/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "linux-4.0-rc1---drivers--net--ethernet--cisco--enic--enic.ko.cil.c", 5, "reach_error"); } typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_142 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_142 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_143 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_143 __annonCompField32 ; unsigned long nr_segs ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_149 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_150 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_148 { struct __anonstruct____missing_field_name_149 __annonCompField35 ; struct __anonstruct____missing_field_name_150 __annonCompField36 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_148 __annonCompField37 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_151 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_153 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_157 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_156 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_157 __annonCompField40 ; int units ; }; struct __anonstruct____missing_field_name_155 { union __anonunion____missing_field_name_156 __annonCompField41 ; atomic_t _count ; }; union __anonunion____missing_field_name_154 { unsigned long counters ; struct __anonstruct____missing_field_name_155 __annonCompField42 ; unsigned int active ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; union __anonunion____missing_field_name_154 __annonCompField43 ; }; struct __anonstruct____missing_field_name_159 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_160 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_158 { struct list_head lru ; struct __anonstruct____missing_field_name_159 __annonCompField45 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_160 __annonCompField46 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_161 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_151 __annonCompField38 ; struct __anonstruct____missing_field_name_152 __annonCompField44 ; union __anonunion____missing_field_name_158 __annonCompField47 ; union __anonunion____missing_field_name_161 __annonCompField48 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_162 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_162 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct pid; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_165 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_165 sync_serial_settings; struct __anonstruct_te1_settings_166 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_166 te1_settings; struct __anonstruct_raw_hdlc_proto_167 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_167 raw_hdlc_proto; struct __anonstruct_fr_proto_168 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_168 fr_proto; struct __anonstruct_fr_proto_pvc_169 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_169 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_170 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_170 fr_proto_pvc_info; struct __anonstruct_cisco_proto_171 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_171 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_172 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_172 ifs_ifsu ; }; union __anonunion_ifr_ifrn_173 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_174 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_173 ifr_ifrn ; union __anonunion_ifr_ifru_174 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_177 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_176 { struct __anonstruct____missing_field_name_177 __annonCompField49 ; }; struct lockref { union __anonunion____missing_field_name_176 __annonCompField50 ; }; struct vfsmount; struct __anonstruct____missing_field_name_179 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_178 { struct __anonstruct____missing_field_name_179 __annonCompField51 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_178 __annonCompField52 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_180 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_180 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_182 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_181 { struct __anonstruct____missing_field_name_182 __annonCompField53 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_181 __annonCompField54 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct backing_dev_info; struct export_operations; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_185 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_185 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_186 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_186 __annonCompField56 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_189 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_190 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_191 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_189 __annonCompField57 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_190 __annonCompField58 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_191 __annonCompField59 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_192 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_192 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_194 { struct list_head link ; int state ; }; union __anonunion_fl_u_193 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_194 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_193 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_195 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_195 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_197 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_198 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_199 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_200 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_202 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_201 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_202 _addr_bnd ; }; struct __anonstruct__sigpoll_203 { long _band ; int _fd ; }; struct __anonstruct__sigsys_204 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_196 { int _pad[28U] ; struct __anonstruct__kill_197 _kill ; struct __anonstruct__timer_198 _timer ; struct __anonstruct__rt_199 _rt ; struct __anonstruct__sigchld_200 _sigchld ; struct __anonstruct__sigfault_201 _sigfault ; struct __anonstruct__sigpoll_203 _sigpoll ; struct __anonstruct__sigsys_204 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_196 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_208 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_207 { struct __anonstruct____missing_field_name_208 __annonCompField60 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_207 __annonCompField61 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_209 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_210 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_212 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_211 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_212 __annonCompField64 ; }; union __anonunion_type_data_213 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_215 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_214 { union __anonunion_payload_215 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_209 __annonCompField62 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_210 __annonCompField63 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_211 __annonCompField65 ; union __anonunion_type_data_213 type_data ; union __anonunion____missing_field_name_214 __annonCompField66 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22914 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22914 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_235 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_235 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; u32 tskey ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_237 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_236 { u64 v64 ; struct __anonstruct____missing_field_name_237 __annonCompField71 ; }; struct skb_mstamp { union __anonunion____missing_field_name_236 __annonCompField72 ; }; union __anonunion____missing_field_name_240 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_239 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_240 __annonCompField73 ; }; union __anonunion____missing_field_name_238 { struct __anonstruct____missing_field_name_239 __annonCompField74 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_242 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_241 { __wsum csum ; struct __anonstruct____missing_field_name_242 __annonCompField76 ; }; union __anonunion____missing_field_name_243 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_244 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_245 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_238 __annonCompField75 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_241 __annonCompField77 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_243 __annonCompField78 ; __u32 secmark ; union __anonunion____missing_field_name_244 __annonCompField79 ; union __anonunion____missing_field_name_245 __annonCompField80 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; enum pkt_hash_types { PKT_HASH_TYPE_NONE = 0, PKT_HASH_TYPE_L2 = 1, PKT_HASH_TYPE_L3 = 2, PKT_HASH_TYPE_L4 = 3 } ; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; union __anonunion_in6_u_248 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_248 in6_u ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; enum ldv_27644 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_27644 phy_interface_t; enum ldv_27697 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_27697 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_264 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_265 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_266 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_264 adj_list ; struct __anonstruct_all_adj_list_265 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_266 __annonCompField86 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_267 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_267 __annonCompField87 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_272 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_272 __annonCompField88 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct iphdr { unsigned char ihl : 4 ; unsigned char version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct ipv6hdr { unsigned char priority : 4 ; unsigned char version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 accept_ra_from_local ; __s32 optimistic_dad ; __s32 use_optimistic ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; __s32 accept_ra_mtu ; void *sysctl ; }; struct page_counter { atomic_long_t count ; unsigned long limit ; struct page_counter *parent ; unsigned long watermark ; unsigned long failcnt ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_278 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_278 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct bpf_insn { __u8 code ; unsigned char dst_reg : 4 ; unsigned char src_reg : 4 ; __s16 off ; __s32 imm ; }; struct bpf_prog_aux; struct sock_fprog_kern { u16 len ; struct sock_filter *filter ; }; union __anonunion____missing_field_name_283 { struct sock_filter insns[0U] ; struct bpf_insn insnsi[0U] ; }; struct bpf_prog { u16 pages ; bool jited ; u32 len ; struct sock_fprog_kern *orig_prog ; struct bpf_prog_aux *aux ; unsigned int (*bpf_func)(struct sk_buff const * , struct bpf_insn const * ) ; union __anonunion____missing_field_name_283 __annonCompField93 ; }; struct sk_filter { atomic_t refcnt ; struct callback_head rcu ; struct bpf_prog *prog ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; struct net *(*get_link_net)(struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct list_head list ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; struct list_head parms_list ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_285 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sock * , struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_285 __annonCompField94 ; }; struct __anonstruct_socket_lock_t_286 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_286 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_288 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_287 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_288 __annonCompField95 ; }; union __anonunion____missing_field_name_289 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_291 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_290 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_291 __annonCompField98 ; }; union __anonunion____missing_field_name_292 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_293 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_287 __annonCompField96 ; union __anonunion____missing_field_name_289 __annonCompField97 ; union __anonunion____missing_field_name_290 __annonCompField99 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 1 ; unsigned char skc_ipv6only : 1 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_292 __annonCompField100 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_293 __annonCompField101 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_294 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_294 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; u16 sk_incoming_cpu ; __u32 sk_txhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check_tx : 1 ; unsigned char sk_no_check_rx : 1 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; u16 sk_tsflags ; u32 sk_tskey ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_295 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_295 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct page_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; unsigned char cookie_ts : 1 ; unsigned char num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; unsigned char res1 : 4 ; unsigned char doff : 4 ; unsigned char fin : 1 ; unsigned char syn : 1 ; unsigned char rst : 1 ; unsigned char psh : 1 ; unsigned char ack : 1 ; unsigned char urg : 1 ; unsigned char ece : 1 ; unsigned char cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6 ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; __u8 addr_gen_mode ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_306 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_306 __annonCompField103 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_307 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_309 { atomic_t rid ; }; union __anonunion____missing_field_name_308 { struct __anonstruct____missing_field_name_309 __annonCompField105 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[16U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_307 __annonCompField104 ; union __anonunion____missing_field_name_308 __annonCompField106 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; int total ; }; struct uncached_list; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; struct uncached_list *rt_uncached_list ; }; struct __anonstruct_near_311 { u16 index ; u16 dist ; }; struct cpu_rmap { struct kref refcount ; u16 size ; u16 used ; void **obj ; struct __anonstruct_near_311 near[0U] ; }; struct pidmap { atomic_t nr_free ; void *page ; }; struct fs_pin; struct pid_namespace { struct kref kref ; struct pidmap pidmap[128U] ; struct callback_head rcu ; int last_pid ; unsigned int nr_hashed ; struct task_struct *child_reaper ; struct kmem_cache *pid_cachep ; unsigned int level ; struct pid_namespace *parent ; struct vfsmount *proc_mnt ; struct dentry *proc_self ; struct dentry *proc_thread_self ; struct fs_pin *bacct ; struct user_namespace *user_ns ; struct work_struct proc_work ; kgid_t pid_gid ; int hide_pid ; int reboot ; struct ns_common ns ; }; struct cq_desc { __le16 completed_index ; __le16 q_number ; u8 type_specfic[11U] ; u8 type_color ; }; struct cq_enet_rq_desc { __le16 completed_index_flags ; __le16 q_number_rss_type_flags ; __le32 rss_hash ; __le16 bytes_written_flags ; __le16 vlan ; __le16 checksum_fcoe ; u8 flags ; u8 type_color ; }; enum vnic_dev_intr_mode { VNIC_DEV_INTR_MODE_UNKNOWN = 0, VNIC_DEV_INTR_MODE_INTX = 1, VNIC_DEV_INTR_MODE_MSI = 2, VNIC_DEV_INTR_MODE_MSIX = 3 } ; struct vnic_dev_bar { void *vaddr ; dma_addr_t bus_addr ; unsigned long len ; }; struct vnic_dev_ring { void *descs ; size_t size ; dma_addr_t base_addr ; size_t base_align ; void *descs_unaligned ; size_t size_unaligned ; dma_addr_t base_addr_unaligned ; unsigned int desc_size ; unsigned int desc_count ; unsigned int desc_avail ; }; struct vnic_dev; struct vnic_stats; struct vnic_intr_ctrl { u32 coalescing_timer ; u32 pad0 ; u32 coalescing_value ; u32 pad1 ; u32 coalescing_type ; u32 pad2 ; u32 mask_on_assertion ; u32 pad3 ; u32 mask ; u32 pad4 ; u32 int_credits ; u32 pad5 ; u32 int_credit_return ; u32 pad6 ; }; struct vnic_intr { unsigned int index ; struct vnic_dev *vdev ; struct vnic_intr_ctrl *ctrl ; }; struct vnic_tx_stats { u64 tx_frames_ok ; u64 tx_unicast_frames_ok ; u64 tx_multicast_frames_ok ; u64 tx_broadcast_frames_ok ; u64 tx_bytes_ok ; u64 tx_unicast_bytes_ok ; u64 tx_multicast_bytes_ok ; u64 tx_broadcast_bytes_ok ; u64 tx_drops ; u64 tx_errors ; u64 tx_tso ; u64 rsvd[16U] ; }; struct vnic_rx_stats { u64 rx_frames_ok ; u64 rx_frames_total ; u64 rx_unicast_frames_ok ; u64 rx_multicast_frames_ok ; u64 rx_broadcast_frames_ok ; u64 rx_bytes_ok ; u64 rx_unicast_bytes_ok ; u64 rx_multicast_bytes_ok ; u64 rx_broadcast_bytes_ok ; u64 rx_drop ; u64 rx_no_bufs ; u64 rx_errors ; u64 rx_rss ; u64 rx_crc_errors ; u64 rx_frames_64 ; u64 rx_frames_127 ; u64 rx_frames_255 ; u64 rx_frames_511 ; u64 rx_frames_1023 ; u64 rx_frames_1518 ; u64 rx_frames_to_max ; u64 rsvd[16U] ; }; struct vnic_gen_stats { u64 dma_map_error ; }; struct vnic_stats { struct vnic_tx_stats tx ; struct vnic_rx_stats rx ; }; struct wq_enet_desc { __le64 address ; __le16 length ; __le16 mss_loopback ; __le16 header_length_flags ; __le16 vlan_tag ; }; struct rq_enet_desc { __le64 address ; __le16 length_type ; u8 reserved[6U] ; }; struct vnic_cq_ctrl { u64 ring_base ; u32 ring_size ; u32 pad0 ; u32 flow_control_enable ; u32 pad1 ; u32 color_enable ; u32 pad2 ; u32 cq_head ; u32 pad3 ; u32 cq_tail ; u32 pad4 ; u32 cq_tail_color ; u32 pad5 ; u32 interrupt_enable ; u32 pad6 ; u32 cq_entry_enable ; u32 pad7 ; u32 cq_message_enable ; u32 pad8 ; u32 interrupt_offset ; u32 pad9 ; u64 cq_message_addr ; u32 pad10 ; }; struct vnic_rx_bytes_counter { unsigned int small_pkt_bytes_cnt ; unsigned int large_pkt_bytes_cnt ; }; struct vnic_cq { unsigned int index ; struct vnic_dev *vdev ; struct vnic_cq_ctrl *ctrl ; struct vnic_dev_ring ring ; unsigned int to_clean ; unsigned int last_color ; unsigned int interrupt_offset ; struct vnic_rx_bytes_counter pkt_size_counter ; unsigned int cur_rx_coal_timeval ; unsigned int tobe_rx_coal_timeval ; ktime_t prev_ts ; }; struct vnic_wq_ctrl { u64 ring_base ; u32 ring_size ; u32 pad0 ; u32 posted_index ; u32 pad1 ; u32 cq_index ; u32 pad2 ; u32 enable ; u32 pad3 ; u32 running ; u32 pad4 ; u32 fetch_index ; u32 pad5 ; u32 dca_value ; u32 pad6 ; u32 error_interrupt_enable ; u32 pad7 ; u32 error_interrupt_offset ; u32 pad8 ; u32 error_status ; u32 pad9 ; }; struct vnic_wq_buf { struct vnic_wq_buf *next ; dma_addr_t dma_addr ; void *os_buf ; unsigned int len ; unsigned int index ; int sop ; void *desc ; uint64_t wr_id ; uint8_t cq_entry ; uint8_t desc_skip_cnt ; uint8_t compressed_send ; struct vnic_wq_buf *prev ; }; struct vnic_wq { unsigned int index ; struct vnic_dev *vdev ; struct vnic_wq_ctrl *ctrl ; struct vnic_dev_ring ring ; struct vnic_wq_buf *bufs[64U] ; struct vnic_wq_buf *to_use ; struct vnic_wq_buf *to_clean ; unsigned int pkts_outstanding ; }; struct vnic_rq_ctrl { u64 ring_base ; u32 ring_size ; u32 pad0 ; u32 posted_index ; u32 pad1 ; u32 cq_index ; u32 pad2 ; u32 enable ; u32 pad3 ; u32 running ; u32 pad4 ; u32 fetch_index ; u32 pad5 ; u32 error_interrupt_enable ; u32 pad6 ; u32 error_interrupt_offset ; u32 pad7 ; u32 error_status ; u32 pad8 ; u32 dropped_packet_count ; u32 pad9 ; u32 dropped_packet_count_rc ; u32 pad10 ; }; struct vnic_rq_buf { struct vnic_rq_buf *next ; dma_addr_t dma_addr ; void *os_buf ; unsigned int os_buf_index ; unsigned int len ; unsigned int index ; void *desc ; uint64_t wr_id ; }; struct vnic_rq { unsigned int index ; struct vnic_dev *vdev ; struct vnic_rq_ctrl *ctrl ; struct vnic_dev_ring ring ; struct vnic_rq_buf *bufs[64U] ; struct vnic_rq_buf *to_use ; struct vnic_rq_buf *to_clean ; void *os_buf_head ; unsigned int pkts_outstanding ; unsigned int bpoll_state ; spinlock_t bpoll_lock ; }; struct enic; struct vnic_enet_config { u32 flags ; u32 wq_desc_count ; u32 rq_desc_count ; u16 mtu ; u16 intr_timer_deprecated ; u8 intr_timer_type ; u8 intr_mode ; char devname[16U] ; u32 intr_timer_usec ; u16 loop_tag ; u16 vf_rq_count ; u16 num_arfs ; }; struct __anonstruct_key_315 { u8 b[10U] ; u8 b_pad[6U] ; }; union vnic_rss_key { struct __anonstruct_key_315 key[4U] ; u64 raw[8U] ; }; struct __anonstruct_cpu_316 { u8 b[4U] ; u8 b_pad[4U] ; }; union vnic_rss_cpu { struct __anonstruct_cpu_316 cpu[32U] ; u64 raw[32U] ; }; struct enic_msix_entry { int requested ; char devname[16U] ; irqreturn_t (*isr)(int , void * ) ; void *devid ; }; struct enic_intr_mod_range { u32 small_pkt_range_start ; u32 large_pkt_range_start ; }; struct enic_intr_mod_table { u32 rx_rate ; u32 range_percent ; }; struct enic_rx_coal { u32 small_pkt_range_start ; u32 large_pkt_range_start ; u32 range_end ; u32 use_adaptive_rx_coalesce ; }; struct enic_port_profile { u32 set ; u8 request ; char name[40U] ; u8 instance_uuid[16U] ; u8 host_uuid[16U] ; u8 vf_mac[6U] ; u8 mac_addr[6U] ; }; struct enic_rfs_flw_tbl { u16 max ; int free ; unsigned short toclean : 10 ; struct hlist_head ht_head[1024U] ; spinlock_t lock ; struct timer_list rfs_may_expire ; }; struct enic { struct net_device *netdev ; struct pci_dev *pdev ; struct vnic_enet_config config ; struct vnic_dev_bar bar[6U] ; struct vnic_dev *vdev ; struct timer_list notify_timer ; struct work_struct reset ; struct work_struct change_mtu_work ; struct msix_entry msix_entry[18U] ; struct enic_msix_entry msix[18U] ; u32 msg_enable ; spinlock_t devcmd_lock ; u8 mac_addr[6U] ; unsigned int flags ; unsigned int priv_flags ; unsigned int mc_count ; unsigned int uc_count ; u32 port_mtu ; struct enic_rx_coal rx_coalesce_setting ; u32 rx_coalesce_usecs ; u32 tx_coalesce_usecs ; u16 num_vfs ; spinlock_t enic_api_lock ; struct enic_port_profile *pp ; struct vnic_wq wq[8U] ; spinlock_t wq_lock[8U] ; unsigned int wq_count ; u16 loop_enable ; u16 loop_tag ; struct vnic_rq rq[8U] ; unsigned int rq_count ; u64 rq_truncated_pkts ; u64 rq_bad_fcs ; struct napi_struct napi[16U] ; struct vnic_intr intr[18U] ; unsigned int intr_count ; u32 *legacy_pba ; struct vnic_cq cq[16U] ; unsigned int cq_count ; struct enic_rfs_flw_tbl rfs_h ; u32 rx_copybreak ; u8 rss_key[40U] ; struct vnic_gen_stats gen_stats ; }; struct ldv_struct_dummy_resourceless_instance_2 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_7 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_3 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_4 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; typedef struct net_device *ldv_func_ret_type___10; typedef int ldv_func_ret_type___11; typedef int ldv_func_ret_type___12; enum vnic_res_type { RES_TYPE_EOL = 0, RES_TYPE_WQ = 1, RES_TYPE_RQ = 2, RES_TYPE_CQ = 3, RES_TYPE_RSVD1 = 4, RES_TYPE_NIC_CFG = 5, RES_TYPE_RSVD2 = 6, RES_TYPE_RSVD3 = 7, RES_TYPE_RSVD4 = 8, RES_TYPE_RSVD5 = 9, RES_TYPE_INTR_CTRL = 10, RES_TYPE_INTR_TABLE = 11, RES_TYPE_INTR_PBA = 12, RES_TYPE_INTR_PBA_LEGACY = 13, RES_TYPE_RSVD6 = 14, RES_TYPE_RSVD7 = 15, RES_TYPE_DEVCMD = 16, RES_TYPE_PASS_THRU_PAGE = 17, RES_TYPE_MAX = 18 } ; enum hrtimer_restart; enum vnic_devcmd_cmd { CMD_NONE = 0, CMD_MCPU_FW_INFO_OLD = 1073856513, CMD_MCPU_FW_INFO = 3221340161U, CMD_DEV_SPEC = 3221340162U, CMD_STATS_CLEAR = 16891907, CMD_STATS_DUMP = 1073856516, CMD_PACKET_FILTER = 1090535431, CMD_PACKET_FILTER_ALL = 1090633735, CMD_HANG_NOTIFY = 114696, CMD_GET_MAC_ADDR = 2147532809U, CMD_ADDR_ADD = 1090568204, CMD_ADDR_DEL = 1090568205, CMD_VLAN_ADD = 1090535438, CMD_VLAN_DEL = 1090535439, CMD_NIC_CFG = 1090633744, CMD_RSS_KEY = 1073758225, CMD_RSS_CPU = 1073758226, CMD_SOFT_RESET = 16891923, CMD_SOFT_RESET_STATUS = 2147598356U, CMD_NOTIFY = 3221340181U, CMD_UNDI = 1073758230, CMD_OPEN = 1090633751, CMD_OPEN_STATUS = 2147598360U, CMD_CLOSE = 114713, CMD_INIT_v1 = 2164375578U, CMD_INIT_PROV_INFO = 1073758235, CMD_ENABLE = 1090633756, CMD_ENABLE_WAIT = 1073856540, CMD_DISABLE = 114717, CMD_STATS_DUMP_ALL = 1073856542, CMD_INIT_STATUS = 2147598367U, CMD_INT13 = 1073774624, CMD_LOGICAL_UPLINK = 1090535457, CMD_DEINIT = 16891938, CMD_INIT = 1090633763, CMD_CAPABILITY = 3221340196U, CMD_PERBI = 3221258277U, CMD_IAR = 1090633766, CMD_HANG_RESET = 114727, CMD_HANG_RESET_STATUS = 2147598376U, CMD_IG_VLAN_REWRITE_MODE = 3221241897U, CMD_PROXY_BY_BDF = 3221340202U, CMD_PROXY_BY_INDEX = 3221340203U, CMD_CONFIG_INFO_GET = 3221340204U, CMD_INT13_ALL = 1073856557, CMD_SET_DEFAULT_VLAN = 3221340206U, CMD_INIT_PROV_INFO2 = 1073758255, CMD_ENABLE2 = 1073758256, CMD_STATUS = 3221340209U, CMD_INTR_COAL_CONVERT = 2147598386U, CMD_SET_MAC_ADDR = 1073758263, CMD_PROV_INFO_UPDATE = 1073758264, CMD_ADD_FILTER = 3221241914U, CMD_DEL_FILTER = 1073758267, CMD_QP_ENABLE = 1073758268, CMD_QP_DISABLE = 1073758269, CMD_QP_STATS_DUMP = 1073758270, CMD_QP_STATS_CLEAR = 1073758271 } ; enum hrtimer_restart; struct vnic_devcmd_fw_info { char fw_version[32U] ; char fw_build[32U] ; char hw_version[32U] ; char hw_serial_number[32U] ; u16 asic_type ; u16 asic_rev ; }; enum hrtimer_restart; struct vic_provinfo_tlv { u16 type ; u16 length ; u8 value[0U] ; }; struct vic_provinfo { u8 oui[3U] ; u8 type ; u32 length ; u32 num_tlvs ; struct vic_provinfo_tlv tlv[0U] ; }; typedef __u32 u_int32_t; enum hrtimer_restart; struct vnic_resource_header { u32 magic ; u32 version ; }; struct mgmt_barmap_hdr { u32 magic ; u32 version ; u16 lif ; u16 pci_slot ; char serial[16U] ; }; struct vnic_resource { u8 type ; u8 bar ; u8 pad[2U] ; u32 bar_offset ; u32 count ; }; struct vnic_devcmd_notify { u32 csum ; u32 link_state ; u32 port_speed ; u32 mtu ; u32 msglvl ; u32 uif ; u32 status ; u32 error ; u32 link_down_cnt ; u32 perbi_rebuild_cnt ; }; struct filter_usnic_id { u32 flags ; u16 vlan ; u16 ethtype ; u8 proto_version ; u32 usnic_id ; }; struct filter_ipv4_5tuple { u32 flags ; u32 protocol ; u32 src_addr ; u32 dst_addr ; u16 src_port ; u16 dst_port ; }; struct filter_mac_vlan { u32 flags ; u16 vlan ; u8 mac_addr[6U] ; }; union __anonunion_u_268 { u32 rq_idx ; }; struct filter_action { u32 type ; union __anonunion_u_268 u ; }; union __anonunion_u_269 { struct filter_usnic_id usnic ; struct filter_ipv4_5tuple ipv4 ; struct filter_mac_vlan mac_vlan ; }; struct filter { u32 type ; union __anonunion_u_269 u ; }; struct filter_tlv { u_int32_t type ; u_int32_t length ; u_int32_t val[0U] ; }; struct vnic_devcmd { u32 status ; u32 cmd ; u64 args[15U] ; }; enum vnic_proxy_type { PROXY_NONE = 0, PROXY_BY_BDF = 1, PROXY_BY_INDEX = 2 } ; struct vnic_res { void *vaddr ; dma_addr_t bus_addr ; unsigned int count ; }; struct vnic_intr_coal_timer_info { u32 mul ; u32 div ; u32 max_usec ; }; struct vnic_dev { void *priv ; struct pci_dev *pdev ; struct vnic_res res[18U] ; enum vnic_dev_intr_mode intr_mode ; struct vnic_devcmd *devcmd ; struct vnic_devcmd_notify *notify ; struct vnic_devcmd_notify notify_copy ; dma_addr_t notify_pa ; u32 notify_sz ; dma_addr_t linkstatus_pa ; struct vnic_stats *stats ; dma_addr_t stats_pa ; struct vnic_devcmd_fw_info *fw_info ; dma_addr_t fw_info_pa ; enum vnic_proxy_type proxy ; u32 proxy_index ; u64 args[15U] ; struct vnic_intr_coal_timer_info intr_coal_timer_info ; }; enum hrtimer_restart; union __anonunion____missing_field_name_234 { __be32 ports ; __be16 port16[2U] ; }; struct flow_keys { __be32 src ; __be32 dst ; union __anonunion____missing_field_name_234 __annonCompField70 ; u16 thoff ; __be16 n_proto ; u8 ip_proto ; }; struct enic_rfs_fltr_node { struct flow_keys keys ; u32 flow_id ; u16 fltr_id ; u16 rq_id ; struct hlist_node node ; }; struct enic_stat { char name[32U] ; unsigned int index ; }; enum hrtimer_restart; enum hrtimer_restart; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void *is_got ) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(res1); res2 = tmp___0; assume_abort_if_not((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; assume_abort_if_not(res1 == res2); } return (res1); } } int ldv_undef_int(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_182(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_179(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_183(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_184(int retval ) ; int ldv_filter_err_code(int ret_val ) ; int ldv_pre_register_netdev(void) ; static void ldv_ldv_check_final_state_180(void) ; static void ldv_ldv_check_final_state_181(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void ldv_after_alloc(void * ) ; void ldv_linux_net_rtnetlink_past_rtnl_lock(void) ; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } extern int printk(char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __bad_percpu_size(void) ; extern void __bad_size_call_parameter(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_bpoll_lock_of_vnic_rq(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_bpoll_lock_of_vnic_rq(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_devcmd_lock_of_enic(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_devcmd_lock_of_enic(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_enic_api_lock_of_enic(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_enic_api_lock_of_enic(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7231; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7231; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7231; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7231; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7231: ; return (pfo_ret__ & 2147483647); } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_109(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_136(spinlock_t *lock ) ; __inline static void ldv_spin_lock_168(spinlock_t *lock ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_bh_130(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_130(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_112(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_137(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_169(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_bh_131(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_131(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; extern unsigned long volatile jiffies ; __inline static s64 ktime_to_us(ktime_t const kt ) { { return ((long long )kt.tv64 / 1000LL); } } __inline static s64 ktime_us_delta(ktime_t const later , ktime_t const earlier ) { ktime_t __constr_expr_0 ; s64 tmp ; { { __constr_expr_0.tv64 = (long long )later.tv64 - (long long )earlier.tv64; tmp = ktime_to_us(__constr_expr_0); } return (tmp); } } extern ktime_t ktime_get(void) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_145(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_154(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_155(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_157(struct timer_list *ldv_func_arg1 ) ; extern unsigned long round_jiffies(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } static void ldv_iounmap_171(void volatile *ldv_func_arg1 ) ; extern unsigned int ioread32(void * ) ; extern void iowrite32(u32 , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; extern int cpu_number ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern void __const_udelay(unsigned long ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } extern long schedule_timeout_uninterruptible(long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void get_random_bytes(void * , int ) ; extern int net_ratelimit(void) ; extern void kfree(void const * ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); } return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } void *ldv_zalloc(size_t size ) ; __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) ; __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; __inline static void skb_set_hash(struct sk_buff *skb , __u32 hash , enum pkt_hash_types type ) { { skb->l4_hash = (unsigned int )type == 3U; skb->sw_hash = 0U; skb->hash = hash; return; } } __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->__annonCompField77.__annonCompField76.csum_start - tmp)); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } static struct sk_buff *ldv___netdev_alloc_skb_105(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length , gfp_t gfp ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_105(dev, length, gfp); skb = tmp; } return (skb); } } __inline static struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb_ip_align(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static int __skb_linearize(struct sk_buff *skb ) { unsigned char *tmp ; { { tmp = __pskb_pull_tail(skb, (int )skb->data_len); } return ((unsigned long )tmp != (unsigned long )((unsigned char *)0U) ? 0 : -12); } } __inline static int skb_linearize(struct sk_buff *skb ) { int tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp___2 = skb_is_nonlinear((struct sk_buff const *)skb); } if ((int )tmp___2) { { tmp___0 = __skb_linearize(skb); tmp___1 = tmp___0; } } else { tmp___1 = 0; } return (tmp___1); } } __inline static u16 skb_get_queue_mapping(struct sk_buff const *skb ) { { return ((u16 )skb->queue_mapping); } } __inline static void skb_record_rx_queue(struct sk_buff *skb , u16 rx_queue ) { { skb->queue_mapping = (unsigned int )rx_queue + 1U; return; } } extern void synchronize_irq(unsigned int ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_149(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_150(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_151(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_146(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_147(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_148(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __napi_schedule_irqoff(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule_irqoff(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule_irqoff(n); } } else { } return; } } __inline static void napi_complete(struct napi_struct *n ) { { return; } } extern void napi_hash_add(struct napi_struct * ) ; extern void napi_hash_del(struct napi_struct * ) ; extern void napi_disable(struct napi_struct * ) ; __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (508), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3264U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern int call_netdevice_notifiers(unsigned long , struct net_device * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_174(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_176(struct net_device *ldv_func_arg1 ) ; extern void netif_tx_wake_queue(struct netdev_queue * ) ; __inline static void netif_tx_wake_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_43660; ldv_43659: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_wake_queue(txq); i = i + 1U; } ldv_43660: ; if (i < dev->num_tx_queues) { goto ldv_43659; } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2547); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_xmit_stopped(struct netdev_queue const *dev_queue ) { { return (((unsigned long )dev_queue->state & 3UL) != 0UL); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void netif_wake_subqueue(struct net_device * , u16 ) ; extern int netif_set_real_num_tx_queues(struct net_device * , unsigned int ) ; extern int netif_set_real_num_rx_queues(struct net_device * , unsigned int ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_receive_skb(struct sk_buff * ) ; extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_109(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_112(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_44217; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44217; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44217; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44217; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_44217: pscr_ret__ = pfo_ret__; goto ldv_44223; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44227; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44227; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44227; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44227; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_44227: pscr_ret__ = pfo_ret_____0; goto ldv_44223; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44236; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44236; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44236; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44236; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_44236: pscr_ret__ = pfo_ret_____1; goto ldv_44223; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44245; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44245; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44245; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44245; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_44245: pscr_ret__ = pfo_ret_____2; goto ldv_44223; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_44223; switch_break: /* CIL Label */ ; } ldv_44223: cpu = pscr_ret__; i = 0U; goto ldv_44255; ldv_44254: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_44255: ; if (i < dev->num_tx_queues) { goto ldv_44254; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_173(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_175(struct net_device *ldv_func_arg1 ) ; extern int __hw_addr_sync_dev(struct netdev_hw_addr_list * , struct net_device * , int (*)(struct net_device * , unsigned char const * ) , int (*)(struct net_device * , unsigned char const * ) ) ; extern void __hw_addr_unsync_dev(struct netdev_hw_addr_list * , struct net_device * , int (*)(struct net_device * , unsigned char const * ) ) ; __inline static int __dev_uc_sync(struct net_device *dev , int (*sync)(struct net_device * , unsigned char const * ) , int (*unsync)(struct net_device * , unsigned char const * ) ) { int tmp ; { { tmp = __hw_addr_sync_dev(& dev->uc, dev, sync, unsync); } return (tmp); } } __inline static void __dev_uc_unsync(struct net_device *dev , int (*unsync)(struct net_device * , unsigned char const * ) ) { { { __hw_addr_unsync_dev(& dev->uc, dev, unsync); } return; } } __inline static int __dev_mc_sync(struct net_device *dev , int (*sync)(struct net_device * , unsigned char const * ) , int (*unsync)(struct net_device * , unsigned char const * ) ) { int tmp ; { { tmp = __hw_addr_sync_dev(& dev->mc, dev, sync, unsync); } return (tmp); } } __inline static void __dev_mc_unsync(struct net_device *dev , int (*unsync)(struct net_device * , unsigned char const * ) ) { { { __hw_addr_unsync_dev(& dev->mc, dev, unsync); } return; } } extern void netdev_rss_key_fill(void * , size_t ) ; extern void netdev_err(struct net_device const * , char const * , ...) ; extern void netdev_warn(struct net_device const * , char const * , ...) ; extern void netdev_info(struct net_device const * , char const * , ...) ; extern int pci_find_ext_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_177(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_178(struct pci_driver *ldv_func_arg1 ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern void pci_disable_msix(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; } if (rc < 0) { return (rc); } else { } return (0); } } extern int pci_enable_msix_range(struct pci_dev * , struct msix_entry * , int , int ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void *pci_zalloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_zalloc_coherent((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern int pci_enable_sriov(struct pci_dev * , int ) ; extern void pci_disable_sriov(struct pci_dev * ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_172(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static void eth_random_addr(u8 *addr ) { { { get_random_bytes((void *)addr, 6); *addr = (unsigned int )*addr & 254U; *addr = (u8 )((unsigned int )*addr | 2U); } return; } } __inline static void eth_hw_addr_random(struct net_device *dev ) { { { dev->addr_assign_type = 1U; eth_random_addr(dev->dev_addr); } return; } } extern void rtnl_lock(void) ; static void ldv_rtnl_lock_156(void) ; static void ldv_rtnl_lock_167(void) ; extern void rtnl_unlock(void) ; static void ldv_rtnl_unlock_158(void) ; static void ldv_rtnl_unlock_159(void) ; static void ldv_rtnl_unlock_160(void) ; static void ldv_rtnl_unlock_170(void) ; __inline static void __vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return; } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } extern int nla_put(struct sk_buff * , int , int , void const * ) ; __inline static void *nla_data(struct nlattr const *nla ) { { return ((void *)nla + 4U); } } __inline static int nla_put_u16(struct sk_buff *skb , int attrtype , u16 value ) { int tmp ; { { tmp = nla_put(skb, attrtype, 2, (void const *)(& value)); } return (tmp); } } __inline static u8 nla_get_u8(struct nlattr const *nla ) { void *tmp ; { { tmp = nla_data(nla); } return (*((u8 *)tmp)); } } __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } extern struct cpu_rmap *alloc_cpu_rmap(unsigned int , gfp_t ) ; __inline static struct cpu_rmap *alloc_irq_cpu_rmap(unsigned int size ) { struct cpu_rmap *tmp ; { { tmp = alloc_cpu_rmap(size, 208U); } return (tmp); } } extern void free_irq_cpu_rmap(struct cpu_rmap * ) ; extern int irq_cpu_rmap_add(struct cpu_rmap * , int ) ; __inline static void skb_mark_napi_id(struct sk_buff *skb , struct napi_struct *napi ) { { skb->__annonCompField78.napi_id = napi->napi_id; return; } } extern unsigned long long elfcorehdr_addr ; __inline static int is_kdump_kernel(void) { { return (elfcorehdr_addr != 0xffffffffffffffffULL); } } __inline static void cq_desc_dec(struct cq_desc const *desc_arg , u8 *type , u8 *color , u16 *q_number , u16 *completed_index ) { struct cq_desc const *desc ; u8 type_color ; { desc = desc_arg; type_color = desc->type_color; *color = (u8 )((int )type_color >> 7); __asm__ volatile ("lfence": : : "memory"); *type = (unsigned int )type_color & 15U; *q_number = (unsigned int )((u16 )desc->q_number) & 1023U; *completed_index = (unsigned int )((u16 )desc->completed_index) & 4095U; return; } } __inline static void cq_enet_rq_desc_dec(struct cq_enet_rq_desc *desc , u8 *type , u8 *color , u16 *q_number , u16 *completed_index , u8 *ingress_port , u8 *fcoe , u8 *eop , u8 *sop , u8 *rss_type , u8 *csum_not_calc , u32 *rss_hash , u16 *bytes_written , u8 *packet_error , u8 *vlan_stripped , u16 *vlan_tci , u16 *checksum , u8 *fcoe_sof , u8 *fcoe_fc_crc_ok , u8 *fcoe_enc_error , u8 *fcoe_eof , u8 *tcp_udp_csum_ok , u8 *udp , u8 *tcp , u8 *ipv4_csum_ok , u8 *ipv6 , u8 *ipv4 , u8 *ipv4_fragment , u8 *fcs_ok ) { u16 completed_index_flags ; u16 q_number_rss_type_flags ; u16 bytes_written_flags ; { { cq_desc_dec((struct cq_desc const *)desc, type, color, q_number, completed_index); completed_index_flags = desc->completed_index_flags; q_number_rss_type_flags = desc->q_number_rss_type_flags; bytes_written_flags = desc->bytes_written_flags; *ingress_port = ((int )completed_index_flags & 4096) != 0; *fcoe = ((int )completed_index_flags & 8192) != 0; *eop = ((int )completed_index_flags & 16384) != 0; *sop = (int )((short )completed_index_flags) < 0; *rss_type = (unsigned int )((unsigned char )((int )q_number_rss_type_flags >> 10)) & 15U; *csum_not_calc = ((int )q_number_rss_type_flags & 16384) != 0; *rss_hash = desc->rss_hash; *bytes_written = (unsigned int )bytes_written_flags & 16383U; *packet_error = ((int )bytes_written_flags & 16384) != 0; *vlan_stripped = (int )((short )bytes_written_flags) < 0; *vlan_tci = desc->vlan; } if ((unsigned int )*fcoe != 0U) { *fcoe_sof = (unsigned char )desc->checksum_fcoe; *fcoe_fc_crc_ok = (unsigned int )desc->flags & 1U; *fcoe_enc_error = ((int )desc->flags & 2) != 0; *fcoe_eof = (unsigned char )((int )desc->checksum_fcoe >> 8); *checksum = 0U; } else { *fcoe_sof = 0U; *fcoe_fc_crc_ok = 0U; *fcoe_enc_error = 0U; *fcoe_eof = 0U; *checksum = desc->checksum_fcoe; } *tcp_udp_csum_ok = (unsigned int )desc->flags & 1U; *udp = ((int )desc->flags & 2) != 0; *tcp = ((int )desc->flags & 4) != 0; *ipv4_csum_ok = ((int )desc->flags & 8) != 0; *ipv6 = ((int )desc->flags & 16) != 0; *ipv4 = ((int )desc->flags & 32) != 0; *ipv4_fragment = ((int )desc->flags & 64) != 0; *fcs_ok = (int )((signed char )desc->flags) < 0; return; } } void *vnic_dev_priv(struct vnic_dev *vdev ) ; void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev , u16 index ) ; void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev ) ; int vnic_dev_get_mac_addr(struct vnic_dev *vdev , u8 *mac_addr ) ; int vnic_dev_notify_set(struct vnic_dev *vdev , u16 intr ) ; int vnic_dev_link_status(struct vnic_dev *vdev ) ; u32 vnic_dev_port_speed(struct vnic_dev *vdev ) ; u32 vnic_dev_msg_lvl(struct vnic_dev *vdev ) ; u32 vnic_dev_mtu(struct vnic_dev *vdev ) ; int vnic_dev_close(struct vnic_dev *vdev ) ; int vnic_dev_open(struct vnic_dev *vdev , int arg ) ; int vnic_dev_open_done(struct vnic_dev *vdev , int *done ) ; int vnic_dev_init(struct vnic_dev *vdev , int arg ) ; void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev ) ; int vnic_dev_hang_reset(struct vnic_dev *vdev , int arg ) ; int vnic_dev_hang_reset_done(struct vnic_dev *vdev , int *done ) ; void vnic_dev_set_intr_mode(struct vnic_dev *vdev , enum vnic_dev_intr_mode intr_mode ) ; enum vnic_dev_intr_mode vnic_dev_get_intr_mode(struct vnic_dev *vdev ) ; void vnic_dev_unregister(struct vnic_dev *vdev ) ; struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev , void *priv , struct pci_dev *pdev , struct vnic_dev_bar *bar , unsigned int num_bars ) ; int vnic_dev_set_mac_addr(struct vnic_dev *vdev , u8 *mac_addr ) ; __inline static void vnic_intr_unmask(struct vnic_intr *intr ) { { { iowrite32(0U, (void *)(& (intr->ctrl)->mask)); } return; } } __inline static void vnic_intr_mask(struct vnic_intr *intr ) { { { iowrite32(1U, (void *)(& (intr->ctrl)->mask)); } return; } } __inline static int vnic_intr_masked(struct vnic_intr *intr ) { unsigned int tmp ; { { tmp = ioread32((void *)(& (intr->ctrl)->mask)); } return ((int )tmp); } } __inline static void vnic_intr_return_credits(struct vnic_intr *intr , unsigned int credits , int unmask , int reset_timer ) { u32 int_credit_return ; { { int_credit_return = ((credits & 65535U) | (unmask != 0 ? 65536U : 0U)) | (reset_timer != 0 ? 131072U : 0U); iowrite32(int_credit_return, (void *)(& (intr->ctrl)->int_credit_return)); } return; } } __inline static unsigned int vnic_intr_credits(struct vnic_intr *intr ) { unsigned int tmp ; { { tmp = ioread32((void *)(& (intr->ctrl)->int_credits)); } return (tmp); } } __inline static void vnic_intr_return_all_credits(struct vnic_intr *intr ) { unsigned int credits ; unsigned int tmp ; int unmask ; int reset_timer ; { { tmp = vnic_intr_credits(intr); credits = tmp; unmask = 1; reset_timer = 1; vnic_intr_return_credits(intr, credits, unmask, reset_timer); } return; } } __inline static u32 vnic_intr_legacy_pba(u32 *legacy_pba ) { unsigned int tmp ; { { tmp = ioread32((void *)legacy_pba); } return (tmp); } } void vnic_intr_coalescing_timer_set(struct vnic_intr *intr , u32 coalescing_timer ) ; void vnic_intr_clean(struct vnic_intr *intr ) ; __inline static void wq_enet_desc_enc(struct wq_enet_desc *desc , u64 address , u16 length , u16 mss , u16 header_length , u8 offload_mode , u8 eop , u8 cq_entry , u8 fcoe_encap , u8 vlan_tag_insert , u16 vlan_tag , u8 loopback ) { { desc->address = address; desc->length = (unsigned int )length & 16383U; desc->mss_loopback = (unsigned short )((int )((short )((int )mss << 2)) | (int )((short )(((int )loopback & 1) << 1))); desc->header_length_flags = (unsigned short )(((((((int )((short )header_length) & 1023) | (int )((short )(((int )offload_mode & 3) << 10))) | (int )((short )(((int )eop & 1) << 12))) | (int )((short )(((int )cq_entry & 1) << 13))) | (int )((short )(((int )fcoe_encap & 1) << 14))) | (int )((short )((int )vlan_tag_insert << 15))); desc->vlan_tag = vlan_tag; return; } } __inline static void rq_enet_desc_enc(struct rq_enet_desc *desc , u64 address , u8 type , u16 length ) { { desc->address = address; desc->length_type = (unsigned short )(((int )((short )length) & 16383) | (int )((short )((int )type << 14))); return; } } __inline static unsigned int vnic_cq_service(struct vnic_cq *cq , unsigned int work_to_do , int (*q_service)(struct vnic_dev * , struct cq_desc * , u8 , u16 , u16 , void * ) , void *opaque ) { struct cq_desc *cq_desc ; unsigned int work_done ; u16 q_number ; u16 completed_index ; u8 type ; u8 color ; int tmp ; { { work_done = 0U; cq_desc = (struct cq_desc *)cq->ring.descs + (unsigned long )(cq->ring.desc_size * cq->to_clean); cq_desc_dec((struct cq_desc const *)cq_desc, & type, & color, & q_number, & completed_index); } goto ldv_55617; ldv_55616: { tmp = (*q_service)(cq->vdev, cq_desc, (int )type, (int )q_number, (int )completed_index, opaque); } if (tmp != 0) { goto ldv_55615; } else { } cq->to_clean = cq->to_clean + 1U; if (cq->to_clean == cq->ring.desc_count) { cq->to_clean = 0U; cq->last_color = cq->last_color == 0U; } else { } { cq_desc = (struct cq_desc *)cq->ring.descs + (unsigned long )(cq->ring.desc_size * cq->to_clean); cq_desc_dec((struct cq_desc const *)cq_desc, & type, & color, & q_number, & completed_index); work_done = work_done + 1U; } if (work_done >= work_to_do) { goto ldv_55615; } else { } ldv_55617: ; if ((unsigned int )color != cq->last_color) { goto ldv_55616; } else { } ldv_55615: ; return (work_done); } } void vnic_cq_clean(struct vnic_cq *cq ) ; __inline static unsigned int vnic_wq_desc_avail(struct vnic_wq *wq ) { { return (wq->ring.desc_avail); } } __inline static void *vnic_wq_next_desc(struct vnic_wq *wq ) { { return ((wq->to_use)->desc); } } __inline static void vnic_wq_doorbell(struct vnic_wq *wq ) { { { __asm__ volatile ("sfence": : : "memory"); iowrite32((wq->to_use)->index, (void *)(& (wq->ctrl)->posted_index)); } return; } } __inline static void vnic_wq_post(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , int sop , int eop , uint8_t desc_skip_cnt , uint8_t cq_entry , uint8_t compressed_send , uint64_t wrid ) { struct vnic_wq_buf *buf ; { buf = wq->to_use; buf->sop = sop; buf->cq_entry = cq_entry; buf->compressed_send = compressed_send; buf->desc_skip_cnt = desc_skip_cnt; buf->os_buf = eop != 0 ? os_buf : (void *)0; buf->dma_addr = dma_addr; buf->len = len; buf->wr_id = wrid; buf = buf->next; wq->to_use = buf; wq->ring.desc_avail = wq->ring.desc_avail - (unsigned int )desc_skip_cnt; return; } } __inline static void vnic_wq_service(struct vnic_wq *wq , struct cq_desc *cq_desc , u16 completed_index , void (*buf_service)(struct vnic_wq * , struct cq_desc * , struct vnic_wq_buf * , void * ) , void *opaque ) { struct vnic_wq_buf *buf ; { buf = wq->to_clean; ldv_55722: { (*buf_service)(wq, cq_desc, buf, opaque); wq->ring.desc_avail = wq->ring.desc_avail + 1U; wq->to_clean = buf->next; } if (buf->index == (unsigned int )completed_index) { goto ldv_55721; } else { } buf = wq->to_clean; goto ldv_55722; ldv_55721: ; return; } } unsigned int vnic_wq_error_status(struct vnic_wq *wq ) ; void vnic_wq_enable(struct vnic_wq *wq ) ; int vnic_wq_disable(struct vnic_wq *wq ) ; void vnic_wq_clean(struct vnic_wq *wq , void (*buf_clean)(struct vnic_wq * , struct vnic_wq_buf * ) ) ; __inline static unsigned int vnic_rq_desc_avail(struct vnic_rq *rq ) { { return (rq->ring.desc_avail); } } __inline static unsigned int vnic_rq_desc_used(struct vnic_rq *rq ) { { return ((rq->ring.desc_count - rq->ring.desc_avail) - 1U); } } __inline static void *vnic_rq_next_desc(struct vnic_rq *rq ) { { return ((rq->to_use)->desc); } } __inline static void vnic_rq_post(struct vnic_rq *rq , void *os_buf , unsigned int os_buf_index , dma_addr_t dma_addr , unsigned int len , uint64_t wrid ) { struct vnic_rq_buf *buf ; { buf = rq->to_use; buf->os_buf = os_buf; buf->os_buf_index = os_buf_index; buf->dma_addr = dma_addr; buf->len = len; buf->wr_id = wrid; buf = buf->next; rq->to_use = buf; rq->ring.desc_avail = rq->ring.desc_avail - 1U; if ((buf->index & 15U) == 0U) { { __asm__ volatile ("sfence": : : "memory"); iowrite32(buf->index, (void *)(& (rq->ctrl)->posted_index)); } } else { } return; } } __inline static void vnic_rq_service(struct vnic_rq *rq , struct cq_desc *cq_desc , u16 completed_index , int desc_return , void (*buf_service)(struct vnic_rq * , struct cq_desc * , struct vnic_rq_buf * , int , void * ) , void *opaque ) { struct vnic_rq_buf *buf ; int skipped ; { buf = rq->to_clean; ldv_55836: { skipped = buf->index != (unsigned int )completed_index; (*buf_service)(rq, cq_desc, buf, skipped, opaque); } if (desc_return == 0) { rq->ring.desc_avail = rq->ring.desc_avail + 1U; } else { } rq->to_clean = buf->next; if (skipped == 0) { goto ldv_55835; } else { } buf = rq->to_clean; goto ldv_55836; ldv_55835: ; return; } } __inline static int vnic_rq_fill(struct vnic_rq *rq , int (*buf_fill)(struct vnic_rq * ) ) { int err ; unsigned int tmp ; { goto ldv_55844; ldv_55843: { err = (*buf_fill)(rq); } if (err != 0) { return (err); } else { } ldv_55844: { tmp = vnic_rq_desc_avail(rq); } if (tmp != 0U) { goto ldv_55843; } else { } return (0); } } __inline static void enic_busy_poll_init_lock(struct vnic_rq *rq ) { struct lock_class_key __key ; { { spinlock_check(& rq->bpoll_lock); __raw_spin_lock_init(& rq->bpoll_lock.__annonCompField18.rlock, "&(&rq->bpoll_lock)->rlock", & __key); rq->bpoll_state = 0U; } return; } } __inline static bool enic_poll_lock_napi(struct vnic_rq *rq ) { bool rc ; int __ret_warn_on ; long tmp ; { { rc = 1; ldv_spin_lock_126(& rq->bpoll_lock); } if ((rq->bpoll_state & 3U) != 0U) { { __ret_warn_on = (int )rq->bpoll_state & 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/cisco/enic/vnic_rq.h", 228); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); rq->bpoll_state = rq->bpoll_state | 4U; rc = 0; } } else { rq->bpoll_state = 1U; } { ldv_spin_unlock_127(& rq->bpoll_lock); } return (rc); } } __inline static bool enic_poll_unlock_napi(struct vnic_rq *rq ) { bool rc ; int __ret_warn_on ; long tmp ; { { rc = 0; ldv_spin_lock_126(& rq->bpoll_lock); __ret_warn_on = (rq->bpoll_state & 6U) != 0U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/cisco/enic/vnic_rq.h", 245); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((rq->bpoll_state & 8U) != 0U) { rc = 1; } else { } { rq->bpoll_state = 0U; ldv_spin_unlock_127(& rq->bpoll_lock); } return (rc); } } __inline static bool enic_poll_lock_poll(struct vnic_rq *rq ) { bool rc ; { { rc = 1; ldv_spin_lock_bh_130(& rq->bpoll_lock); } if ((rq->bpoll_state & 3U) != 0U) { rq->bpoll_state = rq->bpoll_state | 8U; rc = 0; } else { rq->bpoll_state = rq->bpoll_state | 2U; } { ldv_spin_unlock_bh_131(& rq->bpoll_lock); } return (rc); } } __inline static bool enic_poll_unlock_poll(struct vnic_rq *rq ) { bool rc ; int __ret_warn_on ; long tmp ; { { rc = 0; ldv_spin_lock_bh_130(& rq->bpoll_lock); __ret_warn_on = (int )rq->bpoll_state & 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/cisco/enic/vnic_rq.h", 275); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((rq->bpoll_state & 8U) != 0U) { rc = 1; } else { } { rq->bpoll_state = 0U; ldv_spin_unlock_bh_131(& rq->bpoll_lock); } return (rc); } } __inline static bool enic_poll_busy_polling(struct vnic_rq *rq ) { int __ret_warn_on ; long tmp ; { { __ret_warn_on = (rq->bpoll_state & 3U) == 0U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/cisco/enic/vnic_rq.h", 286); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return ((rq->bpoll_state & 10U) != 0U); } } unsigned int vnic_rq_error_status(struct vnic_rq *rq ) ; void vnic_rq_enable(struct vnic_rq *rq ) ; int vnic_rq_disable(struct vnic_rq *rq ) ; void vnic_rq_clean(struct vnic_rq *rq , void (*buf_clean)(struct vnic_rq * , struct vnic_rq_buf * ) ) ; __inline static void enic_queue_wq_desc_ex(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , unsigned int mss_or_csum_offset , unsigned int hdr_len , int vlan_tag_insert , unsigned int vlan_tag , int offload_mode , int cq_entry , int sop , int eop , int loopback ) { struct wq_enet_desc *desc ; void *tmp ; u8 desc_skip_cnt ; u8 compressed_send ; u64 wrid ; { { tmp = vnic_wq_next_desc(wq); desc = (struct wq_enet_desc *)tmp; desc_skip_cnt = 1U; compressed_send = 0U; wrid = 0ULL; wq_enet_desc_enc(desc, dma_addr, (int )((unsigned short )len), (int )((unsigned short )mss_or_csum_offset), (int )((unsigned short )hdr_len), (int )((unsigned char )offload_mode), (int )((unsigned char )eop), (int )((unsigned char )cq_entry), 0, (int )((unsigned char )vlan_tag_insert), (int )((unsigned short )vlan_tag), (int )((unsigned char )loopback)); vnic_wq_post(wq, os_buf, dma_addr, len, sop, eop, (int )desc_skip_cnt, (int )((unsigned char )cq_entry), (int )compressed_send, wrid); } return; } } __inline static void enic_queue_wq_desc_cont(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , int eop , int loopback ) { { { enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len, 0U, 0U, 0, 0U, 0, eop, 0, eop, loopback); } return; } } __inline static void enic_queue_wq_desc(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , int vlan_tag_insert , unsigned int vlan_tag , int eop , int loopback ) { { { enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len, 0U, 0U, vlan_tag_insert, vlan_tag, 0, eop, 1, eop, loopback); } return; } } __inline static void enic_queue_wq_desc_csum_l4(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , unsigned int csum_offset , unsigned int hdr_len , int vlan_tag_insert , unsigned int vlan_tag , int eop , int loopback ) { { { enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len, csum_offset, hdr_len, vlan_tag_insert, vlan_tag, 2, eop, 1, eop, loopback); } return; } } __inline static void enic_queue_wq_desc_tso(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , unsigned int mss , unsigned int hdr_len , int vlan_tag_insert , unsigned int vlan_tag , int eop , int loopback ) { { { enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len, mss, hdr_len, vlan_tag_insert, vlan_tag, 3, eop, 1, eop, loopback); } return; } } __inline static void enic_queue_rq_desc(struct vnic_rq *rq , void *os_buf , unsigned int os_buf_index , dma_addr_t dma_addr , unsigned int len ) { struct rq_enet_desc *desc ; void *tmp ; u64 wrid ; u8 type ; { { tmp = vnic_rq_next_desc(rq); desc = (struct rq_enet_desc *)tmp; wrid = 0ULL; type = os_buf_index != 0U; rq_enet_desc_enc(desc, dma_addr, (int )type, (int )((unsigned short )len)); vnic_rq_post(rq, os_buf, os_buf_index, dma_addr, len, wrid); } return; } } int enic_get_vnic_config(struct enic *enic ) ; int enic_set_nic_cfg(struct enic *enic , u8 rss_default_cpu , u8 rss_hash_type , u8 rss_hash_bits , u8 rss_base_cpu , u8 rss_enable , u8 tso_ipid_split_en , u8 ig_vlan_strip_en ) ; int enic_set_rss_key(struct enic *enic , dma_addr_t key_pa , u64 len ) ; int enic_set_rss_cpu(struct enic *enic , dma_addr_t cpu_pa , u64 len ) ; void enic_get_res_counts(struct enic *enic ) ; void enic_init_vnic_resources(struct enic *enic ) ; int enic_alloc_vnic_resources(struct enic *enic ) ; void enic_free_vnic_resources(struct enic *enic ) ; __inline static struct device *enic_get_dev(struct enic *enic ) { { return (& (enic->pdev)->dev); } } __inline static unsigned int enic_cq_rq(struct enic *enic , unsigned int rq ) { { return (rq); } } __inline static unsigned int enic_cq_wq(struct enic *enic , unsigned int wq ) { { return (enic->rq_count + wq); } } __inline static unsigned int enic_legacy_io_intr(void) { { return (0U); } } __inline static unsigned int enic_legacy_err_intr(void) { { return (1U); } } __inline static unsigned int enic_legacy_notify_intr(void) { { return (2U); } } __inline static unsigned int enic_msix_rq_intr(struct enic *enic , unsigned int rq ) { unsigned int tmp ; { { tmp = enic_cq_rq(enic, rq); } return (enic->cq[tmp].interrupt_offset); } } __inline static unsigned int enic_msix_wq_intr(struct enic *enic , unsigned int wq ) { unsigned int tmp ; { { tmp = enic_cq_wq(enic, wq); } return (enic->cq[tmp].interrupt_offset); } } __inline static unsigned int enic_msix_err_intr(struct enic *enic ) { { return (enic->rq_count + enic->wq_count); } } __inline static unsigned int enic_msix_notify_intr(struct enic *enic ) { { return ((enic->rq_count + enic->wq_count) + 1U); } } __inline static int enic_dma_map_check(struct enic *enic , dma_addr_t dma_addr ) { int tmp ; int tmp___0 ; long tmp___1 ; { { tmp___0 = pci_dma_mapping_error(enic->pdev, dma_addr); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { { tmp = net_ratelimit(); } if (tmp != 0) { { printk("\fenic: %s: PCI dma mapping failed!\n", (char *)(& (enic->netdev)->name)); } } else { } enic->gen_stats.dma_map_error = enic->gen_stats.dma_map_error + 1ULL; return (-12); } else { } return (0); } } void enic_reset_addr_lists(struct enic *enic ) ; int enic_sriov_enabled(struct enic *enic ) ; int enic_is_valid_vf(struct enic *enic , int vf ) ; int enic_is_dynamic(struct enic *enic ) ; void enic_set_ethtool_ops(struct net_device *netdev ) ; int __enic_set_rsskey(struct enic *enic ) ; int enic_dev_stats_dump(struct enic *enic , struct vnic_stats **vstats ) ; int enic_dev_add_station_addr(struct enic *enic ) ; int enic_dev_del_station_addr(struct enic *enic ) ; int enic_dev_packet_filter(struct enic *enic , int directed , int multicast , int broadcast , int promisc , int allmulti ) ; int enic_dev_add_addr(struct enic *enic , u8 const *addr ) ; int enic_dev_del_addr(struct enic *enic , u8 const *addr ) ; int enic_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) ; int enic_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) ; int enic_dev_notify_unset(struct enic *enic ) ; int enic_dev_hang_notify(struct enic *enic ) ; int enic_dev_set_ig_vlan_rewrite_mode(struct enic *enic ) ; int enic_dev_enable(struct enic *enic ) ; int enic_dev_disable(struct enic *enic ) ; int enic_dev_intr_coal_timer_info(struct enic *enic ) ; int enic_dev_status_to_errno(int devcmd_status ) ; int enic_process_set_pp_request(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) ; int enic_process_get_pp_request(struct enic *enic , int vf , int request , u16 *response ) ; int enic_is_valid_pp_vf(struct enic *enic , int vf , int *err ) ; void enic_rfs_flw_tbl_init(struct enic *enic ) ; void enic_rfs_flw_tbl_free(struct enic *enic ) ; int enic_rx_flow_steer(struct net_device *dev , struct sk_buff const *skb , u16 rxq_index , u32 flow_id ) ; static struct pci_device_id const enic_id_table[4U] = { {4407U, 67U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4407U, 68U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4407U, 113U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__enic_id_table_device_table[4U] ; static struct enic_intr_mod_table mod_table[11U] = { {4000U, 0U}, {4400U, 10U}, {5060U, 20U}, {5230U, 30U}, {5540U, 40U}, {5820U, 50U}, {6120U, 60U}, {6435U, 70U}, {6745U, 80U}, {7000U, 90U}, {4294967295U, 100U}}; static struct enic_intr_mod_range mod_range[3U] = { {0U, 0U}, {0U, 3U}, {3U, 6U}}; int enic_is_dynamic(struct enic *enic ) { { return ((unsigned int )(enic->pdev)->device == 68U); } } int enic_sriov_enabled(struct enic *enic ) { { return ((int )enic->priv_flags & 1); } } static int enic_is_sriov_vf(struct enic *enic ) { { return ((unsigned int )(enic->pdev)->device == 113U); } } int enic_is_valid_vf(struct enic *enic , int vf ) { { return (vf >= 0 && vf < (int )enic->num_vfs); } } static void enic_free_wq_buf(struct vnic_wq *wq , struct vnic_wq_buf *buf ) { struct enic *enic ; void *tmp ; { { tmp = vnic_dev_priv(wq->vdev); enic = (struct enic *)tmp; } if (buf->sop != 0) { { pci_unmap_single(enic->pdev, buf->dma_addr, (size_t )buf->len, 1); } } else { { pci_unmap_page(enic->pdev, buf->dma_addr, (size_t )buf->len, 1); } } if ((unsigned long )buf->os_buf != (unsigned long )((void *)0)) { { dev_kfree_skb_any((struct sk_buff *)buf->os_buf); } } else { } return; } } static void enic_wq_free_buf(struct vnic_wq *wq , struct cq_desc *cq_desc , struct vnic_wq_buf *buf , void *opaque ) { { { enic_free_wq_buf(wq, buf); } return; } } static int enic_wq_service(struct vnic_dev *vdev , struct cq_desc *cq_desc , u8 type , u16 q_number , u16 completed_index , void *opaque ) { struct enic *enic ; void *tmp ; struct netdev_queue *tmp___0 ; bool tmp___1 ; unsigned int tmp___2 ; { { tmp = vnic_dev_priv(vdev); enic = (struct enic *)tmp; ldv_spin_lock_136((spinlock_t *)(& enic->wq_lock) + (unsigned long )q_number); vnic_wq_service((struct vnic_wq *)(& enic->wq) + (unsigned long )q_number, cq_desc, (int )completed_index, & enic_wq_free_buf, opaque); tmp___0 = netdev_get_tx_queue((struct net_device const *)enic->netdev, (unsigned int )q_number); tmp___1 = netif_tx_queue_stopped((struct netdev_queue const *)tmp___0); } if ((int )tmp___1) { { tmp___2 = vnic_wq_desc_avail((struct vnic_wq *)(& enic->wq) + (unsigned long )q_number); } if (tmp___2 > 21U) { { netif_wake_subqueue(enic->netdev, (int )q_number); } } else { } } else { } { ldv_spin_unlock_137((spinlock_t *)(& enic->wq_lock) + (unsigned long )q_number); } return (0); } } static void enic_log_q_error(struct enic *enic ) { unsigned int i ; u32 error_status ; { i = 0U; goto ldv_56320; ldv_56319: { error_status = vnic_wq_error_status((struct vnic_wq *)(& enic->wq) + (unsigned long )i); } if (error_status != 0U) { { netdev_err((struct net_device const *)enic->netdev, "WQ[%d] error_status %d\n", i, error_status); } } else { } i = i + 1U; ldv_56320: ; if (i < enic->wq_count) { goto ldv_56319; } else { } i = 0U; goto ldv_56323; ldv_56322: { error_status = vnic_rq_error_status((struct vnic_rq *)(& enic->rq) + (unsigned long )i); } if (error_status != 0U) { { netdev_err((struct net_device const *)enic->netdev, "RQ[%d] error_status %d\n", i, error_status); } } else { } i = i + 1U; ldv_56323: ; if (i < enic->rq_count) { goto ldv_56322; } else { } return; } } static void enic_msglvl_check(struct enic *enic ) { u32 msg_enable ; u32 tmp ; { { tmp = vnic_dev_msg_lvl(enic->vdev); msg_enable = tmp; } if (msg_enable != enic->msg_enable) { { netdev_info((struct net_device const *)enic->netdev, "msg lvl changed from 0x%x to 0x%x\n", enic->msg_enable, msg_enable); enic->msg_enable = msg_enable; } } else { } return; } } static void enic_mtu_check(struct enic *enic ) { u32 mtu ; u32 tmp ; struct net_device *netdev ; int __max1 ; int __max2 ; int __min1 ; int __min2 ; int tmp___0 ; int tmp___1 ; { { tmp = vnic_dev_mtu(enic->vdev); mtu = tmp; netdev = enic->netdev; } if (mtu != 0U && mtu != enic->port_mtu) { { enic->port_mtu = mtu; tmp___0 = enic_is_dynamic(enic); } if (tmp___0 != 0) { goto _L; } else { { tmp___1 = enic_is_sriov_vf(enic); } if (tmp___1 != 0) { _L: /* CIL Label */ __max1 = 68; __min1 = 9000; __min2 = (int )mtu; __max2 = __min1 < __min2 ? __min1 : __min2; mtu = (u32 )(__max1 > __max2 ? __max1 : __max2); if (mtu != netdev->mtu) { { schedule_work(& enic->change_mtu_work); } } else { } } else if (mtu < netdev->mtu) { { netdev_warn((struct net_device const *)netdev, "interface MTU (%d) set higher than switch port MTU (%d)\n", netdev->mtu, mtu); } } else { } } } else { } return; } } static void enic_link_check(struct enic *enic ) { int link_status ; int tmp ; int carrier_ok ; bool tmp___0 ; { { tmp = vnic_dev_link_status(enic->vdev); link_status = tmp; tmp___0 = netif_carrier_ok((struct net_device const *)enic->netdev); carrier_ok = (int )tmp___0; } if (link_status != 0 && carrier_ok == 0) { { netdev_info((struct net_device const *)enic->netdev, "Link UP\n"); netif_carrier_on(enic->netdev); } } else if (link_status == 0 && carrier_ok != 0) { { netdev_info((struct net_device const *)enic->netdev, "Link DOWN\n"); netif_carrier_off(enic->netdev); } } else { } return; } } static void enic_notify_check(struct enic *enic ) { { { enic_msglvl_check(enic); enic_mtu_check(enic); enic_link_check(enic); } return; } } static irqreturn_t enic_isr_legacy(int irq , void *data ) { struct net_device *netdev ; struct enic *enic ; void *tmp ; unsigned int io_intr ; unsigned int tmp___0 ; unsigned int err_intr ; unsigned int tmp___1 ; unsigned int notify_intr ; unsigned int tmp___2 ; u32 pba ; { { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; tmp___0 = enic_legacy_io_intr(); io_intr = tmp___0; tmp___1 = enic_legacy_err_intr(); err_intr = tmp___1; tmp___2 = enic_legacy_notify_intr(); notify_intr = tmp___2; vnic_intr_mask((struct vnic_intr *)(& enic->intr) + (unsigned long )io_intr); pba = vnic_intr_legacy_pba(enic->legacy_pba); } if (pba == 0U) { { vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )io_intr); } return (0); } else { } if ((pba & (u32 )(1 << (int )notify_intr)) != 0U) { { vnic_intr_return_all_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )notify_intr); enic_notify_check(enic); } } else { } if ((pba & (u32 )(1 << (int )err_intr)) != 0U) { { vnic_intr_return_all_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )err_intr); enic_log_q_error(enic); schedule_work(& enic->reset); } return (1); } else { } if ((pba & (u32 )(1 << (int )io_intr)) != 0U) { { napi_schedule_irqoff((struct napi_struct *)(& enic->napi)); } } else { { vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )io_intr); } } return (1); } } static irqreturn_t enic_isr_msi(int irq , void *data ) { struct enic *enic ; { { enic = (struct enic *)data; napi_schedule_irqoff((struct napi_struct *)(& enic->napi)); } return (1); } } static irqreturn_t enic_isr_msix(int irq , void *data ) { struct napi_struct *napi ; { { napi = (struct napi_struct *)data; napi_schedule_irqoff(napi); } return (1); } } static irqreturn_t enic_isr_msix_err(int irq , void *data ) { struct enic *enic ; unsigned int intr ; unsigned int tmp ; { { enic = (struct enic *)data; tmp = enic_msix_err_intr(enic); intr = tmp; vnic_intr_return_all_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr); enic_log_q_error(enic); schedule_work(& enic->reset); } return (1); } } static irqreturn_t enic_isr_msix_notify(int irq , void *data ) { struct enic *enic ; unsigned int intr ; unsigned int tmp ; { { enic = (struct enic *)data; tmp = enic_msix_notify_intr(enic); intr = tmp; vnic_intr_return_all_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr); enic_notify_check(enic); } return (1); } } static int enic_queue_wq_skb_cont(struct enic *enic , struct vnic_wq *wq , struct sk_buff *skb , unsigned int len_left , int loopback ) { skb_frag_t const *frag ; dma_addr_t dma_addr ; unsigned char *tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; long tmp___3 ; unsigned int tmp___4 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp)->frags); } goto ldv_56390; ldv_56389: { tmp___0 = skb_frag_size(frag); len_left = len_left - tmp___0; tmp___1 = skb_frag_size(frag); dma_addr = skb_frag_dma_map(& (enic->pdev)->dev, frag, 0UL, (size_t )tmp___1, 1); tmp___2 = enic_dma_map_check(enic, dma_addr); tmp___3 = ldv__builtin_expect(tmp___2 != 0, 0L); } if (tmp___3 != 0L) { return (-12); } else { } { tmp___4 = skb_frag_size(frag); enic_queue_wq_desc_cont(wq, (void *)skb, dma_addr, tmp___4, len_left == 0U, loopback); frag = frag + 1; } ldv_56390: ; if (len_left != 0U) { goto ldv_56389; } else { } return (0); } } static int enic_queue_wq_skb_vlan(struct enic *enic , struct vnic_wq *wq , struct sk_buff *skb , int vlan_tag_insert , unsigned int vlan_tag , int loopback ) { unsigned int head_len ; unsigned int tmp ; unsigned int len_left ; int eop ; dma_addr_t dma_addr ; int err ; int tmp___0 ; long tmp___1 ; { { tmp = skb_headlen((struct sk_buff const *)skb); head_len = tmp; len_left = skb->len - head_len; eop = len_left == 0U; err = 0; dma_addr = pci_map_single(enic->pdev, (void *)skb->data, (size_t )head_len, 1); tmp___0 = enic_dma_map_check(enic, dma_addr); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { return (-12); } else { } { enic_queue_wq_desc(wq, (void *)skb, dma_addr, head_len, vlan_tag_insert, vlan_tag, eop, loopback); } if (eop == 0) { { err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback); } } else { } return (err); } } static int enic_queue_wq_skb_csum_l4(struct enic *enic , struct vnic_wq *wq , struct sk_buff *skb , int vlan_tag_insert , unsigned int vlan_tag , int loopback ) { unsigned int head_len ; unsigned int tmp ; unsigned int len_left ; unsigned int hdr_len ; int tmp___0 ; unsigned int csum_offset ; int eop ; dma_addr_t dma_addr ; int err ; int tmp___1 ; long tmp___2 ; { { tmp = skb_headlen((struct sk_buff const *)skb); head_len = tmp; len_left = skb->len - head_len; tmp___0 = skb_checksum_start_offset((struct sk_buff const *)skb); hdr_len = (unsigned int )tmp___0; csum_offset = hdr_len + (unsigned int )skb->__annonCompField77.__annonCompField76.csum_offset; eop = len_left == 0U; err = 0; dma_addr = pci_map_single(enic->pdev, (void *)skb->data, (size_t )head_len, 1); tmp___1 = enic_dma_map_check(enic, dma_addr); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { return (-12); } else { } { enic_queue_wq_desc_csum_l4(wq, (void *)skb, dma_addr, head_len, csum_offset, hdr_len, vlan_tag_insert, vlan_tag, eop, loopback); } if (eop == 0) { { err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback); } } else { } return (err); } } static int enic_queue_wq_skb_tso(struct enic *enic , struct vnic_wq *wq , struct sk_buff *skb , unsigned int mss , int vlan_tag_insert , unsigned int vlan_tag , int loopback ) { unsigned int frag_len_left ; unsigned int tmp ; unsigned int len_left ; unsigned int hdr_len ; int tmp___0 ; unsigned int tmp___1 ; int eop ; unsigned int len ; dma_addr_t dma_addr ; unsigned int offset ; skb_frag_t *frag ; struct iphdr *tmp___2 ; struct tcphdr *tmp___3 ; struct iphdr *tmp___4 ; struct iphdr *tmp___5 ; __sum16 tmp___6 ; struct tcphdr *tmp___7 ; struct ipv6hdr *tmp___8 ; struct ipv6hdr *tmp___9 ; __sum16 tmp___10 ; unsigned int _min1 ; unsigned int _min2 ; int tmp___11 ; long tmp___12 ; unsigned char *tmp___13 ; unsigned int tmp___14 ; unsigned int _min1___0 ; unsigned int _min2___0 ; int tmp___15 ; long tmp___16 ; { { tmp = skb_headlen((struct sk_buff const *)skb); frag_len_left = tmp; len_left = skb->len - frag_len_left; tmp___0 = skb_transport_offset((struct sk_buff const *)skb); tmp___1 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (unsigned int )tmp___0 + tmp___1; eop = len_left == 0U; offset = 0U; } if ((unsigned int )skb->protocol == 8U) { { tmp___2 = ip_hdr((struct sk_buff const *)skb); tmp___2->check = 0U; tmp___3 = tcp_hdr((struct sk_buff const *)skb); tmp___4 = ip_hdr((struct sk_buff const *)skb); tmp___5 = ip_hdr((struct sk_buff const *)skb); tmp___6 = csum_tcpudp_magic(tmp___5->saddr, tmp___4->daddr, 0, 6, 0U); tmp___3->check = ~ ((int )tmp___6); } } else if ((unsigned int )skb->protocol == 56710U) { { tmp___7 = tcp_hdr((struct sk_buff const *)skb); tmp___8 = ipv6_hdr((struct sk_buff const *)skb); tmp___9 = ipv6_hdr((struct sk_buff const *)skb); tmp___10 = csum_ipv6_magic((struct in6_addr const *)(& tmp___9->saddr), (struct in6_addr const *)(& tmp___8->daddr), 0U, 6, 0U); tmp___7->check = ~ ((int )tmp___10); } } else { } goto ldv_56441; ldv_56440: { _min1 = frag_len_left; _min2 = 16384U; len = _min1 < _min2 ? _min1 : _min2; dma_addr = pci_map_single(enic->pdev, (void *)skb->data + (unsigned long )offset, (size_t )len, 1); tmp___11 = enic_dma_map_check(enic, dma_addr); tmp___12 = ldv__builtin_expect(tmp___11 != 0, 0L); } if (tmp___12 != 0L) { return (-12); } else { } { enic_queue_wq_desc_tso(wq, (void *)skb, dma_addr, len, mss, hdr_len, vlan_tag_insert, vlan_tag, eop != 0 && len == frag_len_left, loopback); frag_len_left = frag_len_left - len; offset = offset + len; } ldv_56441: ; if (frag_len_left != 0U) { goto ldv_56440; } else { } if (eop != 0) { return (0); } else { } { tmp___13 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___13)->frags); } goto ldv_56450; ldv_56449: { tmp___14 = skb_frag_size((skb_frag_t const *)frag); len_left = len_left - tmp___14; frag_len_left = skb_frag_size((skb_frag_t const *)frag); offset = 0U; } goto ldv_56447; ldv_56446: { _min1___0 = frag_len_left; _min2___0 = 16384U; len = _min1___0 < _min2___0 ? _min1___0 : _min2___0; dma_addr = skb_frag_dma_map(& (enic->pdev)->dev, (skb_frag_t const *)frag, (size_t )offset, (size_t )len, 1); tmp___15 = enic_dma_map_check(enic, dma_addr); tmp___16 = ldv__builtin_expect(tmp___15 != 0, 0L); } if (tmp___16 != 0L) { return (-12); } else { } { enic_queue_wq_desc_cont(wq, (void *)skb, dma_addr, len, len_left == 0U && len == frag_len_left, loopback); frag_len_left = frag_len_left - len; offset = offset + len; } ldv_56447: ; if (frag_len_left != 0U) { goto ldv_56446; } else { } frag = frag + 1; ldv_56450: ; if (len_left != 0U) { goto ldv_56449; } else { } return (0); } } __inline static void enic_queue_wq_skb(struct enic *enic , struct vnic_wq *wq , struct sk_buff *skb ) { unsigned int mss ; unsigned char *tmp ; unsigned int vlan_tag ; int vlan_tag_insert ; int loopback ; int err ; struct vnic_wq_buf *buf ; long tmp___0 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); mss = (unsigned int )((struct skb_shared_info *)tmp)->gso_size; vlan_tag = 0U; vlan_tag_insert = 0; loopback = 0; } if (((int )skb->vlan_tci & 4096) != 0) { vlan_tag_insert = 1; vlan_tag = (unsigned int )skb->vlan_tci & 4294963199U; } else if ((unsigned int )enic->loop_enable != 0U) { vlan_tag = (unsigned int )enic->loop_tag; loopback = 1; } else { } if (mss != 0U) { { err = enic_queue_wq_skb_tso(enic, wq, skb, mss, vlan_tag_insert, vlan_tag, loopback); } } else if ((unsigned int )*((unsigned char *)skb + 145UL) == 6U) { { err = enic_queue_wq_skb_csum_l4(enic, wq, skb, vlan_tag_insert, vlan_tag, loopback); } } else { { err = enic_queue_wq_skb_vlan(enic, wq, skb, vlan_tag_insert, vlan_tag, loopback); } } { tmp___0 = ldv__builtin_expect(err != 0, 0L); } if (tmp___0 != 0L) { buf = (wq->to_use)->prev; goto ldv_56464; ldv_56463: { enic_free_wq_buf(wq, buf); wq->ring.desc_avail = wq->ring.desc_avail + 1U; buf = buf->prev; } ldv_56464: ; if ((unsigned long )buf->os_buf == (unsigned long )((void *)0) && (unsigned long )buf->next != (unsigned long )wq->to_clean) { goto ldv_56463; } else { } { wq->to_use = buf->next; consume_skb(skb); } } else { } return; } } static netdev_tx_t enic_hard_start_xmit(struct sk_buff *skb , struct net_device *netdev ) { struct enic *enic ; void *tmp ; struct vnic_wq *wq ; unsigned int txq_map ; struct netdev_queue *txq ; u16 tmp___0 ; unsigned char *tmp___1 ; unsigned char *tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; unsigned char *tmp___5 ; unsigned int tmp___6 ; bool tmp___7 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; } if (skb->len == 0U) { { dev_kfree_skb_any(skb); } return (0); } else { } { tmp___0 = skb_get_queue_mapping((struct sk_buff const *)skb); txq_map = (unsigned int )tmp___0 % enic->wq_count; wq = (struct vnic_wq *)(& enic->wq) + (unsigned long )txq_map; txq = netdev_get_tx_queue((struct net_device const *)netdev, txq_map); tmp___1 = skb_end_pointer((struct sk_buff const *)skb); } if ((unsigned int )((struct skb_shared_info *)tmp___1)->gso_size == 0U) { { tmp___2 = skb_end_pointer((struct sk_buff const *)skb); } if ((int )((struct skb_shared_info *)tmp___2)->nr_frags + 1 > 16) { { tmp___3 = skb_linearize(skb); } if (tmp___3 != 0) { { dev_kfree_skb_any(skb); } return (0); } else { } } else { } } else { } { ldv_spin_lock_136((spinlock_t *)(& enic->wq_lock) + (unsigned long )txq_map); tmp___4 = vnic_wq_desc_avail(wq); tmp___5 = skb_end_pointer((struct sk_buff const *)skb); } if (tmp___4 < (unsigned int )((int )((struct skb_shared_info *)tmp___5)->nr_frags + 5)) { { netif_tx_stop_queue(txq); netdev_err((struct net_device const *)netdev, "BUG! Tx ring full when queue awake!\n"); ldv_spin_unlock_137((spinlock_t *)(& enic->wq_lock) + (unsigned long )txq_map); } return (16); } else { } { enic_queue_wq_skb(enic, wq, skb); tmp___6 = vnic_wq_desc_avail(wq); } if (tmp___6 <= 21U) { { netif_tx_stop_queue(txq); } } else { } if ((unsigned int )*((unsigned char *)skb + 142UL) == 0U) { { vnic_wq_doorbell(wq); } } else { { tmp___7 = netif_xmit_stopped((struct netdev_queue const *)txq); } if ((int )tmp___7) { { vnic_wq_doorbell(wq); } } else { } } { ldv_spin_unlock_137((spinlock_t *)(& enic->wq_lock) + (unsigned long )txq_map); } return (0); } } static struct rtnl_link_stats64 *enic_get_stats(struct net_device *netdev , struct rtnl_link_stats64 *net_stats ) { struct enic *enic ; void *tmp ; struct vnic_stats *stats ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic_dev_stats_dump(enic, & stats); net_stats->tx_packets = stats->tx.tx_frames_ok; net_stats->tx_bytes = stats->tx.tx_bytes_ok; net_stats->tx_errors = stats->tx.tx_errors; net_stats->tx_dropped = stats->tx.tx_drops; net_stats->rx_packets = stats->rx.rx_frames_ok; net_stats->rx_bytes = stats->rx.rx_bytes_ok; net_stats->rx_errors = stats->rx.rx_errors; net_stats->multicast = stats->rx.rx_multicast_frames_ok; net_stats->rx_over_errors = enic->rq_truncated_pkts; net_stats->rx_crc_errors = enic->rq_bad_fcs; net_stats->rx_dropped = stats->rx.rx_no_bufs + stats->rx.rx_drop; } return (net_stats); } } static int enic_mc_sync(struct net_device *netdev , u8 const *mc_addr ) { struct enic *enic ; void *tmp ; unsigned int mc_count ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; } if (enic->mc_count == 32U) { { mc_count = (unsigned int )netdev->mc.count; netdev_warn((struct net_device const *)netdev, "Registering only %d out of %d multicast addresses\n", 32, mc_count); } return (-28); } else { } { enic_dev_add_addr(enic, mc_addr); enic->mc_count = enic->mc_count + 1U; } return (0); } } static int enic_mc_unsync(struct net_device *netdev , u8 const *mc_addr ) { struct enic *enic ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic_dev_del_addr(enic, mc_addr); enic->mc_count = enic->mc_count - 1U; } return (0); } } static int enic_uc_sync(struct net_device *netdev , u8 const *uc_addr ) { struct enic *enic ; void *tmp ; unsigned int uc_count ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; } if (enic->uc_count == 32U) { { uc_count = (unsigned int )netdev->uc.count; netdev_warn((struct net_device const *)netdev, "Registering only %d out of %d unicast addresses\n", 32, uc_count); } return (-28); } else { } { enic_dev_add_addr(enic, uc_addr); enic->uc_count = enic->uc_count + 1U; } return (0); } } static int enic_uc_unsync(struct net_device *netdev , u8 const *uc_addr ) { struct enic *enic ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic_dev_del_addr(enic, uc_addr); enic->uc_count = enic->uc_count - 1U; } return (0); } } void enic_reset_addr_lists(struct enic *enic ) { struct net_device *netdev ; { { netdev = enic->netdev; __dev_uc_unsync(netdev, (int (*)(struct net_device * , unsigned char const * ))0); __dev_mc_unsync(netdev, (int (*)(struct net_device * , unsigned char const * ))0); enic->mc_count = 0U; enic->uc_count = 0U; enic->flags = 0U; } return; } } static int enic_set_mac_addr(struct net_device *netdev , char *addr ) { struct enic *enic ; void *tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; tmp___6 = enic_is_dynamic(enic); } if (tmp___6 != 0) { goto _L; } else { { tmp___7 = enic_is_sriov_vf(enic); } if (tmp___7 != 0) { _L: /* CIL Label */ { tmp___0 = is_valid_ether_addr((u8 const *)addr); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { tmp___2 = is_zero_ether_addr((u8 const *)addr); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (-99); } else { } } else { } } else { { tmp___4 = is_valid_ether_addr((u8 const *)addr); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { return (-99); } else { } } } { memcpy((void *)netdev->dev_addr, (void const *)addr, (size_t )netdev->addr_len); } return (0); } } static int enic_set_mac_address_dynamic(struct net_device *netdev , void *p ) { struct enic *enic ; void *tmp ; struct sockaddr *saddr ; char *addr ; int err ; bool tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; saddr = (struct sockaddr *)p; addr = (char *)(& saddr->sa_data); tmp___0 = netif_running((struct net_device const *)enic->netdev); } if ((int )tmp___0) { { err = enic_dev_del_station_addr(enic); } if (err != 0) { return (err); } else { } } else { } { err = enic_set_mac_addr(netdev, addr); } if (err != 0) { return (err); } else { } { tmp___1 = netif_running((struct net_device const *)enic->netdev); } if ((int )tmp___1) { { err = enic_dev_add_station_addr(enic); } if (err != 0) { return (err); } else { } } else { } return (err); } } static int enic_set_mac_address(struct net_device *netdev , void *p ) { struct sockaddr *saddr ; char *addr ; struct enic *enic ; void *tmp ; int err ; int tmp___0 ; { { saddr = (struct sockaddr *)p; addr = (char *)(& saddr->sa_data); tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; err = enic_dev_del_station_addr(enic); } if (err != 0) { return (err); } else { } { err = enic_set_mac_addr(netdev, addr); } if (err != 0) { return (err); } else { } { tmp___0 = enic_dev_add_station_addr(enic); } return (tmp___0); } } static void enic_set_rx_mode(struct net_device *netdev ) { struct enic *enic ; void *tmp ; int directed ; int multicast ; int broadcast ; int promisc ; int allmulti ; unsigned int flags ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; directed = 1; multicast = (netdev->flags & 4096U) != 0U; broadcast = (netdev->flags & 2U) != 0U; promisc = (netdev->flags & 256U) != 0U || netdev->uc.count > 32; allmulti = (netdev->flags & 512U) != 0U || netdev->mc.count > 32; flags = (netdev->flags | (allmulti != 0 ? 512U : 0U)) | (promisc != 0 ? 256U : 0U); } if (enic->flags != flags) { { enic->flags = flags; enic_dev_packet_filter(enic, directed, multicast, broadcast, promisc, allmulti); } } else { } if (promisc == 0) { { __dev_uc_sync(netdev, & enic_uc_sync, & enic_uc_unsync); } if (allmulti == 0) { { __dev_mc_sync(netdev, & enic_mc_sync, & enic_mc_unsync); } } else { } } else { } return; } } static void enic_tx_timeout(struct net_device *netdev ) { struct enic *enic ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; schedule_work(& enic->reset); } return; } } static int enic_set_vf_mac(struct net_device *netdev , int vf , u8 *mac ) { struct enic *enic ; void *tmp ; struct enic_port_profile *pp ; int err ; int tmp___0 ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; bool tmp___4 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; tmp___0 = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp___0 != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } { tmp___3 = is_valid_ether_addr((u8 const *)mac); } if ((int )tmp___3) { goto _L; } else { { tmp___4 = is_zero_ether_addr((u8 const *)mac); } if ((int )tmp___4) { _L: /* CIL Label */ if (vf == -1) { { memcpy((void *)(& pp->vf_mac), (void const *)mac, 6UL); } return (0); } else { { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp___1 = enic_is_valid_vf(enic, vf); } if (tmp___1 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_set_mac_addr(enic->vdev, mac); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_set_mac_addr(enic->vdev, mac); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); tmp___2 = enic_dev_status_to_errno(err); } return (tmp___2); } } else { return (-22); } } } } static int enic_set_vf_port(struct net_device *netdev , int vf , struct nlattr **port ) { struct enic *enic ; void *tmp ; struct enic_port_profile prev_pp ; struct enic_port_profile *pp ; int err ; int restore_pp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; bool tmp___4 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; int tmp___8 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; err = 0; restore_pp = 1; tmp___0 = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp___0 != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((unsigned long )*(port + 6UL) == (unsigned long )((struct nlattr *)0)) { return (-95); } else { } { memcpy((void *)(& prev_pp), (void const *)pp, 92UL); memset((void *)pp, 0, 92UL); pp->set = pp->set | 2U; pp->request = nla_get_u8((struct nlattr const *)*(port + 6UL)); } if ((unsigned long )*(port + 2UL) != (unsigned long )((struct nlattr *)0)) { { pp->set = pp->set | 4U; tmp___1 = nla_data((struct nlattr const *)*(port + 2UL)); memcpy((void *)(& pp->name), (void const *)tmp___1, 40UL); } } else { } if ((unsigned long )*(port + 4UL) != (unsigned long )((struct nlattr *)0)) { { pp->set = pp->set | 8U; tmp___2 = nla_data((struct nlattr const *)*(port + 4UL)); memcpy((void *)(& pp->instance_uuid), (void const *)tmp___2, 16UL); } } else { } if ((unsigned long )*(port + 5UL) != (unsigned long )((struct nlattr *)0)) { { pp->set = pp->set | 16U; tmp___3 = nla_data((struct nlattr const *)*(port + 5UL)); memcpy((void *)(& pp->host_uuid), (void const *)tmp___3, 16UL); } } else { } if (vf == -1) { { tmp___4 = is_zero_ether_addr((u8 const *)(& prev_pp.vf_mac)); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { memcpy((void *)(& pp->mac_addr), (void const *)(& prev_pp.vf_mac), 6UL); } } else { } { tmp___6 = is_zero_ether_addr((u8 const *)netdev->dev_addr); } if ((int )tmp___6) { { eth_hw_addr_random(netdev); } } else { } } else { { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp___7 = enic_is_valid_vf(enic, vf); } if (tmp___7 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_get_mac_addr(enic->vdev, (u8 *)(& pp->mac_addr)); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_get_mac_addr(enic->vdev, (u8 *)(& pp->mac_addr)); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "Error getting mac for vf %d\n", vf); memcpy((void *)pp, (void const *)(& prev_pp), 92UL); tmp___8 = enic_dev_status_to_errno(err); } return (tmp___8); } else { } } { err = enic_process_set_pp_request(enic, vf, & prev_pp, & restore_pp); } if (err != 0) { if (restore_pp != 0) { { memcpy((void *)pp, (void const *)(& prev_pp), 92UL); } } else { { memset((void *)pp, 0, 92UL); } if (vf == -1) { { memset((void *)netdev->dev_addr, 0, 6UL); } } else { } } } else { pp->set = pp->set | 1U; if ((unsigned int )pp->request == 3U) { { memset((void *)(& pp->mac_addr), 0, 6UL); } if (vf == -1) { { memset((void *)netdev->dev_addr, 0, 6UL); } } else { } } else { } } if (vf == -1) { { memset((void *)(& pp->vf_mac), 0, 6UL); } } else { } return (err); } } static int enic_get_vf_port(struct net_device *netdev , int vf , struct sk_buff *skb ) { struct enic *enic ; void *tmp ; u16 response ; struct enic_port_profile *pp ; int err ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; response = 256U; tmp___0 = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp___0 != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((pp->set & 1U) == 0U) { return (-61); } else { } { err = enic_process_get_pp_request(enic, vf, (int )pp->request, & response); } if (err != 0) { return (err); } else { } { tmp___1 = nla_put_u16(skb, 6, (int )pp->request); } if (tmp___1 != 0) { goto nla_put_failure; } else { { tmp___2 = nla_put_u16(skb, 7, (int )response); } if (tmp___2 != 0) { goto nla_put_failure; } else if ((pp->set & 4U) != 0U) { { tmp___3 = nla_put(skb, 2, 40, (void const *)(& pp->name)); } if (tmp___3 != 0) { goto nla_put_failure; } else { goto _L___0; } } else _L___0: /* CIL Label */ if ((pp->set & 8U) != 0U) { { tmp___4 = nla_put(skb, 4, 16, (void const *)(& pp->instance_uuid)); } if (tmp___4 != 0) { goto nla_put_failure; } else { goto _L; } } else _L: /* CIL Label */ if ((pp->set & 16U) != 0U) { { tmp___5 = nla_put(skb, 5, 16, (void const *)(& pp->host_uuid)); } if (tmp___5 != 0) { goto nla_put_failure; } else { } } else { } } return (0); nla_put_failure: ; return (-90); } } static void enic_free_rq_buf(struct vnic_rq *rq , struct vnic_rq_buf *buf ) { struct enic *enic ; void *tmp ; { { tmp = vnic_dev_priv(rq->vdev); enic = (struct enic *)tmp; } if ((unsigned long )buf->os_buf == (unsigned long )((void *)0)) { return; } else { } { pci_unmap_single(enic->pdev, buf->dma_addr, (size_t )buf->len, 2); dev_kfree_skb_any((struct sk_buff *)buf->os_buf); buf->os_buf = (void *)0; } return; } } static int enic_rq_alloc_buf(struct vnic_rq *rq ) { struct enic *enic ; void *tmp ; struct net_device *netdev ; struct sk_buff *skb ; unsigned int len ; unsigned int os_buf_index ; dma_addr_t dma_addr ; struct vnic_rq_buf *buf ; int tmp___0 ; long tmp___1 ; { { tmp = vnic_dev_priv(rq->vdev); enic = (struct enic *)tmp; netdev = enic->netdev; len = netdev->mtu + 18U; os_buf_index = 0U; buf = rq->to_use; } if ((unsigned long )buf->os_buf != (unsigned long )((void *)0)) { { enic_queue_rq_desc(rq, buf->os_buf, os_buf_index, buf->dma_addr, buf->len); } return (0); } else { } { skb = netdev_alloc_skb_ip_align(netdev, len); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (-12); } else { } { dma_addr = pci_map_single(enic->pdev, (void *)skb->data, (size_t )len, 2); tmp___0 = enic_dma_map_check(enic, dma_addr); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { { consume_skb(skb); } return (-12); } else { } { enic_queue_rq_desc(rq, (void *)skb, os_buf_index, dma_addr, len); } return (0); } } static void enic_intr_update_pkt_size(struct vnic_rx_bytes_counter *pkt_size , u32 pkt_len ) { { if (pkt_len > 999U) { pkt_size->large_pkt_bytes_cnt = pkt_size->large_pkt_bytes_cnt + pkt_len; } else { pkt_size->small_pkt_bytes_cnt = pkt_size->small_pkt_bytes_cnt + pkt_len; } return; } } static bool enic_rxcopybreak(struct net_device *netdev , struct sk_buff **skb , struct vnic_rq_buf *buf , u16 len ) { struct enic *enic ; void *tmp ; struct sk_buff *new_skb ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; } if ((u32 )len > enic->rx_copybreak) { return (0); } else { } { new_skb = netdev_alloc_skb_ip_align(netdev, (unsigned int )len); } if ((unsigned long )new_skb == (unsigned long )((struct sk_buff *)0)) { return (0); } else { } { pci_dma_sync_single_for_cpu(enic->pdev, buf->dma_addr, (size_t )len, 2); memcpy((void *)new_skb->data, (void const *)(*skb)->data, (size_t )len); *skb = new_skb; } return (1); } } static void enic_rq_indicate_buf(struct vnic_rq *rq , struct cq_desc *cq_desc , struct vnic_rq_buf *buf , int skipped , void *opaque ) { struct enic *enic ; void *tmp ; struct net_device *netdev ; struct sk_buff *skb ; struct vnic_cq *cq ; unsigned int tmp___0 ; u8 type ; u8 color ; u8 eop ; u8 sop ; u8 ingress_port ; u8 vlan_stripped ; u8 fcoe ; u8 fcoe_sof ; u8 fcoe_fc_crc_ok ; u8 fcoe_enc_error ; u8 fcoe_eof ; u8 tcp_udp_csum_ok ; u8 udp ; u8 tcp ; u8 ipv4_csum_ok ; u8 ipv6 ; u8 ipv4 ; u8 ipv4_fragment ; u8 fcs_ok ; u8 rss_type ; u8 csum_not_calc ; u8 packet_error ; u16 q_number ; u16 completed_index ; u16 bytes_written ; u16 vlan_tci ; u16 checksum ; u32 rss_hash ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; { { tmp = vnic_dev_priv(rq->vdev); enic = (struct enic *)tmp; netdev = enic->netdev; tmp___0 = enic_cq_rq(enic, rq->index); cq = (struct vnic_cq *)(& enic->cq) + (unsigned long )tmp___0; } if (skipped != 0) { return; } else { } { skb = (struct sk_buff *)buf->os_buf; cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc, & type, & color, & q_number, & completed_index, & ingress_port, & fcoe, & eop, & sop, & rss_type, & csum_not_calc, & rss_hash, & bytes_written, & packet_error, & vlan_stripped, & vlan_tci, & checksum, & fcoe_sof, & fcoe_fc_crc_ok, & fcoe_enc_error, & fcoe_eof, & tcp_udp_csum_ok, & udp, & tcp, & ipv4_csum_ok, & ipv6, & ipv4, & ipv4_fragment, & fcs_ok); } if ((unsigned int )packet_error != 0U) { if ((unsigned int )fcs_ok == 0U) { if ((unsigned int )bytes_written != 0U) { enic->rq_bad_fcs = enic->rq_bad_fcs + 1ULL; } else if ((unsigned int )bytes_written == 0U) { enic->rq_truncated_pkts = enic->rq_truncated_pkts + 1ULL; } else { } } else { } { pci_unmap_single(enic->pdev, buf->dma_addr, (size_t )buf->len, 2); dev_kfree_skb_any(skb); buf->os_buf = (void *)0; } return; } else { } if ((unsigned int )eop != 0U && (unsigned int )bytes_written != 0U) { { tmp___1 = enic_rxcopybreak(netdev, & skb, buf, (int )bytes_written); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { buf->os_buf = (void *)0; pci_unmap_single(enic->pdev, buf->dma_addr, (size_t )buf->len, 2); } } else { } { __builtin_prefetch((void const *)skb->data); skb_put(skb, (unsigned int )bytes_written); skb->protocol = eth_type_trans(skb, netdev); skb_record_rx_queue(skb, (int )q_number); } if ((netdev->features & 8589934592ULL) != 0ULL) { { skb_set_hash(skb, rss_hash, ((int )rss_type & 84) != 0 ? 3 : 2); } } else { } if (((netdev->features & 17179869184ULL) != 0ULL && (unsigned int )tcp_udp_csum_ok != 0U) && (unsigned int )ipv4_csum_ok != 0U) { skb->ip_summed = 1U; } else { } if ((unsigned int )vlan_stripped != 0U) { { __vlan_hwaccel_put_tag(skb, 129, (int )vlan_tci); } } else { } { skb_mark_napi_id(skb, (struct napi_struct *)(& enic->napi) + (unsigned long )rq->index); tmp___3 = enic_poll_busy_polling(rq); } if ((int )tmp___3 || (netdev->features & 16384ULL) == 0ULL) { { netif_receive_skb(skb); } } else { { napi_gro_receive((struct napi_struct *)(& enic->napi) + (unsigned long )q_number, skb); } } if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce != 0U) { { enic_intr_update_pkt_size(& cq->pkt_size_counter, (u32 )bytes_written); } } else { } } else { { pci_unmap_single(enic->pdev, buf->dma_addr, (size_t )buf->len, 2); dev_kfree_skb_any(skb); buf->os_buf = (void *)0; } } return; } } static int enic_rq_service(struct vnic_dev *vdev , struct cq_desc *cq_desc , u8 type , u16 q_number , u16 completed_index , void *opaque ) { struct enic *enic ; void *tmp ; { { tmp = vnic_dev_priv(vdev); enic = (struct enic *)tmp; vnic_rq_service((struct vnic_rq *)(& enic->rq) + (unsigned long )q_number, cq_desc, (int )completed_index, 0, & enic_rq_indicate_buf, opaque); } return (0); } } static int enic_poll(struct napi_struct *napi , int budget ) { struct net_device *netdev ; struct enic *enic ; void *tmp ; unsigned int cq_rq ; unsigned int tmp___0 ; unsigned int cq_wq ; unsigned int tmp___1 ; unsigned int intr ; unsigned int tmp___2 ; unsigned int rq_work_to_do ; unsigned int wq_work_to_do ; unsigned int work_done ; unsigned int rq_work_done ; unsigned int wq_work_done ; int err ; bool tmp___3 ; int tmp___4 ; { { netdev = napi->dev; tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; tmp___0 = enic_cq_rq(enic, 0U); cq_rq = tmp___0; tmp___1 = enic_cq_wq(enic, 0U); cq_wq = tmp___1; tmp___2 = enic_legacy_io_intr(); intr = tmp___2; rq_work_to_do = (unsigned int )budget; wq_work_to_do = 4294967295U; rq_work_done = 0U; wq_work_done = vnic_cq_service((struct vnic_cq *)(& enic->cq) + (unsigned long )cq_wq, wq_work_to_do, & enic_wq_service, (void *)0); tmp___3 = enic_poll_lock_napi((struct vnic_rq *)(& enic->rq) + (unsigned long )cq_rq); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { if (wq_work_done != 0U) { { vnic_intr_return_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, wq_work_done, 0, 0); } } else { } return ((int )rq_work_done); } else { } if (budget > 0) { { rq_work_done = vnic_cq_service((struct vnic_cq *)(& enic->cq) + (unsigned long )cq_rq, rq_work_to_do, & enic_rq_service, (void *)0); } } else { } work_done = rq_work_done + wq_work_done; if (work_done != 0U) { { vnic_intr_return_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, work_done, 0, 0); } } else { } { err = vnic_rq_fill((struct vnic_rq *)(& enic->rq), & enic_rq_alloc_buf); } if (err != 0) { rq_work_done = rq_work_to_do; } else { } if (rq_work_done < rq_work_to_do) { { napi_complete(napi); vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )intr); } } else { } { enic_poll_unlock_napi((struct vnic_rq *)(& enic->rq) + (unsigned long )cq_rq); } return ((int )rq_work_done); } } static void enic_set_int_moderation(struct enic *enic , struct vnic_rq *rq ) { unsigned int intr ; unsigned int tmp ; struct vnic_cq *cq ; unsigned int tmp___0 ; u32 timer ; { { tmp = enic_msix_rq_intr(enic, rq->index); intr = tmp; tmp___0 = enic_cq_rq(enic, rq->index); cq = (struct vnic_cq *)(& enic->cq) + (unsigned long )tmp___0; timer = cq->tobe_rx_coal_timeval; } if (cq->tobe_rx_coal_timeval != cq->cur_rx_coal_timeval) { { vnic_intr_coalescing_timer_set((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, timer); cq->cur_rx_coal_timeval = cq->tobe_rx_coal_timeval; } } else { } return; } } static void enic_calc_int_moderation(struct enic *enic , struct vnic_rq *rq ) { struct enic_rx_coal *rx_coal ; struct vnic_cq *cq ; unsigned int tmp ; struct vnic_rx_bytes_counter *pkt_size_counter ; int index ; u32 timer ; u32 range_start ; u32 traffic ; u64 delta ; ktime_t now ; ktime_t tmp___0 ; s64 tmp___1 ; { { rx_coal = & enic->rx_coalesce_setting; tmp = enic_cq_rq(enic, rq->index); cq = (struct vnic_cq *)(& enic->cq) + (unsigned long )tmp; pkt_size_counter = & cq->pkt_size_counter; tmp___0 = ktime_get(); now = tmp___0; tmp___1 = ktime_us_delta(now, cq->prev_ts); delta = (u64 )tmp___1; } if (delta <= 99ULL) { return; } else { } cq->prev_ts = now; traffic = pkt_size_counter->large_pkt_bytes_cnt + pkt_size_counter->small_pkt_bytes_cnt; traffic = traffic << 3; traffic = delta <= 4294967295ULL ? traffic / (u32 )delta : 0U; index = 0; goto ldv_56681; ldv_56680: ; if (traffic < mod_table[index].rx_rate) { goto ldv_56679; } else { } index = index + 1; ldv_56681: ; if (index <= 9) { goto ldv_56680; } else { } ldv_56679: range_start = pkt_size_counter->small_pkt_bytes_cnt > pkt_size_counter->large_pkt_bytes_cnt << 1 ? rx_coal->small_pkt_range_start : rx_coal->large_pkt_range_start; timer = range_start + ((rx_coal->range_end - range_start) * mod_table[index].range_percent) / 100U; cq->tobe_rx_coal_timeval = (timer + cq->tobe_rx_coal_timeval) >> 1; pkt_size_counter->large_pkt_bytes_cnt = 0U; pkt_size_counter->small_pkt_bytes_cnt = 0U; return; } } static void enic_free_rx_cpu_rmap(struct enic *enic ) { { { free_irq_cpu_rmap((enic->netdev)->rx_cpu_rmap); (enic->netdev)->rx_cpu_rmap = (struct cpu_rmap *)0; } return; } } static void enic_set_rx_cpu_rmap(struct enic *enic ) { int i ; int res ; long tmp ; long tmp___0 ; enum vnic_dev_intr_mode tmp___1 ; { { tmp___1 = vnic_dev_get_intr_mode(enic->vdev); } if ((unsigned int )tmp___1 == 3U) { { (enic->netdev)->rx_cpu_rmap = alloc_irq_cpu_rmap(enic->rq_count); tmp = ldv__builtin_expect((unsigned long )(enic->netdev)->rx_cpu_rmap == (unsigned long )((struct cpu_rmap *)0), 0L); } if (tmp != 0L) { return; } else { } i = 0; goto ldv_56691; ldv_56690: { res = irq_cpu_rmap_add((enic->netdev)->rx_cpu_rmap, (int )enic->msix_entry[i].vector); tmp___0 = ldv__builtin_expect(res != 0, 0L); } if (tmp___0 != 0L) { { enic_free_rx_cpu_rmap(enic); } return; } else { } i = i + 1; ldv_56691: ; if ((unsigned int )i < enic->rq_count) { goto ldv_56690; } else { } } else { } return; } } static int enic_busy_poll(struct napi_struct *napi ) { struct net_device *netdev ; struct enic *enic ; void *tmp ; unsigned int rq ; unsigned int cq ; unsigned int tmp___0 ; unsigned int intr ; unsigned int tmp___1 ; unsigned int work_to_do ; unsigned int work_done ; bool tmp___2 ; int tmp___3 ; { { netdev = napi->dev; tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; rq = (unsigned int )(((long )napi - (long )(& enic->napi)) / 280L); tmp___0 = enic_cq_rq(enic, rq); cq = tmp___0; tmp___1 = enic_msix_rq_intr(enic, rq); intr = tmp___1; work_to_do = 4294967295U; tmp___2 = enic_poll_lock_poll((struct vnic_rq *)(& enic->rq) + (unsigned long )rq); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (-2); } else { } { work_done = vnic_cq_service((struct vnic_cq *)(& enic->cq) + (unsigned long )cq, work_to_do, & enic_rq_service, (void *)0); } if (work_done != 0U) { { vnic_intr_return_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, work_done, 0, 0); } } else { } { vnic_rq_fill((struct vnic_rq *)(& enic->rq) + (unsigned long )rq, & enic_rq_alloc_buf); } if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce != 0U) { { enic_calc_int_moderation(enic, (struct vnic_rq *)(& enic->rq) + (unsigned long )rq); } } else { } { enic_poll_unlock_poll((struct vnic_rq *)(& enic->rq) + (unsigned long )rq); } return ((int )work_done); } } static int enic_poll_msix_wq(struct napi_struct *napi , int budget ) { struct net_device *netdev ; struct enic *enic ; void *tmp ; unsigned int wq_index ; struct vnic_wq *wq ; unsigned int cq ; unsigned int intr ; unsigned int wq_work_to_do ; unsigned int wq_work_done ; unsigned int wq_irq ; { { netdev = napi->dev; tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; wq_index = (unsigned int )(((long )napi - (long )(& enic->napi)) / 280L) - enic->rq_count; wq = (struct vnic_wq *)(& enic->wq) + (unsigned long )wq_index; wq_work_to_do = 4294967295U; wq_irq = wq->index; cq = enic_cq_wq(enic, wq_irq); intr = enic_msix_wq_intr(enic, wq_irq); wq_work_done = vnic_cq_service((struct vnic_cq *)(& enic->cq) + (unsigned long )cq, wq_work_to_do, & enic_wq_service, (void *)0); vnic_intr_return_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, wq_work_done, 0, 1); } if (wq_work_done == 0U) { { napi_complete(napi); vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )intr); } return (0); } else { } return (budget); } } static int enic_poll_msix_rq(struct napi_struct *napi , int budget ) { struct net_device *netdev ; struct enic *enic ; void *tmp ; unsigned int rq ; unsigned int cq ; unsigned int tmp___0 ; unsigned int intr ; unsigned int tmp___1 ; unsigned int work_to_do ; unsigned int work_done ; int err ; bool tmp___2 ; int tmp___3 ; { { netdev = napi->dev; tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; rq = (unsigned int )(((long )napi - (long )(& enic->napi)) / 280L); tmp___0 = enic_cq_rq(enic, rq); cq = tmp___0; tmp___1 = enic_msix_rq_intr(enic, rq); intr = tmp___1; work_to_do = (unsigned int )budget; work_done = 0U; tmp___2 = enic_poll_lock_napi((struct vnic_rq *)(& enic->rq) + (unsigned long )rq); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (budget); } else { } if (budget > 0) { { work_done = vnic_cq_service((struct vnic_cq *)(& enic->cq) + (unsigned long )cq, work_to_do, & enic_rq_service, (void *)0); } } else { } if (work_done != 0U) { { vnic_intr_return_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, work_done, 0, 0); } } else { } { err = vnic_rq_fill((struct vnic_rq *)(& enic->rq) + (unsigned long )rq, & enic_rq_alloc_buf); } if (err != 0) { work_done = work_to_do; } else { } if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce != 0U) { { enic_calc_int_moderation(enic, (struct vnic_rq *)(& enic->rq) + (unsigned long )rq); } } else { } if (work_done < work_to_do) { { napi_complete(napi); } if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce != 0U) { { enic_set_int_moderation(enic, (struct vnic_rq *)(& enic->rq) + (unsigned long )rq); } } else { } { vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )intr); } } else { } { enic_poll_unlock_napi((struct vnic_rq *)(& enic->rq) + (unsigned long )rq); } return ((int )work_done); } } static void enic_notify_timer(unsigned long data ) { struct enic *enic ; unsigned long tmp ; { { enic = (struct enic *)data; enic_notify_check(enic); tmp = round_jiffies((unsigned long )jiffies + 500UL); ldv_mod_timer_145(& enic->notify_timer, tmp); } return; } } static void enic_free_intr(struct enic *enic ) { struct net_device *netdev ; unsigned int i ; enum vnic_dev_intr_mode tmp ; { { netdev = enic->netdev; enic_free_rx_cpu_rmap(enic); tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_free_irq_146((enic->pdev)->irq, (void *)netdev); } goto ldv_56738; case_2: /* CIL Label */ { ldv_free_irq_147((enic->pdev)->irq, (void *)enic); } goto ldv_56738; case_3: /* CIL Label */ i = 0U; goto ldv_56744; ldv_56743: ; if (enic->msix[i].requested != 0) { { ldv_free_irq_148(enic->msix_entry[i].vector, enic->msix[i].devid); } } else { } i = i + 1U; ldv_56744: ; if (i <= 17U) { goto ldv_56743; } else { } goto ldv_56738; switch_default: /* CIL Label */ ; goto ldv_56738; switch_break: /* CIL Label */ ; } ldv_56738: ; return; } } static int enic_request_intr(struct enic *enic ) { struct net_device *netdev ; unsigned int i ; unsigned int intr ; int err ; enum vnic_dev_intr_mode tmp ; int wq ; unsigned int tmp___0 ; { { netdev = enic->netdev; err = 0; enic_set_rx_cpu_rmap(enic); tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { err = ldv_request_irq_149((enic->pdev)->irq, & enic_isr_legacy, 128UL, (char const *)(& netdev->name), (void *)netdev); } goto ldv_56755; case_2: /* CIL Label */ { err = ldv_request_irq_150((enic->pdev)->irq, & enic_isr_msi, 0UL, (char const *)(& netdev->name), (void *)enic); } goto ldv_56755; case_3: /* CIL Label */ i = 0U; goto ldv_56759; ldv_56758: { intr = enic_msix_rq_intr(enic, i); snprintf((char *)(& enic->msix[intr].devname), 16UL, "%.11s-rx-%d", (char *)(& netdev->name), i); enic->msix[intr].isr = & enic_isr_msix; enic->msix[intr].devid = (void *)(& enic->napi) + (unsigned long )i; i = i + 1U; } ldv_56759: ; if (i < enic->rq_count) { goto ldv_56758; } else { } i = 0U; goto ldv_56763; ldv_56762: { tmp___0 = enic_cq_wq(enic, i); wq = (int )tmp___0; intr = enic_msix_wq_intr(enic, i); snprintf((char *)(& enic->msix[intr].devname), 16UL, "%.11s-tx-%d", (char *)(& netdev->name), i); enic->msix[intr].isr = & enic_isr_msix; enic->msix[intr].devid = (void *)(& enic->napi) + (unsigned long )wq; i = i + 1U; } ldv_56763: ; if (i < enic->wq_count) { goto ldv_56762; } else { } { intr = enic_msix_err_intr(enic); snprintf((char *)(& enic->msix[intr].devname), 16UL, "%.11s-err", (char *)(& netdev->name)); enic->msix[intr].isr = & enic_isr_msix_err; enic->msix[intr].devid = (void *)enic; intr = enic_msix_notify_intr(enic); snprintf((char *)(& enic->msix[intr].devname), 16UL, "%.11s-notify", (char *)(& netdev->name)); enic->msix[intr].isr = & enic_isr_msix_notify; enic->msix[intr].devid = (void *)enic; i = 0U; } goto ldv_56768; ldv_56767: enic->msix[i].requested = 0; i = i + 1U; ldv_56768: ; if (i <= 17U) { goto ldv_56767; } else { } i = 0U; goto ldv_56772; ldv_56771: { err = ldv_request_irq_151(enic->msix_entry[i].vector, enic->msix[i].isr, 0UL, (char const *)(& enic->msix[i].devname), enic->msix[i].devid); } if (err != 0) { { enic_free_intr(enic); } goto ldv_56770; } else { } enic->msix[i].requested = 1; i = i + 1U; ldv_56772: ; if (i < enic->intr_count) { goto ldv_56771; } else { } ldv_56770: ; goto ldv_56755; switch_default: /* CIL Label */ ; goto ldv_56755; switch_break: /* CIL Label */ ; } ldv_56755: ; return (err); } } static void enic_synchronize_irqs(struct enic *enic ) { unsigned int i ; enum vnic_dev_intr_mode tmp ; { { tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { synchronize_irq((enic->pdev)->irq); } goto ldv_56780; case_3: /* CIL Label */ i = 0U; goto ldv_56783; ldv_56782: { synchronize_irq(enic->msix_entry[i].vector); i = i + 1U; } ldv_56783: ; if (i < enic->intr_count) { goto ldv_56782; } else { } goto ldv_56780; switch_default: /* CIL Label */ ; goto ldv_56780; switch_break: /* CIL Label */ ; } ldv_56780: ; return; } } static void enic_set_rx_coal_setting(struct enic *enic ) { unsigned int speed ; int index ; struct enic_rx_coal *rx_coal ; enum vnic_dev_intr_mode tmp ; { { index = -1; rx_coal = & enic->rx_coalesce_setting; tmp = vnic_dev_get_intr_mode(enic->vdev); } if ((unsigned int )tmp != 3U) { { netdev_info((struct net_device const *)enic->netdev, "INTR mode is not MSIX, Not initializing adaptive coalescing"); } return; } else { } { speed = vnic_dev_port_speed(enic->vdev); } if (speed > 10000U) { index = 2; } else if (speed > 4000U) { index = 1; } else { index = 0; } rx_coal->small_pkt_range_start = mod_range[index].small_pkt_range_start; rx_coal->large_pkt_range_start = mod_range[index].large_pkt_range_start; rx_coal->range_end = 125U; index = 0; goto ldv_56793; ldv_56792: enic->cq[index].cur_rx_coal_timeval = enic->config.intr_timer_usec; index = index + 1; ldv_56793: ; if ((unsigned int )index < enic->rq_count) { goto ldv_56792; } else { } rx_coal->use_adaptive_rx_coalesce = 1U; return; } } static int enic_dev_notify_set(struct enic *enic ) { int err ; enum vnic_dev_intr_mode tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___0 = enic_legacy_notify_intr(); err = vnic_dev_notify_set(enic->vdev, (int )((u16 )tmp___0)); } goto ldv_56800; case_3: /* CIL Label */ { tmp___1 = enic_msix_notify_intr(enic); err = vnic_dev_notify_set(enic->vdev, (int )((u16 )tmp___1)); } goto ldv_56800; switch_default: /* CIL Label */ { err = vnic_dev_notify_set(enic->vdev, 65535); } goto ldv_56800; switch_break: /* CIL Label */ ; } ldv_56800: { ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } static void enic_notify_timer_start(struct enic *enic ) { enum vnic_dev_intr_mode tmp ; { { tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 2U) { goto case_2; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_mod_timer_154(& enic->notify_timer, jiffies); } goto ldv_56807; switch_default: /* CIL Label */ ; goto ldv_56807; switch_break: /* CIL Label */ ; } ldv_56807: ; return; } } static int enic_open(struct net_device *netdev ) { struct enic *enic ; void *tmp ; unsigned int i ; int err ; unsigned int tmp___0 ; int tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; enum vnic_dev_intr_mode tmp___4 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; err = enic_request_intr(enic); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "Unable to request irq.\n"); } return (err); } else { } { err = enic_dev_notify_set(enic); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "Failed to alloc notify buffer, aborting.\n"); } goto err_out_free_intr; } else { } i = 0U; goto ldv_56818; ldv_56817: { vnic_rq_fill((struct vnic_rq *)(& enic->rq) + (unsigned long )i, & enic_rq_alloc_buf); tmp___0 = vnic_rq_desc_used((struct vnic_rq *)(& enic->rq) + (unsigned long )i); } if (tmp___0 == 0U) { { netdev_err((struct net_device const *)netdev, "Unable to alloc receive buffers\n"); err = -12; } goto err_out_free_rq; } else { } i = i + 1U; ldv_56818: ; if (i < enic->rq_count) { goto ldv_56817; } else { } i = 0U; goto ldv_56821; ldv_56820: { vnic_wq_enable((struct vnic_wq *)(& enic->wq) + (unsigned long )i); i = i + 1U; } ldv_56821: ; if (i < enic->wq_count) { goto ldv_56820; } else { } i = 0U; goto ldv_56824; ldv_56823: { vnic_rq_enable((struct vnic_rq *)(& enic->rq) + (unsigned long )i); i = i + 1U; } ldv_56824: ; if (i < enic->rq_count) { goto ldv_56823; } else { } { tmp___1 = enic_is_dynamic(enic); } if (tmp___1 == 0) { { tmp___2 = enic_is_sriov_vf(enic); } if (tmp___2 == 0) { { enic_dev_add_station_addr(enic); } } else { } } else { } { enic_set_rx_mode(netdev); netif_tx_wake_all_queues(netdev); i = 0U; } goto ldv_56827; ldv_56826: { enic_busy_poll_init_lock((struct vnic_rq *)(& enic->rq) + (unsigned long )i); napi_enable((struct napi_struct *)(& enic->napi) + (unsigned long )i); i = i + 1U; } ldv_56827: ; if (i < enic->rq_count) { goto ldv_56826; } else { } { tmp___4 = vnic_dev_get_intr_mode(enic->vdev); } if ((unsigned int )tmp___4 == 3U) { i = 0U; goto ldv_56830; ldv_56829: { tmp___3 = enic_cq_wq(enic, i); napi_enable((struct napi_struct *)(& enic->napi) + (unsigned long )tmp___3); i = i + 1U; } ldv_56830: ; if (i < enic->wq_count) { goto ldv_56829; } else { } } else { } { enic_dev_enable(enic); i = 0U; } goto ldv_56833; ldv_56832: { vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )i); i = i + 1U; } ldv_56833: ; if (i < enic->intr_count) { goto ldv_56832; } else { } { enic_notify_timer_start(enic); enic_rfs_flw_tbl_init(enic); } return (0); err_out_free_rq: i = 0U; goto ldv_56836; ldv_56835: { vnic_rq_clean((struct vnic_rq *)(& enic->rq) + (unsigned long )i, & enic_free_rq_buf); i = i + 1U; } ldv_56836: ; if (i < enic->rq_count) { goto ldv_56835; } else { } { enic_dev_notify_unset(enic); } err_out_free_intr: { enic_free_intr(enic); } return (err); } } static int enic_stop(struct net_device *netdev ) { struct enic *enic ; void *tmp ; unsigned int i ; int err ; unsigned long __ms ; unsigned long tmp___0 ; bool tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; enum vnic_dev_intr_mode tmp___4 ; int tmp___5 ; int tmp___6 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; i = 0U; } goto ldv_56845; ldv_56844: { vnic_intr_mask((struct vnic_intr *)(& enic->intr) + (unsigned long )i); vnic_intr_masked((struct vnic_intr *)(& enic->intr) + (unsigned long )i); i = i + 1U; } ldv_56845: ; if (i < enic->intr_count) { goto ldv_56844; } else { } { enic_synchronize_irqs(enic); ldv_del_timer_sync_155(& enic->notify_timer); enic_rfs_flw_tbl_free(enic); enic_dev_disable(enic); i = 0U; } goto ldv_56855; ldv_56854: { napi_disable((struct napi_struct *)(& enic->napi) + (unsigned long )i); local_bh_disable(); } goto ldv_56852; ldv_56851: ; if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_56849; ldv_56848: { __const_udelay(4295000UL); } ldv_56849: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_56848; } else { } } ldv_56852: { tmp___1 = enic_poll_lock_napi((struct vnic_rq *)(& enic->rq) + (unsigned long )i); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { goto ldv_56851; } else { } { local_bh_enable(); i = i + 1U; } ldv_56855: ; if (i < enic->rq_count) { goto ldv_56854; } else { } { netif_carrier_off(netdev); netif_tx_disable(netdev); tmp___4 = vnic_dev_get_intr_mode(enic->vdev); } if ((unsigned int )tmp___4 == 3U) { i = 0U; goto ldv_56858; ldv_56857: { tmp___3 = enic_cq_wq(enic, i); napi_disable((struct napi_struct *)(& enic->napi) + (unsigned long )tmp___3); i = i + 1U; } ldv_56858: ; if (i < enic->wq_count) { goto ldv_56857; } else { } } else { } { tmp___5 = enic_is_dynamic(enic); } if (tmp___5 == 0) { { tmp___6 = enic_is_sriov_vf(enic); } if (tmp___6 == 0) { { enic_dev_del_station_addr(enic); } } else { } } else { } i = 0U; goto ldv_56861; ldv_56860: { err = vnic_wq_disable((struct vnic_wq *)(& enic->wq) + (unsigned long )i); } if (err != 0) { return (err); } else { } i = i + 1U; ldv_56861: ; if (i < enic->wq_count) { goto ldv_56860; } else { } i = 0U; goto ldv_56864; ldv_56863: { err = vnic_rq_disable((struct vnic_rq *)(& enic->rq) + (unsigned long )i); } if (err != 0) { return (err); } else { } i = i + 1U; ldv_56864: ; if (i < enic->rq_count) { goto ldv_56863; } else { } { enic_dev_notify_unset(enic); enic_free_intr(enic); i = 0U; } goto ldv_56867; ldv_56866: { vnic_wq_clean((struct vnic_wq *)(& enic->wq) + (unsigned long )i, & enic_free_wq_buf); i = i + 1U; } ldv_56867: ; if (i < enic->wq_count) { goto ldv_56866; } else { } i = 0U; goto ldv_56870; ldv_56869: { vnic_rq_clean((struct vnic_rq *)(& enic->rq) + (unsigned long )i, & enic_free_rq_buf); i = i + 1U; } ldv_56870: ; if (i < enic->rq_count) { goto ldv_56869; } else { } i = 0U; goto ldv_56873; ldv_56872: { vnic_cq_clean((struct vnic_cq *)(& enic->cq) + (unsigned long )i); i = i + 1U; } ldv_56873: ; if (i < enic->cq_count) { goto ldv_56872; } else { } i = 0U; goto ldv_56876; ldv_56875: { vnic_intr_clean((struct vnic_intr *)(& enic->intr) + (unsigned long )i); i = i + 1U; } ldv_56876: ; if (i < enic->intr_count) { goto ldv_56875; } else { } return (0); } } static int enic_change_mtu(struct net_device *netdev , int new_mtu ) { struct enic *enic ; void *tmp ; int running ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); running = (int )tmp___0; } if ((unsigned int )new_mtu - 68U > 8932U) { return (-22); } else { } { tmp___1 = enic_is_dynamic(enic); } if (tmp___1 != 0) { return (-95); } else { { tmp___2 = enic_is_sriov_vf(enic); } if (tmp___2 != 0) { return (-95); } else { } } if (running != 0) { { enic_stop(netdev); } } else { } netdev->mtu = (unsigned int )new_mtu; if (netdev->mtu > enic->port_mtu) { { netdev_warn((struct net_device const *)netdev, "interface MTU (%d) set higher than port MTU (%d)\n", netdev->mtu, enic->port_mtu); } } else { } if (running != 0) { { enic_open(netdev); } } else { } return (0); } } static void enic_change_mtu_work(struct work_struct *work ) { struct enic *enic ; struct work_struct const *__mptr ; struct net_device *netdev ; int new_mtu ; u32 tmp ; int err ; unsigned int i ; int __max1 ; int __max2 ; int __min1 ; int __min2 ; unsigned int tmp___0 ; { { __mptr = (struct work_struct const *)work; enic = (struct enic *)__mptr + 0xfffffffffffffe58UL; netdev = enic->netdev; tmp = vnic_dev_mtu(enic->vdev); new_mtu = (int )tmp; __max1 = 68; __min1 = 9000; __min2 = new_mtu; __max2 = __min1 < __min2 ? __min1 : __min2; new_mtu = __max1 > __max2 ? __max1 : __max2; ldv_rtnl_lock_156(); ldv_del_timer_sync_157(& enic->notify_timer); i = 0U; } goto ldv_56901; ldv_56900: { napi_disable((struct napi_struct *)(& enic->napi) + (unsigned long )i); i = i + 1U; } ldv_56901: ; if (i < enic->rq_count) { goto ldv_56900; } else { } { vnic_intr_mask((struct vnic_intr *)(& enic->intr)); enic_synchronize_irqs(enic); err = vnic_rq_disable((struct vnic_rq *)(& enic->rq)); } if (err != 0) { { ldv_rtnl_unlock_158(); netdev_err((struct net_device const *)netdev, "Unable to disable RQ.\n"); } return; } else { } { vnic_rq_clean((struct vnic_rq *)(& enic->rq), & enic_free_rq_buf); vnic_cq_clean((struct vnic_cq *)(& enic->cq)); vnic_intr_clean((struct vnic_intr *)(& enic->intr)); netdev->mtu = (unsigned int )new_mtu; vnic_rq_fill((struct vnic_rq *)(& enic->rq), & enic_rq_alloc_buf); tmp___0 = vnic_rq_desc_used((struct vnic_rq *)(& enic->rq)); } if (tmp___0 == 0U) { { ldv_rtnl_unlock_159(); netdev_err((struct net_device const *)netdev, "Unable to alloc receive buffers.\n"); } return; } else { } { vnic_rq_enable((struct vnic_rq *)(& enic->rq)); napi_enable((struct napi_struct *)(& enic->napi)); vnic_intr_unmask((struct vnic_intr *)(& enic->intr)); enic_notify_timer_start(enic); ldv_rtnl_unlock_160(); netdev_info((struct net_device const *)netdev, "interface MTU set as %d\n", netdev->mtu); } return; } } static void enic_poll_controller(struct net_device *netdev ) { struct enic *enic ; void *tmp ; struct vnic_dev *vdev ; unsigned int i ; unsigned int intr ; enum vnic_dev_intr_mode tmp___0 ; unsigned int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; vdev = enic->vdev; tmp___0 = vnic_dev_get_intr_mode(vdev); } { if ((unsigned int )tmp___0 == 3U) { goto case_3; } else { } if ((unsigned int )tmp___0 == 2U) { goto case_2; } else { } if ((unsigned int )tmp___0 == 1U) { goto case_1; } else { } goto switch_default; case_3: /* CIL Label */ i = 0U; goto ldv_56912; ldv_56911: { intr = enic_msix_rq_intr(enic, i); enic_isr_msix((int )enic->msix_entry[intr].vector, (void *)(& enic->napi) + (unsigned long )i); i = i + 1U; } ldv_56912: ; if (i < enic->rq_count) { goto ldv_56911; } else { } i = 0U; goto ldv_56915; ldv_56914: { intr = enic_msix_wq_intr(enic, i); tmp___1 = enic_cq_wq(enic, i); enic_isr_msix((int )enic->msix_entry[intr].vector, (void *)(& enic->napi) + (unsigned long )tmp___1); i = i + 1U; } ldv_56915: ; if (i < enic->wq_count) { goto ldv_56914; } else { } goto ldv_56917; case_2: /* CIL Label */ { enic_isr_msi((int )(enic->pdev)->irq, (void *)enic); } goto ldv_56917; case_1: /* CIL Label */ { enic_isr_legacy((int )(enic->pdev)->irq, (void *)netdev); } goto ldv_56917; switch_default: /* CIL Label */ ; goto ldv_56917; switch_break: /* CIL Label */ ; } ldv_56917: ; return; } } static int enic_dev_wait(struct vnic_dev *vdev , int (*start)(struct vnic_dev * , int ) , int (*finished)(struct vnic_dev * , int * ) , int arg ) { unsigned long time ; int done ; int err ; int tmp ; long tmp___0 ; { { tmp = preempt_count(); tmp___0 = ldv__builtin_expect(((unsigned long )tmp & 2096896UL) != 0UL, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/cisco/enic/enic_main.c"), "i" (1882), "i" (12UL)); __builtin_unreachable(); } } else { } { err = (*start)(vdev, arg); } if (err != 0) { return (err); } else { } time = (unsigned long )jiffies + 500UL; ldv_56940: { err = (*finished)(vdev, & done); } if (err != 0) { return (err); } else { } if (done != 0) { return (0); } else { } { schedule_timeout_uninterruptible(25L); } if ((long )((unsigned long )jiffies - time) < 0L) { goto ldv_56940; } else { } return (-110); } } static int enic_dev_open(struct enic *enic ) { int err ; struct device *tmp ; { { err = enic_dev_wait(enic->vdev, & vnic_dev_open, & vnic_dev_open_done, 0); } if (err != 0) { { tmp = enic_get_dev(enic); dev_err((struct device const *)tmp, "vNIC device open failed, err %d\n", err); } } else { } return (err); } } static int enic_dev_hang_reset(struct enic *enic ) { int err ; { { err = enic_dev_wait(enic->vdev, & vnic_dev_hang_reset, & vnic_dev_hang_reset_done, 0); } if (err != 0) { { netdev_err((struct net_device const *)enic->netdev, "vNIC hang reset failed, err %d\n", err); } } else { } return (err); } } int __enic_set_rsskey(struct enic *enic ) { union vnic_rss_key *rss_key_buf_va ; dma_addr_t rss_key_buf_pa ; int i ; int kidx ; int bidx ; int err ; void *tmp ; { { tmp = pci_zalloc_consistent(enic->pdev, 64UL, & rss_key_buf_pa); rss_key_buf_va = (union vnic_rss_key *)tmp; } if ((unsigned long )rss_key_buf_va == (unsigned long )((union vnic_rss_key *)0)) { return (-12); } else { } i = 0; goto ldv_56960; ldv_56959: kidx = i / 10; bidx = i % 10; rss_key_buf_va->key[kidx].b[bidx] = enic->rss_key[i]; i = i + 1; ldv_56960: ; if (i <= 39) { goto ldv_56959; } else { } { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = enic_set_rss_key(enic, rss_key_buf_pa, 64ULL); ldv_spin_unlock_bh_142(& enic->devcmd_lock); pci_free_consistent(enic->pdev, 64UL, (void *)rss_key_buf_va, rss_key_buf_pa); } return (err); } } static int enic_set_rsskey(struct enic *enic ) { int tmp ; { { netdev_rss_key_fill((void *)(& enic->rss_key), 40UL); tmp = __enic_set_rsskey(enic); } return (tmp); } } static int enic_set_rsscpu(struct enic *enic , u8 rss_hash_bits ) { dma_addr_t rss_cpu_buf_pa ; union vnic_rss_cpu *rss_cpu_buf_va ; unsigned int i ; int err ; void *tmp ; { { rss_cpu_buf_va = (union vnic_rss_cpu *)0; tmp = pci_alloc_consistent(enic->pdev, 256UL, & rss_cpu_buf_pa); rss_cpu_buf_va = (union vnic_rss_cpu *)tmp; } if ((unsigned long )rss_cpu_buf_va == (unsigned long )((union vnic_rss_cpu *)0)) { return (-12); } else { } i = 0U; goto ldv_56974; ldv_56973: rss_cpu_buf_va->cpu[i / 4U].b[i & 3U] = (u8 )(i % enic->rq_count); i = i + 1U; ldv_56974: ; if (i >> (int )rss_hash_bits == 0U) { goto ldv_56973; } else { } { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = enic_set_rss_cpu(enic, rss_cpu_buf_pa, 256ULL); ldv_spin_unlock_bh_142(& enic->devcmd_lock); pci_free_consistent(enic->pdev, 256UL, (void *)rss_cpu_buf_va, rss_cpu_buf_pa); } return (err); } } static int enic_set_niccfg(struct enic *enic , u8 rss_default_cpu , u8 rss_hash_type , u8 rss_hash_bits , u8 rss_base_cpu , u8 rss_enable ) { u8 tso_ipid_split_en ; u8 ig_vlan_strip_en ; int err ; { { tso_ipid_split_en = 0U; ig_vlan_strip_en = 1U; ldv_spin_lock_bh_141(& enic->devcmd_lock); err = enic_set_nic_cfg(enic, (int )rss_default_cpu, (int )rss_hash_type, (int )rss_hash_bits, (int )rss_base_cpu, (int )rss_enable, (int )tso_ipid_split_en, (int )ig_vlan_strip_en); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } static int enic_set_rss_nic_cfg(struct enic *enic ) { struct device *dev ; struct device *tmp ; u8 rss_default_cpu ; u8 rss_hash_type ; u8 rss_hash_bits ; u8 rss_base_cpu ; u8 rss_enable ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = enic_get_dev(enic); dev = tmp; rss_default_cpu = 0U; rss_hash_type = 30U; rss_hash_bits = 7U; rss_base_cpu = 0U; rss_enable = (u8 )((enic->config.flags & 16U) != 0U && enic->rq_count > 1U); } if ((unsigned int )rss_enable != 0U) { { tmp___1 = enic_set_rsskey(enic); } if (tmp___1 == 0) { { tmp___0 = enic_set_rsscpu(enic, (int )rss_hash_bits); } if (tmp___0 != 0) { { rss_enable = 0U; dev_warn((struct device const *)dev, "RSS disabled, Failed to set RSS cpu indirection table."); } } else { } } else { { rss_enable = 0U; dev_warn((struct device const *)dev, "RSS disabled, Failed to set RSS key.\n"); } } } else { } { tmp___2 = enic_set_niccfg(enic, (int )rss_default_cpu, (int )rss_hash_type, (int )rss_hash_bits, (int )rss_base_cpu, (int )rss_enable); } return (tmp___2); } } static void enic_reset(struct work_struct *work ) { struct enic *enic ; struct work_struct const *__mptr ; bool tmp ; int tmp___0 ; { { __mptr = (struct work_struct const *)work; enic = (struct enic *)__mptr + 0xfffffffffffffea8UL; tmp = netif_running((struct net_device const *)enic->netdev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } { ldv_rtnl_lock_167(); ldv_spin_lock_168(& enic->enic_api_lock); enic_dev_hang_notify(enic); enic_stop(enic->netdev); enic_dev_hang_reset(enic); enic_reset_addr_lists(enic); enic_init_vnic_resources(enic); enic_set_rss_nic_cfg(enic); enic_dev_set_ig_vlan_rewrite_mode(enic); enic_open(enic->netdev); ldv_spin_unlock_169(& enic->enic_api_lock); call_netdevice_notifiers(3UL, enic->netdev); ldv_rtnl_unlock_170(); } return; } } static int enic_set_intr_mode(struct enic *enic ) { unsigned int n ; unsigned int __min1 ; unsigned int __min2 ; unsigned int m ; unsigned int __min1___0 ; unsigned int __min2___0 ; unsigned int i ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { __min1 = enic->rq_count; __min2 = 8U; n = __min1 < __min2 ? __min1 : __min2; __min1___0 = enic->wq_count; __min2___0 = 8U; m = __min1___0 < __min2___0 ? __min1___0 : __min2___0; tmp = ldv__builtin_expect((n + m) + 2U > 18U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/cisco/enic/enic_main.c"), "i" (2087), "i" (12UL)); __builtin_unreachable(); } } else { } i = 0U; goto ldv_57017; ldv_57016: enic->msix_entry[i].entry = (u16 )i; i = i + 1U; ldv_57017: ; if (i < (n + m) + 2U) { goto ldv_57016; } else { } if ((((((enic->config.flags & 16U) != 0U && (unsigned int )enic->config.intr_mode == 0U) && enic->rq_count >= n) && enic->wq_count >= m) && enic->cq_count >= n + m) && enic->intr_count >= (n + m) + 2U) { { tmp___0 = pci_enable_msix_range(enic->pdev, (struct msix_entry *)(& enic->msix_entry), (int )((n + m) + 2U), (int )((n + m) + 2U)); } if (tmp___0 > 0) { { enic->rq_count = n; enic->wq_count = m; enic->cq_count = n + m; enic->intr_count = (n + m) + 2U; vnic_dev_set_intr_mode(enic->vdev, 3); } return (0); } else { } } else { } if (((((unsigned int )enic->config.intr_mode == 0U && enic->rq_count != 0U) && enic->wq_count >= m) && enic->cq_count >= m + 1U) && enic->intr_count >= m + 3U) { { tmp___1 = pci_enable_msix_range(enic->pdev, (struct msix_entry *)(& enic->msix_entry), (int )(m + 3U), (int )(m + 3U)); } if (tmp___1 > 0) { { enic->rq_count = 1U; enic->wq_count = m; enic->cq_count = m + 1U; enic->intr_count = m + 3U; vnic_dev_set_intr_mode(enic->vdev, 3); } return (0); } else { } } else { } if (((((unsigned int )enic->config.intr_mode <= 1U && enic->rq_count != 0U) && enic->wq_count != 0U) && enic->cq_count > 1U) && enic->intr_count != 0U) { { tmp___2 = pci_enable_msi_exact(enic->pdev, 1); } if (tmp___2 == 0) { { enic->rq_count = 1U; enic->wq_count = 1U; enic->cq_count = 2U; enic->intr_count = 1U; vnic_dev_set_intr_mode(enic->vdev, 2); } return (0); } else { } } else { } if (((((unsigned int )enic->config.intr_mode <= 2U && enic->rq_count != 0U) && enic->wq_count != 0U) && enic->cq_count > 1U) && enic->intr_count > 2U) { { enic->rq_count = 1U; enic->wq_count = 1U; enic->cq_count = 2U; enic->intr_count = 3U; vnic_dev_set_intr_mode(enic->vdev, 1); } return (0); } else { } { vnic_dev_set_intr_mode(enic->vdev, 0); } return (-22); } } static void enic_clear_intr_mode(struct enic *enic ) { enum vnic_dev_intr_mode tmp ; { { tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 3U) { goto case_3; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } goto switch_default; case_3: /* CIL Label */ { pci_disable_msix(enic->pdev); } goto ldv_57023; case_2: /* CIL Label */ { pci_disable_msi(enic->pdev); } goto ldv_57023; switch_default: /* CIL Label */ ; goto ldv_57023; switch_break: /* CIL Label */ ; } ldv_57023: { vnic_dev_set_intr_mode(enic->vdev, 0); } return; } } static struct net_device_ops const enic_netdev_dynamic_ops = {0, 0, & enic_open, & enic_stop, & enic_hard_start_xmit, 0, 0, & enic_set_rx_mode, & enic_set_mac_address_dynamic, & eth_validate_addr, 0, 0, & enic_change_mtu, 0, & enic_tx_timeout, & enic_get_stats, 0, & enic_vlan_rx_add_vid, & enic_vlan_rx_kill_vid, & enic_poll_controller, 0, 0, & enic_busy_poll, & enic_set_vf_mac, 0, 0, 0, 0, 0, & enic_set_vf_port, & enic_get_vf_port, 0, 0, 0, 0, 0, 0, 0, 0, & enic_rx_flow_steer, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct net_device_ops const enic_netdev_ops = {0, 0, & enic_open, & enic_stop, & enic_hard_start_xmit, 0, 0, & enic_set_rx_mode, & enic_set_mac_address, & eth_validate_addr, 0, 0, & enic_change_mtu, 0, & enic_tx_timeout, & enic_get_stats, 0, & enic_vlan_rx_add_vid, & enic_vlan_rx_kill_vid, & enic_poll_controller, 0, 0, & enic_busy_poll, & enic_set_vf_mac, 0, 0, 0, 0, 0, & enic_set_vf_port, & enic_get_vf_port, 0, 0, 0, 0, 0, 0, 0, 0, & enic_rx_flow_steer, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void enic_dev_deinit(struct enic *enic ) { unsigned int i ; unsigned int tmp ; enum vnic_dev_intr_mode tmp___0 ; { i = 0U; goto ldv_57033; ldv_57032: { napi_hash_del((struct napi_struct *)(& enic->napi) + (unsigned long )i); netif_napi_del((struct napi_struct *)(& enic->napi) + (unsigned long )i); i = i + 1U; } ldv_57033: ; if (i < enic->rq_count) { goto ldv_57032; } else { } { tmp___0 = vnic_dev_get_intr_mode(enic->vdev); } if ((unsigned int )tmp___0 == 3U) { i = 0U; goto ldv_57036; ldv_57035: { tmp = enic_cq_wq(enic, i); netif_napi_del((struct napi_struct *)(& enic->napi) + (unsigned long )tmp); i = i + 1U; } ldv_57036: ; if (i < enic->wq_count) { goto ldv_57035; } else { } } else { } { enic_free_vnic_resources(enic); enic_clear_intr_mode(enic); } return; } } static void enic_kdump_kernel_config(struct enic *enic ) { struct device *tmp ; u16 __min1 ; u16 __min2 ; int tmp___0 ; { { tmp___0 = is_kdump_kernel(); } if (tmp___0 != 0) { { tmp = enic_get_dev(enic); _dev_info((struct device const *)tmp, "Running from within kdump kernel. Using minimal resources\n"); enic->rq_count = 1U; enic->wq_count = 1U; enic->config.rq_desc_count = 64U; enic->config.wq_desc_count = 64U; __min1 = 1500U; __min2 = enic->config.mtu; enic->config.mtu = (u16 )((int )__min1 < (int )__min2 ? __min1 : __min2); } } else { } return; } } static int enic_dev_init(struct enic *enic ) { struct device *dev ; struct device *tmp ; struct net_device *netdev ; unsigned int i ; int err ; enum vnic_dev_intr_mode tmp___0 ; unsigned int tmp___1 ; { { tmp = enic_get_dev(enic); dev = tmp; netdev = enic->netdev; err = enic_dev_intr_coal_timer_info(enic); } if (err != 0) { { dev_warn((struct device const *)dev, "Using default conversion factor for interrupt coalesce timer\n"); vnic_dev_intr_coal_timer_info_default(enic->vdev); } } else { } { err = enic_get_vnic_config(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Get vNIC configuration failed, aborting\n"); } return (err); } else { } { enic_get_res_counts(enic); enic_kdump_kernel_config(enic); err = enic_set_intr_mode(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Failed to set intr mode based on resource counts and system capabilities, aborting\n"); } return (err); } else { } { err = enic_alloc_vnic_resources(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Failed to alloc vNIC resources, aborting\n"); } goto err_out_free_vnic_resources; } else { } { enic_init_vnic_resources(enic); err = enic_set_rss_nic_cfg(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Failed to config nic, aborting\n"); } goto err_out_free_vnic_resources; } else { } { tmp___0 = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp___0 == 3U) { goto case_3; } else { } goto switch_default; switch_default: /* CIL Label */ { netif_napi_add(netdev, (struct napi_struct *)(& enic->napi), & enic_poll, 64); napi_hash_add((struct napi_struct *)(& enic->napi)); } goto ldv_57053; case_3: /* CIL Label */ i = 0U; goto ldv_57056; ldv_57055: { netif_napi_add(netdev, (struct napi_struct *)(& enic->napi) + (unsigned long )i, & enic_poll_msix_rq, 64); napi_hash_add((struct napi_struct *)(& enic->napi) + (unsigned long )i); i = i + 1U; } ldv_57056: ; if (i < enic->rq_count) { goto ldv_57055; } else { } i = 0U; goto ldv_57059; ldv_57058: { tmp___1 = enic_cq_wq(enic, i); netif_napi_add(netdev, (struct napi_struct *)(& enic->napi) + (unsigned long )tmp___1, & enic_poll_msix_wq, 64); i = i + 1U; } ldv_57059: ; if (i < enic->wq_count) { goto ldv_57058; } else { } goto ldv_57053; switch_break: /* CIL Label */ ; } ldv_57053: ; return (0); err_out_free_vnic_resources: { enic_clear_intr_mode(enic); enic_free_vnic_resources(enic); } return (err); } } static void enic_iounmap(struct enic *enic ) { unsigned int i ; { i = 0U; goto ldv_57068; ldv_57067: ; if ((unsigned long )enic->bar[i].vaddr != (unsigned long )((void *)0)) { { ldv_iounmap_171((void volatile *)enic->bar[i].vaddr); } } else { } i = i + 1U; ldv_57068: ; if (i <= 5U) { goto ldv_57067; } else { } return; } } static int enic_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct device *dev ; struct net_device *netdev ; struct enic *enic ; int using_dac ; unsigned int i ; int err ; int pos ; int num_pps ; void *tmp ; void *tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; int tmp___1 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___4 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { dev = & pdev->dev; using_dac = 0; pos = 0; num_pps = 1; netdev = ldv_alloc_etherdev_mqs_172(28672, 8U, 8U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { return (-12); } else { } { pci_set_drvdata(pdev, (void *)netdev); netdev->dev.parent = & pdev->dev; tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic->netdev = netdev; enic->pdev = pdev; err = pci_enable_device_mem(pdev); } if (err != 0) { { dev_err((struct device const *)dev, "Cannot enable PCI device, aborting\n"); } goto err_out_free_netdev; } else { } { err = pci_request_regions(pdev, "enic"); } if (err != 0) { { dev_err((struct device const *)dev, "Cannot request PCI regions, aborting\n"); } goto err_out_disable_device; } else { } { pci_set_master(pdev); err = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (err != 0) { { err = pci_set_dma_mask(pdev, 4294967295ULL); } if (err != 0) { { dev_err((struct device const *)dev, "No usable DMA configuration, aborting\n"); } goto err_out_release_regions; } else { } { err = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (err != 0) { { dev_err((struct device const *)dev, "Unable to obtain %u-bit DMA for consistent allocations, aborting\n", 32); } goto err_out_release_regions; } else { } } else { { err = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); } if (err != 0) { { dev_err((struct device const *)dev, "Unable to obtain %u-bit DMA for consistent allocations, aborting\n", 64); } goto err_out_release_regions; } else { } using_dac = 1; } i = 0U; goto ldv_57090; ldv_57089: ; if ((pdev->resource[i].flags & 512UL) == 0UL) { goto ldv_57087; } else { } { enic->bar[i].len = pdev->resource[i].start != 0ULL || pdev->resource[i].end != pdev->resource[i].start ? (unsigned long )((pdev->resource[i].end - pdev->resource[i].start) + 1ULL) : 0UL; enic->bar[i].vaddr = pci_iomap(pdev, (int )i, enic->bar[i].len); } if ((unsigned long )enic->bar[i].vaddr == (unsigned long )((void *)0)) { { dev_err((struct device const *)dev, "Cannot memory-map BAR %d, aborting\n", i); err = -19; } goto err_out_iounmap; } else { } enic->bar[i].bus_addr = pdev->resource[i].start; ldv_57087: i = i + 1U; ldv_57090: ; if (i <= 5U) { goto ldv_57089; } else { } { enic->vdev = vnic_dev_register((struct vnic_dev *)0, (void *)enic, pdev, (struct vnic_dev_bar *)(& enic->bar), 6U); } if ((unsigned long )enic->vdev == (unsigned long )((struct vnic_dev *)0)) { { dev_err((struct device const *)dev, "vNIC registration failed, aborting\n"); err = -19; } goto err_out_iounmap; } else { } { pos = pci_find_ext_capability(pdev, 16); } if (pos != 0) { { pci_read_config_word((struct pci_dev const *)pdev, pos + 14, & enic->num_vfs); } if ((unsigned int )enic->num_vfs != 0U) { { err = pci_enable_sriov(pdev, (int )enic->num_vfs); } if (err != 0) { { dev_err((struct device const *)dev, "SRIOV enable failed, aborting. pci_enable_sriov() returned %d\n", err); } goto err_out_vnic_unregister; } else { } enic->priv_flags = enic->priv_flags | 1U; num_pps = (int )enic->num_vfs; } else { } } else { } { tmp___0 = kcalloc((size_t )num_pps, 92UL, 208U); enic->pp = (struct enic_port_profile *)tmp___0; } if ((unsigned long )enic->pp == (unsigned long )((struct enic_port_profile *)0)) { err = -12; goto err_out_disable_sriov_pp; } else { } { err = enic_dev_open(enic); } if (err != 0) { { dev_err((struct device const *)dev, "vNIC dev open failed, aborting\n"); } goto err_out_disable_sriov; } else { } { spinlock_check(& enic->devcmd_lock); __raw_spin_lock_init(& enic->devcmd_lock.__annonCompField18.rlock, "&(&enic->devcmd_lock)->rlock", & __key); spinlock_check(& enic->enic_api_lock); __raw_spin_lock_init(& enic->enic_api_lock.__annonCompField18.rlock, "&(&enic->enic_api_lock)->rlock", & __key___0); err = enic_dev_set_ig_vlan_rewrite_mode(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Failed to set ingress vlan rewrite mode, aborting.\n"); } goto err_out_dev_close; } else { } { netif_carrier_off(netdev); tmp___1 = enic_is_dynamic(enic); } if (tmp___1 == 0) { { err = vnic_dev_init(enic->vdev, 0); } if (err != 0) { { dev_err((struct device const *)dev, "vNIC dev init failed, aborting\n"); } goto err_out_dev_close; } else { } } else { } { err = enic_dev_init(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Device initialization failed, aborting\n"); } goto err_out_dev_close; } else { } { netif_set_real_num_tx_queues(netdev, enic->wq_count); netif_set_real_num_rx_queues(netdev, enic->rq_count); init_timer_key(& enic->notify_timer, 0U, "(&enic->notify_timer)", & __key___1); enic->notify_timer.function = & enic_notify_timer; enic->notify_timer.data = (unsigned long )enic; enic_set_rx_coal_setting(enic); __init_work(& enic->reset, 0); __constr_expr_0.counter = 137438953408L; enic->reset.data = __constr_expr_0; lockdep_init_map(& enic->reset.lockdep_map, "(&enic->reset)", & __key___2, 0); INIT_LIST_HEAD(& enic->reset.entry); enic->reset.func = & enic_reset; __init_work(& enic->change_mtu_work, 0); __constr_expr_1.counter = 137438953408L; enic->change_mtu_work.data = __constr_expr_1; lockdep_init_map(& enic->change_mtu_work.lockdep_map, "(&enic->change_mtu_work)", & __key___3, 0); INIT_LIST_HEAD(& enic->change_mtu_work.entry); enic->change_mtu_work.func = & enic_change_mtu_work; i = 0U; } goto ldv_57107; ldv_57106: { spinlock_check((spinlock_t *)(& enic->wq_lock) + (unsigned long )i); __raw_spin_lock_init(& ((spinlock_t *)(& enic->wq_lock) + (unsigned long )i)->__annonCompField18.rlock, "&(&enic->wq_lock[i])->rlock", & __key___4); i = i + 1U; } ldv_57107: ; if (i < enic->wq_count) { goto ldv_57106; } else { } { enic->port_mtu = (u32 )enic->config.mtu; enic_change_mtu(netdev, (int )enic->port_mtu); err = enic_set_mac_addr(netdev, (char *)(& enic->mac_addr)); } if (err != 0) { { dev_err((struct device const *)dev, "Invalid MAC address, aborting\n"); } goto err_out_dev_deinit; } else { } { enic->tx_coalesce_usecs = enic->config.intr_timer_usec; enic->rx_coalesce_usecs = enic->tx_coalesce_usecs; tmp___2 = enic_is_dynamic(enic); } if (tmp___2 != 0) { netdev->netdev_ops = & enic_netdev_dynamic_ops; } else { { tmp___3 = enic_is_sriov_vf(enic); } if (tmp___3 != 0) { netdev->netdev_ops = & enic_netdev_dynamic_ops; } else { netdev->netdev_ops = & enic_netdev_ops; } } { netdev->watchdog_timeo = 500; enic_set_ethtool_ops(netdev); netdev->features = netdev->features | 384ULL; } if ((enic->config.flags & 2048U) != 0U) { { netdev->features = netdev->features & 0xffffffffffffff7fULL; enic->loop_enable = 1U; enic->loop_tag = enic->config.loop_tag; _dev_info((struct device const *)dev, "loopback tag=0x%04x\n", (int )enic->loop_tag); } } else { } if ((enic->config.flags & 8U) != 0U) { netdev->hw_features = netdev->hw_features | 9ULL; } else { } if ((int )enic->config.flags & 1) { netdev->hw_features = netdev->hw_features | 1638400ULL; } else { } if ((enic->config.flags & 16U) != 0U) { netdev->hw_features = netdev->hw_features | 8589934592ULL; } else { } if ((enic->config.flags & 4U) != 0U) { netdev->hw_features = netdev->hw_features | 17179869184ULL; } else { } netdev->features = netdev->features | netdev->hw_features; netdev->hw_features = netdev->hw_features | 4294967296ULL; if (using_dac != 0) { netdev->features = netdev->features | 32ULL; } else { } { netdev->priv_flags = netdev->priv_flags | 131072U; err = ldv_register_netdev_173(netdev); } if (err != 0) { { dev_err((struct device const *)dev, "Cannot register net device, aborting\n"); } goto err_out_dev_deinit; } else { } enic->rx_copybreak = 256U; return (0); err_out_dev_deinit: { enic_dev_deinit(enic); } err_out_dev_close: { vnic_dev_close(enic->vdev); } err_out_disable_sriov: { kfree((void const *)enic->pp); } err_out_disable_sriov_pp: { tmp___4 = enic_sriov_enabled(enic); } if (tmp___4 != 0) { { pci_disable_sriov(pdev); enic->priv_flags = enic->priv_flags & 4294967294U; } } else { } err_out_vnic_unregister: { vnic_dev_unregister(enic->vdev); } err_out_iounmap: { enic_iounmap(enic); } err_out_release_regions: { pci_release_regions(pdev); } err_out_disable_device: { pci_disable_device(pdev); } err_out_free_netdev: { ldv_free_netdev_174(netdev); } return (err); } } static void enic_remove(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct enic *enic ; void *tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; } if ((unsigned long )netdev != (unsigned long )((struct net_device *)0)) { { tmp___0 = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp___0; cancel_work_sync(& enic->reset); cancel_work_sync(& enic->change_mtu_work); ldv_unregister_netdev_175(netdev); enic_dev_deinit(enic); vnic_dev_close(enic->vdev); tmp___1 = enic_sriov_enabled(enic); } if (tmp___1 != 0) { { pci_disable_sriov(pdev); enic->priv_flags = enic->priv_flags & 4294967294U; } } else { } { kfree((void const *)enic->pp); vnic_dev_unregister(enic->vdev); enic_iounmap(enic); pci_release_regions(pdev); pci_disable_device(pdev); ldv_free_netdev_176(netdev); } } else { } return; } } static struct pci_driver enic_driver = {{0, 0}, "enic", (struct pci_device_id const *)(& enic_id_table), & enic_probe, & enic_remove, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int enic_init_module(void) { int tmp ; { { printk("\016enic: %s, ver %s\n", (char *)"Cisco VIC Ethernet NIC Driver", (char *)"2.1.1.83"); tmp = ldv___pci_register_driver_177(& enic_driver, & __this_module, "enic"); } return (tmp); } } static void enic_cleanup_module(void) { { { ldv_pci_unregister_driver_178(& enic_driver); } return; } } void ldv_EMGentry_exit_enic_cleanup_module_16_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_enic_init_module_16_7(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_13_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_14_1(struct pci_driver *arg0 ) ; void ldv_dispatch_irq_deregister_7_1(int arg0 ) ; void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_10_4(struct net_device *arg0 ) ; void ldv_dispatch_register_15_2(struct pci_driver *arg0 ) ; void ldv_dummy_resourceless_instance_callback_2_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_13(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char * ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char *arg4 ) ; void ldv_dummy_resourceless_instance_callback_2_16(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_17(int (*arg0)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 , unsigned int *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_20(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_21(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_24(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_27(int (*arg0)(struct net_device * , struct ethtool_tunable * , void * ) , struct net_device *arg1 , struct ethtool_tunable *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_28(int (*arg0)(struct napi_struct * ) , struct napi_struct *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_29(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_32(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_33(int (*arg0)(struct net_device * , int , struct sk_buff * ) , struct net_device *arg1 , int arg2 , struct sk_buff *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_37(int (*arg0)(struct net_device * , struct sk_buff * , unsigned short , unsigned int ) , struct net_device *arg1 , struct sk_buff *arg2 , unsigned short arg3 , unsigned int arg4 ) ; void ldv_dummy_resourceless_instance_callback_2_40(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_41(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_42(int (*arg0)(struct net_device * , int , unsigned char * ) , struct net_device *arg1 , int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_45(int (*arg0)(struct net_device * , int , struct nlattr ** ) , struct net_device *arg1 , int arg2 , struct nlattr **arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_48(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_49(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_50(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_51(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_54(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_57(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_58(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_61(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char arg4 ) ; void ldv_dummy_resourceless_instance_callback_2_64(int (*arg0)(struct net_device * , struct ethtool_tunable * , void * ) , struct net_device *arg1 , struct ethtool_tunable *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_8(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_entry_EMGentry_16(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_2(void *arg0 ) ; int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_3(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_10_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_timer_instance_callback_4_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_4(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_13_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_16 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; void ldv_EMGentry_exit_enic_cleanup_module_16_2(void (*arg0)(void) ) { { { enic_cleanup_module(); } return; } } int ldv_EMGentry_init_enic_init_module_16_7(int (*arg0)(void) ) { int tmp ; { { tmp = enic_init_module(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_15_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_15_pci_driver_pci_driver = arg1; ldv_dispatch_register_15_2(ldv_15_pci_driver_pci_driver); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_5_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3264UL); ldv_5_netdev_net_device = (struct net_device *)tmp; } return (ldv_5_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_dispatch_deregister_13_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_deregister_14_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_irq_deregister_7_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } return; } } void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } } return; } } void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } } return; } } void ldv_dispatch_register_10_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_dummy_resourceless_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_net_dummy_resourceless_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_15_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_pci_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_pci_pci_instance_3((void *)cf_arg_3); } return; } } void ldv_dummy_resourceless_instance_callback_2_28(int (*arg0)(struct napi_struct * ) , struct napi_struct *arg1 ) { { { enic_busy_poll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_29(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { enic_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_32(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { enic_get_stats(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_33(int (*arg0)(struct net_device * , int , struct sk_buff * ) , struct net_device *arg1 , int arg2 , struct sk_buff *arg3 ) { { { enic_get_vf_port(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_poll_controller(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_37(int (*arg0)(struct net_device * , struct sk_buff * , unsigned short , unsigned int ) , struct net_device *arg1 , struct sk_buff *arg2 , unsigned short arg3 , unsigned int arg4 ) { { { enic_rx_flow_steer(arg1, (struct sk_buff const *)arg2, (int )arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_2_40(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { enic_set_mac_address_dynamic(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_41(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_42(int (*arg0)(struct net_device * , int , unsigned char * ) , struct net_device *arg1 , int arg2 , unsigned char *arg3 ) { { { enic_set_vf_mac(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_45(int (*arg0)(struct net_device * , int , struct nlattr ** ) , struct net_device *arg1 , int arg2 , struct nlattr **arg3 ) { { { enic_set_vf_port(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_48(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { enic_hard_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_49(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_50(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_51(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { enic_vlan_rx_add_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_54(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { enic_vlan_rx_kill_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_entry_EMGentry_16(void *arg0 ) { void (*ldv_16_exit_enic_cleanup_module_default)(void) ; int (*ldv_16_init_enic_init_module_default)(void) ; int ldv_16_ret_default ; int tmp ; { { ldv_16_ret_default = ldv_EMGentry_init_enic_init_module_16_7(ldv_16_init_enic_init_module_default); ldv_16_ret_default = ldv_ldv_post_init_179(ldv_16_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(ldv_16_ret_default != 0); ldv_ldv_check_final_state_180(); assume_abort_if_not(0); } return; } else { { assume_abort_if_not(ldv_16_ret_default == 0); ldv_EMGentry_exit_enic_cleanup_module_16_2(ldv_16_exit_enic_cleanup_module_default); ldv_ldv_check_final_state_181(); assume_abort_if_not(0); } return; } return; } } int main(void) { { { ldv_ldv_initialize_182(); ldv_entry_EMGentry_16((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_7_line_line ; { { ldv_7_line_line = arg1; ldv_dispatch_irq_deregister_7_1(ldv_7_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_8_netdev_net_device ; { { ldv_8_netdev_net_device = arg1; ldv_free((void *)ldv_8_netdev_net_device); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = enic_isr_legacy(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = enic_isr_msi(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { assume_abort_if_not((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_1_line_line = data->arg0; ldv_1_callback_handler = data->arg1; ldv_1_thread_thread = data->arg2; ldv_1_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } } else { { assume_abort_if_not((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } void ldv_net_dummy_resourceless_instance_2(void *arg0 ) { int (*ldv_2_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_2_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) ; int (*ldv_2_callback_get_rxfh)(struct net_device * , unsigned int * , unsigned char * , unsigned char * ) ; unsigned int (*ldv_2_callback_get_rxfh_key_size)(struct net_device * ) ; int (*ldv_2_callback_get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) ; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_2_callback_get_tunable)(struct net_device * , struct ethtool_tunable * , void * ) ; int (*ldv_2_callback_ndo_busy_poll)(struct napi_struct * ) ; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) ; struct rtnl_link_stats64 *(*ldv_2_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; int (*ldv_2_callback_ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; void (*ldv_2_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_2_callback_ndo_rx_flow_steer)(struct net_device * , struct sk_buff * , unsigned short , unsigned int ) ; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) ; int (*ldv_2_callback_ndo_set_vf_mac)(struct net_device * , int , unsigned char * ) ; int (*ldv_2_callback_ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_2_callback_ndo_vlan_rx_add_vid)(struct net_device * , unsigned short , unsigned short ) ; int (*ldv_2_callback_ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short , unsigned short ) ; int (*ldv_2_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_2_callback_set_rxfh)(struct net_device * , unsigned int * , unsigned char * , unsigned char ) ; int (*ldv_2_callback_set_tunable)(struct net_device * , struct ethtool_tunable * , void * ) ; struct net_device *ldv_2_container_net_device ; struct ethtool_cmd *ldv_2_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_2_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_2_container_struct_ethtool_drvinfo_ptr ; struct ethtool_rxnfc *ldv_2_container_struct_ethtool_rxnfc_ptr ; struct ethtool_stats *ldv_2_container_struct_ethtool_stats_ptr ; struct ethtool_tunable *ldv_2_container_struct_ethtool_tunable_ptr ; struct napi_struct *ldv_2_container_struct_napi_struct_ptr ; struct nlattr **ldv_2_container_struct_nlattr_ptr_ptr ; struct rtnl_link_stats64 *ldv_2_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_2_container_struct_sk_buff_ptr ; unsigned int *ldv_2_ldv_param_13_1_default ; unsigned char *ldv_2_ldv_param_13_2_default ; unsigned char *ldv_2_ldv_param_13_3_default ; unsigned int *ldv_2_ldv_param_17_2_default ; int ldv_2_ldv_param_21_1_default ; unsigned int ldv_2_ldv_param_24_1_default ; unsigned char *ldv_2_ldv_param_24_2_default ; int ldv_2_ldv_param_29_1_default ; int ldv_2_ldv_param_33_1_default ; unsigned short ldv_2_ldv_param_37_2_default ; unsigned int ldv_2_ldv_param_37_3_default ; int ldv_2_ldv_param_42_1_default ; unsigned char *ldv_2_ldv_param_42_2_default ; int ldv_2_ldv_param_45_1_default ; unsigned short ldv_2_ldv_param_51_1_default ; unsigned short ldv_2_ldv_param_51_2_default ; unsigned short ldv_2_ldv_param_54_1_default ; unsigned short ldv_2_ldv_param_54_2_default ; unsigned int ldv_2_ldv_param_58_1_default ; unsigned int *ldv_2_ldv_param_61_1_default ; unsigned char *ldv_2_ldv_param_61_2_default ; unsigned char ldv_2_ldv_param_61_3_default ; unsigned long long *ldv_2_ldv_param_8_2_default ; struct ldv_struct_dummy_resourceless_instance_2 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; { data = (struct ldv_struct_dummy_resourceless_instance_2 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_2 *)0)) { { ldv_2_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_2; return; ldv_call_2: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } if (tmp == 30) { goto case_30; } else { } if (tmp == 31) { goto case_31; } else { } if (tmp == 32) { goto case_32; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_64(ldv_2_callback_set_tunable, ldv_2_container_net_device, ldv_2_container_struct_ethtool_tunable_ptr, (void *)ldv_2_container_struct_ethtool_cmd_ptr); } goto ldv_call_2; case_2: /* CIL Label */ { tmp___0 = ldv_xmalloc(4UL); ldv_2_ldv_param_61_1_default = (unsigned int *)tmp___0; tmp___1 = ldv_xmalloc(1UL); ldv_2_ldv_param_61_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_2_61(ldv_2_callback_set_rxfh, ldv_2_container_net_device, ldv_2_ldv_param_61_1_default, ldv_2_ldv_param_61_2_default, (int )ldv_2_ldv_param_61_3_default); ldv_free((void *)ldv_2_ldv_param_61_1_default); ldv_free((void *)ldv_2_ldv_param_61_2_default); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_58(ldv_2_callback_set_msglevel, ldv_2_container_net_device, ldv_2_ldv_param_58_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_57(ldv_2_callback_set_coalesce, ldv_2_container_net_device, ldv_2_container_struct_ethtool_coalesce_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_54(ldv_2_callback_ndo_vlan_rx_kill_vid, ldv_2_container_net_device, (int )ldv_2_ldv_param_54_1_default, (int )ldv_2_ldv_param_54_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_51(ldv_2_callback_ndo_vlan_rx_add_vid, ldv_2_container_net_device, (int )ldv_2_ldv_param_51_1_default, (int )ldv_2_ldv_param_51_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_50(ldv_2_callback_ndo_validate_addr, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_49(ldv_2_callback_ndo_tx_timeout, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_48(ldv_2_callback_ndo_start_xmit, ldv_2_container_struct_sk_buff_ptr, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_45(ldv_2_callback_ndo_set_vf_port, ldv_2_container_net_device, ldv_2_ldv_param_45_1_default, ldv_2_container_struct_nlattr_ptr_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_11: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_2_ldv_param_42_2_default = (unsigned char *)tmp___2; ldv_dummy_resourceless_instance_callback_2_42(ldv_2_callback_ndo_set_vf_mac, ldv_2_container_net_device, ldv_2_ldv_param_42_1_default, ldv_2_ldv_param_42_2_default); ldv_free((void *)ldv_2_ldv_param_42_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_41(ldv_2_callback_ndo_set_rx_mode, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_40(ldv_2_callback_ndo_set_mac_address, ldv_2_container_net_device, (void *)ldv_2_container_struct_ethtool_cmd_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_37(ldv_2_callback_ndo_rx_flow_steer, ldv_2_container_net_device, ldv_2_container_struct_sk_buff_ptr, (int )ldv_2_ldv_param_37_2_default, ldv_2_ldv_param_37_3_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_36(ldv_2_callback_ndo_poll_controller, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_33(ldv_2_callback_ndo_get_vf_port, ldv_2_container_net_device, ldv_2_ldv_param_33_1_default, ldv_2_container_struct_sk_buff_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_32(ldv_2_callback_ndo_get_stats64, ldv_2_container_net_device, ldv_2_container_struct_rtnl_link_stats64_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_29(ldv_2_callback_ndo_change_mtu, ldv_2_container_net_device, ldv_2_ldv_param_29_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_28(ldv_2_callback_ndo_busy_poll, ldv_2_container_struct_napi_struct_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_27(ldv_2_callback_get_tunable, ldv_2_container_net_device, ldv_2_container_struct_ethtool_tunable_ptr, (void *)ldv_2_container_struct_ethtool_cmd_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_21: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_2_ldv_param_24_2_default = (unsigned char *)tmp___3; ldv_dummy_resourceless_instance_callback_2_24(ldv_2_callback_get_strings, ldv_2_container_net_device, ldv_2_ldv_param_24_1_default, ldv_2_ldv_param_24_2_default); ldv_free((void *)ldv_2_ldv_param_24_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_21(ldv_2_callback_get_sset_count, ldv_2_container_net_device, ldv_2_ldv_param_21_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_20(ldv_2_callback_get_settings, ldv_2_container_net_device, ldv_2_container_struct_ethtool_cmd_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_24: /* CIL Label */ { tmp___4 = ldv_xmalloc(4UL); ldv_2_ldv_param_17_2_default = (unsigned int *)tmp___4; ldv_dummy_resourceless_instance_callback_2_17(ldv_2_callback_get_rxnfc, ldv_2_container_net_device, ldv_2_container_struct_ethtool_rxnfc_ptr, ldv_2_ldv_param_17_2_default); ldv_free((void *)ldv_2_ldv_param_17_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_16(ldv_2_callback_get_rxfh_key_size, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_26: /* CIL Label */ { tmp___5 = ldv_xmalloc(4UL); ldv_2_ldv_param_13_1_default = (unsigned int *)tmp___5; tmp___6 = ldv_xmalloc(1UL); ldv_2_ldv_param_13_2_default = (unsigned char *)tmp___6; tmp___7 = ldv_xmalloc(1UL); ldv_2_ldv_param_13_3_default = (unsigned char *)tmp___7; ldv_dummy_resourceless_instance_callback_2_13(ldv_2_callback_get_rxfh, ldv_2_container_net_device, ldv_2_ldv_param_13_1_default, ldv_2_ldv_param_13_2_default, ldv_2_ldv_param_13_3_default); ldv_free((void *)ldv_2_ldv_param_13_1_default); ldv_free((void *)ldv_2_ldv_param_13_2_default); ldv_free((void *)ldv_2_ldv_param_13_3_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_12(ldv_2_callback_get_msglevel, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_11(ldv_2_callback_get_link, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_29: /* CIL Label */ { tmp___8 = ldv_xmalloc(8UL); ldv_2_ldv_param_8_2_default = (unsigned long long *)tmp___8; ldv_dummy_resourceless_instance_callback_2_8(ldv_2_callback_get_ethtool_stats, ldv_2_container_net_device, ldv_2_container_struct_ethtool_stats_ptr, ldv_2_ldv_param_8_2_default); ldv_free((void *)ldv_2_ldv_param_8_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_7(ldv_2_callback_get_drvinfo, ldv_2_container_net_device, ldv_2_container_struct_ethtool_drvinfo_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_get_coalesce, ldv_2_container_net_device, ldv_2_container_struct_ethtool_coalesce_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_32: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = enic_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { enic_remove(arg1); } return; } } void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_3(void *arg0 ) { struct pci_driver *ldv_3_container_pci_driver ; struct pci_dev *ldv_3_resource_dev ; struct pm_message ldv_3_resource_pm_message ; struct pci_device_id *ldv_3_resource_struct_pci_device_id_ptr ; int ldv_3_ret_default ; struct ldv_struct_pci_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_3 *)arg0; ldv_3_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_3 *)0)) { { ldv_3_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_3_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_3_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_3; return; ldv_main_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_183(); ldv_3_ret_default = ldv_pci_instance_probe_3_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_3_container_pci_driver->probe, ldv_3_resource_dev, ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = ldv_ldv_post_probe_184(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { assume_abort_if_not(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { assume_abort_if_not(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_dev); ldv_free((void *)ldv_3_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_3: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_3; case_2: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_3_8(ldv_3_container_pci_driver->suspend, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_late_3_7(ldv_3_container_pci_driver->suspend_late, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_3_6(ldv_3_container_pci_driver->resume_early, ldv_3_resource_dev); } } else { } if ((unsigned long )ldv_3_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_3_5(ldv_3_container_pci_driver->resume, ldv_3_resource_dev); } } else { } goto ldv_call_3; case_3: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_3_3(ldv_3_container_pci_driver->shutdown, ldv_3_resource_dev); } } else { } { ldv_pci_instance_release_3_2(ldv_3_container_pci_driver->remove, ldv_3_resource_dev); } goto ldv_main_3; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_14_pci_driver_pci_driver ; { { ldv_14_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_14_1(ldv_14_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_10_netdev_net_device ; int ldv_10_ret_default ; int tmp ; int tmp___0 ; { { ldv_10_ret_default = 1; ldv_10_ret_default = ldv_pre_register_netdev(); ldv_10_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { assume_abort_if_not(ldv_10_ret_default == 0); ldv_10_ret_default = ldv_register_netdev_open_10_6((ldv_10_netdev_net_device->netdev_ops)->ndo_open, ldv_10_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(ldv_10_ret_default == 0); ldv_dispatch_register_10_4(ldv_10_netdev_net_device); } } else { { assume_abort_if_not(ldv_10_ret_default != 0); } } } else { { assume_abort_if_not(ldv_10_ret_default != 0); } } return (ldv_10_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_10_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = enic_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_12_callback_handler)(int , void * ) ; void *ldv_12_data_data ; int ldv_12_line_line ; enum irqreturn (*ldv_12_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_12_line_line = (int )arg1; ldv_12_callback_handler = arg2; ldv_12_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_12_data_data = arg5; ldv_dispatch_irq_register_12_2(ldv_12_line_line, ldv_12_callback_handler, ldv_12_thread_thread, ldv_12_data_data); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_timer_instance_callback_4_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_4(void *arg0 ) { struct timer_list *ldv_4_container_timer_list ; struct ldv_struct_timer_instance_4 *data ; { data = (struct ldv_struct_timer_instance_4 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_4 *)0)) { { ldv_4_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_4_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_4_2(ldv_4_container_timer_list->function, ldv_4_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_13_netdev_net_device ; { { ldv_13_netdev_net_device = arg1; ldv_unregister_netdev_stop_13_2((ldv_13_netdev_net_device->netdev_ops)->ndo_stop, ldv_13_netdev_net_device); ldv_dispatch_deregister_13_1(ldv_13_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_13_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_stop(arg1); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_calloc(n, size); ldv_after_alloc(res); } return (res); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_zalloc(size); } return (tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_105(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); } return ((struct sk_buff *)tmp); } } __inline static void ldv_spin_lock_109(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_112(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_126(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_bpoll_lock_of_vnic_rq(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_127(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_bpoll_lock_of_vnic_rq(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_bh_130(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_bpoll_lock_of_vnic_rq(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_131(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_bpoll_lock_of_vnic_rq(); spin_unlock_bh(lock); } return; } } __inline static void ldv_spin_lock_136(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_137(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_devcmd_lock_of_enic(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_devcmd_lock_of_enic(); spin_unlock_bh(lock); } return; } } static int ldv_mod_timer_145(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_146(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_147(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_148(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_149(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_150(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_151(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_154(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_155(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_rtnl_lock_156(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static int ldv_del_timer_sync_157(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_rtnl_unlock_158(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_unlock_159(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_unlock_160(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_167(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } __inline static void ldv_spin_lock_168(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_enic_api_lock_of_enic(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_169(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_enic_api_lock_of_enic(); spin_unlock(lock); } return; } } static void ldv_rtnl_unlock_170(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_iounmap_171(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_172(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___10 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_173(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___11 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_174(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_175(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_176(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_177(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___12 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_178(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_179(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_180(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_181(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_182(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_183(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_184(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } __inline static void writeq(unsigned long val , void volatile *addr ) { { __asm__ volatile ("movq %0,%1": : "r" (val), "m" (*((unsigned long volatile *)addr)): "memory"); return; } } void *vnic_dev_get_res(struct vnic_dev *vdev , enum vnic_res_type type , unsigned int index ) ; void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring ) ; int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev , struct vnic_dev_ring *ring , unsigned int desc_count , unsigned int desc_size ) ; void vnic_dev_free_desc_ring(struct vnic_dev *vdev , struct vnic_dev_ring *ring ) ; void vnic_cq_free(struct vnic_cq *cq ) ; int vnic_cq_alloc(struct vnic_dev *vdev , struct vnic_cq *cq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) ; void vnic_cq_init(struct vnic_cq *cq , unsigned int flow_control_enable , unsigned int color_enable , unsigned int cq_head , unsigned int cq_tail , unsigned int cq_tail_color , unsigned int interrupt_enable , unsigned int cq_entry_enable , unsigned int cq_message_enable , unsigned int interrupt_offset , u64 cq_message_addr ) ; void vnic_cq_free(struct vnic_cq *cq ) { { { vnic_dev_free_desc_ring(cq->vdev, & cq->ring); cq->ctrl = (struct vnic_cq_ctrl *)0; } return; } } int vnic_cq_alloc(struct vnic_dev *vdev , struct vnic_cq *cq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) { int err ; void *tmp ; { { cq->index = index; cq->vdev = vdev; tmp = vnic_dev_get_res(vdev, 3, index); cq->ctrl = (struct vnic_cq_ctrl *)tmp; } if ((unsigned long )cq->ctrl == (unsigned long )((struct vnic_cq_ctrl *)0)) { { printk("\venic: Failed to hook CQ[%d] resource\n", index); } return (-22); } else { } { err = vnic_dev_alloc_desc_ring(vdev, & cq->ring, desc_count, desc_size); } if (err != 0) { return (err); } else { } return (0); } } void vnic_cq_init(struct vnic_cq *cq , unsigned int flow_control_enable , unsigned int color_enable , unsigned int cq_head , unsigned int cq_tail , unsigned int cq_tail_color , unsigned int interrupt_enable , unsigned int cq_entry_enable , unsigned int cq_message_enable , unsigned int interrupt_offset , u64 cq_message_addr ) { u64 paddr ; { { paddr = cq->ring.base_addr; writeq((unsigned long )paddr, (void volatile *)(& (cq->ctrl)->ring_base)); iowrite32(cq->ring.desc_count, (void *)(& (cq->ctrl)->ring_size)); iowrite32(flow_control_enable, (void *)(& (cq->ctrl)->flow_control_enable)); iowrite32(color_enable, (void *)(& (cq->ctrl)->color_enable)); iowrite32(cq_head, (void *)(& (cq->ctrl)->cq_head)); iowrite32(cq_tail, (void *)(& (cq->ctrl)->cq_tail)); iowrite32(cq_tail_color, (void *)(& (cq->ctrl)->cq_tail_color)); iowrite32(interrupt_enable, (void *)(& (cq->ctrl)->interrupt_enable)); iowrite32(cq_entry_enable, (void *)(& (cq->ctrl)->cq_entry_enable)); iowrite32(cq_message_enable, (void *)(& (cq->ctrl)->cq_message_enable)); iowrite32(interrupt_offset, (void *)(& (cq->ctrl)->interrupt_offset)); writeq((unsigned long )cq_message_addr, (void volatile *)(& (cq->ctrl)->cq_message_addr)); cq->interrupt_offset = interrupt_offset; } return; } } void vnic_cq_clean(struct vnic_cq *cq ) { { { cq->to_clean = 0U; cq->last_color = 0U; iowrite32(0U, (void *)(& (cq->ctrl)->cq_head)); iowrite32(0U, (void *)(& (cq->ctrl)->cq_tail)); iowrite32(1U, (void *)(& (cq->ctrl)->cq_tail_color)); vnic_dev_clear_desc_ring(& cq->ring); } return; } } u32 vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev , u32 usec ) ; void vnic_intr_free(struct vnic_intr *intr ) ; int vnic_intr_alloc(struct vnic_dev *vdev , struct vnic_intr *intr , unsigned int index ) ; void vnic_intr_init(struct vnic_intr *intr , u32 coalescing_timer , unsigned int coalescing_type , unsigned int mask_on_assertion ) ; void vnic_intr_free(struct vnic_intr *intr ) { { intr->ctrl = (struct vnic_intr_ctrl *)0; return; } } int vnic_intr_alloc(struct vnic_dev *vdev , struct vnic_intr *intr , unsigned int index ) { void *tmp ; { { intr->index = index; intr->vdev = vdev; tmp = vnic_dev_get_res(vdev, 10, index); intr->ctrl = (struct vnic_intr_ctrl *)tmp; } if ((unsigned long )intr->ctrl == (unsigned long )((struct vnic_intr_ctrl *)0)) { { printk("\venic: Failed to hook INTR[%d].ctrl resource\n", index); } return (-22); } else { } return (0); } } void vnic_intr_init(struct vnic_intr *intr , u32 coalescing_timer , unsigned int coalescing_type , unsigned int mask_on_assertion ) { { { vnic_intr_coalescing_timer_set(intr, coalescing_timer); iowrite32(coalescing_type, (void *)(& (intr->ctrl)->coalescing_type)); iowrite32(mask_on_assertion, (void *)(& (intr->ctrl)->mask_on_assertion)); iowrite32(0U, (void *)(& (intr->ctrl)->int_credits)); } return; } } void vnic_intr_coalescing_timer_set(struct vnic_intr *intr , u32 coalescing_timer ) { u32 tmp ; { { tmp = vnic_dev_intr_coal_timer_usec_to_hw(intr->vdev, coalescing_timer); iowrite32(tmp, (void *)(& (intr->ctrl)->coalescing_timer)); } return; } } void vnic_intr_clean(struct vnic_intr *intr ) { { { iowrite32(0U, (void *)(& (intr->ctrl)->int_credits)); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static unsigned int vnic_wq_desc_used(struct vnic_wq *wq ) { { return ((wq->ring.desc_count - wq->ring.desc_avail) - 1U); } } void vnic_wq_free(struct vnic_wq *wq ) ; int vnic_wq_alloc(struct vnic_dev *vdev , struct vnic_wq *wq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) ; void vnic_wq_init(struct vnic_wq *wq , unsigned int cq_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) ; static int vnic_wq_alloc_bufs(struct vnic_wq *wq ) { struct vnic_wq_buf *buf ; unsigned int i ; unsigned int j ; unsigned int count ; unsigned int blks ; void *tmp ; struct vnic_wq_buf *tmp___0 ; { count = wq->ring.desc_count; blks = ((count + (count <= 63U ? 32U : 64U)) - 1U) / (count <= 63U ? 32U : 64U); i = 0U; goto ldv_46633; ldv_46632: { tmp = kzalloc(count <= 63U ? 2304UL : 4608UL, 32U); wq->bufs[i] = (struct vnic_wq_buf *)tmp; } if ((unsigned long )wq->bufs[i] == (unsigned long )((struct vnic_wq_buf *)0)) { return (-12); } else { } i = i + 1U; ldv_46633: ; if (i < blks) { goto ldv_46632; } else { } i = 0U; goto ldv_46639; ldv_46638: buf = wq->bufs[i]; j = 0U; goto ldv_46637; ldv_46636: buf->index = i * (count <= 63U ? 32U : 64U) + j; buf->desc = wq->ring.descs + (unsigned long )(wq->ring.desc_size * buf->index); if (buf->index + 1U == count) { buf->next = wq->bufs[0]; (buf->next)->prev = buf; goto ldv_46635; } else if (j + 1U == (count <= 63U ? 32U : 64U)) { buf->next = wq->bufs[i + 1U]; (buf->next)->prev = buf; } else { buf->next = buf + 1UL; (buf->next)->prev = buf; buf = buf + 1; } j = j + 1U; ldv_46637: ; if (j < (count <= 63U ? 32U : 64U)) { goto ldv_46636; } else { } ldv_46635: i = i + 1U; ldv_46639: ; if (i < blks) { goto ldv_46638; } else { } tmp___0 = wq->bufs[0]; wq->to_clean = tmp___0; wq->to_use = tmp___0; return (0); } } void vnic_wq_free(struct vnic_wq *wq ) { struct vnic_dev *vdev ; unsigned int i ; { { vdev = wq->vdev; vnic_dev_free_desc_ring(vdev, & wq->ring); i = 0U; } goto ldv_46647; ldv_46646: ; if ((unsigned long )wq->bufs[i] != (unsigned long )((struct vnic_wq_buf *)0)) { { kfree((void const *)wq->bufs[i]); wq->bufs[i] = (struct vnic_wq_buf *)0; } } else { } i = i + 1U; ldv_46647: ; if (i <= 63U) { goto ldv_46646; } else { } wq->ctrl = (struct vnic_wq_ctrl *)0; return; } } int vnic_wq_alloc(struct vnic_dev *vdev , struct vnic_wq *wq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) { int err ; void *tmp ; { { wq->index = index; wq->vdev = vdev; tmp = vnic_dev_get_res(vdev, 1, index); wq->ctrl = (struct vnic_wq_ctrl *)tmp; } if ((unsigned long )wq->ctrl == (unsigned long )((struct vnic_wq_ctrl *)0)) { { printk("\venic: Failed to hook WQ[%d] resource\n", index); } return (-22); } else { } { vnic_wq_disable(wq); err = vnic_dev_alloc_desc_ring(vdev, & wq->ring, desc_count, desc_size); } if (err != 0) { return (err); } else { } { err = vnic_wq_alloc_bufs(wq); } if (err != 0) { { vnic_wq_free(wq); } return (err); } else { } return (0); } } static void vnic_wq_init_start(struct vnic_wq *wq , unsigned int cq_index , unsigned int fetch_index , unsigned int posted_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) { u64 paddr ; unsigned int count ; struct vnic_wq_buf *tmp ; { { count = wq->ring.desc_count; paddr = wq->ring.base_addr; writeq((unsigned long )paddr, (void volatile *)(& (wq->ctrl)->ring_base)); iowrite32(count, (void *)(& (wq->ctrl)->ring_size)); iowrite32(fetch_index, (void *)(& (wq->ctrl)->fetch_index)); iowrite32(posted_index, (void *)(& (wq->ctrl)->posted_index)); iowrite32(cq_index, (void *)(& (wq->ctrl)->cq_index)); iowrite32(error_interrupt_enable, (void *)(& (wq->ctrl)->error_interrupt_enable)); iowrite32(error_interrupt_offset, (void *)(& (wq->ctrl)->error_interrupt_offset)); iowrite32(0U, (void *)(& (wq->ctrl)->error_status)); tmp = wq->bufs[fetch_index / (count <= 63U ? 32U : 64U)] + (unsigned long )(fetch_index % (count <= 63U ? 32U : 64U)); wq->to_clean = tmp; wq->to_use = tmp; } return; } } void vnic_wq_init(struct vnic_wq *wq , unsigned int cq_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) { { { vnic_wq_init_start(wq, cq_index, 0U, 0U, error_interrupt_enable, error_interrupt_offset); } return; } } unsigned int vnic_wq_error_status(struct vnic_wq *wq ) { unsigned int tmp ; { { tmp = ioread32((void *)(& (wq->ctrl)->error_status)); } return (tmp); } } void vnic_wq_enable(struct vnic_wq *wq ) { { { iowrite32(1U, (void *)(& (wq->ctrl)->enable)); } return; } } int vnic_wq_disable(struct vnic_wq *wq ) { unsigned int wait ; unsigned int tmp ; { { iowrite32(0U, (void *)(& (wq->ctrl)->enable)); wait = 0U; } goto ldv_46684; ldv_46683: { tmp = ioread32((void *)(& (wq->ctrl)->running)); } if (tmp == 0U) { return (0); } else { } { __const_udelay(42950UL); wait = wait + 1U; } ldv_46684: ; if (wait <= 999U) { goto ldv_46683; } else { } { printk("\venic: Failed to disable WQ[%d]\n", wq->index); } return (-110); } } void vnic_wq_clean(struct vnic_wq *wq , void (*buf_clean)(struct vnic_wq * , struct vnic_wq_buf * ) ) { struct vnic_wq_buf *buf ; struct vnic_wq_buf *tmp ; unsigned int tmp___0 ; struct vnic_wq_buf *tmp___1 ; { buf = wq->to_clean; goto ldv_46694; ldv_46693: { (*buf_clean)(wq, buf); tmp = buf->next; wq->to_clean = tmp; buf = tmp; wq->ring.desc_avail = wq->ring.desc_avail + 1U; } ldv_46694: { tmp___0 = vnic_wq_desc_used(wq); } if (tmp___0 != 0U) { goto ldv_46693; } else { } { tmp___1 = wq->bufs[0]; wq->to_clean = tmp___1; wq->to_use = tmp___1; iowrite32(0U, (void *)(& (wq->ctrl)->fetch_index)); iowrite32(0U, (void *)(& (wq->ctrl)->posted_index)); iowrite32(0U, (void *)(& (wq->ctrl)->error_status)); vnic_dev_clear_desc_ring(& wq->ring); } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev , enum vnic_res_type type ) ; int vnic_dev_cmd(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) ; int vnic_dev_spec(struct vnic_dev *vdev , unsigned int offset , unsigned int size , void *value ) ; u32 vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev ) ; void vnic_rq_free(struct vnic_rq *rq ) ; int vnic_rq_alloc(struct vnic_dev *vdev , struct vnic_rq *rq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) ; void vnic_rq_init(struct vnic_rq *rq , unsigned int cq_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) ; __inline static void vnic_set_nic_cfg(u32 *nic_cfg , u8 rss_default_cpu , u8 rss_hash_type , u8 rss_hash_bits , u8 rss_base_cpu , u8 rss_enable , u8 tso_ipid_split_en , u8 ig_vlan_strip_en ) { { *nic_cfg = ((((((u32 )rss_default_cpu | ((u32 )rss_hash_type << 8U)) | (((u32 )rss_hash_bits & 7U) << 16U)) | (((u32 )rss_base_cpu & 7U) << 19U)) | (((u32 )rss_enable & 1U) << 22U)) | (((u32 )tso_ipid_split_en & 1U) << 23U)) | (((u32 )ig_vlan_strip_en & 1U) << 24U); return; } } int enic_add_vlan(struct enic *enic , u16 vlanid ) ; int enic_del_vlan(struct enic *enic , u16 vlanid ) ; int enic_get_vnic_config(struct enic *enic ) { struct vnic_enet_config *c ; int err ; struct device *tmp ; struct device *tmp___0 ; struct device *tmp___1 ; struct device *tmp___2 ; struct device *tmp___3 ; struct device *tmp___4 ; struct device *tmp___5 ; struct device *tmp___6 ; struct device *tmp___7 ; struct device *tmp___8 ; u32 __min1 ; u32 __min2 ; u32 __max1 ; u32 __max2 ; u32 __min1___0 ; u32 __min2___0 ; u32 __max1___0 ; u32 __max2___0 ; u16 __min1___1 ; u16 __min2___1 ; u16 __max1___1 ; u16 __max2___1 ; u32 __min1___2 ; u32 __min2___2 ; u32 tmp___9 ; struct device *tmp___10 ; struct device *tmp___11 ; { { c = & enic->config; err = vnic_dev_get_mac_addr(enic->vdev, (u8 *)(& enic->mac_addr)); } if (err != 0) { { tmp = enic_get_dev(enic); dev_err((struct device const *)tmp, "Error getting MAC addr, %d\n", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 0U, 4U, (void *)(& c->flags)); } if (err != 0) { { tmp___0 = enic_get_dev(enic); dev_err((struct device const *)tmp___0, "Error getting %s, %d\n", (char *)"flags", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 4U, 4U, (void *)(& c->wq_desc_count)); } if (err != 0) { { tmp___1 = enic_get_dev(enic); dev_err((struct device const *)tmp___1, "Error getting %s, %d\n", (char *)"wq_desc_count", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 8U, 4U, (void *)(& c->rq_desc_count)); } if (err != 0) { { tmp___2 = enic_get_dev(enic); dev_err((struct device const *)tmp___2, "Error getting %s, %d\n", (char *)"rq_desc_count", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 12U, 2U, (void *)(& c->mtu)); } if (err != 0) { { tmp___3 = enic_get_dev(enic); dev_err((struct device const *)tmp___3, "Error getting %s, %d\n", (char *)"mtu", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 16U, 1U, (void *)(& c->intr_timer_type)); } if (err != 0) { { tmp___4 = enic_get_dev(enic); dev_err((struct device const *)tmp___4, "Error getting %s, %d\n", (char *)"intr_timer_type", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 17U, 1U, (void *)(& c->intr_mode)); } if (err != 0) { { tmp___5 = enic_get_dev(enic); dev_err((struct device const *)tmp___5, "Error getting %s, %d\n", (char *)"intr_mode", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 36U, 4U, (void *)(& c->intr_timer_usec)); } if (err != 0) { { tmp___6 = enic_get_dev(enic); dev_err((struct device const *)tmp___6, "Error getting %s, %d\n", (char *)"intr_timer_usec", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 40U, 2U, (void *)(& c->loop_tag)); } if (err != 0) { { tmp___7 = enic_get_dev(enic); dev_err((struct device const *)tmp___7, "Error getting %s, %d\n", (char *)"loop_tag", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 44U, 2U, (void *)(& c->num_arfs)); } if (err != 0) { { tmp___8 = enic_get_dev(enic); dev_err((struct device const *)tmp___8, "Error getting %s, %d\n", (char *)"num_arfs", err); } return (err); } else { } __min1 = 4096U; __max1 = 64U; __max2 = c->wq_desc_count; __min2 = __max1 > __max2 ? __max1 : __max2; c->wq_desc_count = __min1 < __min2 ? __min1 : __min2; c->wq_desc_count = c->wq_desc_count & 4294967264U; __min1___0 = 4096U; __max1___0 = 64U; __max2___0 = c->rq_desc_count; __min2___0 = __max1___0 > __max2___0 ? __max1___0 : __max2___0; c->rq_desc_count = __min1___0 < __min2___0 ? __min1___0 : __min2___0; c->rq_desc_count = c->rq_desc_count & 4294967264U; if ((unsigned int )c->mtu == 0U) { c->mtu = 1500U; } else { } { __min1___1 = 9000U; __max1___1 = 68U; __max2___1 = c->mtu; __min2___1 = (u16 )((int )__max1___1 > (int )__max2___1 ? __max1___1 : __max2___1); c->mtu = (u16 )((int )__min1___1 < (int )__min2___1 ? __min1___1 : __min2___1); __min1___2 = c->intr_timer_usec; tmp___9 = vnic_dev_get_intr_coal_timer_max(enic->vdev); __min2___2 = tmp___9; c->intr_timer_usec = __min1___2 < __min2___2 ? __min1___2 : __min2___2; tmp___10 = enic_get_dev(enic); _dev_info((struct device const *)tmp___10, "vNIC MAC addr %pM wq/rq %d/%d mtu %d\n", (u8 *)(& enic->mac_addr), c->wq_desc_count, c->rq_desc_count, (int )c->mtu); tmp___11 = enic_get_dev(enic); _dev_info((struct device const *)tmp___11, "vNIC csum tx/rx %s/%s tso/lro %s/%s rss %s intr mode %s type %s timer %d usec loopback tag 0x%04x\n", (enic->config.flags & 8U) != 0U ? (char *)"yes" : (char *)"no", (enic->config.flags & 4U) != 0U ? (char *)"yes" : (char *)"no", (int )enic->config.flags & 1 ? (char *)"yes" : (char *)"no", (enic->config.flags & 2U) != 0U ? (char *)"yes" : (char *)"no", (enic->config.flags & 16U) != 0U ? (char *)"yes" : (char *)"no", (unsigned int )c->intr_mode != 2U ? ((unsigned int )c->intr_mode != 1U ? ((unsigned int )c->intr_mode == 0U ? (char *)"any" : (char *)"unknown") : (char *)"MSI") : (char *)"INTx", (unsigned int )c->intr_timer_type != 0U ? ((unsigned int )c->intr_timer_type == 1U ? (char *)"idle" : (char *)"unknown") : (char *)"min", c->intr_timer_usec, (int )c->loop_tag); } return (0); } } int enic_add_vlan(struct enic *enic , u16 vlanid ) { u64 a0 ; u64 a1 ; int wait ; int err ; struct device *tmp ; { { a0 = (u64 )vlanid; a1 = 0ULL; wait = 1000; err = vnic_dev_cmd(enic->vdev, 1090535438, & a0, & a1, wait); } if (err != 0) { { tmp = enic_get_dev(enic); dev_err((struct device const *)tmp, "Can\'t add vlan id, %d\n", err); } } else { } return (err); } } int enic_del_vlan(struct enic *enic , u16 vlanid ) { u64 a0 ; u64 a1 ; int wait ; int err ; struct device *tmp ; { { a0 = (u64 )vlanid; a1 = 0ULL; wait = 1000; err = vnic_dev_cmd(enic->vdev, 1090535439, & a0, & a1, wait); } if (err != 0) { { tmp = enic_get_dev(enic); dev_err((struct device const *)tmp, "Can\'t delete vlan id, %d\n", err); } } else { } return (err); } } int enic_set_nic_cfg(struct enic *enic , u8 rss_default_cpu , u8 rss_hash_type , u8 rss_hash_bits , u8 rss_base_cpu , u8 rss_enable , u8 tso_ipid_split_en , u8 ig_vlan_strip_en ) { u64 a0 ; u64 a1 ; u32 nic_cfg ; int wait ; int tmp ; { { wait = 1000; vnic_set_nic_cfg(& nic_cfg, (int )rss_default_cpu, (int )rss_hash_type, (int )rss_hash_bits, (int )rss_base_cpu, (int )rss_enable, (int )tso_ipid_split_en, (int )ig_vlan_strip_en); a0 = (u64 )nic_cfg; a1 = 0ULL; tmp = vnic_dev_cmd(enic->vdev, 1090633744, & a0, & a1, wait); } return (tmp); } } int enic_set_rss_key(struct enic *enic , dma_addr_t key_pa , u64 len ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = key_pa; a1 = len; wait = 1000; tmp = vnic_dev_cmd(enic->vdev, 1073758225, & a0, & a1, wait); } return (tmp); } } int enic_set_rss_cpu(struct enic *enic , dma_addr_t cpu_pa , u64 len ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = cpu_pa; a1 = len; wait = 1000; tmp = vnic_dev_cmd(enic->vdev, 1073758226, & a0, & a1, wait); } return (tmp); } } void enic_free_vnic_resources(struct enic *enic ) { unsigned int i ; { i = 0U; goto ldv_47393; ldv_47392: { vnic_wq_free((struct vnic_wq *)(& enic->wq) + (unsigned long )i); i = i + 1U; } ldv_47393: ; if (i < enic->wq_count) { goto ldv_47392; } else { } i = 0U; goto ldv_47396; ldv_47395: { vnic_rq_free((struct vnic_rq *)(& enic->rq) + (unsigned long )i); i = i + 1U; } ldv_47396: ; if (i < enic->rq_count) { goto ldv_47395; } else { } i = 0U; goto ldv_47399; ldv_47398: { vnic_cq_free((struct vnic_cq *)(& enic->cq) + (unsigned long )i); i = i + 1U; } ldv_47399: ; if (i < enic->cq_count) { goto ldv_47398; } else { } i = 0U; goto ldv_47402; ldv_47401: { vnic_intr_free((struct vnic_intr *)(& enic->intr) + (unsigned long )i); i = i + 1U; } ldv_47402: ; if (i < enic->intr_count) { goto ldv_47401; } else { } return; } } void enic_get_res_counts(struct enic *enic ) { struct device *tmp ; { { enic->wq_count = vnic_dev_get_res_count(enic->vdev, 1); enic->rq_count = vnic_dev_get_res_count(enic->vdev, 2); enic->cq_count = vnic_dev_get_res_count(enic->vdev, 3); enic->intr_count = vnic_dev_get_res_count(enic->vdev, 10); tmp = enic_get_dev(enic); _dev_info((struct device const *)tmp, "vNIC resources avail: wq %d rq %d cq %d intr %d\n", enic->wq_count, enic->rq_count, enic->cq_count, enic->intr_count); } return; } } void enic_init_vnic_resources(struct enic *enic ) { enum vnic_dev_intr_mode intr_mode ; unsigned int mask_on_assertion ; unsigned int interrupt_offset ; unsigned int error_interrupt_enable ; unsigned int error_interrupt_offset ; unsigned int cq_index ; unsigned int i ; { { intr_mode = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )intr_mode == 1U) { goto case_1; } else { } if ((unsigned int )intr_mode == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; case_3: /* CIL Label */ error_interrupt_enable = 1U; error_interrupt_offset = enic->intr_count - 2U; goto ldv_47419; switch_default: /* CIL Label */ error_interrupt_enable = 0U; error_interrupt_offset = 0U; goto ldv_47419; switch_break: /* CIL Label */ ; } ldv_47419: i = 0U; goto ldv_47422; ldv_47421: { cq_index = i; vnic_rq_init((struct vnic_rq *)(& enic->rq) + (unsigned long )i, cq_index, error_interrupt_enable, error_interrupt_offset); i = i + 1U; } ldv_47422: ; if (i < enic->rq_count) { goto ldv_47421; } else { } i = 0U; goto ldv_47425; ldv_47424: { cq_index = enic->rq_count + i; vnic_wq_init((struct vnic_wq *)(& enic->wq) + (unsigned long )i, cq_index, error_interrupt_enable, error_interrupt_offset); i = i + 1U; } ldv_47425: ; if (i < enic->wq_count) { goto ldv_47424; } else { } i = 0U; goto ldv_47431; ldv_47430: ; { if ((unsigned int )intr_mode == 3U) { goto case_3___0; } else { } goto switch_default___0; case_3___0: /* CIL Label */ interrupt_offset = i; goto ldv_47428; switch_default___0: /* CIL Label */ interrupt_offset = 0U; goto ldv_47428; switch_break___0: /* CIL Label */ ; } ldv_47428: { vnic_cq_init((struct vnic_cq *)(& enic->cq) + (unsigned long )i, 0U, 1U, 0U, 0U, 1U, 1U, 1U, 0U, interrupt_offset, 0ULL); i = i + 1U; } ldv_47431: ; if (i < enic->cq_count) { goto ldv_47430; } else { } { if ((unsigned int )intr_mode == 2U) { goto case_2; } else { } if ((unsigned int )intr_mode == 3U) { goto case_3___1; } else { } goto switch_default___1; case_2: /* CIL Label */ ; case_3___1: /* CIL Label */ mask_on_assertion = 1U; goto ldv_47435; switch_default___1: /* CIL Label */ mask_on_assertion = 0U; goto ldv_47435; switch_break___1: /* CIL Label */ ; } ldv_47435: i = 0U; goto ldv_47438; ldv_47437: { vnic_intr_init((struct vnic_intr *)(& enic->intr) + (unsigned long )i, enic->config.intr_timer_usec, (unsigned int )enic->config.intr_timer_type, mask_on_assertion); i = i + 1U; } ldv_47438: ; if (i < enic->intr_count) { goto ldv_47437; } else { } return; } } int enic_alloc_vnic_resources(struct enic *enic ) { enum vnic_dev_intr_mode intr_mode ; unsigned int i ; int err ; struct device *tmp ; void *tmp___0 ; struct device *tmp___1 ; { { intr_mode = vnic_dev_get_intr_mode(enic->vdev); tmp = enic_get_dev(enic); _dev_info((struct device const *)tmp, "vNIC resources used: wq %d rq %d cq %d intr %d intr mode %s\n", enic->wq_count, enic->rq_count, enic->cq_count, enic->intr_count, (unsigned int )intr_mode != 1U ? ((unsigned int )intr_mode != 2U ? ((unsigned int )intr_mode == 3U ? (char *)"MSI-X" : (char *)"unknown") : (char *)"MSI") : (char *)"legacy PCI INTx"); i = 0U; } goto ldv_47448; ldv_47447: { err = vnic_wq_alloc(enic->vdev, (struct vnic_wq *)(& enic->wq) + (unsigned long )i, i, enic->config.wq_desc_count, 16U); } if (err != 0) { goto err_out_cleanup; } else { } i = i + 1U; ldv_47448: ; if (i < enic->wq_count) { goto ldv_47447; } else { } i = 0U; goto ldv_47451; ldv_47450: { err = vnic_rq_alloc(enic->vdev, (struct vnic_rq *)(& enic->rq) + (unsigned long )i, i, enic->config.rq_desc_count, 16U); } if (err != 0) { goto err_out_cleanup; } else { } i = i + 1U; ldv_47451: ; if (i < enic->rq_count) { goto ldv_47450; } else { } i = 0U; goto ldv_47454; ldv_47453: ; if (i < enic->rq_count) { { err = vnic_cq_alloc(enic->vdev, (struct vnic_cq *)(& enic->cq) + (unsigned long )i, i, enic->config.rq_desc_count, 16U); } } else { { err = vnic_cq_alloc(enic->vdev, (struct vnic_cq *)(& enic->cq) + (unsigned long )i, i, enic->config.wq_desc_count, 16U); } } if (err != 0) { goto err_out_cleanup; } else { } i = i + 1U; ldv_47454: ; if (i < enic->cq_count) { goto ldv_47453; } else { } i = 0U; goto ldv_47457; ldv_47456: { err = vnic_intr_alloc(enic->vdev, (struct vnic_intr *)(& enic->intr) + (unsigned long )i, i); } if (err != 0) { goto err_out_cleanup; } else { } i = i + 1U; ldv_47457: ; if (i < enic->intr_count) { goto ldv_47456; } else { } { tmp___0 = vnic_dev_get_res(enic->vdev, 13, 0U); enic->legacy_pba = (u32 *)tmp___0; } if ((unsigned long )enic->legacy_pba == (unsigned long )((u32 *)0U) && (unsigned int )intr_mode == 1U) { { tmp___1 = enic_get_dev(enic); dev_err((struct device const *)tmp___1, "Failed to hook legacy pba resource\n"); err = -19; } goto err_out_cleanup; } else { } return (0); err_out_cleanup: { enic_free_vnic_resources(enic); } return (err); } } __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; int vnic_dev_fw_info(struct vnic_dev *vdev , struct vnic_devcmd_fw_info **fw_info ) ; int vnic_dev_stats_dump(struct vnic_dev *vdev , struct vnic_stats **stats ) ; int vnic_dev_hang_notify(struct vnic_dev *vdev ) ; int vnic_dev_packet_filter(struct vnic_dev *vdev , int directed , int multicast , int broadcast , int promisc , int allmulti ) ; int vnic_dev_add_addr(struct vnic_dev *vdev , u8 const *addr ) ; int vnic_dev_del_addr(struct vnic_dev *vdev , u8 const *addr ) ; int vnic_dev_notify_unset(struct vnic_dev *vdev ) ; int vnic_dev_enable_wait(struct vnic_dev *vdev ) ; int vnic_dev_disable(struct vnic_dev *vdev ) ; int vnic_dev_intr_coal_timer_info(struct vnic_dev *vdev ) ; int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev , u8 ig_vlan_rewrite_mode ) ; int enic_dev_fw_info(struct enic *enic , struct vnic_devcmd_fw_info **fw_info ) ; int enic_dev_fw_info(struct enic *enic , struct vnic_devcmd_fw_info **fw_info ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_fw_info(enic->vdev, fw_info); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_stats_dump(struct enic *enic , struct vnic_stats **vstats ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_stats_dump(enic->vdev, vstats); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_add_station_addr(struct enic *enic ) { int err ; bool tmp ; int tmp___0 ; { { tmp = is_valid_ether_addr((u8 const *)(enic->netdev)->dev_addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-99); } else { } { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_add_addr(enic->vdev, (u8 const *)(enic->netdev)->dev_addr); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_del_station_addr(struct enic *enic ) { int err ; bool tmp ; int tmp___0 ; { { tmp = is_valid_ether_addr((u8 const *)(enic->netdev)->dev_addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-99); } else { } { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_del_addr(enic->vdev, (u8 const *)(enic->netdev)->dev_addr); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_packet_filter(struct enic *enic , int directed , int multicast , int broadcast , int promisc , int allmulti ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_packet_filter(enic->vdev, directed, multicast, broadcast, promisc, allmulti); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_add_addr(struct enic *enic , u8 const *addr ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_add_addr(enic->vdev, addr); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_del_addr(struct enic *enic , u8 const *addr ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_del_addr(enic->vdev, addr); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_notify_unset(struct enic *enic ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_notify_unset(enic->vdev); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_hang_notify(struct enic *enic ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_hang_notify(enic->vdev); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_set_ig_vlan_rewrite_mode(struct enic *enic ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_set_ig_vlan_rewrite_mode(enic->vdev, 2); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_enable(struct enic *enic ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_enable_wait(enic->vdev); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_disable(struct enic *enic ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_disable(enic->vdev); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_intr_coal_timer_info(struct enic *enic ) { int err ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); err = vnic_dev_intr_coal_timer_info(enic->vdev); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct enic *enic ; void *tmp ; int err ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; ldv_spin_lock_bh_141(& enic->devcmd_lock); err = enic_add_vlan(enic, (int )vid); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct enic *enic ; void *tmp ; int err ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; ldv_spin_lock_bh_141(& enic->devcmd_lock); err = enic_del_vlan(enic, (int )vid); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (err); } } int enic_dev_status_to_errno(int devcmd_status ) { { { if (devcmd_status == 0) { goto case_0; } else { } if (devcmd_status == 1) { goto case_1; } else { } if (devcmd_status == 2) { goto case_2; } else { } if (devcmd_status == 3) { goto case_3; } else { } if (devcmd_status == 4) { goto case_4; } else { } if (devcmd_status == 5) { goto case_5; } else { } if (devcmd_status == 11) { goto case_11; } else { } if (devcmd_status == 6) { goto case_6; } else { } if (devcmd_status == 7) { goto case_7; } else { } if (devcmd_status == 8) { goto case_8; } else { } if (devcmd_status == 9) { goto case_9; } else { } if (devcmd_status == 12) { goto case_12; } else { } if (devcmd_status == 10) { goto case_10; } else { } goto switch_default; case_0: /* CIL Label */ ; return (0); case_1: /* CIL Label */ ; return (-22); case_2: /* CIL Label */ ; return (-14); case_3: /* CIL Label */ ; return (-1); case_4: /* CIL Label */ ; return (-16); case_5: /* CIL Label */ ; case_11: /* CIL Label */ ; return (-95); case_6: /* CIL Label */ ; return (-22); case_7: /* CIL Label */ ; return (-12); case_8: /* CIL Label */ ; return (-110); case_9: /* CIL Label */ ; return (-100); case_12: /* CIL Label */ ; return (-115); case_10: /* CIL Label */ ; switch_default: /* CIL Label */ ; return (-1 < devcmd_status ? -1 : devcmd_status); switch_break: /* CIL Label */ ; } } } extern int sprintf(char * , char const * , ...) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern int strcmp(char const * , char const * ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } struct vic_provinfo *vic_provinfo_alloc(gfp_t flags , u8 const *oui , u8 const type ) ; void vic_provinfo_free(struct vic_provinfo *vp ) ; int vic_provinfo_add_tlv(struct vic_provinfo *vp , u16 type , u16 length , void const *value ) ; size_t vic_provinfo_size(struct vic_provinfo *vp ) ; int vnic_dev_deinit(struct vnic_dev *vdev ) ; int vnic_dev_init_prov2(struct vnic_dev *vdev , u8 *buf , u32 len ) ; int vnic_dev_enable2(struct vnic_dev *vdev , int active ) ; int vnic_dev_enable2_done(struct vnic_dev *vdev , int *status ) ; int vnic_dev_deinit_done(struct vnic_dev *vdev , int *status ) ; int enic_is_valid_pp_vf(struct enic *enic , int vf , int *err ) { int tmp ; int tmp___0 ; { if (vf != -1) { { tmp = enic_sriov_enabled(enic); } if (tmp != 0) { if (vf < 0 || vf >= (int )enic->num_vfs) { *err = -22; goto err_out; } else { } } else { *err = -95; goto err_out; } } else { } if (vf == -1) { { tmp___0 = enic_is_dynamic(enic); } if (tmp___0 == 0) { *err = -95; goto err_out; } else { } } else { } *err = 0; return (1); err_out: ; return (0); } } static int enic_set_port_profile(struct enic *enic , int vf ) { struct net_device *netdev ; struct enic_port_profile *pp ; struct vic_provinfo *vp ; u8 oui[3U] ; __be16 os_type ; char uuid_str[38U] ; char client_mac_str[18U] ; u8 *client_mac ; int err ; int tmp ; size_t tmp___0 ; size_t tmp___1 ; bool tmp___2 ; int tmp___3 ; size_t tmp___4 ; size_t tmp___5 ; int tmp___6 ; { { netdev = enic->netdev; oui[0] = 0U; oui[1] = 0U; oui[2] = 12U; os_type = 512U; tmp = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((pp->set & 4U) == 0U) { return (-22); } else { { tmp___0 = strlen((char const *)(& pp->name)); } if (tmp___0 == 0UL) { return (-22); } else { } } { vp = vic_provinfo_alloc(208U, (u8 const *)(& oui), 4); } if ((unsigned long )vp == (unsigned long )((struct vic_provinfo *)0)) { return (-12); } else { } { tmp___1 = strlen((char const *)(& pp->name)); err = vic_provinfo_add_tlv(vp, 0, (int )((unsigned int )((u16 )tmp___1) + 1U), (void const *)(& pp->name)); } if (err != 0) { goto add_tlv_failure; } else { } { tmp___2 = is_zero_ether_addr((u8 const *)(& pp->mac_addr)); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { client_mac = (u8 *)(& pp->mac_addr); } else if (vf == -1) { client_mac = netdev->dev_addr; } else { { netdev_err((struct net_device const *)netdev, "Cannot find pp mac address for VF %d\n", vf); err = -22; } goto add_tlv_failure; } { err = vic_provinfo_add_tlv(vp, 1, 6, (void const *)client_mac); } if (err != 0) { goto add_tlv_failure; } else { } { snprintf((char *)(& client_mac_str), 18UL, "%pM", client_mac); err = vic_provinfo_add_tlv(vp, 4, 18, (void const *)(& client_mac_str)); } if (err != 0) { goto add_tlv_failure; } else { } if ((pp->set & 8U) != 0U) { { sprintf((char *)(& uuid_str), "%pUB", (u8 *)(& pp->instance_uuid)); err = vic_provinfo_add_tlv(vp, 9, 38, (void const *)(& uuid_str)); } if (err != 0) { goto add_tlv_failure; } else { } } else { } if ((pp->set & 16U) != 0U) { { sprintf((char *)(& uuid_str), "%pUB", (u8 *)(& pp->host_uuid)); err = vic_provinfo_add_tlv(vp, 8, 38, (void const *)(& uuid_str)); } if (err != 0) { goto add_tlv_failure; } else { } } else { } { err = vic_provinfo_add_tlv(vp, 11, 2, (void const *)(& os_type)); } if (err != 0) { goto add_tlv_failure; } else { } { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp___6 = enic_is_valid_vf(enic, vf); } if (tmp___6 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); tmp___4 = vic_provinfo_size(vp); err = vnic_dev_init_prov2(enic->vdev, (u8 *)vp, (u32 )tmp___4); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { tmp___5 = vic_provinfo_size(vp); err = vnic_dev_init_prov2(enic->vdev, (u8 *)vp, (u32 )tmp___5); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); err = enic_dev_status_to_errno(err); } add_tlv_failure: { vic_provinfo_free(vp); } return (err); } } static int enic_unset_port_profile(struct enic *enic , int vf ) { int err ; int tmp ; int tmp___0 ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp = enic_is_valid_vf(enic, vf); } if (tmp != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_deinit(enic->vdev); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_deinit(enic->vdev); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); } if (err != 0) { { tmp___0 = enic_dev_status_to_errno(err); } return (tmp___0); } else { } if (vf == -1) { { enic_reset_addr_lists(enic); } } else { } return (0); } } static int enic_are_pp_different(struct enic_port_profile *pp1 , struct enic_port_profile *pp2 ) { int tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { { tmp = strcmp((char const *)(& pp1->name), (char const *)(& pp2->name)); tmp___0 = memcmp((void const *)(& pp1->instance_uuid), (void const *)(& pp2->instance_uuid), 16UL); tmp___1 = memcmp((void const *)(& pp1->host_uuid), (void const *)(& pp2->host_uuid), 16UL); tmp___2 = ether_addr_equal((u8 const *)(& pp1->mac_addr), (u8 const *)(& pp2->mac_addr)); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } return (((tmp | (tmp___0 != 0)) | (tmp___1 != 0)) | tmp___3); } } static int enic_pp_preassociate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) ; static int enic_pp_disassociate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) ; static int enic_pp_preassociate_rr(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) ; static int enic_pp_associate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) ; static int (*enic_pp_handlers[4U])(struct enic * , int , struct enic_port_profile * , int * ) = { & enic_pp_preassociate, & enic_pp_preassociate_rr, & enic_pp_associate, & enic_pp_disassociate}; static int enic_pp_preassociate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) { { return (-95); } } static int enic_pp_disassociate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) { struct net_device *netdev ; struct enic_port_profile *pp ; int err ; int tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; { { netdev = enic->netdev; tmp = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } { tmp___4 = is_zero_ether_addr((u8 const *)(& pp->mac_addr)); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp___0 = enic_is_valid_vf(enic, vf); } if (tmp___0 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_del_addr(enic->vdev, (u8 const *)(& pp->mac_addr)); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_del_addr(enic->vdev, (u8 const *)(& pp->mac_addr)); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); } } else if (vf == -1) { { tmp___2 = is_zero_ether_addr((u8 const *)netdev->dev_addr); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp___1 = enic_is_valid_vf(enic, vf); } if (tmp___1 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_del_addr(enic->vdev, (u8 const *)netdev->dev_addr); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_del_addr(enic->vdev, (u8 const *)netdev->dev_addr); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); } } else { } } else { } { tmp___6 = enic_unset_port_profile(enic, vf); } return (tmp___6); } } static int enic_pp_preassociate_rr(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) { struct enic_port_profile *pp ; int err ; int active ; int tmp ; int tmp___0 ; { { active = 0; tmp = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((unsigned int )pp->request != 2U) { { err = (*(enic_pp_handlers[3]))(enic, vf, prev_pp, restore_pp); } if (err != 0) { return (err); } else { } *restore_pp = 0; } else { } { *restore_pp = 0; err = enic_set_port_profile(enic, vf); } if (err != 0) { return (err); } else { } if ((unsigned int )pp->request != 2U) { { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp___0 = enic_is_valid_vf(enic, vf); } if (tmp___0 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_enable2(enic->vdev, active); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_enable2(enic->vdev, active); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); err = enic_dev_status_to_errno(err); } } else { } return (err); } } static int enic_pp_associate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) { struct net_device *netdev ; struct enic_port_profile *pp ; int err ; int active ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; { { netdev = enic->netdev; active = 1; tmp = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((unsigned int )prev_pp->request != 1U) { goto _L; } else if ((unsigned int )prev_pp->request == 1U) { { tmp___0 = enic_are_pp_different(prev_pp, pp); } if (tmp___0 != 0) { _L: /* CIL Label */ { err = (*(enic_pp_handlers[3]))(enic, vf, prev_pp, restore_pp); } if (err != 0) { return (err); } else { } *restore_pp = 0; } else { } } else { } { err = (*(enic_pp_handlers[1]))(enic, vf, prev_pp, restore_pp); } if (err != 0) { return (err); } else { } { *restore_pp = 0; ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp___1 = enic_is_valid_vf(enic, vf); } if (tmp___1 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_enable2(enic->vdev, active); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_enable2(enic->vdev, active); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); err = enic_dev_status_to_errno(err); } if (err != 0) { return (err); } else { } { tmp___6 = is_zero_ether_addr((u8 const *)(& pp->mac_addr)); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp___2 = enic_is_valid_vf(enic, vf); } if (tmp___2 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_add_addr(enic->vdev, (u8 const *)(& pp->mac_addr)); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_add_addr(enic->vdev, (u8 const *)(& pp->mac_addr)); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); } } else if (vf == -1) { { tmp___4 = is_zero_ether_addr((u8 const *)netdev->dev_addr); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp___3 = enic_is_valid_vf(enic, vf); } if (tmp___3 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_add_addr(enic->vdev, (u8 const *)netdev->dev_addr); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_add_addr(enic->vdev, (u8 const *)netdev->dev_addr); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); } } else { } } else { } return (0); } } int enic_process_set_pp_request(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) { struct enic_port_profile *pp ; int err ; int tmp ; int tmp___0 ; { { tmp = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((int )pp->request > 3 || (unsigned long )enic_pp_handlers[(int )pp->request] == (unsigned long )((int (*)(struct enic * , int , struct enic_port_profile * , int * ))0)) { return (-95); } else { } { tmp___0 = (*(enic_pp_handlers[(int )pp->request]))(enic, vf, prev_pp, restore_pp); } return (tmp___0); } } int enic_process_get_pp_request(struct enic *enic , int vf , int request , u16 *response ) { int err ; int status ; int tmp ; int tmp___0 ; { status = 0; { if (request == 1) { goto case_1; } else { } if (request == 2) { goto case_2; } else { } if (request == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp = enic_is_valid_vf(enic, vf); } if (tmp != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_enable2_done(enic->vdev, & status); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_enable2_done(enic->vdev, & status); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); } goto ldv_54498; case_3: /* CIL Label */ { ldv_spin_lock_bh_141(& enic->devcmd_lock); tmp___0 = enic_is_valid_vf(enic, vf); } if (tmp___0 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_deinit_done(enic->vdev, & status); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_deinit_done(enic->vdev, & status); } } { ldv_spin_unlock_bh_142(& enic->devcmd_lock); } goto ldv_54498; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_54498: ; if (err != 0) { status = err; } else { } { if (status == 0) { goto case_0; } else { } if (status == 1) { goto case_1___0; } else { } if (status == 6) { goto case_6; } else { } if (status == 7) { goto case_7; } else { } if (status == 12) { goto case_12; } else { } goto switch_default___0; case_0: /* CIL Label */ *response = 256U; goto ldv_54502; case_1___0: /* CIL Label */ *response = 258U; goto ldv_54502; case_6: /* CIL Label */ *response = 259U; goto ldv_54502; case_7: /* CIL Label */ *response = 260U; goto ldv_54502; case_12: /* CIL Label */ *response = 257U; goto ldv_54502; switch_default___0: /* CIL Label */ *response = 261U; goto ldv_54502; switch_break___0: /* CIL Label */ ; } ldv_54502: ; return (0); } } __inline static unsigned long readq(void const volatile *addr ) { unsigned long ret ; { __asm__ volatile ("movq %1,%0": "=r" (ret): "m" (*((unsigned long volatile *)addr)): "memory"); return (ret); } } extern unsigned int ioread8(void * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) ; __inline static void *pci_zalloc_consistent___0(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_zalloc_coherent((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U); } return (tmp); } } u32 vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev , u32 hw_cycles ) ; struct pci_dev *vnic_dev_get_pdev(struct vnic_dev *vdev ) ; int vnic_dev_classifier(struct vnic_dev *vdev , u8 cmd , u16 *entry , struct filter *data ) ; void *vnic_dev_priv(struct vnic_dev *vdev ) { { return (vdev->priv); } } static int vnic_dev_discover_res(struct vnic_dev *vdev , struct vnic_dev_bar *bar , unsigned int num_bars ) { struct vnic_resource_header *rh ; struct mgmt_barmap_hdr *mrh ; struct vnic_resource *r ; u8 type ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; u8 bar_num ; unsigned int tmp___6 ; u32 bar_offset ; unsigned int tmp___7 ; u32 count ; unsigned int tmp___8 ; u32 len ; unsigned int tmp___9 ; { if (num_bars == 0U) { return (-22); } else { } if (bar->len <= 223UL) { { printk("\venic: vNIC BAR0 res hdr length error\n"); } return (-22); } else { } rh = (struct vnic_resource_header *)bar->vaddr; mrh = (struct mgmt_barmap_hdr *)bar->vaddr; if ((unsigned long )rh == (unsigned long )((struct vnic_resource_header *)0)) { { printk("\venic: vNIC BAR0 res hdr not mem-mapped\n"); } return (-22); } else { } { tmp___3 = ioread32((void *)(& rh->magic)); } if (tmp___3 != 1986947427U) { goto _L; } else { { tmp___4 = ioread32((void *)(& rh->version)); } if (tmp___4 != 0U) { _L: /* CIL Label */ { tmp___1 = ioread32((void *)(& mrh->magic)); } if (tmp___1 != 1414350669U) { { tmp = ioread32((void *)(& rh->version)); tmp___0 = ioread32((void *)(& rh->magic)); printk("\venic: vNIC BAR0 res magic/version error exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n", 1986947427L, 0L, 1414350669L, 0L, tmp___0, tmp); } return (-22); } else { { tmp___2 = ioread32((void *)(& mrh->version)); } if (tmp___2 != 0U) { { tmp = ioread32((void *)(& rh->version)); tmp___0 = ioread32((void *)(& rh->magic)); printk("\venic: vNIC BAR0 res magic/version error exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n", 1986947427L, 0L, 1414350669L, 0L, tmp___0, tmp); } return (-22); } else { } } } else { } } { tmp___5 = ioread32((void *)(& mrh->magic)); } if (tmp___5 == 1414350669U) { r = (struct vnic_resource *)mrh + 1U; } else { r = (struct vnic_resource *)rh + 1U; } goto ldv_46501; ldv_46510: { tmp___6 = ioread8((void *)(& r->bar)); bar_num = (u8 )tmp___6; tmp___7 = ioread32((void *)(& r->bar_offset)); bar_offset = tmp___7; tmp___8 = ioread32((void *)(& r->count)); count = tmp___8; r = r + 1; } if ((unsigned int )bar_num >= num_bars) { goto ldv_46501; } else { } if ((bar + (unsigned long )bar_num)->len == 0UL || (unsigned long )(bar + (unsigned long )bar_num)->vaddr == (unsigned long )((void *)0)) { goto ldv_46501; } else { } { if ((int )type == 1) { goto case_1; } else { } if ((int )type == 2) { goto case_2; } else { } if ((int )type == 3) { goto case_3; } else { } if ((int )type == 10) { goto case_10; } else { } if ((int )type == 13) { goto case_13; } else { } if ((int )type == 16) { goto case_16; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_10: /* CIL Label */ len = count * 128U; if ((unsigned long )(len + bar_offset) > (bar + (unsigned long )bar_num)->len) { { printk("\venic: vNIC BAR0 resource %d out-of-bounds, offset 0x%x + size 0x%x > bar len 0x%lx\n", (int )type, bar_offset, len, (bar + (unsigned long )bar_num)->len); } return (-22); } else { } goto ldv_46506; case_13: /* CIL Label */ ; case_16: /* CIL Label */ len = count; goto ldv_46506; switch_default: /* CIL Label */ ; goto ldv_46501; switch_break: /* CIL Label */ ; } ldv_46506: vdev->res[(int )type].count = count; vdev->res[(int )type].vaddr = (bar + (unsigned long )bar_num)->vaddr + (unsigned long )bar_offset; vdev->res[(int )type].bus_addr = (bar + (unsigned long )bar_num)->bus_addr + (dma_addr_t )bar_offset; ldv_46501: { tmp___9 = ioread8((void *)(& r->type)); type = (u8 )tmp___9; } if ((unsigned int )type != 0U) { goto ldv_46510; } else { } return (0); } } unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev , enum vnic_res_type type ) { { return (vdev->res[(unsigned int )type].count); } } static char const __kstrtab_vnic_dev_get_res_count[23U] = { 'v', 'n', 'i', 'c', '_', 'd', 'e', 'v', '_', 'g', 'e', 't', '_', 'r', 'e', 's', '_', 'c', 'o', 'u', 'n', 't', '\000'}; struct kernel_symbol const __ksymtab_vnic_dev_get_res_count ; struct kernel_symbol const __ksymtab_vnic_dev_get_res_count = {(unsigned long )(& vnic_dev_get_res_count), (char const *)(& __kstrtab_vnic_dev_get_res_count)}; void *vnic_dev_get_res(struct vnic_dev *vdev , enum vnic_res_type type , unsigned int index ) { { if ((unsigned long )vdev->res[(unsigned int )type].vaddr == (unsigned long )((void *)0)) { return ((void *)0); } else { } { if ((unsigned int )type == 1U) { goto case_1; } else { } if ((unsigned int )type == 2U) { goto case_2; } else { } if ((unsigned int )type == 3U) { goto case_3; } else { } if ((unsigned int )type == 10U) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_10: /* CIL Label */ ; return (vdev->res[(unsigned int )type].vaddr + (unsigned long )(index * 128U)); switch_default: /* CIL Label */ ; return (vdev->res[(unsigned int )type].vaddr); switch_break: /* CIL Label */ ; } } } static char const __kstrtab_vnic_dev_get_res[17U] = { 'v', 'n', 'i', 'c', '_', 'd', 'e', 'v', '_', 'g', 'e', 't', '_', 'r', 'e', 's', '\000'}; struct kernel_symbol const __ksymtab_vnic_dev_get_res ; struct kernel_symbol const __ksymtab_vnic_dev_get_res = {(unsigned long )(& vnic_dev_get_res), (char const *)(& __kstrtab_vnic_dev_get_res)}; static unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring , unsigned int desc_count , unsigned int desc_size ) { unsigned int count_align ; unsigned int desc_align ; { count_align = 32U; desc_align = 16U; ring->base_align = 512UL; if (desc_count == 0U) { desc_count = 4096U; } else { } ring->desc_count = ((desc_count + count_align) - 1U) & - count_align; ring->desc_size = ((desc_size + desc_align) - 1U) & - desc_align; ring->size = (size_t )(ring->desc_count * ring->desc_size); ring->size_unaligned = ring->size + ring->base_align; return ((unsigned int )ring->size_unaligned); } } void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring ) { { { memset(ring->descs, 0, ring->size); } return; } } int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev , struct vnic_dev_ring *ring , unsigned int desc_count , unsigned int desc_size ) { { { vnic_dev_desc_ring_size(ring, desc_count, desc_size); ring->descs_unaligned = pci_alloc_consistent(vdev->pdev, ring->size_unaligned, & ring->base_addr_unaligned); } if ((unsigned long )ring->descs_unaligned == (unsigned long )((void *)0)) { { printk("\venic: Failed to allocate ring (size=%d), aborting\n", (int )ring->size); } return (-12); } else { } { ring->base_addr = ((ring->base_addr_unaligned + (unsigned long long )ring->base_align) - 1ULL) & - ((unsigned long long )ring->base_align); ring->descs = ring->descs_unaligned + (unsigned long )(ring->base_addr - ring->base_addr_unaligned); vnic_dev_clear_desc_ring(ring); ring->desc_avail = ring->desc_count - 1U; } return (0); } } void vnic_dev_free_desc_ring(struct vnic_dev *vdev , struct vnic_dev_ring *ring ) { { if ((unsigned long )ring->descs != (unsigned long )((void *)0)) { { pci_free_consistent(vdev->pdev, ring->size_unaligned, ring->descs_unaligned, ring->base_addr_unaligned); ring->descs = (void *)0; } } else { } return; } } static int _vnic_dev_cmd(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd , int wait ) { struct vnic_devcmd *devcmd ; unsigned int i ; int delay ; u32 status ; int err ; unsigned long tmp ; unsigned long tmp___0 ; { { devcmd = vdev->devcmd; status = ioread32((void *)(& devcmd->status)); } if (status == 4294967295U) { return (-19); } else { } if ((int )status & 1) { { printk("\venic: Busy devcmd %d\n", (unsigned int )cmd & 16383U); } return (-16); } else { } if (((unsigned int )cmd & 1073741824U) != 0U) { i = 0U; goto ldv_46574; ldv_46573: { writeq((unsigned long )vdev->args[i], (void volatile *)(& devcmd->args) + (unsigned long )i); i = i + 1U; } ldv_46574: ; if (i <= 14U) { goto ldv_46573; } else { } __asm__ volatile ("sfence": : : "memory"); } else { } { iowrite32((u32 )cmd, (void *)(& devcmd->cmd)); } if (((unsigned int )cmd & 16777216U) != 0U) { return (0); } else { } delay = 0; goto ldv_46580; ldv_46579: { __const_udelay(429500UL); status = ioread32((void *)(& devcmd->status)); } if (status == 4294967295U) { return (-19); } else { } if ((status & 1U) == 0U) { if ((status & 2U) != 0U) { { tmp = readq((void const volatile *)(& devcmd->args)); err = (int )tmp; } if (err == 1 && (unsigned int )cmd == 3221340196U) { return (- err); } else { } if (err != 5 || (unsigned int )cmd != 3221340196U) { { printk("\venic: Error %d devcmd %d\n", err, (unsigned int )cmd & 16383U); } } else { } return (- err); } else { } if ((int )cmd < 0) { __asm__ volatile ("lfence": : : "memory"); i = 0U; goto ldv_46577; ldv_46576: { tmp___0 = readq((void const volatile *)(& devcmd->args) + (unsigned long )i); vdev->args[i] = (u64 )tmp___0; i = i + 1U; } ldv_46577: ; if (i <= 14U) { goto ldv_46576; } else { } } else { } return (0); } else { } delay = delay + 1; ldv_46580: ; if (delay < wait) { goto ldv_46579; } else { } { printk("\venic: Timedout devcmd %d\n", (unsigned int )cmd & 16383U); } return (-110); } } static int vnic_dev_cmd_proxy(struct vnic_dev *vdev , enum vnic_devcmd_cmd proxy_cmd , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) { u32 status ; int err ; { { memset((void *)(& vdev->args), 0, 120UL); vdev->args[0] = (u64 )vdev->proxy_index; vdev->args[1] = (u64 )cmd; vdev->args[2] = *a0; vdev->args[3] = *a1; err = _vnic_dev_cmd(vdev, proxy_cmd, wait); } if (err != 0) { return (err); } else { } status = (unsigned int )vdev->args[0]; if ((status & 2U) != 0U) { err = (int )vdev->args[1]; if (err != 5 || (unsigned int )cmd != 3221340196U) { { printk("\venic: Error %d proxy devcmd %d\n", err, (unsigned int )cmd & 16383U); } } else { } return (err); } else { } *a0 = vdev->args[1]; *a1 = vdev->args[2]; return (0); } } static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) { int err ; { { vdev->args[0] = *a0; vdev->args[1] = *a1; err = _vnic_dev_cmd(vdev, cmd, wait); *a0 = vdev->args[0]; *a1 = vdev->args[1]; } return (err); } } void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev , u16 index ) { { vdev->proxy = 2; vdev->proxy_index = (u32 )index; return; } } void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev ) { { vdev->proxy = 0; vdev->proxy_index = 0U; return; } } int vnic_dev_cmd(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) { int tmp ; int tmp___0 ; int tmp___1 ; { { memset((void *)(& vdev->args), 0, 120UL); } { if ((unsigned int )vdev->proxy == 2U) { goto case_2; } else { } if ((unsigned int )vdev->proxy == 1U) { goto case_1; } else { } if ((unsigned int )vdev->proxy == 0U) { goto case_0; } else { } goto switch_default; case_2: /* CIL Label */ { tmp = vnic_dev_cmd_proxy(vdev, 3221340203U, cmd, a0, a1, wait); } return (tmp); case_1: /* CIL Label */ { tmp___0 = vnic_dev_cmd_proxy(vdev, 3221340202U, cmd, a0, a1, wait); } return (tmp___0); case_0: /* CIL Label */ ; switch_default: /* CIL Label */ { tmp___1 = vnic_dev_cmd_no_proxy(vdev, cmd, a0, a1, wait); } return (tmp___1); switch_break: /* CIL Label */ ; } } } static int vnic_dev_capable(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { a0 = (u64 )cmd; a1 = 0ULL; wait = 1000; err = vnic_dev_cmd(vdev, 3221340196U, & a0, & a1, wait); } return (err == 0 && a0 == 0ULL); } } int vnic_dev_fw_info(struct vnic_dev *vdev , struct vnic_devcmd_fw_info **fw_info ) { u64 a0 ; u64 a1 ; int wait ; int err ; void *tmp ; int tmp___0 ; { a1 = 0ULL; wait = 1000; err = 0; if ((unsigned long )vdev->fw_info == (unsigned long )((struct vnic_devcmd_fw_info *)0)) { { tmp = pci_zalloc_consistent___0(vdev->pdev, 132UL, & vdev->fw_info_pa); vdev->fw_info = (struct vnic_devcmd_fw_info *)tmp; } if ((unsigned long )vdev->fw_info == (unsigned long )((struct vnic_devcmd_fw_info *)0)) { return (-12); } else { } { a0 = vdev->fw_info_pa; a1 = 132ULL; tmp___0 = vnic_dev_capable(vdev, 3221340161U); } if (tmp___0 != 0) { { err = vnic_dev_cmd(vdev, 3221340161U, & a0, & a1, wait); } } else { { err = vnic_dev_cmd(vdev, 1073856513, & a0, & a1, wait); } } } else { } *fw_info = vdev->fw_info; return (err); } } int vnic_dev_spec(struct vnic_dev *vdev , unsigned int offset , unsigned int size , void *value ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { wait = 1000; a0 = (u64 )offset; a1 = (u64 )size; err = vnic_dev_cmd(vdev, 3221340162U, & a0, & a1, wait); } { if (size == 1U) { goto case_1; } else { } if (size == 2U) { goto case_2; } else { } if (size == 4U) { goto case_4; } else { } if (size == 8U) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ *((u8 *)value) = (unsigned char )a0; goto ldv_46645; case_2: /* CIL Label */ *((u16 *)value) = (unsigned short )a0; goto ldv_46645; case_4: /* CIL Label */ *((u32 *)value) = (unsigned int )a0; goto ldv_46645; case_8: /* CIL Label */ *((u64 *)value) = a0; goto ldv_46645; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/cisco/enic/vnic_dev.c"), "i" (475), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_46645: ; return (err); } } int vnic_dev_stats_dump(struct vnic_dev *vdev , struct vnic_stats **stats ) { u64 a0 ; u64 a1 ; int wait ; void *tmp ; int tmp___0 ; { wait = 1000; if ((unsigned long )vdev->stats == (unsigned long )((struct vnic_stats *)0)) { { tmp = pci_alloc_consistent(vdev->pdev, 512UL, & vdev->stats_pa); vdev->stats = (struct vnic_stats *)tmp; } if ((unsigned long )vdev->stats == (unsigned long )((struct vnic_stats *)0)) { return (-12); } else { } } else { } { *stats = vdev->stats; a0 = vdev->stats_pa; a1 = 512ULL; tmp___0 = vnic_dev_cmd(vdev, 1073856516, & a0, & a1, wait); } return (tmp___0); } } int vnic_dev_close(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; tmp = vnic_dev_cmd(vdev, 114713, & a0, & a1, wait); } return (tmp); } } int vnic_dev_enable_wait(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; int tmp___0 ; int tmp___1 ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; tmp___1 = vnic_dev_capable(vdev, 1073856540); } if (tmp___1 != 0) { { tmp = vnic_dev_cmd(vdev, 1073856540, & a0, & a1, wait); } return (tmp); } else { { tmp___0 = vnic_dev_cmd(vdev, 1090633756, & a0, & a1, wait); } return (tmp___0); } } } int vnic_dev_disable(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; tmp = vnic_dev_cmd(vdev, 114717, & a0, & a1, wait); } return (tmp); } } int vnic_dev_open(struct vnic_dev *vdev , int arg ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = (u64 )((unsigned int )arg); a1 = 0ULL; wait = 1000; tmp = vnic_dev_cmd(vdev, 1090633751, & a0, & a1, wait); } return (tmp); } } int vnic_dev_open_done(struct vnic_dev *vdev , int *done ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; *done = 0; err = vnic_dev_cmd(vdev, 2147598360U, & a0, & a1, wait); } if (err != 0) { return (err); } else { } *done = a0 == 0ULL; return (0); } } static int vnic_dev_soft_reset(struct vnic_dev *vdev , int arg ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = (u64 )((unsigned int )arg); a1 = 0ULL; wait = 1000; tmp = vnic_dev_cmd(vdev, 16891923, & a0, & a1, wait); } return (tmp); } } static int vnic_dev_soft_reset_done(struct vnic_dev *vdev , int *done ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; *done = 0; err = vnic_dev_cmd(vdev, 2147598356U, & a0, & a1, wait); } if (err != 0) { return (err); } else { } *done = a0 == 0ULL; return (0); } } int vnic_dev_hang_reset(struct vnic_dev *vdev , int arg ) { u64 a0 ; u64 a1 ; int wait ; int err ; int tmp ; int tmp___0 ; int tmp___1 ; { { a0 = (u64 )((unsigned int )arg); a1 = 0ULL; wait = 1000; tmp___1 = vnic_dev_capable(vdev, 114727); } if (tmp___1 != 0) { { tmp = vnic_dev_cmd(vdev, 114727, & a0, & a1, wait); } return (tmp); } else { { err = vnic_dev_soft_reset(vdev, arg); } if (err != 0) { return (err); } else { } { tmp___0 = vnic_dev_init(vdev, 0); } return (tmp___0); } } } int vnic_dev_hang_reset_done(struct vnic_dev *vdev , int *done ) { u64 a0 ; u64 a1 ; int wait ; int err ; int tmp ; int tmp___0 ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; *done = 0; tmp___0 = vnic_dev_capable(vdev, 2147598376U); } if (tmp___0 != 0) { { err = vnic_dev_cmd(vdev, 2147598376U, & a0, & a1, wait); } if (err != 0) { return (err); } else { } } else { { tmp = vnic_dev_soft_reset_done(vdev, done); } return (tmp); } *done = a0 == 0ULL; return (0); } } int vnic_dev_hang_notify(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { wait = 1000; tmp = vnic_dev_cmd(vdev, 114696, & a0, & a1, wait); } return (tmp); } } int vnic_dev_get_mac_addr(struct vnic_dev *vdev , u8 *mac_addr ) { u64 a0 ; u64 a1 ; int wait ; int err ; int i ; { wait = 1000; i = 0; goto ldv_46737; ldv_46736: *(mac_addr + (unsigned long )i) = 0U; i = i + 1; ldv_46737: ; if (i <= 5) { goto ldv_46736; } else { } { err = vnic_dev_cmd(vdev, 2147532809U, & a0, & a1, wait); } if (err != 0) { return (err); } else { } i = 0; goto ldv_46740; ldv_46739: *(mac_addr + (unsigned long )i) = *((u8 *)(& a0) + (unsigned long )i); i = i + 1; ldv_46740: ; if (i <= 5) { goto ldv_46739; } else { } return (0); } } int vnic_dev_packet_filter(struct vnic_dev *vdev , int directed , int multicast , int broadcast , int promisc , int allmulti ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { a1 = 0ULL; wait = 1000; a0 = (u64 )(((((directed != 0) | (multicast != 0 ? 2 : 0)) | (broadcast != 0 ? 4 : 0)) | (promisc != 0 ? 8 : 0)) | (allmulti != 0 ? 16 : 0)); err = vnic_dev_cmd(vdev, 1090535431, & a0, & a1, wait); } if (err != 0) { { printk("\venic: Can\'t set packet filter\n"); } } else { } return (err); } } int vnic_dev_add_addr(struct vnic_dev *vdev , u8 const *addr ) { u64 a0 ; u64 a1 ; int wait ; int err ; int i ; { a0 = 0ULL; a1 = 0ULL; wait = 1000; i = 0; goto ldv_46764; ldv_46763: *((u8 *)(& a0) + (unsigned long )i) = *(addr + (unsigned long )i); i = i + 1; ldv_46764: ; if (i <= 5) { goto ldv_46763; } else { } { err = vnic_dev_cmd(vdev, 1090568204, & a0, & a1, wait); } if (err != 0) { { printk("\venic: Can\'t add addr [%pM], %d\n", addr, err); } } else { } return (err); } } int vnic_dev_del_addr(struct vnic_dev *vdev , u8 const *addr ) { u64 a0 ; u64 a1 ; int wait ; int err ; int i ; { a0 = 0ULL; a1 = 0ULL; wait = 1000; i = 0; goto ldv_46776; ldv_46775: *((u8 *)(& a0) + (unsigned long )i) = *(addr + (unsigned long )i); i = i + 1; ldv_46776: ; if (i <= 5) { goto ldv_46775; } else { } { err = vnic_dev_cmd(vdev, 1090568205, & a0, & a1, wait); } if (err != 0) { { printk("\venic: Can\'t del addr [%pM], %d\n", addr, err); } } else { } return (err); } } int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev , u8 ig_vlan_rewrite_mode ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; int tmp___0 ; { { a0 = (u64 )ig_vlan_rewrite_mode; a1 = 0ULL; wait = 1000; tmp___0 = vnic_dev_capable(vdev, 3221241897U); } if (tmp___0 != 0) { { tmp = vnic_dev_cmd(vdev, 3221241897U, & a0, & a1, wait); } return (tmp); } else { return (0); } } } static int vnic_dev_notify_setcmd(struct vnic_dev *vdev , void *notify_addr , dma_addr_t notify_pa , u16 intr ) { u64 a0 ; u64 a1 ; int wait ; int r ; { { wait = 1000; memset(notify_addr, 0, 40UL); vdev->notify = (struct vnic_devcmd_notify *)notify_addr; vdev->notify_pa = notify_pa; a0 = notify_pa; a1 = ((unsigned long long )intr << 32) & 281470681743360ULL; a1 = a1 + 40ULL; r = vnic_dev_cmd(vdev, 3221340181U, & a0, & a1, wait); vdev->notify_sz = r == 0 ? (unsigned int )a1 : 0U; } return (r); } } int vnic_dev_notify_set(struct vnic_dev *vdev , u16 intr ) { void *notify_addr ; dma_addr_t notify_pa ; int tmp ; { if ((unsigned long )vdev->notify != (unsigned long )((struct vnic_devcmd_notify *)0) || vdev->notify_pa != 0ULL) { { printk("\venic: notify block %p still allocated", vdev->notify); } return (-22); } else { } { notify_addr = pci_alloc_consistent(vdev->pdev, 40UL, & notify_pa); } if ((unsigned long )notify_addr == (unsigned long )((void *)0)) { return (-12); } else { } { tmp = vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, (int )intr); } return (tmp); } } static int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { wait = 1000; a0 = 0ULL; a1 = 281470681743360ULL; a1 = a1 + 40ULL; err = vnic_dev_cmd(vdev, 3221340181U, & a0, & a1, wait); vdev->notify = (struct vnic_devcmd_notify *)0; vdev->notify_pa = 0ULL; vdev->notify_sz = 0U; } return (err); } } int vnic_dev_notify_unset(struct vnic_dev *vdev ) { int tmp ; { if ((unsigned long )vdev->notify != (unsigned long )((struct vnic_devcmd_notify *)0)) { { pci_free_consistent(vdev->pdev, 40UL, (void *)vdev->notify, vdev->notify_pa); } } else { } { tmp = vnic_dev_notify_unsetcmd(vdev); } return (tmp); } } static int vnic_dev_notify_ready(struct vnic_dev *vdev ) { u32 *words ; unsigned int nwords ; unsigned int i ; u32 csum ; { nwords = vdev->notify_sz / 4U; if ((unsigned long )vdev->notify == (unsigned long )((struct vnic_devcmd_notify *)0) || vdev->notify_sz == 0U) { return (0); } else { } ldv_46821: { csum = 0U; memcpy((void *)(& vdev->notify_copy), (void const *)vdev->notify, (size_t )vdev->notify_sz); words = (u32 *)(& vdev->notify_copy); i = 1U; } goto ldv_46819; ldv_46818: csum = csum + *(words + (unsigned long )i); i = i + 1U; ldv_46819: ; if (i < nwords) { goto ldv_46818; } else { } if (csum != *words) { goto ldv_46821; } else { } return (1); } } int vnic_dev_init(struct vnic_dev *vdev , int arg ) { u64 a0 ; u64 a1 ; int wait ; int r ; int tmp ; { { a0 = (u64 )((unsigned int )arg); a1 = 0ULL; wait = 1000; r = 0; tmp = vnic_dev_capable(vdev, 1090633763); } if (tmp != 0) { { r = vnic_dev_cmd(vdev, 1090633763, & a0, & a1, wait); } } else { { vnic_dev_cmd(vdev, 2164375578U, & a0, & a1, wait); } if ((int )a0 & 1) { { vnic_dev_cmd(vdev, 2147532809U, & a0, & a1, wait); vnic_dev_cmd(vdev, 1090568204, & a0, & a1, wait); } } else { } } return (r); } } int vnic_dev_deinit(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; tmp = vnic_dev_cmd(vdev, 16891938, & a0, & a1, wait); } return (tmp); } } void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev ) { { { vdev->intr_coal_timer_info.mul = 2U; vdev->intr_coal_timer_info.div = 3U; vdev->intr_coal_timer_info.max_usec = vnic_dev_intr_coal_timer_hw_to_usec(vdev, 65535U); } return; } } int vnic_dev_intr_coal_timer_info(struct vnic_dev *vdev ) { int wait ; int err ; int tmp ; { { wait = 1000; memset((void *)(& vdev->args), 0, 120UL); tmp = vnic_dev_capable(vdev, 2147598386U); } if (tmp != 0) { { err = _vnic_dev_cmd(vdev, 2147598386U, wait); } } else { err = 5; } if (err == 5 || (err == 0 && ((vdev->args[0] == 0ULL || vdev->args[1] == 0ULL) || vdev->args[2] == 0ULL))) { { printk("\fenic: Using default conversion factor for interrupt coalesce timer\n"); vnic_dev_intr_coal_timer_info_default(vdev); } return (0); } else { } if (err == 0) { vdev->intr_coal_timer_info.mul = (unsigned int )vdev->args[0]; vdev->intr_coal_timer_info.div = (unsigned int )vdev->args[1]; vdev->intr_coal_timer_info.max_usec = (unsigned int )vdev->args[2]; } else { } return (err); } } int vnic_dev_link_status(struct vnic_dev *vdev ) { int tmp ; { { tmp = vnic_dev_notify_ready(vdev); } if (tmp == 0) { return (0); } else { } return ((int )vdev->notify_copy.link_state); } } u32 vnic_dev_port_speed(struct vnic_dev *vdev ) { int tmp ; { { tmp = vnic_dev_notify_ready(vdev); } if (tmp == 0) { return (0U); } else { } return (vdev->notify_copy.port_speed); } } u32 vnic_dev_msg_lvl(struct vnic_dev *vdev ) { int tmp ; { { tmp = vnic_dev_notify_ready(vdev); } if (tmp == 0) { return (0U); } else { } return (vdev->notify_copy.msglvl); } } u32 vnic_dev_mtu(struct vnic_dev *vdev ) { int tmp ; { { tmp = vnic_dev_notify_ready(vdev); } if (tmp == 0) { return (0U); } else { } return (vdev->notify_copy.mtu); } } void vnic_dev_set_intr_mode(struct vnic_dev *vdev , enum vnic_dev_intr_mode intr_mode ) { { vdev->intr_mode = intr_mode; return; } } enum vnic_dev_intr_mode vnic_dev_get_intr_mode(struct vnic_dev *vdev ) { { return (vdev->intr_mode); } } u32 vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev , u32 usec ) { { return ((usec * vdev->intr_coal_timer_info.mul) / vdev->intr_coal_timer_info.div); } } u32 vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev , u32 hw_cycles ) { { return ((hw_cycles * vdev->intr_coal_timer_info.div) / vdev->intr_coal_timer_info.mul); } } u32 vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev ) { { return (vdev->intr_coal_timer_info.max_usec); } } void vnic_dev_unregister(struct vnic_dev *vdev ) { { if ((unsigned long )vdev != (unsigned long )((struct vnic_dev *)0)) { if ((unsigned long )vdev->notify != (unsigned long )((struct vnic_devcmd_notify *)0)) { { pci_free_consistent(vdev->pdev, 40UL, (void *)vdev->notify, vdev->notify_pa); } } else { } if ((unsigned long )vdev->stats != (unsigned long )((struct vnic_stats *)0)) { { pci_free_consistent(vdev->pdev, 512UL, (void *)vdev->stats, vdev->stats_pa); } } else { } if ((unsigned long )vdev->fw_info != (unsigned long )((struct vnic_devcmd_fw_info *)0)) { { pci_free_consistent(vdev->pdev, 132UL, (void *)vdev->fw_info, vdev->fw_info_pa); } } else { } { kfree((void const *)vdev); } } else { } return; } } static char const __kstrtab_vnic_dev_unregister[20U] = { 'v', 'n', 'i', 'c', '_', 'd', 'e', 'v', '_', 'u', 'n', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_vnic_dev_unregister ; struct kernel_symbol const __ksymtab_vnic_dev_unregister = {(unsigned long )(& vnic_dev_unregister), (char const *)(& __kstrtab_vnic_dev_unregister)}; struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev , void *priv , struct pci_dev *pdev , struct vnic_dev_bar *bar , unsigned int num_bars ) { void *tmp ; int tmp___0 ; void *tmp___1 ; { if ((unsigned long )vdev == (unsigned long )((struct vnic_dev *)0)) { { tmp = kzalloc(712UL, 32U); vdev = (struct vnic_dev *)tmp; } if ((unsigned long )vdev == (unsigned long )((struct vnic_dev *)0)) { return ((struct vnic_dev *)0); } else { } } else { } { vdev->priv = priv; vdev->pdev = pdev; tmp___0 = vnic_dev_discover_res(vdev, bar, num_bars); } if (tmp___0 != 0) { goto err_out; } else { } { tmp___1 = vnic_dev_get_res(vdev, 16, 0U); vdev->devcmd = (struct vnic_devcmd *)tmp___1; } if ((unsigned long )vdev->devcmd == (unsigned long )((struct vnic_devcmd *)0)) { goto err_out; } else { } return (vdev); err_out: { vnic_dev_unregister(vdev); } return ((struct vnic_dev *)0); } } static char const __kstrtab_vnic_dev_register[18U] = { 'v', 'n', 'i', 'c', '_', 'd', 'e', 'v', '_', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_vnic_dev_register ; struct kernel_symbol const __ksymtab_vnic_dev_register = {(unsigned long )(& vnic_dev_register), (char const *)(& __kstrtab_vnic_dev_register)}; struct pci_dev *vnic_dev_get_pdev(struct vnic_dev *vdev ) { { return (vdev->pdev); } } static char const __kstrtab_vnic_dev_get_pdev[18U] = { 'v', 'n', 'i', 'c', '_', 'd', 'e', 'v', '_', 'g', 'e', 't', '_', 'p', 'd', 'e', 'v', '\000'}; struct kernel_symbol const __ksymtab_vnic_dev_get_pdev ; struct kernel_symbol const __ksymtab_vnic_dev_get_pdev = {(unsigned long )(& vnic_dev_get_pdev), (char const *)(& __kstrtab_vnic_dev_get_pdev)}; int vnic_dev_init_prov2(struct vnic_dev *vdev , u8 *buf , u32 len ) { u64 a0 ; u64 a1 ; int wait ; dma_addr_t prov_pa ; void *prov_buf ; int ret ; { { a1 = (u64 )len; wait = 1000; prov_buf = pci_alloc_consistent(vdev->pdev, (size_t )len, & prov_pa); } if ((unsigned long )prov_buf == (unsigned long )((void *)0)) { return (-12); } else { } { memcpy(prov_buf, (void const *)buf, (size_t )len); a0 = prov_pa; ret = vnic_dev_cmd(vdev, 1073758255, & a0, & a1, wait); pci_free_consistent(vdev->pdev, (size_t )len, prov_buf, prov_pa); } return (ret); } } int vnic_dev_enable2(struct vnic_dev *vdev , int active ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a1 = 0ULL; wait = 1000; a0 = active != 0; tmp = vnic_dev_cmd(vdev, 1073758256, & a0, & a1, wait); } return (tmp); } } static int vnic_dev_cmd_status(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd , int *status ) { u64 a0 ; u64 a1 ; int wait ; int ret ; { { a0 = (u64 )cmd; a1 = 0ULL; wait = 1000; ret = vnic_dev_cmd(vdev, 3221340209U, & a0, & a1, wait); } if (ret == 0) { *status = (int )a0; } else { } return (ret); } } int vnic_dev_enable2_done(struct vnic_dev *vdev , int *status ) { int tmp ; { { tmp = vnic_dev_cmd_status(vdev, 1073758256, status); } return (tmp); } } int vnic_dev_deinit_done(struct vnic_dev *vdev , int *status ) { int tmp ; { { tmp = vnic_dev_cmd_status(vdev, 16891938, status); } return (tmp); } } int vnic_dev_set_mac_addr(struct vnic_dev *vdev , u8 *mac_addr ) { u64 a0 ; u64 a1 ; int wait ; int i ; int tmp ; { wait = 1000; i = 0; goto ldv_46958; ldv_46957: *((u8 *)(& a0) + (unsigned long )i) = *(mac_addr + (unsigned long )i); i = i + 1; ldv_46958: ; if (i <= 5) { goto ldv_46957; } else { } { tmp = vnic_dev_cmd(vdev, 1073758263, & a0, & a1, wait); } return (tmp); } } int vnic_dev_classifier(struct vnic_dev *vdev , u8 cmd , u16 *entry , struct filter *data ) { u64 a0 ; u64 a1 ; int wait ; dma_addr_t tlv_pa ; int ret ; struct filter_tlv *tlv ; struct filter_tlv *tlv_va ; struct filter_action *action ; u64 tlv_size ; void *tmp ; { wait = 1000; ret = -22; if ((unsigned int )cmd == 0U) { { tlv_size = 48ULL; tmp = pci_alloc_consistent(vdev->pdev, (size_t )tlv_size, & tlv_pa); tlv_va = (struct filter_tlv *)tmp; } if ((unsigned long )tlv_va == (unsigned long )((struct filter_tlv *)0)) { return (-12); } else { } { tlv = tlv_va; a0 = tlv_pa; a1 = tlv_size; memset((void *)tlv, 0, (size_t )tlv_size); tlv->type = 0U; tlv->length = 24U; *((struct filter *)(& tlv->val)) = *data; tlv = tlv + 32U; tlv->type = 1U; tlv->length = 8U; action = (struct filter_action *)(& tlv->val); action->type = 0U; action->u.rq_idx = (u32 )*entry; ret = vnic_dev_cmd(vdev, 3221241914U, & a0, & a1, wait); *entry = (unsigned short )a0; pci_free_consistent(vdev->pdev, (size_t )tlv_size, (void *)tlv_va, tlv_pa); } } else if ((unsigned int )cmd == 1U) { { a0 = (u64 )*entry; ret = vnic_dev_cmd(vdev, 1073758267, & a0, & a1, wait); } } else { } return (ret); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; static int vnic_rq_alloc_bufs(struct vnic_rq *rq ) { struct vnic_rq_buf *buf ; unsigned int i ; unsigned int j ; unsigned int count ; unsigned int blks ; void *tmp ; struct vnic_rq_buf *tmp___0 ; { count = rq->ring.desc_count; blks = ((count + (count <= 63U ? 32U : 64U)) - 1U) / (count <= 63U ? 32U : 64U); i = 0U; goto ldv_46720; ldv_46719: { tmp = kzalloc(count <= 63U ? 1792UL : 3584UL, 32U); rq->bufs[i] = (struct vnic_rq_buf *)tmp; } if ((unsigned long )rq->bufs[i] == (unsigned long )((struct vnic_rq_buf *)0)) { return (-12); } else { } i = i + 1U; ldv_46720: ; if (i < blks) { goto ldv_46719; } else { } i = 0U; goto ldv_46726; ldv_46725: buf = rq->bufs[i]; j = 0U; goto ldv_46724; ldv_46723: buf->index = i * (count <= 63U ? 32U : 64U) + j; buf->desc = rq->ring.descs + (unsigned long )(rq->ring.desc_size * buf->index); if (buf->index + 1U == count) { buf->next = rq->bufs[0]; goto ldv_46722; } else if (j + 1U == (count <= 63U ? 32U : 64U)) { buf->next = rq->bufs[i + 1U]; } else { buf->next = buf + 1UL; buf = buf + 1; } j = j + 1U; ldv_46724: ; if (j < (count <= 63U ? 32U : 64U)) { goto ldv_46723; } else { } ldv_46722: i = i + 1U; ldv_46726: ; if (i < blks) { goto ldv_46725; } else { } tmp___0 = rq->bufs[0]; rq->to_clean = tmp___0; rq->to_use = tmp___0; return (0); } } void vnic_rq_free(struct vnic_rq *rq ) { struct vnic_dev *vdev ; unsigned int i ; { { vdev = rq->vdev; vnic_dev_free_desc_ring(vdev, & rq->ring); i = 0U; } goto ldv_46734; ldv_46733: ; if ((unsigned long )rq->bufs[i] != (unsigned long )((struct vnic_rq_buf *)0)) { { kfree((void const *)rq->bufs[i]); rq->bufs[i] = (struct vnic_rq_buf *)0; } } else { } i = i + 1U; ldv_46734: ; if (i <= 63U) { goto ldv_46733; } else { } rq->ctrl = (struct vnic_rq_ctrl *)0; return; } } int vnic_rq_alloc(struct vnic_dev *vdev , struct vnic_rq *rq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) { int err ; void *tmp ; { { rq->index = index; rq->vdev = vdev; tmp = vnic_dev_get_res(vdev, 2, index); rq->ctrl = (struct vnic_rq_ctrl *)tmp; } if ((unsigned long )rq->ctrl == (unsigned long )((struct vnic_rq_ctrl *)0)) { { printk("\venic: Failed to hook RQ[%d] resource\n", index); } return (-22); } else { } { vnic_rq_disable(rq); err = vnic_dev_alloc_desc_ring(vdev, & rq->ring, desc_count, desc_size); } if (err != 0) { return (err); } else { } { err = vnic_rq_alloc_bufs(rq); } if (err != 0) { { vnic_rq_free(rq); } return (err); } else { } return (0); } } static void vnic_rq_init_start(struct vnic_rq *rq , unsigned int cq_index , unsigned int fetch_index , unsigned int posted_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) { u64 paddr ; unsigned int count ; struct vnic_rq_buf *tmp ; { { count = rq->ring.desc_count; paddr = rq->ring.base_addr; writeq((unsigned long )paddr, (void volatile *)(& (rq->ctrl)->ring_base)); iowrite32(count, (void *)(& (rq->ctrl)->ring_size)); iowrite32(cq_index, (void *)(& (rq->ctrl)->cq_index)); iowrite32(error_interrupt_enable, (void *)(& (rq->ctrl)->error_interrupt_enable)); iowrite32(error_interrupt_offset, (void *)(& (rq->ctrl)->error_interrupt_offset)); iowrite32(0U, (void *)(& (rq->ctrl)->dropped_packet_count)); iowrite32(0U, (void *)(& (rq->ctrl)->error_status)); iowrite32(fetch_index, (void *)(& (rq->ctrl)->fetch_index)); iowrite32(posted_index, (void *)(& (rq->ctrl)->posted_index)); tmp = rq->bufs[fetch_index / (count <= 63U ? 32U : 64U)] + (unsigned long )(fetch_index % (count <= 63U ? 32U : 64U)); rq->to_clean = tmp; rq->to_use = tmp; } return; } } void vnic_rq_init(struct vnic_rq *rq , unsigned int cq_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) { u32 fetch_index ; { { fetch_index = 0U; fetch_index = ioread32((void *)(& (rq->ctrl)->fetch_index)); } if (fetch_index == 4294967295U) { fetch_index = 0U; } else { } { vnic_rq_init_start(rq, cq_index, fetch_index, fetch_index, error_interrupt_enable, error_interrupt_offset); } return; } } unsigned int vnic_rq_error_status(struct vnic_rq *rq ) { unsigned int tmp ; { { tmp = ioread32((void *)(& (rq->ctrl)->error_status)); } return (tmp); } } void vnic_rq_enable(struct vnic_rq *rq ) { { { iowrite32(1U, (void *)(& (rq->ctrl)->enable)); } return; } } int vnic_rq_disable(struct vnic_rq *rq ) { unsigned int wait ; unsigned int tmp ; { { iowrite32(0U, (void *)(& (rq->ctrl)->enable)); wait = 0U; } goto ldv_46772; ldv_46771: { tmp = ioread32((void *)(& (rq->ctrl)->running)); } if (tmp == 0U) { return (0); } else { } { __const_udelay(42950UL); wait = wait + 1U; } ldv_46772: ; if (wait <= 999U) { goto ldv_46771; } else { } { printk("\venic: Failed to disable RQ[%d]\n", rq->index); } return (-110); } } void vnic_rq_clean(struct vnic_rq *rq , void (*buf_clean)(struct vnic_rq * , struct vnic_rq_buf * ) ) { struct vnic_rq_buf *buf ; u32 fetch_index ; unsigned int count ; struct vnic_rq_buf *tmp ; unsigned int tmp___0 ; struct vnic_rq_buf *tmp___1 ; { count = rq->ring.desc_count; buf = rq->to_clean; goto ldv_46784; ldv_46783: { (*buf_clean)(rq, buf); tmp = buf->next; rq->to_clean = tmp; buf = tmp; rq->ring.desc_avail = rq->ring.desc_avail + 1U; } ldv_46784: { tmp___0 = vnic_rq_desc_used(rq); } if (tmp___0 != 0U) { goto ldv_46783; } else { } { fetch_index = ioread32((void *)(& (rq->ctrl)->fetch_index)); } if (fetch_index == 4294967295U) { fetch_index = 0U; } else { } { tmp___1 = rq->bufs[fetch_index / (count <= 63U ? 32U : 64U)] + (unsigned long )(fetch_index % (count <= 63U ? 32U : 64U)); rq->to_clean = tmp___1; rq->to_use = tmp___1; iowrite32(fetch_index, (void *)(& (rq->ctrl)->posted_index)); vnic_dev_clear_desc_ring(& rq->ring); } return; } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; struct vic_provinfo *vic_provinfo_alloc(gfp_t flags , u8 const *oui , u8 const type ) { struct vic_provinfo *vp ; void *tmp ; { if ((unsigned long )oui == (unsigned long )((u8 const *)0U)) { return ((struct vic_provinfo *)0); } else { } { tmp = kzalloc(1385UL, flags); vp = (struct vic_provinfo *)tmp; } if ((unsigned long )vp == (unsigned long )((struct vic_provinfo *)0)) { return ((struct vic_provinfo *)0); } else { } { memcpy((void *)(& vp->oui), (void const *)oui, 3UL); vp->type = type; vp->length = 67108864U; } return (vp); } } void vic_provinfo_free(struct vic_provinfo *vp ) { { { kfree((void const *)vp); } return; } } int vic_provinfo_add_tlv(struct vic_provinfo *vp , u16 type , u16 length , void const *value ) { struct vic_provinfo_tlv *tlv ; __u32 tmp ; __u32 tmp___0 ; __u16 tmp___1 ; __u16 tmp___2 ; __u32 tmp___8 ; __u32 tmp___9 ; __u32 tmp___15 ; __u32 tmp___16 ; { if ((unsigned long )vp == (unsigned long )((struct vic_provinfo *)0) || (unsigned long )value == (unsigned long )((void const *)0)) { return (-22); } else { } { tmp = __fswab32(vp->length); } if (((unsigned long )tmp + 4UL) + (unsigned long )length > 1373UL) { return (-12); } else { } { tmp___0 = __fswab32(vp->length); tlv = (struct vic_provinfo_tlv *)(& vp->tlv) + ((unsigned long )tmp___0 + 0xfffffffffffffffcUL); tmp___1 = __fswab16((int )type); tlv->type = tmp___1; tmp___2 = __fswab16((int )length); tlv->length = tmp___2; memcpy((void *)(& tlv->value), value, (size_t )length); tmp___8 = __fswab32(vp->num_tlvs); tmp___9 = __fswab32(tmp___8 + 1U); vp->num_tlvs = tmp___9; tmp___15 = __fswab32(vp->length); tmp___16 = __fswab32((tmp___15 + 4U) + (__u32 )length); vp->length = tmp___16; } return (0); } } size_t vic_provinfo_size(struct vic_provinfo *vp ) { __u32 tmp ; size_t tmp___0 ; { if ((unsigned long )vp != (unsigned long )((struct vic_provinfo *)0)) { { tmp = __fswab32(vp->length); tmp___0 = (unsigned long )tmp + 8UL; } } else { tmp___0 = 0UL; } return (tmp___0); } } extern size_t strlcpy(char * , char const * , size_t ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_enic_rfs_flw_tbl(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_enic_rfs_flw_tbl(void) ; __inline static void ldv_spin_lock_bh_131___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_131___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_131___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_132___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_132___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_132___0(spinlock_t *lock ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } struct enic_rfs_fltr_node *htbl_fltr_search(struct enic *enic , u16 fltr_id ) ; static struct enic_stat const enic_tx_stats[11U] = { {{'t', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 0U}, {{'t', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 1U}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 2U}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 3U}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 4U}, {{'t', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 5U}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 6U}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 7U}, {{'t', 'x', '_', 'd', 'r', 'o', 'p', 's', '\000'}, 8U}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 9U}, {{'t', 'x', '_', 't', 's', 'o', '\000'}, 10U}}; static struct enic_stat const enic_rx_stats[21U] = { {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 0U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 't', 'o', 't', 'a', 'l', '\000'}, 1U}, {{'r', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 2U}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 3U}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 4U}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 5U}, {{'r', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 6U}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 7U}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 8U}, {{'r', 'x', '_', 'd', 'r', 'o', 'p', '\000'}, 9U}, {{'r', 'x', '_', 'n', 'o', '_', 'b', 'u', 'f', 's', '\000'}, 10U}, {{'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 11U}, {{'r', 'x', '_', 'r', 's', 's', '\000'}, 12U}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 13U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '6', '4', '\000'}, 14U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '1', '2', '7', '\000'}, 15U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '2', '5', '5', '\000'}, 16U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '5', '1', '1', '\000'}, 17U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '1', '0', '2', '3', '\000'}, 18U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '1', '5', '1', '8', '\000'}, 19U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 't', 'o', '_', 'm', 'a', 'x', '\000'}, 20U}}; static struct enic_stat const enic_gen_stats[1U] = { {{'d', 'm', 'a', '_', 'm', 'a', 'p', '_', 'e', 'r', 'r', 'o', 'r', '\000'}, 0U}}; static void enic_intr_coal_set_rx(struct enic *enic , u32 timer ) { int i ; int intr ; unsigned int tmp ; { i = 0; goto ldv_47439; ldv_47438: { tmp = enic_msix_rq_intr(enic, (unsigned int )i); intr = (int )tmp; vnic_intr_coalescing_timer_set((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, timer); i = i + 1; } ldv_47439: ; if ((unsigned int )i < enic->rq_count) { goto ldv_47438; } else { } return; } } static int enic_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct enic *enic ; void *tmp ; u32 tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; ecmd->supported = 5120U; ecmd->advertising = 5120U; ecmd->port = 3U; ecmd->transceiver = 1U; tmp___1 = netif_carrier_ok((struct net_device const *)netdev); } if ((int )tmp___1) { { tmp___0 = vnic_dev_port_speed(enic->vdev); ethtool_cmd_speed_set(ecmd, tmp___0); ecmd->duplex = 1U; } } else { { ethtool_cmd_speed_set(ecmd, 4294967295U); ecmd->duplex = 255U; } } ecmd->autoneg = 0U; return (0); } } static void enic_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *drvinfo ) { struct enic *enic ; void *tmp ; struct vnic_devcmd_fw_info *fw_info ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic_dev_fw_info(enic, & fw_info); strlcpy((char *)(& drvinfo->driver), "enic", 32UL); strlcpy((char *)(& drvinfo->version), "2.1.1.83", 32UL); strlcpy((char *)(& drvinfo->fw_version), (char const *)(& fw_info->fw_version), 32UL); tmp___0 = pci_name((struct pci_dev const *)enic->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); } return; } } static void enic_get_strings(struct net_device *netdev , u32 stringset , u8 *data ) { unsigned int i ; { { if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_1: /* CIL Label */ i = 0U; goto ldv_47460; ldv_47459: { memcpy((void *)data, (void const *)(& enic_tx_stats[i].name), 32UL); data = data + 32UL; i = i + 1U; } ldv_47460: ; if (i <= 10U) { goto ldv_47459; } else { } i = 0U; goto ldv_47463; ldv_47462: { memcpy((void *)data, (void const *)(& enic_rx_stats[i].name), 32UL); data = data + 32UL; i = i + 1U; } ldv_47463: ; if (i <= 20U) { goto ldv_47462; } else { } i = 0U; goto ldv_47466; ldv_47465: { memcpy((void *)data, (void const *)(& enic_gen_stats[i].name), 32UL); data = data + 32UL; i = i + 1U; } ldv_47466: ; if (i == 0U) { goto ldv_47465; } else { } goto ldv_47468; switch_break: /* CIL Label */ ; } ldv_47468: ; return; } } static int enic_get_sset_count(struct net_device *netdev , int sset ) { { { if (sset == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; return (33); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void enic_get_ethtool_stats(struct net_device *netdev , struct ethtool_stats *stats , u64 *data ) { struct enic *enic ; void *tmp ; struct vnic_stats *vstats ; unsigned int i ; u64 *tmp___0 ; u64 *tmp___1 ; u64 *tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic_dev_stats_dump(enic, & vstats); i = 0U; } goto ldv_47484; ldv_47483: tmp___0 = data; data = data + 1; *tmp___0 = *((u64 *)(& vstats->tx) + (unsigned long )enic_tx_stats[i].index); i = i + 1U; ldv_47484: ; if (i <= 10U) { goto ldv_47483; } else { } i = 0U; goto ldv_47487; ldv_47486: tmp___1 = data; data = data + 1; *tmp___1 = *((u64 *)(& vstats->rx) + (unsigned long )enic_rx_stats[i].index); i = i + 1U; ldv_47487: ; if (i <= 20U) { goto ldv_47486; } else { } i = 0U; goto ldv_47490; ldv_47489: tmp___2 = data; data = data + 1; *tmp___2 = *((u64 *)(& enic->gen_stats) + (unsigned long )enic_gen_stats[i].index); i = i + 1U; ldv_47490: ; if (i == 0U) { goto ldv_47489; } else { } return; } } static u32 enic_get_msglevel(struct net_device *netdev ) { struct enic *enic ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; } return (enic->msg_enable); } } static void enic_set_msglevel(struct net_device *netdev , u32 value ) { struct enic *enic ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic->msg_enable = value; } return; } } static int enic_get_coalesce(struct net_device *netdev , struct ethtool_coalesce *ecmd ) { struct enic *enic ; void *tmp ; struct enic_rx_coal *rxcoal ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; rxcoal = & enic->rx_coalesce_setting; ecmd->tx_coalesce_usecs = enic->tx_coalesce_usecs; ecmd->rx_coalesce_usecs = enic->rx_coalesce_usecs; } if (rxcoal->use_adaptive_rx_coalesce != 0U) { ecmd->use_adaptive_rx_coalesce = 1U; } else { } ecmd->rx_coalesce_usecs_low = rxcoal->small_pkt_range_start; ecmd->rx_coalesce_usecs_high = rxcoal->range_end; return (0); } } static int enic_set_coalesce(struct net_device *netdev , struct ethtool_coalesce *ecmd ) { struct enic *enic ; void *tmp ; u32 tx_coalesce_usecs ; u32 rx_coalesce_usecs ; u32 rx_coalesce_usecs_low ; u32 rx_coalesce_usecs_high ; u32 coalesce_usecs_max ; unsigned int i ; unsigned int intr ; struct enic_rx_coal *rxcoal ; u32 __min1 ; u32 __min2 ; u32 __min1___0 ; u32 __min2___0 ; u32 __min1___1 ; u32 __min2___1 ; u32 __min1___2 ; u32 __min2___2 ; enum vnic_dev_intr_mode tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; rxcoal = & enic->rx_coalesce_setting; coalesce_usecs_max = vnic_dev_get_intr_coal_timer_max(enic->vdev); __min1 = ecmd->tx_coalesce_usecs; __min2 = coalesce_usecs_max; tx_coalesce_usecs = __min1 < __min2 ? __min1 : __min2; __min1___0 = ecmd->rx_coalesce_usecs; __min2___0 = coalesce_usecs_max; rx_coalesce_usecs = __min1___0 < __min2___0 ? __min1___0 : __min2___0; __min1___1 = ecmd->rx_coalesce_usecs_low; __min2___1 = coalesce_usecs_max; rx_coalesce_usecs_low = __min1___1 < __min2___1 ? __min1___1 : __min2___1; __min1___2 = ecmd->rx_coalesce_usecs_high; __min2___2 = coalesce_usecs_max; rx_coalesce_usecs_high = __min1___2 < __min2___2 ? __min1___2 : __min2___2; tmp___0 = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp___0 == 1U) { goto case_1; } else { } if ((unsigned int )tmp___0 == 2U) { goto case_2; } else { } if ((unsigned int )tmp___0 == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; if (tx_coalesce_usecs != rx_coalesce_usecs) { return (-22); } else { } if ((ecmd->use_adaptive_rx_coalesce != 0U || ecmd->rx_coalesce_usecs_low != 0U) || ecmd->rx_coalesce_usecs_high != 0U) { return (-22); } else { } { intr = enic_legacy_io_intr(); vnic_intr_coalescing_timer_set((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, tx_coalesce_usecs); } goto ldv_47533; case_2: /* CIL Label */ ; if (tx_coalesce_usecs != rx_coalesce_usecs) { return (-22); } else { } if ((ecmd->use_adaptive_rx_coalesce != 0U || ecmd->rx_coalesce_usecs_low != 0U) || ecmd->rx_coalesce_usecs_high != 0U) { return (-22); } else { } { vnic_intr_coalescing_timer_set((struct vnic_intr *)(& enic->intr), tx_coalesce_usecs); } goto ldv_47533; case_3: /* CIL Label */ ; if (ecmd->rx_coalesce_usecs_high != 0U && rx_coalesce_usecs_high < rx_coalesce_usecs_low + 3U) { return (-22); } else { } i = 0U; goto ldv_47537; ldv_47536: { intr = enic_msix_wq_intr(enic, i); vnic_intr_coalescing_timer_set((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, tx_coalesce_usecs); i = i + 1U; } ldv_47537: ; if (i < enic->wq_count) { goto ldv_47536; } else { } rxcoal->use_adaptive_rx_coalesce = ecmd->use_adaptive_rx_coalesce != 0U; if (rxcoal->use_adaptive_rx_coalesce == 0U) { { enic_intr_coal_set_rx(enic, rx_coalesce_usecs); } } else { } if (ecmd->rx_coalesce_usecs_high != 0U) { rxcoal->range_end = rx_coalesce_usecs_high; rxcoal->small_pkt_range_start = rx_coalesce_usecs_low; rxcoal->large_pkt_range_start = rx_coalesce_usecs_low + 3U; } else { } goto ldv_47533; switch_default: /* CIL Label */ ; goto ldv_47533; switch_break: /* CIL Label */ ; } ldv_47533: enic->tx_coalesce_usecs = tx_coalesce_usecs; enic->rx_coalesce_usecs = rx_coalesce_usecs; return (0); } } static int enic_grxclsrlall(struct enic *enic , struct ethtool_rxnfc *cmd , u32 *rule_locs ) { int j ; int ret ; int cnt ; struct hlist_head *hhead ; struct hlist_node *tmp ; struct enic_rfs_fltr_node *n ; struct hlist_node *____ptr ; struct hlist_node const *__mptr ; struct enic_rfs_fltr_node *tmp___0 ; struct hlist_node *____ptr___0 ; struct hlist_node const *__mptr___0 ; struct enic_rfs_fltr_node *tmp___1 ; { ret = 0; cnt = 0; cmd->data = (__u64 )((int )enic->rfs_h.max - enic->rfs_h.free); j = 0; goto ldv_47564; ldv_47563: hhead = (struct hlist_head *)(& enic->rfs_h.ht_head) + (unsigned long )j; ____ptr = hhead->first; if ((unsigned long )____ptr != (unsigned long )((struct hlist_node *)0)) { __mptr = (struct hlist_node const *)____ptr; tmp___0 = (struct enic_rfs_fltr_node *)__mptr + 0xffffffffffffffe0UL; } else { tmp___0 = (struct enic_rfs_fltr_node *)0; } n = tmp___0; goto ldv_47561; ldv_47560: ; if ((__u32 )cnt == cmd->rule_cnt) { return (-90); } else { } *(rule_locs + (unsigned long )cnt) = (u32 )n->fltr_id; cnt = cnt + 1; ____ptr___0 = tmp; if ((unsigned long )____ptr___0 != (unsigned long )((struct hlist_node *)0)) { __mptr___0 = (struct hlist_node const *)____ptr___0; tmp___1 = (struct enic_rfs_fltr_node *)__mptr___0 + 0xffffffffffffffe0UL; } else { tmp___1 = (struct enic_rfs_fltr_node *)0; } n = tmp___1; ldv_47561: ; if ((unsigned long )n != (unsigned long )((struct enic_rfs_fltr_node *)0)) { tmp = n->node.next; goto ldv_47560; } else { } j = j + 1; ldv_47564: ; if (j <= 1023) { goto ldv_47563; } else { } cmd->rule_cnt = (__u32 )cnt; return (ret); } } static int enic_grxclsrule(struct enic *enic , struct ethtool_rxnfc *cmd ) { struct ethtool_rx_flow_spec *fsp ; struct enic_rfs_fltr_node *n ; { { fsp = & cmd->fs; n = htbl_fltr_search(enic, (int )((unsigned short )fsp->location)); } if ((unsigned long )n == (unsigned long )((struct enic_rfs_fltr_node *)0)) { return (-22); } else { } { if ((int )n->keys.ip_proto == 6) { goto case_6; } else { } if ((int )n->keys.ip_proto == 17) { goto case_17; } else { } goto switch_default; case_6: /* CIL Label */ fsp->flow_type = 1U; goto ldv_47573; case_17: /* CIL Label */ fsp->flow_type = 2U; goto ldv_47573; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_47573: fsp->h_u.tcp_ip4_spec.ip4src = n->keys.src; fsp->m_u.tcp_ip4_spec.ip4src = 4294967295U; fsp->h_u.tcp_ip4_spec.ip4dst = n->keys.dst; fsp->m_u.tcp_ip4_spec.ip4dst = 4294967295U; fsp->h_u.tcp_ip4_spec.psrc = n->keys.__annonCompField70.port16[0]; fsp->m_u.tcp_ip4_spec.psrc = 65535U; fsp->h_u.tcp_ip4_spec.pdst = n->keys.__annonCompField70.port16[1]; fsp->m_u.tcp_ip4_spec.pdst = 65535U; fsp->ring_cookie = (__u64 )n->rq_id; return (0); } } static int enic_get_rxnfc(struct net_device *dev , struct ethtool_rxnfc *cmd , u32 *rule_locs ) { struct enic *enic ; void *tmp ; int ret ; { { tmp = netdev_priv((struct net_device const *)dev); enic = (struct enic *)tmp; ret = 0; } { if (cmd->cmd == 45U) { goto case_45; } else { } if (cmd->cmd == 46U) { goto case_46; } else { } if (cmd->cmd == 48U) { goto case_48; } else { } if (cmd->cmd == 47U) { goto case_47; } else { } goto switch_default; case_45: /* CIL Label */ cmd->data = (__u64 )enic->rq_count; goto ldv_47584; case_46: /* CIL Label */ { ldv_spin_lock_bh_131___0(& enic->rfs_h.lock); cmd->rule_cnt = (__u32 )((int )enic->rfs_h.max - enic->rfs_h.free); cmd->data = (__u64 )enic->rfs_h.max; ldv_spin_unlock_bh_132___0(& enic->rfs_h.lock); } goto ldv_47584; case_48: /* CIL Label */ { ldv_spin_lock_bh_131___0(& enic->rfs_h.lock); ret = enic_grxclsrlall(enic, cmd, rule_locs); ldv_spin_unlock_bh_132___0(& enic->rfs_h.lock); } goto ldv_47584; case_47: /* CIL Label */ { ldv_spin_lock_bh_131___0(& enic->rfs_h.lock); ret = enic_grxclsrule(enic, cmd); ldv_spin_unlock_bh_132___0(& enic->rfs_h.lock); } goto ldv_47584; switch_default: /* CIL Label */ ret = -95; goto ldv_47584; switch_break: /* CIL Label */ ; } ldv_47584: ; return (ret); } } static int enic_get_tunable(struct net_device *dev , struct ethtool_tunable const *tuna , void *data ) { struct enic *enic ; void *tmp ; int ret ; { { tmp = netdev_priv((struct net_device const *)dev); enic = (struct enic *)tmp; ret = 0; } { if (tuna->id == 1U) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ *((u32 *)data) = enic->rx_copybreak; goto ldv_47597; switch_default: /* CIL Label */ ret = -22; goto ldv_47597; switch_break: /* CIL Label */ ; } ldv_47597: ; return (ret); } } static int enic_set_tunable(struct net_device *dev , struct ethtool_tunable const *tuna , void const *data ) { struct enic *enic ; void *tmp ; int ret ; { { tmp = netdev_priv((struct net_device const *)dev); enic = (struct enic *)tmp; ret = 0; } { if (tuna->id == 1U) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ enic->rx_copybreak = *((u32 *)data); goto ldv_47607; switch_default: /* CIL Label */ ret = -22; goto ldv_47607; switch_break: /* CIL Label */ ; } ldv_47607: ; return (ret); } } static u32 enic_get_rxfh_key_size(struct net_device *netdev ) { { return (40U); } } static int enic_get_rxfh(struct net_device *netdev , u32 *indir , u8 *hkey , u8 *hfunc ) { struct enic *enic ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; } if ((unsigned long )hkey != (unsigned long )((u8 *)0U)) { { memcpy((void *)hkey, (void const *)(& enic->rss_key), 40UL); } } else { } if ((unsigned long )hfunc != (unsigned long )((u8 *)0U)) { *hfunc = 1U; } else { } return (0); } } static int enic_set_rxfh(struct net_device *netdev , u32 const *indir , u8 const *hkey , u8 const hfunc ) { struct enic *enic ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; } if ((unsigned int )hfunc > 1U || (unsigned long )indir != (unsigned long )((u32 const *)0U)) { return (-22); } else { } if ((unsigned long )hkey != (unsigned long )((u8 const *)0U)) { { memcpy((void *)(& enic->rss_key), (void const *)hkey, 40UL); } } else { } { tmp___0 = __enic_set_rsskey(enic); } return (tmp___0); } } static struct ethtool_ops const enic_ethtool_ops = {& enic_get_settings, 0, & enic_get_drvinfo, 0, 0, 0, 0, & enic_get_msglevel, & enic_set_msglevel, 0, & ethtool_op_get_link, 0, 0, 0, & enic_get_coalesce, & enic_set_coalesce, 0, 0, 0, 0, 0, & enic_get_strings, 0, & enic_get_ethtool_stats, 0, 0, 0, 0, & enic_get_sset_count, & enic_get_rxnfc, 0, 0, 0, & enic_get_rxfh_key_size, 0, & enic_get_rxfh, & enic_set_rxfh, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & enic_get_tunable, & enic_set_tunable}; void enic_set_ethtool_ops(struct net_device *netdev ) { { netdev->ethtool_ops = & enic_ethtool_ops; return; } } void ldv_dummy_resourceless_instance_callback_2_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_13(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char * ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char *arg4 ) { { { enic_get_rxfh(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_2_16(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_get_rxfh_key_size(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_17(int (*arg0)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 , unsigned int *arg3 ) { { { enic_get_rxnfc(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_20(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { enic_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_21(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { enic_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_24(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { enic_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_27(int (*arg0)(struct net_device * , struct ethtool_tunable * , void * ) , struct net_device *arg1 , struct ethtool_tunable *arg2 , void *arg3 ) { { { enic_get_tunable(arg1, (struct ethtool_tunable const *)arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { enic_get_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_57(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { enic_set_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_58(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { enic_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_61(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char arg4 ) { { { enic_set_rxfh(arg1, (u32 const *)arg2, (u8 const *)arg3, (int )arg4); } return; } } void ldv_dummy_resourceless_instance_callback_2_64(int (*arg0)(struct net_device * , struct ethtool_tunable * , void * ) , struct net_device *arg1 , struct ethtool_tunable *arg2 , void *arg3 ) { { { enic_set_tunable(arg1, (struct ethtool_tunable const *)arg2, (void const *)arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { enic_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_8(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { enic_get_ethtool_stats(arg1, arg2, arg3); } return; } } __inline static void ldv_spin_lock_bh_131___0(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_enic_rfs_flw_tbl(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_132___0(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_enic_rfs_flw_tbl(); spin_unlock_bh(lock); } return; } } __inline static void ldv_spin_lock_168(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_169(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; int enic_api_devcmd_proxy_by_index(struct net_device *netdev , int vf , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) ; int enic_api_devcmd_proxy_by_index(struct net_device *netdev , int vf , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) { int err ; struct enic *enic ; void *tmp ; struct vnic_dev *vdev ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; vdev = enic->vdev; ldv_spin_lock_168(& enic->enic_api_lock); ldv_spin_lock_bh_141(& enic->devcmd_lock); vnic_dev_cmd_proxy_by_index_start(vdev, (int )((u16 )vf)); err = vnic_dev_cmd(vdev, cmd, a0, a1, wait); vnic_dev_cmd_proxy_end(vdev); ldv_spin_unlock_bh_142(& enic->devcmd_lock); ldv_spin_unlock_169(& enic->enic_api_lock); } return (err); } } static char const __kstrtab_enic_api_devcmd_proxy_by_index[31U] = { 'e', 'n', 'i', 'c', '_', 'a', 'p', 'i', '_', 'd', 'e', 'v', 'c', 'm', 'd', '_', 'p', 'r', 'o', 'x', 'y', '_', 'b', 'y', '_', 'i', 'n', 'd', 'e', 'x', '\000'}; struct kernel_symbol const __ksymtab_enic_api_devcmd_proxy_by_index ; struct kernel_symbol const __ksymtab_enic_api_devcmd_proxy_by_index = {(unsigned long )(& enic_api_devcmd_proxy_by_index), (char const *)(& __kstrtab_enic_api_devcmd_proxy_by_index)}; __inline static void INIT_HLIST_NODE(struct hlist_node *h ) { { h->next = (struct hlist_node *)0; h->pprev = (struct hlist_node **)0; return; } } __inline static void __hlist_del(struct hlist_node *n ) { struct hlist_node *next ; struct hlist_node **pprev ; { next = n->next; pprev = n->pprev; *pprev = next; if ((unsigned long )next != (unsigned long )((struct hlist_node *)0)) { next->pprev = pprev; } else { } return; } } __inline static void hlist_del(struct hlist_node *n ) { { { __hlist_del(n); n->next = (struct hlist_node *)-2401263026317557504L; n->pprev = (struct hlist_node **)-2401263026316508672L; } return; } } __inline static void hlist_add_head(struct hlist_node *n , struct hlist_head *h ) { struct hlist_node *first ; { first = h->first; n->next = first; if ((unsigned long )first != (unsigned long )((struct hlist_node *)0)) { first->pprev = & n->next; } else { } h->first = n; n->pprev = & h->first; return; } } __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_141(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_131___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_131___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_131___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_142(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_132___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_132___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_132___0(spinlock_t *lock ) ; static int ldv_mod_timer_129(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_139(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_del_timer_sync_130(struct timer_list *ldv_func_arg1 ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; extern bool __skb_flow_dissect(struct sk_buff const * , struct flow_keys * , void * , __be16 , int , int ) ; __inline static bool skb_flow_dissect(struct sk_buff const *skb , struct flow_keys *flow ) { bool tmp ; { { tmp = __skb_flow_dissect(skb, flow, (void *)0, 0, 0, 0); } return (tmp); } } __inline static __u32 skb_get_hash_raw(struct sk_buff const *skb ) { { return ((__u32 )skb->hash); } } extern bool rps_may_expire_flow(struct net_device * , u16 , u32 , u16 ) ; int enic_addfltr_5t(struct enic *enic , struct flow_keys *keys , u16 rq ) ; int enic_delfltr(struct enic *enic , u16 filter_id ) ; void enic_flow_may_expire(unsigned long data ) ; __inline static void enic_rfs_timer_start(struct enic *enic ) { struct lock_class_key __key ; { { init_timer_key(& enic->rfs_h.rfs_may_expire, 0U, "(&enic->rfs_h.rfs_may_expire)", & __key); enic->rfs_h.rfs_may_expire.function = & enic_flow_may_expire; enic->rfs_h.rfs_may_expire.data = (unsigned long )enic; ldv_mod_timer_129(& enic->rfs_h.rfs_may_expire, (unsigned long )jiffies + 62UL); } return; } } __inline static void enic_rfs_timer_stop(struct enic *enic ) { { { ldv_del_timer_sync_130(& enic->rfs_h.rfs_may_expire); } return; } } int enic_addfltr_5t(struct enic *enic , struct flow_keys *keys , u16 rq ) { int res ; struct filter data ; __u32 tmp ; __u32 tmp___0 ; __u16 tmp___1 ; __u16 tmp___2 ; { { if ((int )keys->ip_proto == 6) { goto case_6; } else { } if ((int )keys->ip_proto == 17) { goto case_17; } else { } goto switch_default; case_6: /* CIL Label */ data.u.ipv4.protocol = 1U; goto ldv_47363; case_17: /* CIL Label */ data.u.ipv4.protocol = 0U; goto ldv_47363; switch_default: /* CIL Label */ ; return (-93); switch_break: /* CIL Label */ ; } ldv_47363: { data.type = 1U; tmp = __fswab32(keys->src); data.u.ipv4.src_addr = tmp; tmp___0 = __fswab32(keys->dst); data.u.ipv4.dst_addr = tmp___0; tmp___1 = __fswab16((int )keys->__annonCompField70.port16[0]); data.u.ipv4.src_port = tmp___1; tmp___2 = __fswab16((int )keys->__annonCompField70.port16[1]); data.u.ipv4.dst_port = tmp___2; data.u.ipv4.flags = 31U; ldv_spin_lock_bh_141(& enic->devcmd_lock); res = vnic_dev_classifier(enic->vdev, 0, & rq, & data); ldv_spin_unlock_bh_142(& enic->devcmd_lock); res = res == 0 ? (int )rq : res; } return (res); } } int enic_delfltr(struct enic *enic , u16 filter_id ) { int ret ; { { ldv_spin_lock_bh_141(& enic->devcmd_lock); ret = vnic_dev_classifier(enic->vdev, 1, & filter_id, (struct filter *)0); ldv_spin_unlock_bh_142(& enic->devcmd_lock); } return (ret); } } void enic_rfs_flw_tbl_init(struct enic *enic ) { int i ; struct lock_class_key __key ; { { spinlock_check(& enic->rfs_h.lock); __raw_spin_lock_init(& enic->rfs_h.lock.__annonCompField18.rlock, "&(&enic->rfs_h.lock)->rlock", & __key); i = 0; } goto ldv_47377; ldv_47376: ((struct hlist_head *)(& enic->rfs_h.ht_head) + (unsigned long )i)->first = (struct hlist_node *)0; i = i + 1; ldv_47377: ; if (i <= 1023) { goto ldv_47376; } else { } { enic->rfs_h.max = enic->config.num_arfs; enic->rfs_h.free = (int )enic->rfs_h.max; enic->rfs_h.toclean = 0U; enic_rfs_timer_start(enic); } return; } } void enic_rfs_flw_tbl_free(struct enic *enic ) { int i ; struct hlist_head *hhead ; struct hlist_node *tmp ; struct enic_rfs_fltr_node *n ; struct hlist_node *____ptr ; struct hlist_node const *__mptr ; struct enic_rfs_fltr_node *tmp___0 ; struct hlist_node *____ptr___0 ; struct hlist_node const *__mptr___0 ; struct enic_rfs_fltr_node *tmp___1 ; { { enic_rfs_timer_stop(enic); ldv_spin_lock_bh_131___0(& enic->rfs_h.lock); enic->rfs_h.free = 0; i = 0; } goto ldv_47399; ldv_47398: hhead = (struct hlist_head *)(& enic->rfs_h.ht_head) + (unsigned long )i; ____ptr = hhead->first; if ((unsigned long )____ptr != (unsigned long )((struct hlist_node *)0)) { __mptr = (struct hlist_node const *)____ptr; tmp___0 = (struct enic_rfs_fltr_node *)__mptr + 0xffffffffffffffe0UL; } else { tmp___0 = (struct enic_rfs_fltr_node *)0; } n = tmp___0; goto ldv_47396; ldv_47395: { enic_delfltr(enic, (int )n->fltr_id); hlist_del(& n->node); kfree((void const *)n); ____ptr___0 = tmp; } if ((unsigned long )____ptr___0 != (unsigned long )((struct hlist_node *)0)) { __mptr___0 = (struct hlist_node const *)____ptr___0; tmp___1 = (struct enic_rfs_fltr_node *)__mptr___0 + 0xffffffffffffffe0UL; } else { tmp___1 = (struct enic_rfs_fltr_node *)0; } n = tmp___1; ldv_47396: ; if ((unsigned long )n != (unsigned long )((struct enic_rfs_fltr_node *)0)) { tmp = n->node.next; goto ldv_47395; } else { } i = i + 1; ldv_47399: ; if (i <= 1023) { goto ldv_47398; } else { } { ldv_spin_unlock_bh_132___0(& enic->rfs_h.lock); } return; } } struct enic_rfs_fltr_node *htbl_fltr_search(struct enic *enic , u16 fltr_id ) { int i ; struct hlist_head *hhead ; struct hlist_node *tmp ; struct enic_rfs_fltr_node *n ; struct hlist_node *____ptr ; struct hlist_node const *__mptr ; struct enic_rfs_fltr_node *tmp___0 ; struct hlist_node *____ptr___0 ; struct hlist_node const *__mptr___0 ; struct enic_rfs_fltr_node *tmp___1 ; { i = 0; goto ldv_47422; ldv_47421: hhead = (struct hlist_head *)(& enic->rfs_h.ht_head) + (unsigned long )i; ____ptr = hhead->first; if ((unsigned long )____ptr != (unsigned long )((struct hlist_node *)0)) { __mptr = (struct hlist_node const *)____ptr; tmp___0 = (struct enic_rfs_fltr_node *)__mptr + 0xffffffffffffffe0UL; } else { tmp___0 = (struct enic_rfs_fltr_node *)0; } n = tmp___0; goto ldv_47419; ldv_47418: ; if ((int )n->fltr_id == (int )fltr_id) { return (n); } else { } ____ptr___0 = tmp; if ((unsigned long )____ptr___0 != (unsigned long )((struct hlist_node *)0)) { __mptr___0 = (struct hlist_node const *)____ptr___0; tmp___1 = (struct enic_rfs_fltr_node *)__mptr___0 + 0xffffffffffffffe0UL; } else { tmp___1 = (struct enic_rfs_fltr_node *)0; } n = tmp___1; ldv_47419: ; if ((unsigned long )n != (unsigned long )((struct enic_rfs_fltr_node *)0)) { tmp = n->node.next; goto ldv_47418; } else { } i = i + 1; ldv_47422: ; if (i <= 1023) { goto ldv_47421; } else { } return ((struct enic_rfs_fltr_node *)0); } } void enic_flow_may_expire(unsigned long data ) { struct enic *enic ; bool res ; int j ; struct hlist_head *hhead ; struct hlist_node *tmp ; struct enic_rfs_fltr_node *n ; unsigned short tmp___0 ; struct hlist_node *____ptr ; struct hlist_node const *__mptr ; struct enic_rfs_fltr_node *tmp___1 ; int tmp___2 ; long tmp___3 ; struct hlist_node *____ptr___0 ; struct hlist_node const *__mptr___0 ; struct enic_rfs_fltr_node *tmp___4 ; { { enic = (struct enic *)data; ldv_spin_lock_bh_131___0(& enic->rfs_h.lock); j = 0; } goto ldv_47447; ldv_47446: tmp___0 = enic->rfs_h.toclean; enic->rfs_h.toclean = (unsigned short )((int )enic->rfs_h.toclean + 1); hhead = (struct hlist_head *)(& enic->rfs_h.ht_head) + (unsigned long )tmp___0; ____ptr = hhead->first; if ((unsigned long )____ptr != (unsigned long )((struct hlist_node *)0)) { __mptr = (struct hlist_node const *)____ptr; tmp___1 = (struct enic_rfs_fltr_node *)__mptr + 0xffffffffffffffe0UL; } else { tmp___1 = (struct enic_rfs_fltr_node *)0; } n = tmp___1; goto ldv_47444; ldv_47443: { res = rps_may_expire_flow(enic->netdev, (int )n->rq_id, n->flow_id, (int )n->fltr_id); } if ((int )res) { { tmp___2 = enic_delfltr(enic, (int )n->fltr_id); res = tmp___2 != 0; tmp___3 = ldv__builtin_expect((long )res, 0L); } if (tmp___3 != 0L) { goto ldv_47442; } else { } { hlist_del(& n->node); kfree((void const *)n); enic->rfs_h.free = enic->rfs_h.free + 1; } } else { } ldv_47442: ____ptr___0 = tmp; if ((unsigned long )____ptr___0 != (unsigned long )((struct hlist_node *)0)) { __mptr___0 = (struct hlist_node const *)____ptr___0; tmp___4 = (struct enic_rfs_fltr_node *)__mptr___0 + 0xffffffffffffffe0UL; } else { tmp___4 = (struct enic_rfs_fltr_node *)0; } n = tmp___4; ldv_47444: ; if ((unsigned long )n != (unsigned long )((struct enic_rfs_fltr_node *)0)) { tmp = n->node.next; goto ldv_47443; } else { } j = j + 1; ldv_47447: ; if (j <= 127) { goto ldv_47446; } else { } { ldv_spin_unlock_bh_132___0(& enic->rfs_h.lock); ldv_mod_timer_139(& enic->rfs_h.rfs_may_expire, (unsigned long )jiffies + 62UL); } return; } } static struct enic_rfs_fltr_node *htbl_key_search(struct hlist_head *h , struct flow_keys *k ) { struct enic_rfs_fltr_node *tpos ; struct hlist_node *____ptr ; struct hlist_node const *__mptr ; struct enic_rfs_fltr_node *tmp ; struct hlist_node *____ptr___0 ; struct hlist_node const *__mptr___0 ; struct enic_rfs_fltr_node *tmp___0 ; { ____ptr = h->first; if ((unsigned long )____ptr != (unsigned long )((struct hlist_node *)0)) { __mptr = (struct hlist_node const *)____ptr; tmp = (struct enic_rfs_fltr_node *)__mptr + 0xffffffffffffffe0UL; } else { tmp = (struct enic_rfs_fltr_node *)0; } tpos = tmp; goto ldv_47463; ldv_47462: ; if ((((tpos->keys.src == k->src && tpos->keys.dst == k->dst) && tpos->keys.__annonCompField70.ports == k->__annonCompField70.ports) && (int )tpos->keys.ip_proto == (int )k->ip_proto) && (int )tpos->keys.n_proto == (int )k->n_proto) { return (tpos); } else { } ____ptr___0 = tpos->node.next; if ((unsigned long )____ptr___0 != (unsigned long )((struct hlist_node *)0)) { __mptr___0 = (struct hlist_node const *)____ptr___0; tmp___0 = (struct enic_rfs_fltr_node *)__mptr___0 + 0xffffffffffffffe0UL; } else { tmp___0 = (struct enic_rfs_fltr_node *)0; } tpos = tmp___0; ldv_47463: ; if ((unsigned long )tpos != (unsigned long )((struct enic_rfs_fltr_node *)0)) { goto ldv_47462; } else { } return ((struct enic_rfs_fltr_node *)0); } } int enic_rx_flow_steer(struct net_device *dev , struct sk_buff const *skb , u16 rxq_index , u32 flow_id ) { struct flow_keys keys ; struct enic_rfs_fltr_node *n ; struct enic *enic ; u16 tbl_idx ; int res ; int i ; void *tmp ; bool tmp___0 ; __u32 tmp___1 ; long tmp___2 ; int ret ; struct enic_rfs_fltr_node *d ; struct hlist_head *head ; void *tmp___3 ; long tmp___4 ; long tmp___5 ; void *tmp___6 ; { { tmp = netdev_priv((struct net_device const *)dev); enic = (struct enic *)tmp; tmp___0 = skb_flow_dissect(skb, & keys); res = (int )tmp___0; } if ((res == 0 || (unsigned int )keys.n_proto != 8U) || ((unsigned int )keys.ip_proto != 6U && (unsigned int )keys.ip_proto != 17U)) { return (-93); } else { } { tmp___1 = skb_get_hash_raw(skb); tbl_idx = (unsigned int )((u16 )tmp___1) & 1023U; ldv_spin_lock_bh_131___0(& enic->rfs_h.lock); n = htbl_key_search((struct hlist_head *)(& enic->rfs_h.ht_head) + (unsigned long )tbl_idx, & keys); } if ((unsigned long )n != (unsigned long )((struct enic_rfs_fltr_node *)0)) { if ((int )rxq_index == (int )n->rq_id) { res = -17; goto ret_unlock; } else { } { enic->rfs_h.free = enic->rfs_h.free - 1; i = enic->rfs_h.free; tmp___5 = ldv__builtin_expect(i < 0, 0L); } if (tmp___5 != 0L) { { enic->rfs_h.free = enic->rfs_h.free + 1; res = enic_delfltr(enic, (int )n->fltr_id); tmp___2 = ldv__builtin_expect(res < 0, 0L); } if (tmp___2 != 0L) { goto ret_unlock; } else { } { res = enic_addfltr_5t(enic, & keys, (int )rxq_index); } if (res < 0) { { hlist_del(& n->node); enic->rfs_h.free = enic->rfs_h.free + 1; } goto ret_unlock; } else { } } else { { res = enic_addfltr_5t(enic, & keys, (int )rxq_index); } if (res < 0) { enic->rfs_h.free = enic->rfs_h.free + 1; goto ret_unlock; } else { } { ret = enic_delfltr(enic, (int )n->fltr_id); tmp___4 = ldv__builtin_expect(ret < 0, 0L); } if (tmp___4 != 0L) { { head = (struct hlist_head *)(& enic->rfs_h.ht_head) + (unsigned long )tbl_idx; tmp___3 = kmalloc(48UL, 32U); d = (struct enic_rfs_fltr_node *)tmp___3; } if ((unsigned long )d != (unsigned long )((struct enic_rfs_fltr_node *)0)) { { d->fltr_id = n->fltr_id; INIT_HLIST_NODE(& d->node); hlist_add_head(& d->node, head); } } else { } } else { enic->rfs_h.free = enic->rfs_h.free + 1; } } n->rq_id = rxq_index; n->fltr_id = (u16 )res; n->flow_id = flow_id; } else { enic->rfs_h.free = enic->rfs_h.free - 1; i = enic->rfs_h.free; if (i <= 0) { enic->rfs_h.free = enic->rfs_h.free + 1; res = -16; goto ret_unlock; } else { } { tmp___6 = kmalloc(48UL, 32U); n = (struct enic_rfs_fltr_node *)tmp___6; } if ((unsigned long )n == (unsigned long )((struct enic_rfs_fltr_node *)0)) { res = -12; enic->rfs_h.free = enic->rfs_h.free + 1; goto ret_unlock; } else { } { res = enic_addfltr_5t(enic, & keys, (int )rxq_index); } if (res < 0) { { kfree((void const *)n); enic->rfs_h.free = enic->rfs_h.free + 1; } goto ret_unlock; } else { } { n->rq_id = rxq_index; n->fltr_id = (u16 )res; n->flow_id = flow_id; n->keys = keys; INIT_HLIST_NODE(& n->node); hlist_add_head(& n->node, (struct hlist_head *)(& enic->rfs_h.ht_head) + (unsigned long )tbl_idx); } } ret_unlock: { ldv_spin_unlock_bh_132___0(& enic->rfs_h.lock); } return (res); } } void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_9_2(struct timer_list *arg0 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_6_timer_list_timer_list ; { { ldv_6_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_6_1(ldv_6_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_9_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_timer_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_timer_timer_instance_4((void *)cf_arg_4); } return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_9_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_9_timer_list_timer_list = arg1; ldv_dispatch_instance_register_9_2(ldv_9_timer_list_timer_list); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc(size); ldv_after_alloc(res); } return (res); } } static int ldv_mod_timer_129(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_130(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_139(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(size_t size ) { void *ptr ; void *tmp ; { { tmp = ldv_malloc(size); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_malloc(sizeof(struct class)); assume_abort_if_not((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); assume_abort_if_not(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { assume_abort_if_not(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); assume_abort_if_not(nondet <= size); assume_abort_if_not(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; assume_abort_if_not(nondet <= size); assume_abort_if_not(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { assume_abort_if_not(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(size); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void *is_got ) { long tmp ; { { assume_abort_if_not((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); assume_abort_if_not(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_bpoll_lock_of_vnic_rq(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 1); ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_bpoll_lock_of_vnic_rq(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 2); ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_bpoll_lock_of_vnic_rq(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_bpoll_lock_of_vnic_rq(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_bpoll_lock_of_vnic_rq(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_bpoll_lock_of_vnic_rq(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_bpoll_lock_of_vnic_rq(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_bpoll_lock_of_vnic_rq(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_bpoll_lock_of_vnic_rq(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_devcmd_lock_of_enic(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 1); ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_devcmd_lock_of_enic(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 2); ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_devcmd_lock_of_enic(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_devcmd_lock_of_enic(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_devcmd_lock_of_enic(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_devcmd_lock_of_enic(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_devcmd_lock_of_enic(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_devcmd_lock_of_enic(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_devcmd_lock_of_enic(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_enic_api_lock_of_enic(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 1); ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_enic_api_lock_of_enic(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 2); ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_enic_api_lock_of_enic(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_enic_api_lock_of_enic(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_enic_api_lock_of_enic(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_enic_api_lock_of_enic(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_enic_api_lock_of_enic(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_enic_api_lock_of_enic(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_enic_api_lock_of_enic(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_enic_rfs_flw_tbl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_enic_rfs_flw_tbl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_enic_rfs_flw_tbl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_enic_rfs_flw_tbl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_enic_rfs_flw_tbl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_enic_rfs_flw_tbl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_enic_rfs_flw_tbl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_enic_rfs_flw_tbl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_enic_rfs_flw_tbl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_bpoll_lock_of_vnic_rq == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_devcmd_lock_of_enic == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_enic_api_lock_of_enic == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_enic_rfs_flw_tbl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } void reach_error_linux_net_rtnetlink(void) { reach_error(); } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void reach_error_linux_kernel_locking_rwlock(void) { reach_error(); } void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void reach_error_linux_lib_idr(void) { reach_error(); } void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void reach_error_linux_kernel_sched_completion(void) { reach_error(); } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { reach_error_linux_kernel_sched_completion(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { reach_error_linux_kernel_sched_completion(); } } else { } return; } } void reach_error_linux_net_register(void) { reach_error(); } void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { reach_error_linux_net_register(); } } else { } return; } } void reach_error_linux_fs_char_dev(void) { reach_error(); } void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void reach_error_linux_kernel_rcu_srcu(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void reach_error_linux_kernel_module(void) { reach_error(); } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_kernel_module(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_module(); } } else { } return; } } void reach_error_linux_alloc_spinlock(void) { reach_error(); } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_spinlock(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_spinlock(); } } else { } return; } } void reach_error_linux_lib_find_bit(void) { reach_error(); } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { reach_error_linux_lib_find_bit(); } } else { } return; } } void reach_error_linux_mmc_sdio_func(void) { reach_error(); } void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void reach_error_linux_usb_coherent(void) { reach_error(); } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_coherent(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_coherent(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void reach_error_linux_net_sock(void) { reach_error(); } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { reach_error_linux_net_sock(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { reach_error_linux_net_sock(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock_bh(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void reach_error_linux_usb_dev(void) { reach_error(); } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void reach_error_linux_kernel_locking_mutex(void) { reach_error(); } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void reach_error_linux_usb_gadget(void) { reach_error(); } void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void reach_error_linux_alloc_usb_lock(void) { reach_error(); } void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_usb_lock(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_usb_lock(); } } else { } return; } } void reach_error_linux_block_request(void) { reach_error(); } void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void reach_error_linux_alloc_irq(void) { reach_error(); } void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_irq(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_irq(); } } else { } return; } } void reach_error_linux_drivers_base_class(void) { reach_error(); } void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void reach_error_linux_block_queue(void) { reach_error(); } void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void reach_error_linux_block_genhd(void) { reach_error(); } void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void reach_error_linux_arch_io(void) { reach_error(); } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_arch_io(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_arch_io(); } } else { } return; } } void reach_error_linux_usb_register(void) { reach_error(); } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { reach_error_linux_usb_register(); } } else { } return; } } void reach_error_linux_fs_sysfs(void) { reach_error(); } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_fs_sysfs(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_fs_sysfs(); } } else { } return; } } void reach_error_linux_kernel_locking_spinlock(void) { reach_error(); } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void reach_error_linux_usb_urb(void) { reach_error(); } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_urb(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_urb(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock_sched(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } }