default = (struct pm_message *)tmp___3; ldv_usb_instance_suspend_7_8(ldv_7_container_usb_driver->suspend, ldv_7_resource_usb_interface, ldv_7_ldv_param_8_1_default); ldv_free((void *)ldv_7_ldv_param_8_1_default); ldv_usb_instance_resume_7_7(ldv_7_container_usb_driver->resume, ldv_7_resource_usb_interface); } goto ldv_51458; case_2: /* CIL Label */ ; if ((unsigned long )ldv_7_container_usb_driver->pre_reset != (unsigned long )((int (*)(struct usb_interface * ))0)) { { ldv_usb_instance_pre_7_10(ldv_7_container_usb_driver->pre_reset, ldv_7_resource_usb_interface); } } else { } if ((unsigned long )ldv_7_container_usb_driver->post_reset != (unsigned long )((int (*)(struct usb_interface * ))0)) { { ldv_usb_instance_post_7_9(ldv_7_container_usb_driver->post_reset, ldv_7_resource_usb_interface); } } else { } goto ldv_51458; case_3: /* CIL Label */ ; goto ldv_51458; case_4: /* CIL Label */ ; goto ldv_51458; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } ldv_51458: { ldv_usb_instance_release_7_4(ldv_7_container_usb_driver->disconnect, ldv_7_resource_usb_interface); } } else { { assume_abort_if_not(ldv_7_probe_retval_default != 0); } } { ldv_free((void *)ldv_7_resource_usb_interface); ldv_free((void *)ldv_7_usb_device_usb_device); } return; return; } } static void ldv_mutex_lock_121(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_fe_lock_of_mxl111sf_state(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_122(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_fe_lock_of_mxl111sf_state(ldv_func_arg1); } return; } } static int ldv_usb_register_driver_123(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = usb_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_usb_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_usb_deregister_124(struct usb_driver *ldv_func_arg1 ) { { { usb_deregister(ldv_func_arg1); ldv_usb_deregister((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_125(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_126(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_127(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_128(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_129(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_130(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } int mxl111sf_disable_656_port(struct mxl111sf_state *state ) ; int mxl111sf_init_tuner_demod(struct mxl111sf_state *state ) { struct mxl111sf_reg_ctrl_info mxl_111_overwrite_default[21U] ; int tmp ; { mxl_111_overwrite_default[0].addr = 7U; mxl_111_overwrite_default[0].mask = 255U; mxl_111_overwrite_default[0].data = 12U; mxl_111_overwrite_default[1].addr = 88U; mxl_111_overwrite_default[1].mask = 255U; mxl_111_overwrite_default[1].data = 157U; mxl_111_overwrite_default[2].addr = 9U; mxl_111_overwrite_default[2].mask = 255U; mxl_111_overwrite_default[2].data = 0U; mxl_111_overwrite_default[3].addr = 6U; mxl_111_overwrite_default[3].mask = 255U; mxl_111_overwrite_default[3].data = 6U; mxl_111_overwrite_default[4].addr = 200U; mxl_111_overwrite_default[4].mask = 255U; mxl_111_overwrite_default[4].data = 64U; mxl_111_overwrite_default[5].addr = 141U; mxl_111_overwrite_default[5].mask = 1U; mxl_111_overwrite_default[5].data = 1U; mxl_111_overwrite_default[6].addr = 50U; mxl_111_overwrite_default[6].mask = 255U; mxl_111_overwrite_default[6].data = 172U; mxl_111_overwrite_default[7].addr = 66U; mxl_111_overwrite_default[7].mask = 255U; mxl_111_overwrite_default[7].data = 67U; mxl_111_overwrite_default[8].addr = 116U; mxl_111_overwrite_default[8].mask = 255U; mxl_111_overwrite_default[8].data = 196U; mxl_111_overwrite_default[9].addr = 113U; mxl_111_overwrite_default[9].mask = 255U; mxl_111_overwrite_default[9].data = 230U; mxl_111_overwrite_default[10].addr = 131U; mxl_111_overwrite_default[10].mask = 255U; mxl_111_overwrite_default[10].data = 100U; mxl_111_overwrite_default[11].addr = 133U; mxl_111_overwrite_default[11].mask = 255U; mxl_111_overwrite_default[11].data = 100U; mxl_111_overwrite_default[12].addr = 136U; mxl_111_overwrite_default[12].mask = 255U; mxl_111_overwrite_default[12].data = 240U; mxl_111_overwrite_default[13].addr = 111U; mxl_111_overwrite_default[13].mask = 240U; mxl_111_overwrite_default[13].data = 176U; mxl_111_overwrite_default[14].addr = 0U; mxl_111_overwrite_default[14].mask = 255U; mxl_111_overwrite_default[14].data = 1U; mxl_111_overwrite_default[15].addr = 129U; mxl_111_overwrite_default[15].mask = 255U; mxl_111_overwrite_default[15].data = 17U; mxl_111_overwrite_default[16].addr = 244U; mxl_111_overwrite_default[16].mask = 255U; mxl_111_overwrite_default[16].data = 7U; mxl_111_overwrite_default[17].addr = 212U; mxl_111_overwrite_default[17].mask = 31U; mxl_111_overwrite_default[17].data = 15U; mxl_111_overwrite_default[18].addr = 214U; mxl_111_overwrite_default[18].mask = 255U; mxl_111_overwrite_default[18].data = 12U; mxl_111_overwrite_default[19].addr = 0U; mxl_111_overwrite_default[19].mask = 255U; mxl_111_overwrite_default[19].data = 0U; mxl_111_overwrite_default[20].addr = 0U; mxl_111_overwrite_default[20].mask = 0U; mxl_111_overwrite_default[20].data = 0U; if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: ()\n", "mxl111sf_init_tuner_demod"); } } else { } { tmp = mxl111sf_ctrl_program_regs(state, (struct mxl111sf_reg_ctrl_info *)(& mxl_111_overwrite_default)); } return (tmp); } } int mxl1x1sf_soft_reset(struct mxl111sf_state *state ) { int ret ; int __ret ; int __ret___0 ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: ()\n", "mxl1x1sf_soft_reset"); } } else { } { ret = mxl111sf_write_reg(state, 255, 0); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl1x1sf_soft_reset", ret, 61); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 2, 1); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl1x1sf_soft_reset", ret, 64); } } else { } fail: ; return (ret); } } int mxl1x1sf_set_device_mode(struct mxl111sf_state *state , int mode ) { int ret ; int __ret ; int __ret___0 ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (%s)\n", "mxl1x1sf_set_device_mode", mode == 1 ? (char *)"MXL_SOC_MODE" : (char *)"MXL_TUNER_MODE"); } } else { } { ret = mxl111sf_write_reg(state, 3, mode == 1); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl1x1sf_set_device_mode", ret, 79); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_write_reg_mask(state, 125, 64, mode == 1 ? 0 : 64); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl1x1sf_set_device_mode", ret, 88); } } else { } if (__ret___0 != 0) { goto fail; } else { } state->device_mode = mode; fail: ; return (ret); } } int mxl1x1sf_top_master_ctrl(struct mxl111sf_state *state , int onoff ) { int tmp ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (%d)\n", "mxl1x1sf_top_master_ctrl", onoff); } } else { } { tmp = mxl111sf_write_reg(state, 1, onoff != 0); } return (tmp); } } int mxl111sf_disable_656_port(struct mxl111sf_state *state ) { int tmp ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: ()\n", "mxl111sf_disable_656_port"); } } else { } { tmp = mxl111sf_write_reg_mask(state, 18, 4, 0); } return (tmp); } } int mxl111sf_enable_usb_output(struct mxl111sf_state *state ) { int tmp ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: ()\n", "mxl111sf_enable_usb_output"); } } else { } { tmp = mxl111sf_write_reg_mask(state, 23, 64, 0); } return (tmp); } } int mxl111sf_config_mpeg_in(struct mxl111sf_state *state , unsigned int parallel_serial , unsigned int msb_lsb_1st , unsigned int clock_phase , unsigned int mpeg_valid_pol , unsigned int mpeg_sync_pol ) { int ret ; u8 mode ; u8 tmp ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; int __ret___4 ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (%u,%u,%u,%u,%u)\n", "mxl111sf_config_mpeg_in", parallel_serial, msb_lsb_1st, clock_phase, mpeg_valid_pol, mpeg_sync_pol); } } else { } { ret = mxl111sf_write_reg(state, 27, 30); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_mpeg_in", ret, 134); } } else { } { mxl111sf_read_reg(state, 23, & mode); } if (clock_phase == 0U) { mode = (unsigned int )mode & 223U; } else { mode = (u8 )((unsigned int )mode | 32U); } { ret = mxl111sf_write_reg(state, 23, (int )mode); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_mpeg_in", ret, 145); } } else { } { ret = mxl111sf_read_reg(state, 24, & mode); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_mpeg_in", ret, 150); } } else { } if (parallel_serial == 0U) { mode = (unsigned int )mode & 253U; mode = (u8 )((unsigned int )mode | 1U); } else { { mode = (unsigned int )mode & 254U; mode = (u8 )((unsigned int )mode | 2U); ret = mxl111sf_read_reg(state, 25, & tmp); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_mpeg_in", ret, 171); } } else { } if (msb_lsb_1st == 1U) { tmp = (u8 )((unsigned int )tmp | 128U); } else { tmp = (unsigned int )tmp & 127U; } { ret = mxl111sf_write_reg(state, 25, (int )tmp); __ret___3 = ret < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_mpeg_in", ret, 181); } } else { } } if (mpeg_sync_pol == 0U) { mode = (unsigned int )mode & 251U; } else { mode = (u8 )((unsigned int )mode | 4U); } if (mpeg_valid_pol == 0U) { mode = (unsigned int )mode & 247U; } else { mode = (u8 )((unsigned int )mode | 8U); } { ret = mxl111sf_write_reg(state, 24, (int )mode); __ret___4 = ret < 0; } if (__ret___4 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_mpeg_in", ret, 197); } } else { } return (ret); } } int mxl111sf_init_i2s_port(struct mxl111sf_state *state , u8 sample_size ) { struct mxl111sf_reg_ctrl_info init_i2s[7U] ; int ret ; int __ret ; int __ret___0 ; { init_i2s[0].addr = 27U; init_i2s[0].mask = 255U; init_i2s[0].data = 30U; init_i2s[1].addr = 21U; init_i2s[1].mask = 96U; init_i2s[1].data = 96U; init_i2s[2].addr = 23U; init_i2s[2].mask = 224U; init_i2s[2].data = 32U; init_i2s[3].addr = 0U; init_i2s[3].mask = 255U; init_i2s[3].data = 2U; init_i2s[4].addr = 38U; init_i2s[4].mask = 13U; init_i2s[4].data = 13U; init_i2s[5].addr = 0U; init_i2s[5].mask = 255U; init_i2s[5].data = 0U; init_i2s[6].addr = 0U; init_i2s[6].mask = 0U; init_i2s[6].data = 0U; if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (0x%02x)\n", "mxl111sf_init_i2s_port", (int )sample_size); } } else { } { ret = mxl111sf_ctrl_program_regs(state, (struct mxl111sf_reg_ctrl_info *)(& init_i2s)); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_init_i2s_port", ret, 223); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 22, (int )sample_size); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_init_i2s_port", ret, 227); } } else { } fail: ; return (ret); } } int mxl111sf_disable_i2s_port(struct mxl111sf_state *state ) { struct mxl111sf_reg_ctrl_info disable_i2s[2U] ; int tmp ; { disable_i2s[0].addr = 21U; disable_i2s[0].mask = 64U; disable_i2s[0].data = 0U; disable_i2s[1].addr = 0U; disable_i2s[1].mask = 0U; disable_i2s[1].data = 0U; if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: ()\n", "mxl111sf_disable_i2s_port"); } } else { } { tmp = mxl111sf_ctrl_program_regs(state, (struct mxl111sf_reg_ctrl_info *)(& disable_i2s)); } return (tmp); } } int mxl111sf_config_i2s(struct mxl111sf_state *state , u8 msb_start_pos , u8 data_width ) { int ret ; u8 tmp ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (0x%02x, 0x%02x)\n", "mxl111sf_config_i2s", (int )msb_start_pos, (int )data_width); } } else { } { ret = mxl111sf_read_reg(state, 20, & tmp); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_i2s", ret, 253); } } else { } if (__ret != 0) { goto fail; } else { } { tmp = (unsigned int )tmp & 224U; tmp = (u8 )((int )tmp | (int )msb_start_pos); ret = mxl111sf_write_reg(state, 20, (int )tmp); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_i2s", ret, 259); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 21, & tmp); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_i2s", ret, 263); } } else { } if (__ret___1 != 0) { goto fail; } else { } { tmp = (unsigned int )tmp & 224U; tmp = (u8 )((int )tmp | (int )data_width); ret = mxl111sf_write_reg(state, 21, (int )tmp); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_i2s", ret, 269); } } else { } fail: ; return (ret); } } int mxl111sf_config_spi(struct mxl111sf_state *state , int onoff ) { u8 val ; int ret ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (%d)\n", "mxl111sf_config_spi", onoff); } } else { } { ret = mxl111sf_write_reg(state, 0, 2); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_spi", ret, 282); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 233, & val); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_spi", ret, 286); } } else { } if (__ret___0 != 0) { goto fail; } else { } if (onoff != 0) { val = (u8 )((unsigned int )val | 4U); } else { val = (unsigned int )val & 251U; } { ret = mxl111sf_write_reg(state, 233, (int )val); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_spi", ret, 295); } } else { } if (__ret___1 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 0, 0); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_spi", ret, 299); } } else { } fail: ; return (ret); } } int mxl111sf_idac_config(struct mxl111sf_state *state , u8 control_mode , u8 current_setting , u8 current_value , u8 hysteresis_value ) { int ret ; u8 val ; int __ret ; int __ret___0 ; { val = current_value; if ((unsigned int )control_mode == 1U) { val = (u8 )((unsigned int )val | 128U); if ((unsigned int )current_setting == 1U) { val = (u8 )((unsigned int )val | 64U); } else { val = (unsigned int )val & 191U; } } else { { val = (unsigned int )val & 127U; ret = mxl111sf_write_reg(state, 11, (int )hysteresis_value & 63); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_idac_config", ret, 330); } } else { } } { ret = mxl111sf_write_reg(state, 12, (int )val); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_idac_config", ret, 334); } } else { } return (ret); } } static int ldv_mutex_lock_interruptible_121(struct mutex *ldv_func_arg1 ) ; int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i2c_mutex_of_dvb_usb_device(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_i2c_mutex_of_dvb_usb_device(struct mutex *lock ) ; static void ldv_mutex_unlock_122___0(struct mutex *ldv_func_arg1 ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void *i2c_get_adapdata(struct i2c_adapter const *dev ) { void *tmp ; { { tmp = dev_get_drvdata(& dev->dev); } return (tmp); } } static int mxl111sf_i2c_bitbang_sendbyte(struct mxl111sf_state *state , u8 byte ) { int i ; int ret ; u8 data ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; int __ret___4 ; int __ret___5 ; int __ret___6 ; { data = 0U; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: (0x%02x)\n", "mxl111sf_i2c_bitbang_sendbyte", (int )byte); } } else { } { ret = mxl111sf_read_reg(state, 47, & data); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_sendbyte", ret, 44); } } else { } if (__ret != 0) { goto fail; } else { } i = 0; goto ldv_49540; ldv_49539: { data = ((int )byte & (128 >> i)) != 0 ? 8U : 0U; ret = mxl111sf_write_reg(state, 26, (int )((unsigned int )data | 18U)); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_sendbyte", ret, 53); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, (int )((unsigned int )data | 22U)); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_sendbyte", ret, 58); } } else { } if (__ret___1 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, (int )((unsigned int )data | 18U)); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_sendbyte", ret, 63); } } else { } if (__ret___2 != 0) { goto fail; } else { } i = i + 1; ldv_49540: ; if (i <= 7) { goto ldv_49539; } else { } if (((int )byte & 1) == 0) { { ret = mxl111sf_write_reg(state, 26, 26); __ret___3 = ret < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_sendbyte", ret, 71); } } else { } if (__ret___3 != 0) { goto fail; } else { } } else { } { ret = mxl111sf_write_reg(state, 26, 30); __ret___4 = ret < 0; } if (__ret___4 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_sendbyte", ret, 78); } } else { } if (__ret___4 != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 47, & data); __ret___5 = ret < 0; } if (__ret___5 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_sendbyte", ret, 82); } } else { } if (__ret___5 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, 26); __ret___6 = ret < 0; } if (__ret___6 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_sendbyte", ret, 88); } } else { } if (__ret___6 != 0) { goto fail; } else { } if (((int )data & 4) != 0) { ret = -5; } else { } fail: ; return (ret); } } static int mxl111sf_i2c_bitbang_recvbyte(struct mxl111sf_state *state , u8 *pbyte ) { int i ; int ret ; u8 byte ; u8 data ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; { byte = 0U; data = 0U; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: ()\n", "mxl111sf_i2c_bitbang_recvbyte"); } } else { } { *pbyte = 0U; ret = mxl111sf_write_reg(state, 26, 26); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_recvbyte", ret, 110); } } else { } if (__ret != 0) { goto fail; } else { } i = 0; goto ldv_49569; ldv_49568: { ret = mxl111sf_write_reg(state, 26, 30); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_recvbyte", ret, 117); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 47, & data); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_recvbyte", ret, 121); } } else { } if (__ret___1 != 0) { goto fail; } else { } if (((int )data & 4) != 0) { byte = (u8 )((int )((signed char )byte) | (int )((signed char )(128 >> i))); } else { } { ret = mxl111sf_write_reg(state, 26, 26); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_bitbang_recvbyte", ret, 129); } } else { } if (__ret___2 != 0) { goto fail; } else { } i = i + 1; ldv_49569: ; if (i <= 7) { goto ldv_49568; } else { } *pbyte = byte; fail: ; return (ret); } } static int mxl111sf_i2c_start(struct mxl111sf_state *state ) { int ret ; int __ret ; int __ret___0 ; int __ret___1 ; { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: ()\n", "mxl111sf_i2c_start"); } } else { } { ret = mxl111sf_write_reg(state, 26, 30); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_start", ret, 145); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, 22); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_start", ret, 150); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, 18); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_start", ret, 155); } } else { } fail: ; return (ret); } } static int mxl111sf_i2c_stop(struct mxl111sf_state *state ) { int ret ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: ()\n", "mxl111sf_i2c_stop"); } } else { } { ret = mxl111sf_write_reg(state, 26, 18); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_stop", ret, 168); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, 22); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_stop", ret, 173); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, 30); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_stop", ret, 178); } } else { } if (__ret___1 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, 28); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_stop", ret, 183); } } else { } fail: ; return (ret); } } static int mxl111sf_i2c_ack(struct mxl111sf_state *state ) { int ret ; u8 b ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; { b = 0U; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: ()\n", "mxl111sf_i2c_ack"); } } else { } { ret = mxl111sf_read_reg(state, 47, & b); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_ack", ret, 196); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, 18); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_ack", ret, 201); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, 22); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_ack", ret, 207); } } else { } if (__ret___1 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, 26); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_ack", ret, 212); } } else { } fail: ; return (ret); } } static int mxl111sf_i2c_nack(struct mxl111sf_state *state ) { int ret ; int __ret ; int __ret___0 ; { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: ()\n", "mxl111sf_i2c_nack"); } } else { } { ret = mxl111sf_write_reg(state, 26, 30); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_nack", ret, 226); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 26, 26); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_nack", ret, 231); } } else { } fail: ; return (ret); } } static int mxl111sf_i2c_sw_xfer_msg(struct mxl111sf_state *state , struct i2c_msg *msg ) { int i ; int ret ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; int __ret___4 ; int __ret___5 ; { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: ()\n", "mxl111sf_i2c_sw_xfer_msg"); } } else { } if ((int )msg->flags & 1) { { ret = mxl111sf_i2c_start(state); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_sw_xfer_msg", ret, 248); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_i2c_bitbang_sendbyte(state, (int )((u8 )((int )((signed char )((int )msg->addr << 1)) | 1))); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_sw_xfer_msg", ret, 253); } } else { } if (__ret___0 != 0) { { mxl111sf_i2c_stop(state); } goto fail; } else { } i = 0; goto ldv_49637; ldv_49636: { ret = mxl111sf_i2c_bitbang_recvbyte(state, msg->buf + (unsigned long )i); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_sw_xfer_msg", ret, 261); } } else { } if (__ret___1 != 0) { { mxl111sf_i2c_stop(state); } goto fail; } else { } if (i < (int )msg->len + -1) { { mxl111sf_i2c_ack(state); } } else { } i = i + 1; ldv_49637: ; if (i < (int )msg->len) { goto ldv_49636; } else { } { mxl111sf_i2c_nack(state); ret = mxl111sf_i2c_stop(state); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_sw_xfer_msg", ret, 273); } } else { } if (__ret___2 != 0) { goto fail; } else { } } else { { ret = mxl111sf_i2c_start(state); __ret___3 = ret < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_sw_xfer_msg", ret, 279); } } else { } if (__ret___3 != 0) { goto fail; } else { } { ret = mxl111sf_i2c_bitbang_sendbyte(state, (int )((u8 )((int )msg->addr << 1))); __ret___4 = ret < 0; } if (__ret___4 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_sw_xfer_msg", ret, 284); } } else { } if (__ret___4 != 0) { { mxl111sf_i2c_stop(state); } goto fail; } else { } i = 0; goto ldv_49648; ldv_49647: { ret = mxl111sf_i2c_bitbang_sendbyte(state, (int )*(msg->buf + (unsigned long )i)); __ret___5 = ret < 0; } if (__ret___5 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_sw_xfer_msg", ret, 292); } } else { } if (__ret___5 != 0) { { mxl111sf_i2c_stop(state); } goto fail; } else { } i = i + 1; ldv_49648: ; if (i < (int )msg->len) { goto ldv_49647; } else { } { mxl111sf_i2c_stop(state); } } fail: ; return (ret); } } static int mxl111sf_i2c_send_data(struct mxl111sf_state *state , u8 index , u8 *wdata ) { int ret ; int tmp ; int __ret ; { { tmp = mxl111sf_ctrl_msg(state->d, (int )*wdata, wdata + 1UL, 25, (u8 *)0U, 0); ret = tmp; __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_send_data", ret, 325); } } else { } return (ret); } } static int mxl111sf_i2c_get_data(struct mxl111sf_state *state , u8 index , u8 *wdata , u8 *rdata ) { int ret ; int tmp ; int __ret ; { { tmp = mxl111sf_ctrl_msg(state->d, (int )*wdata, wdata + 1UL, 25, rdata, 24); ret = tmp; __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_get_data", ret, 335); } } else { } return (ret); } } static u8 mxl111sf_i2c_check_status(struct mxl111sf_state *state ) { u8 status ; u8 buf[26U] ; { status = 0U; if ((dvb_usb_mxl111sf_debug & 20) == 20) { { printk("\017%s: ()\n", "mxl111sf_i2c_check_status"); } } else { } { buf[0] = 221U; buf[1] = 0U; buf[2] = 16U; buf[3] = 0U; buf[4] = 0U; buf[5] = 254U; mxl111sf_i2c_get_data(state, 0, (u8 *)(& buf), (u8 *)(& buf)); } if (((int )buf[1] & 4) != 0) { status = 1U; } else { } return (status); } } static u8 mxl111sf_i2c_check_fifo(struct mxl111sf_state *state ) { u8 status ; u8 buf[26U] ; { status = 0U; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: ()\n", "mxl111sf_i2c_check_fifo"); } } else { } { buf[0] = 221U; buf[1] = 0U; buf[2] = 48U; buf[3] = 0U; buf[4] = 0U; buf[5] = 16U; buf[6] = 0U; buf[7] = 0U; buf[8] = 254U; mxl111sf_i2c_get_data(state, 0, (u8 *)(& buf), (u8 *)(& buf)); } if (((int )buf[1] & 8) != 0) { status = 1U; } else { } if (((int )buf[5] & 2) != 0) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: (buf[5] & 0x02) == 0x02\n", "mxl111sf_i2c_check_fifo"); } } else { } } else { } return (status); } } static int mxl111sf_i2c_readagain(struct mxl111sf_state *state , u8 count , u8 *rbuf ) { u8 i2c_w_data[26U] ; u8 i2c_r_data[24U] ; u8 i ; u8 fifo_status ; int status ; u8 tmp ; u8 tmp___0 ; { i = 0U; fifo_status = 0U; status = 0; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: read %d bytes\n", "mxl111sf_i2c_readagain", (int )count); } } else { } goto ldv_49693; ldv_49692: { fifo_status = mxl111sf_i2c_check_fifo(state); } ldv_49693: ; if ((unsigned int )fifo_status == 0U) { tmp = i; i = (u8 )((int )i + 1); if ((unsigned int )tmp <= 4U) { goto ldv_49692; } else { goto ldv_49694; } } else { } ldv_49694: i2c_w_data[0] = 221U; i2c_w_data[1] = 0U; i = 2U; goto ldv_49696; ldv_49695: i2c_w_data[(int )i] = 254U; i = (u8 )((int )i + 1); ldv_49696: ; if ((unsigned int )i <= 25U) { goto ldv_49695; } else { } i = 0U; goto ldv_49699; ldv_49698: i2c_w_data[(int )i * 3 + 2] = 12U; i2c_w_data[((int )i + 1) * 3] = 0U; i2c_w_data[(int )i * 3 + 4] = 0U; i = (u8 )((int )i + 1); ldv_49699: ; if ((int )i < (int )count) { goto ldv_49698; } else { } { mxl111sf_i2c_get_data(state, 0, (u8 *)(& i2c_w_data), (u8 *)(& i2c_r_data)); tmp___0 = mxl111sf_i2c_check_status(state); } if ((unsigned int )tmp___0 == 1U) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: error!\n", "mxl111sf_i2c_readagain"); } } else { } } else { i = 0U; goto ldv_49702; ldv_49701: *(rbuf + (unsigned long )i) = i2c_r_data[(int )i * 3 + 1]; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: %02x\t %02x\n", "mxl111sf_i2c_readagain", (int )i2c_r_data[(int )i * 3 + 1], (int )i2c_r_data[(int )i * 3 + 2]); } } else { } i = (u8 )((int )i + 1); ldv_49702: ; if ((int )i < (int )count) { goto ldv_49701; } else { } status = 1; } return (status); } } static int mxl111sf_i2c_hw_xfer_msg(struct mxl111sf_state *state , struct i2c_msg *msg ) { int i ; int k ; int ret ; u16 index ; u8 buf[26U] ; u8 i2c_r_data[24U] ; u16 block_len ; u16 left_over_len ; u8 rd_status[8U] ; u8 ret_status ; u8 readbuff[26U] ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; int tmp___4 ; u8 tmp___5 ; { ret = 0; index = 0U; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: addr: 0x%02x, read buff len: %d, write buff len: %d\n", "mxl111sf_i2c_hw_xfer_msg", (int )msg->addr, (int )msg->flags & 1 ? (int )msg->len : 0, ((int )msg->flags & 1) == 0 ? (int )msg->len : 0); } } else { } index = 0U; goto ldv_49721; ldv_49720: buf[(int )index] = 254U; index = (u16 )((int )index + 1); ldv_49721: ; if ((unsigned int )index <= 25U) { goto ldv_49720; } else { } { buf[0] = 153U; buf[1] = 0U; buf[2] = 48U; buf[3] = 128U; buf[4] = 0U; buf[5] = 48U; buf[6] = 129U; buf[7] = 0U; buf[8] = 20U; buf[9] = 255U; buf[10] = 0U; buf[11] = 36U; buf[12] = 247U; buf[13] = 0U; ret = mxl111sf_i2c_send_data(state, 0, (u8 *)(& buf)); } if (((int )msg->flags & 1) == 0 && (unsigned int )msg->len != 0U) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: %d\t%02x\n", "mxl111sf_i2c_hw_xfer_msg", (int )msg->len, (int )*(msg->buf)); } } else { } { buf[2] = 0U; buf[3] = 94U; buf[4] = 3U; buf[5] = 8U; buf[6] = (u8 )msg->addr; buf[7] = 0U; buf[8] = 254U; ret = mxl111sf_i2c_send_data(state, 0, (u8 *)(& buf)); tmp = mxl111sf_i2c_check_status(state); } if ((unsigned int )tmp == 1U) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: NACK writing slave address %02x\n", "mxl111sf_i2c_hw_xfer_msg", (int )msg->addr); } } else { } buf[2] = 0U; buf[3] = 78U; buf[4] = 3U; ret = -5; goto exit; } else { } block_len = (u16 )((unsigned int )msg->len / 8U); left_over_len = (unsigned int )msg->len & 7U; index = 0U; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: block_len %d, left_over_len %d\n", "mxl111sf_i2c_hw_xfer_msg", (int )block_len, (int )left_over_len); } } else { } index = 0U; goto ldv_49728; ldv_49727: i = 0; goto ldv_49725; ldv_49724: buf[i * 3 + 2] = 12U; buf[(i + 1) * 3] = *(msg->buf + (unsigned long )((int )index * 8 + i)); buf[i * 3 + 4] = 0U; i = i + 1; ldv_49725: ; if (i <= 7) { goto ldv_49724; } else { } { ret = mxl111sf_i2c_send_data(state, 0, (u8 *)(& buf)); tmp___0 = mxl111sf_i2c_check_status(state); } if ((unsigned int )tmp___0 == 1U) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: NACK writing slave address %02x\n", "mxl111sf_i2c_hw_xfer_msg", (int )msg->addr); } } else { } buf[2] = 0U; buf[3] = 78U; buf[4] = 3U; ret = -5; goto exit; } else { } index = (u16 )((int )index + 1); ldv_49728: ; if ((int )index < (int )block_len) { goto ldv_49727; } else { } if ((unsigned int )left_over_len != 0U) { k = 0; goto ldv_49731; ldv_49730: buf[k] = 254U; k = k + 1; ldv_49731: ; if (k <= 25) { goto ldv_49730; } else { } buf[0] = 153U; buf[1] = 0U; i = 0; goto ldv_49734; ldv_49733: buf[i * 3 + 2] = 12U; buf[(i + 1) * 3] = *(msg->buf + (unsigned long )((int )index * 8 + i)); if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: index = %d %d data %d\n", "mxl111sf_i2c_hw_xfer_msg", (int )index, i, (int )*(msg->buf + (unsigned long )((int )index * 8 + i))); } } else { } buf[i * 3 + 4] = 0U; i = i + 1; ldv_49734: ; if (i < (int )left_over_len) { goto ldv_49733; } else { } { ret = mxl111sf_i2c_send_data(state, 0, (u8 *)(& buf)); tmp___1 = mxl111sf_i2c_check_status(state); } if ((unsigned int )tmp___1 == 1U) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: NACK writing slave address %02x\n", "mxl111sf_i2c_hw_xfer_msg", (int )msg->addr); } } else { } buf[2] = 0U; buf[3] = 78U; buf[4] = 3U; ret = -5; goto exit; } else { } } else { } buf[2] = 0U; buf[3] = 78U; buf[4] = 3U; } else { } if ((int )msg->flags & 1 && (unsigned int )msg->len != 0U) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: read buf len %d\n", "mxl111sf_i2c_hw_xfer_msg", (int )msg->len); } } else { } { buf[2] = 0U; buf[3] = 223U; buf[4] = 3U; buf[5] = 20U; buf[6] = (u8 )msg->len; buf[7] = 0U; buf[8] = 8U; buf[9] = (u8 )msg->addr; buf[10] = 0U; buf[11] = 254U; ret = mxl111sf_i2c_send_data(state, 0, (u8 *)(& buf)); tmp___2 = mxl111sf_i2c_check_status(state); } if ((unsigned int )tmp___2 == 1U) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: NACK reading slave address %02x\n", "mxl111sf_i2c_hw_xfer_msg", (int )msg->addr); } } else { } buf[2] = 0U; buf[3] = 199U; buf[4] = 3U; ret = -5; goto exit; } else { } block_len = (u16 )((unsigned int )msg->len / 8U); left_over_len = (unsigned int )msg->len & 7U; index = 0U; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: block_len %d, left_over_len %d\n", "mxl111sf_i2c_hw_xfer_msg", (int )block_len, (int )left_over_len); } } else { } buf[0] = 221U; buf[1] = 0U; index = 0U; goto ldv_49747; ldv_49746: i = 0; goto ldv_49737; ldv_49736: buf[i * 3 + 2] = 12U; buf[(i + 1) * 3] = 0U; buf[i * 3 + 4] = 0U; i = i + 1; ldv_49737: ; if (i <= 7) { goto ldv_49736; } else { } { ret = mxl111sf_i2c_get_data(state, 0, (u8 *)(& buf), (u8 *)(& i2c_r_data)); tmp___3 = mxl111sf_i2c_check_status(state); } if ((unsigned int )tmp___3 == 1U) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: NACK reading slave address %02x\n", "mxl111sf_i2c_hw_xfer_msg", (int )msg->addr); } } else { } buf[2] = 0U; buf[3] = 199U; buf[4] = 3U; ret = -5; goto exit; } else { } i = 0; goto ldv_49744; ldv_49743: rd_status[i] = i2c_r_data[i * 3 + 2]; if ((unsigned int )rd_status[i] == 4U) { if (i <= 6) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: i2c fifo empty! @ %d\n", "mxl111sf_i2c_hw_xfer_msg", i); } } else { } { *(msg->buf + (unsigned long )((int )index * 8 + i)) = i2c_r_data[i * 3 + 1]; tmp___4 = mxl111sf_i2c_readagain(state, (int )((unsigned int )(~ ((int )((u8 )i))) + 8U), (u8 *)(& readbuff)); ret_status = (u8 )tmp___4; } if ((unsigned int )ret_status == 1U) { k = 0; goto ldv_49740; ldv_49739: *(msg->buf + (unsigned long )((int )index * 8 + ((k + i) + 1))) = readbuff[k]; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: read data: %02x\t %02x\n", "mxl111sf_i2c_hw_xfer_msg", (int )*(msg->buf + (unsigned long )((int )index * 8 + (k + i))), (int )index * 8 + (k + i)); } } else { } if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: read data: %02x\t %02x\n", "mxl111sf_i2c_hw_xfer_msg", (int )*(msg->buf + (unsigned long )((int )index * 8 + ((k + i) + 1))), (int )readbuff[k]); } } else { } k = k + 1; ldv_49740: ; if (k < ~ i + 8) { goto ldv_49739; } else { } goto stop_copy; } else if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: readagain ERROR!\n", "mxl111sf_i2c_hw_xfer_msg"); } } else { } } else { *(msg->buf + (unsigned long )((int )index * 8 + i)) = i2c_r_data[i * 3 + 1]; } } else { *(msg->buf + (unsigned long )((int )index * 8 + i)) = i2c_r_data[i * 3 + 1]; } i = i + 1; ldv_49744: ; if (i <= 7) { goto ldv_49743; } else { } stop_copy: index = (u16 )((int )index + 1); ldv_49747: ; if ((int )index < (int )block_len) { goto ldv_49746; } else { } if ((unsigned int )left_over_len != 0U) { k = 0; goto ldv_49750; ldv_49749: buf[k] = 254U; k = k + 1; ldv_49750: ; if (k <= 25) { goto ldv_49749; } else { } buf[0] = 221U; buf[1] = 0U; i = 0; goto ldv_49753; ldv_49752: buf[i * 3 + 2] = 12U; buf[(i + 1) * 3] = 0U; buf[i * 3 + 4] = 0U; i = i + 1; ldv_49753: ; if (i < (int )left_over_len) { goto ldv_49752; } else { } { ret = mxl111sf_i2c_get_data(state, 0, (u8 *)(& buf), (u8 *)(& i2c_r_data)); tmp___5 = mxl111sf_i2c_check_status(state); } if ((unsigned int )tmp___5 == 1U) { if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: NACK reading slave address %02x\n", "mxl111sf_i2c_hw_xfer_msg", (int )msg->addr); } } else { } buf[2] = 0U; buf[3] = 199U; buf[4] = 3U; ret = -5; goto exit; } else { } i = 0; goto ldv_49756; ldv_49755: *(msg->buf + (unsigned long )((int )block_len * 8 + i)) = i2c_r_data[i * 3 + 1]; if ((dvb_usb_mxl111sf_debug & 4) != 0) { { printk("\017%s: read data: %02x\t %02x\n", "mxl111sf_i2c_hw_xfer_msg", (int )i2c_r_data[i * 3 + 1], (int )i2c_r_data[i * 3 + 2]); } } else { } i = i + 1; ldv_49756: ; if (i < (int )left_over_len) { goto ldv_49755; } else { } } else { } { buf[0] = 153U; buf[1] = 0U; buf[2] = 0U; buf[3] = 23U; buf[4] = 3U; buf[5] = 254U; ret = mxl111sf_i2c_send_data(state, 0, (u8 *)(& buf)); buf[2] = 0U; buf[3] = 199U; buf[4] = 3U; } } else { } exit: { buf[0] = 153U; buf[1] = 0U; buf[5] = 254U; mxl111sf_i2c_send_data(state, 0, (u8 *)(& buf)); buf[2] = 0U; buf[3] = 223U; buf[4] = 3U; buf[5] = 48U; buf[6] = 0U; buf[7] = 0U; buf[8] = 254U; mxl111sf_i2c_send_data(state, 0, (u8 *)(& buf)); buf[2] = 48U; buf[3] = 129U; buf[4] = 0U; buf[5] = 48U; buf[6] = 0U; buf[7] = 0U; buf[8] = 48U; buf[9] = 0U; buf[10] = 0U; buf[11] = 254U; mxl111sf_i2c_send_data(state, 0, (u8 *)(& buf)); } return (ret); } } int mxl111sf_i2c_xfer(struct i2c_adapter *adap , struct i2c_msg *msg , int num ) { struct dvb_usb_device *d ; void *tmp ; struct mxl111sf_state *state ; int hwi2c ; int i ; int ret ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int __ret ; { { tmp = i2c_get_adapdata((struct i2c_adapter const *)adap); d = (struct dvb_usb_device *)tmp; state = (struct mxl111sf_state *)d->priv; hwi2c = (unsigned int )state->chip_rev > 1U; tmp___0 = ldv_mutex_lock_interruptible_121(& d->i2c_mutex); } if (tmp___0 < 0) { return (-11); } else { } i = 0; goto ldv_49773; ldv_49772: ; if (hwi2c != 0) { { tmp___1 = mxl111sf_i2c_hw_xfer_msg(state, msg + (unsigned long )i); ret = tmp___1; } } else { { tmp___2 = mxl111sf_i2c_sw_xfer_msg(state, msg + (unsigned long )i); ret = tmp___2; } } __ret = ret < 0; if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_i2c_xfer", ret, 829); } } else { } if (__ret != 0) { if ((dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\017%s: failed with error %d on i2c transaction %d of %d, %sing %d bytes to/from 0x%02x\n", "mxl111sf_i2c_xfer", ret, i + 1, num, (int )(msg + (unsigned long )i)->flags & 1 ? (char *)"read" : (char *)"writ", (int )(msg + (unsigned long )i)->len, (int )(msg + (unsigned long )i)->addr); } } else { } goto ldv_49771; } else { } i = i + 1; ldv_49773: ; if (i < num) { goto ldv_49772; } else { } ldv_49771: { ldv_mutex_unlock_122___0(& d->i2c_mutex); } return (i == num ? num : -121); } } static int ldv_mutex_lock_interruptible_121(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i2c_mutex_of_dvb_usb_device(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_122___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_i2c_mutex_of_dvb_usb_device(ldv_func_arg1); } return; } } extern int i2c_transfer(struct i2c_adapter * , struct i2c_msg * , int ) ; int mxl111sf_set_gpio(struct mxl111sf_state *state , int gpio , int val ) ; static int mxl111sf_set_gpo_state(struct mxl111sf_state *state , u8 pin , u8 val ) { int ret ; u8 tmp ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; { if ((dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\017%s: (%d, %d)\n", "mxl111sf_set_gpo_state", (int )pin, (int )val); } } else { } if ((unsigned int )pin - 1U <= 6U) { { ret = mxl111sf_read_reg(state, 25, & tmp); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_set_gpo_state", ret, 44); } } else { } if (__ret != 0) { goto fail; } else { } { tmp = (u8 )((int )((signed char )tmp) & ~ ((int )((signed char )(1 << ((int )pin + -1))))); tmp = (u8 )((int )((signed char )tmp) | (int )((signed char )((int )val << ((int )pin + -1)))); ret = mxl111sf_write_reg(state, 25, (int )tmp); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_set_gpo_state", ret, 49); } } else { } if (__ret___0 != 0) { goto fail; } else { } } else if ((unsigned int )pin <= 10U) { if ((unsigned int )pin == 0U) { pin = (unsigned int )pin + 7U; } else { } { ret = mxl111sf_read_reg(state, 48, & tmp); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_set_gpo_state", ret, 55); } } else { } if (__ret___1 != 0) { goto fail; } else { } { tmp = (u8 )((int )((signed char )tmp) & ~ ((int )((signed char )(1 << ((int )pin + -3))))); tmp = (u8 )((int )((signed char )tmp) | (int )((signed char )((int )val << ((int )pin + -3)))); ret = mxl111sf_write_reg(state, 48, (int )tmp); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_set_gpo_state", ret, 60); } } else { } if (__ret___2 != 0) { goto fail; } else { } } else { ret = -22; } fail: ; return (ret); } } static int mxl111sf_get_gpi_state(struct mxl111sf_state *state , u8 pin , u8 *val ) { int ret ; u8 tmp ; int __ret ; int __ret___0 ; int __ret___1 ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (0x%02x)\n", "mxl111sf_get_gpi_state", (int )pin); } } else { } *val = 0U; { if ((int )pin == 0) { goto case_0; } else { } if ((int )pin == 1) { goto case_1; } else { } if ((int )pin == 2) { goto case_2; } else { } if ((int )pin == 3) { goto case_3; } else { } if ((int )pin == 4) { goto case_4; } else { } if ((int )pin == 5) { goto case_5; } else { } if ((int )pin == 6) { goto case_6; } else { } if ((int )pin == 7) { goto case_7; } else { } if ((int )pin == 8) { goto case_8; } else { } if ((int )pin == 9) { goto case_9; } else { } if ((int )pin == 10) { goto case_10; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ { ret = mxl111sf_read_reg(state, 35, & tmp); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_get_gpi_state", ret, 83); } } else { } if (__ret != 0) { goto fail; } else { } *val = (unsigned int )((u8 )((int )tmp >> ((int )pin + 4))) & 1U; goto ldv_49569; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ { ret = mxl111sf_read_reg(state, 47, & tmp); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_get_gpi_state", ret, 92); } } else { } if (__ret___0 != 0) { goto fail; } else { } *val = (unsigned int )((u8 )((int )tmp >> (int )pin)) & 1U; goto ldv_49569; case_8: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ { ret = mxl111sf_read_reg(state, 34, & tmp); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_get_gpi_state", ret, 100); } } else { } if (__ret___1 != 0) { goto fail; } else { } *val = (unsigned int )((u8 )((int )tmp >> ((int )pin + -3))) & 1U; goto ldv_49569; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_49569: ; fail: ; return (ret); } } static int mxl111sf_config_gpio_pins(struct mxl111sf_state *state , struct mxl_gpio_cfg *gpio_cfg ) { int ret ; u8 tmp ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; int __ret___4 ; int tmp___0 ; int tmp___1 ; int __ret___5 ; { if ((dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\017%s: (%d, %d)\n", "mxl111sf_config_gpio_pins", (int )gpio_cfg->pin, (int )gpio_cfg->dir); } } else { } { if ((int )gpio_cfg->pin == 0) { goto case_0; } else { } if ((int )gpio_cfg->pin == 1) { goto case_1; } else { } if ((int )gpio_cfg->pin == 2) { goto case_2; } else { } if ((int )gpio_cfg->pin == 3) { goto case_3; } else { } if ((int )gpio_cfg->pin == 4) { goto case_4; } else { } if ((int )gpio_cfg->pin == 5) { goto case_5; } else { } if ((int )gpio_cfg->pin == 6) { goto case_6; } else { } if ((int )gpio_cfg->pin == 7) { goto case_7; } else { } if ((int )gpio_cfg->pin == 8) { goto case_8; } else { } if ((int )gpio_cfg->pin == 9) { goto case_9; } else { } if ((int )gpio_cfg->pin == 10) { goto case_10; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ { ret = mxl111sf_read_reg(state, 132, & tmp); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_gpio_pins", ret, 131); } } else { } if (__ret != 0) { goto fail; } else { } { tmp = (u8 )((int )((signed char )tmp) & ~ ((int )((signed char )(1 << ((int )gpio_cfg->pin + 4))))); tmp = (u8 )((int )((signed char )tmp) | (int )((signed char )((int )gpio_cfg->dir << ((int )gpio_cfg->pin + 4)))); ret = mxl111sf_write_reg(state, 132, (int )tmp); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_gpio_pins", ret, 136); } } else { } if (__ret___0 != 0) { goto fail; } else { } goto ldv_49602; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ { ret = mxl111sf_read_reg(state, 137, & tmp); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_gpio_pins", ret, 144); } } else { } if (__ret___1 != 0) { goto fail; } else { } { tmp = (u8 )((int )((signed char )tmp) & ~ ((int )((signed char )(1 << (int )gpio_cfg->pin)))); tmp = (u8 )((int )((signed char )tmp) | (int )((signed char )((int )gpio_cfg->dir << (int )gpio_cfg->pin))); ret = mxl111sf_write_reg(state, 137, (int )tmp); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_gpio_pins", ret, 149); } } else { } if (__ret___2 != 0) { goto fail; } else { } goto ldv_49602; case_8: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ { ret = mxl111sf_read_reg(state, 130, & tmp); __ret___3 = ret < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_gpio_pins", ret, 156); } } else { } if (__ret___3 != 0) { goto fail; } else { } { tmp = (u8 )((int )((signed char )tmp) & ~ ((int )((signed char )(1 << ((int )gpio_cfg->pin + -3))))); tmp = (u8 )((int )((signed char )tmp) | (int )((signed char )((int )gpio_cfg->dir << ((int )gpio_cfg->pin + -3)))); ret = mxl111sf_write_reg(state, 130, (int )tmp); __ret___4 = ret < 0; } if (__ret___4 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_gpio_pins", ret, 161); } } else { } if (__ret___4 != 0) { goto fail; } else { } goto ldv_49602; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_49602: ; if ((unsigned int )gpio_cfg->dir == 1U) { { tmp___0 = mxl111sf_set_gpo_state(state, (int )gpio_cfg->pin, (int )gpio_cfg->val); ret = tmp___0; } } else { { tmp___1 = mxl111sf_get_gpi_state(state, (int )gpio_cfg->pin, & gpio_cfg->val); ret = tmp___1; } } __ret___5 = ret < 0; if (__ret___5 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_gpio_pins", ret, 173); } } else { } fail: ; return (ret); } } static int mxl111sf_hw_do_set_gpio(struct mxl111sf_state *state , int gpio , int direction , int val ) { struct mxl_gpio_cfg gpio_config ; int tmp ; { gpio_config.pin = (unsigned char )gpio; gpio_config.dir = (unsigned char )direction; gpio_config.val = (unsigned char )val; if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (%d, %d, %d)\n", "mxl111sf_hw_do_set_gpio", gpio, direction, val); } } else { } { tmp = mxl111sf_config_gpio_pins(state, & gpio_config); } return (tmp); } } int mxl111sf_config_pin_mux_modes(struct mxl111sf_state *state , enum mxl111sf_mux_config pin_mux_config ) { u8 r12 ; u8 r15 ; u8 r17 ; u8 r18 ; u8 r3D ; u8 r82 ; u8 r84 ; u8 r89 ; int ret ; int __ret ; int __ret___0 ; int __ret___1 ; int __ret___2 ; int __ret___3 ; int __ret___4 ; int __ret___5 ; int __ret___6 ; int __ret___7 ; int __ret___8 ; int __ret___9 ; int __ret___10 ; int __ret___11 ; int __ret___12 ; int __ret___13 ; int __ret___14 ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (%d)\n", "mxl111sf_config_pin_mux_modes", (unsigned int )pin_mux_config); } } else { } { ret = mxl111sf_read_reg(state, 23, & r17); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 223); } } else { } if (__ret != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 24, & r18); __ret___0 = ret < 0; } if (__ret___0 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 226); } } else { } if (__ret___0 != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 18, & r12); __ret___1 = ret < 0; } if (__ret___1 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 229); } } else { } if (__ret___1 != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 21, & r15); __ret___2 = ret < 0; } if (__ret___2 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 232); } } else { } if (__ret___2 != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 130, & r82); __ret___3 = ret < 0; } if (__ret___3 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 235); } } else { } if (__ret___3 != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 132, & r84); __ret___4 = ret < 0; } if (__ret___4 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 238); } } else { } if (__ret___4 != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 137, & r89); __ret___5 = ret < 0; } if (__ret___5 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 241); } } else { } if (__ret___5 != 0) { goto fail; } else { } { ret = mxl111sf_read_reg(state, 61, & r3D); __ret___6 = ret < 0; } if (__ret___6 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 244); } } else { } if (__ret___6 != 0) { goto fail; } else { } { if ((unsigned int )pin_mux_config == 1U) { goto case_1; } else { } if ((unsigned int )pin_mux_config == 2U) { goto case_2; } else { } if ((unsigned int )pin_mux_config == 3U) { goto case_3; } else { } if ((unsigned int )pin_mux_config == 4U) { goto case_4; } else { } if ((unsigned int )pin_mux_config == 5U) { goto case_5; } else { } if ((unsigned int )pin_mux_config == 7U) { goto case_7; } else { } if ((unsigned int )pin_mux_config == 6U) { goto case_6; } else { } if ((unsigned int )pin_mux_config == 8U) { goto case_8; } else { } if ((unsigned int )pin_mux_config == 9U) { goto case_9; } else { } if ((unsigned int )pin_mux_config == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ r17 = (u8 )((unsigned int )r17 | 64U); r18 = (u8 )((unsigned int )r18 | 1U); r18 = (unsigned int )r18 & 253U; r3D = (unsigned int )r3D & 127U; r12 = (unsigned int )r12 & 251U; r15 = (unsigned int )r15 & 191U; r3D = (unsigned int )r3D & 239U; r82 = (u8 )((unsigned int )r82 | 16U); r82 = (u8 )((unsigned int )r82 | 128U); r82 = (u8 )((unsigned int )r82 | 64U); r82 = (u8 )((unsigned int )r82 | 32U); r84 = (u8 )((unsigned int )r84 | 240U); r89 = (u8 )((unsigned int )r89 | 240U); goto ldv_49661; case_2: /* CIL Label */ r17 = (u8 )((unsigned int )r17 | 64U); r18 = (unsigned int )r18 & 254U; r18 = (u8 )((unsigned int )r18 | 2U); r3D = (unsigned int )r3D & 127U; r12 = (unsigned int )r12 & 251U; r15 = (unsigned int )r15 & 191U; r3D = (unsigned int )r3D & 239U; r82 = (u8 )((unsigned int )r82 | 16U); r82 = (u8 )((unsigned int )r82 | 128U); r82 = (u8 )((unsigned int )r82 | 64U); r82 = (u8 )((unsigned int )r82 | 32U); r84 = (u8 )((unsigned int )r84 | 240U); r89 = (u8 )((unsigned int )r89 | 240U); goto ldv_49661; case_3: /* CIL Label */ r17 = (unsigned int )r17 & 191U; r18 = (unsigned int )r18 & 254U; r18 = (unsigned int )r18 & 253U; r3D = (unsigned int )r3D & 127U; r12 = (unsigned int )r12 & 251U; r15 = (unsigned int )r15 & 191U; r3D = (unsigned int )r3D & 239U; r82 = (unsigned int )r82 & 239U; r82 = (unsigned int )r82 & 127U; r82 = (unsigned int )r82 & 191U; r82 = (unsigned int )r82 & 223U; r84 = (unsigned int )r84 & 15U; r89 = (unsigned int )r89 & 15U; goto ldv_49661; case_4: /* CIL Label */ r17 = (unsigned int )r17 & 191U; r18 = (unsigned int )r18 & 254U; r18 = (u8 )((unsigned int )r18 | 2U); r3D = (unsigned int )r3D & 127U; r12 = (unsigned int )r12 & 251U; r15 = (unsigned int )r15 & 191U; r3D = (unsigned int )r3D & 239U; r82 = (unsigned int )r82 & 239U; r82 = (unsigned int )r82 & 127U; r82 = (unsigned int )r82 & 191U; r82 = (unsigned int )r82 & 223U; r84 = (unsigned int )r84 & 15U; r89 = (unsigned int )r89 & 15U; goto ldv_49661; case_5: /* CIL Label */ r17 = (unsigned int )r17 & 191U; r18 = (unsigned int )r18 & 254U; r18 = (u8 )((unsigned int )r18 | 2U); r3D = (u8 )((unsigned int )r3D | 128U); r12 = (unsigned int )r12 & 251U; r15 = (unsigned int )r15 & 191U; r3D = (unsigned int )r3D & 239U; r82 = (unsigned int )r82 & 239U; r82 = (unsigned int )r82 & 127U; r82 = (unsigned int )r82 & 191U; r82 = (unsigned int )r82 & 223U; r84 = (unsigned int )r84 & 15U; r89 = (unsigned int )r89 & 15U; goto ldv_49661; case_7: /* CIL Label */ r17 = (unsigned int )r17 & 191U; r18 = (unsigned int )r18 & 254U; r18 = (u8 )((unsigned int )r18 | 2U); r3D = (u8 )((unsigned int )r3D | 128U); r12 = (unsigned int )r12 & 251U; r15 = (u8 )((unsigned int )r15 | 64U); r3D = (u8 )((unsigned int )r3D | 16U); r82 = (unsigned int )r82 & 239U; r82 = (unsigned int )r82 & 127U; r82 = (unsigned int )r82 & 191U; r82 = (unsigned int )r82 & 223U; r84 = (unsigned int )r84 & 15U; r89 = (unsigned int )r89 & 15U; goto ldv_49661; case_6: /* CIL Label */ r17 = (unsigned int )r17 & 191U; r18 = (unsigned int )r18 & 254U; r18 = (u8 )((unsigned int )r18 | 2U); r3D = (unsigned int )r3D & 127U; r12 = (unsigned int )r12 & 251U; r15 = (u8 )((unsigned int )r15 | 64U); r3D = (u8 )((unsigned int )r3D | 16U); r82 = (unsigned int )r82 & 239U; r82 = (unsigned int )r82 & 127U; r82 = (unsigned int )r82 & 191U; r82 = (unsigned int )r82 & 223U; r84 = (unsigned int )r84 & 15U; r89 = (unsigned int )r89 & 15U; goto ldv_49661; case_8: /* CIL Label */ r17 = (unsigned int )r17 & 191U; r18 = (u8 )((unsigned int )r18 | 1U); r18 = (unsigned int )r18 & 253U; r3D = (unsigned int )r3D & 127U; r12 = (unsigned int )r12 & 251U; r15 = (unsigned int )r15 & 191U; r3D = (unsigned int )r3D & 239U; r82 = (unsigned int )r82 & 239U; r82 = (unsigned int )r82 & 127U; r82 = (unsigned int )r82 & 191U; r82 = (unsigned int )r82 & 223U; r84 = (unsigned int )r84 & 15U; r89 = (unsigned int )r89 & 15U; goto ldv_49661; case_9: /* CIL Label */ r17 = (unsigned int )r17 & 191U; r18 = (unsigned int )r18 & 254U; r18 = (unsigned int )r18 & 253U; r3D = (unsigned int )r3D & 127U; r12 = (u8 )((unsigned int )r12 | 4U); r15 = (u8 )((unsigned int )r15 | 64U); r3D = (unsigned int )r3D & 239U; r82 = (unsigned int )r82 & 239U; r82 = (unsigned int )r82 & 127U; r82 = (unsigned int )r82 & 191U; r82 = (unsigned int )r82 & 223U; r84 = (unsigned int )r84 & 15U; r89 = (unsigned int )r89 & 15U; goto ldv_49661; case_0: /* CIL Label */ ; switch_default: /* CIL Label */ r17 = (u8 )((unsigned int )r17 | 64U); r18 = (unsigned int )r18 & 254U; r18 = (unsigned int )r18 & 253U; r3D = (unsigned int )r3D & 127U; r12 = (unsigned int )r12 & 251U; r15 = (unsigned int )r15 & 191U; r3D = (unsigned int )r3D & 239U; r82 = (unsigned int )r82 & 239U; r82 = (unsigned int )r82 & 127U; r82 = (unsigned int )r82 & 191U; r82 = (unsigned int )r82 & 223U; r84 = (unsigned int )r84 & 15U; r89 = (unsigned int )r89 & 15U; goto ldv_49661; switch_break: /* CIL Label */ ; } ldv_49661: { ret = mxl111sf_write_reg(state, 23, (int )r17); __ret___7 = ret < 0; } if (__ret___7 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 532); } } else { } if (__ret___7 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 24, (int )r18); __ret___8 = ret < 0; } if (__ret___8 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 535); } } else { } if (__ret___8 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 18, (int )r12); __ret___9 = ret < 0; } if (__ret___9 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 538); } } else { } if (__ret___9 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 21, (int )r15); __ret___10 = ret < 0; } if (__ret___10 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 541); } } else { } if (__ret___10 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 130, (int )r82); __ret___11 = ret < 0; } if (__ret___11 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 544); } } else { } if (__ret___11 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 132, (int )r84); __ret___12 = ret < 0; } if (__ret___12 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 547); } } else { } if (__ret___12 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 137, (int )r89); __ret___13 = ret < 0; } if (__ret___13 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 550); } } else { } if (__ret___13 != 0) { goto fail; } else { } { ret = mxl111sf_write_reg(state, 61, (int )r3D); __ret___14 = ret < 0; } if (__ret___14 != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_config_pin_mux_modes", ret, 553); } } else { } if (__ret___14 != 0) { } else { } fail: ; return (ret); } } static int mxl111sf_hw_set_gpio(struct mxl111sf_state *state , int gpio , int val ) { int tmp ; { { tmp = mxl111sf_hw_do_set_gpio(state, gpio, 1, val); } return (tmp); } } static int mxl111sf_hw_gpio_initialize(struct mxl111sf_state *state ) { u8 gpioval ; int i ; int ret ; int __ret ; { gpioval = 7U; if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: ()\n", "mxl111sf_hw_gpio_initialize"); } } else { } i = 3; goto ldv_49704; ldv_49703: { ret = mxl111sf_hw_set_gpio(state, i, ((int )gpioval >> i) & 1); __ret = ret < 0; } if (__ret != 0 && (dvb_usb_mxl111sf_debug & 16) != 0) { { printk("\v%s: error %d on line %d\n", "mxl111sf_hw_gpio_initialize", ret, 575); } } else { } if (__ret != 0) { goto ldv_49702; } else { } i = i + 1; ldv_49704: ; if (i <= 7) { goto ldv_49703; } else { } ldv_49702: ; return (ret); } } static int pca9534_set_gpio(struct mxl111sf_state *state , int gpio , int val ) { u8 w[2U] ; u8 r ; struct i2c_msg msg[2U] ; { w[0] = 1U; w[1] = 0U; r = 0U; msg[0].addr = 32U; msg[0].flags = 0U; msg[0].len = 1U; msg[0].buf = (__u8 *)(& w); msg[1].addr = 32U; msg[1].flags = 1U; msg[1].len = 1U; msg[1].buf = & r; if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (%d, %d)\n", "pca9534_set_gpio", gpio, val); } } else { } { i2c_transfer(& (state->d)->i2c_adap, (struct i2c_msg *)(& msg), 2); msg[0].len = 2U; w[1] = r; w[1] = (u8 )((int )((signed char )w[1]) & ~ ((int )((signed char )(1 << gpio)))); w[1] = (u8 )((int )((signed char )w[1]) | (int )((signed char )((val != 0) << gpio))); i2c_transfer(& (state->d)->i2c_adap, (struct i2c_msg *)(& msg), 1); } return (0); } } static int pca9534_init_port_expander(struct mxl111sf_state *state ) { u8 w[2U] ; struct i2c_msg msg ; { w[0] = 1U; w[1] = 7U; msg.addr = 32U; msg.flags = 0U; msg.len = 2U; msg.buf = (__u8 *)(& w); if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: ()\n", "pca9534_init_port_expander"); } } else { } { i2c_transfer(& (state->d)->i2c_adap, & msg, 1); w[0] = 3U; w[1] = 0U; i2c_transfer(& (state->d)->i2c_adap, & msg, 1); } return (0); } } int mxl111sf_set_gpio(struct mxl111sf_state *state , int gpio , int val ) { int tmp ; int tmp___0 ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (%d, %d)\n", "mxl111sf_set_gpio", gpio, val); } } else { } { if ((unsigned int )state->gpio_port_expander == 1U) { goto case_1; } else { } if ((unsigned int )state->gpio_port_expander == 0U) { goto case_0; } else { } goto switch_default; switch_default: /* CIL Label */ { printk("\v%s: gpio_port_expander undefined, assuming PCA9534\n", "mxl111sf_set_gpio"); } case_1: /* CIL Label */ { tmp = pca9534_set_gpio(state, gpio, val); } return (tmp); case_0: /* CIL Label */ { tmp___0 = mxl111sf_hw_set_gpio(state, gpio, val); } return (tmp___0); switch_break: /* CIL Label */ ; } } } static int mxl111sf_probe_port_expander(struct mxl111sf_state *state ) { int ret ; u8 w ; u8 r ; struct i2c_msg msg[2U] ; { w = 1U; r = 0U; msg[0].addr = (unsigned short)0; msg[0].flags = 0U; msg[0].len = 1U; msg[0].buf = & w; msg[1].addr = (unsigned short)0; msg[1].flags = 1U; msg[1].len = 1U; msg[1].buf = & r; if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: ()\n", "mxl111sf_probe_port_expander"); } } else { } { msg[0].addr = 56U; msg[1].addr = 56U; ret = i2c_transfer(& (state->d)->i2c_adap, (struct i2c_msg *)(& msg), 2); } if (ret == 2) { state->port_expander_addr = (u8 )msg[0].addr; state->gpio_port_expander = 1; if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: found port expander at 0x%02x\n", "mxl111sf_probe_port_expander", (int )state->port_expander_addr); } } else { } return (0); } else { } { msg[0].addr = 32U; msg[1].addr = 32U; ret = i2c_transfer(& (state->d)->i2c_adap, (struct i2c_msg *)(& msg), 2); } if (ret == 2) { state->port_expander_addr = (u8 )msg[0].addr; state->gpio_port_expander = 1; if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: found port expander at 0x%02x\n", "mxl111sf_probe_port_expander", (int )state->port_expander_addr); } } else { } return (0); } else { } state->port_expander_addr = 255U; state->gpio_port_expander = 0; if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: using hardware gpio\n", "mxl111sf_probe_port_expander"); } } else { } return (0); } } int mxl111sf_init_port_expander(struct mxl111sf_state *state ) { int tmp ; int tmp___0 ; { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: ()\n", "mxl111sf_init_port_expander"); } } else { } if ((unsigned int )state->port_expander_addr == 0U) { { mxl111sf_probe_port_expander(state); } } else { } { if ((unsigned int )state->gpio_port_expander == 1U) { goto case_1; } else { } if ((unsigned int )state->gpio_port_expander == 0U) { goto case_0; } else { } goto switch_default; switch_default: /* CIL Label */ { printk("\v%s: gpio_port_expander undefined, assuming PCA9534\n", "mxl111sf_init_port_expander"); } case_1: /* CIL Label */ { tmp = pca9534_init_port_expander(state); } return (tmp); case_0: /* CIL Label */ { tmp___0 = mxl111sf_hw_gpio_initialize(state); } return (tmp___0); switch_break: /* CIL Label */ ; } } } int mxl111sf_gpio_mode_switch(struct mxl111sf_state *state , unsigned int mode ) { { if (dvb_usb_mxl111sf_debug != 0) { { printk("\017%s: (%d)\n", "mxl111sf_gpio_mode_switch", mode); } } else { } { if (mode == 1U) { goto case_1; } else { } if (mode == 2U) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ { mxl111sf_set_gpio(state, 4, 0); mxl111sf_set_gpio(state, 5, 0); msleep(50U); mxl111sf_set_gpio(state, 7, 1); msleep(50U); mxl111sf_set_gpio(state, 6, 1); msleep(50U); mxl111sf_set_gpio(state, 3, 0); } goto ldv_49750; case_2: /* CIL Label */ { mxl111sf_set_gpio(state, 6, 0); mxl111sf_set_gpio(state, 7, 0); msleep(50U); mxl111sf_set_gpio(state, 5, 1); msleep(50U); mxl111sf_set_gpio(state, 4, 1); msleep(50U); mxl111sf_set_gpio(state, 3, 1); } goto ldv_49750; switch_default: /* CIL Label */ { mxl111sf_init_port_expander(state); } goto ldv_49750; switch_break: /* CIL Label */ ; } ldv_49750: ; return (0); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(size_t size ) { void *ptr ; void *tmp ; { { tmp = ldv_malloc(size); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_malloc(sizeof(struct class)); assume_abort_if_not((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); assume_abort_if_not(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } int ldv_filter_err_code(int ret_val ) ; static int ldv_filter_positive_int(int val ) { { { assume_abort_if_not(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); assume_abort_if_not(nondet <= size); assume_abort_if_not(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; assume_abort_if_not(nondet <= size); assume_abort_if_not(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { assume_abort_if_not(nr_cpu_ids > 0); } return; } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(size); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void *is_got ) { long tmp ; { { assume_abort_if_not((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); assume_abort_if_not(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state ; void ldv_linux_kernel_locking_mutex_mutex_lock_fe_lock_of_mxl111sf_state(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_fe_lock_of_mxl111sf_state(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_fe_lock_of_mxl111sf_state(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_fe_lock_of_mxl111sf_state(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_fe_lock_of_mxl111sf_state(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_fe_lock_of_mxl111sf_state(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_fe_lock_of_mxl111sf_state(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_fe_lock_of_mxl111sf_state(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_i2c_mutex_of_dvb_usb_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i2c_mutex_of_dvb_usb_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i2c_mutex_of_dvb_usb_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i2c_mutex_of_dvb_usb_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i2c_mutex_of_dvb_usb_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i2c_mutex_of_dvb_usb_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i2c_mutex_of_dvb_usb_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i2c_mutex_of_dvb_usb_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_fe_lock_of_mxl111sf_state); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i2c_mutex_of_dvb_usb_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } void reach_error_linux_net_rtnetlink(void) { reach_error(); } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void reach_error_linux_kernel_locking_rwlock(void) { reach_error(); } void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void reach_error_linux_lib_idr(void) { reach_error(); } void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void reach_error_linux_kernel_sched_completion(void) { reach_error(); } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { reach_error_linux_kernel_sched_completion(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { reach_error_linux_kernel_sched_completion(); } } else { } return; } } void reach_error_linux_net_register(void) { reach_error(); } void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { reach_error_linux_net_register(); } } else { } return; } } void reach_error_linux_fs_char_dev(void) { reach_error(); } void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void reach_error_linux_kernel_rcu_srcu(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void reach_error_linux_kernel_module(void) { reach_error(); } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_kernel_module(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_module(); } } else { } return; } } void reach_error_linux_alloc_spinlock(void) { reach_error(); } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_spinlock(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_spinlock(); } } else { } return; } } void reach_error_linux_lib_find_bit(void) { reach_error(); } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { reach_error_linux_lib_find_bit(); } } else { } return; } } void reach_error_linux_mmc_sdio_func(void) { reach_error(); } void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void reach_error_linux_usb_coherent(void) { reach_error(); } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_coherent(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_coherent(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void reach_error_linux_net_sock(void) { reach_error(); } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { reach_error_linux_net_sock(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { reach_error_linux_net_sock(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock_bh(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void reach_error_linux_usb_dev(void) { reach_error(); } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void reach_error_linux_kernel_locking_mutex(void) { reach_error(); } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void reach_error_linux_usb_gadget(void) { reach_error(); } void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void reach_error_linux_alloc_usb_lock(void) { reach_error(); } void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_usb_lock(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_usb_lock(); } } else { } return; } } void reach_error_linux_block_request(void) { reach_error(); } void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void reach_error_linux_alloc_irq(void) { reach_error(); } void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_irq(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_irq(); } } else { } return; } } void reach_error_linux_drivers_base_class(void) { reach_error(); } void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void reach_error_linux_block_queue(void) { reach_error(); } void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void reach_error_linux_block_genhd(void) { reach_error(); } void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void reach_error_linux_arch_io(void) { reach_error(); } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_arch_io(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_arch_io(); } } else { } return; } } void reach_error_linux_usb_register(void) { reach_error(); } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { reach_error_linux_usb_register(); } } else { } return; } } void reach_error_linux_fs_sysfs(void) { reach_error(); } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_fs_sysfs(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_fs_sysfs(); } } else { } return; } } void reach_error_linux_kernel_locking_spinlock(void) { reach_error(); } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void reach_error_linux_usb_urb(void) { reach_error(); } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_urb(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_urb(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock_sched(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } }